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CHAPTER 1

Introduction

Research often starts with sketchy problems, leads us through unforeseen
paths, provides us surprising answers, and raises unexpected questions for us
to answer. This modest contribution to solar physics is no exception. The
projects and results that comprise this work were achieved in the Istituto
Ricerche Solari Locarno (IRSOL), a small and independent research institute
located in the southern Italian-speaking region of Switzerland. The IRSOL ob-
servatory is dedicated to solar research and it is a leading institute in the field of
observational high-precision spectropolarimetry. The idea of studying the lin-
ear polarization in the solar continuum and its centre-to-limb variation (CLV)
with the help of numerical simulations emerged quite naturally. At the time
I arrived at the observatory, corresponding observational measurements were
already planned. The centre-to-limb variation of linear polarization (CLVP) in
the continuum radiation in stellar atmospheres was already predicted by Chan-
drasekhar in the 40s, but a precise measurement in the case of the Sun still
awaits completion because of the required high degree of absolute polarimetric
accuracy. The IRSOL institute started witnessing its forthcoming growth with
the arrival of Luca Belluzzi, a specialist in theoretical spectropolarimetry, and
Oskar Steiner, a specialist in numerical simulations of the solar and stellar at-
mospheres. Producing numerical models to confront to the observations was
a logical step, and a task that was proposed to me, under the supervision of
Oskar Steiner, after my own arrival to the institute at the end of the year 2013.

It was surprisingly easy to get an account at the nearby Swiss National
Supercomputing Centre (Centro Svizzero di Calcolo Scientifico, CSCS), and
shortly after the beginning of my Ph.D. we could already start simulating dy-
namic models of the solar photosphere and convective layers beneath it by using
the already-existing COnservative COde for the COmputation of COmpressible
COnvection in a BOz of L Dimensions with 1=2,3 (CO°BOLD) (magneto-)hy-
drodynamic computer code. We constructed a few high-resolution magnetic
models, and faithfully reproduced the solar granulation pattern due to the con-
vecting plasma. The darker intergranular lanes with its conspicuous magnetic
bright features were also clearly visible. We also started non-magnetic simula-
tions, that revealed again the solar granulation and, interestingly, small bright
features in the intergranular lanes that obviously were of non-magnetic origin,
and smaller than the corresponding magnetic features. We called them “non-
magnetic bright points” and started studying them, first individually, and then
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collectively with a statistical approach. This study lead to a publication, that
is found hereafter in Chapter 4, and it also lead us aside of our initial project
of studying the linearly polarized solar continuum. This was only one of the
many detours that were to come before focusing on the polarized continuum.

A well-known issue with numerical magneto-hydrodynamic simulations is
their limited ability to preserve the solenoidal structure of physical magnetic
fields. A great effort was done in the implementation of the CO? BOLD code
we started using in order to avoid non-solenoidal magnetic fields arising from
discretization errors. However, since no numerical scheme can prevent the
appearance of round-off errors, we decided to have a close look to the behaviour
of magnetic fields in our own simulations. A summary of the problematic and
a report of the performance of the CO’BOLD code with our models is found
in Chapter 3.

In an attempt to come back to the initial problem, I returned to the already-
existing scientific literature regarding polarization in the solar continuum. Var-
ious papers were reporting the displacement of the Balmer jump due to the
Stark effect that results in the broadening of spectral lines. This specific infor-
mation caught my attention, since a displacement of the Balmer jump would
also imply a different definition of the Balmer jump than merely the Balmer
limit corresponding to the threshold energy at which a photon is able to pho-
toionize an initially bound electron in the n = 2 energy level of the Hydrogen
atom. The existence of a discontinuity near the Balmer limit that would be
displaced due to the Stark effect was a possibility that I refused to believe.
For this reason I decided to start from quantum mechanical grounds and use a
modern formalism in order to prove the continuity of the total cross-section for
bound-bound and bound-free process in the isolated Hydrogen atom. By in-
cluding different broadening mechanisms, I proposed a precise meaning to the
concept of “Balmer jump” and showed how its position would be shifted ac-
cording to the amount of broadening. This study lead to a second publication
that is also found hereafter, on Chapter 5.

The study of linear polarization in the solar continuum and its centre-to-
limb variation was a long-term endeavour that lead to unexpected projects,
and that also required the development of computational tools in order to
numerically solve the radiative transfer equations in the context of the so-
lar continuum, but that eventually saw light at the very end of this Ph.D.
The confrontation of already-existing calculations and observations to our own
simulations reveals surprising results and raises many new questions and ideas.
This initial (and final) project is presented in Chapter 6.
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2.1 Radiative magnetohydrodynamic simula-
tions

2.1.1 Historical overview

The use of the word magnetohydrodynamics (MHD) dates back to the early
1940s. In 1946, Alfvén referred to a theory according to which “the sunspots
are due to a new type of wave, called magneto-hydrodynamic waves, which are
produced through convection near the Sun’s centre and are transmitted along the
magnetic lines of force of the general magnetic field out of the surface, where
they cause sunspots”. This theory is of course known to be inexact nowadays,
but at the time, numerical simulations had not yet seen the light of day and
were probably not even conceived as feasible in any near future, and instrumen-
tation was far behind when compared to the present developments. However,
theories regarding the dynamics inside the solar atmosphere were already cir-
culating, and observations would provide only very indirect ways to validate
them. Making predictions about how the three-dimensional (3D) plasma dy-
namics in the atmosphere and beneath it would affect the two-dimensional
(2D) observations of the surface layers and the observed spectra would also be
a difficult and sometimes speculative task, since the tools to numerically solve
the radiative transfer equation in a realistic atmosphere were missing. The
development of MHD, for which Alfvén received the Nobel Prize in 1970, was
a decisive step in many topics, and in particular in the understanding of the
solar atmosphere.

It took less than a decade till the first computers were used in the field
of astrophysics, and more specifically for solar physics. As early as 1964,
Feautrier proposed improvements for the numerical solution of the radiative
transfer equations. In 1972, Wittmann had already an LTE radiative transfer
code including polarization. One of the first non-LTE radiative transfer codes
would be presented in the same year by Auer et al. (1972), and parts of the
more efficient MULTT code later developed by Carlsson (1986) are still used in
more recent non-LTE radiative transfer codes. Before these papers describing
the codes were published, radiative transfer computations were already carried
out numerically, as it can be seen in Auer & Mihalas (1969). Those early codes
aimed at investigating the solar atmosphere by fitting observed spectra. One
would not start from model atmospheres by solving the magnetohydrodynamic
equations, but would rather start from the observed profiles of a variety of
spectral lines and derive a model atmosphere that would best fit these profiles,
or one would try to fit the limb-darkening of the continuous radiation. The idea
of inversion was born around that time, resulting in the first one-dimensional
semi-empirical models of the solar atmosphere. The well-known HSRA model
of the solar atmosphere was presented by Gingerich et al. (1971). In the paper
of Holweger & Mueller (1974), another model atmosphere is used to derive the
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solar abundance of Barium, and the paper of Fontenla et al. (1993) is regularly
cited almost 25 years after its publication for the valuable semi-empirical 1D
models it proposed.

In parallel, computer codes were developed to simulate different problems
arising from solar physics and magnetohydrodynamics. Already in the 1970s
some effort was done in developing an MHD particle code (Leboeuf et al. 1978)
in order to simulate the interaction of the solar wind with the magnetosphere,
and early 2D simulations of the magneto-convection were carried out by Peck-
over & Weiss (1978). Independently, the MHD wave propagation in the solar
chromosphere had already been studied with numerical simulations by Shi-
bata (1983). It is certainly fair to say that simulations of the solar granulation
really made their appearance in the 1980s, following the efforts of Nordlund
(1982), who developed a code using Fourrier techniques, but restricting it to
radiative hydrodynamics (no magnetic fields), which lead to an extended re-
view of the hydrodynamics of the solar convection by Nordlund (1985a). The
first 3D radiative MHD simulation was reported in conference papers of Nord-
lund (1983, 1984, 1985b, 1986). A quantitative comparison of the simulated
solar surface convection to the observations was carried out later by Stein &
Nordlund (2000).

The computational developments taking place during the last decades of
the 20th century marked a new era in the study of the solar and stellar atmo-
spheres. The Sun remained for a long time the only star with its disc resolved,
and being the closest star, it provided and still provides a natural and very spe-
cial physics laboratory for the broader study of stellar physics. It was not until
1989 that a bright feature was detected in a star other than the Sun (Buscher
et al. 1990), not to mention stellar granulation, that was directly observed in a
star other than the Sun only a few months ago (Paladini et al. 2017). However,
and in spite of the proximity of the Sun, its sub-surface layers required at the
time indirect helioseismic techniques to be “observed”. Still now, no experi-
ment can be carried out in-situ, and all direct information available is solely
given by the light and particles (e.g. neutrinos) that are reaching us from the
Sun. The ability to numerically simulate the Sun marked an incredible step
forward, since it brought a physics laboratory 149 millions kilometres away
from the Earth right at home, inside computers.

Some care should however be taken when comparing simulations with the
real Sun. Hydrodynamic simulations are essentially parameter-free (Stein &
Nordlund 2000): the only fundamental parameters, which are the effective
temperature, the surface gravity, and the chemical composition of the plasma
are fixed by observations and stellar evolution models of the Sun. However,
the spatial and temporal resolution of the numerical schemes limit the effec-
tive viscosity and electric resistivity. Thus, the numerical schemes used in
such simulations introduce a numerical viscosity and resistivity that is orders
of magnitudes higher than the actual solar values. In magnetohydrodynamic
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simulations the specific configuration of the initial magnetic field plays a deter-
minant role, especially in the highest layers of the solar atmosphere, and it is
also considered to be a free parameter. In all realistic simulations the equation
of state and the radiative transfer must also encompass detailed physics.

In order to compare simulations to observations, one additional important
step is required. The output of simulations (e.g. 3D scalar and vector fields
representing the density, the temperature, the velocity field and the magnetic
field at every point of a discretized computational grid) is very different from
the output of observations (e.g. a monochromatic linear polarization map, an
intensity spectrum along a slit, an intensity map at a given wavelength, etc.).
The process taking as input a simulated model atmosphere and that outputs
any of the observable quantities is called radiative transfer, and the output
provides synthetic observations. The synthetic observations can be further
degraded in order to mimic the effects of diffraction or diffused light on an
instrumental set-up, and finally be compared to observations with the given
instrument.

When simulations allow the reproduction of observable quantities in a trust-
worthy manner, the underlying simulated atmosphere is assumed to be real-
istic. Diagnosis and experiments that are impossible to carry out on the real
Sun can then be carried out inside simulations. Is some feature appearing in
the solar spectra a consequence of velocity gradients or of non-LTE effect? Is
the magnetic field responsible for enhanced continuum polarization in inter-
granular lanes or is the anisotropy alone to blame for it? This is the kind of
questions we can deal with by comparing magnetic and non-magnetic simu-
lations, or by directly modifying the underlying structure of the atmosphere
before computing radiative transfer.

2.1.2 A general description of MHD

The magnetohydrodynamic (MHD) equations are derived by coupling the fluid
dynamics equations expressing the conservation of mass, momentum and en-
ergy, with the Maxwell equations describing the dynamics of electromagnetic
fields. In their conservative form, these equations are given by

dp _
E"‘v'(pv)_O’
9(pv) +V- <pvv+<P+M)IBB> = pg,
ot 2
0B
EJrVo(vaBv)fO,
W—FV' <<p6tot—|—P—|—]3;3>V—(V'B)B+Ffad> =pg-v, (2.1)
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where p is the density, v is the velocity field, P is gas pressure, I is the identity
3 x 3 matrix, B is the magnetic field, esor = €int + €xin + €mag is the total
energy per unit mass including the thermal (internal), the kinetic and the
magnetic contributions, g is the gravitational acceleration and t is time. This
equations are closed by an additional equation of state P = P(p,ein) that
relates pressure to density and internal energy. We noted ¢ = ab the tensor
product of a and b, i.e. ¢;; = a;b;, and the dot product generalizes, when
operating between two tensors or between a derivative and a tensor, to the
contraction of the last index of the first operand with the first index of the
last operand: for instance, (Vc); = >, dic;j. These equations express the
conservation of matter through the continuity equation, of momentum (note
on the right hand side of the second equation the gravity term), of magnetic
flux, and of total energy. The last equation couples the dynamics of the plasma
with the transport of light through the radiative flux

Frod = / / I,(Q)hdQdv. (2.2)
v JS§2
Unless this term is neglected or approximated, the MHD equations should be

coupled with the radiative transfer (RT) equation

1

Pk

(ﬁ ! V) Iu = Sz/ - Iua (23)

where v is the frequency, I, is the intensity at the given frequency, €2 is the
surface of the solid angle 2 = Qn, n is a unit vector normal to the surface,
and S? is the ordinary sphere.

Since the absorption coefficient, the intensity, and the source function in the
radiative transfer equation depend on frequency (or wavelength), discretizing
the spectrum and solving the RT equation at all grid points is computation-
ally expensive for the particular task of finding the total radiative flux. One
possible simplification is to consider the monochromatic version of the equa-
tion, in which wavelength dependent opacities are replaced by Rosseland mean
opacities, monochromatic intensity is considered, and the source function is
the averaged Planck function over the whole spectrum.

The monochromatic approach is however in some cases an excessive simpli-
fication. This is due to the fact that in optically thin layers with respect to the
continuum wavelength, the contribution to the total flux mainly comes from
those lines for which monochromatic optical depth is unity on those layers,
which typically represent a small fraction of the spectrum (Nordlund 1982).
To solve this problem, the depth scale of the stellar atmosphere is split into
ranges R;, and the wavelength range is split into disconnected bands B;, with
the property that U;B; is the whole spectrum, B; are disjoint, and for any
wavelength A € B;, the layer at which the optical depth 7, of that particular
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wavelength is unity resides inside R;. Schematically, each wavelength band
maps a different depth of the atmosphere. In the same way as Rosseland mean
opacity is defined, the mean opacity of any given band is defined by restricting
integration over the wavelength band. This collection of mean opacities in dif-
ferent bands are called opacity bands. Similarly, intensity bands I; are defined,
as well as bands for the source function. The RT equation is then solved for
a small number of opacity bands, and the radiative flux is then rewritten as a
sum instead of an integral,

Foq~ Z /52 L(Q)AdQdy, (2.4)

and the accuracy of the method can be adjusted by increasing the number
of bands. This approximate method is called the Opacity Binning Method
(OBM). We only gave here the general idea introduced in Nordlund (1982).
More details and later improvements can also be found in Ludwig (1992),
Ludwig et al. (1994) and Vogler (2004).

In order to solve the coupled system of equations (2.1) to (2.3), we use
the COnservative COde for the COmputation of COmpressible COnvection in
a BOz of L Dimensions with 1=2,3, known as the CO°BOLD code (Freytag
et al. 2010).

2.1.3 Radiative MHD applied to the Sun

It is tempting to compare the simulations of the solar atmosphere with the
simulations of the terrestrial atmosphere carried out by meteorologists. Solar
simulations still have a quite modest spatial resolution when compared to the
size of possible features in the solar atmosphere. With every increase of resolu-
tion as a consequence of increasing computational power of computers, smaller
scale structure became visible, suggesting that substructures that might play
a crucial role in the overall dynamics are not yet resolved. This seems to be
specifically true for the turbulent magnetic field, which is possibly structured
in form of strong (kG) fluxtubes on scales smaller than 50km (Stenflo 2011).
Terrestrial and solar simulations are however very different. Simulations of the
solar atmosphere cover only a small part of the Sun, and more importantly the
initial conditions are not the result of observations at any particular time, as is
the case with meteorological simulations. The fundamental difference between
these two kind of simulations is that solar simulations are not forecasting the
state of the solar atmosphere at any given time (but see Riethmiiller et al.
2017, for an attempt of a forecast). Only statistical quantities should be com-
pared to observations: averaged spectra, intensity contrast, size of granules,
frequency of appearance and average size of some given feature... are some
usual examples.
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When simulating stellar atmospheres, two different types of star envelopes
should be considered. Main-sequence stars with a mass M < 1.5M, (the exact
value also depends on metallicity), like the Sun, have a steep enough temper-
ature gradient in the outer envelope that makes heat transfer more efficient
by convection than by radiation. The outer envelope is hence unstable to con-
vection. Instead, stars with a mass M 2 1.5Mg have a radiative envelope.
Away of the main-sequence, massive stars like red giants and supergiants also
have a convective envelope, but the convective cells are much bigger; their
size is of the order of the radius of the star. In some sense, convective en-
velopes are more complicated, since convection in a ionized plasma produces
both magnetic field and a small-scale granulation pattern. These two features
play a fundamental role in the global dynamics. For solar-like stars, resolving
these structures while simulating the whole star would require computational
resources that even now are orders of magnitude greater than what is avail-
able. For this reason, simulations of the solar atmosphere are carried out on
small volumes, with periodic boundary conditions in the horizontal direction.
Topologically, the simulated Sun is hence a torus. This kind of simulations are
referred to as “box in a star” simulations. More importantly, the boundary
conditions at the top of the solar atmosphere are only partially realistic, since
the physical quantities can only be fixed at infinity.

Massive stars are more homogeneous, either they have a radiative envelope,
or granules with sizes comparable to the stellar radius, allowing realistic simu-
lations at a significantly lower resolution (see e.g. Freytag et al. 2002; Chiavassa
et al. 2011). With a reasonably small mesh it is hence possible to simulate the
entire star, producing “star in a box” simulations.

2.1.4 The CO’BOLD code

The COPBOLD code and a history of magnetohydrodynamic simulations is
extensively discussed in Freytag et al. (2012). In present days, the CO°BOLD
code is used for the simulation of a variety of stellar atmospheres, among
which the Sun, solar-type stars, red giants and white and brown dwarfs are
the main examples (Straus et al. 2017). This large spectrum of simulations is
permitted by a modular construction of the code, allowing to choose among
different solvers: a hydrodynamic module or a magnetohydrodynamic module,
and radiative transfer schemes with short or long characteristics with specific
boundary conditions. In this section we will give a brief description of the
modules we actually use for the simulation of the surface layers of the Sun.
As stated in Sect. 2.1.1, our simulations are essentially parameter-free.
There is for instance no micro- or macroturbulence parameters, since spa-
tial and temporal averages of spectral line profiles calculated from simulations
properly reproduce the shape of observed spectral lines, thanks to the presence
of a self-consistent velocity field evolving with the simulations. The usual pa-
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rameters characterising stars (effective temperature, surface gravity and chem-
ical composition) must however be set, as well as the many numerical parame-
ters (solvers, boundary conditions, numerical viscosity and time stepping are a
few examples). For this purpose, a “parameter file” is provided to CO’BOLD,
together with a file with opacities (possibly providing a few opacity bands) and
a file with interpolation coefficients for the equation of state. Again, we will
focus here our discussion on the main parameters we use in our simulations. A
complete list is available in the CO’BOLD user manual (see e.g. Freytag et al.
2010).

Global parameters and boundary conditions: The surface gravity is set
to the solar value, g = 27500 cms~2, or log;y(g[cms~2]) = 4.44. The chem-
ical composition is set through the opacity bands and the equation of state
and is discussed in the next paragraph. The effective temperature is set in-
directly through the boundary conditions. The boundary conditions at the
sides of the box perpendicular to the horizontal axes are set periodic both for
the magnetohydrodynamic solver and for the radiative transfer module. The
boundary conditions at the bottom are set to “inoutflow2”. The implemen-
tation is non-trivial, but it describes an open lower boundary for which the
entropy inflow is specified and the adjustment rate of entropy and pressure
in this lower layer is fixed in order to damp out possible oscillations. The
entropy inflow parameter must be determined by trial and error untill the de-
sired effective temperature is reached. The top boundary condition is set to
“transmitting”, for which density is extrapolated out of the box by assuming
it to be exponentially decreasing. This is achieved by assuming the density
scale height to be proportional to the pressure scale height for some provided
constant. Temperature is also adjusted towards a specified fraction of the ef-
fective temperature at a given rate. The scale height of the optical depth at
the upper boundary is also adjusted by a parameter for the radiative transfer
module.

The magnetic boundary conditions are also periodic at the sides. At the
bottom they depend on the model; we tried two different kinds, either “ver-
tical”, which is a constant extrapolation of the vertical component while the
transversal components are fixed to zero, or “inoutflow”, which allows to fix
a strength of the (horizontally) advected magnetic field by ascending mate-
rial. The magnetic boundary conditions at the top are set to “vertical”. We
also implemented the “mixed” boundary conditions, which are equivalent to
“vertical” in regions of down-flows, or make a constant extrapolation of the
magnetic field in regions of up-flows. With the “mixed” boundary conditions,
we aimed at preventing a numerical instability that we encountered, but af-
ter the problem was sorted out two parallel runs with “vertical” and “mixed”
conditions stayed stable.
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Opacities and equation of state: Opacities are given in a separate file
as a function of gas pressure P and temperature T', for a number of values of
log;o(P) and T. These tables are interpolated in CO’BOLD. They contain
monochromatic Rosseland mean opacities, as well as five additional bands.
They are based on a 1D MARCS model atmosphere from the Montpellier-
Uppsala group (Gustafsson et al. 2008) and are extensively discussed in Ludwig
& Steffen (2013), together with the particular CO’BOLD implementation of
the opacity binning method. Interpolation coeflicients for the equation of state
are also provided in a separate file by the CIFIST (Cosmological Impact of the
First STars) group.

Time management: CO’BOLD provides adaptive time stepping. The time
step is re-evaluated at each iteration and at each cell both for the (M-)HD
module and the RT module, and the minimal value is chosen as the final time
step. For the (M-)HD module, the time step is fixed by the Courant condition,
which states that a magnetosonic wave (or sound wave in the non-magnetic
case) should cross at most one computing cell during a single time step. In
practice a parameter is fixed to limit the time step to a fraction of the Courant
upper bound, that is taken as a recommendation for the next step. This
value might be revised and the time step recomputed if the next upper bound
is below the recommended value. For some simple linear problems, without
radiative transport, this procedure is guaranteed to be stable. For radiative
transport the time step that ensures numerical stability can only be estimated.
It is taken to be a fraction of the characteristic time scale of a small sinusoidal
disturbance with a wavelength of the grid size in a homogeneous background
and grey radiative energy exchange (Freytag et al. 2010).

Parallelization: The CO’BOLD code is OpenMP parallel. This means that
OpenMP tasks run concurrently and share memory. The code is hence suitable
for running on (single) big nodes with limited NUMA (Non-Uniform Memory
Access) effects. On recent hardware, we found that the code can run efficiently
on nodes of at most 16-18 CPUs; on bigger nodes the NUMA effects are re-
sponsible for a slow-down of the code. OpenMP being a directive-oriented
programming model, the implementation is almost transparent. The draw-
back is that the code cannot run on multiple nodes, so that the enormous
resources provided by supercomputers are underused.

Numerical solvers and schemes: For our simulations we used both the
Roe hydrodynamic solver and the HLLMHD magnetohydrodynamic solver, to-
gether with the MSRad radiative transport scheme (see following paragraphs
for a more detailed description of the Roe, HLL-MHD and MSRad schemes).
Both (M-)HD solvers use finite volume methods, meaning that the Gauss theo-
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rem is applied in order to evaluate divergences as surface integrals, so that the
relevant physical quantities are handled as fluxes through cell boundaries and
these methods are conservative. For our runs we used a directional operator
splitting scheme, reducing the 3D problem to a sequence of one-dimensional
sweeps. Other non-split schemes are available as well. We also used in all of
our runs the Hancock time integration scheme, so that terms in second order
in time are approximated by a Hancock predictor step. The various operators
((M-)HD, RT, tensor viscosity) are separated by using operator splitting.

The Roe and the HLLMHD solvers: The Roe solver is described in Roe
(1986). The solver used in CO’BOLD is however a modified version of it. It
is an approximate 1D Riemann solver of Roe type that accounts for a realistic
equation of state, a non-equidistant grid (even though all of our models are
equidistant), and the presence of source terms due to the gravity field. The
main characteristic of the implementation of the HLL solver in CO’BOLD is
its ability to both ensure positivity of the gas pressure and use a constrained
transport method that guarantees that V-B is kept constant up to quantization
(round-off) errors. For V- B, no error arises from the discretization. The HLL
scheme is described in Harten et al. (1983), and its specific implementation to
the CO°BOLD code is described by Schaffenberger et al. (2005, 2006).

The MSrad radiative transport scheme: The MSrad RT scheme uses
long characteristics to solve the RT equation with the Feautrier method for
each opacity band, assuming Local Thermodynamic Equilibrium (LTE). The
implementation of the Feautrier method in CO®BOLD is described by Freytag
et al. (2012). The relevant quantity that the RT module should provide to
the MHD module is the divergence of the radiative flux, see Eq. (2.1). In
CO’BOLD, the exchanged quantities between the two modules is the heat
source due to radiation,

Qrad =-V. Frad
@_ / / (- V) 1,(9) dQdv
v JS§2

» _ 2.5

Q/ pm/ (1) - 5,) aodv (25)
v S2

:/477;)/{1, (J, = S,) dv,

where J, has been defined by the solid angle averaged mean intensity,

1

o= /S 1,() do. (2.6)
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The main numerical difficulty comes from the fact that the simulated region
encompasses the transition between optically thin and optically thick medium.
Indeed, determining first F,,q and then numerically computing the divergence
is not suitable in optically thin media where the radiative flux stays almost
constant from cell to cell. Instead, computing J,, — S, in order to use Eq. (2.5)
is numerically unstable in extremely thick medium, where J,, is almost equal
to the source function. Besides, this method does not necessarily guarantee
conservation of energy, in the sense that the difference between the total flux at
the top of the box and the total flux at the bottom of the box is not guaranteed
to be equal to the integrated @Q.q over the whole box. The MSrad RT scheme
overcomes both of these problems by solving the RT equation using its own
implementation of the Feautrier method with long characteristics for the new
variable p, () = 1 (L,(—i—ﬁ) + L,(—ﬁ)) — S,. Here, the index v does not refer
any more to a specific frequency, but to a given opacity band, as discussed at
the end of Sect. 2.1.2. The RT equation is hence solved for all bands along
straight long rays (characteristics) crossing the computational box from top
to bottom, at different azimuthal and inclination angles. Integrals over the
sphere are numerically performed using a Lobatto quadrature, see Sect. 2.B.2.

2.1.5 The numerical simulation runs

A number of numerical simulation runs are used throughout the projects of the
following chapters. We describe here the models we synthesized ourselves by
using the (magneto-)hydrodynamic CO’BOLD code with a variety of initial
and boundary conditions.

The naming of the CO®BOLD models usually follows a precise pattern.
All of our models are of the form “d3gt57g44....fc”, in which “d3” stands for
“three-dimensional model”, “g” stands for the spectral type of the simulated
star, G for the sun, “t57” is the truncated effective temperature of the star and
it stands here for all temperatures in the range 5700 K < T < 5800 K, “g44” is
ten times the logarithm in base 10 of the surface gravity in cgs units, truncated
to the two first digits, here we have the solar value g = 1044 ms~2, the «...”
give information on the initial/boundary conditions, and the last two letters
are the initials of the person who ran the model.

All of our models have an equidistant grid spacing of 10 x 10 x 10km3
and 960 grid cells, which represent a total size of 9.6 x 9.6 x 2.8 Mm?>. They
were all computed with five opacity bands and the MSrad radiative transfer
scheme was used. The boundary conditions on the sides are periodic, and
the hydrodynamic boundary conditions at the top of the box are transmitting
where as they are open in the bottom of the box. In the following we specify the
(magneto-)hydrodynamic solver, and the initial and the boundary conditions
for the magnetic field, for each model:
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Table 2.1. Box and cell sizes, number of opacity bands, nopbas, and run duration,
trun, for all simulation runs considered in the following projects.

Run Cell size [km3] Box size [MmS] Height range [km] 7nopbds  trun
d3gt57g44v50fc 10 x 10 x 10 9.6 X 9.6 X 2.8 —1240 < z < 1560 5 2.1h
d3gt57g44v200fc 10 x 10 x 10 9.6 X 9.6 X 2.8 —1240 < z < 1560 5 3.6h
d3gt57g44p200£fc 10 x 10 x 10 9.6 X 9.6 x 2.8 —1240 < z < 1560 5 0.6h
d3gt57g44h50vfc 10 x 10 x 10 9.6 X 9.6 X 2.8 —1240 < z < 1560 5 4.1h
d3gt57g44h50mfc 10 x 10 x 10 9.6 X 9.6 X 2.8 —1240 < z < 1560 5 4.1h

d3gt57g44b0fc 10 x 10 x 10 9.6 X 9.6 X 2.8 —1240 < z < 1560 5 6.0h
d3gt57gddroefc 10 x 10 x 10 9.6 X 9.6 X 2.8 —1240 < z < 1560 5 6.9h
d3t57g44b0bfn025 TXTXT 5.6 X 5.6 X 2.8 —2540 < z < 260 1 1.5h
d3gt57g44v500s 40 x 40 x 20 — 50 9.6 X 9.6 X 2.8 —1425 < z < 1340 2 1.7h
d3gt57g44h500s 40 x 40 x 20 — 50 9.6 X 9.6 X 2.8 —1425 < z < 1340 2 3.3h
d3gt57g44v50rs 14 x 14 x 12 5.6 X 5.6 X 2.256 —1362 < z < 894 2 11.1h
d3gt57g44v100rs 14 x 14 x 12 5.6 X 5.6 X 2.266 —1362 < z < 894 2 11.1h

Notes. z =0 refers to the mean optical depth one. The models d3gt57g44v500s and
d3gt57g44h500s have a non-uniform grid-spacing in the vertical direction.

d3gt57g44v50fc (v50): the HLLMHD solver was used, with an initial ver-
tical and homogeneous magnetic field of 50 G; vertical magnetic field was en-
forced in the top and bottom of the box.

d3gt57g44v200fc (v200): same as v50, but with an initial vertical and
homogeneous magnetic field of 200 G.

d3gt57g44p200fc (p200): the HLLMHD solver was used, the magnetic
field is enforced to be vertical in the bottom boundary and in downflow regions
of the upper boundary, and it is constantly extrapolated in upflow regions of
the upper boundary. The initial configuration of the magnetic field is described
later in Sect. 3.6.2.

d3gt57g44h50vfc (h50v): the HLLMHD solver is used, the initial magnetic
field is zero everywhere, it is enforced to be vertical in the top boundary, and
it is advected into the box with the incoming plasma through the bottom
boundary

d3gt57g44h50mfc (h50m): same as the h50v model, but in upflow regions
of the top boundary the magnetic field is instead constantly extrapolated

d3gt57g44b0fc (B0): the HLLMHD solver is used and the magnetic field
is everywhere zero
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d3gt57g44roefc (Roejp): the Roe solver is used and there is no magnetic
field

All of our simulation runs provide, at least, one full output of the box every
4 min and one output file with averaged quantities and emerging intensity maps
for each opacity band every 30s.

In addition to our own numerical simulations, we have used data from the
following simulations:

d3t57g44b0bfn025 (Roe;): this non-magnetic model is described in Frey-
tag (2013). The Roe solver was used.

d3gt57g44v500s and d3gt57g44h500s: these models are described in
Steiner & Rezaei (2012).

d3gt57g44v50rs and d3gt57g44v100rs: these models are described in
Salhab et al. (2018).

The main characteristics of all the simulation runs we used are summarized
in Table 2.1.

2.2 The physics of the polarized continuum

In a general enough framework, there is no clear distinction between “contin-
uum” and “spectral lines” for the description of radiation-matter interactions.
Since we will adhere to the formalism of Landi Degl’Innocenti & Landolfi (2004)
for the rest of this thesis, we will introduce it here and we will clarify the con-
cepts of “continuum” and “non-resonant scattering” in this general framework.

2.2.1 Scattering processes in the context of the formalism
of Landi Degl’Innocenti & Landolfi

Landi Degl’Innocenti & Landolfi (2004) start from first principles to develop a
formalism for the modelling of spectral lines in (mainly) stellar atmospheres,
including both intensity and polarization. The starting point is quantum elec-
trodynamics (QED). Successive derivations with appropriate approximations
lead to the statistical equilibrium equations, describing how the radiations field
modifies the state of the atomic system, and to the radiative transfer equations,
describing how the atomic system affects the radiation field.

In the context of QED, the unperturbed Hamiltonians for matter and radi-
ation are derived, as well as an interaction Hamiltonian. A first approximation
is made by assuming the interaction Hamiltonian to be non-relativistic, which
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is a reasonable assumption for the solar atmosphere, since the energy of pho-
tons (hv) is much smaller than the energy of the interacting particles. The
equations of motion of any observable O with quantum operator O and with
a given density matrix of the system p are derived:

O(t):Tr{Op} — C%O(t):ﬁ{(fp}Jrn{ojf}. (2.7)

The density matrix is introduced to account for the effects of the coherence
properties of the incident light, and is required for the description of polarized
light. The total Hamiltonian then enters into the previous equation through
the time evolution of the density operator in the Schrodinger representation,

d 2w

—p=—1H,p|. 2.8
3" = 7 A (2.8)
Formally, the density matrix at time ¢ can be written as
1t
plt) = plto) + 55 [ (H(E).p(e)] (29)
to

but this alone is not helpful, since the density matrix at time ¢ now depends
on the same density matrix at all times previous to ¢. The crucial assumption
done in the formalism of Landi Degl'Innocenti & Landolfi (2004) is that the
total density matrix can be factorized as the direct product of the density
matrices of each of the two systems,

p(t) = p™ (1) ® p™ (1), (2.10)

where p(®) and p() respectively refer to the density matrix of the radiation and
atomic system. This is equivalent to assuming that the density functions of the
radiation field and of the atomic system are uncorrelated. It is a reasonable
assumption at time ¢ = %y, just before the interaction. However, here it is
assumed to be still valid during and after the interaction. A different approach
is to recursively insert the left hand side of the previous equation into the
integral on the right hand side,

00 1 t tn to
p(t) = n / dtn / dtn,1 s / dtl X
Z (ih) to to to

[H (tn), [H(tn-1), - [H(t1), p(t0)] -], (2.11)

and using Eq. (2.10) only then, for ¢ = ¢;. Each substitution in the recursion
will provide higher-order contributions to the equations. In fact, the evolution
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operator U of the density matrix, defined by
p(t) = Ult,to)p(to)UT (¢ to), (2.12)

can be expanded into a sum in which each term is represented by a Feynman
diagram. First-order terms are single absorptions and emissions. Scattering
events appear only as second-order terms. Using (2.10) directly into (2.9) leads
to the lowest-order approximation to the equation of motion, which is expected
to be valid whenever the relaxation time of the density matrix is longer than
the time-scale over which the observables vary. In the presence of high col-
lisional rates, the atomic system “forgets” the state of the absorbed photon
before a new photon is re-emitted (the atomic system is thermalized), in which
case the out-going radiation is a black-body radiation without polarization.
When collisions are less frequent, the flat spectrum approximation, states that
the radiation field has no structure in a spectral range of the order of the differ-
ence in energy between magnetic sub-levels between which coherence is taken
into account. This approximation appears later as necessary to maintain con-
sistency with the lowest-order approximation of the equation of motion. The
flat-spectrum approximation is known in the context of unpolarized radiative
transfer as the complete redistribution approximation.

There are a few consequences to these successive approximations. One of
these is the absence of memory of scattered photons regarding the state of
the incoming photons. This is often not a problem in the context of resonant
scattering, i.e. when the frequency of the incoming photon is close to a resonant
frequency of the atomic system. Instead, the contribution to the far wings of
lines, corresponding to non-resonant coherent scattering (Rayleigh scattering),
is missing in this formalism. It would appear only when considering the next-
to-lowest-order contribution to the equations of motion, as shown by Bommier
(1997) in a similar framework but not relying on the same approximations,
or by Loudon (1973) in a framework disregarding coherence properties of the
incident light. For the scattering of light from a weak incident beam by a two-
level atom, neglecting collisional broadening and in the dipole approximation
(requiring incident photons to have a wavelength significantly larger than the
size of the atomic system), the total cross-section is given by

4

(v? — 1/3)2 44122’

ov)=orf (2.13)

where f and vy are respectively the oscillator strength and the resonant fre-
quency of the transition and I' = ~/(4x), v being the damping coefficient,
corresponding to the inverse lifetime of the transition. The Thomson cross-

section o is defined by

4
81 €y

o — — .
3 m2ct

(2.14)
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The total cross-section (2.13) can be found as a special case of the Kramers-
Heisenberg formula, which is obtained when 2nd-order processes are taken into
account. It was derived from quantum-mechanical grounds by Loudon (1973)
in Sect. 8.8, and with modern formalism in Sect. 15.2 of Landi Degl’Innocenti
(2014). Tt can also be found in Sect. 4.5 of Mihalas (1978), where it is derived
from classical grounds. Instead, we shall see that with the formalism of Landi
Degl'Innocenti & Landolfi (2004), a calculation of the cross-section for a 1st-
order process from a J = 0 level to a J = 1 level in a two-level atom will give

the result

3
3;5 6(v — ), (2.15)

where ¢(v — 1) should be the delta distribution §(v — 1), as a consequence
of the 1st-order approach. It is however replaced, in a phenomenological way,
by the Lorentz line profile

o(v)=orf

1 r
¢(V — V()) == ;m (216)

It is straight forward to check that in the limit v = 1, the two expressions
(2.13) and (2.15) are the same, which confirms that the formalism is appropri-
ate for modelling the core of spectral line. Far from the resonant frequency (in
the wings of extended lines), the cross-section (2.15) drops quickly to zero. In
the limit v < v, Eq. (2.13) has however a non-zero contribution,

4

UR(V) =orf W,

(2.17)

which is known as Rayleigh scattering. In the limit v > 14, the cross-section
becomes independent of the frequency v, with a constant value of orf. For
transitions taking place from the ground level of Hydrogen (the most abundant
element), vy is already located in the ultra-violet, so that this limit does not
concern optical wavelengths for the spectral lines of the Lyman series. At
optical wavelengths Rayleigh scattering is in fact dominated by the red wings
of the Lyman series lines, and the blue wings of spectral lines of the Balmer
(and further) series play a negligible role.

Besides Rayleigh scattering of light at atomic systems, the scattering of
light at free electrons is also taken into account, in the limit of low energy
of the incoming photon (elastic limit), which is valid in solar atmospheric
conditions. The cross-section of the interaction is the Thomson cross-section
or, which value is derived classically in Loudon (1973) and corresponds to the
limit in which f =1, T'=0 and vy = 0 in Eq. (2.13).

Both Rayleigh and Thomson scattering are included in the formalism of
Landi Degl'Innocenti & Landolfi (2004) as an additional “continuum” contri-
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bution in the propagation matrix to the already-present coefficients arising
from the core of spectral lines. Here we are solely concerned about this ad-hoc
“continuum” contribution, but since the present formalism also uses a powerful
language and tools that are very well suited in a broader context, we will adopt
it here. In particular, the classical description of Rayleigh and Thomson scat-
tering of polarized light requires, in addition to the scattering cross-section,
a geometrical scattering matrix describing how polarized light redistributes
among the polarization components after a scattering event. Interestingly, the
corresponding classical equations reformulated within the formalism of Landi
Degl’Innocenti & Landolfi (2004) are identical to the general 1st-order equa-
tions of statistical equilibrium specialized to the two-level atom with a 0-1
transition, but with a well-chosen cross-section, either the one of Eq. (2.17) for
Rayleigh scattering or the Thomson cross-section. These scattering processes
are conveniently borrowed from a second-order formalism and added into the
first-order formalism a posteriori, providing a flexible and much simpler frame-
work than any possible higher-order framework. Hence, between resonant and
non-resonant scattering there is a purely formal distinction. As we shall see
(and expect), this distinction is not always clearly revealed in the modelled
spectrum, since many spectral lines can be crowded in such a way that these
two regions totally overlap, as it is the case in the UV spectrum of the Sun.

2.2.2 Non-scattering processes

The distinction between scattering processes (typically the processes responsi-
ble for the formation of spectral lines in non-local thermodynamic equilibrium)
and non-scattering processes is also, to some extent, arbitrary (see the discus-
sion of Mihalas 1978, in Sect. 2.1). By non-scattering processes, we mean
absorption of photons followed by collisions, in such a way that the system
has (some) time to thermalize before the emission of a new photon. Under the
assumption that collisions are frequent enough, such processes are reasonably
treated under local thermodynamical equilibrium (LTE) conditions.

This category hence includes all processes that we decide to treat in local
thermodynamic equilibrium (LTE); these could include bound-bound transi-
tions (ie. spectral lines), free-free transitions in the presence of an electric field
(ie. inverse bremsstrahlung, in the vicinity of an atom or ion) or bound-free
transitions (i.e. photoionizations).

2.2.3 The emergence of linear polarization

Linear polarization in the continuum is closely related to coherent scattering.
In this paragraph we aim at giving an intuitive picture; the formal mathemat-
ical picture is given in the next section.

The plasma in the solar atmosphere is in a good approximation locally
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Figure 2.1. Two photons travelling radially out of the Sun interact with matter.
Only the one which is perpendicularly polarized with respect to the line of sight is
scattered in that direction.

homogeneous and isotropic. If a volume element of it was illuminated by un-
polarized, isotropic radiation, the scattered light would stay unpolarized, and
the black-body radiation due to LTE processes would also be isotropic and un-
polarized. Linear polarization is introduced through scattering processes when
the incoming radiation is not isotropic. Once these two ingredients are present
(scattering and anisotropic radiation), many other factors can modulate the
linearly polarized light, but scattering processes and anisotropy of the incoming
radiation are sine qua non conditions for polarized radiation in the continuum.
In the context of stellar atmospheres, the temperature gradient is responsible
for anisotropic radiation (most radiation is directed outwards, from hotter lay-
ers to cooler ones), which leads to both emergence of linear polarization and
limb darkening.

The vertical temperature gradient in the solar atmosphere is responsible
for an anisotropic radiation field, which is at the origin of the limb-darkening
effect, and it also breaks cylindrical symmetry along a line-of-sight, away from
disc centre. The emergence of polarized light from unpolarized radiation after
a (coherent) scattering event is illustrated on Fig. 2.1. The figure displays one
single scattering event, but it properly illustrates the situation, since statisti-
cally most of the radiation travels radially out of the Sun, mainly perpendic-
ularly to the line-of-sight when the observer points at the limb, and breaking
the cylindrical symmetry in that direction. In the figure, the observer sees
polarization along an axis parallel to the limb because that is the only axis
along which the scattering centre must oscillate after absorbing a photon that
travels radially out. Instead, if he was pointing to the disc centre, the argument
would not hold. Indeed, in that case there would be a cylindrically symmetric
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distribution of incoming photons travelling towards the scattering centre, and
no preferred direction.

2.2.4 Radiation-matter interactions

Here we list radiation-matter interactions involved in the formation of the con-
tinuum under solar conditions and at optical wavelengths. Such a list can also
be found in Sect. 14.6 of Landi Degl'Innocenti (2014); we repeat it here with
some additional comments. Since the most abundant element in the photo-
sphere is hydrogen, we expect it to be involved in a number of the following
processes. Indeed, the non-scattering contributions are:

e Photoionization of the negative hydrogen ion: H™ + hv — H + e~. This
is the most important contribution to the non-scattering absorption co-
efficient at optical wavelengths,

e Photoionization of the hydrogen atom: H + hv — HT +e7,
e Inverse bremsstrahlung near a hydrogen atom: H* +e~ +hy — HT +e7,

e Inverse bremsstrahlung near a negative hydrogen ion: HT +2e~ + hv —
HT + 2™,

e Photoionizations of metals (other elements than Hydrogen)
e Photoionizations of the Hydroxide and the carbon-hydrogen molecules,
e Inverse bremsstrahlung near the Hf and H, molecules,

and the scattering contributions are:

e Rayleigh scattering at neutral hydrogen,

Rayleigh scattering at neutral helium,

Rayleigh scattering at metals,

Thomson scattering at free electrons,

Rayleigh scattering at molecular hydrogen.

The continuum intensity forms at a depth that justifies the assumption of
LTE for the non-scattering contributions. Hence, we treat only the coherent
scattering in nLTE. It should however be noted that the populations of the
elements responsible for coherent scattering are set to the LTE populations by
using the Boltzmann distribution.
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2.3 Polarized radiative transport in the contin-
uum

In this section we couple the general statistical equilibrium equations to the ra-
diative transfer equations, making the relevant simplifications for the transport
of light at optical wavelengths in the continuous spectrum.

2.3.1 Simplifications and approximations

As stated in the previous section, we assume all populations to be given in
LTE, we also assume LTE conditions for non-scattering contributions, and we
formally treat coherent scattering contributions as emerging from 0-1 transi-
tions. In addition, we assume that the magnetic field does not play any role in
the solar continuum. In particular, the Hanle effect vanishes in the far wings
of spectral lines (Rayleigh scattering), as shown in the context of the present
formalism in Sect. 10.4 of Landi Degl’Innocenti & Landolfi (2004). An intuitive
way of understanding this consists in pointing that, in a coherent scattering
processes, the magnetic field has no time to depolarize the atomic system.
Dichroism and anomalous dispersion (see Eq. (2.37)) are also neglected. In
an isotropic plasma they are absent. However, the lower level of an atomic
bound-free transition can harbour polarization. Since, in the visible, the ma-
jor contribution to photoionization processes is H™ and its only bound state,
having J = 0, cannot be polarized. Furthermore, the only sublevel of the
Hydrogen n = 2 level that can harbour polarization, P/, is very weakly
populated. Neglecting dichroism and anomalous dispersion is hence justified.
Finally, stimulated emission is also neglected. This is justified since, ac-
cording to Eq. (2.38),
771'8 pg(o‘u‘]u)

5~ L1 2.18
nt pYlaede) (2.18)
2.3.2 Derivation of the equations for the polarized trans-

port of light in the continuum

The radiative transfer equations are given in Eq. (8.2) of Landi Degl’Innocenti
& Landolfi (2004) and repeated in Eq. (2.36) of Appendix 2.A.1. A specializa-
tion of these equations for the polarized transport of light in the continuum is
found in Trujillo Bueno & Shchukina (2009). We give here a detailed deriva-
tion of it. Owing to the absence of dichroism and anomalous dispersion, the
radiative transfer equation (2.36) decouples:
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d

gU(s) = —nr(s)U(s) +ev(s). (2.19)
We do not make any assumption for V', but we omit to write the corresponding
equations and we shall see later that this quantity always stays zero. The
radiative transfer equations are rewritten after a change of variable:

d
—I=1-5, 2.20
dr ! ( )
and similarly for @ and U. We have defined the optical depth and the source
functions to be
€ € €
dr = —npds, S;p=-L, So=-2, S5y=-2. (2.21)
nr nr nr
We now differentiate emission and absorption for scattering and non-
scattering processes, which we will label, respectively, as 7 and 7} for scattering
processes, and €}® and 7}*® for non-scattering processes. The index ¢ now stands
for I, Q, U, V, or equivalently for 0, 1, 2, 3. For non-scattering processes under
LTE conditions, we define the non-scattering source function:
ey’
S = —— = B,(T). (2.22)
o

The total source function can then be rewritten as

e +&§ o> o
Si = :15 Zs = hs . S BV(T) + ns . S
Mo + Mo Mo + Mo Mo + Mo
N gy _ge (2.23)
m6° + M no° + 115

in which we have also defined the source function for scattering processes

s
s — i
S' = S

K2

= (2.24)
"o

The non-scattering absorption coefficient in LTE conditions is simply given by
adding contributions from all species,

W) = SN () (225)

where N; is the density of the j-th specie and o; is the corresponding cross-
section.

The calculation of the scattering emission and absorption coefficients are
more involved since they require nLTE calculations. For notational simplicity
we drop the index s, and henceforth all emission and absorption coefficients
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refer to coherent scattering. As discussed in Sect. 2.2.1, the formalism of
Landi Degl’Innocenti & Landolfi (2004) is inappropriate for the description of
coherent scattering. However, Thomson scattering can be accurately treated
classically, and Rayleigh scattering primarily emerges from 0-1 transitions in
the Hydrogen atom, for which quantum and classical computations describe
the same scattering physics. With our approach we disregard the limitations
of the formalism, and for this reason the final justification of these calculations
resides in the fact that the emerging equations are compatible with the (clas-
sical) scattering physics of Chandrasekhar (1960). The cross-sections need to
be appropriately substituted as discussed in Sect. 2.2.1. Our starting point is

q. (2.38) in Appendix 2.A.2. We specialize it for a two-level atom and intro-
duce the symbol w( ) of Eq. (2.46), obtaining the absorption and emission
coefficients

. h
nt, G) = TN (20 +1) B(aeds = aulu)

) Wi,
tJu ~’§_2' K J
XZ 2J£+ TS (6, Q) pés (e Je)
X ¢(V0 —v),

h
P, D) = TN @Ju+1) B(audu = acly)

xZﬁ TE (i D ()

x ¢p(vy —v),
- 2h1? -
gi(v, Q) = 2 nis(z/, Q). (2.26)

For a J = 1 level, the only components of the spherical tensors that en-

ter the computations are those with K =0, 1,2 and Q = —K,..., K. Since

w(J/Z )0 7,—1 = OKo, one then finds by using the Einstein coefficients of Ap-

pendlx 2.A.4 in Eq. (2.43):

€i 2hl/ 2Jp+1 (K) L= pg(auJu)

S, =t = > : o) hieia

o 27, +14 REAL Ry
:Z(_n f,K}eTK(, ()sk, (2.27)

KQ
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in which we have defined

203 20, + 1 pg (au
sk = 2 [2t p%( ), (2.28)
c 2J, +1 pd(aede)
By using Eq. (2.47) of Appendix 2.A.4 we deduce the following relation for
SK:
Q

SE =w) (1) TE, (n) = w') TE (v9)". (2.29)

Denoting real parts of complex quantities with a tilde and imaginary parts
with a hat, we can further simplify the expression of the source function by
using the symmetric properties of Eqgs. (2.39) and (2.40) for the radiation field
tensor and the density matrix:

Si = Z(_DK wy, J;TQ (4, Q)SQ
= w, T2, 0)SY + w?), T2 (i, 0)S2
+20f, 3 (756,953 + 736,953
), (70698 +2 (TH6.DSE+ T 0. DST) )
= (2,) TG + () 726D
+2 (w%)? > (786.9)73 - 75, 9).J3)
Q>0
+ (wf,”h) (TG D3 +2 (T 6D+ TH6DIL)) . (2.30)

The relevant non-zero components of the tensor ’Té( are:

72(0,9) = ﬁ (3cos?(0) — 1) = 2—\1/5 (3% — 1),
T2(0,9) = —? sin (0) cos (6) exp (ix) = —?u 1—p?exp (ix),
T2(0,9) = ? sin? () exp (21y) = \4/15 (1 — p?) exp (2ix),
THLG) = =5 s (0) = == (1= 7).
T2 8) = =2 sin (6) o (6)exp (i) = —L2 /T exp i)
2 ~ \/§ 2 . 3 2 .
T2(1,Q) = - (1 + cos® (A)) exp (2ix) = - (1+ p?)exp (2ix), (2.31)
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where we have chosen the reference frame with v = 0 so that the Stokes
U components vanish (after averaging over y, if the medium has an overall
cylindrical symmetry) and @ is negative for linear polarization parallel to the
limb (with the usual convention that @ is positive when linear polarization
is parallel to the limb). Now we set J; = 0 and J,, = 1, for which w(]O)][ =
w(JQ) 5 = L As it will be shown below, we can assume the components JQ of
the radiation field tensor to be zero. We then get the scattering contribution

to the source function:

S5 = J0+2—\1/§(3u2—1)J0 V3u/1—p (cos Sln()jf)

V3

5 (1—p?) (cos (2x) J2 + sin (2x) j22>

55:2\%(”271)% V31— p (cos ) J? + sin (x )J?)

- @ (14 p?) (COS (2x) J3 + sin (2x) j22> ,
St = \[\/1 — (sm ) J? + cos (x )jf) +V3u (sin (2x) J3 + cos (2x) j22>
(2.32)

We can now rewrite the total source function of Eq. (2.23) in terms of scattering
and non-scattering contributions:

nr’ Ui 0

- B,(T) + J 1) J2
v [ ’ 2f<“ )
—V3u/1 -1 (cos ) J? +sin (x )Jl)

+§ (1-u?) (COS (2x) J2 + sin (2x) JQQ)] )

2
—V3u/1—p (cos ) J? +sin (x )j12)

__m 3
S0 = s [avg - 0
—ﬁ (14 17) (cos (2x) J3 + sin (2x) JE)] ,

2
77 {\f\/? (sm ) J? 4 cos (x) jf)
T’
+\/§u (sin (2x) J2 + cos (2x) Jz)} . (2.33)
In the context of the continuum spectrum, these are referred as the statistical

equilibrium equations. They were initially derived in Eq. (5) of Trujillo Bueno &
Shchukina (2009). We note that the correct operand between the trigonometric
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functions in the equation for Stokes U is the sum (there was a typographic error
in the cited reference). The description of the polarized continuum spectrum
is then completed with the addition of the radiative transfer equations

d

S =T_

dr St

d

~Q=0Q- 5,

d

—U=U—S:. 2.34
017_U U - Sy (2.34)

and by Eq. (2.42) expressing the radiation field tensor in terms of the Stokes
parameters. By inserting the components of the tensor ’TQK into Eq. (2.42) we
find

dQ
J(()) == % EI’/Q’

dQ 1
B § s 60 =1 15 +3 (2 = 1) Qual

dQ
Ji = 7{ \[Mexp (ix) [~ (g +Q,5) —iU,5] .
d
Iz = %w\[ exp (2ix) [(1 = #%) Lg — (1 +4°) Qg — 2iuU, 5] . (2.35)

We now need to justify the assumption that the components Jé of the radiation
field tensor are zero, and show that V = 0. Strictly speaking, we should
show that the non-linear system of Eqs. (2.33), (2.34) and (2.35) without the
assumption Jé = 0 and completed with the corresponding equations for V'
admit one single solution in which V' = 0 and Jé = 0 for all possible boundary
conditions that can be found in the solar plasma.

We will tackle an easier problem, and assume here the existence of a unique
solution to the coupled equations, as well as periodic boundary conditions
in the horizontal planes. In the bottom layer, radiation is assumed to be

unpolarized (VV=0). The component ’78 (i, Q) is non-zero only when i = 2,

so that the product 76 (i, Q) Si (u, ﬁ) of Eq. (2.42) is zero whenever Stokes

V = S5 = 0, which is the case at the bottom boundary. Then Jé = 0 and
the source function Sy is also zero at the bottom boundary, according to the
statistical equilibrium equation (2.30). The radiative transfer equation (2.34)
guarantees that the boundary condition V' = 0 is transported to the next
layers, in which, for the same reason, Sy is again zero, and hence also V =0
on the next layer. This is of course not a formal proof, but it outlines the idea
of a proof.

In order to solve the coupled system of non-linear Eqs. (2.33), (2.34)
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and (2.35), we wrote the Polarized RAdiative Transfer In the Continuum
(PRATIC) module for the POlarized Radiative TrAnsfer (PORTA) code of
Stépan & Trujillo Bueno (2013).

2.A Details on the formalism of Landi
Degl’Innocenti & Landolfi (2004)

In the following appendix, equations of the book of Landi Degl’Innocenti &
Landolfi (2004) will be labelled with the additional prefix “LL04-".

2.A.1 Radiative transfer equation for polarized radiation

The radiative transfer equation for polarized radiation is given by Eq. (LL04-
8.2):

L 1(s) = ~K()T(5) +(s), (2:36)

where s is the coordinate along the line of sight, € is the emissivity vector, and
the propagation matrix K is given in Egs. (LL04-8.3) and (LL04-5.27):

n 0 0 0
- 0 nr 0 O
K= 0 0 nr O
0 0 0
Absorption
0 nQ nNu "Nv 0 0 0 0
ng 0 0 0 0 0 pv —pu
+ + . 2.37
nw 0 0 0 0 —pv O PQ (2:37)
nwv 0 0 0 0 pv —-pq O
Dichroism Anomalous dispersion

The components of the absorption matrix and of the emissivity are called the
radiative transfer coefficients.

2.A.2 Radiative transfer coefficients

Each coefficient of the propagation matrix is a sum of two contributions, one
due to absorption and the other due to stimulated emission (taken as negative,
so that in this notation n; = n#* —n?). These contributions are explicitly stated
in Eq. (LL04-7.16) for a multi-level atom, where ¢ = 0, 1, 2, 3 correspond to
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I,Q,UV:
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V3 =
) = 2h (v, Q). (2.38)

2L

é‘i(l/,

The two profiles ¢ and ¢ are defined in Eq. (LL04-6.59a). pg are the multipole
moments of the atomic density matrix that appears in Eq. (LL04-3.101) and
it satisfies the symmetry relation given in Table LL04-3.6:

Kolad) = (=1) pfs (ad)". (2.39)

Tg is a spherical tensor whose components are listed in Table LL04-5.6, to-
gether with an analogous symmetry relation

T, (1, 9) = (-1 75 (1, G)*. (2.40)

Notice that such a relation also holds for the radiation field tensor, according
to Table LL04-5.7:

JE ) = (~1)? IS )" (2.41)
Moreover, B (ayJy — ayJy) and B (ayJy, — aydy) are the Einstein coeflicients

for absorption and stimulated emission, respectively. They are connected to
the line strength in Eq. (LL04-7.7).
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2.A.3 The radiation field tensor

Eq. (2.41) relates the components of the radiation field tensor among each
other. Those are defined from the Stokes vector S; in Eq. (LL04-5.157):

50~ § 25 (i.6) 5 (). .2)

2.A.4 Einstein coefficients

The Einstein coefficients are related to the line strength in Eq. (LL04-7.7).
They are related to each other in Eq. LL04-(7.8):

2h
A (auJu — Oéng) = gvgujmth (Oéu.]u — Oégjg),

(2Je + 1) B (Ongg — Oquu) = (2Ju + 1) B (auJu — Oéng) (2.43)

2.A.5 6-j symbols

The 6-j Symbols appear in the coupling of three angular momenta. The only
property that we need here is:

a b 0 o . atetf 1
{ d e f }—5ab5ed( 1) V@a+1)(2d+1) (2.44)

which can be found in Eq. (LL04-2.36a).

2.A.6 The density matrix

The density matrix provides a complete and compact description of the state
of the atoms. This has to be calculated by solving the statistical equilibrium
equations, which in general can only be done numerically. For the particular
case of two-level atoms with unpolarized lower level, the statistical equilibrium
equations can be solved analytically. In the absence of collisions, the spherical
components of the statistical tensor of the upper level are given by Eq. (LL04-

10.27),
pK(OéuJu) _ 2Jp+1 B (OL@J@ — OLuJu)
Q V2Ju, + 1 A(audy = apdy) + 27V, ga, g, Q

x i), (=1)? TEG (o) pf (au i), (2.45)
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where the symbols wgf}e are defined in Egs. (LL04-10.11) and (LL04-10.12)

by
1 K
Ju o
Wrude = 1 0
{ Ju }
(2.46)

The last equality follows from Eq. (2.44). A list of values of this symbol
may be found in Table LL04-10.1. If we neglect the Hanle contribution (the
term 27i vy, go, 5, @ in the denominator of Eq. (2.45)), the expression simplifies
further using Eq. (2.43):

K )
PqQ (o Ju) c 21, +1 (k) 0 K
B -1 . 2.47

pd (aude)  2h3 N 20+ 1 wy. 5, (=17 T2 () (2.47)

2.B Quadrature formulas for numerical inte-

=

1
(K) _ { Ju o\t 1 1

1 =(-1) 3(2Ju+1){Ju e

Ju

gration on the sphere

The calculation of the spherical components of the radiation field tensor of
Eq. (2.35) requires an integration over the sphere. To this aim, numerical in-
tegration schemes require a partition of the sphere into a finite set of regions,
and a selection of corresponding directions (nodes). The integral is then ap-
proximated by the sum of the integrands over each chosen direction, pondered
by the area of the corresponding region (the weight).

A given set of nodes with the corresponding weights is called a quadrature
over the sphere. The accuracy of the quadrature depends on the problem. As a
general rule, quadratures with a greater number of nodes will be more accurate,
but they will also be computationally more expensive. The difficulty resides in
choosing, for a specific problem, both a good thread-off between accuracy and
computing time and an optimal quadrature for the given number of nodes.

Some of the quadratures listed below can be found in the chapter of nu-
merical interpolation, differentiation, and integration in Abramowitz & Stegun
(1964).

2.B.1 The product quadrature with Gauss-Legendre
nodes

The product quadrature with Gauss-Legendre nodes is the traditional Gauss
quadrature. The following discussion is base on the review of Atkinson (1982).
If the integrand is expressed in spherical coordinates, this is the easiest quadra-
ture, since the partition of the sphere is expressed as the Cartesian product of
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partitions over the declination angle # and the azimuthal angle ¢:

Iif1= £ (@)a0
27 ™
:/ / 1 (0, ¢)sin(0)dbdeo
o Jo
2Ny No
§=0 i=1
A convenient choice for the angles is ¢; = JJ\%: and p; = cos(6;) the Gauss-

Legendre nodes on [—1; 1], with the corresponding weights

2 T
, W= —.
(1= p2) P (1)° TNg

(2.49)

w; =

This specific choice is optimized in such a way that polynomials of a given
degree are integrated exactly with a minimal number of nodes. More precisely,
for M = Ny = Ny, polynomials of degree n = 2M are solved exactly with a

total of N = 2M? nodes, so that asymptotically n = V2N ~ O (\/N)

2.B.2 Lobatto’s quadrature

This quadrature is similar to the previous one: it is also a product quadrature
and hence the integral over the sphere also factorizes into an integral over the
declination angles and an integral over the azimuthal angles. The azimuthal
part stays identical, whereas on the declination part we add the vertical direc-
tion:

[ s B 0 )+ D wf ), (250)

with the weights given by
2
n(n — )P, (ui)?

In some situations such as radiation transfer problems the vertical direction
plays an important role. This quadrature is hence more appropriate in these

w; = (2.51)

cases.
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2.B.3 The double-Gauss quadrature

A different possible issue of the traditional Gauss quadrature with a small
number of nodes, when applied to radiative transfer problems, is the sharp
variation of intensity at inclined angles. A simple strategy consists in splitting
the declination part of the integral into two parts,

1f(u)du: 1f(+u)du+ 1f(*u)du
[ o= | /

1t p+1 1! 1+p
2/1f<+2 )d,u+2/1f(2 >du, (2.52)

for which each part can now be approximated with the traditional Gauss
quadrature. This quadrature was initially proposed and compared with other
quadratures in Sykes (1951), within the context of transfer problems. At this
point, a natural idea would be to additionally include the vertical direction
to the double-Gauss quadrature, similarly as it was done with the Lobatto’s
quadrature, but we leave this idea for a future work.

2.B.4 Lebedev’s quadrature

Lebedev’s quadratures are based on symmetry considerations. They are de-
scribed in detail in Lebedev (1976). Since the Cartesian grid broadly used in
numerical simulations has octahedral symmetry, the nodes of Lobatto’s quadra-
ture are chosen with exactly the same symmetry.

The considered symmetry group contains all transformations that map the
origin-centred cube into itself (rotations by an angle multiple of 7/2, reflec-
tions in the z — y, y — z and z — x planes, and all compositions of those
transformations).

Lebedev’s quadrature is no more a product quadrature. Nodes are now
specified as pairs of declination and azimuthal angles,

1=, £ (@)a0
N
~ Zwif(eia¢i)' (2.53)

For a given order n of the method, there are in principle many possible quadra-
tures with different values of N that have the proper symmetry. The ones that
have the minimal N are called Lebedev’s quadratures. For 0 < n < 17, all
possible quadratures with the appropriate symmetry are explicitly computed
in Lebedev (1975). Lebedev’s quadratures exist only for some values of N.
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Table 2.2. The quality is compared for quadratures with different number of nodes.

Number of nodes 7Gauss-Legendre MLebedev "Gauss-Legendre TLebedev

2 1 - 1.00 —
- 3 - 0.89
4 - 1.56 -
14 - 5 - 0.86
18 6 - 1.36 -
26 - 7 - 0.82
32 8 - 1.27 -
38 - 9 - 0.87
50 10 11 1.21 0.96
4802 98 119 1.02 0.99
N V2N V3N 1 1

Notes. The quality should not be used to compare Lebedev’s quadratures with
Gauss-Legendre quadratures, but only quadratures of the same kind, but with dif-
ferent number of nodes, among each other.

The order n of Lebedev’s quadratures is related to the number of nodes IV,

N == (n*+0(n)), (2.54)

1
3
and hence the Lebedev quadratures are of order n ~ v3N ~ O(v/N). In order
to compare Lebedev’s quadratures among each other, the quality is defined as
the number of Laplace spherical harmonics exactly integrable, divided by 3V
(so that the quality asymptotes to 1),

(n+1)2'

o (2.55)

The quality can be defined in the same way for Gauss-Legendre quadratures, in
which case the normalization is 2N. The quality is compared among quadra-
tures with different number of nodes in Table 2.2. There are other means of
comparing the quadratures. For instance, according to Lebedev (1976), the
distribution of nodes in the sphere is very regular when n = 5 (12) and when
n = 11(12). In particular, the quadrature with N = 50 has both an excellent
quality and a regular distribution of the nodes on the sphere.
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3.1 Overview

An additional physical constraint to the MHD equations (2.1) is the divergence-
free condition for the magnetic field. V - B = 0 is not an evolution equation,
and is in principle not required since initial divergence-free fields are guaranteed
to stay so by the induction equation, the third of the MHD Egs. (2.1),

0B
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as long as the boundary conditions also guarantee the divergence-free field
condition. However, a discrete formulation of the induction equation must not
necessarily fulfil this condition and solenoidality must be enforced, in addition
to updating B according to the numerical scheme.

In addition, there are different ways of numerically discretizing the deriva-
tion operator, and for a given numerical scheme evolving the induction equa-
tion, the existence of a discretization that preserves V - B in the course of
the simulation is not guaranteed, and if such a discretization exists for that
specific scheme, it will be the only one having that property. In practice, our
concern is about spurious forces that might be introduced into the simulations
because of non-vanishing magnetic field divergency, that would lead to unphys-
ical magnetic monopoles and plasma acceleration parallel to the magnetic field
lines.

To avoid this situation, we need to carefully choose an appropriate numeri-
cal method for evolving the induction equation, identify how derivatives should
be discretized, and check if V - B stays reasonably small (in principle exactly
zero) with that specific discretization. Depending on the scheme and the type
of grid, there are many different ways of achieving this, in some cases with a
precision of the order of round-off errors, as is the case with the CO°’BOLD
code (Freytag et al. 2012). In this chapter we describe the technique used
by CO°BOLD, and we empirically test its performance in maintaining V - B
low with some of our magnetic models. We also give a brief description of
other techniques and present in detail a divergency-cleaning technique that we
implemented in a computer code.

An additional issue arising in magnetic simulations is the initial condition
for the magnetic field. The typical way of constructing high-resolution models
is to start with a low-resolution hydrodynamic (non-magnetic) model, refine
it and evolve it. After relaxation, a magnetic field is added into the box, and
the new magnetic box is again evolved. The added magnetic field must also
satisfy V - B = 0 in the sense of the previous paragraph. However, any such
magnetic configuration will typically introduce a sudden additional Lorentz
force, leading to potential numerical difficulties. A magnetic field that avoids
sudden introduction of additional Lorentz forces is called a force-free field. A
specific case of it is the potential field. In the second part of this chapter we
present a possible construction of a general potential field, and present one of
our models that was evolved with such an initial field.

3.2 Constrained transport with the CO°’BOLD
code

The HLLMHD solver implemented in CO?BOLD uses the constrained-
transport method of Evans & Hawley (1988) within a Godunov-type finite-
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volume scheme described in Freytag et al. (2012). The constrained transport
method is based on a finite volume scheme, where the magnetic field is de-
fined on computation cell (volume) faces and the electric current is defined on
computational cell edges.

The idea behind this technique is to discretize scalar fields with cell-averages
and vector fields as surface averages on the faces of the cells. We index cell
boundaries with half-integer indices (i 1/2,j+1/2, k£ 1/2) and cell-centres
with integer indices (4, j, k) as depicted in Fig. 3.1. For the sake of simplicity,
we will assume the grid to be equidistant. The average magnetic field over a
cell surface can hence be written

1 Z’H—% y.7+%
Biyijn= m/ /y B(z,y, 2) dydz. (3.2)

2z,

i-3

[N

In this example we have chosen a cell surface normal to the = axis the red

(i=25d—3k+3)

@

f
______________________________ &l
it 3.9k
- 3
512 J2
(+35-55-3) (+ 5+ 5k =)

Figure 3.1. Cell edges and faces indexing and face-centre averaged magnetic field.
The red face f has its edges labelled with the integers 1, 2, 3,4 and the electro-motive
between these edges is shown

surface in Fig. 3.1. With this method, we are actually discretizing the averaged
magnetic flux densities instead of the magnetic field. In the limit of infinitely
small cell-sizes, both quantities are however identical. The divergency free
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condition can now be rewritten using the Gauss theorem:

g (Yity [T .
/ / / V - B(z,y, z) dedydz = B(z,y,2)ndS, (3.3)
ET y].i xi7%

cell

[N
[N

where the second integral is taken over the cell faces and “cell” designs the
cell with centre i, j, k, and 1 is a unit vector normal to dS and pointing out of
the cell. Writing the components of the magnetic field B = (B*, BY, B*) we
obtain

7{611 B(z,y,z)ndS = AyAz (—Bi_%d),c + Bi+%’j’k)
+ AzAz (—B.y, it sz+%7k)

+ AzAy (—Bf’jyk_% + Bf’j,]ﬁ_%)

= > % (3.4)

cell faces f

where @ is the magnetic flux through each of the cell faces indexed by f. With
this constrained transport method, the magnetic flux is evolved on cell faces,
rather than evolving the magnetic field on discrete points. The magnetic flux
is then evolved from the flux rule for motional electro-motive force (Faraday’s

law),
do
- dtf = 5{2 + 553 + 59{4 + 54{1: (3.5)
in which the vertices of face f are labelled with integers 1, 2, 3, 4, and Sifj is
the emf from vertex i to vertex j. Fig. 3.1 shows these labels for the red face.

If we now introduce the notation

1 Zordl (Yirl [Tl
B,y =——— B .
N A{EAyAZ / /y /z (Z‘, Y, Z) d'rdydz7 (3 6)

Zk*% ‘]7% %
we find from Eqgs. (3.2) to (3.4)
d 1 dd;
—=V - Bijr = ket
@Y Bk = AgAgas > W
cell faces f
1
= xoagas O Ehrehrelivel, 60

cell faces f

which reduces to zero, since for each pair of vertices of a given cell, there are
exactly two faces sharing the edge in between these vertices, with corresponding
emf of opposite sign.

The present approach hence guarantees that the divergency of B will be
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maintained constant in all cells up to round-off errors, that will add-up at
each time step. It however does not guarantee that the divergency of B will be
maintained zero up to round-off errors after an arbitrary number of time steps.
If round-off errors were uniformly distributed on cells, uncorrelated from cell
to cell and also independent from the previous and next time steps, V - B
would be properly modelled by a random walk, and would hence grow as v/N,
with N the number of time steps performed.

3.3 Other methods for ensuring zero diver-
gence of the magnetic field

There are a number of different methods to deal with the vanishing magnetic
divergency requirement, and many different implementations. A detailed de-
scription of many of these methods, numerical tests, and performance analyses
of them can be found in Té6th (2000). Further developments and newer meth-
ods can also be found in Christlieb et al. (2014). There is however no preferred
method for all situations. The optimal method depends on many parameters:
the problem to be solved, the regularity of the grid, the base scheme, the initial
and boundary conditions of the problem, etc.

The constrained transport method used in CO?BOLD is a fast and accu-
rate method, but the implementation can be more complicated as compared
with other methods, especially when combined with adaptive mesh refinement
techniques (which is not the case in CO’BOLD). A different but very attrac-
tive method is the central difference scheme of Téth (2000). It is a simple
finite-difference method, that also maintains the divergency of the magnetic
field constant, but does not generalize to adaptive mesh refinement.

It is possible to picture the constrained transport and the central difference
schemes as methods evolving an underlying vector potential (Téth 2000), hence
guaranteeing zero-divergence of the magnetic field. Actually some methods
reformulate the MHD equation in terms of a vector potential, but then the
base scheme is quite different from a field solver.

3.3.1 Advection of magnetic monopoles

Another method to keep V - B within bounds is the 8-wave scheme of Powell
(1994), where a source term proportional to the divergence of B is added to
the MHD equations (this term naturally appears in the derivation of the MHD
equations when one does not constrain V - B), making it non-conservative,
but also generating an 8th wave to the equations. When the divergence of B
is exactly equal to zero, the usual MHD equations are found back. Instead,
when small magnetic monopoles are generated by the numerical scheme, they
are allowed to move, and eventually leave the box through the boundaries.
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At the same time, the boundary conditions are formulated in a way that not
magnetic monopoles can enter the computational domain from outside. A
method with a similar mechanism for the evacuation of magnetic monopoles
that is conservative and more effective is the hyperbolic cleaning of Dedner
et al. (2002). In this method, a scalar field coupled to V - B is added to the
MHD equations in such a way that the magnetic monopoles are transported to
the domain boundaries with the maximal admissible speed.

3.3.2 Divergency cleaning

With all previous methods V - B my become larger than admissible by the
round-off precision, either because the divergence is allowed to grow at each
step up to round-off errors, or because the divergence is tolerated to be non-
zero in exchange of a continuous transport of magnetic monopoles outside of
the box.

The divergency cleaning methods use yet another strategy, that guaran-
tees the divergence of the magnetic field to be zero up to round-off errors at
each step (or every few steps) by “cleaning” the magnetic field from its non-
solenoidal part. We describe here a projection scheme that consists in rewriting
the magnetic field as a sum of a gradient and a curl through the Hodge projec-
tion. The curl is retained as the divergency-free part of the magnetic field. The
procedure is described e.g. in the lecture notes of Leveque (1998), and it is also
revisited in Té6th (2000), addressing “many of the incorrect claims widespread
about it”. In particular, it is shown that the scheme can be conservative with
an appropriate implementation, can be efficient (even though it is the least
efficient method among those presented here), and flexible with respect to the
grid geometry and boundary conditions. In an efficient implementation it is
integrated in the base scheme, and no ad-hoc “cleaning” procedure is required.

3.4 A code for divergency cleaning

For the purpose of preparing an initial magnetic field configuration, to compare
the different numerical schemes, or simply to apply cleaning after a long time
simulating, it is useful to have an independent solution for divergency cleaning
available. To this aim, we use the projection scheme described in Téth (2000).
In order to solve the discretized Poisson equation, we implemented the BiCon-
jugate Gradient STABilized method (BiCGSTAB) of Van der Vorst (1992), an
iterative method for the solution of nonsymmetric linear systems.
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3.4.1 Magnetic monopoles associated to numerical errors

In analogy to the electric field case, we can define a “magnetic charge” of
magnetic monopoles as

Pmon = V - B*, (3.8)
and just as it is done for electric fields, we can invert the equation, finding

rg—r r

1 1 ro —
Bmon To) = 7/ mon dr = — / V- -B"——dr. 3.9
(ro) am Jr g (ro —7)° Am Jr (ro —r)° 3.9)

A reasonable cleaning procedure would be to set
B =B* — Byon, (3.10)

but then the difficulty of the problem still resides in the evaluation of the
integral of Eq. (3.9) up to machine precision, with the appropriate boundary
conditions. In this case the periodic boundary conditions in the horizontal
directions complicate the problem even more.

Yet, this picture is still useful since it provides a natural and physically
meaningful way of quantifying the numerical errors with the quantity

BQ
gmon = 81’!’1/'1(')“7 (311)

which is the energy density stored in the magnetic field generated by the
monopoles. Since the total energy density is provided by internal, magnetic
and kinetic energy density contributions

gtot = gint + Emag + gkina (312)

an indicator of accuracy loss due to a divergent magnetic field can be defined
by the ratio

gﬂlOIl 51’1’1011
= —_— | = . 1
: Hgg’?( < gtot ) Hgoa’z( <gint + gmag + gkin) (3 3)
3.4.2 The Hodge projection scheme

Let’s assume a non-solenoidal magnetic field B* as typically produced by some
numerical scheme. There is a unique decomposition of the field as a sum of a
rotational and a gradient,

B*=V x A+ V¢, (3.14)

even though A and ¢ are not unique. Then the magnetic field due to the
magnetic monopoles By, of Eq. (3.9) is precisely given by V¢. Since the
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divergence of the rotational is zero, an equation for ¢ is easily obtained by
taking the divergence of Eq. 3.14,

V2¢=V - B*, (3.15)
and a “cleaned field” is given by
B =B" - Vg¢. (3.16)

Since B* is discretized at the centres of cell faces and the numerical divergence
can be expressed as a first order finite difference calculation on the staggered
grid shifted by half a cell in each direction (according to Eq. (3.4)), the scalar
field ¢ can be consistently defined by cell-centred values on the original grid,
and the Laplace operator by second-order finite differences. Indeed, the first
order differences over the scalar field ¢ will give discrete values of V¢ on cell-
centres of the staggered mesh, in the same location where discretized magnetic
field values are, and the second-order difference then also corresponds to the
divergence operator of Eq. (3.4) applied on V¢. The consistent definition of
the numerical Laplace operator as the composition of the numerical divergence
operator used in the RHS of Eq. (3.15) with the numerical gradient operator
used in the previous Eq. (3.16) is obviously critical in this algorithm.

3.4.3 Implementation of the BICGSTAB method

The BiCGSTAB method is designed for the solution of nonsymmetric linear
systems, and the discretization of Eq. (3.15) provides indeed such a system of
equations, that can in principle be written explicitly. For instance, the RHS of
Eq. (3.15) would be explicitly written as the product of an N x N sparse matrix
with a one-dimensional vector of size N, where N = nz-n,-n. is the size of the
computational 3D box. The matrix-vector multiplication alone would involve
O(N?) operations, and the majority of them would be simple multiplications
by zero. This conceptual representation of the problem is interesting since it
explicitly shows that the system is linear, but it is by no means an appropriate
representation for the efficient solution of the system.

The evaluation of the underlying matrix-vector multiplication of the nu-
merical Laplace operator is indeed required by the BICGSTAB method, but it
can also be done by applying the second order difference operator on each cell
of the discretized scalar field. Similarly, the divergence operator will be done
by applying Eq. (3.4) at each cell. So the numerical Laplace and divergence
operators consist of a repeated operation applied on each cell of the domain,
and this operation involves a number of neighbouring cells. The collection of
the involved neighbours is pictured as a stencil. Applying a stencil on a cell
involves a constant number of operations depending on the size of the stencil,



3.4. A code for divergency cleaning 47

so that the whole evaluation requires only O(N) operations.

We implemented the BICGSTAB method in a very flexible and abstract
way, allowing for any representation of the operator evaluation (explicit matrix
multiplication, stencil operation), together with generic stencils. We compiled
the code in a static library that we then linked with a python module we
specifically wrote for the purpose of divergency cleaning. Both the BICGSTAB
library and the divergency cleaning python module are written in C99. The
input magnetic field and the parameters for the BICGSTAB library (boundary
conditions, maximum number of iterations, etc.) are hence simply fed to the
library from a python script or shell.

3.4.4 Boundary conditions and ghost cells

The stencil method we described in the previous section for the evaluation of
the Laplace operator works well when the stencil is fully within the compu-
tational domain. Near the boundaries, however, part of the stencil is out of
the box. An equivalent way of depicting the problem is by pointing out that
second order differences should be modified at the boundaries of the box ac-
cording to the boundary conditions. A convenient way of proceeding is to add
ghost cells around the computing box and set appropriate values to match the
boundary conditions, keeping the very same stencil on the external shells of
the computing box. This is exactly the approach we used.

This procedure then raises the question of which boundary conditions are
appropriate for the problem of divergency cleaning. The natural answer is that
the boundary conditions must reflect the boundary conditions for the magnetic
field that was used for the simulation. Since we are imposing boundary condi-
tions to the scalar field ¢, but only know the boundary conditions of B*, some
care must be taken. To be consistent with Eq. (3.14), the boundary conditions
of the scalar field ¢ should be chosen so that the inherited boundary conditions
of V¢ match the boundary conditions of the divergent (non-solenoidal) part
of B*. Along the horizontal x and y axes, the boundary conditions for ¢ must
simply be periodic, as are the corresponding conditions for B* in our simula-
tions. Since with constrained transport methods the boundary conditions for
B* are typically chosen so that the divergence vanishes on the boundaries, ¢
should be set constant on these boundaries (then its gradient also vanishes), or
simply zero. In the top and bottom boundaries the magnetic field is however
recomputed to enforce V - B = 0, so those boundary conditions are actually not
so relevant there. Indeed, on each cell at the top and bottom boundary, there
is one single face at the immediate boundary, on which the field is recomputed.
In all other faces the field is kept constant.
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3.5 Magnetic monopoles in CO’BOLD simula-
tions

In this section we empirically test CO’BOLD’s performance in maintain-
ing V.- B = 0, for two of our simulation runs, d3gt57g44v50fc and
d3gt57g44h50mfc, and for other longer simulations runs, d3gt57g44v500s,
d3gt57g44h500s, d3gt57g44vE0rs and d3gt57g44v100rs. All of these mod-
els are described in Sect. 2.1.5.

Our strategy consists in computing the magnetic field of Eq. (3.9) asso-
ciated to the magnetic monopoles by using the Hodge projection scheme of
Sect. 3.4.2 with our implementation of the BICGSTAB of Sect. 3.4.3. The
energy associated to the magnetic monopoles is then defined in Eq. (3.11), and
the performance of a scheme in maintaining V - B = 0 is estimated by the
time evolution of the maximum value on the computing domain of the ratio of
the magnetic monopole energy to the total energy, as defined in Eq. (3.13).

10771 — d3gt57g44v50fc
d3gt57g44h50mfc
10-8] — d3gt57g44v500s
—— d3gt57g44h500s
—— d3gt57944v50rs
10-°{ —— d3gt57g44v100rs
10—10
S
9
5 =11
o5 10
10—12
10—13
10—14
1071 10° 10 102 103 104

t[s]

Figure 3.2. Maximum ratio of monopole energy to total energy over the computa-
tional domain, for different CO’BOLD simulations, as a function of time.

With a very rough order-of-magnitude analysis, we can estimate
COSBOLD’s performance. Since CO’BOLD intrinsically avoids discretization
errors in the magnetic field, only round-off errors are expected. We first as-
sume that round-off errors on V - B are uncorrelated, both spatially and in
time. We also assume that they are given by a uniform and symmetric ran-
dom distribution centred on zero. The total error at any timestep on V - B
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is then the sum of all cumulated errors at all previous times, and it should
behave as a random walk. Its standard deviation will then grow as v/t. The
monopole energy of Eq. (3.11) is then approximately expected to grow as t, i.e.
as a power-law with parameter @« = 1. Obviously, non of these assumptions is
correct, but it is still reasonable to expect, in short time ranges, a power-law
growth with some given parameter.

Fig. 3.2 displays the time evolution of the accuracy indicator we have de-
fined in order to quantify CO°BOLD’s performance in maintaining V - B = 0.
We must note that the models without magnetic field in the initial conditions,
but with magnetic field advected by the plasma through the bottom boundary,
have a peculiar behaviour. This is due to the fact that the numerical compu-
tation of the energy of the magnetic monopoles with the iterative BICGSTAB
scheme has also a numerical error, and in a box in which the magnetic field
is still almost zero everywhere, there are also pixels with extremely low to-
tal energy. The ratio of magnetic monopole energy to total energy can hence
give unpredictable results on those pixels. For this reason the models with
advected magnetic field and no initial magnetic field in the box should only be
considered after some significant amount of magnetic field is in the box.

From Fig. 3.2 we observe that the energy of the magnetic monopoles ex-
hibit a growth that is reasonably similar to a power-law, with a parameter of
about 2.4 for the models without advected field, and up to about 5 for the
other models. In up to 11h of simulation time, the maximum ratio of mag-
netic monopole energy to total energy stays reasonably small (below 107), and
exhibits no hint of an undesired exponential growth. By comparing the mod-
els with 50 G initial magnetic field with the one with 100 G initial magnetic
field, we find no dependence on the initial strength of the field for the models
starting with homogeneous vertically oriented magnetic field.

3.6 A potential magnetic field

3.6.1 General construction

As pointed out at the end of the Sec. 3.1, the introduction of a magnetic field
in an initially magnetic field-free box constitutes a sudden perturbation of its
dynamics, possibly leading to numerical complications. In order to minimize
the impact, a force-free magnetic field should be chosen. A trivial example is
an initially vertical magnetic field. During the relaxation phase, the magnetic
field lines quickly concentrate in the intergranular lanes, and the field loses its
force-free property. But at that point the field is already consistently evolving
with the plasma and the inclusion of the field happens in a smooth way. The
disadvantage of this method is that such a simple initial condition fails to
reproduce realistic configurations. A different approach consists in advecting
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an horizontal field with the plasma entering through the bottom boundary
of the box as in Stein & Nordlund (2006) and in Steiner et al. (2008). This
second approach is however slow, and the simulation has to evolve for a long
time before significant magnetic field reaches the top layers of the box.

Here, we consider potential fields, which are more general configurations
than simple vertical fields, but not yet general force-free fields. The Lorentz
force is proportional to j x B, and in a non-relativistic plasma the current den-
sity j is given by j = V x B. A force-free magnetic field is then a divergenceless
field for which j is parallel to B, and hence V x B = aB for some scalar field
« constructed so that V - B = 0. Such fields have been investigated by Taylor
(1986), where it is shown that they describe a state of minimal energy in a
perfectly conducting plasma. When we set « to be the zero scalar field, the
rotational of the magnetic field is also zero, and hence there exists a scalar field
¢ so that B = V¢. Since V - B = 0, the problem of constructing a potential
field reduces to the problem of solving the Laplace equation VZ¢ = 0.

For our simulations, the boundary conditions require periodicity in the
horizontal directions, and we further require the magnetic field to vanish at
infinity in the third direction, so that also ¢ is required to be periodic along
the horizontal directions and to become constant (say zero) when z > 0. The
boundary conditions in the horizontal directions suggest the use of harmonic
analysis by rewriting the scalar field ¢ as a Fourier series. This series can be
slightly modified in order to match the boundary condition also in the vertical
direction. A reasonable ansatz for ¢ is then a linear superposition of terms of
the form

By, k, . k(e
(w,y,2) = sz sin (ke 4 kyy + fr, k,) € ke(e=smoby) |k, >0, (3.17)
for arbitrary coefficients B, f and s and some vector k. It is immediate to verify
that this ansatz is a solution of the Laplace equation only when kg—l—kz—kg =0,
so that the coefficients B, f and s are really chosen to depend on k, and &,

alone. We then set k, = , /k2 + kjg and the magnetic field V¢ is then computed

and analytically integrated by using Eq. (3.2) in order to derive the magnetic
flux densities required by the HLLMHD scheme of the CO’BOLD code. A more
general potential field can be constructed by adding many potential fields with
different choices of the values for k;, ky, By, k,, fr.k, and sg, x,. For k., =0,
we set ¢(x,y,2) = 2B, k,, with k, = k, = 0. This is also a solution of the
Laplace equation corresponding to a homogeneous vertical magnetic field.

An interesting feature of this ansatz is that the corresponding average mag-
netic field on the horizontal layer 2z = sg, x, is Bk, ,. This property facilitates
the choice of the free parameters for the construction of a general potential field
with given pre-requisites.
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3.6.2 The p200 magnetic configuration
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Figure 3.3. Magnetic field lines of the p200 configuration. Most field lines of the
flux concentration at the centre of the box bend back inside it before they reach the
top boundary, located at 1.3 Mm.

The p200 magnetic field configuration is constructed with three different
terms of the kind of Eq. (3.17). All three terms have values k, = 2mi/L,
and k, = 2mj/L, with ¢ and j integers and with L, and L, the horizontal
extension of the box. We can hence replace the indices k, and k, with the
more comfortable integers ¢ and j. We chose the three terms indexed by the
pairs (4,7) = (0,0),(1,0), (0,1) with the following parameters: Byo = 10 G,
BI,O = BO,l =246.4 G, f170 = fO,l =7 and 81,0 = S0,1 = 0.

This configuration is illustrated in Fig. 3.3 displaying a cylindrical sym-
metric vertical structure at the centre of the box. It represents a model for
two magnetic flux concentration, one with positive polarity at the centre of the
box and one with negative polarity at the box boundary. Note that since the
box is periodic, concentration at the box boundary is actually a single one. At
the surface ((7) = 1) of the box, this configuration has an average unsigned
vertical magnetic field of 200 G. This value decreases with height. Its maximal
value reaches 450 G at the bottom of the box (see Fig. 3.4).

Our main motivation constructing this specific configuration is two-fold. On
the one hand we aim at a non-trivial field configuration, different from the usual
initial homogeneous vertical field used in photospheric MHD simulations. On
the other hand we aim at a configuration with important flux concentrations
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but without heavy Courant limitations. Since Alfvén waves travel faster either
when density is low or when magnetic field is high, the maximum acceptable
timestep is high whenever either of these situations is found. We then need to
limit huge magnetic field concentrations where the plasma density is already
low, which is to say, at the top of the box. We then aim at a magnetic field
with strong concentration of field lines in the photosphere that bend back
before they reach higher regions in the tenuous layers of the chromosphere.
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Figure 3.4. Mean unsigned vertical magnetic strength over horizontal planes of the
computational box as a function of height for the initial field configuration.

Despite our efforts to produce an initial configuration that would run on
times comparable to the analogous v200 configuration (same initial hydro-
dynamic configuration but with a homogeneous vertical 200 G magnetic field
added) runtime, the new p200 model time step was soon reduced by more
than two orders of magnitude. For this reason we modified the “tweak” mod-
ule of the CO®BOLD code in order to incorporate the magnetic field by small
amounts at each time step. This strategy was only partially successful: the
p200 simulation was still running around 5-10x slower than the correspond-
ing v200 simulation before it recovered to a time step similarly large. It was
however still possible to model p200 for almost 40 minutes.
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Abstract

Context. Small-scale bright features in the photosphere of the Sun, such
as faculae or G-band bright points, appear in connection with small-scale
magnetic flux concentrations.

Aims. Here we report on a new class of photospheric bright points that are
free of magnetic fields. So far, these are visible in numerical simulations only.
We explore conditions required for their observational detection.

Methods. Numerical radiation (magneto-)hydrodynamic simulations of the
near-surface layers of the Sun were carried out. The magnetic field-free
simulations show tiny bright points, reminiscent of magnetic bright points,
only smaller. A simple toy model for these non-magnetic bright points
(nMBPs) was established that serves as a base for the development of an
algorithm for their automatic detection. Basic physical properties of 357
detected nMBPs were extracted and statistically evaluated. We produced
synthetic intensity maps that mimic observations with various solar telescopes
to obtain hints on their detectability.

Results. The nMBPs of the simulations show a mean bolometric intensity
contrast with respect to their intergranular surroundings of approximately
20%, a size of 60-80km, and the isosurface of optical depth unity is at their
location depressed by 80-100 km. They are caused by swirling downdrafts that
provide, by means of the centripetal force, the necessary pressure gradient
for the formation of a funnel of reduced mass density that reaches from the
subsurface layers into the photosphere. Similar, frequently occurring funnels
that do not reach into the photosphere, do not produce bright points.
Conclusions. Non-magnetic bright points are the observable manifestation
of vertically extending vortices (vortex tubes) in the photosphere. The
resolving power of 4-m-class telescopes, such as the DKIST, is needed for an
unambiguous detection of them.

Keywords. Sun: photosphere — Sun: granulation — hydrodynamics — turbu-
lence
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4.1 Introduction

Brilliant minuscule features, visible in white light on the solar disk, have at-
tracted the attention of observers from the beginning of solar physics. In the
early days of solar observation, it was the faculae that were of interest, but
with the advent of high resolution observation, the “solar filigree” (Dunn &
Zirker 1973) or “facular points” (Mehltretter 1974) have caught the attention
of observers. Later, these objects became well-known as the “G-band bright
points” (Muller & Roudier 1984), which were investigated in great detail with
the Swedish Solar Telescope (SST), for example by Berger & Title (1996, 2001)
and Berger et al. (2004). Both faculae and G-band bright points host concen-
trations of magnetic fields with a strength of approximately 1000 Gauss, which
are indeed at the origin of the brightenings. Utz et al. (2014) give properties
of individual- and the statistics of an ensemble of 200 magnetic bright points,
observed with the 1 m balloon-borne solar telescope Sunrise.

Magnetohydrodynamic simulations have been carried out to explain the
brilliance, shape, and physics of faculae (e.g. Carlsson et al. 2004; Keller et al.
2004; Steiner 2005; Beeck et al. 2013, 2015), the origin of G-band bright points
and their congruency with magnetic flux concentrations (e.g. Shelyag et al.
2004; Nordlund et al. 2009) or properties of the solar filigree (e.g. Vogler et al.
2005; Stein 2012; Moll et al. 2012). Various explanations on the extra con-
trast of G-band bright points were provided by Steiner et al. (2001), Sdnchez
Almeida et al. (2001), or Schiissler et al. (2003).

Non-magnetic photospheric bright points have also been reported to exist
(Berger & Title 2001; Langhans et al. 2002). These features are likely parts
of regular granules, or the late stage of collapsing granules, or tiny granules.
Turning to numerical simulations, Moll et al. (2011) find in their simulations
the formation of strong, vertically oriented vortices and they discuss a single
event that gives rise to a depression in the optical depth surface 7 = 1 and a
locally increased radiative bolometric intensity of up to 24%, confined to within
an area of less than 100 km in diameter. Since this event occurs in a simulation
that contains only a weak magnetic field, their bright point is essentially non-
magnetic in nature. Freytag (2013, Fig. 6) shows a bolometric intensity map of
the hydrodynamic (non-magnetic) high-resolution CO’BOLD run d3t57g44b0,
which shows a number of brilliant tiny dots. This run contributes part of the
data that is analyzed herein. The present paper focuses on the derivation of
statistical properties of this type of bright point rather than on single events
or their mechanism.

In this paper, we report on two magnetic field-free radiation-hydrodynamics
simulations, which show tiny bright features of about 50-100 km in size, located
in the intergranular space, well separated from granules, yet non-magnetic by
construction. They obviously represent another class of photospheric bright
feature, which we henceforth refer to as non-magnetic bright points (nMBPs).



58 Chapter 4. Non-magnetic photospheric bright points

From these simulation data, we extract a total of 357 nMBPs from which
we derive statistical properties and we investigate conditions for the obser-
vational detection of them. In Sect. 4.2, a representative nMBP is displayed
and we propose a theoretical toy model for it that provides us the basis for a
recognition algorithm that is given in Sect. 4.3. The basic physical properties
and statistics of the nMBPs are presented in Sect. 4.4. In Sect. 4.5 we look at
synthetic intensity maps and discuss conditions for the observation of nMBPs.
Conclusions are given in Sect. 4.6.

4.2 nMBPs from the simulations

The magnetic field-free, three-dimensional simulations that we have carried
out cover a horizontal section (field-of-view) of 9600 x 9600km? of the solar
atmosphere, extending from the top of the convection zone beyond the top of
the photosphere over a height range of 2800 km. The optical depth surface
Tsoonm = 1 is located approximately in the middle of this height range. The
spatial resolution of the computational grid is 10 x 10 x 10 km? (size of a com-
putational cell), identical in all directions. A full data cube of the simulation
(full box) is stored every 4 min, whereas a two-dimensional map of the verti-
cally directed, bolometric radiative intensity at the top boundary is produced
every 10 s.

The simulations were carried out with the CO?BOLD code, a radiative
magneto-hydrodynamics code described in Freytag et al. (2012). For our
present study of nMBPs, we use the run carried out with the hydrodynamic
Roe module, which implements an approximate Riemann solver of Roe type
(Roe 1986) and a radiative transfer module based on long characteristics and
the Feautrier scheme. Multi-group opacities with five opacity bands were used.
The simulation started from a former relaxed simulation of lower spatial reso-
lution, which was interpolated to the present higher resolution and relaxed for
another 30 min physical time. Computations were carried out on two different
machines at the Swiss National Supercomputing Center (CSCS) in Lugano and
on a machine at the Geneva Observatory. The simulation was evolved for 1.5 h
physical time after the relaxation phase and reproduces, with excellent fidelity,
the well known granular pattern of the solar surface and magnetic bright points
in the intergranular space if magnetic fields are added. We call this simulation
run Roejg.

For the statistical analysis in Sect.4.4, we also used the simulation run
described in Freytag (2013), referred to as d3t57g44b0n025. It is computed
with the same hydrodynamic solver as Roejg but has an even finer spatial
resolution with 7km cell-size in all directions; we therefore call it Roe; for
short. This simulation covers a field-of-view of 5600 x 5600 km?, and was
computed with one single opacity band (grey opacity) and full boxes were
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Table 4.1. Box and cell sizes, number of opacity bands, nopbas, and run duration,
trun, for the two simulation runs Roejo (d3t57g45b0roefc) and Roer (d3t57g44b0).

Run Cell size [km3] Box size [Mm3] Height range [km] 7opbds  trun
Roeig 10 x 10 x 10 9.6 X 9.6 x 2.8 —1240 < z < 1560 5 2.6h
Roer TXTXT 5.6 X 5.6 x 2.8 —2540 < z < 260 1 1.5h

Notes. z =0 refers to the mean optical depth one.

Figure 4.1. Bolometric intensity map of the non-magnetic simulation of a field of
view of 9.6 x 9.6 Mm?. The nMBP in the close-up on the left has a diameter of 80 km
(resolved by approximately 8 x 8 computational cells). It has an intensity contrast
of 35% with respect to the immediate neighbourhood but only 5% with respect to
the global average intensity. A second nMBP is visible in the close-up on the lower
right. Vertical sections along the blue lines in the close-up on the left are shown in
Fig.4.2. This figure is accompanied by a movie.

stored every 10 min for a time span of 3 h. The two runs are summarized in
Table 4.1.

Figure 4.1 shows two nMBPs in one of the intensity maps taken at ¢ =
240s after the relaxation phase of run Roejg. Like magnetic bright points,
they are located in the intergranular space but are smaller in size. From
the accompanying movie one can see that nMBPs appear in the intergranular
space, often at vertices of intergranular lanes and they move with them or
along intergranular lanes in a similar fashion to magnetic bright points. They
often show a rotative proper motion.

Vertical sections of the density in planes along the lines of the blue cross
indicated in Fig.4.1 are shown in Fig.4.2. In this figure, the blue curve in-
dicates the optical depth unity for vertical lines of sight, which separates the
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Figure 4.2. Vertical sections through the nMBP shown in Fig. 4.1. The background
colour shows mass density, where the brightness encodes the sign of the velocity
perpendicular to the plane of projection: bright is plasma flowing out of the plane
and dark is plasma flowing into it. The red curve indicates the spine of the nMBP,
a “valley” in density, found as a sequence of local density minima in horizontal
planes. The blue curve indicates the Rosseland optical depth unity. The legend gives
intensity, density, and gas pressure contrast, firstly with respect to the neighbourhood
and secondly with respect to the global average (at 7 = 1 for the density and the
pressure).

convection zone from the photosphere. One notices that in the location of the
nMBP, there is a funnel of reduced density (colour scale) that extends from
the photosphere into the convection zone. The red curve indicates the local
minimum of the density in horizontal planes. Similar funnels of low density
are also found in connection with magnetic bright points. However, in the
context of small-scale magnetic flux-tube models (see, e.g. Spruit 1976; Zwaan
1978; Steiner et al. 1986; Fisher et al. 2000; Steiner 2007) the pressure gradient
caused by this low density region is balanced by the magnetic pressure of the
magnetic field concentration.

The underlying mechanism causing nMBPs is necessarily different because
no magnetic pressure is available. We can get information about this mecha-
nism by looking at the Eulerian momentum equation

%+(v-V)v+%VP+g:O, (4.1)
where v is the velocity field, ¢ the time, p the mass density, P the gas pressure,
and g the gravitational acceleration at the solar surface. Assuming a stationary
field we can neglect the first term. In a horizontal plane, gravity does not
play any role, and therefore the pressure gradient can only be balanced by a
particular shape of the velocity field, which appears in the advection term. In
Fig. 4.2 the sign of the velocity field is encoded by means of brighter colours
(velocity is going out of the plane of projection) and darker colours (velocity
is going into it). Combining the information provided by the two planes, we
conclude that plasma is swirling around the funnel of low density, the minimum
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Figure 4.3. Left: low-density regions in a sub-surface layer 200 km below (1) = 1
sustaining swirls. The colour map extends from blue, indicating low density, to red,
indicating high density, and the arrows represent the plasma velocity projected into
the horizontal plane. Longest arrows correspond to a velocity of 9.5kms™'. Such
swirling low density regions are much more abundant than nMBPs but most of them
do not extend into the photosphere and therefore do not produce nMBPs. Right:
corresponding bolometric intensity map. Of the several low density swirling regions
in the left panel only the one at (z,y) = (0,0) produces a nMBP.

of which is marked by the red curve.

This swirling explains the stability of nMBPs only qualitatively, but it also
provides insight into their formation. The plasma that rises to the photosphere
by convection cools off, becomes denser, and subsequently sinks back into the
convection zone in the intergranular lanes, which are smaller than the granules.
Any small initial angular momentum in the plasma will lead, when downflows
contract, to the generation of swirls. This effect has already been described
by Nordlund (1985) in a slightly different context. There, it was referred as
the “bath-tub” effect and appeared in the sub-surface layers at locations of
downdrafting plumes. In our simulations we also find many locations with low
densities in the sub-surface layers and corresponding swirls (see Fig.4.3), but
in general those swirls do not lead to bright points. In fact, bright points only
appear if the low density funnel extends spatially from the convection zone to a
significant height into the photosphere. Such an extended region of low density
leads automatically to a depression of the unit optical depth isosurface (blue
contour in Fig. 4.2), for which we will borrow the term “Wilson depression” in
analogy to the observed depression in sunspots.
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4.3 From a nMBP toy-model to a recognition
algorithm
We now come back to the Eulerian momentum equation, Eq. (4.1). For estab-

lishing a toy model, we impose the following conditions, which derive from the
properties of typical nMBPs, as the one shown in Figs. 4.1-4.3:

1. nMBPs are long-lived and stable so that the velocity field can be consid-
ered stationary;

2. they have cylindrical symmetry;
3. their velocity field has a non-vanishing azimuthal component;

4. they extend in the vertical direction and their shape does not depend on
depth.

Because of the second assumption, the Euler momentum equation should be
rewritten in cylindrical coordinates. The advection term is then given by

(v V)v = [(v V), — 1;3] P4 {(v Vg +

Vo

Tt (v V).,
.

where the directional derivative is
Vg
v-V =00, +—09 +v.0,.
r
The simplest field satisfying the conditions 14 is
v=ug(r)f.

Because of cylindrical symmetry, the pressure gradient is provided by (9, P) ¥+
(0,P) z. Inserting the velocity field into the Euler momentum equation and
projecting it into the horizontal plane leads to the trivial statement that the
pressure gradient is in fact provided by the centripetal force
2
19P _ vy (4.2)
p Or r
When comparing the typical nMBPs of Figs.4.1 and 4.2 to this model, it
immediately turns out that assumptions 2 and 4 are only qualitatively fulfilled.
The first assumption is less straight-forward; on the one hand, the dynamical
timescale for nMBPs is

L av _ v ’
1% ooveivrie
t
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and this timescale is in the order of seconds (6 & 2 s in a 1000 x 1000 km?
neighbourhood around the nMBP of Fig. 4.1, on the 7 =1 isosurface). On the
other hand, the simulations show nMBPs to have a typical lifespan in the order
of the granulation timescale. The difference between the two timescales can in
fact be expected when inspecting the simulations, because even though nMBPs
exist for up to five minutes, they are moving, often even rotating, and their
shape is continuously changing. The model could be refined by rewriting the
velocity field as v (z,t) = v (t) + v’ (z), where vq is the bulk velocity of the
nMBP and v’ is the stationary field that we have considered until now. We
then get the new Euler momentum equation

1oP vi  Ovo

por ot
where, in general, v should also be a non-constant coordinate-dependent field.
These considerations lead to the conclusion that no simple model can fully
reproduce nMBPs’ behaviour. Nevertheless, the present toy model gives im-
portant insight into nMBPs and provides three correlated characteristics of
them: (i) the presence of a pressure gradient, leading to a funnel of reduced
density by virtue of the equation of state and therefore to a depression of the
7 =1 isosurface; (ii) the presence of swirling motion and with it vorticity in the
velocity field; (iii) a local intensity contrast due to a temperature contrast at
the location of the depressed 7 =1 isosurface. Based on this information, we
have developed an algorithm by constructing an indicator (a growing function
of pressure gradient, vorticity, and intensity contrast), and subsequent search
of maxima of this indicator. More precisely, the steps are:

1. Compute the indicator at 7 = 1. We define h,—; as the depth at which
7=1,and w,, , = (V xv)_  _; the vertical component of the vorticity,
and T,—1 the temperature, all evaluated over the entire surface of 7 = 1.
Then, we define N as a normalization operator applied to the array of
values of each physical quantity, which linearly maps each value to a new
value in the [0, 1] interval. More precisely, given an array A;;,

Aij - minm,n (Amn)

N (A, =

*J maXm, n (Amn) - minm,n (Amn) ’

and the indicator function is then constructed empirically as

T = N (Temd)? + N (—hrmt)? + N (w2 ])P.

2. Find the location of maxima of the indicator using a maximum filter
(with sliding window of size 3 x 3).

3. For each local maximum of the indicator, search in the intensity map for
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the closest intensity maximum. This defines the location of a candidate
nMBP.

. Select granules (which we define as regions where the vertical velocity is

positive at 7 = 1) and intergranular lanes (complementary region).

. Select the intergranular, local neighbourhood in the intensity map for

every candidate nMBP within an area of 100 x 100 computational cells
centred on the nMBP. The boundary between the nMBP and the lo-
cal neighbourhood is consistently defined to separate the region of in-
tensity I > %(Iccntm + Iout), the nMBP, from the region of intensity
1< % (Lcentre + ITout ), the neighbourhood. I.entre is the maximal intensity
in the nMBP region and I, is the average intensity in the neighbour-
hood.

. Select the spine of the nMBP in three-dimensional space. To keep the

computational demand low, we first extract from the full computational
domain a smaller box of 100 x 100 x 100 computational cells around
its centre and the (r) = 1 surface. Starting at the depth of 7 = 1 in
the centre of the nMBP and from there, layer by layer upwards and
downwards, we look for local minima in the density. Exactly at 7 = 1 we
select the local density minimum closest to the approximate location of
the nMBP as determined in step 3. For the adjacent layers, the selected
local minimum is the one that is closest to that of the previous layer.

. Apply step 5 to scalar physical quantities other than the bolometric in-

tensity, on either the z =0 plane or the 7=1 isosurface. Evaluate the
local and global contrast of the corresponding scalar quantity (density,
gas pressure, and temperature).

This algorithm managed very well to recognize all the nMBPs that we had
previously selected by eye in an arbitrary snapshot. We then applied this algo-

rithm to the entire time sequence of the simulation, producing similar plots as
shown in Figs. 4.2 and 4.3. We have examined all the selected nMBPs visually
and discarded those that were not properly selected (i.e. “twin” nMBPs that
were very close to each other).

4.4 Physical properties of nMBPs

We investigate the following physical properties of nMBPs:

Equivalent diameter D: computed from the area A of a nMBP as deter-

mined in step 5 of the algorithm given in the previous section. Thus,
D =2/A/x.
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Wilson-depression Wy: difference in height between the deepest point on
the 7 =1 isosurface of a nMBP and the average height of this surface in
the neighbourhood of the nMBP as determined in step 5 of the algorithm.

Intensity contrast Cr: computed locally and globally from C; =
(I, — (I))/{I), where I, is the average bolometric intensity of the nMBP
and (I) is either the bolometric intensity averaged over the entire in-
tensity map (global) or in the neighbourhood (local) of the nMBP as
determined in step 5 of the algorithm.

Mass-density contrast C,: computed locally and globally on the horizon-
tal plane corresponding to (7) = 1 (i.e., z = 0) and on the 7=1
isosurface, respectively. As determined in step 7 of the algorithm,
Cy, = (po—(p))/{p), where py is the minimal mass density inside the
nMBP at the given surface and (p) is either the density averaged over
the entire plane or in the neighbourhood at the given surface.

Pressure contrast Cp: defined in the same way as the mass density con-
trast, with py taken at the same location as pg.

Temperature contrast Cp: defined in the same way as the mass density and
the pressure contrast, with Ty taken at the same location as py.

Mazimum vertical velocity vy**: defined in the horizontal plane z = 0

(corresponding to (7) = 1), inside the nMBP.

max ,

Maximum horizontal velocity v;'**: also defined in the horizontal plane
z =0 (corresponding to (7) = 1), inside the nMBP.

Vorticity w, .: vertical component of the vorticity, defined in the horizontal
plane z = 0 at the same location as py.

Lifetime: derived from a few nMBPs visually tracked on bolometric intensity
maps of Roeqg.

The nMBPs that enter the following statistics have been extracted from
the two distinctly different magnetic field-free simulation runs Roe1g and Roer
(see Table4.1). The mean values and corresponding standard deviations of the
physical quantities listed above (with the exception of the lifetime) are given
in Table4.2 for both simulation runs and (depending on the quantity) with
respect to the plane at z = 0 and/or the 7 =1 surface and with respect to
the local and global neighbourhood. For the lifetime, no automatic tracking
of nMBPs was done because the cadence of 240 s of the full box data is not
high enough. On the other hand, bolometric intensity maps are available at a
high cadence of 10 s, but the tracking of nMBPs from the intensity maps alone
would require involved pattern recognition techniques and criterions for the
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appearance and disappearance of nMBPs. Therefore we relied on a derivation
from visually tracked nMBPs on the bolometric intensity maps. Qualitatively,
we found bright points existing for a duration of 30 s up to the granular time-
scale of a few min.

For the first two entries in Table4.2, the equivalent diameter D and the
Wilson depression Wy, the corresponding histograms are given in Figs. 4.4 and
4.5, respectively. From Fig. 4.4 one readily sees that the diameters of nMBPs
are distinctly smaller than those of magnetic bright points, which range from
100km to 300 km according to Wiehr et al. (2004). The median value for the
diameter is 78 km and 63km for Roejg and Roer7, respectively, while Wiehr
et al. (2004) obtain 160 km for the most frequent diameter of magnetic bright
points. In Fig. 4.4, one also observes that the distribution of diameters of Roer
is rather sharply limited at 30 km and 95 km, which could suggest that nMBPs
are about to be resolved in this simulation. Lowering the resolution can be
expected to spread this distribution, which would then explain the apparition
of wings in the size distribution of Roejg. But more likely, the low end of the
distribution is given by the limited spatial resolution of the simulations. On
the other hand, we cannot offer a plausible explanation for the extended wide
wing to larger diameters in the histogram of Roe.

Besides the physical quantities that appear on Table 4.2, another interest-
ing quantity is the number of nMBPs per unit area, nig and n7y. We find
nip = 0.0712Mm ™2 and n; = 0.189 Mm 2, which indicates that at higher
spatial resolution, we observe more than twice as many bright points than at
lower resolution. The histograms of Figs.4.4 and 4.5 are normalized to these
respective number densities. The histogram of the equivalent diameter shown
in Fig. 4.4 suggests that this surplus is due to a larger number of small bright
points detected at higher spatial resolution. However, there still remains a
difference of a factor of two between number densities in the two simulations
when restricting statistical analyses to nMBPs larger than 60 km in diameter;
a value that is significantly greater than the spatial resolution of both simu-
lations. This suggests that the high resolution simulation not only harbours
more small and tiny nMBPs but also greatly favours the formation of large
nMBPs.

The distribution of the Wilson depression, given in Fig.4.5, also shows an
interesting trend: in the higher resolution model Roez , it is globally shifted
towards smaller depths compared to the distribution from Roeig. An intu-
itive explanation for this fact would be a correlation between size and Wilson
depression, which, however, does not exist. There are a number of numeri-
cal parameters that differ between simulations Roe;g and Roe; but numerous
test runs confirmed that none of these seem to substantially influence the Wil-
son depression. We therefore found no convincing explanation why simulation
Roe; shows nMBPs to have a mean Wilson depression which is approximately
20km less than that of simulation Roejg. In any case, the Wilson depres-
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Table 4.2. Physical quantities of nMBPs of two different simulations, Roe1o with
a grid size of 10km in every spatial direction and Roer with a grid size of 7km in
every direction. p is the mean value, and o the standard deviation. See text for
explanation of the physical quantities.

Simulation run Roeqg Roer
Mean and standard deviation | p o I o
D [km] 80 21 62 15
Wq [km] 103 32 83 34
o Local 21% | 10% | 19% | 10%
T
Global 2% | 9% | -1% | 12%
Local -59% | 10% | -54% | 12%
At z=0
o Global -58% | 10% | -57% | 11%
! Local 43% | 14% | -39% | 19%
AtT=1
Global -41% | 15% | -40% | 17%
Local -59% | 10% | -54% | 12%
At z=0
o Global -61% | 10% | -60% | 12%
P
Local -38% | 156% | -35% | 19%
Atrt=1
Global -38% | 16% | -37% | 18%
Local 0.7% | 2% | 2% | 4%
At z=0
o Global 9% | 4% | -8% | 8%
T
Local 8% | 3% | 6% | 3%
AtT=1
Global 5% | 4% | 5% | 4%
X [km s~ 1] —6.9 1| 29 | -5.5 | 4.5
v [kms™!] 95 | 1.3 | 92 | 1.1
VR Tege [ = (14 Cp) (1 + C)] 4.8 0.40 | 4.6 |0.57
[ [s7Y 0.42 | 0.12| 0.35 | 0.14
Wy 2 [s71] 0.02 | 0.44 | -0.02 | 0.38
V1+Cr—1(att=1, local) | 5% | 2% | 4% | 2%

Notes. See text for explanation of the physical quantities.
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sion of nMBPs of respectively 103 km and 83 km for Roejg and Roe; is again
clearly smaller than corresponding values for magnetic bright points of, typi-
cally, 150 km (Salhab et al., in prep.).

In Table4.2, one can see that the average values of contrasts of intensity,
mass density, pressure, and temperature do not differ substantially between the
two simulations. At first, this seems to be at odds with the fact that the Wilson
depression is larger in Roejg compared to Roe7. Thinking of a plane-parallel,
exponentially-stratified, hydrostatic atmosphere one would expect the density
contrast at 7 = 1 to also be larger in Roe;y compared to Roe;. However, this
is only partially the case. The reason is that close to 7 = 1, the density runs
rather constant with height due to the onset of radiative loss and a correspond-
ing sharp drop in temperature (this is the quasi density reversal that causes
the Rayleigh-Taylor instability that drives the convection). Furthermore, the
funnel-shaped structure of the nMBPs accentuates this behavior; smaller radii
in deeper layers go together with faster swirling motion that can sustain larger
gradients in mass density and pressure, which counteracts stratification of the
atmosphere inside the nMBP. The absence of exponential stratification then
keeps the density contrast insensitive to the Wilson depression.

The intensity contrast (third entry in Table4.2) is a quantity that can
be directly observed. As is the case for the contrast of temperature at the
7 = 1 isosurface, its value drastically depends on whether it is evaluated locally
(with respect to the local neighbourhood) or globally (with respect to the
mean intensity /temperature). This is due to the fact that nMBPs are formed
within the dark intergranular space and are, compared to granules, not so
bright. Some of the nMBPs are even darker than the average intensity over
the whole bolometric map, but they are still conspicuous objects within the
dark intergranular lanes (see also Title & Berger 1996, for the same effect in the
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Figure 4.6. Vertical section through a typical nMBP showing isotherms (labeled
coloured curves) and the mass density plotted in the background (light is low density
and dark blue is high density). The 7=1 isosurface is the dashed red curve. This
surface intersects the isotherms, reaching to high temperatures where it dips deep
down at the location of the nMBP at x ~ 8100 km.

context of magnetic bright points). The contrast of the bolometric intensity
of nMBPs in the order of 20% (local) and 0% (global) is again distinctively
smaller than the measured global continuum contrast of magnetic bright points
at 588 nm of 10% to 15% by Wiehr et al. (2004) and at 525 nm of 37% (local)
and 11% (global) by Riethmiiller et al. (2010). We ascribe this difference to the
difference in the formation of magnetic bright points and nMBPs. Magnetic
flux tubes are prone to the convective collapse instability (Spruit 1979), which
leads to a high degree of evacuation and with it to a large Wilson depression
and intensity contrast. No such instability and evacuation takes place in the
case of nMBPs. Like Wiehr et al. (2004) for magnetic bright points, we do
not find a correlation between local intensity contrast and effective diameter
of nMBPs.

The temperature contrast on the isosurface of unit optical depth is positive
as can be seen from Table4.2. This can be seen in Fig. 4.6, which shows that
isotherms intersect the 7=1 isosurface, similarly to magnetic bright points
(see, e.g. Fig.2 of Steiner 2007). It is interesting to note that isotherms gen-
erally also have a depression at the location of the nMBP funnel, although
smaller than the depression of optical depth unity. This can be expected be-
cause of the swirling downdraft of cool photospheric material at locations of
nMBPs. The temperature contrast on a horizontal plane of constant geometri-
cal depth can therefore be negative, although it is always positive on the 7 =1
isosurface, which is also the reason for the brightness of nMBPs. Pressure
and density contrasts have very similar values, which is expected because both
quantities are related by the equation of state, while the temperature contrast
is relatively low. The nMBPs form in swirling downdrafts in the intergranular
space. The maximal vertical velocity ranging from 5.5 to 7kms~! approaches
sonic speed.
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The vertical vortex event described by Moll et al. (2011) has a diameter
of 80km, a Wilson depression of 110km, an intensity contrast of 0.24, and
global density and pressure contrasts at z = 0 of —0.64. This is one example
observed in a simulation with a grid size of 4 x 4 x 4km?® as obtained with
the MURaM code (Vogler et al. 2005). These values are in close agreement
with the values and standard deviations given in Table 4.2 suggesting that this
vortex event is of the same class of objects described herein. Correspondingly,
we can consider nMBPs to be manifestations of vertically extending vortex
tubes, which themselves are the manifestation of the turbulent nature of the
near surface convection.

Regarding the horizontal, azimuthal velocities in nMBPs, the toy model in
Sect. 4.3 provides an order of magnitude estimate. For this, we consider the
relations

Pext - Pint

—~ 2 Pint — Pext o C T‘int - Text o C
~ 7]0 s —_— = P 7’1—’ = T,
Pext Pext ext
Pext
~ Rs Text ) Text ~ Teﬁ ’
Pext

where P, p, C,, T, Cr, Teg and vg stand for gas pressure, mass density,
density contrast, temperature, temperature contrast, effective temperature,
and tangential velocity respectively, and R is the specific gas constant for
which we choose the mean molecular weight 1 = 1.224. The indices “int” and
“ext” refer to the centre of the nMBP funnel and to its close surrounding,
respectively, always in the horizontal plane of (7) = 1. The first equation
is derived from Eq. (4.2). One can then express the tangential velocity as a
function of density contrast, temperature contrast, and effective temperature

as
vp = \/RSTeff 1—(1+C)(1+Cr)]~ \/% =4.4kms™'.

Here, we used C,, = —0.5 and Cr ~ 0 from Table 4.2, referring to the horizontal
plane (7) = 1. This value is approximately half the actual maximal horizontal
velocity of nMBPs in the simulations, which is, close to nMBP centres, around
9-9.5kms~! according to Table4.2.

As expected, there are as many bright points rotating clockwise as there
are rotating anti-clockwise. We verified that the average value of the vertical
component of the vorticity (w, .) is indeed close to zero.

Using both the Eddington-Barbier relation and the Stefan-Boltzmann law,
the temperature contrast at 7 = 1 and the intensity contrast are related as

1+Cr~(1+Cp)t.
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Figure 4.7. Single snapshot of the Roeig simulation showing the intensity in the
continuum at 5000 A (left) and the corresponding degraded image with a GREGOR-
like point-spread function (right). A typical nMBP of 80 km diameter is magnified.

It is verified in the simulations that

+Cr

and the Pearson cross-correlation coefficient for these two contrasts is given by
p = 0.49 (Roejo simulation) and p = 0.35 (Roe; simulation).

4.5 nMBPs in intensity maps of virtual obser-
vations

The kind of nMBPs described here have not been observed with currently oper-
ating solar telescopes, presumably because of their small size and relatively low
intensity contrast. Nonmagnetic photospheric bright points have been reported
to exist by Berger & Title (2001) and by Langhans et al. (2002). However,
those bright points exist on the edges of certain bright, rapidly expanding gran-
ules while nMBPs are located within intergranular lanes. The objects reported
by Berger & Title (2001) and by Langhans et al. (2002) are probably identi-
cal with the bright grains that often appear with the development of granular
lanes (Yurchyshyn et al. 2011).

The present bright points are non-magnetic by construction, and it is there-
fore unclear to what extent such bright points really exist in the solar photo-
sphere that is virtually ubiquitously occupied by magnetic fields (Lites et al.
2008). In reality, the pressure gradient that is at the origin of nMBPs is proba-
bly always provided by a combination of the centripetal force and the magnetic
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Figure 4.8. Intensity contrast in the continuum at 5000 A across the nMBP of
Fig. 4.7 (section along y-axis), using degraded images obtained with a variety of
PSF's that correspond to the solar telescopes listed in the text. The legend orders
the telescopes according to the simulated peak contrast, from highest to lowest. The
curves with degradations corresponding to DKIST and EST are close to congruent.
The coordinate = 0 corresponds to the centre of the nMBP, which is taken to be
the point of lowest density in the 7=1 isosurface. Note that the peak intensity is
displaced with respect to this nMBP centre because the nMBP funnel is inclined
with respect to the vertical direction, as is often the case, such as that visible in the
right-hand panel of Fig. 4.2.

pressure gradient, however, in regions of low magnetic flux, it may happen that
the pressure gradient results mainly from the swirling motion.

In order to gain insight into the requirements for the observational detection
of nMBPs, we have degraded our synthetic intensity maps to simulate observa-
tions with existing solar telescopes, such as the 50 cm Solar Optical Telescope
(SOT) aboard the Hinode space observatory (Tsuneta et al. 2008), the 1 m tele-
scope aboard the Sunrise balloon-borne solar observatory (Barthol et al. 2011),
and the 1.5 m ground-based GREGOR solar telescope (Schmidt et al. 2012), as
well as with future solar telescopes currently under construction, such as the
4m Daniel K. Inouye Solar Telescope (DKIST; Keil et al. 2010), or planned
solar telescopes such as the space-borne 1.5 m Solar UV-Visible-IR Telescope
(SUVIT; Suematsu et al. 2014), the 2m Indian National Large Solar Telescope
(NLST; Hasan et al. 2010), and the 4 m European Solar Telescope (EST; Col-
lados et al. 2010). The point spread functions (PSFs) that we have constructed
are convolutions of the diffraction-limited PSFs, taking the entrance pupil (in-
cluding secondary mirror and spider) of the various instruments into account,
with Lorentz functions. The Lorentz functions are intended to account for non-
ideal contributions due to stray-light inside the instrument. Their v parameter
has been chosen to inversely scale with the telescope aperture, with the ref-
erence value for the 50 cm SOT aperture given by the greatest value deduced
by Wedemeyer-Bohm (2008) from observations of the Mercury transit from
2006 and the solar eclipse from 2007. Wedemeyer-Bohm (2008) has carried
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out convolutions with both Voigt and Lorentz functions in different observa-
tional situations. Unfortunately, the optimal parameters are quite sensitive to
observational scenarios. We have thus decided to retain as few parameters as
possible (choosing the Lorentz function over the Voigt function) and we also
chose v = 9, when different situations suggest a range of values from 7+ 1 up
to 9+ 1. Our PSFs are therefore more realistic than simple diffraction-limited
PSF's but are nonetheless not fully accurate.

According to Fig. 4.7, nMBPs could be seen using the GREGOR solar tele-
scope. However, the spatial resolution capability of GREGOR of 0708 at
500 nm corresponds to ~ 60km on the Sun, so that an 80 km nMBP would
appear as a brightness enhancement in one single resolution element only.
Furthermore, to be sure that the nMBP harbours no strong magnetic field,
a simultaneous polarimetric measurement needs to be carried out, for which
the resolution is a mere 0”3.

From Fig.4.8 one can see that the peak intensity observed in telescopes
with apertures up to 2 m is barely higher than the intensity in the immediate
vicinity, and the nMBP appears larger than in the raw simulations, making it
very difficult to distinguish it from other bright structures.

From this, we conclude that telescopes with large apertures, such as DKIST
or EST, are needed to approach the contrast of nMBPs found in the simulations
and in order to achieve sufficiently high spatial resolution in polarimetry for
an unambiguous detection of nMBPs.

4.6 Conclusion

This paper investigates bright points that appear within intergranular lanes of
high-resolution, magnetic field-free, numerical simulations of the solar photo-
sphere. The most striking properties of these features are that on the 7=1
isosurface, their temperature is, on average, 5% higher than the mean tem-
perature (which makes them appear bright), their mass density is lower in a
funnel extending from the upper convection zone to the lower photosphere, and
they comprise transonic swirling motions. At the location of the bright point,
the 7 =1 isosurface lies, on average, 80 — 100 km deeper than the horizontal
plane z = 0 (corresponding to the mean optical depth (7) = 1). At this level
(z = 0), their density and pressure are reduced by approximately 60% of the
corresponding global average values at the same level. On average, their size
(equivalent diameter) is approximately 60 — 80km, corresponding to 0708 —
0”11, and their bolometric intensity contrast is approximately 20% with re-
spect to their immediate intergranular surroundings. The number of nMBPs
per unit area is 0.07-0.19 Mm~2 and their lifespan ranges from approximately
30s up to the granular lifetime of several minutes.

Based on some of these properties an algorithm for the automatic detection
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of nMBPs has been developed that enables us to derive statistics of their
physical properties. Comparing the statistics of two simulations with differing
spatial resolutions of 10km and 7km, we find nMBP equivalent diameters
down to the resolution limit of the simulations. At the upper end of the
size distribution, we find twice as many bright points with the higher spatial
resolution as we do with the lower spatial resolution. Also, we find that in
subsurface layers, swirling low density funnels are much more abundant than
nMBPs. These low density funnels appear only as bright points under the
condition that they extend into the photosphere. The characteristics of the
nMBPs found here are in close agreement with corresponding properties of
vertical vortices found by Moll et al. (2011). Thus, nMBPs are an observable
manifestation of vertically directed vortex tubes, similar to bright granular
lanes, which are a manifestation of horizontally directed vortex tubes (Steiner
et al. 2010).

Both nMBPs and granular lanes together offer a glimpse of the elements of
turbulence at work in a stratified medium, which is of basic physical interest.
The nMBPs are so minuscule that they seem not to have any impact on the
overall appearance of granules and the near surface convection. However, as
soon as magnetic flux concentrations are attracted by and caught into the
swirling down draft of a nMBP, we expect them to have a major impact on the
tenuous atmosphere higher up through magnetic coupling (Shelyag et al. 2011;
Steiner & Rezaei 2012). Chromospheric swirls (Wedemeyer-Béhm & Rouppe
van der Voort 2009) and magnetic tornadoes (Wedemeyer-Bohm et al. 2012;
Wedemeyer & Steiner 2014) would be the consequences.

Such nMBPs are barely detectable using currently operating solar tele-
scopes because of their small size and relatively low contrast, and due to the
limited spatial resolution of the magnetograms achievable with these telescopes
(currently ~0/3). High-resolution magnetograms are needed to prove the ab-
sence of strong magnetic fields in nMBPs. If nMBPs exist, they should be
observable with the new generation of 4-m-class telescopes in regions of very
weak magnetic fields. The Visible Tunable Filter (VTF; Schmidt et al. 2014) of
DKIST is designed to produce diffraction-limited magnetograms, which should
therefore be adequate for the unambiguous detection of nMBPs.
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Abstract

Context. The spectrum of the hydrogen atom was explained by Bohr more
than one century ago. We revisit here some of the aspects of the underlying
quantum structure, with a modern formalism, focusing on the limit of the
Balmer series.

Aims. We investigate the behaviour of the absorption coefficient of the
isolated hydrogen atom in the neighbourhood of the Balmer limit.

Methods. We analytically computed the total cross-section arising from
bound-bound and bound-free transitions in the isolated hydrogen atom at
the Balmer limit, and established a simplified semi-analytical model for the
surroundings of that limit. We worked within the framework of the formalism
of Landi Degl'Innocenti & Landolfi (2004, Astrophys. Space Sci. Lib., 307),
which permits an almost straight-forward generalization of our results to other
atoms and molecules, and which is perfectly suitable for including polarization
phenomena in the problem.

Results. We analytically show that there is no discontinuity at the Balmer
limit, even though the concept of a “Balmer jump” is still meaningful.
Furthermore, we give a possible definition of the location of the Balmer jump,
and we check that this location is dependent on the broadening mechanisms.
At the Balmer limit, we compute the cross-section in a fully analytical way.
Conclusions. The Balmer jump is produced by a rapid drop of the total
Balmer cross-section, yet this variation is smooth and continuous when both
bound-bound and bound-free processes are taken into account, and its shape
and location is dependent on the broadening mechanisms.

Keywords. atomic processes — opacity
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5.1 Introduction

This paper contains the first step of a work whose final goal is the numerical
modelling of the Balmer jump in both the intensity and the linearly polarized
spectrum of the solar radiation. Here, we investigate the behaviour of the ab-
sorption coefficient around the limit of the Balmer series, under the assumption
of an isolated hydrogen atom (i.e., an atom that does not interact with any
other particle) and in the absence of magnetic fields.

A numerical calculation of the absorption coefficient of the hydrogen atom
near the Balmer limit, including both bound-bound and bound-free processes,
was carried out by Stenflo (2005). There, the oscillator strengths (which are
directly related to the Einstein B coefficients) are computed from the Gaunt
factors, which have historically been tabulated, and for which approximate
formulas have been derived for quick computations. Thanks to the increased
computational power available today, we have opted for a different approach
in this work: we start from the analytical expression of the wavefunctions of
electrons and compute oscillator strengths by evaluating the radial integrals
numerically. With this approach, we are no longer bound to existing tables or
approximate formulas.

It must be observed that the radial integrals for the hydrogen atom have
also been computed analytically, and the result expressed in a closed form
(Gordon 1929). A generalized expression for hydrogenic atoms was later pro-
posed by Menzel & Pekeris (1935), although without any proof. Almost thirty
years later, Menzel (1964) provided the proof, in a simpler and more elegant
way than in Gordon (1929). A closed formula for the evaluation of the os-
cillator strengths has therefore long been available. It requires the evaluation
of hypergeometric functions, however, which can be troublesome near the se-
ries limits. As we show below, difficulties near the series limits are also met
with the numerical integration methods that are developed in this work, but
these methods have the advantage of being directly applicable to more complex
electron wavefunctions.

The most exhaustive study of the hydrogen atom we found was performed
in Bethe & Salpeter (1957), but we prefer to refer, whenever possible, to Landi
Degl'Innocenti & Landolfi (2004) and more recent textbooks in order to keep
a standard and more recent notation and formalism.

The structure of this contribution is as follows. In Sect. 5.2 we provide the
explicit expression of the bound-bound and bound-free absorption coefficients
in terms of the density of quantum states and the Einstein B coefficients.
Sect. 5.3 is devoted to the computation of the density of quantum states,
whereas Sect. 5.4 is dedicated to the formal computation of the Einstein coeffi-
cients from the analytic expression of the wavefunctions of the free and bound
electrons. In Sect. 5.5 we match the absorption bound-bound and bound-free
coeflicients below and above the Balmer limit, respectively, and we analytically
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show that there is no discontinuity. In addition, we analytically compute the
cross-section at that precise point. Sect. 5.6 is a preliminary numerical calcu-
lation of the total cross-section (bound-bound and bound-free processes from
the n = 2 level) around the Balmer limit, taking only natural and thermal
broadening into account.

5.2 Absorption coefficient

We consider a multi-level atom, and we work within the framework of the
formalism of Landi Degl’'Innocenti & Landolfi (2004). Each energy level is
specified by the quantum numbers («.J), with J the total angular momentum,
and « a set of inner quantum numbers. In the absence of magnetic fields and
neglecting stimulated emission, the absorption coefficient due to bound-bound
transitions is given by Eq. (7.16a) of Landi Degl’'Innocenti & Landolfi (2004):

[1: (v, Q)] NZ Z 2Je+ 1) Blayde — aJy)
apde oy Jy
1 1 K
Vet Ju+ K
xSV (-1) {J@ h Ju}
KQ
X TQK(ia Q) Pg(aeJe) Gob(Vur — V), (5.1)

where v is the frequency of the radiation, €2 is the propagation direction, and
where the index ¢ can take values 0, 1, 2, and 3, standing for Stokes I, @, U,
and V, respectively. The quantity h is the Planck constant, A/ is the number
density of atoms, B(ayJy — ayJ,,) is the Einstein coefficient for absorption
from a lower level (cv.J;) to an upper level (a,Jy,), T4 (i,€2) is the polarization
tensor (see Table 5.6 in Landi Degl’'Innocenti & Landolfi 2004), and pf§ (aeJ)
are the multipolar components of the density matrix (or spherical statistical
tensors) of the lower level. In the atomic reference frame, the absorption profile
dbb(vue — V) is a Lorentzian, with v, the transition frequency defined by

E,—-E;

R (5.2)

Ve =
with E, and E, the energies of levels (ayJ,) and (agJy), respectively. The
threshold frequency for photoionization from a given lower level is

E

o - F
ven(oude) = S £

5.3
h ? ( )
with E,, s, the energy of the leve (a4 J4+) in which the ion is left after pho-
toionization. Indicating with €, the (negative) energy of the upper level (ay,J,,)

in a energy scale in which E,_ 7, = 0, the transition frequency v, can be writ-
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ten as

€y
vue = ven(aede) + 5 (5.4)

If the lower level is not polarized, then (see Egs. (10.6) and (10.7) in Landi
Degl'Innocenti & Landolfi 2004 for more details)

1 N,
pg(ae«fz) = 0Ko 5@0\/ﬁ XZ/JZ s

(5.5)

with N,,s, the number density of atoms in the lower level. Substituting
Eq. (5.5) into Eq. (5.1), observing that 72(i,€}) = d,0, and using the ana-
lytical expression of the 6-j symbols when one of the arguments is zero (see
Eq. (2.36a) in Landi Degl’Innocenti & Landolfi 2004), we obtain the familiar
expression

h
[ ()], = dio é > N

agdy

X Z B(Oégjg — OéuJu) beb (z/th(ang) + % — I/) . (56)

vy Jy

As expected, in the absence of magnetic fields, and assuming that the lower
level is unpolarized, only the absorption coefficient for the intensity (i = 0) is
non-zero, and it does not depend on the propagation direction of the radiation.

The absorption coefficient for bound-free transitions (in the absence of
atomic polarization in the lower level) can be easily obtained in a similar way
as Eq. (5.6):

h
(i (V)] = dio é Z Nayse

aypdy
oo
></ deNi(e) Y Blawdy — agJy,elj, J')
0 13J’
g
X @bt (Vth(aeJe) +o - u) , (5.7)

where (ayJ¢) is the bound level of the atom from which photoionization takes
place, (ayJy) is the level at which the ion is left, ¢ is the (positive) energy
of the released electron, [ and j are its orbital and total angular momentum,
respectively, and J’ is the total angular momentum of the final state (f’ =
J4 + ). The quantity Ni(e) is the number density of quantum states of the
free electron with energy €. The profile ¢t can be defined similarly as the line

profile ¢y, but its exact shape is irrelevant in the following derivations.

We now particularize our formalism to the case of the hydrogen atom, which
we describe neglecting the spin and relativistic corrections. In this case, the
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atomic states are specified by the quantum numbers (nl), with n the principal
quantum number (n > 1), and [ the orbital angular momentum (or azimuthal
quantum number, 0 < [ < n — 1). The energies of the levels depend on the
principal quantum number n alone. The degeneracy of the levels is g(n) = n2.
Indicating with (nl) the initial bound state, with (n,l,) a given upper bound

state, and with (ely) an arbitrary free state with positive energy e, we have

1)y = 22 S N
nl

X Z B(nl = nyly,) b (uth(n) + % - u) , (5.8)
Nyl
and
hv
()]s = in Zan
nl

y Z/daM(s) Blnl = cly) b (va(n) + 5 —v),  (59)

where we have dropped the index i, since only the absorption coefficient for
the intensity is non-zero.

Near the photoionization limit, the bound states asymptotically approach
the limit forming a quasi-continuum, so that the sum over the upper levels
(ny,) in Eq. (5.8) can be formally substituted with an integral

;B(nl — ’I’Lulu) ¢bb (Vth =+ % — l/)

— /dENb(E) B(nl — Elu) ®bb (Vth + % — l/) , (5.10)

where N () is the number density of bound states with energy e, and B(nl —
ely) is the Einstein coefficient, defined over continuous values of the energy,
for the bound-bound transition between the initial level (nl) and the final level
with orbital angular momentum [, and energy ¢. This Einstein coefficient
could be formally obtained by interpolating the Einstein coefficient for the
discrete spectrum of upper bound states, but a meaningful continuation of it
will later appear in a natural way.

We now focus on the spectral region close to the photoionization threshold
from a given lower level n. Close to the photoionization limit, in the frequency
interval where the absorption profiles ¢, and ¢ps significantly contribute to
the integral of Eq. (5.10), the integrand is practically constant. Anticipat-
ing the numerical calculations of Sect. 5.6, we note here that the variation
of Ny(¢) B(nl — ¢l,) across the wavelength range 3600-3700 A is linear and



5.3. Density of quantum states 85

as small as 10.5%. This variation is negligible as compared to the width of
the profile, also in a realistic plasma, where due to electron-collisional broad-
ening and other broadening mechanisms (Doppler broadening), the profile is
expected to be significantly broader than that of the isolated hydrogen atom.
The quantity Ny, (¢) B(nl — €l,,) can then be evaluated at the wavelength cor-
responding to the maximum of the absorption profile ¢y, and factorized out of
the integral. We then obtain the following expressions for [n(v)]pp and [1n(v)]us:

@), = % ZN”Z My(g0) B(nl — goly), (5.11)
Il

with g = h(v — 1) < 0, and

21/
)b = LS Nt Nieo) B = ), (5.12)
Il

with g = h(v — vg,) > 0.

Comparing Egs. (5.11) and (5.12), we see that close to the photoionization
limit, the absorption coefficients for bound-bound and bound-free transitions
have the same formal expression. The next step is to derive and compare the
explicit forms of the density of bound and free states (N, (¢) and N(g)), and
of the Einstein coefficients for bound-bound and bound-free transitions.

5.3 Density of quantum states

On the one hand, the exact form of the density of bound states N, depends
on the way the discrete spectrum of upper states is treated in a continuous
manner. On the other hand, as we show below, the density of free states
Nt is related to the normalization of the wavefunction of the free electron.
To calculate these quantities, as well as the Einstein coefficients, we work in
Rydberg units. Then, the energy of the nth bound level of the hydrogen atom

is given by
Ep = —%, (5.13)
leading to
de = % dn, (5.14)
and therefore q 5
No(e) = (TZ - % (5.15)

The determination of the density of quantum states in the free “levels”
is more involved, in the sense that the present formalism was developed for
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transitions to discrete levels, and we are treating a continuous spectrum as a
collection of discrete levels in order to stick to the same mathematical tools.
Schematically, if we had split the energy range into smaller intervals and picked
an approximative wavefunction of the free electron in each interval in order to
compute the corresponding Einstein coefficient, the density of quantum states
would depend on our splitting. In the limit where those intervals are infinitely
small, the density of quantum states will depend on the way the wavefunction
of the free electron is normalized. We later choose a normalization for which
the density of quantum states is simply

Ni(e) = 1. (5.16)

5.4 Einstein coefficients

The computation of the Einstein B coefficients is split into two steps. First we
express these coefficients as an integral over the wavefunctions of the bound
and free electrons. Then we rewrite the wavefunctions of the bound and free
electrons in a way that facilitates an analytical integration.

5.4.1 Reduced matrix elements

The Einstein coefficient for absorption from a lower state specified by the set
of quantum numbers (8;) to an upper state specified by the set (3,,) is given by
(e.g. combine Egs. (7.6) and (7.7) in Landi Degl’Innocenti & Landolfi 2004)

3274

B(8 — B.) = 5 | (B

i 5u>]2, (5.17)

where d = —epr is the dipole operator, and < H JH > is the corresponding
reduced matrix element. In our case, the bottom line of the problem restricts

to the evaluation of the reduced matrix elements <nl H d H nulu> (for bound-

bound transitions), and <nl H d H el f> (for bound-free transitions). As shown
in detail in Appendix 5.A, the reduced matrix element for bound-bound tran-
sitions is given by

I, 1
X ( 00 0 ) Z(nl,nyly), (5.18)
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where 7 is the radial integral defined by

Z(nl,nyly) / Py(r)r Py, (r)dr, (5.19)

with P,; the reduced radial wavefunction of the bound electron. Similarly, for
the bound-free transitions, we have

(o | ]ty =eatce o
X < (l) lg é ) I(nl,ely), (5.20)

with ~
I(nl,ely) = / Pru(r) r X1, (r)dr, (5.21)
0

where X, (r) is the reduced radial wavefunction of the free electron.

5.4.2 Radial wavefunctions

The normalized radial wavefunctions are found by solving the radial
Schrodinger equation for the potential V(§) = —%,

<d2 I(1+1)

dg? ¢

which has been nondimensionalized (or rewritten in Rydberg units) using the
substitutions 7 = ag & and € = e3¢/(2a0) with ag = h%/(47*m.e?) the Bohr
radius. Taking into account the normalization

/50 o)|2de = / P)dr =1, (5.23)

we obtain the transformation law of the wavefunction y under change of vari-
ables,

-V + 5) y =0, (5.22)

y(&) = Vaoy(r). (5.24)

Hence the radial integrals (5.19) and (5.21) are related to the radial integral
in Rydberg units

Tl naly) = /0 Po(€)€ Py, (€) de,
(5.25)

T(nl,ely) = /0 Pot(€) € v, (€) dé,
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by the transformations

I(nl,nyly) = ao J(nl, nyly), (5.26)
I(nl,ely) = ap J(nl,ely). '

For ¢ = —1/n? < 0, the solutions of the radial Schrodinger Eq. (5.22) can
be found in Burgess & Seaton (1960) or in Griffiths (1995):

_ l (71)n+l+1 %
Pul®) =5 JTma s )= i ( n >

1 I(n—1) [26\'"" £\ ;) (28
“a F(n+l+1)(n> P (—n> bo-it (n)

which are either expressed in terms of the Whittaker W function or in terms
of the generalized Laguerre polynomial (whose normalization differs in the
literature),

I'ln+a+1)
I'(a+1)I'(n+1)

LM (2) = Fi(—n,a+1,2), (5.28)

(see e.g. Abramowitz & Stegun 1964). In turn, the confluent hypergeometric
function 1 F; can be expressed through the Whittaker M function:

1
M, .(2) = exp <_§> ey (u — K+ 2 1+ 2u; z) , (5.29)

allowing us to rewrite P,; in terms of the Whittaker M function:
o1 2¢

I(n+1+1) nA M, (W)

n?+10(n —1) 2l +2)

VM, (%)
r2i+2)

Pnl(f) =
(5.30)

= gnl

We note that the dependence of the Einstein coefficient B(nl — nyl,) for
bound-bound transitions on the n,, quantum number of the upper state appears
only through the Whittaker M function, hence providing a natural analytical
continuation over non-integer values of n,, that we have previously introduced
as B(nl — nyly).

For € > 0, the solutions of the radial Schrédinger Eq. (5.22) are listed in
Seaton (1958). A unique combination of these functions with the appropriate
boundary conditions for the present problem, namely that the wavefunction
reduces to zero in the origin and its asymptotic form at large r behaves as the
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wavefunction of a free electron, is presented here:

L [ DU+ 14041~ i) (i5) M1y 4 (—%)

xal®) = nl# TR (—in)(1 - exp@er))  VaI(2 1 2)

(ir) 1M, 1+1 ( )
\/ir(z +2) ’

= hy (5.31)

where k = 1/4/¢.

5.5 Total absorption coefficient at the Balmer
limit
5.5.1 Continuity of the total absorption coefficient

Using the properties of the Euler gamma function, it is straightforward to
check that
lim In,l, = hm hnlf =1 Vi, lf € Zzo. (532)

My — 00

In Sect. 5.4.2 we have noted that the Einstein coefficient B(nl — nyly,) is
also well defined for non-integer values of n,, and in particular, that it is a
continuous function of n,. Hence

lim Ny, (e)B(nl — ny(e)ly) = lim Ny(e(ny))B(nl — nyuly). (5.33)

e—0— Ty —> 00
Now recalling the relation (5.54), namely

lim x*T 2M (E) = lim (ir)"* 2Mm “ (—Z:) , (5.34)

K—00 K K—00

which is demonstrated in Appendix 5.B, and using Eq. (5.30) for the wave-
function of the bound electron P,; and Eq. (5.31) for the wavefunction of the
free electron x.¢, we find that

lim Ny (e)B(nl — nyly,) = lim Ni(e)B(nl — ely), (5.35)
e—0— e—0t
provided that the density of quantum states are taken to be the ones obtained
in Egs. (5.15) and (5.16). The equality of Eq. (5.35) further implies the
interchange of the limits with the radial integrals contained in the Einstein
B coefficients, whose justification is similar to the proof of Eq. (5.54). For
brevity, we do not repeat all the computations here. Some additional details
are provided in the final note of Appendix 5.B, however.
After summing the bound-bound contributions to Eq. (5.11) over [ and [,
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and the bound-free contributions to Eq. (5.12) over ! and [y, we obtain our
final result,

lim [n(v)],, = lim+ ()]t » (5.36)

V*}l/th l/*)l/th

with the threshold frequency for the Balmer series given by

meeg

= 167h3

Ven (5.37)

Thus, we have proven that there is no discontinuity at the Balmer limit.

5.5.2 Analytic expression for the total absorption coeffi-
cient

The wavefunction of the free electron with zero kinetic energy can be calculated
combining Egs. (5.31) and (5.54):

(2r)HL o Fy (20 + 25 —2r)
V2T (20 + 2)

Xe=0,(T) = (5.38)

The integrals of Egs. (5.19) and (5.21) can be computed analytically. If we take
the limiting wavefunction for the free electron, Eq. (5.38), and we consider the
bound electron to be in the level n = 2, we find the nondimensional expressions
of Eq. (5.25):

28
J(n:Q,Lg:O;sz(),Z:l):e—él,
27
j(nZZ,Lgil;é':O,g:O):@, (539)
29

Jn=2,Li=1e=0/(=2) = .
( ¢ ) N
These are the only non-vanishing integrals, according to the selection rule
Al = £+1. Now inserting the reduced matrix (5.20) into Eq. (5.17), we com-
pute the Einstein coefficients (where we have substituted the corresponding
nondimensional radial integrals 7 ):

252 Lo ¢ 1Y)

For n = 2 we can sum over all values of all contributions from the angular
momentum of the bound and free electrons, in order to obtain the absorption
coeflicient at the Balmer limit. Next, we note that the 3-j symbol for ¢ = L, 41
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can be computed using the property

a a+1 1\ et |@a—a+1D(a+a+1)
(oz —a O>(1) \/(a+1)(2a—|—1)(2a+3)’ (5.41)

and the fact that squares of 3-j symbols are invariant under permutation of
any two columns:

L, ¢ 1 >2 _ max(Le,g) (5 42)

(2””( 0 0 0 L, 11

Making use of Egs. (5.8) and (5.9), summing over the final states, and con-
verting the density of quantum states into c.g.s units finally leads us to

hGU 216 214 219
18 00) = otz (Voo i 2 + Mozt (s + g ) ) - (549

1273 ce§m 9e8  9ed

Using the Boltzmann equation, we obtain the relative populations of the n = 2

level:
Np=2n,—=0 1 Np—op,—1 3

=-, ——=-, 5.44
Nn=2 4 anz 4 ( )
providing the final result:
hSun(n =2)22 x 3 x5
A _ th
Mo (Vi) = No=s 1273 ce§m? €8
B @ afa% 212 x 3 x5 (5.45)
- n=2 3 TL2 s 68

~ Np—a x 1.386 x 10717 [cm?],

in which we have introduced the frequency at the Balmer limit given in
Eq. (5.37), and where ag is the Bohr radius and o = e3/(hc) ~ 1/137 is
the fine structure constant.

5.6 Numerical modelling of the total cross-
section around the Balmer limit

At some point near the Balmer limit, the distance between consecutive spectral
lines becomes smaller than the width of the lines (FWHM). The exact location
of this wavelength \; representing the transition between these two regimes
depends on the broadening of the spectral lines. At wavelengths longer than
At , we still observe distinct spectral lines, but at shorter wavelengths, we no
longer resolve spectral lines, but observe a quasi-continuum.
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Figure 5.1. Total cross-section (cyan) due to bound-bound and bound-free transi-
tions in the isolated hydrogen atom around the Balmer limit A¢n, considering natural
broadening (top), or including both natural broadening and Gaussian broadening
for a thermal velocity of 15ms™" (bottom). The cross-section is normalized to its
analytic value at the Balmer limit Ay,. At longer wavelengths, the actual contin-
uum (blue curve), defined as the lower envelope of the bound-bound cross-section,
deviates from the nominal quasi-continuum (almost-horizontal green curve that was
computed by assuming the approximation of Eq. (5.10) to be valid at all wavelengths
A > A¢n). The orange vertical solid lines show the location of the Balmer limit A¢p.
The blue vertical lines show the location at which the FWHM of spectral lines and
the separation between consecutive spectral lines are equal (A;). In the bottom plot,
this line is displaced to longer wavelength due to the additional broadening caused
by the thermal velocity.

In the following paragraphs we describe the procedure we used to nu-
merically compute the total cross-section in the vicinity of the Balmer limit
(Fig. 5.1). The total Balmer cross-section is defined by

h2y No=2.1=0 5

ZIOEL LD (N_ Bln=st=0=a0 (5.46)

Muwizt g 01 e),
Np=2 ’

+
where ¢ stands here for either {,, or [, and the relative populations of the n = 2
level are taken to be the same as in Eq. (5.44), with { being a shorthand notation
for the angular momentum of the lower lever L,. The procedure to compute
this cross-section is non-trivial because the wavefunctions of both the free and



5.6. Numerical modelling of the total cross-section 93

Explicit B coefs. ’ Explicit B coefs.

| ]

wn

§ Interpolation and resampling of B coefs.

wn

g Cross-sec. calc. Cross-section calculation

g

2 SR Truncated sum

' i i Cross-sec. calc.
A Me=1/300?) Ath Ar A(n=1000) A, Ae

Figure 5.2. Steps involved in the modelling of the total cross-section around the
Balmer limit. The Einstein B coefficients are first calculated, either explicitly or by
interpolation (blue). The cross-section is then computed for A < A; (upper green
region) using either Eq. (5.11) or Eq. (5.12). For A > A4, the distance between lines
is comparable to the line’s FWHM, so that the approximation of Eq. (5.10) is no
longer valid, and lines have to be computed individually, considering both a finite
truncated sum and its sum remainder (SR; red). The opacity of the lines is finally
summed at wavelengths A > A; (lower green region).

bound electrons have singularities at the Balmer limit, leading to numerical
difficulties around this region. Moreover, the number of spectral lines to be
considered is in principle infinite. The total cross-section at wavelengths larger
than the wavelength of the Balmer limit () is given as an infinite sum of
cross-sections due to each transition from the second level to any higher level.
Approaching (from larger wavelengths) the specific point where the line width
and the spacing between neighbouring lines are comparable (A = )\;), this
sum cannot be truncated because the remaining terms are non-negligible and
their sum decreases extremely slowly when the truncation threshold increases.
However, it is possible to split the sum into two terms, one containing a sum
over a finite number of spectral lines located at wavelengths longer than some
threshold, Ar, and one containing an infinite sum over spectral lines located
at shorter wavelengths (between Ay, and Ar). The infinite sum can then be
approximated by an integral, with the same approach as used in Eq. (5.10).

The choice of A\p is quite empirical, but Ay < A; is always required and
Ar has therefore to be adjusted according to the line broadening. In the
limit A — A, where the chosen threshold approaches the Balmer limit,
the error arising from the approximation in Eq. (5.10) drops to zero, but the
number of lines for which the Einstein coefficient has to be explicitly computed
increases drastically. Moreover, close to the limit Ay, both below and above
it, numerical evaluation at finite precision of the Einstein B coefficients is
troublesome (see e.g. Morabito et al. 2014). For simplicity, in the present
work, we explicitly compute the Einstein B coefficients inside a safe range (for
1000 bound-bound transitions and 300 bound-free transitions) and interpolate
its values for transitions closer to the limit. More precisely, we interpolate the
values of Ny, (e)B(nl — nyly,) together with those of Ni(e)B(nl — ely), since
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we know, according to Eq. (5.35), that they match at the Balmer limit. The
evaluation of the Einstein B coefficients is illustrated in blue in Fig. 5.2.

The wavelength range in which we perform the numerical calculation of the
total cross-section is finally split into three sub-domains, represented in green
in Fig. 5.2: A < A_, for which Eq. (5.12) is used; A_ < A < Ay, for which
either Eq. (5.11) or Eq. (5.12) are used, but the Einstein B coefficients have
interpolated and resampled values; and A > A, for which the sum in Eq. (5.8)
is truncated. The truncated part includes a total of 5000 bound-bound transi-
tions, most of which were computed with the interpolated B coefficients, and
the remainder of the sum is approximated using Eq. (5.10), in which all B
coefficients are interpolated (SR). This is schematically represented by the red
domains in Fig. 5.2.

We note that for A < A\, the total cross-section varies very slowly, so
that the choice of A_ is not really important as the interpolation between
A_ and Ay, will provide accurate results. However, Ar should be chosen as
close as possible to Ay and should satisfy both Ap < A and A\p < A4 to
obtain an accurate total cross-section, requiring an explicit computation of
a large number of lines. The considered 1000 bound-bound transitions with
the Einstein B coefficients computed explicitly is not sufficient, and additional
transitions (till n, = 5000, corresponding to Ar) are considered using the
interpolated Einstein B coefficients.

For line transitions to a higher level with quantum number n, above the
n, = 81 threshold, the natural broadening of the lines is extrapolated. Below
that threshold, the natural broadening is explicitly computed using Eq. (6.59b)
in Landi Degl’'Innocenti & Landolfi (2004) (see Fig. 5.3):

:'Yl+7u

I
A

(5.47)

where 7 and ~, are the inverse lifetimes of the lower and upper levels. The
inverse lifetimes are given by the effective Einstein A coefficients, which are
computed using Eq. (63.8) in Bethe & Salpeter (1957) and the usual relations
between the Einstein A and B coefficients. Above n, = 81, the extrapolation
is carried out by fitting a (semi-empirical) power law v, (n) ~ an~°.

Figure 5.1 was produced using the methods described above. It is not to
be directly compared to a realistic plasma, but it exhibits some characteristic
features that are expected to be found in observations as well. First of all, no
discontinuity is found anywhere, and in particular, nothing special occurs at the
Balmer limit. However, the lower envelope of the spectral lines, interpreted
as the “continuum”, quickly drops to lower cross-sections. On a spectrum
exhibiting a wider range of wavelengths, it would almost appear as a “jump”.

The location of the jump is not well defined. Longward of the Balmer limit,
close inspection indeed reveals the existence of oscillations up to the limit.
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Figure 5.3. Lifetimes of the atomic levels n of the hydrogen atom for 1 < n < 82.

With a limited spectral resolution, however, there will be a wavelength short-
ward of which the oscillating cross-section (lines) become a quasi-continuum.
In Fig. 5.1 the vertical blue line on the right of each panel is the position at
which the FWHM of spectral lines is equal to the line separation, and it could
be taken as the definition of the Balmer’s jump position.

By comparing the plot in the top panel of Fig. 5.1 (no thermal broadening)
with the plot in the bottom panel (thermal broadening corresponding to a
thermal velocity of 15ms™1), we see that the (rather arbitrary) point in which
the lines become a quasi-continuum is displaced towards longer wavelengths.
The position of this point is very sensitive to the broadening mechanisms that
are considered. In the solar plasma, with a temperature of about 6200K (as
expected at the depth at which the solar continuum is formed), and considering
only natural and thermal broadening, we expect a displacement of the Balmer
jump of approximately 7 A.

We note that an alternative definition of the Balmer jump is given in Sten-
flo (2005), according to which the Balmer jump is located at the wavelength
on which the Balmer continuum (lower envelope of spectral lines in Fig. 5.1)
intersects the Lyman continuum. This alternative definition has the advantage
to better fit what visually looks like the Balmer jump of the intensity spec-
trum of the Sun, and is located at wavelengths much longer than our definition
(in the cited paper, for solar conditions and taking also pressure broadening
mechanisms into account, the position is reported to be shifted by 140 A, while
a shift of 100 A is reported from observational data).

We emphasize that the Gaussian broadening displayed in the bottom panel
of Fig. 5.1 is not representative of any specific plasma. Its only purpose is
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to provide a qualitative description of the effect of additional broadening. In
addition to the thermal Gaussian broadening (Doppler broadening), the inter-
action between the almost-free electrons close to the photoionization threshold
and the electric field of the surrounding ions and electrons in a realistic plasma
has to be taken into account (see e.g. Griem 1960). The electric field is not
only responsible for the usual linear and quadratic Stark broadening (which
rapidly increases with the principal quantum number of the levels), but it also
provides an unbounded contribution to the Hamiltonian, which results in the
quenching of the lines with high upper quantum number n. This latter aspect
has been studied by Lanczos (1931), and it is also described at the end of the
chapter on the Stark effect in the book of Bethe & Salpeter (1957).

5.7 Conclusion

The Balmer jump is produced by a rapid drop of the total Balmer cross-
section, but this variation is smooth and continuous when both bound-bound
and bound-free processes are taken into account, and its shape and location
are dependent on how it is defined and on the broadening mechanisms. A pos-
sible definition of the position of the Balmer jump is the location at which the
distance between consecutive spectral lines equals the FWHM of the spectral
lines. In this work, we have considered an isolated hydrogen atom (no colli-
sions), and we have found that this location is shifted about 7 A longward of
the Balmer limit when considering thermal broadening under solar conditions
with respect to the ideal situation in which only natural broadening comes into

play.

Moreover, we have shown that at specific wavelengths, and in particular at
the Balmer limit, it is possible to compute the cross-section in a fully analytical
way. At the Balmer limit, we found this value to be proportional to aa3, with
« being the fine-structure constant, ag being the Bohr radius, and the propor-
tionality constant being the pure mathematical constant 72 2!2 x 5/ exp(8).

We proposed a method to deal numerically with the accumulation of an
infinite amount of lines and applied it to the simple case of the hydrogen atom
near the Balmer limit. We expect this method to be also applicable to the
accumulation of spectral lines formed by more complex atoms or molecules.
The modelling of the spectrum near the Balmer limit, taking the interactions
with the surrounding plasma into account, is expected to be significantly more
complex than the present approach and is therefore left for a future work.
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5.A Reduced matrix elements of the dipole op-
erator

The reduced matrix elements (aJ || d|| 'J’) of the dipole operator d = —epr
can be expressed in terms of a radial integral in a quite general way by as-
suming that the quantum numbers contained in « and o' are eigenvalues of
operators commuting with angular momentum. We start from the Wigner—
Eckart theorem as given in Eq. (2.96) of Landi Degl’Innocenti & Landolfi
(2004):

(aJM | Ty | o/ J'M")

/
:(_1)'J'+k+M\/2J+1< _{\4 A‘Z, §><aJ [ T%| o), (5.48)

which is inverted using the orthogonality relations of the 3-j symbols:
(ad || T*|| a'J")y = (1) FF+M /2T 3T

S a g enimiann, O

and which holds for any M € {—J,—J +1,...,J — 1,J}. By definition, an
irreducible spherical vector rotates with the same transformation law as the
[ =1 components of the spherical harmonics Y;™. Hence, from the components
(Ty, Ty, T) of an arbitrary Cartesian vector T with norm T, we can construct
a spherical vector whose components are given by ¢T'Y{"(T/T), with ¢ an
arbitrary constant.

Fixing ¢ provides a one-to-one relation between Cartesian vectors and ir-
reducible spherical vectors. For consistency with Eq. (5.17), the constant is
chosen so that the spherical components of the vector field operator r are given
by Eq. (2.82) of Landi Degl'Innocenti & Landolfi (2004):

1
rl = %rYlm(f'), (5.50)

which is inserted in the inverted version of the Wigner—Eckart theorem. After
setting M = 0, the resulting expression reads

(aJ ||[d| T =eo(=1)"TNV2T+1 (o |r] &)

The angular integrals can be computed using Weyl’s theorem (see e.g. relation
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(8.8) of Landi Degl'Innocenti 2014), resulting in
(aJ ||d| & J) =eo(=1)"TNV2T 1 x (a|r]|d)
2
J J 1 J J 1 (5.52)
><<0 0 o> ];J(QJ—kl)(O M, q) :

Using properties of the 3-j symbols, it is possible to check that the sum in the
previous relation is equal to 1, leading to our final result

Con : . J J o1
(aJ ||d|l o/ J) = eo(—1)" TV +1 ( 0 0 o > (5.53)
x {a|r|ad).
5.B Asymptotic properties of the Whittaker M
function

We show that

Z . . 1 12
lim K‘,‘quzM (f) = lim (ik)**2 M, " (—)
K—00 K K—00 ’ KR

(5.54)
= "3 Py (1 4+ 2p; —2)
for 4 € C. The hypergeometric function oFj is defined by the series

o k

OFl’% Z(L

k=0

NVe=y(y=D(y=2)---(v—k+1), (555)

w‘l\z

and the Whittaker M function is defined by
1
M, (2) = exp (—%) TRy (u — K+ 2 1+ 2u; z) ) (5.56)

The confluent hypergeometric function ;F} is studied in detail in Lebedev &
Silverman (1965) and defined by the hypergeometric series

o]
(a) 2*
1F1 Zka Oé,’)/,ZE(Ca 77&07_1;_27"' (557)

In particular, 1 F; is an entire function of z and of its parameter «, and a
meromorphic function of v with simple poles on points v = 0, —1, —2, etc.

We first wish to calculate the asymptotic behaviour of ;F} (a+ Ky Vs i)
when k — +oo for fixed complex numbers a and z and v # 0, —1, —2,etc. To
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this aim, we use the dominated convergence theorem applied to the measure
space (Z>o, %, i), with ¥ = P(Z>() the power set of Z>( and p the counting
measure. With these specific choices, the dominated convergence theorem
states that this limit can be computed term by term in the series expansion of
1Fy, as long as there exists a bounding function B(k) such that for some finite
number K

(a+ kK 1

(V)k

s < B(k) Vsl > K, (5.58)
with B(k) independent of k, and the series

> B(k) % < 0. (5.59)
k=0

A bounding function like this can be found for |x| > |a|, |a + k| > |y| and
la + k| > |7|? (we choose for example K =1+ |a| + |v| + |7]?),

o) (i) 0 p)*

(a+r)k 1
KR 1) ... [ k
(M 1(1+) - (1452) 7
k
1+ 7 2"
< sup 7a# Tk ’7#07715727
nGZZ()( 1+; "YVC ( )

7 1 v \" 2
sup Y= + T
n€lxo a+K n+’y a+K |’Y|
2 1 k 2k
sup (<7|+ el ) LNl ) 2
n€Z=o lat k) Intql " latsl) Dl
k ok
1 2
< <+|’7| + 1) —
d(—, Z>0) vl

(v as2)

= B(k) = ¢BF,

(5.60)

IN

where with this bound ¢ = 1, and we have defined the distance function for
z € Cand FE C C to be given by

d(z, E) = ul)relgﬂz —wl). (5.61)
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With the bound B(k), it is clear that Eq. (5.59) is satisfied:

3 |Z|’“ el
ZB CZB =c-exp(B|z]) < oo, (5.62)
k=0 k=0

but we note that in the relevant case in which v > 2 (corresponding to the

angular momentum [ > 0), K could be chosen even greater, and with ¢ = 3/2,

it is possible to find a similar bound for which B is arbitrarily close to 1/3

(this bound is not required for the present proof, but will be useful later). The

limits, term by term in the series expansion of 1 F, are finally given by
(a+r)g 1 1

L S PRl oo (5:63)

and by application of the dominated convergence theorem

k

hm 1Fy (a—i—n v; ) = kz_o(Vl)kz' = oFi(7; 2). (5.64)

The same reasoning with the same bound, but substituting x — ik, provides
a proof of

rk—too

lim 1F; (aer,”y;Zl:) = oF1(7; 2). (5.65)

The proof of Eq. (5.54) then follows by substituting k - —x (and kK — —ik,
respectively), z = —z, a = p+ 5 and v — 1 + 2y in Eqs. (5.64) and (5.65),
and inserting the resulting limits in Eq. (5.56).

We note that choosing 1/3 < B < 1/2 further allows us to prove that the
wavefunctions of the bound/free electrons are bounded independently of n,
and ¢ and that the wavefunction of the bound electron is (asymptotically) ex-
ponentially decreasing. It is indeed straight-forward to check with this bound
that 1 F} in Eq. (5.56) grows more slowly than exp(z/2), allowing an exponen-
tial decay of the Whittaker M function in Eq. (5.56). Hence the integrands
inside the radial integrals (5.19) and (5.21) are also bounded and (asymp-
totically) exponentially decreasing. Using again the dominated convergence
theorem, we can further justify the interchange of the limits n, — oo (and
e — 0 respectively) and the radial integrals.
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Note added in proof. We call the reader’s attention to the fact that Menzel
& Pekeris (1935) and references therein studied the limit n, — oo for the
wavefunction of the bound electron and came to the conclusion that there
was exact continuity of the absorption coefficient at the Balmer limit. In
the present paper, we used the modern formalism of Landi Degl’Innocenti &
Landolfi (2004) to prove continuity.
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6.1 Introduction

In this chapter we apply the tools presented in Section 2.3 to our high-resolution
3D models described in Sect. 2.1.5, in order to produce polarization maps of
the quiet solar photosphere at a variety of heliocentric angles for a set of chosen
continuum wavelengths in the visible. We also derive a curve of the average
linear polarization versus the heliocentric angle (ie. the centre-to-limb variation
of the polarized continuum), for a chosen set of wavelengths.
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There are multiple aims to this investigation. The unavoidable instrumental
cross-talk I — @ results in an offset of the zero level of the fractional polar-
ization Q/I (see e.g. Stenflo et al. 1997). A first aim is to provide synthetic
observations that could be used to develop an accurate calibration strategy.
At the present time, a natural assumption is used for the calibration of spec-
tropolarimeters: the polarization at disc centre is zero. Since the Sun exhibits,
in a good approximation, cylindrical symmetry along the line-of-sight when
pointing at disc centre, this assumption is reasonable. However, with accurate
instrumentation capable of measuring extremely small levels of polarization
and with the expected spatial resolution capabilities of upcoming solar tele-
scopes such as the 4 m Daniel K. Inouye Solar Telescope (DKIST, see Keil et al.
2010) or the 4 m European Solar Telescope (EST, see Collados et al. 2010), the
calibration methods will have to be revised.

At a more fundamental level, the linear polarization exhibits a centre-to-
limb variation that is different but complementary to limb-darkening. While
limb-darkening is closely related to temperature gradients in the solar atmo-
sphere, the centre-to-limb variation of linear polarization is also extremely
sensitive to the anisotropy of the radiation field in the presence of scattering
processes.

The general problem of radiative equilibrium in stellar atmospheres was
gradually tackled by Chandrasekhar in a series of twenty-four papers pub-
lished in-between the years 1944 and 1948. In one of these contributions,
Chandrasekhar (1946) considers the polarized radiative transfer equations al-
lowing for scattered radiation in accordance with Rayleigh’s law, well before the
present formalism for polarized radiation was developed. These investigations
were eventually gathered in Chandrasekhar (1960), in which quantities like the
centre-to-limb variation of linear polarization in fully scattering atmospheres
were analytically studied.

The theoretical pioneering work of Chandrasekhar on the scattering of po-
larized light in stellar and planetary atmospheres enabled, together with the
development of sophisticated computational tools, the study of realistic atmo-
spheres like the solar photosphere studied here. The polarized solar continuum
has already been modelled by e.g. Fluri & Stenflo (1999), and its centre-to-limb
variation was also semi-empirically determined later, with the help of a model
for depolarizing lines (Stenflo 2005), which however displays a lower polariza-
tion than previously modelled. The centre-to-limb variation of the polarization
in the solar continuum has also been observed by Wiehr & Bianda (2003), who
found an excellent match with the FAL-C model of Fluri & Stenflo (1999).
More recently, 3D radiative transfer has been carried out in order to produce a
more realistic modelling taking into account symmetry-breaking effects caused
by horizontal inhomogeneities arising from surface convection (Trujillo Bueno
& Shchukina 2009). This later contribution showed a remarkable agreement
with the semi-empirical data of Stenflo (2005), which was believed to be sig-
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nificantly better than that obtained via the use of 1D models.

Independently, Kostogryz & Berdyugina (2015) and Kostogryz et al. (2016)
studied in detail, with 1D modelling, the centre-to-limb variation of polariza-
tion and intensity for stars of F, G and K spectral type, including the Sun,
and they compared their results with the ones of the work of Fluri & Sten-
flo (1999) and Stenflo (2005). An important and new contribution was the
consideration of spherical atmospheres in the calculation of polarized radiative
transfer in the continuum, which is required for an accurate modelling close to
the stellar limb. A new bridge between stellar physics and exoplanet research
was also established in Kostogryz et al. (2015), in which the polarimetric ef-
fect of exoplanets transiting in front of their star was studied, as well as the
effect of starspots and starspot-crossing during transits. It was found that the
polarization parameters are sensitive to spot sizes and positions, they reveal
the rotation period independently of spot-crossing events, and they provide pa-
rameters like the spatial orientation of the orbit of the exoplanet, which cannot
be derived with photometrical techniques. The minimal polarimetric sensitiv-
ity required for these studies is however about one order of magnitude higher
than the one provided by the existing instruments on bright targets, so that
the effective application of these new techniques will have to be delayed until
a new generation of spectropolarimeters is available. The symmetry breaking
leading to a linear polarization signal from an unresolved star that is either
rapidly rotating or masked by a binary companion or a transiting planet was
also reported in the proceeding of Harrington (2015).

In the present chapter we carry out 3D modelling at high spatial resolu-
tion as well as 1D modelling, and we try to quantify the effects of horizontal
inhomogeneities as compared to the effects arising from using different model
atmospheres and/or different methods and approximations for the computa-
tion of scattering and non-scattering opacities. This task is non-trivial, since
3D models do not intrinsically offer natural 1D “equivalent” models: we will
see that there are different ways of reducing a 3D model to a 1D “equivalent”
model, and we will attempt a “natural choice”. 3D models can also be com-
pared to semi-empirical 1D models that typically have different temperature
structures. One major difficulty in this investigation is that the work previ-
ously carried out by different scientists is not exactly reproducible, since we
lack the codes, the models, and the exact opacities that were initially used. For
this reason it is not straight forward to determine which of these factors (if not
all of them) are responsible for the mismatches of the observables (e.g limb-
darkening curves, centre-to-limb variation of polarization, polarization spectra,
etc.).
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(M)HD si—%

| Computation of atomic data |

Polarized Radiative Transfer

Propagation matrix Stokes parameters Radiation field tensor
(and/or Source function) (Formal solver) (Integration with quadrature)

Density matrix
(Statistical equilibrium equations)

Figure 6.1. Schematic description of the general non-LTE computational pipeline:
from (M)HD simulations to synthetic observations.

6.2 The physics and equations governing the
polarized continuum

6.2.1 Generalities

The polarized continuum is mainly determined by the scattering processes.
The underlying physics and the statistical treatment used to derived the cor-
responding cross-sections and the equations for radiative transfer were briefly
discussed on Sec. 2.2 from a general perspective, and were subsequently em-
ployed for the polarized light of the solar continuum in Sec. 2.3. Here we make
a list of the relevant tools and final equations that are directly used in the
Polarized RAdiative Transfer In the Continuum (PRATIC) module we specif-
ically wrote for the POlarized Radiative TrAnsfer (PORTA) code of Stépan &
Trujillo Bueno (2013).

The pipeline displayed in Fig. 6.1 schematically shows the different steps
involved in the generation of spectropolarimetric synthetic observations. As a
first step, radiative (M)HD simulations are required, as well as the atomic data
involved in the computation of the Einstein coefficients that later appear in the
evolution equation of the atomic system (the statistical equilibrium equations).
Ideally, the atomic data used in the computation of derived quantities (e.g.
temperature) from the (M)HD simulations (opacities and abundances used to
derive the equation of state) should be consistent with the atomic data used
in the polarized radiative transfer calculations.

The statistical equilibrium equations coupled with the formal polarized ra-
diative transfer equations constitute a non-linear system. The last step in
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[CO5BOLD]

Computation of opacities

[RH]
Polarized Radiative Transfer [Porta + Pratic]
Radiation field tensor Source function Stokes parameters
(Integration with quadrature) (Statistical equilibrium equations) (Formal solver)

Figure 6.2. Schematic description of simplified non-LTE computational pipeline for
the computation of the continuum radiation.

which the 3D polarized radiative transfer is performed (grey box in Fig. 6.1)
is an iterative process. In the context of polarized radiative transfer in the
continuum, the statistical equilibrium equations can be solved analytically
(Eq. (2.47)) and directly inserted into the expression for the coefficients of
the propagation matrix, which provide the source function of Eq. (2.33). This
procedure simplifies the pipeline in the context of continuum radiation, which
is updated in Fig. 6.2.

The iterative pipeline of Fig. 6.2 is a non-LTE pipeline, since the source
function is recalculated at each step and is not the one given by the Plack
function (in which case polarization would be in-existent). This is because
scattering processes are intrinsically non-LTE processes. However, the opac-
ities appearing in the middle orange box of the figure are calculated under
LTE conditions and are kept unchanged at each iteration. In the following we
summarize the relevant equations, that correspond to each of the yellow boxes
of the iterative loop shown in Fig. 6.2.

At first, the source function is taken to be the Planck function for intensity
and zero for the other components of the Stokes vector. In the successive
operations it is updated from the radiation field tensor by using the equations
(2.33) that we rewrite here:

n* Ui 0
= By(T) + ——— |Jo +
Ny +ng e [0 202

(3p® —1) Jg

St
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Sq

The absorption coefficients 17 and 1}* refer to the scattering and non-scattering
contributions respectively; p is the cosine of the heliocentric angle and x is the
azimuthal angle; Jg are the components of the radiation field tensor, with real
parts denoted by a tilde and imaginary parts denoted by a hat. The radiative
transfer Eq. (2.34) then reads

iI =1-5, (6.2)

dr
and [ stands for any of the Stokes components. Here, 7 is the monochromatic
optical depth along the integration ray, so that dr = x.ds for x. = n7° + nj.
We refer to the part of the code that solves these equations assuming a known
source function as the formal solver. The formal solver integrates the radiative
transfer equation along a finite number of directions provided by a chosen
quadrature. Finally, the Stokes vector is integrated in Eq. (2.35) over all
directions of the quadrature in order to provide the radiation field tensor:

dQ
0 _ -— —
JO - f 47TIVQ’

aQ 1
5= f G [0 =D a3 -1 Q]
dQ /3 .
J12 %47T 2 \/ﬁexp 1X [ (IVQJrQuﬁ) 71Uyﬁ]a
o
s %4#\4[6@ @2ix) [(1 = #*) Lg — (1 +1%) Q6 — 2inU,g] . (6.3)

The iterative loop restarts by inserting the radiation field tensor into Eq. (6.1),
and it is only terminated when the difference in J between two successive
steps drops below a chosen threshold. The present description is however
purely formal. At the numerical level, the direct use of this strategy would be
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equivalent to a generalization of the A-iteration; it would have a poor conver-
gence, the criteria to decide whether to terminate the iteration or not would
be insufficient, and the cumulated round-off errors after convergence would be
significant. In practice, a variation of the accelerated A-iteration is used by
PORTA (described in the context of radiative transfer in e.g. Trujillo Bueno
& Manso Sainz 1999; Manso Sainz & Trujillo Bueno 2003; Stépan & Trujillo
Bueno 2011, 2013).

Before numerically solving Egs. (6.1) to (6.3) for a given model atmosphere,
we note that some insight is already provided by the equations alone. First
of all, in the radiative transfer equation (6.2), all Stokes components are de-
coupled. This is a peculiarity of the continuum, for which the propagation
matrix is diagonal. This means that the usual Eddington-Barbier relation for
the emergent intensity Iou¢

Tout ~ Sr(p = 0) (6.4)

can in principle also be applied to Stokes @ and Stokes U. The Eddington-
Barbier relation is justified from the explicit solution of (6.2),

Lo = % /0 " Sit)exp (-2) dt. (6.5)

Indeed, assuming that the source function is given by it’s Taylor expansion,
the emerging intensity (and the emerging polarization components @ and U
respectively) are given by

out Z,U/ dtk SI t= 0) (66)

which correspond exactly to the series expansion of the source function around
t = 0 evaluated at t = pu, except for the missing 1/k! factor. For k = 0 and
k = 1 this factor is 1, and the approximation is equivalent to assuming the
source function to be a first-order polynomial in the region t € [0; y].

6.2.2 The role played by scattering and non-scattering
processes

A list of all scattering and non-scattering contributions considered in this work
was provided in Sec. 2.2.4. We use routines of the RH code (Uitenbroek 1998)
to compute the corresponding absorption coefficients of all of these contribu-
tions in LTE. A simple and qualitative way of estimating the contribution of
each physical process to the emerging intensity and polarization is to com-
pare their corresponding absorption coefficients as a function of optical depth
7 inside a 1D model. To this aim we chose the FAL-C model of Fontenla
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Figure 6.3. Absorption coefficients as a function of monochromatic optical depth for
anumber of atomic processes, at a wavelength of 5350 A. Non-scattering processes are
represented by solid lines and scattering processes are represented by dashed lines.
In the legend, they are ordered from top to bottom in descending order of absorption
coefficient at 7 = 0.4. Bold lines correspond to the total non-scattering and scattering
absorption coeflicients respectively. Rayleigh scattering at H includes the far wings
of the spectral lines of the Lyman series. Note that the curve corresponding to the
total non-scattering absorption coefficient overlaps with the curve corresponding to
photoionization of H™.

et al. (1993) as it was also used by Fluri & Stenflo (1999), and we plotted
the absorption coefficient of different atomic processes versus optical depth in
Fig. 6.3.

As expected, at optical wavelengths, the non-scattering absorption coeffi-
cient contributes most to the total absorption coefficient (by several orders of
magnitude), and the absorption coefficient due to the photoionization of H~
fully dominates the various non-scattering absorption coefficients. A close ex-
amination of Eq. (6.1) suggests that only the first term (proportional to the
fraction of non-scattering absorption) of the source function for the intensity,
S, significantly contributes, since the second term (proportional to the fraction
of scattering absorption) is expected to be much smaller. However, the source
functions for linear polarization Sg and Sy do not have a term proportional
to the fraction of non-scattering absorption. This means that even though the
scattering absorption coefficient is orders of magnitude smaller than the total
absorption coefficient, it determines the linearly polarized signal.

We also note that, at 7 = 0.15 and higher up in the atmosphere, the
contribution of the far wing of Lyman-3 to the total scattering absorption
coeflicient is more important than the Thomson absorption coefficient. In
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particular, the formula of Baschek & Scholz (1982) for Rayleigh scattering,

oR s op (“f>4 ll i (15f6>2 + (14;50)4] , (6.7)

in which X is expressed in A and o7 is the Thomson cross-section, is a very
accurate approximation for the scattering cross-section due to the far wing
of Lyman-a, but does not include the far wings of the successive lines of the
Lyman series. As we shall see in Sec. 6.4.4, ignoring these further contributions
leads to inaccurate modelling of the linear polarization.

6.2.3 Methods used for the solution of the equations

The POlarized Radiative TrAnsfer (PORTA) framework of Stépan & Trujillo
Bueno (2013) is used in order to solve the non-LTE polarized radiative transfer
(RT) equations. The PORTA code implements different schemes for the main
iteration loop; we use a Jacobian-based method. The PORTA code also imple-
ments a short-characteristics formal solver (Kunasz & Auer 1988) for which a
variety of interpolation methods are available. Two different interpolations are
required when using a short-characteristics scheme. First, the radiation trans-
fer quantities (the components of the propagation matrix and of the emission
vector) need to be obtained, when integrating along the short characteristic,
in the upwind and downwind points. Then, the source function needs to be
interpolated along the short characteristic for explicit integration. For the
present problem, we configured the PORTA code in order to make a bilinear
4-point interpolation for the radiative transfer quantities (less accurate than
the biquadratic interpolation but in principle sufficient for fine enough grids)
and a quadratic monotonic Bézier interpolation along the short characteristic
for the source function.

In addition, the PORTA framework implements the Gaussian quadratures
for a given number of declination and azimuthal angles in order to perform
the integrals over the sphere that appear in Eq. (6.3). Useful quantities as
the tensor TQK appearing in the formalism of Landi Degl’Innocenti & Landolfi
(2004) are also defined. But one of the most important features of PORTA is
its efficient parallelization strategy, using the Message Passing Interface (MPI)
standard.

Since PORTA is a flexible framework for the polarized radiative transfer in
a variety of physical situations, the physics itself is not present in the frame-
work. For instance, PORTA cannot compute the source function (Eq. (6.1) in
the present context), it cannot solve the statistical equilibrium equations, and
it has no knowledge of the integrand in the defining equations of the radiation
field tensor of Eq. (6.3). However, it provides the prototypes of the corre-
sponding routines. These routines must be defined in an external module that
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appears to PORTA as a shared library. The external module is linked with
the PORTA library, enabling in this way all the tools and definitions available
in the PORTA library. Since the input and output data relevant for the cal-
culations also depend on the physical problem, the PORTA module must also
include two routines for the encoding and decoding of node data.

For the specific problem presented in this chapter, we wrote the Polarized
RAdiative Transfer In the Continuum (PRATIC) module for the PORTA code.
Since all scattering and non-scattering absorption coefficients are computed in
LTE (meaning that they do not need to be updated at each Jacobi iteration),
we decided to include them in the input node data that is loaded by PORTA.
The calculation of these absorption coefficients and the synthesis of the input
PORTA box from the CO’BOLD data is then an independent step, that is
dealt with by a secondary MPI-parallel code (ltebackgrmpi) that we wrote for
this specific purpose.

ltebackgrmpi is essentially a wrapper for the RH routines that we borrow
from the RH code of Uitenbroek (1998). It additionally implements a queue of
MPI threads: since the calculation of absorption coefficients is a local problem,
the pixels of the 3D box are segmented into chunks by a master process, and
are sent to the next free thread waiting in the queue. When a thread has
finished its job, it sends the computed data back to the master and declares
itself free again. There are two kind of jobs, “computing” jobs and “writing”
jobs. The former kind of jobs are run concurrently, whereas a lock ensures that
the latter kind of jobs are run sequentially. Whenever the three conditions 1)
the lock is unset (no writing is going on), 2) the master has received data to
write and 3) a thread declares itself free are fulfilled, the master allocates a
“writing” job for the free thread.

The main drawback of the PORTA code and the ltebackgrmpi module is
the amount of memory used. Loading one of our CO°BOLD models already
requires 7.7 G, and a PORTA box additionally contains all components of the
radiation field tensor, for each frequency. For this reason, we were constrained
to store one single frequency per PORTA box.

6.3 Observational data and 1D models

At the present time, Wiehr (1978) and Wiehr & Bianda (2003) provide the
only available measured data of the centre-to-limb variation of polarization
in the continuum. Older measurements as those of Leroy (1972) and Mickey
& Orrall (1974) are also available, but they were carried out with filters on
bands larger than 10 A that either fail to accurately isolate the continuum from
spectral lines or are subject to instrumental problems. New measurements are
presently carried out at the “Istituto Ricerche Solari Locarno” (IRSOL) and
the choices of wavelengths and heliocentric angles that were made for these
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new measurements determined our choices for the synthesis of polarization
data from our 3D models.

From a 1D-modelling perspective, the polarized solar continuum has been
extensively studied by Fluri & Stenflo (1999). An interesting conclusion was
that the model dependence of the continuum polarization is mainly due to
the different limb-darkening curves appearing from model to model; among
the many 1D models they studied, only the two models for which the chro-
mosphere was playing a sensible contribution constituted an exception to this
rule. Fluri & Stenflo (1999) also provided a semi-empirical formula for the
linear polarization in terms of limb-darkening,

Q0
I,

1— p?
pma) In() /15 (1)

() = N7 (6.8)

in which log(gx) = ao + a1 + a2\? is a quadratic polynomial in A\ whose
coeflicients a; were fitted for each model, and m) is a one-degree polynomial
in A with model-independent coefficients. Since our (M)HD simulations do not
include all the physics required for the simulation of the chromosphere, and
we perform radiative transfer in LTE, all possible chromospheric effects are
likely to be missing or inaccurate. It however makes sense to compare our 3D
modelling to most of the 1D modelling of Fluri & Stenflo (1999), in which there
are no significant chromospheric effects. In order to produce a semi-empirical
reference curve, we inserted the parameters corresponding to the FAL-C model
into Eq. (6.8), and the observed limb-darkening curve of Neckel & Labs (1994).

With the same purpose of producing a semi-empirical reference curve, Sten-
flo (2005) uses the Atlas of the Second Solar Spectrum (Gandorfer 2000, 2002,
2005) and relies on a model for the behaviour of the depolarizing lines. Since
all the data provided by the atlas is measured at the solar limb (p = 0.1),
Stenflo (2005) makes use of Eq. (6.8) in order to extract gx. We remind that
my is determined in Fluri & Stenflo (1999) and it is assumed to be model-
independent. Furthermore, Stenflo (2005) uses the limb-darkening curve of
Neckel (1996), and in this way he obtains semi-empirical centre-to-limb varia-
tion of polarization curves for /I through Eq. (6.8).

For the intensity, the available data that we consider in the following is
the limb-darkening curves of Neckel & Labs (1994) and of Neckel (1996). For
polarization, we consider the observations of Wiehr & Bianda (2003) and the
semi-empirical data derived from Eq. (6.8), by using the parameters for the
FAL-C model that are available in Fluri & Stenflo (1999) with the above-
mentioned limb-darkening curves.

By replicating the data from 1D models within a column of 3 x 3 grid cells
into the horizontal directions, we build 3D plane-parallel models, for which
radiative transfer can be carried out in exactly the same way as done for the
full 3D models. We repeat the calculations of Fluri & Stenflo (1999) for their
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interpolation of the FAL-C model, and we generate 1D models from our (M)HD
cubes, by averaging temperature and density either on horizontal planes or on
isosurfaces of constant bolometric optical depth 7.

6.3.1 Temperature structure

The 1D models from which we perform polarized radiative transfer computa-
tions are

e FALC390, the model interpolated to 390 grid points by Fluri & Stenflo
(1999) from the original model of Fontenla et al. (1993) with with 72 grid
points,

e v50-flat, obtained by averaging the snapshot d3gt57g44v50fc.134051 of
our CO°BOLD models over horizontal planes,

e v50-iso, obtained by averaging the snapshot d3gt57g44v50£fc.134051 over
isosurfaces of constant bolometric optical depth 7,

e roe-flat, obtained by averaging the magnetic field-free snapshot
d3gt57g44roefc.56016 of our CO°BOLD models over horizontal planes,

e roe-iso, obtained by averaging the snapshot d3gt57gd4roefc.56016 over
isosurfaces of constant bolometric optical depth 7.

The averaging procedure on isosurfaces of constant bolometric optical depth 7
is performed as follows: 1) determine the average optical depth (), on all hori-
zontal planes z, 2) determine the average height (h) = of the isosurfaces of con-
stant (1), and remove all points for which the corresponding isosurfaces over-
flows out of the box, 3) interpolate with a spline the points (<h><T>z ,1og((7),))
at the vertical grid-coordinates z, hence obtaining the points (z,log(7,)).

This procedure guarantees that, in a very good approximation, the average
height of the isosurface of constant 7, is precisely z (empirically, the absolute
error between these two quantities is below 1 m for all isosurfaces, on a 2800 km
heigh box). The CO’BOLD output variables (e.g. density and internal energy)
are then linearly interpolated on those isosurfaces and their averages are used in
order to compute temperature through the equation of state. The computation
of opacities and radiative transfer are performed in the same way as with the
FALC390 1D model atmosphere.

The variables used by the RH routines in order to compute opacities are
density and temperature, which are derived quantities (i.e. they require the use
of the equation of state in order to be determined from the output simulation
data). We must note here that spatial averaging and the application of the
equation of state are non-commuting operations. Fig. 6.4 shows that the order
matters when the spatial averages are taken over horizontal planes, whereas it
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Figure 6.4. Spatially averaged temperatures of the snapshot d3gt57g44v50fc.134051,
using different averaging methods. Solid curves represent flat averages over horizontal
planes, whereas dot-dashed curves represent averages over isosurfaces of constant
optical depth. Green curves provide direct averaging of temperature, whereas the
blue curves refer to temperatures computed from the averaged density and internal
energy.
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Figure 6.5. Comparison of the temperature structure of the considered 1D models.
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is less significant when spatial averages are computed on surfaces of constant
optical depth. In the following, density and temperature are first computed
from internal quantities by using the equation of state, and spatial averages are
taken as a subsequent step over density and temperature, either on horizontal
planes or on surfaces of constant bolometric optical depth 7. The way averages,
interpolations, calculations of opacities, and calculations of optical depths are
performed, all affect the temperature structure of the model. It is therefore
crucial to enforce a consistent computation of those quantities among all the
model atmospheres.

Since radiative transfer codes do not usually need an optical depth scale,
such a scale is given here using separate routines. It is then crucial to calculate
it in a consistent way: both density and temperature should be averaged in the
very same manner. Two 1D models computed from the same 3D model will
have different optical depth scales, when the averaging was done differently. In
Fig. 6.4, the computation of isosurfaces on which physical quantities are aver-
aged is done at constant bolometric optical depth 7. However, the depth scale
of the x-axis is chosen to be the monochromatic optical depth at a wavelength
of 5000 A. The density and temperature were consistently averaged in order
to compute the optical depth scale.

From Fig. 6.5 we observe that on depths where the monochromatic optical
depth is close to unity, the averaged temperature over isosurfaces of constant
bolometric optical depth has better agreement with the corresponding tem-
perature structure of the FALC390 model than the averaged temperature on
horizontal layers. At deeper depths, our 1D models with isosurface averaging
exhibit a temperature bump that is much less pronounced or in-existent in the
FALC390 model. In contrast, at deeper depths, the horizontal averaging seems
to provide better agreement.

6.3.2 Limb-darkening

Fig. 6.6 shows the limb-darkening curves corresponding to the considered 1D
models as well as the limb-darkening observed by Neckel & Labs (1994). The
agreement is good at long wavelengths but all models display a small bump
at shorter wavelengths (they are excessively concave, which appears clearly at
heliocentric angles near p = 0.4). Since the original FAL-C model was con-
structed in order to give perfect agreement with the observations, and the two
1D models derived from 3D simulations and the FALC390 model are closer to
each other than they are to the observations, we suspect slight inaccuracies in
the non-scattering opacities. It could also be that the bilinear 4-point interpo-
lation of the radiative transfer quantities (see Sect. 6.2.3) is not sufficient to
reach an acceptable accuracy.

The v50-flat and roe-flat models are not shown in Fig. 6.6 in order to keep
it not too busy, but the corresponding curves are clearly discrepant with all
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Figure 6.6. Limb-darkening curves of the considered 1D models and observations
at a variety of wavelengths in the visible spectrum: 3880 A(violet), 4560 A(blue),
5350 A (green), 6040 A (orange) and 6565 A (red). The emerging intensity is normalized
by its own value, I., at disc centre.

other curves, as can already be expected from their corresponding temperature
structure in Fig. 6.5.

6.3.3 Centre-to-limb variation of polarization

Fig. 6.7 shows the centre-to-limb variation of the polarization of the considered
1D models, as well as of the semi-empirical curve established with Eq. (6.8)
(here referred as Fluri & Stenflo 1999) with the parameters corresponding to
the FAL-C model and the limb-darkening curve of, respectively, Neckel & Labs
(1994) referred as NL1994 and our own radiative transfer modelling referred
as FALC390. The agreement is again better in the red than in the blue part
of the spectrum.

Since the thick curves (solid and dashed) are both computed from the
same semi-empirical formula, with the same parameters, but with different
limb-darkenings, the discrepancy between the two provides a qualitative idea
of how limb-darkening affects the centre-to-limb variation of polarization.

On the contrary, the FALC390 model (thin dashed curve) and the semi-
empirical model using the FALC390 limb-darkening (thick solid line) should
exactly match if the opacities used by Fluri & Stenflo (1999) and the opaci-
ties we computed with the RH routines (Uitenbroek 1998) were identical and
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Figure 6.7. Centre-to-limb variation of the continuum polarization of the consid-
ered 1D models at a variety of wavelengths in the visible spectrum: 3880 A(violet)7
4560 A (blue), 5350 A(green), 6040 A (orange) and 6565 A(red). Fluri & Stenflo (1999)
refers to the semi-empirical formula given in Eq. (6.8) with the parameters of the
FAL-C model and the limb darkening either obtained from the FALC390 interpo-
lated model or from the observations of Neckel & Labs (1994) referred as NL94 in
the caption.

if the two radiative transfer codes are both accurate. Here, we attribute the
discrepancy to mismatches in the computed opacities. Since the RH code pro-
vides routines to compute a generous amount of contributions to the scattering
opacities, we suspect that the slightly lower polarization appearing in the semi-
empirical curve with the FALC390 limb-darkening is rather due to missing
contributions in the scattering-opacities that were used in order to determine
the parameters of the semi-empirical model rather than to discrepancies in the
non-scattering opacities. At longer wavelengths the same discrepancies appear,
although they are not fully visible in Fig. 6.7.

An other possible representation of the same data is given in Fig. 6.8,
in which the linear polarization is plotted as a function of wavelength for a
selection of heliocentric p values.

6.4 The continuum from 3D models

Carrying out the present investigation from high-resolution 3D models rather
than from 1D models is a computationally intensive task and requires involved
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Figure 6.8. Polarized spectrum at a variety of heliocentric angles: from top to
bottom, p = 0.1,0.15,0.2,0.25,0.3,0.4, 0.5.

codes and post-processing tools. The 1D modelling already gave us a lot of
insight on the polarized continuum. However, there are two questions that
cannot be answered with 1D modelling. First, we would like to know how the
spatially averaged polarized spectrum and centre-to-limb variation of polar-
ization compare to the 1D modelling. There is the possibility that radiative
transfer over the averaged internal structure of a 3D atmosphere on isosur-
faces of constant optical depth would not yield the same polarization as the
spatial average of the emerging polarization from the full 3D atmosphere. Sec-
ond, since the surface of the Sun is corrugated by convective cells, at granular
scale, cylindrical symmetry with respect to lines-of-sight is broken also when
looking at disc centre. A non-zero amount of polarization is hence expected
at small scales anywhere on the solar disc, and the 3D structures should also
appear in polarization maps. This further investigation obviously requires
high-resolution 3D modelling.

6.4.1 Polarization maps at disc centre

For the magnetic model d3gt57g44v50fc.134051, the calculated intensity and
polarization maps are shown in Fig. 6.9 at disc centre. The top left panel shows
temperature at the isosurface of constant bolometric optical depth, whereas
the top right panel displays a map of the emergent monochromatic intensity
contrast, I/(I) — 1. As expected, both quantities faithfully reproduce the
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Figure 6.9. Temperature structure on the isosurface of unit bolometric optical depth
and intensity contrast of the d3gt57g44v50fc.134051 model (top row) and linear polar-
ization Q/I and U/I from the same model (bottom row). All maps cover a horizontal
field of view of 9.6 x 9.6 Mm?.

solar granulation pattern and are very similar, except for the fact that the
monochromatic emerging intensity image is sharper than the temperature map.

The bottom maps of Fig. 6.9 display small but non-zero polarization signals,
that go up to 1075 both for /I and for U/I. We note that we consider here
the linear components of the emergent polarization @@ and U normalized by
the local emergent intensity I. @Q/I displays a chequered pattern, and U/I
displays the same pattern rotated by an angle of 45°. Since, at disc centre, the
Sun is essentially invariant under rotation around line-of-sight, one expects
at first glance no preferred orientation. There are two equivalent ways of
understanding this pattern. From an observational point of view, even if there
is no preferred direction at disc centre, the observer breaks the symmetry by
choosing a certain orientation for the polarimeter. In the same way, in the
numerical simulations, the definition of @@ and U requires the definition of a
reference angle, that breaks the symmetry.

An alternative and more formal approach is to note that Q and U are not
invariant under geometric rotations. There is a well defined way in which the



6.4. The continuum from 3D models 121

Figure 6.10. Rotation of fake ) and Figure 6.11. Rotation of simulated @
U maps by an angle of 30°. and U maps by an angle of 30°.

Stokes vector transforms under rotation, that includes both a geometric rota-
tion and a mixing of the components of the Stokes vector. This appears clearly
in Fig. 6.10, in which the @ and U maps are artificial. Instead, in Fig. 6.11,
realistic @ and U maps with their corresponding chequered patterns are ap-
propriately rotated. The patterns, however, remain invariant under rotation,
as expected. This pattern is therefore not a numerical artefact from the com-
putational grid on which the physical quantities are discretized: it is a pattern
intrinsic to the definition of the Stokes vector.

At the solar limb, light is mainly polarized parallel to it. With the present
and usual definition of the Stokes parameters, at the solar limb we have positive
@ signals and almost zeros signals in Stokes U. For this reason Stokes @ is
usually used as a measure for linear polarization. However, at disc centre and
with high resolution simulations, there is no real distinction between Stokes @
and Stokes U, and both carry the same amount of polarization. The relevant
quantity is the total amount of polarization, P = \/Q? + U2. Under rotations
P has also a simpler transformation law than @ and U, since it simply rotates
geometrically and does not mix components with any other quantity. We will
later show and discuss maps of P.

6.4.2 Limb-darkening

Maps of the intensity contrast of the d3gt57g44v50£fc.134051 model are shown
in Fig. 6.12 for lines-of-sight of different inclination angles p in the continuum
at a wavelength of A = 5350 A. Granules are well visible at all heliocentric
angles p. It should however be noted that the overall contrast diminishes from
disc centre to solar limb, and it has been enhanced in Fig. 6.12 by adapting
the grey-scale map.
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5350A

| contrast at A

Figure 6.12. Intensity contrast maps along different lines-of-sight defined by the
heliocentric angle p = cos(#), at wavelength A = 5350 A. The contrast is normalized
to the average intensity over each individual map, so that the limb-darkening is not
apparent on this figure: each map has its own grey scale. At disc-centre, the intensity
contrast extends approximately from —45% (black) up to 65% (white), whereas at
the limb the range is reduced, going from —15% up to 30%. A bright point is signalled
with the red arrow.

The spatially averaged limb-darkening curves corresponding to the models
d3gt57g44v50fc.134051 and d3gt57gddroefc.56016 is shown in Fig. 6.13, to-
gether with the corresponding 1D models averaged over isosurfaces of constant
bolometric optical depth, v50-iso and roe-iso respectively, as well as the obser-
vations of Neckel & Labs (1994). The discrepancy between the 3D modelling
and the 1D modelling is striking. The 3D modelling shows an excess of inten-
sity at intermediate heliocentric angles. In fact, all numerical models we have
studied, both 1D and 3D, produce limb-darkening curves with a an excess of
concavity, at intermediate heliocentric angles, that is particularly pronounced
in the 3D high-resolution modelling. We did not find a definitive explanation
for this behaviour. A possible explanation resides in the Cartesian grid we
used in radiative transfer instead of the more appropriate spherical grid. From
a purely geometric point of view, equally long inclined rays directed with an
angle corresponding to = 0.5 reach 10km deeper in the Cartesian grid than
in the spherical grid, hence probing, in some places, significantly hotter struc-
tures. 1D models and low-resolution 3D models are of course also affected,
but possibly in a less significant way, since the atmosphere is horizontally av-
eraged/smoothed. This explanation is however not compatible with the 3D
modelling of Trujillo Bueno & Shchukina (2009), who used a snapshot that re-
sulted from the hydrodynamic model of Asplund et al. (2000). Trujillo Bueno
& Shchukina (2009) find indeed an emerging intensity that is systematically
too low at intermediate heliocentric angles. However, since the adopted opac-
ities are different in the two models, a fair comparison is not possible. In



6.4. The continuum from 3D models 123

1.0

o o e o o
¢ o ~ © ©

Emerging intensity (/)/{Ic)

o
IS

——= roe-iso
—— d39gt57944v50fc.134051
ffffff d3gt57g44roefc.56016
—— Neckel & Labs (1994)

0.3

0.2

0.2 0.4 0.6 0.8 1.0
Heliocentric angle u = cos(6)

Figure 6.13. Spatially averaged limb-darkening curves of the considered 3D models,
together with the corresponding 1D averaged models and the observations of Neckel
& Labs (1994), at a variety of wavelengths in the visible spectrum: 3880 A (violet),
4560 A (red), 5350 A (green), 6040 A (orange) and 6565 A (blue). The emerging inten-
sity is normalized by its own value at disc centre I..

addition, since our 1D models as well as the FALC390 model already show a
bit too high intensities with respect to the limb-darkening of Neckel & Labs
(1994), we could also have underestimated the non-scattering opacities. Some
evidence of it is given by the fact that the same FALC390 limb-darkening curve
as computed by Fluri & Stenflo (1999), FALC; in Fig. 3 of the cited paper,
seems to have a slightly better agreement with the observations of Neckel &
Labs (1994).

6.4.3 Centre-to-limb variation of polarization

In spite of the difficulties that emerged from the spatially averaged limb-
darkening curves, we still continue our study of the continuum with the centre-
to-limb variation of polarization. We know that inaccuracies in the limb-
darkening curve are not so strongly reflected in the centre-to-limb variation
of polarization. This appeared clearly when comparing the FALC390 model
with the observations of Neckel & Labs (1994) in Fig. 6.6. The relative differ-
ence in the limb-darkening between these two models is similar to the relative
difference between the 3D models and their 1D counterpart, and this relative
difference is only slightly reflected on the variation of polarization appearing
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Figure 6.14. /I polarization maps along lines-of-sight of different inclination an-
gles defined by the heliocentric angle p = cos(6), at wavelength A = 5350 A. At
disc-centre, the polarization signal extends approximately from —6 x 107° (blue) up
to 6 x 1075 (red), whereas at the limb the range is one order of magnitude more
extended, going from —6 x 10™* up to 6 x 107*. The colour map is divergent and
centred at zero polarization (white); the @ signal has to preferred sign at disc centre
but clearly favours positive sign at the limb. The bright point signalled with the red
arrow now appears as a tiny depolarized point.

in Fig. 6.7.

We have shown that the meaningful physical quantity describing linear po-
larization is P = /@2 + U2. It is however still interesting to consider maps
of @Q/I, since their spatial average is later used to compare our simulations
with observations and with past 1D modelling. These polarization maps are
shown in Fig. 6.14. The corresponding maps of total linear polarization are
shown in Fig. 6.15. At disc centre, the granules appear as regions of extremely
low polarization. This is well understood since the granules have in a good
approximation a cylindrical symmetry along the normal direction, that coin-
cides with the line-of-sight at disc centre. Hence, the perpendicular component
to the line-of-sight of te radiation field is isotropic. This symmetry obviously
breaks with inclined rays, since temperature has a strong temperature gradient
along the vertical direction within granules, which renders them brighter than
the intergranular lanes at inclined angles.

Similarly, at disc centre, the magnetic bright features/points that reside
in the intergranular lanes appear as regions of low linear polarization. This
happens for the same reason for which granules are also darker: these mag-
netic features are horizontally homogeneous regions, and hence the horizontal
component of the radiation field is isotropic. We note that normalizing the
linear polarization by the intensity accentuates the contrast difference between
the depolarized features and the surrounding areas, but these features already
appear as regions of low polarization in maps of pure linear polarization with-
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Figure 6.15. P/I polarization maps along different lines-of-sight defined by the
heliocentric angle p = cos(f), at wavelength A = 5350 A. At disc-centre, the polar-
ization signal extends approximately from zero polarization (black) up to 6 x 107°
(white), whereas at the limb the range extends from 2 x 107* up to 6 x 107%. The
bright point signalled with the red arrow appears again as a tiny depolarized point.
Note that the maps for inclined line-of-sight correspond to the middle-left limb, and
not to the middle-right limb!

out any normalization. A selected bright point is marked in Figs. 6.12, 6.14
and 6.15.

The spatially averaged centre-to-limb variation of the linear polarization
(@) / (I) of the considered 3D models is shown in Fig. 6.16, together with
the corresponding 1D averaged models as well as the curve obtained by using
the semi-empirical formula of Eq. (6.8) with, respectively, the FALC390 limb-
darkening and the observed limb-darkening of Neckel & Labs (1994). The
agreement between all curves for linear polarization is impressive, and much
better than for the intensity, as seen in the limb-darkening plot of Fig. 6.13.
This suggests that the scattering opacities are less sensitive to small variations
of temperature and density than the non-scattering opacities.

6.4.4 The contribution of the far red wing of Lyman-§

As anticipated in Sec. 6.2.2, the red wing of Lyman-8 is expected to play
an important role in the centre-to-limb variation of polarization, especially
towards the limb, because at the depth range in which the continuum is formed
for inclined rays the Rayleigh scattering absorption coefficient due to the far red
wing of Lyman-3 dominates the absorption coefficient for Thomson scattering
at free electrons (Fig. 6.3).

Fig. 6.17 shows, among other data, the averaged linear polarization
(@) / (I) at heliocentric angle u = cos (f) = 0.1 for the considered 3D models at
a selected number of wavelenghts. For the 3D model d3gt57g44v50fc.134051,
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Figure 6.16. Spatially averaged centre-to-limb variation of the linear polarization
(Q) / (I) of the considered 3D models, together with the corresponding 1D averaged
models as well as the corresponding determination using the semi-empirical formula
of Eq. (6.8) with the FALC390 limb-darkening and the observed limb-darkening of
Neckel & Labs (1994).
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Figure 6.17. Linear polarization /I spectrum at heliocentric angle yu = cos (0) =
0.1 for a selection of 1D models and spatially averaged linear polarization (Q) / (I)
for the d3gt57g44v50fc.134051 3D model, for the model of Asplund et al. (2000)
as computed by Trujillo Bueno & Shchukina (2009), as well as the semi-empirical
determination of Stenflo (2005) (thin green solid line) with the corresponding lower
and upper bounds (thin red solid lines). For the model d3gt57g44v50£fc.134051, only a
reduced amount of data is available, but the computations has been carried out twice,
once including all available scattering opacities listed in Sec. 2.2.4, once including
only both Rayleigh scattering in the far wing of Lyman-a and Thomson scattering
(“R&T” label in the legend), as it was done by Trujillo Bueno & Shchukina (2009).
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the points are plotted, once including all available scattering opacities (see
Sec. 2.2.4), and once including Rayleigh scattering in the far wing of Lyman-a
(as given by Eq. (6.7)) and Thomson scattering alone. We label this second
curve that includes a limited number of scattering opacities with the letters
“R&T”. By far, the most important missing contribution in this second choice
is the far red wing of Lyman-3. We deduce from these two curves that this
contribution is not negligible.

In Fig. 6.17 we also observe a significant discrepancy between the FALC390
model of Fluri & Stenflo (1999) and the later semi-empirical determination of
Stenflo (2005). Trujillo Bueno & Shchukina (2009) find an excellent agree-
ment between their own 3D synthesis and the semi-empirical curve of Stenflo
(2005), which mislead to the conclusion that the precise evaluation of linear
polarization in the continuum requires realistic 3D modelling. However, our
own calculations suggest that, to the contrary, spatial averages of linear po-
larization from 3D maps are extremely close to all considered 1D synthesis.
In fact, Trujillo Bueno & Shchukina (2009) neglected the contribution of the
red far wing of Lyman-£, and therefore missed a significant amount of polar-
ization, in such a way that their curve would agree with the semi-empirical
determination of Stenflo (2005). However, our calculations suggest that the
polarization curve of Fluri & Stenflo (1999) is the correct one.

6.5 Discussion and conclusions

In this contribution we have presented the methods and tools for computing
radiative transfer of polarized radiation, both from 1D and 3D models. We
propose a natural way of reducing 3D models to equivalent 1D models, and we
have synthesized polarization maps from two snapshots of two of our numerical
M(HD) simulations, one magnetic, the other non-magnetic. The synthesis of
both polarized and non-polarized spectra from the two simulations did not
show any significant difference. The comparison of the limb-darkening from
the 3D model atmospheres to the limb-darkening from 1D atmospheres gave
significant discrepancies that we have not yet fully understood. The possible
factors contributing to these differences are the Cartesian nature of the grid, a
possibly inaccurate computation of the non-scattering opacities, and a possibly
inaccurate bilinear 4-point interpolation of the radiative transfer quantities.
These verifications would required additional investigations.

Instead, the linearly polarized spectrum shows am excellent agreement
among all the computations we carried out and with the computations of
Fluri & Stenflo (1999). It however exhibits a significantly higher polarization
than the corresponding spectrum from the 3D calculations of Trujillo Bueno &
Shchukina (2009) and from the semi-empirical determination of Stenflo (2005).
We can partially explain the discrepancy between the former 3D calculations



Bibliography 129

and our own by the missing Lyman-£3 opacities in the computation of Stenflo
(2005). Since the determination of Stenflo (2005) relies on a model for depo-
larizing lines, the difference could be attributed to such a model, but a deeper
investigation is required to proof or falsify this hypothesis, and presently we
must consider this problem as an open question.

A more theoretical and interesting question is how the source functions
for the different Stokes components compare. Since the Stokes components
in the radiative transfer equation decouple for the continuum, we have seen
that the formal transfer is the same for intensity and polarization. The only
difference between the emerging intensity and polarization is then encoded in
the corresponding source functions. As a first approximation, we have con-
cluded that both intensity and polarization form in the same layers, but Fluri
& Stenflo (1999) already showed that in some models there are chromospheric
contributions and non-LTE effects in the polarized spectrum, which would be
interesting to reproduce with 3D radiative transfer.

A last and very important extension to this investigation would be the
inclusion of additional models or additional snapshots of the same model in
order to improve the statistics. Our limited number of models seems to sug-
gest that the model-dependence is not as significant as the dependencies on
scattering and non-scattering opacities, but this conclusion should be revisited
after improving the statistics.
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CHAPTER 7

Conclusion

This scientific contribution encompasses four different projects: the study of
the evolution of the non-solenoidal component of the numerically evolved mag-
netic field in simulations using constrained transport methods (Chapter 3), the
study of non-magnetic bright points appearing in the intergranular lanes of syn-
thetic observations of the Sun (Chapter 4), the study of the immediate vicinity
of the Balmer limit in the isolated Hydrogen atom by making a semi-analytic
model of the total cross-section as a function of wavelength (Chapter 5), and
the study of the linearly polarized solar continuum through synthetic observa-
tions (Chapter 6). The synthesis of the simulations used in these projects is
also part of this work.

The use of numerical radiative (magneto-)hydrodynamic simulations, solar
spectropolarimetry and radiative transfer are the recurrent topics that relate
all these projects to each other. Although apparently independent, these topics
emerged naturally throughout different developments of the research that lead
to this Ph.D. thesis. Accordingly, distinct results and ideas for new investiga-
tions originated and where discussed in the corresponding conclusions for each
chapter. We summarize here the main points.

Regarding the emergence of non-solenoidal magnetic fields in CO?BOLD
simulations using constrained transport, the results are very satisfactory. In
the typical 2h time sequences spanned by our high-resolution simulations, no
significant increase of the divergence of the magnetic field was observed. Longer
but lower resolution models also performed extremely well.

Non-magnetic bright points (nMBPs) are shown to be an observable man-
ifestation of vertically directed vortex tubes, in which the centripetal force is
provided by the gradient pressure, hence sustaining a region with low-density
plasma. This region is consequently more transparent than the surrounding
plasma, allowing for photons to escape from deeper regions and to produce
an enhanced intensity in the emerging light. This second project lead to the
development of an algorithm for the detection of nMBPs and to a correspond-
ing statistical study. The diameter of nMBPs is approximately 60 — 80 km,
and their bolometric intensity contrast is approximately 20% with respect to
their immediate intergranular surroundings. Their lifespan ranges from ap-
proximately 30s up to the granular lifetime of a few minutes. Their small size
makes them barely detectable with present telescopes, but we expect that the
new generation of solar telescopes will be able to resolve such features.
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The third project started with the naive question is there a discontinu-
ity at the Balmer limit and lead to a semi-analytical modelling of the total
cross-section due to bound-bound and bound-free transitions from the n = 2
energy level of the isolated Hydrogen atom. We proved from quantum mechan-
ical grounds and with modern formalism that there is no discontinuity at the
Balmer limit, but a rapid drop of the lower-envelope of the total cross-section.
We proposed a definition for the location of the Balmer jump and showed that
its exact wavelength sensibly depends on the broadening mechanisms that come
into play. We left the study of the interactions of the Hydrogen atom with the
surrounding plasma as well as the computation of radiative transfer for a future
work.

Finally, the study of linear polarization in the continuum and its centre-to-
limb variation left a number of incognitos. An important result is that the far
wing of Lyman-# is a non-negligible contributor to scattering polarization with
a contribution to the total corresponding absorption coefficient that is compa-
rable to that of Thomson scattering at free electrons. However, the number of
parameters that enter when computing opacities and radiative transfer signif-
icantly complicates the task of disentangling the different contributions to the
emerging spectrum. With our methods the spatially averaged polarization is
extremely similar in all of our models, but when comparing all available syn-
thetic and real observations with each other we find discrepancies that remain
unexplained at the present time. New and independent observations are ad-
visable before making any final conclusion. The polarization maps revealed, at
disc-centre, the familiar structure of the solar granulation, in which granules
appear with almost-zero linear polarization, and integranular lanes exhibit a
small but significant linear polarization of the order of 5 x 1075 — 6 x 1075,
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Abstract:

This Ph.D. dissertation combines four distinct projects in solar physics. They have
the common thread of using high-resolution (magneto-)hydrodynamic numerical sim-
ulations of the Sun, extending from the upper convective layers up to the lower chro-
mosphere. Solar spectropolarimetry and radiative transfer are the two other com-
monalities relating these projects. The present thesis hence embraces a broad field.
One of the projects is devoted to the study of bright points appearing in the intergran-
ular lanes in magnetic field-free simulations, to the understanding of their existence
independently of magnetic fields, and to the statistical study of them. Since the size
of the bright points is barely below the spatial resolution capabilities of present solar
telescopes, this project makes a prediction arising from numerical simulations alone,
and this prediction can possibly be verified in the near future with the new generation
of solar telescopes. The study of the divergence of the magnetic field in numerical
simulations is an other aspect of this research work. Since all numerical schemes are
subject to round-off errors, verifying the ability of the used algorithmic to maintain
the field divergence-free is required in order to exclude a significant contribution of
unphysical forces in our modelling. A third project deals with the total cross-section
due to bound-free and bound-bound electronic transitions in the isolated Hydrogen
atom from the n = 2 lower energy level. It is shown using a modern formalism that
the total cross-section as a function of wavelength has no discontinuity at the Balmer
limit, but a sharp rise of the cross-section when approaching the Balmer limit from
the red side. The location of the sharp increase of the cross-section is shown to sensi-
bly depend on the various mechanisms of spectral line broadening. The final project
is a study of the linearly polarized light in the continuum radiation from the Sun,
which was synthesized from the high-resolution simulations of the first project. The
observable quantity that is compared to available observations and earlier model cal-
culations is the centre-to-limb variation of the spatially averaged linear polarization.
Discrepancies among the distinct available data suggest that further observations are
required in order to draw conclusions. Additionally, we synthesize maps of linear po-
larization at different heliocentric angles. The maps at disc-centre are of particular
interest, since they exhibit a small yet significant polarization due to the corrugated
rather than plane-parallel surface of the Sun. This small level of polarization will
have to be taken into account in the calibration procedures of the polarimeters of the
new generation of telescopes.
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Résumé :

Cette dissertation doctorale aborde quatre sujets différents de la physique so-
laire. L’utilisation de simulations numériques (magnéto-)hydrodynamiques (MHD)
s’étendant de la haute couche convective a la basse chromospheére est une car-
actéristique commune. La spectropolarimétrie ainsi que le transfert radiatif sont
aussi deux sujets récurrents. Cette these doctorale couvre donc un large spectre.
L’un des projets est consacré a I’étude de points brillants apparaissant dans la région
intergranulaire, dans les simulations privées de champs magnétiques. On y explique
leur existence, indépendamment des champs magnétiques, et on les étudie d’un point
de vue statistique. Comme leur taille est légérement plus petite que la résolution
spatiale des présents télescopes solaires, ce projet réalise une prédiction basée unique-
ment sur les simulations. Celle-ci pourra étre vérifiée dans un avenir proche, avec les
nouveaux télescopes solaires. L’étude de la divergence du champ magnétique dans les
simulations est un des autres sujets de ce travail de recherche. Toutes les méthodes
numériques sont en proie aux erreurs d’arrondi, et vérifier que ces méthodes parvi-
ennent malgré tout & limiter la divergence du champ magnétique est nécessaire pour
exclure ’existence d’importantes forces artificielles. Un troisieme projet traite de la
section efficace totale des processus de transition électronique lié-libre et lié-lié de
I'atome d’hydrogene isolé, a partir de son niveau d’énergie n = 2. On y démontre,
avec un formalisme moderne, que la section efficace totale comme fonction de la
longueur d’onde n’a pas de discontinuité a la limite de Balmer, mais une accroisse-
ment rapide en approchant la limite par le rouge. On montre que la position exacte
de cet accroissement dépend des différents mécanismes d’élargissement des lignes
spectrales. Le dernier projet est une étude de la lumieére polarisée émergente de la
partie continue du spectre solaire ; on y fait usage des simulations a haute résolution
pour la synthese des données nécessaires. La variation centre-bord de la moyenne
spatiale de la lumiere polarisée linéairement est la quantité utilisée pour comparer les
observations et les différents modeéles numériques. Compte tenu des désaccords entre
les différentes données, de nouvelles observations seront nécessaires pour tirer des
conclusions solides. En outre, dans le cadre de ce projet, nous générons des observa-
tions synthétiques du soleil a différents angles héliocentriques. Celles correspondant
au centre du soleil sont particulierement intéressantes, du fait qu’elles présentent une
polarisation petite mais bien présente, due a la surface ondulée et inhomogéne du
soleil. Ce petit niveau de polarisation devra étre pris en compte dans les procédures
de calibration des polarimetres de la nouvelle génération de télescopes.

Mots-clés :

magnétohydrodynamique (MHD) — hydrodynamique — Soleil: photospheére — Soleil:
granulation — champs magnétiques — turbulence — polarisation — diffusion — lignes
spectrales: profils — processus atomiques — opacité
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