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Résumé

Cette these est consacré a 1’étude de la géométrie de Poisson et la théorie des représentations
en utilisant I’approche de la géometrisation et tropicalisation. Le but est de trouver des relations
entre quelques nouveaux résultats dans le domaine. La motivation est de deux sortes:

(1) la géometrisation de la base canonique dans [16];

(2) la relation entre le systeemes de Gelfand-Zeitlin et la tropicalisation d’un dual d’un
groupe de Lie-Poisson du groupe unitaire dans [4].

Les résultats principeaux sont les suivantes:

e Nous présentons des variétés avec une ptentiel fibré sur un sous groupe de Cartan H
d’un groupe réductif. Ces variétés sont connus comme des multiplicités géometriques.
Elles forment catégorie monoidiale et nous construisons un foncteur monoidiale de cette
catégorie a la catégorie des réprésentations d’un dual d’un groupe de Langlands G de
G. En utilisant ce foncteur, nous retrouvons et généralisons le calcul des multiplicités du
produit tensoriel de [21].

e Nous présentons la notion d’une tropicalisation partielle d’une variété Poisson positive
muni un potentiel. Le dual d’un groupe de Lie-Poisson G* d’un groupe de Lie réductif
complexe G est naturellement muni avec une structure positive et un potentiel. Comme
cela, on assigne 2 G* un systeme intégrable sur PT(G*), lequel est un produit du cdne
des cordes prolongé et d’un tore compacte de dimension %(dim G —rank G).

e Nous trouvons une relations entre deux constructions naturelles de dualié d’un groupe
algebraique semi-simple G: son dual d’un groupe de Langlands GV et son dual d’un
groupe de Lie-Poisson G*. Ca veut dire: le cone intégrale défini par le potentiel de
Berenstein-Kazhdan sur un sous-groupe de Borel, BY C GV est isomorphique au cone
intégrale de Bohr-Sommerfeld défini par le structure de Poisson sur la tropicalisation
partielle PT(G*).

e En utilisant la tropicalisation partielles et I’isomorphisme de Ginzburg-Weinstein, nous
construisons une saturation pour chaque orbite coadjointe d’un groupe compacte semi-
simple par des plongements symplectiques des domaines toriques.






Abstract

In this thesis, we study Poisson geometry and representation theory by using the approach
of geometrization and tropicalization. The goal is to find relations between some new achieve-
ments in these directions. This is motivated by

(1) the geometrization of canonical basis in [16];

(2) the relation between Gelfand-Zeitlin systems and the tropicalization of dual Poisson-Lie
group of unitary group in [4].

The main results are as follows:

e We introduce geometric multiplicities, which are positive varieties with potential fibered
over the Cartan subgroup H of a reductive group GG. They form a monoidal category,
and we construct a monoidal functor from this category to the representations of the
Langlands dual group G of G. Using this, we recover the computation of tensor product
multiplicities from [21] and generalize them in several directions.

e We introduce a notion of partial tropicalization of a positive Poisson variety with po-
tential. The dual Poisson-Lie group G* of a reductive complex Lie group G carries a
natural positive structure and potential. This procedure assigns G* an integrable system
on PT(G*), which is the product of the extended string cone and the compact torus of
dimension 3 (dim G — rank G).

e We find a relation between the two natural duality constructions of a semisimple algebraic
group G: its Langlands dual group G and its Poisson-Lie dual group G*. That is, the
integral cone defined by the Berenstein-Kazhdan potential on Borel subgroup BY C GV
is isomorphic to the integral Bohr-Sommerfeld cone defined by the Poisson structure on
the partial tropicalization PT(G*).

e For each regular coadjoint orbit of a semisimple compact group, we construct an ex-
haustion by symplectic embeddings of toric domains by using partial tropicalization and
Ginzburg-Weinstein isomorphisms.
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1 Introduction

Overview

The main goal of my thesis is to search for new connections between Poisson geometry and
representation theory using the approach of tropicalization and geometrization respectively. The
approach of the “geometrization” of combinatorial data dates back to the work of Lusztig, who
constructed a birational isomorphism from an affine space to the unipotent radical of a Borel
subgroup of a reductive Lie group from the combinatorial data of the canonical basis. The
approach of “tropicalization” in our setting, which we use in this project, was first introduced
by Berenstein and Kazhdan. It consists of a set of formal rules to pass from birational to
piecewise-linear isomorphisms.

This project lies at the crossroads of many branches of mathematics and physics. The main
research object, positive varieties with potentials, has drawn the attention of many mathemati-
cians and physicists due to its surprisingly significant roles in many different areas. To list a
few of the most important related works: positive varieties with potentials find applications
in the study of cluster algebra, super-potential (Gross-Hacking-Keel-Kontsevich [40]), canon-
ical basis and mirror symmetry (Goncharov-Shen [44]) and moduli spaces of local systems
(Goncharov-Shen [45]).

Poisson geometry originates in solving the problems of classical mechanics, and later was
connected with a number of areas. The motivation and starting point for this project are the con-
nection involving Poisson geometry and cluster theory, which was studied by Kogan-Zelevinsky
[64], Gekhtman-Shapiro-Vainshtein [41, 42] and Alekseev-Davydenkova [4]. In particular, in
[4], the latter studied the mysterious relation between dual Poisson-Lie groups and Gelfand-
Zeitlin integrable system. This project also builds upon the work of the (global) linearization
of Poisson-Lie groups, which was originally studied by Ginzburg-Weinstein [43]. Other proofs
appeared in different perspective in Alekseev [1], Boalch [23], and Enriquez-Etingof-Marshall
[30]. This project therefore lies at the cross-section of many areas in mathematical physics.

What lies at the center of this project is the construction of global action-angle coordi-
nates on coadjoint orbits of a compact Lie group. Co-adjoint orbits play an important role in
symplectic and Poisson geometry. Action-angle coordinates yield a canonical model for Liou-
ville integrable systems in the neighborhood of a Liouville torus. The construction of global
action-angle coordinates, however, remains an open problem for many important spaces, such
as coadjoint orbits, multiplicity spaces, and moduli spaces of flat connections.

1



2 CHAPTER 1. INTRODUCTION
On positivity theory and representation theory

Let us start from positivity theory and representation theory. A positive variety with poten-
tial is an irreducible algebraic variety X and a rational function ® on X, together with an open
embedding of a split algebraic torus to X so as the potential pulls back to a subtraction-free ra-
tional function. Assume for simplicity that the potential can be written as a Laurent polynomial

D(x1,...,2p) = Z CmTt Tt ey >0,
meZ"\{0}
where m = (myq, ..., my) and ¢, # 0 holds for finite number of m’s. To such a potential one

can assign a piece-wise linear function ®': Z" — Z by

t o .
@ (617 cee 7671) - mI;Icl;,Ln>O ;mk‘gk

and a rational convex cone (X, ®)! C Z™ by

(X, @) :={(&,....&) € Z" | (&, ..., &) = 0}.

Examples of positive varieties with potentials are complete and partial flag varieties for semisim-
ple algebraic groups [16], especially the Borel subgroup B_ C G. For G = SLs, B_ is the set
of lower triangular matrices

a 0
0: G2, — B_ : (a,b) — x := {b a_l]'

In this case, the so-called Berenstein-Kazhdan potential [16] on B_ is given by
(I)BK(.’E) = ab_l + a_lb_l.

For general semisimple algebraic group G, let wg be the longest element in the Weyl group W
of G. Then each reduced word i of wy determines an open embedding (cluster chart)

0;: G" — B_, where r = rank(G), m = £(wyp).

Together with the potential ® g, we get a polyhedral cone (B_, ® gk, 6;)¢, which we call a BK
cone of GG. What is interesting and important is that the polyhedral cone (B_, ® g, 6;)! admits
a structure of Kashiwara crystal and parametrizes the canonical basis [16, 21]. Besides, the
cone (B_, ®px,0;)" has another structure map hw', the so-called highest weight map, to the
set of dominant integral weights X (H) of Langlands dual group GV. Denote by hw*(\Y)
the pre-image of hw'.

Theorem 1 (Theorem 3.5.9). [16, Main Theorem 6.15] There is a direct decomposition of
Kashiwara crystals:

(B, @i, 0)' = || hw'(AY).
AVeX;(H)

Moreover, hw_t()\v) = Byv as Kashiwara crystals, where Byv is the crystal associated with
the irreducible G -module with highest weight \".



Similar story goes along with GV. Actually, one can compare the BK cones of G and GV.
Let I := {1,...,7} be the indexes of the Dynkin digram of g, {a1,...,a,} C bh* be the
set of simple roots and {y,..., @} C b be the set of simple coroots. Fix a symmetrizer
{di,...,d;} of the Cartan matrix of g, which in turn determine an isomorphism

v:h—=b* o a) = diy.

Note that the group G and GV have the same Weyl group. There is a dual chart ;" (in the
context of dual cluster variety) for BY C GV

0y : GI'*" — BY,

and a (positive) rational map ¥;: B_ — BY. The following theorem finds a relation between
the BK cones of G and G":

Theorem 2 (Theorem 8.3.1 and Theorem 8.3.3). The tropicalization 1; := W, with respect to
charts 6; and 0y, is injective

Uit (B-, ®pi, 65) = (BY, Py, 0))",
and it extends to an isomorphism of real BK cones. Moreover; for any i € I,
Yioéi =&l oy, wiofi=floy, (hw') oty =1ohw

where we write &;, f; for the crystal operators on both (B-, Pk, 6;)" and (BY, @Y, 0y )"

Our theorem provides a different interpretation and a new perspective on a result of Kashi-
wara [58] and Frenkel-Hernandez [39].

Following [57], Kashiwara crystals have natural tensor product Byv ® B, v. Since there is
geometric interpretation of B)v, one natural question to ask is that if there exists a “geometric
object” such that its tropicalization counts the tensor multiplicity of GV modules. Following the
idea of “multiplicity geometrization” program, originated in [15, 16, 20, 18, 21], we introduce
the notion of geometric multiplicity to answer this question. A geometric multiplicity is a posi-
tive variety with potential (M, ;) fibered over the Cartan subgroup H of a reductive group G
and additionally fibered over some split torus S. They form a category, which we denote it by
Mult (see Definition 6.3.1 for more details).

Theorem 3 (Theorem 6.3.5 and Theorem 6.4.1). The category Multq is a non-strict unitless
monoidal category with product My x My given by My x My := My X Mo x U. Let Mf\v be
the tropical fiber over NV of (M, ®r)t. Then the assignments M s (M)

V(M) := P ClMi] @ Vi,
AVeprY

define a monoidal functor from Multg to Modgv, the category of G -modules, where C|-] is
the linearization of the set.

The extra fibration over S as a part of the structure of geometric multiplicities is introduced
to resolve the problem of possibly having infinite multiplicities, which happens in the following
case. Note that the basic object in Mlult is H with 0 potential. We define the multiplication in



4 CHAPTER 1. INTRODUCTION

Mult such that H « H = H? x U has a non-trivial potential A,. This potential is originated
in the so-called central charge As, which is defined on the space B_ x B_ as

Ag = Ppr(91) + PeK(92) — PBK(9192)-

By applying Theorem 3 to H x H, one gets infinite multiplicities since

The product « is defined so that if M; is additionally fibered over .S; for ¢ = 1,2, then M7 x M
is additionally fibered over S7 x So x H. Now for a geometric multiplicity M additionally
fibered over S, its tropicalization (M, ® ;) is naturally fibered over the direct product of PY
and cocharacter lattice X, (S) := Hom(Gp,, S). Then for every cocharacter £ € X, (S) we
define V(M) by
V(M) := @B ClMjv (] @ Viv.
AEPY

Theorem 4 (Theorem 6.4.2). Given geometric multiplicities M; additionally fibered over S;
fori = 1,2, one has the following natural isomorphism of GV -modules

U§17§2,)\V7Vv (Ml * M2) = Iy (V& (Ml)) ® Iyv (USQ (M2)) ) 1.1)

where I,,v (V') denotes the 1" -th isotypic component of a G¥-module V.

This indeed fixes the “infinite multiplicity” issue for {/(H x H) since (1.1) boils down to an
isomorphism
U)\\/7V\/ (H * H) =Z Vv ®V,v.

Thus the geometric multiplicity H « H (fibered over H?) computes tensor product multiplicities
dim Homgv (Vuv ,Vw ® Vv )

On Poisson geometry and integrable systems

Now let us dive into the world of Poisson geometry. Recall that the dual vector space
£* of the Lie algebra £ of a compact Lie group K carries a natural /inear Poisson structure
mg+ (which is known in the literature as the Kirillov-Kostant-Souriau Poisson bracket, or Lie-
Poisson structure). The coadjoint orbits O¢, which are parameterized by elements § of the
positive Weyl chamber, are the symplectic leaves of this Poisson manifold. For the unitary group
U,,, Guillemin-Sternberg [50] gave a beautiful construction of global action-angle coordinates
on Lie(U,)*, the so-called Gelfand-Zeitlin system. The natural inequalities of action variables
defines a polyhedral cone Cgz in R™ for m = %n(n—i— 1). One approach to the generalization of
this construction is the method of toric degenerations. Toric degenerations were used by Harada-
Kaveh in [51] to construct dense embeddings for three families of projective Kdhler manifolds:
generalized flag manifolds, spherical varieties, and weight varieties. If £ is an integral weight,
then O is projective Kihler. Toric degenerations of O for § integral were first constructed by
Caldero [24]. It follows from [51] that for £ integral, there is a global action-angle coordinates
on the integral coadjoint orbits.

We are suggesting a new approach to this problem, which involves Poisson-Lie groups,
positivity theory and cluster algebras. A Poisson-Lie group is a group object in the category of



Poisson manifolds. Poisson-Lie groups were first introduced by Drinfel’d [29] and Semenov-
Tian-Shansky [80]. The results in [42, 64] show that the natural multiplicative Poisson structure
7g on G := KC is log-canonical with respect to cluster coordinates, i.e., the Poisson bracket
with respect to cluster coordinates {A;} takes the form: {A;, A;} = m;; A A for m; € Q.
The Poisson structure 7 induces a Poisson structure g on K such that (K, 7k ) is Poisson-Lie
group. Poisson-Lie groups have natural duals, which are again Poisson-Lie groups. Note that
the Poisson space £* is an abelian Poisson-Lie group, which is the Poisson-Lie dual of (X, 0).
Denote by (K™, mx+) the Poisson-Lie dual of (K, mx). What is interesting is that these two
(dual) Poisson-Lie groups are isomorphic as Poisson manifolds. In [43], the authors show that
there exists a Poisson isomorphism, the so-called Ginzburg-Weinstein isomorphism:

GW: (£, 1) = (K™, mx).

In [4], the authors considered the dual Poisson-Lie group U’ of U,, and showed for the dual
Poisson-Lie group U, the dual Poisson bracket has the form

{Ai Ay = AjAj(mi5 + fij),

where 7;; € Q and f;; are functions on U};,. They showed that the tropicalization fj’s of fi;’s
define a polyhedral cone which is isomorphic to the Gelfand-Zeitlin cone:

(Cr, = Caz.

We generalize this results to any semisimple compact Lie group K by using the techniques
from cluster theory and by the procedure of partial tropicalization that we introduced. In more
details, let G = K©C be the complexification of K. Note that the group G admits an Iwasawa
decomposition G = U_AK and one can identify the dual Poisson Lie group K* of K with
U_A C B_. Denote by A, for k € [—r, —1]U[1, m] the natural coordinates of open embedding
0;. In other words, we have:

Az B_ — (CY™ 2 b (AL (b),..., Ap(D)).

Denote by &, for s < 0, the following change of coordinates: Ay = exp(s&x + i¢y). Note
that Ay, for k € [—r, —1] is real-valued on K*, the phases ¢ vanish for such k. In summary,
we have the following chain of birational isomorphisms

B_ o K* 2Ly R x (€)™ & RMHT x (S1)m,

The pushforward of the scaled Poisson bi-vector smg« through €50 A; gives a Poisson bi-vector
7 on R™*" x (S1)™. Denote by (7 )° the interior of the positive Weyl chamber and identify

ni=—ih: t* = X, (H) @z R.
Denote by C; the topological interior of the real extension (B_, ®px, ;) Q7 . R4 of aBK cone.
Theorem 5 (Theorem 7.6.2, Proposition 7.7.2 and Theorem 8.5.3). The following holds true:
o The limit Wioo = limg 7r:‘9 ‘ Cix(81)m exists, and defines a constant bi-vector.

e For § € (t1)° the symplectic leaves of 7l are of form Pe = A¢ X (SH)™, where
A¢ :=hw " (n(€)) is a polytope. Denote by wio the symplectic form on P.
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o For& € (t)°, the symplectic volume of P¢ is given by Vol (P, wgo) = Vol(Og, we).

Combining Theorem 5 with the scaled Ginzburg-Weinstein diffeomorphism for s < 0
GW: (€5 e ) — (K™, smg),
we have the following

Conjecture 6 (Conjecture 9.2.3). There exists a scaled Ginzburg-Weinstein map such that

lim &0 A;0GWs

§——00

exists on an open dense subset of t* and defines a Poisson diffeomorphism.

For K = U,, the conjecture was proven in [9], and it recovers the Gelfand-Zeitlin system.
Following the notation in Theorem 5, denote by Ag the J-interior of polytope A¢ and (Pg =

Ag x (S1)™. The best result towards this conjecture we get so far is as follows:

Theorem 7 (Theorem 9.5.1). For any € > 0, there exist 6 > 0 and a symplectic embedding
@g — O¢ such that

Vol(Og, we) = Vol(P{,wh,) > Vol(Og, we) — e.

In other words, we have proven that on an open chart of O, which exhausts almost all of
the symplectic volume, there exist action-angle coordinates.

Organization of the thesis

e In Chapter 2, we recall the general terminology and notation for semisimple algebraic
groups: root datum, SLy-triples and generalized minors. Then we give a detailed discus-
sion on twist maps, evaluation of generalized minors and the factorization problem.

e In Chapter 3, we recall the notion of affine tropical varieties, positive varieties with po-
tentials and tropicalization functor. As an example of positive varieties with potential,
we focus on Borel subgroup B_ of an reductive algebraic group G with the Berenstein-
Kazhdan potential Pp.

¢ In Chapter 4, we recall basic definitions on (homogeneous) cluster varieties and their dual
cluster varieties. Then we focus on the double Bruhat cell G*°¢, which is homogeneous
and admits a natural dual.

e In Chapter 5, we recall the notion of Poisson-Lie groups and its real forms. Then we
recall the Ginzburg-Weinstein isomorphisms between the Poisson space £* and K*.

e Chapter 6 is based on a joint work [17] with A. Berenstein. We introduce the notion of
geometric multiplicities of a reductive group GG, which form a monoidal category. We
then construct a functor from this category to the representation of the Langlands dual
group GV. Using this, we manage to compute various multiplicities of GV modules in
many ways.



e Chapter 7 is based on a joint work [5] with A. Alekseev, A. Berenstein, and B. Hoffman.
We define a positive structure and potential on G* and show that the natural Poisson-
Lie structure on G* is weakly log-canonical with respect to this positive structure and
potential. Using this construction, we assign to the real form K* C G* an integrable
system on PT(G*), which is a product of the decorated string cone and the compact
torus of dimension 3(dim G — rank G).

e Chapter 8 is based on a joint work [6] with A. Alekseev, A. Berenstein, and B. Hoffman.
For a semisimple algebraic group (G, we explain a relation between its Langlands dual
group G and its Poisson-Lie dual group G*. That is, the integral cone defined by the
Berenstein-Kazhdan potential on Borel subgroup BY C GV is isomorphic to the integral
Bohr-Sommerfeld cone defined by the Poisson structure on the partial tropicalization
PT(G™).

e Chapter 9 is based on a joint work [9] with A. Alekseev and J. Lane and joint works
[7, 8] with A. Alekseev, B. Hoffman and J. Lane. We first show that one can recover the
Gelfand-Zeitlin system of su) by Ginzburg-Weinstein isomorphism and partial tropical-
ization. Then we manage to construct big action-angle variables for coadjoint orbits on
the dual space of any semisimple compact Lie algebra €.






2 Preliminaries on Lie Theory

In this chapter, we recall the general terminology and notation for semisimple algebraic
groups. We start by considering the root datum and SLo-triples. Then we introduce the notion
of generalized minors and discuss in more details about twist maps, evaluation of generalized
minors and the factorization problem. Most material are based on [21, 37].

2.1 Root datum of semisimple algebraic groups

Let A = [a;j]; jer be a Cartan matrix for a index set I = {1,...,7}, i.e,, a;; = 2 and
a;j € Zgo for i # j, and there exists a sequence of positive integers d = {d1, ..., d,} called a
symmetrizer so that a;jd; = aj;d;. Let D := diag(dy, ..., d,), then the matrix AD is positive-
definite, and (AD)? = AD.

Let g = g(A) be the semisimple Lie algebra over Q corresponding to the Cartan matrix
A. Recall that g is generated by {E;, Fi}/_, subject to the Serre relations [54]. Denote by
o) = [E;, F;] the i th simple coroot and by h the span of all simple coroots. Let h* be the linear
dual space and choose a basis of simple roots o, ..., a, € h* such that

(0%04;/> = Qgj- 2.1)

Using this definition and a chosen symmetrizer d, define a symmetric bilinear form on § such
that (o), a}/) := a;;d;. This form uniquely extends to a g-invariant symmetric bilinear form on
¢, and induces a symmetric bilinear form on h*:

(i, ) = d taij,

as well as an isomorphism ¢: h — h* such that ¢(a)") = d;c;. The formulas above imply the
following standard identities:

(0773 2 (O[Z', O[j) Vv 20{1'
d,: — , a:d a,7a. :2 —, QL g .
S lana)  (anay 9T Alee) =200y Y=
Fix a positive integer d such that each d; divides d (we can choose d = lem{dy,...,d;}

for instance). Note that dV := {d) := d/d;} defines a symmetrizer for the transposed Cartan
matrix AV = AT = [a;;]. Indeed,

AYDY =dATD™' =d(D'AD)D™' = dD7'A = (AVDY)T.

Define the dual Lie algebra g¥ = g(A") with generators E, )Y, and choose the standard
identification ¥ = h* via
[Ezvan\/] = Q.

9
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The symmetrizer d” defines new symmetric bilinear forms (-,-)¥ on h = (h¥)* and h* = bV
as well as amap ¢V : h* — b. Itis easy to check that

(7)?)/ :d_l('a')ha ('7')%/* :d('a')h*7 djv :d¢_1-
The fundamental weights w; € h* associated to the given simple coroots are defined by

(wi, o) = by 2.2)

The lattice generated by {w;} is the weight lattice of g, which we denote by P. By (2.1) and
(2.2), one has

'
(a1, . 00) = (W1, .., wyp)A, e, o; = Z ajiwj. 2.3)
j=1

Let () be the root lattice and PV = Hom(Q,Z) C b be the dual lattice of () with dual basis
{w)}. Thus

(o wf) = (ad ,0(w))) = iy, (af .. o)) = (Wi, w)) AT

Let Q¥ = Hom(P,Z) C b be the dual lattice of P, which is just the coroot lattice.

Now let us recall the notion of character and cocharacter lattice. Let G,, be the multi-
plicative group defined over Q. Let G be a semisimple algebraic group defined over Q with
Lie algebra g. Let H be the maximal torus of G and X*(H) = Hom(H, Gy,) the character
lattice of H. For any v € X*(H), denote the multiplicative character by v: h — h". Let
X«(H) = Hom(Gm, H) be the cocharacter lattice of H. Define the subset

Xi={eb" | (\a))€ZLxgforallie I} C X*(H),

which is the set of dominant weights of G.

In summary, we have the following lattices:
QCX*H)cP;, QVcX.H)cP.

Example 2.1.1. Let G = SLs and H be the subgroup of diagonal matrices. The roots of sl
give the following characters of H

a: |2 0 a2 —a: |2 0 > a >
"0 a7t ’ "0 at )
1

Therefore X*(H) = 1Za = Zw, where w = S« is the only fundamental weight. The cochar-
acter lattice is X, (H) = Za", where " is the simple coroot of the root . The dual of the
weight lattice is Za". Thus we know:

Q(sly) C X*(H) = P(sly); QY (slo) = X.(H) C PY(slp).

Definition 2.1.2. The quadruple of (X*, Q; X, Q") is called root datum of G, and the dual
root datum (X, QY; X*, Q) is defined by switching characters with cocharacters, and roots
with coroots.
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The Langlands dual group G is the connected semisimple group whose root datum is dual
to that of G. Let H" be the maximal torus of GV. If G is semisimple, the map 1) restricts to
cocharacter lattice:

Proposition 2.1.3. There exists a symmetrizer d such that the isomorphism ) restricts to a
lattice (abelian group) homomorphism

i Xo(H) = X*(H) = X.(H),

which induces a group homomorphism WH : H — HV.

Proof. Since X, (H) C PY and Q C X*(H), it suffices to show that d can be chosen so that
»(PY) C Q. Considering (2.3) for the Lie algebra gV gives

(W,...,w)=(af,...,a) AT, (2.4)
where we write A7 = (AT)~1. Applying 1 : h — b* to both sides of (2.4), one finds
(@), (@) = (ay), ... ¥()A™" = (a1, ar) DAY

It is enough then to choose d so that DA~ is an integer matrix; since A is invertible over Q,
this is always possible. &

Note that if G is simply connected, any symmetrizer d satisfies Proposition 2.1.3. In the
remainder of the paper, we fix a symmetrizer d as in Proposition 2.1.3.

Example 2.1.4. Here we list some examples of Langlands dual groups:

SLY = PSLy, SOY,, .1 = Spa,, Spiny, = SOg, /{£1}, SO, = SOa, .

2.2 SL,-Triples

Let GG be a semisimple algebraic group as before. Fix a pair of opposite Borel subgroups
B, B_ of G containing H. Denote by U and U_ the corresponding unipotent radicals of B and
B_. Each triple 0, E;, F; determines a group homomorphism ¢;: SLs — G given by

bi [CIL g] =exp(al;) CU-, ¢; Ll) ﬂ = exp(ak;) C U, ¢; {S 0 } =a)(c)CH

C—l

fora € G, and ¢ € Gy, Let W = N(H)/H be the Weyl group of G and s; € W be the
simple reflection generated by simple root ;. Let wg be the longest element in W with length

m = £(wy).
The action of W on H gives rise to the action of 1V on the character lattice X*(H), i.e.,
) = (w™lhw)?, e X*(H), h € H.
Using the SLo homomorphisms {¢; }, define for i € I,

_ -1
simal) o] a0 =aly |owo=al, {0 =al Y e
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Since 5;’s satisfy the Coxeter relations of W, any reduced expression of w € W gives the same
lift w € G. For i € I, define the elementary (additive) character y; of U by

Xi(l'j(t)) = 5ij -1, fort € G,.

Denote by x** = 3" x; the standard character of U.

Let z — z* be the group antiautomorphism of G given by
al(e) =af(—c), () =xi(t), wi(t) =wyi(t), iel.

Thus we know z_;(t)* = z_;(¢t~!) fori € I. Similarly, let z — 2 be the group antiautomor-
phism of G given by

o (@) =af(e), @) =wi(t), ) =wi(t), il

2.3 Generalized minors

Let Go = U_HU C G be the Gaussian decomposable elements of G. Thus x € G has
a unique decomposition x = [z]_[z]o[z]|+ for [z]- € U_, [z]p € H, and [z]y € U. We
abbreviate
[z]<o == [z]-[z]o,  [2]>0 := [z]ola]+

For a dominant weight ;1 € X (H), the principal minor A, € Q[G] is uniquely determined by

Ay (u—au) := p(a), foranyu_ € U_,a € Hyu € U.

For two weights v and § in W orbit of y, i.e., v = wp and § = vu for w,v € W, the
generalized minor Ay, ., € Q[G] is given by

Ay s(9) = Awpoulg) = Au(wflgﬁ), forall g € G.
Proposition 2.3.1. [37, (2.25) and Lemma 2.25] For any generalized minor A, s and x € G:

A s(z) = A s o (2") = Aso (aT); A, s(a1za2) = a]adA, s(x), for ai,as € H. (2.6)

We conclude this section by recalling how generalized minors appear in representations of
G. Recall that the coordinate algebra Q[G] can be realized as certain subalgebra of U(g)* :=
Homg(U(g), Q) such that the evaluation pairing (f,z) — f(x) for f € Q[G] and z € U(g) is
non-degenerate. This turns Q[G] into a U(g) ® U(g)-module as left actions in the natural way.
In particular, forx e n®n_,

d d

f(exp(—tx)g), (f-z)(9):

(o £)lg): ==l

=4 f (gexp(ia) .

Denote by U%(g) (resp. U*t(g)) for the action of U(g) ® 1 (resp. 1 ® U(g)). By algebraic
Peter-Weyl Theorem, we have the following U(g) ® U (g)-modules isomorphism

QA= P eV,

XEX (H)

where V), (resp. V) is the irreducible U¥(g) (resp. UT(g)) module with highest weight .



2.4. DOUBLE BRUHAT CELLS AND THEIR FACTORIZATION PARAMETERS 13

An element v ® v € V) ® V, as a function on G, evaluates at g € G by

v®v'(g) = (v,9.0),
where ¢.v" is the action of g on v/, and (-, -) is the unique paring such that (v,,,x,v)) = 1 and
(v,90') = ((g7")v,0").
Then as functions, we have v,y ® va = Ayoa . Extend vy, v,,) to a weight basis
v1, ...,y of V) such that v; = vy and v, = woA.

Moreover, the function v; ® vy, is a linear combination of terms of the form Fj - A, - Fy,
which satisfy the condition

h-(Fy- Ay - F)-h' = h™ V) (RO (B Ay - Fe),  forh b € He o (2.7)

where Fj = F; F}, --- F};, € U(g) for a sequence of indices j = (j1,...,jn)in I.

2.4 Double Bruhat cells and their factorization parameters

In this section, we introduce the notion of (reduced) double Bruhat cells and discuss their
basic properties. For a pair of Weyl group elements (u, v), a double Bruhat cell is defined by:

G := BuBNB_vB_.
Meanwhile, we introduce the so-called reduced double Bruhat cell associated to (u, v):
LYY :=UaUNB_vB_.
Note that multiplication in G induces a biregular isomorphism H x L*? = G"",
Let L™V be the reduced double Bruhat cell of the universal cover G of G and let
p: G- G
be the covering map. The cell L* can be characterized by the following

Proposition 2.4.1. [21, Proposition 4.3] An element x € G belongs to Luw if and only if
Ay, wi () =1, Viel.

Corollary 2.4.2. The restriction of p to L"?isa biregular isomorphism LY — [,

Proof. For h € H, we know h = Id if and only if h** = 1forall¢ € I. Letx € L™" and
consider some 7,7 € p~!(x) C L“Y. Then 2’ = Zh for some h € H. By Proposition 2.4.1
and (2.3.1) we have h** = 1 for all ¢, which implies there is a unique lift of x. &

Therefore the generalized minors A, .., can be viewed as well defined functions on L"”
under the isomorphism p. By abuse of notation, we write Ay, 1, (2) for z € L*" instead of
Auwi,vwi (P_IZ)-

Next, we introduce the factorization parameter of (reduced) double Bruhat cells.

A double reduced word i = (i1, . . .,1iy) for (u,v) is a shuffle of a reduced word for w, writ-
ten in the alphabet {—r, ..., —1}, and a reduced word for v, written in the alphabet {1, ..., 7},
where n = ¢(u) + ¢(v). Denote by R(u,v) the set of double reduced word for (u,v). Given
i=(i1,...,in) € R(u,v), denote by

i% = (—in, —Z'n,1 PPN —il) € R(U_l, U_l), —i:= (—il, —iz PN —in) S R(U, u)
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Remark 2.4.3. The minus signs on the letters of the reduced word for u are occasionally trou-
blesome, we make the following abbreviations. For ¢, j € [—r, —1] U [1, 7], let

di = dyy, Gij = aji\|j), Wi = W, Si = S

extending the notation for the skew-symmetrizer, Cartan matrix, and fundamental weights, and
simple reflection respectively. Our notation is set up in this way to agree with that of [14].

Proposition 2.4.4. [2], Proposition 4.5] Given a double reduced word i = (i1,...,ip) of
(u,v) € W x W, the following map

zir G LW By L (4 ) e @ (8) - @ (), (2.8)

is an open embedding of L*"".

Thus factoring G*V as H x L*" gives open embedding of G**:
rit HxGR — G = H x L' ¢ (h,t1,...,tn) = hazy (t1) - 4, (tn). (2.9)

We have overloaded the notation x; here but the meaning will be clear from context.

By the definition of z; for ¢ < 0, we have the following
Proposition 2.4.5. [2], Lemma 6.1] For any double word (j1, . . ., jn), we have:

o / ’ _a}/l ;. sgn(—i)as, j,
iy () ag, (tn) = 2, () - 25, () - [[ 8, 7 whereti=t J] ¢ ;
J1<0 k<l,jr<0

where z; ;= x; if i > 0and z; == y; if i <O.

Proof. First of all, write z_;(t) = y;(t)a)(t~1) for i > 0. Then use the fact that hz;(t) =
x;(h®t)h and hy;(t) = y;(h~*t)h for any h € H and i > 0. &

2.5 Transition maps for d-moves

In this section, we describe the transition maps for d-moves, which were computed in[21,
Theorem 3.1]. For the convenience of the reader, we list these results here. The tuples ¢1, ..., tq
and p1, ..., pgq are related by

wi(t1)zj(ta)wi(ts) - -+ = zj(p1)wi(p2)7i(ps) - - - (2.10)

Proposition 2.5.1. Fori,j € [1,r], denote by d the order of s;s; in W. Then the transition
map in (2.10) is given as follows:

(1) Type Ay x Aq:ifa;j = aj; = 0 then d = 2, and
p1 =t2, p2 =11.

(2) Type As: ifa;; = aj; = —1 then d = 3, and

tots t1to
, P2 =11 + 13, p3 = .
t1+t3 P ! P t1 +t3

p1 =
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(3) Type By: if a;j = —2, aj; = —1 thend = 4, and
p1=totitamy !, py=mom ', p3=mimy ', pa=tibatzm ',
where ™1 = t1to + (tl + t3)t4 and Ty = t%tQ + (tl + t3)2t4.
@) Type Go: if a;j = —3, aj; = —1 then d = 6, and
p1 = totitititems !, po = m3my !, p3 =mamy 'y
pa = mymy 'wy ps = mimy pe = titatitatsm |,
where
T = titotits + tita(ts + t5)%te + (t1 + t3)tatits ,
Ty = t3t3t5ty + 1315 (t3 + t5)3te + (t1 + t3)?t3tots + titotatite(3t1ts + 2t2 + 2tsts + 2t1ts5)
T3 = t3tat5ty + 1315 (t3 + t5)3te + (t1 + t3)3t5tete + tatatatite(3t1ts + 3t2 4 3tsts + 2t1ts5)
Ty = titatsta (titatsts + 2tita(ts + t5)°te + (3tits + 3t3 + 3tats + 2t1t5)tatsts)
3
+ 13 (tita(ts + t5)% + (t1 + t3)tat?)” .
(8) In each of the cases (1)—(4) above, interchanging a;; with aj;, the corresponding transi-
tion map in (2.10) is obtained from the given one by sending pr, — Pa+1—k, tk — td+1—k-

Following [37, (2.5), (2.11)], the transition maps for mixed 2-moves are given by:

Proposition 2.5.2. For any i,j € [1,7], we have x;(t1)x—_;(t2) = x_;i(p1)z;(p2), where
p1 = ta, pa = tity", Jori#j,

1 1 . .
=t - - — 1 — (4] == 7.
V41 1 t27 Do t2 < t1t2> ) f rt J

Finally, the transition maps for negative d-moves are given as follows.

Proposition 2.5.3. For i,j € [—1,—r|, denote by d be the order of s;s; in W. Then the
transition map in (2.10) is given as follows:

(1) Type Ay x Ar:ifa;j = aj; = 0 thend = 2, and
p1 =t2, p2=11.

(2) Type Az ifa; j = aj; = —1 thend = 3, and

_1 1 t1 2
P= -+, p2=tily, p3=t1+ .
t3 to t3

(3) Type By: ifa; j = —1,aj;, = —2 then d = 4, and

L_h b 1 1_1<t2+1>2+1
p1 ty  tz3 ty py t1 \f3 14 t3’

t3ty ty  1\?
p3=to+tits+—=—, pr=t1+t3(—+—] .
t3 ts 1y
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@D Type Go: ifa; ; = —1, aj; = —3 then d = 6, and

1 t1 to 1 2 t4 1
7:i t —
+3(t3+t4> t5+

) 3
1 th  1\® 1 ty | 1 2oy 1
:+2t3< +> [t 2+ ) + -+~
D2 [Z 7 ty t3 1y ts te

3taty  3to 3 N 2
tats  tstg  tatg ts

ts  1)° ta 1)? o3  3totatg st
ps = titg + 3t | — + — | +tatg | =+ — ) + 2y 4 2 4 20 L T80
l3 14 ts  to 4 ts ts

ty 1 ts 1\® 3tots 3ty 3ty 2ty
4t =) 4+t - 2 B R
Ps 1+3<t3+t4>+5<t5+t6>+ et tate |t

the two middle components ps and py are determined from two additional relations
P1p3ps = tatate ,  p2pape = L1l3ls.

(5) In each of the cases (1)—(4) above, interchanging a; j with a;;, the corresponding map
in (2.10) is obtained from the given one by transformation py — 1/pgi1—k, tk — 1/tg1—k-

2.6 Twist maps and their decompositions

In this section we introduce the so-called “twist maps” in [21, 37].

Definition 2.6.1. For any u,v € W, we have the following twist maps:
u,v U, v u’l,vfl . ——1 17, =1 rol’ .
¢ G = @ x= ([ux)ser zv <o ;
YUY LY — LY ¢ e [(T2Y) Yy o([@ ]y )t

Remark 2.6.2. Note that the map (*-* does not send L"“" to L """ However, the maps ("
and ™" are related by the following formula:

P (z) = (¢"(2)", Vae L™

Theorem 2.6.3. [37, Theorem 1.6] [21, Theorem 4.6] The map (" is a biregular isomorphism
between G and G~ ™", whose inverse is (% *"". The ¥"" is a biregular isomorphism
between L™V and LV", whose inverse is V"

Using the twist maps, we have the following embeddings of reduced double Bruhat cells:
Theorem 2.6.4. Let u,v € W such that £(u) + £(v) = £(u v), the following map
€UV LW ey LoV g [w Y]y
is an open embedding. For u,v € W such that {(u) + £(v) = £(uv™1), the following map
Cupw: L — L he gy [zv—1] <o

is an open embedding.
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Proof. We only show the statement for £“V. First of all, we show that the map £“" is well-
defined. Since z € UuU, we have

w 'z ew'UnU c B_U, (2.11)
which shows that [~ 1], is well-defined. Since z € B_vB_,
u 'z euw'BvB. CB_u'B.vB_ =B u'wB =B u'vB_.

Here we use that £(u) + £(v) = £(u~1v). Thus [t~2], € B_u~'vB_. The unique factoriza-
tion (2.11) implies injectivity of £*¥. What remains is to show that £ maps an open subset
Lwe . L&Y C L% onto an open subset L&% ' - LV of L% 'V, Denote by x = x_ - 24 €
L%¢ . L%", then we have

) — ——1 — =1 — )
) =z ] = U w pwy = o (o )ay,
where y*¢: L*¢ — L%" is the twist map. Thus £V is an open embedding. &
Next, we decompose some of the twist maps as a sequence of “elementary moves” at least
on some open dense chart. Let us introduce:

Definition 2.6.5. Given a pair of Weyl group elements (u,v) with ¢(u) = p and ¢(v) = ¢, a
double reduced word i = (i1, ...,%p, j1, ..., Jq) for (u,v) is separated if i1, . . . i, € [—r, —1]
and ji,...,j4 € [1,7].

For a separated double reduced word i for (u, v), define

1= (_i1>i27"' 7ip7j17" . 7jq)7 1, 1= (ilw"?ipvqu"' 7j27_j1)'

Here we use — (resp. +) to indicate the decreasing (resp. increasing) of negative indexes in the
new words. Note that

i € R(siu,s;,v),if l(sj;v) =L(v) +1; iy € R(usj,,vs;,),if £(us;; ) = £(u) + 1.

We then define the following birational map in terms of open embedding i, z;, and ;_:

Pp: L%Y — L0 o omi(ty, ... ty) — @i (t1, ..., ty), if (s v) = £(v) + 1;

Qi: LY — L™ o xi(ty, ... ty) — l’i+(t1, .. .,t;l), iff(usjl) =/l(u) + 1.
Lemma 2.6.6. For a separated double reduced word (i1, . .., ip, jq, - - ., j1) for (u,v), denote
ik = (Z.k+17 o 77:p7 _iku ey _ilvjqa R 7j1)7
Jk = (ih . '7ip7 —J1se s _.jka.jqa s 7jk+1)'

We have £ = P, oP; _ o---0P; if t(u)+L(v) = {(u""v), and &y = Qj,0Q5,_, 0 - -0Qj,
if 0(u) + £(v) = L(uv™t). .

Proof. We only show it for &,,. Just need to show on the chart z;,. For k € [0, ], write
Vg = Sj,,, * " Sj,- Note that vg = v, For i > 0, we have z;(t)s; = z_;(t"')z;(—t 1), then
Lo (1, i tgy oy 11)T0 = @y (£1) - - - 4, (8,)2, (tg) - - - 2, (£1)S), - T
-1 —1\ —
= @iy (1) -+ i, (8)a, (Bg) -+~ g (t) - gy (8 )y (—£17) - T

= (le(xjo (tlla cee 7t;); t1,. .. 7tq))il) : (Ul_lle(—tl_l)ﬁl) .
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In the last line, note that El_la:il (—tl_l)m € Uj; this follows from well-known results on the
Weyl group, as in Section 10.2 of [53]. Using the mixed d-moves, write

Qi (jo (81, - byt tg)) = @, (B, L], ty),

then we can repeat the argument from above ¢ times. Then by taking [-]<o on both sides, we get
the desired formula. &

Note that ¢ restrict to a biregular isomorphism L*" — L* """ Then one can check that

£ =roy™®and &, = 1 0oy®?. Now we are ready to decompose some twist maps. In more
details, we have

Proposition 2.6.7. For u,v € W such that {(u) + £(v) = £(v—'u), the following diagram
commutes.

Ly & Le,u_lv

Lowu’vl lse,u_lv

1,-1 61)71 u—1 —1

Lv’ U ? LV we

Proof. Note that both composition maps from L*" to LV are open embeddings. We only
need to show the statement on an open chart of L*“". Denote by x = z_ -z, € L"¢ - L®" C
L™". First, the composition of the top and right arrows sends z to

—1 —1
[[u r_|yxyv u} -

and the composition of left and bottom arrows sends z to

[[Fx,]+x+ [(m»)—l];u] o

Note [z]7' = [z7*]% and ¥ = v~ implies

[[Fx—h:u [(WL)_I]ZFW} o [[Ffﬁ—h[ﬂwv_lkoﬂ] -

Next, we need to show

ﬂil . [$+F]+ ‘U € U.
Given double reduced word (i1, ...,i,) of (e,v), the statement for z = x;, (t1) - - - =i, (tn)
follows from the same argument as in previous proof. O

2.7 Evaluation of generalized minors, factorization problem

The evaluation of generalized minors can be described using the following

Definition 2.7.1. Let V' be a finite-dimensional g-module, v and 6 two weights in P(V'), and
i=(41,...,1,) asequence of indices in I. An i-trail from ~ to § in V' is a sequence of weights
™= (Y=, = 0) such that vx_1; — 7 = cxay, for ¢ € Z=p and efll et isa
non-zero linear map from V() to V(7).
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For every i-trail m = (7o, ...,7») in V, denote by

V=11 Yk
di, = dy(m) = T(aivk) . (2.12)
Theorem 2.7.2. [21, Theorem 5.8] Let v and § be two weights in the W -orbit of the same
Sfundamental weight w; of g, and let i = (i1, ... ,i,) be any sequence of indices in I. Then
(1) the evaluation of A 5 at xi(t1, . .., ty,) is a positive integral linear combination of mono-
mials 7' (™. tf{b(ﬂ) for all i-trails 7 from y to 6 in V,,,.
(2) the evaluation of A 5 atx_i(t1, ..., ty) is a positive integer linear combination of mono-
mials t‘li1 ™. tin(ﬂ) for all i-trails 7 from —y to —6 in V,,,.

Next, we recall the following factorization problem for L™, which is to find explicit for-
mulas for the inverse birational isomorphism x; ! between LV and G7,.

Fori € R(u,v) and k € [1,n], let
k™ =max{l |l <k, |ij| = |ixg]} kT =min{l |l >k, |ij| = |ir|}, (2.13)

so that &~ (resp. k™) is the previous (resp. next) occurrence of an index =iy, in i; if k is the
first (resp. last) occurrence of iy, in i then we set k= = 0 (resp. k™ = m + 1). An index k is
i-exchangeable if k* € [1,m)]. Let e(i) denote the set of all i-exchangeable indices. Note that
for k € [-r,—1] U e(i), we have k* € [1,n].

For k € [—r, —1], denote by u; = e and vy = v~!. For k € [1,m], denote by

where the index is increasing in the product on the left, and decreasing in the product on the
right. For k € [—r, —1], denote by

uF = uiluk; ok = VUE.

Extend the word i to (i—p,...,i—1;41,...,4y), where i_, = —r. For k € [—r,—1] U [1,n],
define a regular function M}, = My ; on L*" by

My, = Avkwik,ukwik (¢U’U(x))
Note that M}, = 1 for k € [1,n] \ e(i). Then the solution to the factorization problem is

Theorem 2.7.3. [21, Theorem 4.8] For i = (i1, ...,in) € R(u,v), and an elements x in L""
which can be factored x = x;,(t1) - - - x4, (tp) with all t, € G, for k € [—r,—1] U e(i), the
factorization parameters t;.+ are determined by the following formulas:

Mk(I)/Mk+(.T), It < 0

t+ = 1 —a )
- M(z) %k, dgr >0
My (@) M+ () | ll<_£+<l

Remark 2.7.4. Note that the notation we use here is different from the one in [21]. The one
we use here aligns the notation for twisted minors and the one for cluster variables. See more
details in Section 4.4.
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Moreover, we have the following special cases:

Proposition 2.7.5. [21, Proposition 4.11.(i)] For i = (i1,...,im) € R(wo,e) and x € H X
L™0:¢ admitting factorization x = x;i(h;t1, ..., ty), we have

Fil ’ Awowi‘l‘ 7wi1‘ hai Awowim,wim : Em
Bl O G (&) = tm.

?
Awowif Wit t1 Awowim Wi



3 Preliminaries on Positivity Theory

In this chapter, we recall the notion of affine tropical variety, positive varieties with potential
and tropicalization functor. As an example of positive varieties with potential, we focus on
Borel subgroup B_ of an reductive algebraic group GG. The Berenstein-Kazhdan potential ® 5
on B_ is introduced in the context of unipotent bicrystals. At the end, we briefly discribe the
relation between the tropicalization of (B_, ®px) and the parametrization of canonical basis.
More detailed discussion can be found in [16, 21].

3.1 Affine tropical varieties

In this section, we introduce the notion of affine tropical variety, which is an analog of affine
variety in the “tropical word”.

For any subring R of R, denote by R := R N R, the semi-subring. Given subsets C' and
D of free R-modus V' and V' respectively, a map ¢: C — D is piecewise R-linear if there
is a piecewise R-linear R-module homomorphism qu : V' — V' such that 5 ‘ o = ¢. For a free
R-module V" and a subring R C R, denote by R[V] the set of piecewise R-linear functions on
V. Note that R[V] is an algebra with multiplication and addition given by

(fO9)) = fv) +g(), (f®g)(v):=min{f(v),g(v)}.
Note that the multiplication unit is 0 and the addition unit is 4-oo.

Definition 3.1.1. Fix a subring R of R. A m-dimensional affine tropical variety C over R is a
family of pairs {(Cp, jo) | 0 € O} together with a m-dimensional free R-module V', where Cy
is a set with an R -action and jp: Cp — V is an injective map, called a tropical chart, s.t.

(i) The map jy commutes with the R -action;
(i) There exists a piecewise R-linear bijection from jy(Cy) to jor(Cpr), denote by j,,' o

jo: Cy — Cyr the induced map for simplicity.

An affine tropical variety C is convex if there exists a # € © such that the subset jy(Cp) of V is a
R -submodule of the free module V. The coordinate algebra R[C] of C is the pull-back of the
algebra R[V] along the injective map jg. Since j, 16 jgr is piecewise R-linear, the coordinate
algebra R[C] is independent of charts.

Similarly to algebraic varieties, for an affine tropical variety C over R, tensoring with R’ D
R, one obtains its R’-points

C(R) = {(Cy 2 R/, ,jo) | 0 € ©}.

21
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A morphism f of affine tropical varieties C = {(Cp,jo) | 0 € O} and D = {(Dy, ky) | ¥ €
©'} over R is a family of piecewise R -equivariant maps fp », such that the following diagram
is commutative.

—1 .
Jg ©Je!
> C@’

fe,ﬂl lfe’,ﬁ’ 3.1
ky tokys

Dly _— Dﬁ/
Affine tropical varieties over R form a category AffTropVar(R).

Definition 3.1.2. Let f be a morphism of affine tropical varieties C and ) over Z. For ¢ € Dy,
define the multiplicity of £ over f as

dim C[f, 5 ()],

where C[X] is the linearization of the set X. Note that the multiplicity of £ over f doesn’t
depend on the charts since by (3.1), we have:

dim C[fy 5(€)] = dim C[fy, s (k" 0 K (£))]
The morphism f is finite if every £ € Dy has finite multiplicity.

Example 3.1.3. Define an affine tropical variety over R as Ip := {(R,j: Ry — R)}, which
we refer to as the frivial affine tropical variety over R. Given affine tropical varieties C and @
over Iz, the product

CxD:= {(Cg X Dy, jo Xkﬁ) | (9,’[9) €®><®’}

is an affine tropical variety over R. For a morphism f of C and @, one can show that both f(C)
and f~1(D) are affine tropical varieties.

3.2 Positive varieties and tropicalization

In this section, we first briefly recall basic definitions in positivity theory and then realize
tropicalization as a functor from the category of positive varieties with potential to the category
of affine tropical varieties.

Consider a split algebraic torus S = GJ3,. Denote the character lattice of S by S; =
Hom(S, Gyy,) and the cocharacter lattice by S* = Hom(Gy,.S). The lattices S; and S* are
naturally in duality and denote by (-,-): S; x S* — Z this canonical pairing. The coordinate
algebra Q[S] is the group algebra (over Q) of the lattice Sy, that is, each f € Q[S] can be
written as

F=2 e (3:2)
XESt
where only a finite number of coefficients ¢, are non-zero. Following [16], to each positive
rational map ¢: S — S’, we associate a tropicalized map ®': St — (S)! as follows:

Case 1. If ¢ is positive regular on S, i.e., ¢ = > cyx with all ¢, > 0, define ¢* by

XESt
#': S =G, =7 : min (x, ).
X; cx>0

Case 2. If ¢ is positive rational on S, i.e., ¢ = f/g with f, g positive regular functions, then

¢t — ft . gt‘
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Example 3.2.1. a) Consider S = Gy,. Take ¢ = 22 —x + 1 = (23 + 1)/(x + 1). Note
that ¢ is positive rational but not positive regular. Then ¢!(£) = min(3¢,0) — min(¢,0) =
2min(¢, 0). Note that for any a,b,c,d € Qs the function ¢' = (ax3 + b)/(cx + d) has the
same tropicalization (¢')! = ¢'.

b) Consider S = G2,. Take ¢1 = (1 + 22)? and ¢ = 2% + 23. Then we know ¢! = ¢} =
2min{&;, &}

Case 3. For ¢: S — S’ a positive rational map, define ¢!: St — (S’)! as the unique map
such that for every character y € S} and for every cocharacter £ € S* we have

(060" () = (x © 0)"(8).

A more concrete description is as follows. Let ¢1, ..., ¢, be the components of ¢ given by the
splitting S” = G¥,. Then, in the induced coordinates on (S’)?, we have

(bt = (¢§77¢2)

Example 3.2.2. Consider the following positive rational map:

o3 12
o G?n — G?n : ($1,$2,$3) — , L1+ T3,
T+ T3 r1 + 23

which has tropicalization
B (L) 278 (Gl = 7%
(&1,€2,83) = (&2 + & — min{&r, &), min{&r, &3} & + & — min{&, &3))

Definition 3.2.3. Let (X, ®) be an irreducible variety over QQ with a rational function ® on X.
A rational chart of X is a birational isomorphism #: .S — X from a split algebraic torus S
to X. A rational chart 6 is foric if 8 is an open embedding. A chart §: S — X is positive
with respect to @ if ® o 6 is a positive rational function on S. Two charts 61: S; — X and
0y : Sy — X are called positively equivalent if 0;1 0fy: 89 — 51 and 0;1 ofi: 51 — Sy are
positive rational maps. A positive variety with potential is a triple (X, ®,©x ), where Ox is a
set of positive equivalent charts who are positive with respect to ®. A positive variety (X, 0x)
is a positive variety with potential ® = 0. Given a positive chart §: S — X of (X, ®,0x),
denote by
(X,®,0)" := {¢ € Hom(Gm, S) | ®'(¢) >0},

the tropicalization of (X, ®, 0). For convenience, we define Ot := +oo0. If 0 is toric and P is
regular, the set (X, ®, 0)" is a convex cone in Hom(Gyy, S).

Example 3.2.4. Here we give an example arising from Lie theory. Let X = U be the unipotent
radical of a semisimple algebraic group over Q, and let ® = X' on U. Given a double reduced
word i = (i1,...,4m) of (e,wp), where wy is the longest element in Weyl group W, the
following is an open embedding by Proposition 2.4.4

Ti: GZ;—)U : (tl,...,tm> —)xil(tl)...xim(tm) e LYY C U,
and it is positive with respect to x** since
XU @ity otm)) =t .

By Proposition 2.5.1, we conclude that z; and xy are positive equivalent toric chart for (U, x5'),
where both i and i’ are double reduced word for (e, wy).



24 CHAPTER 3. PRELIMINARIES ON POSITIVITY THEORY

A morphism f: (X, ®,0x) — (Y, ®’, Oy) of positive varieties with potential is a rational
map f: X — Y such that the rational function ® — f*®’ is positive, and for some (equivalently
any) fx € Ox and fy € Oy, the rational map 6;1 ofofyx:S — S is positive.

Denote by PosVarPot(Q) the category of the positive varieties with potential over Q.

Proposition 3.2.5. Let (X, ®,0) be a positive variety with potential. Fix a splitting of S.
Define

Xt = {Xg = (X,0,0)", jp: Xg <> Hom (G, §) > Z™ | 0 € @}.

Then X is an affine tropical variety over Z. If X has a positive toric chart with ® regular;
the affine tropical variety X} is convex. In summary, tropicalization defines a functor from

PosVarPot(Q) ro AffTropVar(Z).

Note that (Q,1d,0: Qm — Q) is a positive variety with potential and Q}; = Jz. Thus
potential x on (X, ©) can be viewed as a morphism of positive varieties with potential:

Px: (X, 2x,0) > (QId,,j: Qm — Q).

Let f be a morphism of two positive varieties with potential (X, ®x, 0 x) and (Y, Py, Oy).
Denote by

fok oy ©) == (fhg0,) 1 (€) C (X, Dx,0x)"

the pre-image of £ € (Y, @y, fy )? of the tropical function f};x o, - We sometimes write f —t(g)
instead if the positive chart we choose is clear from the context. Note that f~%(£) is not an
affine tropical variety in general.

We are also interested in the real points of the tropicalization of (X, ®, §)!. Denote by
®L: Hom(Gm, S) @z R — R
the real extension of ®!. Then let us introduce the following notation

(X,®,0)% = {x € Hom(Gyy, S) @z R | ®k(x) > 0}. (3.3)

For any 0 > 0, define the d-interior of the tropicalization as
(X, ®,0)5(0) = {x € Hom(Gm, S) @z R | Dk(z) > 6}. (3.4)
Besides, the morphism f¢: (A, ®4,04)" — (B, ®p,0p)! has a piecewise linear real exten-
sion ff: (A, ®4,04)% — (B, ®B,0B)k.

At the end of this section, we would like to describe the tropicalization as a limiting pro-
cedure. First of all, for G, = R*, tropicalization of a positive function f over (R*)" can be
interpreted as follows. By substituting z; = ¢, one finds

ft(£17"~a£n): hm 111’1(]?(6551,..,7685")),

5——00 8§

For Gy, = C*, we have the following
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Proposition 3.2.6. Let f: (C*)"® — C* be a positive rational function, and C C ((C*)™)! be
an open linearity chamber of f. Then by substituting z; = €*4T%i, the following equalities
hold on C x (S1)":

1 ~ ~
SEI_]_’IOOEIH f(6851+11g01’ .. .7€s§n+11<,0n) - f]l%(glv cee afn)»

lim_arg f(eXH9 L ety = o).
S——00

Proof. First of all, the statement is clearly true for a Laurent monomial f.

Now suppose f is a positive Laurent polynomial in z1, . .., z, and write f = ) f;, where
fi’s are Laurent monomials. Write £ := (&1, ..., &,). Without loss of generality, let us assume

that (fE)r(€) < (f1)r(&) on C for i # 0. Write f as

F=fo 14> filfo
i#0

Note that 1/s1In | f;/ fo| tends to 0 as s — —oo. Thus by triangle inequality, we get the claim.

At the last, let f = A/B for A and B are positive Laurent polynomials in 2, . . ., z,. Note
thatln |A/B| = In|A| — In|B| and arg f = arg A — arg B. O

Remark 3.2.7. Consider the function f = 21 + 29 on (C*)2. So f = 0 on the subset |21 | = |22|
and arg(z1) = m+ arg(z2). This is one example that one can not extend the result to the whole
space ((C*)")L,

3.3 Domination by potentials

Definition 3.3.1. Let (A, ® 4, O 4) be a positive variety with potential. A rational function f on
A is dominated by ® 4, which we denote by f < ® 4, if there exists positive (with respect to © 4)
rational functions f* and f~ and polynomial p with coefficients in R, such that: f = f* — f~
and both

p(®a)— fT, and p(®a)— f~

are positive with respect to ©.

What follows is immediate and we omit the proof here.

Lemma 3.3.2. Let (A, ®4,04) be a positive variety with potential. The set of rational func-
tions on A that are dominated by ® 4 forms a subring of the coordinate ring of A.

Let G be a reductive algebraic group and g its Lie algebra. Recall that U_ is the unipotent
radical of the Borel B_. A U_ x U_-variety is an affine variety A equipped with an action of
the algebraic group U_ x U_, where the first factor acts on the left and the second factor acts
on the right.

Since U_ is unipotent, the exponential map exp: n_ — U_ is algebraic. Thus for a fixed
(F,F') € n_ x n_, the map

Gmx A— A, : (t,a) = exp(—tF)-a-exp(tF’) (3.5)
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is algebraic. The action (F, F') € n_ x n_ on f € Q[A] given by

d

(F-f-F'(a)= 7 » f (exp(—tF) -a- exp(tF'))

is algebraic since the map (3.5) is algebraic.

Proposition 3.3.3. Let A be a U_ x U_-variety and (A, ®, ©) be a positive variety with poten-

tial. Let {a;} be a set of positive functions on (A, ©), and let (F, F') € n_ x n_. If
F - a; - F/
a;

<®, Viell,n],

then (F - f - F')/f < ® for any subtraction free Laurent polynomial [ := f(ay,...,ay) in
functions a;.

Proof. First of all, since the Lie algebra n_ x n_ acts by derivations, for a Laurent monomial
ay"™ ---ap and any ¢ € R, we have:
F-(cay™---alt™) - F' F-a; F'
= m;——— < .
DL

ca™ - aly

Next, denote by f = f1 + -+ + fi a Ry-linear combination of Laurent monomials in the
functions a;. By the first step, we know (F' - f; - F')/ f; < ®. In other words, one can write

Ffi F
fi

where p(®) — f;" and p(®) — f; are positive with respect to ©. Then we have:
F-f-F fi F- fz fi oy
oy -yhop-yt
Then one can choose p such that

_Z?.szzif(() £, p@ Zfz fr= Z?(@)—fﬁ)

are positive with respect to ©. Thus (F - f - F')/f < ®. O

= fi+ -

3.4 Unipotent y-linear bicrystals

Let G be a reductive algebraic group. In this section, we briefly recall the basic definitions
about U x U varieties, unipotent x-linear bicrystals in [16] and then introduce the notion of
trivializable unipotent bicrystals. Note that x-linear functions for unipotent bicrystals play the
role of potential for positive varieties.

Definition 3.4.1. A U x U-variety X is a pair (X, «), where X is an irreducible affine variety
overQand a: U x X x U — X isa U x U-action on X, such that group U acts (both action)
freely on X. The convolution product x of U x U-varieties X = (X,a) and Y = (Y, /) is
X xY = (X Y, 3), where the variety X * Y is the quotient of X x Y by the following left
actionof U on X x Y:

u(z,y) = (zu™t, uy).
And the action 8: U x X *Y X U — X %Y is defined by u(z * y)u' = (uz) * (yu').
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Example 3.4.2. It is clear that the group G itself is a U x U-variety with left and right multi-
plication as U x U action. Denote by

GM . =Gx---xG, forn>2
the convolution product of n-copies of G’s.

Definition 3.4.3. For a U x U-variety X and y: U — A! a character, a function ® on X is
x-linear if
P(u-z-u')=x(u) + () +x),Vo € X,u,u’ € U. (3.6)

A (U x U, x)-bicrystal is a triple (X, p,®), where X is a U x U-variety, and p: X — G
is a U x U-equivariant morphism, and ® is x- linear function. We refer to the pair (X, p) as
unipotent bicrystal. The convolution product is defined by

(va’ (I)X) * (Y7p/>q)Y) = (X * Y7p”a q)X*Y)7

where p”: XxY — G isdefined by p” (zxy) = p(x)p'(y) and D x.y (xxy) = D x (2)+Py (y).

On BwgyB, we have the following regular function (Berenstein-Kazhdan potential):

Definition 3.4.4. On the Bruhat cell G*° = BwyB, the BK potential ® g is
@ (uhwou') == x*(u) + x* (), for uhwou' € G™.

Since BwgB N B_ — B_, so the potential restrict to open dense subset of B_. The highest
weight map hw of (G is the following U x U-invariant rational morphism

hw: BwoB — H : uhwou' + h. 3.7)

Example 3.4.5. By Definition 3.4.4, the BK potential ® p is a x*-linear function on the U x U
variety G. Therefore, the U x U variety G(™) is a (U x U, x®")-bicrystal with p: G™ — G by
sending g1 * - - - * g, t0 g1 - - - gn, and the x®-linear function, or potential, is given by

D (g1 %% gn) =Y Pprc(gi)-

Toa (U xU, x*)-bicrystal (X, p, ®), the central charge of (X, p, ®) is the U x U-invariant
function:
Ax(z) == ®(z) — Ppr(p(z)), Vze X.

Assume that U \ X/U is an affine variety in what follows. Since both Ax and hwx := hwop
are U x U-invariant, they descents to functions Ay and hwx on U \ X /U respectively. Now

consider the affine variety: B
X:=U\X/U xgG,

where the fiber product is over hw y and hw. The variety X gets an U x U action on G by:
- (Z,g) u — (T,ugu).
Define a y*'-linear function ®on X by
O(T,9) := Ax(¥) + Ppr(9), for (.9) € U\ X/U x4 G.

Denote by ps is the projection X to the second factor G. All these make the triple (U\ X/U x g
G, ®, p2) into a unipotent bicrystal.



28 CHAPTER 3. PRELIMINARIES ON POSITIVITY THEORY

Definition 3.4.6. A (U x U, x*")-bicrystal (X, p, @) is trivializable if the following map is a
birational isomorphism of (U x U, x5*)-bicrystals

0: X SU\NX/UxygG : 2+ (T,p()). (3.3)

Denote by TriUBy; the category of trivializable (U x U, x**)-bicrystals over G.

The following proposition shows that U \ X /U can be realized a subvariety of X:

Proposition 3.4.7. For a trivializable (U x U, x%")-bicrystal (X, p, ®), the following natural
map is a birational isomorphism of varieties

Y = p ' ($(H)) = U\ X/U,

where ¢: H — G is the natural rational lift of hw: G — H given by ¢(h) = hwg € BwoB C
G. Moreover, we have X 2 Y xg G = U\ X/U xyg G.

Proof. Note that each U x U-orbit in X intersects Y at exactly one point. Thus we have the
following commuting diagram
—

T
QX

—

which implies Y = U\ X/U.Then X =Y x5y G2 U\ X/U xy G. &

Following the spirit of [16], we say (U x U, x**)-bicrystal (X, p, ®) is positive trivializable
if there exist positive structures for X~ := p~!(B_) and U \ X/U respectively, such that the
map ¢ in (3.8) and its inverse ¢! restrict to positive birational isomorphisms of unipotent
bicrystals:

o X S UN\NX/UxygB_: (¢ h)_. (3.9)

In [16], the authors constructed a functor
B UBE — Modgv

from the category UBE of positive unipotent bicrystals [16, Definition 3.29] to the category
Modgv of GV module by passing through the geometric crystals and Kashiwara crystals [16,
Claim 6.9, 6.10, 6.12, Theorem 6.15]. Here we briefly recall some properties of the functor 3.

Let (X, p, ®) be a positive unipotent bicrystals. Denote by hwy := hwop: X — H the
highest weight map of X. In what follows, we write X for (X, p, ®) for simplicity. Then

(1) B(X « X') =2 B(X) ® B(X') and B is monoidal.

Denote by mx: X — S an U x U-invariant positive map to a torus S. Then the G'V-module
B(X) can be parametrized over £ € X, (.S) as direct sums of G¥-submodules, i.e.,

(2) B(X) = Deex.(s) Be(X)-

Moreover, the typical components respect the convolution product *:
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(1) Bey e (X1 % Xo) = B, (X1) ® B, (Xa).
The unipotent bicrystal G := (G, Idg, Ppx) is positive and we have:

(3) For \Y € X[ (H), one has Byv(G) = V,v, where V)v is the irreducible G¥ module
with highest weight \V; for \Y ¢ X (H), one has B,v(G) = 0.

Let (M, ® ) be positive variety with potential (positive) fibered over torus H x S. For unipotent
bicrystal (X = (X, a),p,®), denote by Xy := (M xpg X, '), where o/ (u, (m,x),u) =
(m, o(u, z,u")). Thus (X, p, Par + P) is a positive unipotent bicrystal (positive) fibered
over H x S, then we have for (A\Y,&) € X,.(H) x X.(S)

(4) Byve(Xnr) = C[Mf\v’g]@@Av(X), where M)t\vf is the tropical fiber of M over (A, €).

3.5 Double Bruhat cells as positive varieties with potential

In this section, we introduce a positive structure for (B_, ®px ), which are various factor-
ization charts. We start by

Definition 3.5.1. Given an element w € W, write u < w if {(uw) = ¢(w) — {(u).
By Theorem 2.6.4, for © < w, we have a open embedding L“** — L. Pre-compose it
with the toric chart for L**%, we have

Proposition 3.5.2. For any u < w, denote by i(u) = (i1, ...,in) a double reduced word for
(u, uw), the following maps

it : G = LOY ¢ (tr, oo tn) = [0 gy (1) - @iy, (80))] 45
GG S L (t, . ) s [, (B1) - 2, (t0))u V<o
are open embeddings. Moreover, for u,u’ < w, and any i(u) and V' (v'), §i(u) (resp. fi(“)) and

&ir(ur) (resp. § () are positively equivalent.

Proof. All we need to show hare is that &,y and &,y are positively equivalent. Using the
commutating relation of Proposition 2.5.2, any associated double reduced word i(u) is positive
equivalent to a separated word of (u, uw) by commutating all x;, for j; < 0 to the left one by
one. For a separated word i(u) for (u, uw), the map &, is actually the composition:

Gfx(lu) X Gfl(luw) Ly pwe x peww £ peut o peww | pew
By Proposition 2.5.2 and Lemma 2.6.6, this is positive equivalent to x; for some double reduced
word i for (e, w). &
Example 3.5.3. Let w = wy = s15253515251. Then we know © = s3s9s9 < w = wq. Choose
the double reduced word for (u, uwp) as (=3, -2, 1,2, —1,1). The map &) is:

(tl, e ,tﬁ) — [835281_15673(751)1‘,2(152)%1(tg)l'Q (t4)l‘,1(t5)$1(t6)]+,

and the matrix on the right hand side is:

1 2t to + 14 (41
0 1 otz +tatg! +tatgt tits+tatg
0 0 1 tity !

0 O 0 1
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Recall that H x L*¢ — B_ and H x (L¢*0)T — B_ are all open. Now Proposition 3.5.2
gives various toric charts on L*%¢, B_ and U, which we refer to them as factorization charts.
We denote the sets of these toric charts by

O©L, ©p., Ou (3.10)
for L"¢, B_ and U respectively.
Theorem 3.5.4. The triple (B_, ®px,Op_) is a positive variety with potential.
To show that ® g is positive with respect to © p_, we first write the potential ® 5 using
generalized minors. To begin with, let F' = > F; be the sum of the negative root vectors
associated with the simple roots. Let ¢* be the index of the simple root ai;» := —wga;, then Fj,

is the negative root vector corresponding to the root a;;+ := —wgay;. Let p = % Ym0 X =D Wi
be the Weyl vector. Then:

Proposition 3.5.5. [16, Corollary 1.25] The BK potential ® gy is a regular function on G*9¢
and it has the following expressions:

A'LU wi,siw; T Aw SiW; ,W;
(I) — 0Wq,S7Wq 0S5¢Wq,Wq 311
BK Z Avoror (3.11)
ZEI 1M
= Z Fi* ) AWO“’@',‘W’ + Awowivwi i ‘F’l — F- Awopyp + Awopyl) F (3 12)
icl Awowi Wi AwoP,P ' .

Proof. The expression (3.11) is just [16, Corollary 1.25]. We need to show the rest here. Since
Awow; w; ~ Fi = Dwguw;,siw; for the right action, and Fix - Aygw, w; = Awgssw; w; fOr the left
action, we get the second equality. To show the last equality, one uses:

Auopp(g) = Ap(%_lg) = ([wo'glo)” = H([m_lg}o)wi = HAwowi,wi (9)
i€l iel
as well as Ayygu, w; - Fj = 0 (j # 1) for the right action, and Fj« - Ay, 0, = 0 (j* # i) for
the left action. &

Proof of Theorem 3.5.4. Combine Theorem 2.7.2 and Proposition 3.5.5. &

Remark 3.5.6. If G is not simply connected, generalized minors of the form A, v, are not
in general functions on GG. However, ®px is: Suppose G is the universal cover of G with
p: G — G the covering map. Then the right-hand side of (3.11) is well defined on G and is
invariant under the action of any element belonging to ker p. Thus ® 5 descends to a function
on G.

Proposition 3.5.7. For (h,z) € H x L€, the BK potential has the form:

(I)BK<hZ> - Z (Awowiusiwi(z) + h*woaiAwOSi%M(z)) : (3.13)
el

Proof. We only need to consider the case when G is simply connected. By (2.6), we have
Awowmsiwi(hz) = hwowAwowi,siwi(z)7 Awosiwivwi(hz) = thSiwAwosiwmwi(z)?
Awgwi w; (h2) = W% Dy, w; (2)-

Since h%“ ™% = h™% and Aygw, w, (2) = 1 for z € L€, we get the desired form. &
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Example 3.5.8. Let G = SLy and H be the subgroup of diagonal matrices as in Example 2.1.1.
We have the following factorization and potential:

a_Ja O [t 0] _fat 0] o _Hf
0 a1t a7t et BK = t

Recall X, (H) = Za". Then the BK cone is cut out by the following inequalities:
min{(e], 1e1), (e], —&re1) + (wa”, a)} > 0,
where e] is the dual of e;. In other words,
(B_,®pr, 1) = {(zaV,&1e1) € Xu(H) X Z | 22 = & = 0},
Note X*(H) = Zw. Now, for G = PSLy, the BK cone is given by the inequalities:
min{ (€], €re1), (€}, —Ere1) + (zw,a”)} > 0.

Therefore,
(BY7(I)EK7:U:/))& = {('rwaglel) € X*(H) X Z ’ Tz §1 Z 0}

The lattice cones (B_, @, x;)! and (BY, @Y, zy)" are depicted in Figure 3.1.

€1
Figure 3.1: Comparison of the lattice cones for G = SLs and GV = PSLo.

For our purpose, we would like to state the construction B(G) in the following form, where
recall G := (G, Idg, Ppx) is a positive unipotent crystal.

Theorem 3.5.9. [16, Main Theorem 6.15] Consider the positive variety (B_,®Ppx,Op_).
Given a toric chart § € Op_, then (B_,®py, H)t carries a structure of Kashiwara crystal,
the image of hw' lies in set of the dominant weights X} (H), and there is a direct decomposi-
tion as Kashiwara crystals:

(B—a q)BK> Q)t = |_| hw_t()\v)'
A\VeX;(H)

Moreover, hwft()\v) = B)v as Kashiwara crystals, where Byv is the crystal associated with
the irreducible G -module with highest weight \" .

Definition 3.5.10. For any 6 € ©p_, we refer to (B_, Pk, )" as a BK cone.

From [78, Lemma 3.10], the operators €; and ﬁ on the crystal (B_, ®gg, i), where z;
is the factorization chart as in (2.9), can be written explicitly as follows. Let vy, ..., v, be the
standard basis of Z™. Let

= </\V, Zgjvj) € (B_,®px,z;)' C X, (H) x Z™.
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Then the crystal operators on (B_, ® g, z;)! are given by

@

else;

(1 o) - { (0BG 1) (Do) €0 by

else.

The indices ny = ny¢(x,4) and n, = n.(x,) are given by:

ny = min{l ’ 1<li<m, iyy=1,X; = nr%/in{Xl/ | iy = z}} ; (3.14)

Ne 1= max{l ‘ 1<i<m, iy=1,X; = Hfll’in{Xl/ | iy = z}},
where, for an index [,

l
Xi(z,i) = Zaik,i§k~
k=1

Observe that, if z,&;x € (B_, ®pk, i)', then

Ne(x,1) = ne(€x, ). (3.15)

3.6 Polyhedral parametrizations of canonical bases

Let i be a double reduced word for (wy, €). In [21], the authors introduce the so-called string
cone Cj, which is a polyhedral cone and its integral points parametrize the (dual) canonical bases
of the quantized universal enveloping algebra U, (n).

The name “string cone” comes from the interpretation of points of the cone as strings of
operators on Uy (n). The cone C; is equal to (L“0-¢, &, 0)', for a specific § € Oy, Extending
this terminology slightly, in Definition 3.6.2 we introduce the name string cone for any cone of
the form (Lwo-¢, & 0). In this section, we recall this construction and describe the relation
with the BK cone we constructed in the previous section.

Proposition 3.6.1. The triple (L"°¢, &1, ©r) is a positive variety with potential, where

L= Augorsiwns (3.16)
el

is a regular function on L"°° and O, is the factorization charts as in (3.10). Moreover, the
projection pr: B_ D H x L"%¢ — LY%¢ js a morphism of positive varieties with potential
from (B_,®1,0p ) to (LY &5, 0r). Forany € Oy, it induces a surjective map

pr': (B_, ®p,Idg x0)" — (LY°¢, &1, 0)".

Proof. Choose a double reduced word i for (wo, €). Consider charts z;: G} — L"°° and

Ti: Hx Gl — B_ @ (hyty,... tm) = hxi(ti, ..., ty).
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By Theorem 2.7.2, the evaluation of generalized minor A, 5 at x; is

Ay s(@i(ty, . tm) = > Nat ™ ool (3.17)

where 7’s are certain i-trails and N € R, and d(7) € Z. Thus the first statement follows
immediately. To show that pr is a morphism of positive varieties with potential, it is enough to
show that

CIDBK — (I)L o pr

is positive with respect to z; and x;. By Proposition 3.5.7, for any (h, ) € H x L"%€, one has
(@K — ®popr) (ha) = Ppr(ha) — Bp(x) = D W% Aypsw, w, (T), (3.18)
el
and so P — Py o pris positive.

It remains to show that pr': (B_,®;,0p5 )' — (LY¢ &, 0.)" is surjective. In other
words, for (&1, ...,&y,) € (LY¢ &, x;)!, we must find \Y € X, (H) such that

()\\/751, R 7{771) € (B—')q)BKin)t-
By (3.18), one has (\Y, {1, ..., &) € (B—, @k, 7;)! if and only if
D di(m)& — (woas, AY) + B (&, m) 20, (3.19)
k=1

for all i € I and the corresponding i-trails. Let \Y = " n,w,’; by picking the n; sufficiently
large one ensures the inequalities (3.19) all hold. &

Definition 3.6.2. For any § € Oy, we refer to (L“¢ &, 0)! as a string cone and Ay =
hw ~*(\Y) a string polytope.

Remark 3.6.3. The string cone (L“%¢, &, 0) naturally carries a Kashiwara crystal structure
and we have (L¥0¢ & 0)! = B as crystals, where B is the e Kashiwara crystal for a G
Verma module of highest weight 0.






4 Preliminaries on Cluster Varieties

In this chapter, we recall some basic definitions of (homogeneous) cluster varieties. Fol-
lowing [35], we introduce the notion of dual cluster algebra and a family of comparison maps.
Then we focus on the double Bruhat cell G, which is homogeneous and admits a natural
dual. Most of the material of this chapter follows from [14, 36, 42].

4.1 Cluster varieties

Definition 4.1.1. A seed o = (I, J, M) consists of a finite set /, a subset J C [ and an integer
matrix M = [Mij]i,j <7 Which is skew-symmetrizable, i.e., there exists a sequence of positive
integers d = {d; },cs called a skew-symmetrizer such that M;;d; = —M;;d;. The principal
part of M is given by Mo = [Mij], ;. ;.
Remark 4.1.2. As with the symmetrizable matrix A in Section 2.1, the existence of a skew-
symmetrizer for M easily implies that M is skew-symmetrizable in the usual sense. Note that
the submatrix B = [Mijlicr, jes is called an exchange matrix and usually mutations of seeds

are defined in terms of B, however the seed matrix M is more convenient for our purposes.

We associate a split algebraic torus to a given seed o
I
Ay 1= G‘rn',

and write {a; };c1, which refer to as cluster variables, for the natural coordinates on A,,. Recall
that the matrix mutation of any matrix M in direction k is defined as:
— My, if ked{i,jh
pe(M)ij = 1 .
M;; + 5 <|Mik|Mkj + Mik\Mkﬂ), otherwise .

If M is skew-symmetrizable, one can easily show that p (M) is skew-symmetrizable with
the same skew-symmetrizer. A mutation of a seed o in direction k € J is the seed o =
(I, Jiey pic(M)), where Iy, = I, Ji, = J, together with a birational map of tori i, : A, = A,
given in terms of their coordinate algebras by:

*(0:) — _ o 4.1)

Hilai) a' | 1] aj%“r 11 ajMJ’“ ., if i =k.
M;>0 M;<0

Two seeds are mutation equivalent if they are related by a sequence of mutations. The equiva-
lence class of a seed o is denoted by |o|.

35
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Definition 4.1.3. Given a seed o, the cluster variety A = A, is the scheme obtained by gluing
the A, for all 0 € |o| using the birational mutation maps. The seed o is called the initial seed
of A. Each natural coordinate of A, for any o’ € || is called a cluster variable, and the set
of natural coordinates of A, is called a cluster for A.

Abusing notation, each seed o gives a toric chart o: A, — A, which will be called a
cluster chart. Mutation equivalent seeds o and o’ give positively equivalent charts for A.
Denote [o] the class of positively equivalent charts given by the equivalence class |o| of the
seed o.

Remark 4.1.4. Note that a new scheme can be obtained by gluing existing schemes through
gluing maps. Even through the scheme A we get is not an affine variety in general, we still call it
a cluster variety. Denote by Q[.A] the algebra of regular functions on A. Then Q[A] coincides
with the upper cluster algebra generated by the seed o; see [14]. The algebra homomorphism
o*: Q[A] — Q[A,] is an injection, for any cluster chart o.

Example 4.1.5. (Stasheff pentagon) To the very top pentagon in Figure 4.1, we associate a seed

1
2 5
1 - - 1
3 4
2@5 | |
3 4 3 4
| 1/
2@5 | |
3 4 3 4

Figure 4.1: Stasheff pentagon

(I,J,M),where I ={1,...,7}, J ={1,2} and M is given by

My Mo 0 -1 1 -1 1 0 0
M_[M{g o]’WhereM“_L 0}’M12_[0 0 -1 1 -1

To each edge (m, n) in the top pentagon we associate a variable by, which will be a coordinate
on the seed torus A, 7, rr)- By ordering the variables by, in the following way, we index them
by I:

b13, b14, b12, b23, b34, bas, b1s.
By the definition of mutation in direction 2, we get
_ bigbas + bi5bsa

p2(bia) = bt
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This mutation can be presented by the Whitehead move from edge (1,4) to edge (3,5) and the
Pliicker relation: Let bss := p2(b14) be the variable corresponding to edge (3, 5), then

b1abss = b13bas + b15b034.

In fact, each dashed line in Figure 4.1 is a Whitehead move and gives a cluster mutation. The
algebra generated by {b;;} with all Pliicker relations is the homogeneous coordinate ring of
the Grassmannian (5(5) of 2-dimensional planes in the 5-dimensional space. Note that the
principal part of M is M71. More details can be found in [42].

At the end of this section, we state the famous

Theorem 4.1.6. (Laurent phenomenon) For a cluster variety A5 with initial seed o, each clus-
ter variable can be expressed as a Laurent polynomial with integer coefficients in the elements
of the initial (or any other) cluster variables.

4.2 Homogeneous cluster varieties

In this section, we introduce the notion of homogeneous cluster varieties.

Definition 4.2.1. A cluster variety A with initial seed o is graded by an abelian group @ if the
algebra Q[A, ] is graded by ¢ and the initial cluster variables a; are homogeneous for i € I.

Denote by | - | the degree of homogeneous elements in Q[.A,]. By Laurent phenomenon
[42, Theorem 3.14], we know any cluster variable can be written as a Laurent polynomial in
initial cluster variables. Thus we give

Definition 4.2.2. A graded cluster variety A is homogeneous if all cluster variables are homo-
geneous with respect to the grading.

Proposition 4.2.3. A G-graded cluster variety A with initial seed o = (I,J, M) is homoge-
neous if and only if
> lailMi; =0, VjeJ. (4.2)
i€l

Proof. 1f A4 is homogeneous, the equation (4.2) follows from the fact that the cluster variable
a}, of seed 0’ = pui,(0) is homogeneous. To be more precise, the variable a), is homogeneous if
and only if the monomials in (4.1) have the same degree. Then we have:

o lailMy == D ag| My,

M;>0 M;<0
which is equivalent to (4.2).

For the other direction, by induction, all we need to show is

Yl (aa)lp(M)y =0, k,j € J. 43)
el

First all, note that ;17 (a),) has degree:

. 1
|k (ar)l = —lax] + 5 > Jail | M-
iel
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Then, for j # k, we have: (note that My, = 0)

QZ’M"? a; ’Mk ] —QZ’al’Mk l]+2|/’LZ(ak)‘/’Lk(M
el i#£k

= > lai| (2Mij + | Mig| My + Mg Migj|) — (Z |ag|| Mig| — 2@1«\) My,

ik icl
=Y Jail M| Migj| = | Migj| > las| M = 0.
ik iel

For j = k, we have
Z ‘,Ll/k a; |;uk zk = Z |az|Mzk =0.
i€l i#£k
Thus we get the (4.3). &

4.3 Dual cluster varieties

Definition 4.3.1. [35] The (Langlands) dual seed of a seed o is ¥ := (I,.J,—M™). For the
skew-symmetrizer d of M, fix an integer d such that each d; divides d for all ¢ € I. Then
d" = {dY := d/d;} is a skew-symmetrizer of —M7 . For a seed o, denote the torus associated
to the dual seed 0¥ by AY = A,v.

It is not hard to check that
pe(=MT) = —pg(M)".
In other words, we have p (o) = ug(c"). Therefore, the tori A, assemble to a dual cluster
variety AY. Thatis, AV = ﬂ|UV| = ﬂ‘(gl)w for any o, o€ ’U|
Definition 4.3.2. The quadruple (A, AY;d,d) is called a double cluster variety. We write
(A, AY) for short if is the choice of d and d is clear from context.
Given a seed o, there is a natural morphism of tori associated to the skew-symmetrizer d:

) d;
G, (4.4)

i1 0 I er

Uy: Ay — A (Tiys oo os@ipy) > (2
On the coordinate algebra, we have the algebra homomorphism
Ur QLAY = QAL : af = al, iel

Since p (M) is skew-symmetrized by

, d;
rdiy 11|

.

Uyr: Agr — AN+ (xh, . 2k ) (o

11 7Y g
So for each seed o’ € |o|, there is a rational comparison map ¥, : A lo| = Al

Note that (A", A;d",d) is also double cluster variety. Therefore, similar to (4.4), we have
map ¥,v : ﬂc\,/ — A,. Direct computation shows ¥,v o ¥,: A, — A, is the map which
simply raises each coordinate a; to the same power d. The cluster variety A and its dual A"
therefore play symmetric roles in the double cluster variety (A, AV;d, d).

In what follows, write 1, := W, where tropicalization is taken with respect to toric charts
that are positively equivalent to o and o". We shall discuss the comparison map 1, = ¥! in
more detail. Let us look at an example first.
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Example 4.3.3. We follow the notation in Example 4.1.5. Since the matrix M is skew-symmetric,

the dual of (2(5) is itself by identifying b;/j and b;;. The skew-symmetrizer d can be chosen as

diag(d,...,d) for d € Z.. Then on each seed o, we have:
Uy Ay — AY =2 Ay sit. UE(b);) = bl
So on the seed o containing edges (1, 3) and (1, 4), one computes:

\ bibds + bisb4
T (bYy) = 13 45bd 15934 (4.5)
14

On the seed ¢’ containing edges (3, 1) and (3, 5), one has:

b13bas + b15bg4)d 4.6)

W;'(b;,%) = b§5 = < bis

Note that right hand sides of (4.5) and (4.6) are equal after tropicalization:

<b§l3b51l5 +b

i\ bi3bas + bisbsa)®\’
o 1o 34> = min{d{13 + dfs5,dE15 + dé3a} — d&1a = <( 1045 -+ bisbas) > :
14

d
b14

where &, = bf,m is the tropicalization of byy,,.

Next we want to generalize what happened in the previous example. Recall that for posi-
tively equivalent charts 6, #": G, — X on X, the tropical changing of coordinates Id*: (X, 6)! —
(X, 0) is defined as (¢ 0 671)t: G2, — GR,.

Proposition 4.3.4. The tropical maps 1), agree for all c. More precisely, let o be a seed, and
w be a sequence of mutations of o. Then the following diagram commutes.

(A, 0)f — s (A, (o))"

Yo PYu(o)

VAt
(v, oV —1 (Y (o))

Here we abbreviate I1d = 1d 7 and IdV = Id zv.

Proof. In fact, we only need to show the proposition for ;1 = uy a single mutation. Let oy, :=
ui(o). Let {a; | ¢ € I} be the coordinates on A, and {a; | ' € I'} be the coordinates on
As,. And let {a; | i € I} be the coordinates on A}, and {a) | i € I'} be the coordinates on
A, . On one hand, by definition:

dy,

* vy o de % di _ . —dg My — Mg,
s (o)) = ap = pp(ap)™ = o [ T o™+ [ o™
M;>0 M;<0



40 CHAPTER 4. PRELIMINARIES ON CLUSTER VARIETIES

On the other hand, using the formula for mutation, we get:

* * [ % —dp 7% . — )
wr(ay) = O (pila) = ag @y [ T @)™+ J] (@)~

M;j; >0 M;; <0
_—dg di My; —d; My;
= Oy [T o™+ I] «
Mp;>0 M;; <0
_ o —dk — Mg \dy M \dy,
= ay H(ai )+ H(ail) .
M;<0 M;>0

Then the tropicalization gives

[ demin{ 3T Magl. 3T Magl | - il
(Wo,, 0 k)" : M, <0 M, >0
& digy, fori # k,

and,

& — min{ > —diMyg, > dkMikfiv} — di&)l;

(/,Lk ¢} wg)t : M;<0 M;,>0
& diy, for i # k.

where {&;}icr is the natural basis of A% = Hom (G, A,), and similarly for A", A, and
AY'. Thus
(M © Wa)t = (W,LL(O') o M)t' &

Note that our tropical map 1), is in general an injection (but not a bijection) of the lattice
A into the lattice A"

At the end of this section, we would like to extend the cluster variety A with initial seed
o = (I,J, M) by asplit torus H of rank r. Denote A = H x A the extension of A by H.
Any choice of isomorphism of tori H = GJ,, gives an isomorphism of 4 and the cluster variety
A5 generated by the seed

o:={TU{1,...,r},J diag(M,0)).

The variety A is called a decorated cluster variety, or cluster variety if the decoration H is clear
from the context.

Note that H = X,(H) ®z G, and consider the group HY = X*(H) ®z Gy,. Then HY
is the Langlands dual group of H (in a slightly more general sense than was recalled in Section
2.1). Define the (Langlands) dual of A as AV := HY x A". Given a double cluster variety
(A, AY,d,d), choose homomorphisms of tori ¥ : H — HY and " : HY — H such that
gH" op simply raises each coordinate to the d power. Then the tuple (ﬁ , A V.d,d, v gt V)
is a decorated double cluster variety. We often write (A, A ") for short.

On each seed of a decorated double cluster variety (ﬁ , A V), the comparison maps extends:
o s Wy Ay - A and U x W XY — A,

Let " = (W)t (H)* — (HV)'. By Proposition 4.3.4, the maps ¢ x 1), agree for all seeds
o in the sense of Proposition 4.3.4.
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4.4 Double Bruhat cells as homogeneous cluster varieties

Let G be a semisimple algebraic group. In this section, we recall how to make G** into a
cluster variety, for any pair (u,v) € W x W. We begin by working with L. By decomposing
G"™Y = H x L"™?, we then get a decorated cluster variety G**¥ by extending L*" to H x L*".

Recall that for i = (i1,...,4,) € R(u,v) and k € [1,n], we denote
Kt =min{j | j >k, |i;| = ik}, k= =max{j|j <k, l|i;| = ||}, 4.7)

so that £~ (resp. k™) is the previous (resp. next) occurrence of an index =iy in i; for k the
first (resp. last) occurrence of =iy in i, we set k= = 0 (resp. k* = n + 1). An index k is
i-exchangeable if k™ € [1,m]. Let e(i) denote the set of all i-exchangeable indices.

Extend the word i € R(u,v) to (i_p,...,0_1;11,...,1y), Where i_, = —r. Let
I=[-r,—-1U[l,n], J=e(i), L:=[-r,—1]Ue(i).

Construct a I x I matrix M as in [14, Remark 2.4]: For k,l € I, set p = max{k,[} and
q = min{k™, [T}, and let (k) be the sign of k. Let

—e(k — De(ip) - Ay ppir> i p < g and e(ip)e(iq)(k — 1)(k* — 1) > 0;
M =14 — elk — 1)e(iy), ifp=q; 4.8)

0, otherwise .

where we recall that A is the Cartan matrix of g. Denote by M (i) := []T/[/(i)kl]k,leL the L x L
submatrix of M (i). Let

di={d_i.,....d_i di,...,d; }, 4.9

where the sequence d = {dj,...,d,} is the fixed symmetrizer of A. It is easy to see that dj is
a skew-symmetrizer of M (i). Define the following seeds:

5(i) == (I,J,M@4); o) :=(L,J,M(3)),

As before, we fix a positive integer d such that each d; divides d.

Recall that for i € R(u,v) and k € [1,n], we denote by

and for k € [—r, —1], denote by uy, = e and v = v~!. Define the generalized minors
Ag(i) = Ay = Ay, gy, fork € [—=r, —1] U [1,n]. (4.10)

Theorem 4.4.1. [14, Theorem 2.10] For every i € R(u,v), let A|o(3)| be the cluster variety
generated by the seed o (i). Then the map given by

ot Qo] = QUL + ap o> Ay, for ke L= [—r,—1]Ue(i)
is an isomorphism of algebras. If G is simply connected, the map
&;k Q[ﬁ\ﬁ(l)\] - C[Guﬂ]]? ag + Ay, for kel= [_Ta _1] U [lvn]

is an isomorphism of algebras.



42 CHAPTER 4. PRELIMINARIES ON CLUSTER VARIETIES

Proof By [14, Eq (2.11)], the set of cluster variables on the chart o (i) of the double Bruhat cell

G for simply connected G is {Ay, | k € [, —1] U[1, n]}. Recall that for z € L* C G*v,
we have Ay, o, () = 1. Thus Theorem 4.4.1 follows from [14, Theorem 2.10] by applymg
Ay, w; = 1 and identifying Q[L*"] and Q[L™"]. &

Remark 4.4.2. Given i € R(u,v), the set of functions {Ag(i) | £ € L} is called (initial)
cluster variables for cluster variety L*" with initial seed o (i).

Remark 4.4.3. Note that the twisted minors on L*" for i € R(u,v) we introduced in Section
2.7 are exactly the composition of twist map "V with the labeled cluster variables for L"" for
the double reduced word i°? € R(v, u), where i% = (—ip,, —im—1,..., —01).

Since the Weyl groups of G' and GV are isomorphic, the reduced word i also gives the
reduced double Bruhat cell LY for GV the structure of a cluster variety. Moreover, we have:

Corollary 4.4.4. Fix (u,v) € W x W. Let d; be as in (4.9) and let d be the integer fixed in
Section 2.1. Then the quadruple (L*", LV"%"; d;, d) is a double cluster variety.

Proof. What we need to show actually is (L%V)Y = [Vi4? where (L“")Y is the dual cluster
variety of L"?. Let (I, .J, M (i)) be the initial seed of L":*°-¢, Following the definitions, one
obtains

(L, J M) = (L, J,~ME)") = (1, M (D). o

For a seed o € |o(i)], denote by WL: L%V — [Vi:¥ the comparison map for the double
cluster variety (L“V, LV:%"V). Extending the cluster variety L“* by H, we get the decorated
cluster variety G** = H x L™". For any seed ¢ on L"™", the following map gives a positive
chart on G*":

Idxo: Hx G, — H x L™ =G"“", 4.11)

which is denoted by o as well if there is no ambiguity. Combining with ¥ : H — H" as in
Proposition 2.1.3, we have the following comparison map on the decorated cluster variety:

W, =l xwl. ¥ = H x L[¥0¢ - QYUY = HY x LV, (4.12)

The tuple (G*, GV:%" d;, d, yH gt v) is then a decorated double cluster variety.
Next, we would like to give a grading to the the cluster variety L*".

First of all, note that H x H acts on Q[G] in the natural way: (a1, as) - f(2) = f(a] zaz)
for f € Q[G] and (a1, a2) € H x H. Then Q[G™"] has a natural P x P-grading and the P x P-
homogeneous elements are /' x H-eigenvectors in Q[G*"]. Then any generalized minor A, s
on G has degree (—+, ) by Proposition 2.3.1.

Secondly, split double Bruhat cell G** = H x L%" and denote the natural projections by:
ry: GYW 2 H X L™ — H; pry: GY = H x L™ — L"".
Proposition 4.4.5. For i € R(u,v), the function Ay o pry for k € [—r,—1] U e(i) on G is

homogeneous of degree (0, —uilukwik + vgw;, ). The function Ay, o pry is homogeneous of
degree (—ww;, u”Lww;). Thus the cluster variety L*° with initial seed o (i) is P x P-graded.
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Proof. Fory € G™", denote by h = pr;(y) and x = pry(y). In other words, y = hx. For a €
H, it is clear that pry(a-y) = . Since B_uB_ -a = B_uB_ and UuU -a = (uau ') - UaU,

for x € L™Y, we have

o=@ Tz a € LY.

Thus we have pry(y - a) = 2’ since the factorization G* =~ H x L™V is unique. Then we
know:

—u_

1 . .
Ay opry(ay -y - az) = Qg TR Ag o pry(y).

Thus we conclude that Ay, o pr, is of degree (0, —u_lukwik, + VW, ). &

Remark 4.4.6. Note that on G*¥, we have for k € [—r, —1] U [1,n]
Aukwk,vkwik = Aukwik o pry 'Aukwik,vkwik © pra,

which also justifies that Aukwk,vkwik has degree (—ugwy, Viwi, ).

To show that the cluster algebra on L*" is homogeneous, we need

Proposition 4.4.7. [42, Lemma 4.22] For any k € J = e(i), we have:

Z Uszk i) =0, Z vgpwi, M (1)k = 0.

Then what follows is immediate:

Proposition 4.4.8. For i € R(u,v), the P x P-graded cluster variety L' with initial seed
o(i) is homogeneous. If G is simply connected, the P x P-graded cluster variety G" with
initial seed 7 (1) is homogeneous.

Proof. By Proposition 4.4.7, we have

—1
§ u Usz'k i) =0, E Uszk i) =0.

Thus Y (—utugw;, + vkwik)ﬁ(i)kl = 0. Note —utupw;, + vgpw;, = 0fork € T\ L, since
ug = u and v = e in this case. Thus we get > (—u~tugw;, + vpw;, )M (1) = 0. &

Next, we show that the twist map is homogeneous:

Proposition 4.4.9. Given a double reduced word i for (u,v), the function My, o pry is homoge-
neous of degree (0, —v~'wkw; +ufw; ) fork € [-r,—1] U e(i).

Proof. By the uniqueness of the Gauss decomposition, we have for all g € Gg and h € H:

[hgl+ = [g]+, since hg = [hg|<o[hgl+ = hlgl<o - [9]+;
[ghl+ = h™'[g]1h, since gh = [gh]<o[gh]+ = [gl<oh - B [g]4h.

Thus one computes for x € L*V and h € H,

Y0 (ha) = " (x); Y (ah) = (GhTOTY) -yt () - b

Thus the twisted minors M}, has degree (0, —v_lvkwik + ukwik). &
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4.5 Double Bruhat cells as positive varieties revisited

Recall that we have introduced the positive varieties (B_,©p_) and (L"°¢, ©r). In this
section, we would like to expand the set ©p_ and O7,.

Fori € R(u,v) and for k € [—r, —1]Ue(i), the factorization parameters ¢;+’s of z;: G, —
L*%" are Laurent monomials of twisted minors by Theorem 2.7.3, thus they are homogeneous.
Actually by the H x H action on (G, one can show the degree of ¢, is

(0, —u*ay, ), if i, <0;
(4.13)

|te| =
0, —ay, + E Qi Oy | s if i >0
I: 1>k,i <0

by using x;(t)h = ha;(th~*) and z_;(t)h = ha (h™*)z_;(th~*) fori € I.

Definition 4.5.1. A toric chart §: S — X for a irreducible variety X is graded by an ablian
group @ if the Q[S] is a ¢-graded algebra and the natural coordinates on S are homogeneous.
Two toric charts 1,62 S — X are homogeneous equivalent if both (07 065)* and (65 06;)*

. . h , . ..
send natural coordinates to homogeneous elements. Write 61 ~ 05 if 6, and 6- are positive and
homogeneous equivalent to each other.

Proposition 4.5.2. Given a positive variety (X, © x ) with graded toric charts 0;: G}, — X for
i = 1,2. Denote by {a;}}"_ (resp. {b;}}"_) the natural coordinates for 0y (resp. 62). Suppose

h . . .
01 ~ 0o, then then there exists a unimodular matrix M such that

(laal, - lanl) = ([bal, - s [bn]) M,

where | f| is the degree of f.

Proof. Without loss of generality, let assume a;’s are homogeneous positive rational functions
in b;’s. Write a; = f;(b1,...,by). Let C be a linearity chamber for all ff’s, which is a chamber
C such that f!|c’s are all liner. Thus on C, we have

(ab,...,a) = (b4, ..., b)) M, (4.14)

r'n

where M is the coefficient matrix of ff |c’s. Since 6, i 05, the matrix M is unimodular since it
is an isomorphism of lattice X*(G},,). Note that (4.14) implies the claim we need to show. ¢

For i € R(u,v), we have a toric chart z;: Gy, — L"". Let ©(, ) be set of all charts that
are positive equivalent and homogeneous equivalent as well to x;. Denote by
@)uﬂ, = {o]o€|o(i)|foralie R(u,v)} U{yp* oo |0 € |o(i)|forallie R(v,u)}
U{zi, " o zjor | i(u) € R(u,v)}.

Proposition 4.5.3. For u,v € W, the pair (L"", 0, ) is a positive variety. Moreover, the set
Oy, is a subset of O .

Proof. The positivity of § € 5) 1, is clear. The homogeneity of # follows from that the cluster
variety L"°-¢ is homogeneous and all the transition maps in Section 2.5 are homogeneous. <>
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Remark 4.5.4. Recall for any u < w € W, we have open embeddings &) : Gy, — L*" and

i), GR — L he by Proposition 3.5.2. For w = wy, the following set is a subset of O, .
as well:

{gi(u),we,wo 0 &iqu) | u € Wyi(u) € R(U,uwo)} .

Definition 4.5.5. (Notation) In the rest of the paper, denote by Oy := O, and Op_ :=
G H X ewo,e-

To achieve different properties, we normally have different preferred charts. Then the posi-
tivity and homogeneity will help us to transfer the properties in charts that are more accessible
to the problem to the preferred charts.






5 Preliminaries on Poisson-Lie
Groups

First introduced by Drinfel’d [29] as semi-classical limits of quantum groups, a Poisson-
Lie group is a group object in the category of Poisson varieties. A another motivation for the
introduction of Poisson-Lie groups was the study of integrable systems associated to infinite-
dimensional Lie algebras, see Semenov-Tian-Shansky[80]. Most of the material in this chapter
is based on [31, 75].

5.1 Poisson-Lie groups

Definition 5.1.1. A Poisson-Lie group is a Lie group GG endowed with a multiplicative Poisson
structure 7, i.e., the group multiplication G x G — G is a Poisson map, where G x G has the
product Poisson structures.

Example 5.1.2. [64, Example 2.1] For G = SLo, we can define a family of Poisson structure
on GG parametrized by d € C

d d
{IE12,1'11} — 51:1133123 {1'2173311} - 51'1155217 {m227$11} — d$12x21a
d d
{z12,201} =0, {z22, 212} = 5 ¥12%22, {22,201} = 5021222,

where x;; is the (4, j) entry of a matrix z € SLy. Denote by SLgd)

the Poisson structure defined above.

the Poisson-Lie group with

Example 5.1.3. Recall that a bivector r € g ® g is called classical r-matrix for g if r 4+ r2! €
S5?(g)? and r satisfies the classical Yang-Baxter equation:

[7“12,7“13} + [7'12, 7“23] + [7’13,7“23] —0.
For any r-matrix € g ® g, the following bivector field 74 on G defined by
A p

TG i=r"—r

is Poisson and (G, mg) is a Poisson-Lie group, where r* (resp. r”) is the left (resp. right)
invariant 2-tensor fields on G.

Note that the bivector field mg necessarily vanishes at the group identity e and therefore
leading to a linear Poisson structure on 7. G = g, hence a Lie bracket [-, -|;+ on the dual vector

47
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space g*. Moreover, the tuple (g, [+, -]g, [+, ]g*) is @ Lie bialgebra, i.e., the transpose 6 : g — A’g
of [,-]g+: A% g* — g* is a Lie algebra 1-cocycle. Then the tuple (g*, [, ]4+, [-,]q) is a Lie
bialgebra as well, which is called the dual Lie bialgebra of (g, [-,-]q, [, -]g*)-

Denote by G* the simply connected Lie group with the Lie algebra (g*, [, ]g«). Then by
the theory of Poisson-Lie groups, there exists a unique Poisson structure g+ on G* such that
(G*, mg~) is a Poisson-Lie group with Lie bialgebra (g*, [+, -], [, -]¢)- In the rest, we say two
Poisson-Lie groups are dual to each other if their Lie bialgebras are dual to each other.

As an application of the previous example, let G be a semisimple Lie group over C with Lie
algebra g with a fixed bilinear form (-, -) as in Section 2.1. For positive roots & € R™, choose
root vectors E,, € g, and F,, € g_,, so that (E,, F,) = 1. Let X; be an orthonormal basis for
h under the fixed bilinear form. Then the following 2-tensor is called the classical r-matrix

1
rei=5) Xi®Xi+ ) Ea®Fa.
el a€Rt

Note that the Borel subgroups B and B_ are Poisson-Lie subgroups of GG. Recall that we have

the symmetrizer d for the Cartan matrix A for g and the canonical homomorphism ¢;: SLs —
G. Then the Poisson structure 7 is the unique the Poisson structure such that ¢; : SL;di) -G
is Poisson.

In this case, the simply connected dual Poisson-Lie group of G is the Lie subgroup of G x G

G*={(b,b_) e Bx B_|[bjolb-lo=1} CGx G 6D
with the Poisson bracket described by

Proposition 5.1.4. , For f € C[B] and g € C[B_], denote fi := f opr; € C|G*] and
g2 := g o pry € C[G*], where pri: G* — B and pry: G* — B_ are the natural projections.
Then the projections pry and pry are anti-Poisson and the mixed bracket is given by

roda = 5 3 (X Pi(Xegho— (F- Xii(g- X
el

+ Z (Ba - fli(Fa-g)2 — (f - Ea)1(g - Fa)o-

a€ERt

5.2 Log-canonical coordinates and twist maps

In this section, we recall the symplectic leaves of the Poisson-Lie group (G, 7¢) for semisim-
ple Lie group G and describe the log-canonical coordinates for it. Most of the material is based
on [42, 64].

Forw € W and h € H, denote by h* := w~'hw. For u,v € W, let H*" be the subtorus
of H formed by (h*)~*h® forh € H.

On double Bruhat cell G**, we introduce the following maps

py: BuB—H : g—h, if g has form niwhney forn; € U;
qv: B_.vB_ — H : g —h, if g has form n1vhng forn; € U_.

Note that in the factorization g = njuhns, h is unique even through that n; is not.
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Proposition 5.2.1. The symplectic leaves of mg in G are the connected components of the set:

{9€G" | pulg) - au(g) € RH™"}

for some u,v € W and h € H, which has dimension {(u) + ¢(v) + dim H™".

Assume that G is simply connected, denote by I(u,v) the set of all indices ¢ such that
uw; = vw; = wj, where w; is the fundamental weight of G. Then
Theorem 5.2.2. [64, Theorem 2.3] For G simply connected, the following set:

SUY = {x e G™ | [a'aly - ([wv o)’ € H™", [u~'2]5" = 1¥i € I(u,v)} .

is a symplectic leaf in G. Every symplectic leaf in G is of the form SV - h for some u,v € W
and h € H.

Next we would like to describe a log-canonical coordinates on G. First of all, we have
Theorem 5.2.3. [42, Theorem 3.1] The double Bruhat cell G*" is a Poisson submanifold of
(G, 7). The twist map £ G*Y — G* " defined in 2.6.1 is an anti-Poisson map.

Assume that G is simply connected. Recall that on the G*Y, for each i € R(u,v), we have
a collection of cluster variables Ay := Ag(i) for k € [—r, —1] U [1, n]. Together with the [64,
Theorem 2.6], we have

Theorem 5.2.4. [42, Corollary 4.12] On the double Bruhat cell G*", the standard Poisson
bracket between generalized minors is given by

1
{A, A} = 3 ((wpwiy , wws,) — (Vgwiy,, viws, ) ) AR
fork <le[-r,—1]U[L, n].

Recall that by assuming that G is simply connected, we know G*-* is a homogeneous cluster
variety. Define a skew-symmetric paring (-, -) by requiring
2<|Ak’, ’AZD = ((ukwik,ulwil) — (vkwik,vlwil)), if kb <.

Then we have the following corollary:

Corollary 5.2.5. Fori € R(u,v), denote by z;’s the cluster variables for seed o € |o(i)],
standard Poisson bracket {zy, z} is given by

{21, 21} = (|2x), |21]) ze 21

Proof. Let f and g be monomials in {A;}, thus direct computation shows:

{f,9} =Sl 19])fg.

Now suppose that f = > f; and ¢ = > g; are homogeneous Laurent polynomials in {A;},
which means that |f| = |fi| = --- = |fm| and |g| = |g1| = - -+ = |gn|. Thus by the previous
computation, we have:

{fag} Z{fz;gz} Z ’fl’ ‘g] flgj
—Z |£11gl) fzg] (£, 1g1) Zfzg]

i,J
= (7119l fg-

Then by Laurent phenomenon and homogeneity of z;, we get the conclusion. &
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5.3 Poisson involutions

In this section, we shall talk about Poisson involutions on a Poisson variety and its fix
locus. As an application, we discuss holomorphic Poisson structures and their real forms. Most
material can be fond in [86].

Definition 5.3.1. A Poisson involution on a Poisson variety (X, 7) is a Poisson diffeomorphism
7: X — X such that 72 = Id.

Proposition 5.3.2. [86, Proposition 4.2] Let X” be the stable locus of a Poisson involution
7: X — X. Assume that the Poisson tensor won P is m = ZZ A; N\ B;, where A; and B; are

vector fields on X. Then the tensor m™ := > Aj A Bj X is a Poisson tensor on X7, where

14+ = % (A + T*A)
for any vector field A on X.

Without using local coordinates, the Poisson tensor 7" can be defined as follows. For any
p € X7, decompose T, X as T,X = (T, X)” + (1, X)~", where

(T,X)" ={vel,X |1(v)=v}, (LX) ={velX|7(v)=—v}
Then we know 7 can be write as 7(p) = 74 (p) + 7+ (p) + 7—(p), where
i (p) € AT, X)", 7+(p) € (T,X) @ (T,X)™", m_(p) € NA(TX) ™.

Then 77 (p) := 74+ (p).

Example 5.3.3. Let G = SL,, with the standard r-matrix r¢g. Let (b,b_) € G* C B x B_ be
an element in its Poisson-Lie dual. Let 7 be the following involution on G*:

T:G* = G (bb)— (b7, 07).

Thus the fix locus of T is U, i.e., upper triangular matrices with all diagonal entries equal to 1.
For n = 3, the Poisson structure induced as in Proposition 5.3.2 can be described as

1
{z,y} =2y —22; {y,2} =yz — 2x; {z,2} = zo — 2y, whereu = |0 eUs.
0

O = 8
— N <

This Poisson structure was also obtained independently by [27] and by [82] in the general case
in connection with the study of Frobenius manifolds. In [23], Boalch also realized that this
Poisson structure on U coincides with the induced Poisson structure on G*.

Next we would like to talk about the real forms of holomorphic Poisson structures. Let
(X, ) be a complex manifold with holomorphic Poisson structure m € A?(T0X). Denote by

i:=+/—1.

Let m = mp + im; be the decomposition of 7 into real and imaginary parts; it is well-known
that 7, m; € T'(A2(T X)) are (real) Poisson bivectors.
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Definition 5.3.4. Let X be a complex manifold with holomorphic Poisson structure 7. A real
formof (X, m) is an anti-holomorphic involution 7: X — X of X, which satisfies 7(7r) = 7g.

Remark 5.3.5. Equivalently, 7(7r) = mp if and only if 7(77) = —n;. Extending 7 conjugate-
linearly to 7X ® C, this is equivalent to the condition 7(7) = .

Let Y be a (real) open submanifold of the fixed locus of 7. For any p € Y, decompose 1}, X
as T, X = (T,X)" + (1,X)™", where

(T,X)"={veTl,X |1(v)=v}, (LX) ={velX|1(v)=—v}
As shown in [86], T can be decomposed as mr(p) = 7R(p) + 75" (p), where
Tr(p) € A(T,X)7, w37 (p) € A(T,X) 7.
Lemma 5.3.6 ([86]). Using the notation above, Ty, is a Poisson bivectoron Y C X7.

Example 5.3.7. Consider any holomorphic Poisson structure m = ZZ j mij(2)0z; A Oz; on C",
where 7;;(2) are holomorphic functions. Let 7 be the anti-holomorphic involution of C™ given
by 7(z) = Z. Then the set of fixed points of 7 is Y = R™ C C". Thus 7(7r) = mg if and only
if m;;(Z) = m;;(2). Write 0, = 1/2(0,, — 10,,), and direct calculation shows

Th

i > i (2)0a, A O, (5.2)
ij

Lemma 5.3.8. Let X be a complex manifold with holomorphic Poisson structure 7. Let T be
real form of (X, ) and 'Y be a (real) open submanifold of X™. Then we have

Ay, Polvdeg, = 3 U el

where the f; are holomorphic functions on an open subset U C X satisfying fi(17(2)) = fi(2).

Proof. We only need to show the lemma in a neighborhood of each fixed point of 7. Choose
holomorphic local coordinates z1, ..., z, such that 7 is given by 7(z) = Z. Then in these
coordinates, the f; satisfy f;(Z) = fi(z). Set z; = z; + 1y, and let z = (z1,...,2,) and
y=(Y1,-.-,Yn). Write f;(2) = u;(z,y) + iv;(z,y), where u;,v; € C°°(X) are smooth real-
valued functions on X. Since f;(Z) = fi(z), we know w;(x,y) = w;(x, —y) and v;(z,y) =
—v;i(x, —y). Thus 9y, u;|y=0 = 0. Then by the Cauchy-Riemann equations, we have

<3iji(z)> ‘Y = %(&Ejui + Oy, v — 10y, u; + ﬁ@xjm)

= %(89;].% + 8iji>

y=0
By Equation (5.2), we get the conclusion. O

Proposition 5.3.9. Let X = (C*)" with holomorphic Poisson bivector m and T be a real form
of X. Let f1, fo be holomorphic functions on an open subset U C X. Then

1

Uilys folydeg = JUf1 fodaly
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Proof. LetT = 1o (-)and g; := f; + fioT and h; := f; — f; o 7. Note that f;(Z) = fi(2).
Then g; and 1h; satisfy the condition from Lemma 5.3.8:

9i(r(2)) = 9i(2),  1hi(7(2)) = 1hi(2).

We then compute 4{ f1|y, f2|Y}rr1§ by

{o1ly + hly, g2ly + haly }ry,

= ({91|Y,92\Y}7r1g —i{g1ly,ihaly }ry, — i{ib1ly, g2ly }rg, — {2haly, flh2|Y}7r,g)
1 . . . o
= 1<{91»92}W\Y — i{g1,iha}xly — i{ih1, g2}rly — {iha, nh2}7r|Y)

= i{gl +hi, 92+ hatxly = {f1, fo}rly. o

At the end, let us discuss when we have two involutions:

Proposition 5.3.10. Let (X, 7) be a complex Poisson variety with a holomorphic Poisson invo-
lution 71 and a real form 5. Suppose that T1 o To = T3 0 T1, then To is a real from of (X™, ™).

Proof. Since 11 o 79 = T2 o T1, Ty restrict to an anti-holomorphic involution on X™. We
need to show 73 is a Poisson map on X™. For any p € X™, decompose 1), X as T, X =
(T, X)™ + (T, X)~ ™, where

(LX) ={veT, X |nWw) =v}, (LX) ™ ={vel,X|n() =-v}

Since 71 0 5 = 9 0 71, we know 7o(T1, X)™ C (1,X)™ and m»(T1, X )~ ™ C (1,X)~ ™. Recall
7 can be write as w(p) = 74 (p) + 7+ (p) + 7—(p), where

m4(p) € NAT,X)™, 7(p) € (T,X)" @ (T,X)™ ™, 7_(p) € NYT,X) ™.

Then 77 (p) = 74 (p). Thus we know that 7o (7™ ) = 7. &

5.4 Ginzburg-Weinstein isomorphisms

In this section, we discuss a special Poisson isomorphism, which is the so-called Ginzburg-
Weinstein (GW) isomorphism arising from Poisson-Lie theory.

First of all, we recall what is real forms of complex Poisson-Lie groups.

Definition 5.4.1. Let (G, 7) be a connected complex Poisson Lie group, i.e., a complex Lie
group G together with a multiplicative holomorphic Poisson structure mg. A real form of
(G, 7g) is an anti-holomorphic involution 7 on G such that 7 is a group automorphism of
G and 7(7g) = 7.

Proposition 5.4.2. For any real form T of a connected complex Poisson Lie group (G, ), the
pair (G”,4(nq)},) is a real Poisson-Lie group.

Let GG be a semisimple complex Lie group with the standard Poisson-Lie structure 7. Let
(G*, g+ ) be the Poisson-Lie dual. Denote by K the compact real form of G and G = AU_K
its Iwasawa decomposition. Then:
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Theorem 5.4.3. The involution T :==T o (-): G* — G* is a real form of (G*, ing+), where
7 (b,b_) (b:T,b—T) .
The map pry: (G*)" — B_ is an isomorphism to its image, and Im(pry |(g+)-) = K* := AU_.

In the rest, write 7« := (pry)«(4(img=)%). Thus we have a Poisson-Lie group (K™, mg+).

Next we recall the natural K actions on £* and K*. Denote by 7' = K N H. We make the
standard identifications

X*(H) ®z R = it", X*(H) ®z C = b*, X.(H)®zC=h.
The positive Weyl chamber t, C £* is

e ={¢et" | (1)) >0, Vi=1,...,7}.

Recall that the coadjoint action of K on £* is defined in terms of the adjoint action by the
equation
(Ad; &, ) = (&, Ady—1 @), ke K,¢et andz € L.

The Lie-Poisson structure e+ is preserved by coadjoint action, and the symplectic leaves of
me= are the coadjoint orbits. The action of K on K™ is the so-called dressing action, which is
defined by re-factorizing kb € G according to the Iwasawa decomposition G = AU_K for
ke Kandbe K*. If

kb=VkK € AU_K, kK e K, bb € K* = AU_,

then the dressing action of & on b is defined as *b = /. The symplectic leaves of mx~ are the
dressing orbits, which are the joint level sets of the Casimir functions [75],

C;(b)? :=Tr (p; (b)),  be K*, (5.3)
where p; is the fundamental representation of G with highest weight w; € Py. The map ¢: b —
bb* is a diffeomorphism of K* onto the set S = {g € G | ¢* = g}.

There is a family of diffeomorphisms §s: € — K* parameterized by s # 0 [34]. Let
1 € — £ be the K-equivariant isomorphism given by the fixed bilinear form on g. Then,

b e exp(25ﬁ~) -1

T € S K* = AU_. (5.4)

The map §s is equivariant with respect to the coadjoint and dressing actions of K. Let
O¢ be the coadjoint orbit through £ € t.. Denote by D the dressing orbit through §(§) =
exp (—sv/—=11(€)). Since § is K-equivariant, Fs(O¢) = Dse.

However, §1 is not a Poisson map. But the following theorem address

Theorem 5.4.4. [43] There exists a Poisson diffeomorphism from Poisson manifold (€*, ) to
(K*, TR * )
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Such Poisson isomorphisms are called Ginzburg-Weinstein isomorphisms/diffeomorphisms.
Such maps is denoted by GW, through out the paper. Note that £* is abelian, whereas K™ is
not, so Ginzburg-Weinstein diffeomorphisms can not be group homomorphisms, and £* and K*
can not be isomorphic as Poisson-Lie groups.

In particular, for each s # 0 the map GW; restricts to a symplectomorphism between the
coadjoint orbit O C t* and the dressing orbit D, C K*. Therefore, we may study D¢ for
arbitrary s € R* instead of ©Og.

There are several proofs of the Ginzburg-Weinstein Theorem in the literature: the orig-
inal proof [43] is an existence proof using a cohomology calculation, the proof in [1] gives
Ginzburg-Weinstein diffeomorphisms as flows of certain Moser vector fields, the proof in [30]
is by integration of a non-linear PDE of a classical dynamical r-matrix, and the proof in [23]
uses the Stokes data of an ODE on a disc with an irregular singular point in the center.

Example 5.4.5. For G = SLy, by identifing su(2)* with Hermitian 2 x 2 matrices

A= {x Z],wherexeR,zeC
zZ —

The following map is a Ginzburg-Weinstein diffeomorphism

z/2 eia\/er +e T —et —e T
0 e—:c/2 ’

where 7 = /22 + |2|2, 2 = pe®.

5.5 More involutions on SL,,(C)*

In this section, we would like to consider more involutions on G* = SL,,(C)*. Not like the
real form of G, the fix locus we get is a Poisson variety, rather than a Poisson-Lie group. At
the end of this section, we explain why we want to consider these involutions.

Recall on SL,,(C)* in Example 5.3.3, we have the following Poisson involution

T (b_,b) — (b7, 07).

Denote by
1
B . I L =% |0 I,

1

And we introduce the following Poisson involution on SLy,, (C)*:

m:P: (b_,b) — (Pb_T' P, Pb=TP).

Recall that we have a real form 7 on G*, it easy to check that 7 commutes with 7 and &.
By Proposition 5.3.10, 7 give rise to real forms on (G*)7 and (G*)” respectively. The identity
component of fix locus of 7 can be identified with U via pr;. and the real form on U is

U—=U:u—u "
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Let us explain why we care about these involutions. From the Stokes phenomenon in [23],
there is a local GW isomorphism for G = SL,,(C):
S:g=g" — G,
which intertwines the involution p; on g and I on G*, involution ps on g and & on G*, and the
involution p3 on g and 7 on G*, where
pP1:g—9g a%—aT; p2:g—g: a— —J T

p3-g—g a— —al.
Note that p3 commutes p; and po. Thus taking the intersection of fix points of involutions p;
and p3 (resp. p2 and p3) on g and the intersection of fix points of involutions 7 and 7 (resp. &
and 7) of SL}, and restricting the map &, we get a (globe) Poisson isomorphism:

50,(R) — U™;  sp,(R) — (B_)?

Note that U™ and (B_)7 are just Poisson spaces, rather than a Poisson-Lie group. These give

us a different view of GW isomorphism in the classical type.






6 Tensor Multiplicities via Potential

6.1 Overview

The goal of this chapter is to continue and, to some extent, complete the “multiplicity ge-
ometrization” program, originated in [15, 16, 20, 18, 21]. Then by using our geometric mul-
tiplicities, one can recover all known and obtain many new formulas for such classical multi-
plicities as tensor product multiplicities, weight multiplicities, etc emerging in representation of
complex reductive groups.

In our approach, a geometric multiplicity is a positive variety with potential fibered over the
Cartan subgroup H of a reductive group GG and additionally fibered over some extra split torus
S. They form a category, which we denote it by Multg (see Definition 6.3.1 for more details).

Theorem 6.1.1 (Theorem 6.3.5). The category Multe is a non-strict unitless monoidal cate-
gory with product My x Mo given by

M]_*MQ ::M1 XMQXU.

(Here U is the maximal unipotent subgroup of G normalized by H.)

The associator for Mult¢ is extremely non-trivial. We construct it via embedding Multg
into the monoidal category of decorated U x U-bicrystals, see Section 6.3. In fact, even though
the category Mults has no unit, it has a natural tropicalization functor J (see Proposition
3.2.5) to what we call affine tropical varieties (see Definition 3.1.1). The latter category is an
“honest” monoidal category with the natural unit 0 (thus, in what follows, we will ignore this
minor deficiency of Multg).

Using this tropicalization functor 7, we can recover many interesting representation of the
Langlands dual group G of G and various multiplicities in them out of geometric multiplicities
over G as follows.

First, to any M € Mult we assign an affine tropical variety M* := 7 (M) fibered over
the dominant coweight monoid P} of G. Then assign a G¥-module (M) to M via

V(M) = P cMiv] @V,
AVePrY

where M}, is the tropical fiber over AV, C[] is the linearization of the set, and V)v is the
irreducible representation of GV with highest weight AV (thus we passed from the geometric
multiplicities to the algebraic ones).

This chapter is based on a joint work [17] with A. Berenstein.

57
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Theorem 6.1.2 (Theorem 6.4.1). The assignments M +— V(M) define a monoidal functor from
Multg to Modgv, the category of locally finite GV -modules.

Note that a geometric multiplicity is a additionally fiber over a split torus. This structure is
introduced to resolve the problem of possibly having infinite multiplicities, which, in particular,
happens for the module V(H « H) = V(H) ® {(H) because

VH) = P V. (6.1)

We define the multiplication in Mult¢ in such a way that if M; is additionally fibered over S;
for i = 1,2, then My x M is additionally fibered over S7 x So x H. This fixes the issue with
H * H because now it is fibered over H3. And the finiteness of the multiplicities is restored as
follows. Given a geometric multiplicity M additionally fibered over S, its tropicalization M? is
naturally fibered over the direct product of P}/ and cocharacter lattice X, (S) := Hom (G, S)
so that for every cocharacter { € X, (S) we define V¢ (M) by

Ve(M) := €P C[M}y ] ® Vv,
AEPY

Theorem 6.1.3 (Theorem 6.4.2). Given geometric multiplicities M; additionally fibered over
S; for i = 1,2, one has the following natural isomorphism of GV -modules

Vey eoav v (My % M) = Iy (Ve (My)) @ Lv (Ve, (Ma)) (6.2)

where I,,v (V') denotes the p" -th isotypic component of a GV -module V.

This indeed fixes the “infinite multiplicity” issue for /(H x H) since (6.2) boils down to an
isomorphism

U)\V,V\/(H*H) = Vv ®V,v.

In turn, by applying this argument repeatedly to the geometric multiplicities:

H*":= Hx-- % H,
—_—

n

we get an isomorphism of G'-modules

Uy

Vo (H™MEVyv @@V, YA A e Pl n>2

Thus the geometric multiplicities H*™ (fibered over H"*') compute all tensor product multi-
. .o, . 4 .

plicities CI;Y»---M\X := dim Homgv Vv, Vay @ -+ @ Vyy).

Remark 6.1.4. Our construction of H*" bears resemblance with the approach by Goncharov-

Shen in [44, 45]. In particular, they related their configuration space Conf(A" ! @) to geo-

metric crystals in [44, Appendix B] and [45, Section 7.1].
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6.2 The model space 1/

In this section, we describe a “trivialization” of G and extend it to G(”), where we recall
that the group G itself is a (U x U, x**)-bicrystal and G(™) := G x - -- % G is the convolution
product of n-copies of G’s. Also denote by M (™ := U"~1 x H" forn > 2.

Recall to any (U x U, x5*)-bicrystal (X, p, @), the central charge of (X, p, ®) is the U x U-
invariant function:
Ax(x) == B(x) — Dprc(p(x)), ¥ € X.

Thus on G(™), we have the central charge

An(grs-- 9n) =Y ®pr(g:) — Par(g1--- gn).

Define a rational map 7 on G as
T G(z) —U : (gl,gg) — U1U9, where g1 = uih1wovi, g2 = ughoWous. (6.3)

Proposition 6.2.1. [16, Proposition 2.42] The map F' defined as follows is a birational isomor-
phism of varieties:

F: G® = M® xy G : (91,92) = (7(91,92), hw(g1), hw(ga); g192) (6.4)
where the fiber product M?) x g G = (U x H?) x g G is over

hwy: (u, hy, ha) — hw(wWouwg)hihe, and hw: g — hw(g).

Since F'is an U x U-invariant isomorphism, we get an isomorphism of affine varieties
F:U\G®/U - M?. (6.5)

Thus the central charge Ay on G?) descends to a function on M ():

i (6.6)

The following corollary is clear:

Corollary 6.2.2. The map F defined by (6.4) is an isomorphism of varieties with potential:

F: (G<2>,<1>G(2>) - (M<2> 1 G Ny +<1>BK).

From now on, we refer to (6.4) as a trivialization of G?),

Note that by the usage of (6.4), for each vertex a of associahedron K,, for any n > 3, one
can get a trivialization F,: G — M) x ; G. For example, in case of n = 3, we have

F12732 (G*G)*Gﬂ (M(Z) XH G)*GMM(Q)XH<M(2) XH G) ;M(B)XHG,

and

F1723: G*(G*G) M) G*(G XH M(z)) ﬂ) (G XH M(2)> XHM(2) l} M(3) XHG,
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where the fiber product M®) x;; G = (U? x H?) x G is over
hws: (u1,ug, hi, he, hg) — hw(wWouiwgy) hw(wWouewg)hihohs, and hw: g — hw(g).
Hence we get the a non-trivial automorphism of U x U-varieties
Fiapgo Fly: M®) xpg G 5 M) xp G.

Denote by pr,,) and prg the natural projection of M () x5 G to M®) and G respectively.
Then we see immediately that pr; oF7 23 oFﬁ}g(m, g) = g. Note that F'j3 3 and F} 93 are U xU-

equivariant, thus they descents to maps F'1 23 and F'12 3 on the quotient space respectively. By
Proposition 3.4.7, we have the following birational isomorphism:

Ly MO = MO xy U\ G/U = m— (m,U hws(m)woU) .
Assembling all these components, we get:
1 _
U M@ 2 @) g 22 o a® u L2 ®) o gy B @),
Proposition 6.2.3. The map V defined above is an automorphism of variety U? x H?3:
U = pr,») of1’23 0F1_2173 oLyt U? x H* - U? x H3.

Example 6.2.4. Here we work out the example of the map ¥ for G = GL2. Write

073 0
Li+= [b‘ c}

as coordinates for B_. Suppose that b; € Gy, then we have
a;C; C;

a; 0O 1 % 0 0 -1 1
= bi | | bi bi
bi ¢ 0 1 0 bl Ol]o 1

Note the map Fia 3 restrict to (B— x B_) x B_ = M®) x ;; B_, which sends (21,22, 73) tO

_

1 X9 aicy asCs ascs
- 1 === — 0 — 0 — 0
Xi2b1bo | bsY |, by | b2 | b3 , XL122Z3 |
0 1 0 1 0 b 0 be 0 b3

where ngl = b;aj + ¢;b; and Y 71 = byasas + c1bsas + cicabs.

For elements in M) x u B_, we use coordinates as follows

<[(1) lﬂ ’ [(1) “12] ’ [601 ]91} ’ [602 J?J ’ [%3 J?J 7 |:U1U2pnfi p Hoeini:|>

as coordinates. Thus the inverse map of F12 3 is given by

—1
ures +p f3]]e: _

= 1 L az = ez f3cs ' b3 = f3;

Uiu2

_ & -1 . _ —1. by = for

c2 = " (14 p~ "e1foas); as = ez facy 2 = fo;
€1 _ 1 _ _

a1 = —(L+pe; ' fylaz'); a1 = e1fia]’; by = fi.

Uy
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Then applying F} 23, we get

ulru
1 12 0] fes 0] [es 0O

; uy tes + fous ’[601 f}’[o f}’[o f],931$2563
0 1 1 2 3

Thus the map U is the map sending

€2 uiu2 fo
(u17u27€i)fi) = < +u2 aeivfi> .

u1 fa "uyltes + foun

6.3 Geometric multiplicities

Now let us define the category Mult ;; of geometric multiplicities for any abelian reductive
group H.
Definition 6.3.1. For any abelian reductive group H, the category Multy of geometric multi-

plicities is:

e The object in Multy is a quadruple M = (M, @y, hwyy, mar), which consists of an
irreducible affine variety M with potential ®j;, a rational map hwy;: M — H and a
rational map 7p;: M — Sps from M to a split torus Syy;

e A morphism f: M — NN is a triple of rational maps fi: M — N,and fo: H — H and
f3: Sy — Sy st. hwyofy = foohwyand my o f1 = f3 0 myy.

If moreover that the abelian reductive group H is the Cartan subgroup of certain reductive
group (G, we can equip the category Mult ;; with a binary operator as follows

Definition 6.3.2. For a reductive group G with the Cartan subgroup H, denote by
Multy ¢ := (Multy, xg)
the category of geometric multiplicities Mult ;7 with a binary operation x¢ as follows:
M xg N := (M *xg N, @y, Ny WA N, Tisg N,

where each component is defined as follows:

o Mg N := (M x N) x g2 M, where M?) := U x H?, the fiber product is over
hw s x hw and the natural projection pry2: M @ — HZ,

o Drrugn(m,nyu, hy, he) = @pr(m) + On(n) + Ag(u, he, ho);
o hwin,n: M*xg N = H : (m,n,u) — hwyr(m) hwy (n) hw(wouwy);
o SM*(;N = SM X SN X H2 and
TM*gN : MxagN — SMXSNXH2 : (m, n, u) — (ﬂ'M(m), 7TN(TL), th(m), hWN(n)).
Here the category Multy; plays certain universal role in this game. This category Mult i

has different product g when group H is considered as the Cartan for different groups. One
important example is that for H C L C G, where L is a Levi subgroup of G.
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Example 6.3.3. The first example of objects in Multg g is just H := (H,0,1d,0). Then
H xc H is
(M@ Ay, hwy, m),

where th(u, h1, hg) = hihy hW(UT(ﬂLUT)) and 71’2(11,, h1, hQ) = (hl, hg).
Remark 6.3.4. For simplicities, we write x rather than x¢ if the group G is clear from the

context.

From the definition, one natural question to ask is whether the binary operation * is associa-
tive. First, by defintion, the triple product (M7 * Ms) * M3 isomorphic to (M x My x M3) X g3
M®) in the natural way, so is My * (My %= Ms3). By Proposition 6.2.3, we have the following
non-trivial isomorphism CI/’Ml,M%MS o (M7 * My) x M3 — My * (Mo * Ms):

(M7 * My) « Mz —=— (M; x My x Ms) x gz M®)
lld XU 6.7)
(M x My x Ms) x s M@ —= My % (My* Ms)

Theorem 6.3.5. For a reductive group G, the category Multg p is monoidal with product
M xg My given by Definition 6.3.1, and associator given by the formula (6.7).

Proof. We first show that the equivalence of category TriUBg and Multg 7, where TriUBg
is the category of trivializable (U x U, x®)-bicrystals over G, which is defined in Definition
3.4.6. Define the following functors:

5 : TriUBg — Multg (X=2U\X/U xygG,ox) — (U\X/U,Zx);
G: Multg g — TriUBg (M, ) = (M xg G, Pp + Ppr).

One can check that 5§ (resp. G5) is natural isomorphic to the identity functor for Multg g
(resp. TriUB(). Moreover, by definition we have G(M x N) = G(M) x G(N) and the
following commuting diagram:

G (Vs Moy, M3)

G((My x Ma) * Ms) G(My x (Mz * M3))

NJ JN .68

(G (M) * G(Ma)) x G(Ms) ———— G(M) * (G(Ma) = G(Ms))

where all the ~’s are natural isomorphisms. Since TriUB is a monoidal category with trivial
associator, Mults g is a monoidal category with associator given by the formula (6.7). &

Next, we add positive structure to the category Mult .

Definition 6.3.6. A geometric multiplicity M € Multy is positive if there exists a positive
structure © 7 on M s.t. (M, Py, 0)) is a positive variety with potential, and hwy, (resp.
mar)isa (O, Op) (resp. (O, Og)) positive map. For simplicity, we denote by M the quin-
tuple (M, ®pr, Opr, hwpy, mar) as well. A morphism f = (f1, fo, f3) of positive geometric
multiplicities M and IN is morphism of geometric multiplicities s.t. fi: (M, @y, 0p) —
(N, ®nN0O,/) is morphism of positive varieties, fo and f3 are positive maps of tori. Denote by
Mult}} the subcategory of Mult; consists of positive geometric multiplicities.
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Proposition 6.3.7. For any reductive group G with Cartan subgroup H, denote by © y;2) 1=
Oy x Oy x O the positive structure on M? = U x H2. Then

H o H = (M@),ZQ, hW2,7T2> € Mult,
is a positive geometric multiplicity.

Proof. Let us consider the toric chart © ,¢2) := Oy x Oy x O for M (2), What we need to
show actually is that (A (®), A, © M(2) 18 a positive variety with potential. Denote by g1 =
urh1wov1, g2 = uzhaWovs.

For (u, h1, he) € U x H?, choose a liftin G x G as (h1Wou, howy). Then one has:

Ao (u, hy, he) = Ay OF*I(U, hi, ha)

= ®pr(hmwou) + Pk (howy) — P g (h1wWouhowy)
= x*"(u) — ®px (hiwouhowp)
= XSt(u) + @BK(hguThTfo),

where A" is short for Wy~ ' hiwy and the last equality is true because that for ¢ = uwghv
Dpxlg) = Xst(u) + XSt(U> _ _Xst ((uT)wo) . Xst <(,UT)U)0) — D ((gT)wo) .
Thus the function A, is positive with respect to the positive structure © ,;(2). &
Example 6.3.8. Denote by
(M™ A, hwy, ) o= (- (Hx H)x H) % - -- % H),

where the % products of n copies of H is in the canonical order. Write an element in M (™) as

w:= (U1,...,Un_1,h1,...,hy). Then the potential A,, is given by
n—1
An(w) = x*(w) + > pi(hiuipy®(w)),
i=1

where p;(u) = h; H;‘:l hw(Wouwo)h; € H and h** is short for Wy~ 'hwy for h € H. Note
that this potential can be interpreted as the decent of the central charge A,, of G(™) under the
canonical trivialization G = M () x g G. We leave it as an excise for the readers to write
down explicit formulas for hw,, and 7,. Then we know (M (”),Zn, hw,,, 7,) is a positive
geometric multiplicity.

Example 6.3.9. Here we work out the potential of geometric multiplicities N := H x(H x H)
as a comparison to the previous example. By definition

H+(H*H)=(Hx M%) %2 M® = M® x5 M®),
where the last fibration is given by hg = h1ho hw(Wou;wp). Then the potential is

X*'(u1) + X (u2) + @K (haui hy°) + @ (hyud hY®).

As a corollary of this proposition, the binary product x is well defined in the category
Mult/, ;; := (Mult};, x¢). Moreover:
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Theorem 6.3.10. For any reductive group G, the category Multg g I8 monoidal with product
M, xg My given by Definition 6.3.1, and associator given by the formula (6.7).

Remark 6.3.11. Because of Theorem 6.3.5 and Proposition 6.3.7, what Theorem 6.3.10 says
is that the associator Wy, a7, M, in (6.7) is a positive isomorphism of positive varieties.

Proof of Theorem 6.3.10. Because of Theorem 6.3.5 and Remark 6.3.11, what we need to show
is that the following map F and its inverse F'~! are isomorphisms of positive varieties with
potential:

F:B_xB_— (U X HQ) Xy B_ : (gl,gg) — (Tr(gl,gg),hw(gl),hw(gg),glgg) . (6.9)

By [16, Claim 3.41], we know that F is positive. What left is to show F~! is a positive
isomorphism.

In what follows, we first give explicit formulas (6.10)-(6.12) for the inverse of F'. Then show
that (6.10)-(6.12) are positive with respect to the positive structures given by Lemma 3.5.2.

Note that L™ is open dense in U and G"°¢ is open dense in B_. Let (u, hi, ha,y) €
(L% x H?) x g G*9°. We need to find the expression of g; in terms of u, y and h;. Since

hw 2 (u, by, he) = hw(y),

there exists a unique pair (u1,v2) € U x U such that y = ulﬁoh?ouhQWon, where h™0 is
short for Wy~ L hiwg. Denote by = = h}°uhs for simplicity. Then by taking [-]+ part of wg 'y,
we have

[~ yl4 = [Wo~ wiWoawoua] 4 = [aWg]4v2

since Wp~tu Wy € B_ and vy € U. Therefore we have

vy = [Fo_ly]+[x%];1. (6.10)
Now let’s applying ¢ to y, we have y* = vswoz‘wouj. Then using (6.10), we get

uf = [wo~y']y [z'wo] (6.11)

In order to write g; as u;h;wov;, we just need to define

v1 = [whiwgly',  and  ub = [vhwohy '3t (6.12)

Now one can easily check that (6.12) does give the inverse of F'.

What’s next is to show the positivity. Note that the restriction of + on G*°¢ is positive with
respect to the positive structure. Thus the positivity of (6.10) implies the positivity of (6.11).
What we actually show is that the two factors of (6.10)

n: GY¢ 5 U : g [wo 'g]ly and (: GO U : g— [g%];l
are positive. Then the positivity of (6.12) follows from the positivity of the map (.
First, by [16, Claim 3.25,(3.6)] and the fact that ¢ is positive, one knows 7 is positive.

Second, write b := [gwp]_ [gW0]o, then one has ((g) = wo g~ Applying (-)* to both

side of equation ((g) = wp1g~'b, we get
C(g) =bwo(g), (6.13)

where o (g) = Wog “wo . Thus we get ((g)* = [wy ‘o (g9)T].. Since o(g)T is positive by
[21, Eq (4.6)], the map ( is positive. &
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6.4 From geometric multiplicities to tensor product multiplicities

In this section, we explain how to pass from the geometric multiplicities to tensor multiplic-
ities by the usage of tropicalization.

For M = (M, ®p;,Op, hway, mar) € Mult}_}, the tropicalization of the positive map
mas X hwys gives a morphism of affine tropical varieties:

(mar X hwpr)'s (M, @) — ST x H' = X,(S) x X, (H),

where X, () (resp. X.(H)) is the cocharacter lattice of the torus S (resp. H). Note that X, (H)
is isomorphic naturally to the character lattice X*(H ") of G¥. For (£, \Y) € X.(S) x X.(H),
denote by

M yv o= (mar x hwar) 7H(E AY)
the tropical fiber of (M, ®,;)t. We say the positive geometric multiplicity M is finite if the

morphism (737 X hwyy)? is finite as in Definition 3.1.2.

Given a reductive group GV contains H " as its Cartan subgroup, to each positive geometric
multiplicity M, we assign a G¥-module Vi v (M) to M via

Va,gv(M) = D C[M¢ ] @ Vav,
(EAV)EX-(S)x X (H:GY)

where X' (H) is the set of dominant integral weights of GV and Vv is the irreducible repre-
sentation of GV with highest weight A\V. Denote by Modgv the category of G'-modules.

Theorem 6.4.1. For a reductive group G contains H" as its Cartan subgroup, the assignments
M — Uy v(M) is a well-defined functor from Mult}; to Modgv. Moreover, if G contains
H as its Cartan subgroup, the assignments M +— Uy v (M) is a monoidal functor from
MultgvH to Modgv.

For £ € X,(S), define the typical £-component Ufl av (M) by

Viov(M)= P CME]® Vav. (6.14)
\VeX(H;GY)
Then we have a similar statement as Theorem 6.4.1 for the typical components:

Theorem 6.4.2. Let G be a reductive group containing H as its Cartan subgroup, given pos-
itive geometric multiplicities M; € MultEG for i = 1,2, the following G -modules are
isomorphic:

Vv .,V
VRSN (M x6 M) = Do (Vg (M) @ L (Vg (M) ) (6.15)
where I v (V') denotes the \"-th isotypic component of a G -module V.

One of the fundamental problems of the representation of G is to determine the tensor
product multiplicity c’; ,of V,, in V), ® V,,. Now we can find a solution to this problem by using
Theorem 6.4.2:
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Theorem 6.4.3. Let G be a reductive group containing H as its Cartan subgroup. The positive

J— \
geometric multiplicity (M(Q), Ao, hwo, m) € Mult}} is finite and the tensor multiplicity c’;v v
is the multiplicity of (\V, v, u") over (ma x hws)!, i.e.,

A =dime (@) ]

AV,

Proof. Let us fix G. Note that H := (H,0,1d,0) is an object in the category Mult},. By
definition,

Vhev(H)= @ Vav.
\VeXF(H;GY)

By Proposition 6.3.7, the geometric multiplicity H x¢ H = (M 2, Ay, hwo, ) is positive.
Applying Theorem 6.4.2 to H xg H:

Up e (Hx H) = U o (H) @ Vo (H) = Vav @ Vo

Together with the definition (6.14) of V) X (H ¢ H), one gets:
~ AV DY t
Vav ® V,v :UH7GVV (H*G H) = @ C |:<M(2)>>\v i M\/:| ®Vuv,
xeX;t(H;GV) T
which gives the statement we need. &

Similarly, for n > 2, denote by Cil,.--, », the higher tensor multiplicities:

n
_ M
RV =D, Ve
=1 1%

Theorem 6.4.4. Let G be a reductive group containing H as its Cartan subgroup. For n >

2, the positive geometric multiplicity (M ) A, hw,, ) IS finite and the tensor multiplicity
\

Cﬁlvv--w\% the multiplicity of (XY, ..., A\, ") over (m, x hwy,)?, i.e.,

n
&
)‘\1/’“')

yy = dimC [(M(n));v,...,xx,w] '

6.5 Isomorphism of geometric multiplicities: one example

In this section, we show one example of isomorphism of geometric multiplicities arising
from Howe duality without giving all details. We show that our geometric multiplicity M (")
is naturally isomorphic to a subvariety of C2", which carries a geometric multiplicity structure
arising from geometric crystals. This section is motivated by Howe (GLq2, GL,,)-duality [52].

Let us recall the result from Howe (GLq2, GL,,)-duality. Let A be a Young diagram of depth
< n and V)" be the polynomial representation of GL;, parametrized by A. The following is
clear:

@ sueees@=c[p i De @ wew
(P1ensPn) o depth(A\)<2
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where S!(C™) is the symmetric polynomial of degree [. Moreover we have

SPHCH) @ -+ @ SP(C?) 2 D Vi(pr, ... pn) ® V3. (6.16)
Thus for the tensor multiplicities, we have

V2 . SP(CH @ @ SP(C?)] = dim Vi(p1,...,m).

Note here the counting of left hand side is described by the tropicalization of tensor product
geometric multiplicities. In what follows, we introduce a “geometrization” of the right hand
side from the theory of geometric crystals. Inspired by this equation, we show at the end, we
get an isomorphism of geometric multiplicities.

We consider geometric (pre)-crystals of GLo:
X = (GL,, 7, p.e,¢"),
where for (z,y) € G2,

-1 1

v(z,y) = [w 0} o(zyy) =at e(z,y) =y, e(a,y) = (cx, ).

0 y

Note that X admits a natural potential ®(x,y) = = + y. By [16, Definition 2.15], we consider
the n copies of X . Write the basis variety of X™ := (G2}, ¥, ¥n, €n, €y,) as 2 X n matrix with
the following coordinates:

r = |:xn Tp—-1 - x1:|
Yn Yn—-1 - Y1

with potential ®,, = >} (z; + y;). Direct computation shows that
Sy Yir Yoy

Let H := {diag(x,y) | #,y € Gm} be the Cartan subgroup of GL5 and
T :={diag(z,1) |z € Gm} C H

be a subgroup of H. Consider the subvariety Y of G2" given by y; = 1. Then we introduce the
following positive geometric multiplicity:

M2n = (K @, + SnvIdYa’Ynapn) )

where p,: M3 — T™ by sending x to diag(x1,1) x diag(x,yn, 1), and Idy is the natural
positive structure on Y.

To compare with our geometric tensor multiplicities , we restrict the positive geometric
multiplicity (U"~! x H", A,,, hw,, m,) for GLs to

Uy = (U x T Ay, O x 0, hwpy, ).

Denote by w := (u1,...,Un—1;€1,...,6,) the natural coordinates on UJ'. Then
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Theorem 6.5.1. The following map ¥ : M3 — U3 is a morphism of positive geometric multi-
plicities:
u oW =yii1; € oV =y,

i.e., we have hw, oW = ~,, T, oW = p,, and ®,, + €, — A,, o W is positive. Moreover,
dim C [(yn,pn)_t(,u; A, )\n)] = dimC [(hwn, ) (s A, )\n)] , (6.17)

where i € X (H) and \; € X, (T).

Proof. Note that hw,, o¥ = ~,, and 7, o ¥ = p,, is clear from the definition. Recall that A,, is

given by
nd €; e €; 1
Z _ ] i+1 1€ i
n(u) Z <ul + u; + (ug - ui—1)? u

=1

Direct computation shows

=Li+ls 7, g — .
U; (tr-wi—1)? wi Y2y

€it1 €€ 1 Ty

Thus ®,, + &, — A, oW = x1 + 2. It is easy to see that
(B, +n)' = (P + 5 — 21 — 2)".

Thus we get the comparison (6.17). &

We hope to generalize the result here to Howe (GL,,,, GL,,)-duality in future works.



7 Partial tropicalization

7.1 Overview

A Poisson structure is a bivector which induces a Poisson bracket on the ring of regular
functions on the variety. The Poisson bracket on a positive variety is called log-canonical if

{xia -'Ej} = CijxiZxy,

where x1, ...,y are toric coordinates (defined by the positive structure) and c;; is a constant
matrix. Important examples of Poisson varieties with log-canonical Poisson structures are clus-
ter varieties, as in Section 5.2.

The condition of a Poisson structure to be log-canonical is very restrictive. On a positive
variety with potential (X, ®), we can generalize it to a notion of weakly log-canonical Poisson
structures, i.e., the Poisson bracket is given by the formulas

{wi,xj} = wiwj(cij + fij(2)),
where f;;(x) are functions dominated by the potential .
Given a weakly log-canonical Poisson structure 7mx on a smooth complex variety X, con-

sider the real form (Y, my) C (X, mx) defined by the equations z; € R in the toric chart. Then,
to such a structure we assign a constant Poisson bracket on the space

CxT, (7.1

where C is a subcone of (X, @)L and T = (S!)" is a compact torus of dimension 7, where 2r
is the maximal rank of 7. This Poisson bracket has the form

{661 =0, {di,d;} =0, {&, 5} = diy, (7.2)

where d;; € R is determined by the log-canonical part c¢;; of the bracket my. Here §;’s are
coordinates on the cone C and ¢;’s are coordinates on the torus T. We refer to the space
(7.1) together with the Poisson Bracket (7.2) as a partial tropicalization of the Poisson variety
(X, 7x,®). Up to a change of variables, the Poisson bracket (7.2) defines an integrable system
on the partial tropicalization.

Our prime example is the dual Poisson-Lie group G* of a semisimple complex Lie group G
endowed with the standard Poisson-Lie structure. In this chapter, we generalize the following
example to any G* for GG semisimple.

This chapter is based on a joint work [5] with A. Alekseev, A. Berenstein and B. Hoffman.

69



70 CHAPTER 7. PARTIAL TROPICALIZATION

Example 7.1.1. Recall that For G = SL3(C), the group G* is of the form G* = {(z,z_) €
B x B_ | [z]o[z—]o = 1}. One can assign a potential

Po=bat+a )+ ata)

. b Ll |a 0
10 a7 T T e o
The real form of G* is defined by equations a € R~y and b = ¢. The canonical real Poisson
bracket on K* is given by [75, 80]:

under the positive structure

{a,b} =1ab, {a,c} = —iac, {b,c}=1i(a®—a"?).

Note that the first two expressions are log-canonical on the nose, whereas the third expression
has no log-canonical part and the corresponding function f(z) is of the form

1 (b_la cla—b"ta L. c_la_l) .

This expression is dominated by the potential ®5+. The corresponding partial tropicalization is
the product of the Gelfand-Zeitlin cone and the circle S*:

{(gmgb) € R? | =& > & > &,} X Sl
with Poisson bracket

{§a7§b} =0, {Saa <Z>} =1, {§b7 <Z>} =0,

which is the n = 2 Gelfand-Zeitlin integrable system.

7.2 Positive Poisson varieties

In this section, we add “positive structures” to Poisson varieties.

Definition 7.2.1. A positive Poisson variety is a quadruple (X, 7, ®, ©), such that

(1) (X,m) is an irreducible Poisson variety over Gy,;
(2) (X, ®,0) is a positive variety with potential;
(3) for any 6 € © with standard coordinates (z1, . . ., 2,,), the bracket is of the form
{202} = zizj(mij + fij), (7.3)
where 7;; € G, is constant and f;; is a rational function satisfying f;; < ®.

Remark 7.2.2. The constant 7;; is called the log-canonical part of Poisson structure 7 under
coordinates {z;}. Sometimes we write {2;, 2; }1og 1= 2i2;Tij.

Definition 7.2.3. A positive Poisson map of positive Poisson varieties
¢ 1 (X1,m1, 01, P1) = (X2, T2, O2, Do)

is a Poisson map ¢ : (X1,m) — (X2, m2), which is also a map of positive varieties with
potential. Denote by PosPoiss the category of positive Poisson varieties.
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Example 7.2.4. In [42], the authors define the cluster manifold X (A) associated to a cluster
algebra A. The cluster algebra structure on A gives X (A) a Poisson structure 7 and a family of
positively equivalent toric charts # on X which are log-canonical for 7. Cluster manifolds are
then examples of positive Poisson varieties, with potential ® = 0.

We record the following observation for future reference.

Proposition 7.2.5. Let (X, 7,0, ®) be a positive Poisson variety. Given 6 € ©, let M and N
be Laurent monomials in the standard coordinates z; of 0, then the bracket { M, N} is weakly
log-canonical, i.e.,

{M,N} = MN(myn + fun),

where v € G, is constant and fjy v is a rational function satisfying fa;ny < ®.

Proof. Assume M, N, and L are Laurent monomials in zq, ..., 2, and that
{M,N} = MN(?TMN—i-fMN) and {M,L} = ML(ﬂ’ML-FfML)

are weakly log-canonical. The proposition follows by induction, using the following two facts.
First,

{M,N"'} = —-N"*{M,N} = N >MN(—myn — fun) = MN~ (=7pn — fun)
is weakly log-canonical. Second,

is weakly log-canonical. &

7.3 Domination by BK potential on Double Bruhat Cells

In this section, we estimate the action of Uy on generalized minors by potential ®px. To
be more precise, we start with the key

Lemma 7.3.1. Consider the positive variety with potential (B_, ®pg,©p_) and a sequence
of indices (ji, ..., jn) in I such that Ay, o, - Fj, - - - Fj, # 0, we have
Fjl"'anAwwmwi Awwi:wiFj o Fy

Fj2 "'anAwwmwi Awwmwz‘Fj "'an

< Ppk;

Proof. We only show the first domination here, which can be done by in a chosen chart. Denote
by i = (i1,...,%m) a double reduced word for (e, wp) such that i; = j; and consider the
factorization chart:

it G x H s (Lo x H 2 GU0C < B_ & (t1, ..., tmih) = yi, (t1) - w1, (tm) .

d

0...dqn

Denote by j' := (ja, - . ., jn). Forasequence of indices j = (j1, ..., jn), let 05 := ﬁ .

be the differential at zero. By Theorem 2.7.2, we get
(_1),”71%2 e anAwwiaWi (yll (tl) U yi'm (tm)h)
= Oy B o; W (@) -+ 952 (02) iy (1) - Y, (Em) )
=0 frlta, )t
k=0
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where fi’s are positive polynomials in ¢, . . ., ¢, and k € Zx. Similarly, since j; = i1,

(=1)"Fjy - Fy Ay w; (Yir (1) -+ - Uiy, (B 1)
= 0jAww;w; Win (@n) -+~ Yin (@2)yiy (B + @1) -+~ Yi,, (Em) 1)

wji d k
=h Tm‘osz(t27’tm)(tl+ql)’

= pvi Z kfk(tg, - ,tm)tlf_l, .
By Proposition 2.7.5, we know
(Fil ' Awowi»{,wii«

Awowq 1"‘)2"1‘

3]

) (Yir (t1) -+ Yir, (L)) = L

Direct calculation gives:

( a (_1)nFjl e anAwwi,wi

Bl _ af0+2k:1(a_k)fktlf
t1 (=) Ey, - Fy A, w;

T

Let a be a sufficiently large positive integer, then the right hand side is a positive function. <

Theorem 7.3.2. Consider the positive variety with potential (B_, ®pr,Op_). For F,F' €
n_, there exist positive n € 7 depends on F, F’ such that

F Ay, i - F'

Awwuwi

< ®pg, foriel.

Proof. Without loss of generality, we represent F' as a nested commutator of simple roots

F=[Fi[ [Frp_i Fr,] -1

Note that for a sequence of indices j = (j1,...,Jn) in I, following from Lemma 7.3.1, we
have:
Fjl e anAwiﬂUWz‘ _ F‘jl e F.}nAwiywwi . anAwiywwi =< n
Awi,wwi B Fjjg e F‘jn Awi,wwi Awi,wwi BE:
One can generalize this result to actions on both side. &

Corollary 7.3.3. Let G be a connected semisimple algebraic group and 6 € ©Op_ be a toric
chart as in Definition 4.5.5. Then for any coordinate z of 0, we have

F.z- F'
z

< Pk,

forall (F,F') € n_ xn_.

Proof. Note by Theorem 7.3.2 and Proposition 3.3.3, the corollary is true for any cluster chart
of any double reduced word of (wy, €).

Consider the minors Ag on L®“°, By Theorem 2.7.2, the minor A can be written as
a subtraction free polynomial in “factorization parameters” t;’s. In turn, by Theorem 2.7.3,
these ¢; can be written as Laurent monomials in twisted minors Mj’s on L%"°. Note that the
A o1p™0€ is a twisted minor on L"°>¢, and My, 01)™0¢ is a minor on L%™° since )"0 oq)p®0:¢ =
Id. Therefore the twisted minors on L*¢ is a subtraction free Laurent polynomial in the minors
on L"° and the corollary for twisted minors follows immediately by Proposition 3.3.3.

Any other charts in © g_ are positive Laurent polynomials in either minors or twisted minors
of L"0-¢, then the corollary follows by Proposition 3.3.3. &
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7.4 Dual Poisson-Lie groups as positive Poisson varieties

In this section, we endow Poisson variety G* with a positive structure, which is compatible
with certain involution.

Recall that we have a group involution 7 on G* defined by
7 (byb_) v (b:T, b—T> .
First of all, let us introduce a potential ®5+ on G*. Define the potential @5+ as
PG+ := Ppg o pry +PpRK o pryoT.

In other words, we have ®gx(b,b_) = ®px(b_) + P (b~T). Next, let us introduce the
following identification H x (U_)? = G*:

n: Hx (U_)? 5 G 2 (hyug,ug) — (W uy™, ugh). (7.4)
Thus the potential ®g+ o n(h,u1,u2) = Ppr(uzh) + Ppr(huy) is positive with respect to
the positive structures of H x (U_)2. We consider the potential ®¢- for the following reason.

Note that the fix locus of 7 is identified with B_ via pr,. Thus &g~
denote by

(G*)? = 2(I)BK O pry. Now

O+ ::{7]09‘9290X91X01€@HX®U7X@Ui}.

Note that we only consider the toric charts for H x (U_)? who are using the same toric charts
on the two copies of U_.

Theorem 7.4.1. The quadruple (G*, g+, ©G=, Pg+) is a positive Poisson variety.

Proof. All we need to verify is the item (3) in Definition 7.2.1. Let i be a double reduced word
of (wo, ). Let A, A’ be minors on G*°>¢. We must consider three types of brackets. Denote by
A; == Aopr,.

(a) Bracket of type {Ag, Al }+. By Proposition 5.1.4,
{Ag, ALy = —{A,A’}gopry.
By Theorem 5.2.4, the bracket { A, A’} 5_ is log-canonical on the open subset G*0-€.

(b) Bracket of type {(A o 7)1, (A’ 0 7)1 }g+. Note that 7: B — B_ that sends b to b= 7 is
anti-Poisson by Theorem 5.4.3, the argument is the same as the previous case.

(c) Bracket of type {Ag, (A’ 0 7)1 }g+. By the definition of 7 and (5.1.4), we have
- 1 : N — / —
{Ag, (Ao T) 1} = §Z(Xi CA)((Xi - A oT)1 — (A X;)2((A"- Xi) 0T

=1
+ 37 (Fa A)a((Fa- A) o)1 — (A Fa)o((A' - Fa) 0 7)1
aceR*

Write A = Ay, w; and A" = Ay, o, . By Proposition 2.3.1, the first sum is cAg (A" o 7); for
,
2¢c = Zuwj(Xi)vwk(Xi) — wj (X)) wi(X;) = (uwj, vwy) — (wj, wr) (7.5)
i=1

is log-canonical. Then write {Ay, (A" o 7)1 }g- = Ag(A 0 7)1 (c + f), and
fo 3 (APl (A FooTh _ (Fa-A)a ((Fa- &)y

A, (A/ o 7)1 B JAD (A’ o 7)1

a€Rt
By Theorem 7.3.2, we have f < ®g-. &
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7.5 Involutions on positive Poisson varieties

In this section, we discuss involutions on positive Poisson varieties. Then we explain what
is a real form of a positive Poisson variety, and give as an example the real form K™ of the
positive Poisson variety G*.

Definition 7.5.1. An involution of a positive Poisson variety with potential (X, 7w, ®, ©) is an
algebraic Poisson involution 7 of (X, 7r) such that

(1) the involution 7 is a positive map of (X, ®, O);

(2) there exists a positive chart §: G:, — X in O such that 7 maps 6(G},) to 0(G},) and
induces a group isomorphism on G}},. We call 0 a T-compatible chart.

Remark 7.5.2. If the Poisson structure 7 = 0 on X as in the previous definition, we simply
say 7 is a involution of positive variety (X, ®, ©).

Since 7 induces a group isomorphism on G}, the fix points set is a subvariety, thus the
irreducible component containing identity (G}},)” is a subtorus. Denote by X7 the irreducible
component that containing 6 ((G},)7) of the fix locus of X. Then the restriction

07— = 9|(G;@n)7’ G:L.II = (G:Ln)T — XT
is a toric chart, where n, := dim(G}})” and we fix the isomorphism GJ; = (G},)” once for

all. Thus (X7, ®%,67) is a positive variety with potential, where ®% := ®x|x-. Denote by
7" the natural Poisson bracket induced by 7 as in Proposition 5.3.2. Then

Proposition 7.5.3. For an involution T of a positive Poisson variety with potential (X, 7, ®, 9),
the quadruple (X7, ®7, 77, 07) is a positive Poisson variety with potential.

Proof. All we need to show is item (3) in Definition 7.2.1. Denote by z;’s the natural coor-
dinates of #: G, — X. Then a; := z; + z; o 7’s are T-invariant functions on X. To show
item (3) in Definition 7.2.1 for (X7, ®7, 77, 07), we just need to show it for the set of functions
{b; := a;|x~}. By Proposition 5.3.2, we have:

{bi,bj}ar = {as, aj}xlxr.
Then the proposition follows from the fact that f|x- < &7 if f < & &

Example 7.5.4. Following the notation of Example 5.3.3. One can assign a positive structure
to G* in a different way. In more details, consider the identification

n: Hx U? = G* : (h,uy,us) — (hui,ul h™1).

Define the potential ®/.. (b, b_) = @ (b_) + Ppx (b1), which is positive with respect to o6
for a toric chart § = Idy x60; x 61 € O x Oy x Or. Similar to the previous section, one
can show that (G*, ®(.,, O ) is a positive Poisson variety. And J is an the involution on
(G*, O/, ®.). Thus we get an other positive Poisson variety (U, 7y+, ()7 ).
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Next, we pass to the real forms of complex positive Poisson varieties.

Let (X, ©) be a complex positive variety with toric chart §: (C*)" — X. Then complex
conjugation (-): (C*)™ — (C*)™ defines an anti-holomorphic involution on the open subvari-
ety 0((C*)™) C X. Since the transition maps between charts in © are positive, they commute

with complex conjugation of (C*)". Thus (-) extends to the open subvariety Jycq 0((C*)").

In particular, if the charts in © cover X, the involution (-) is defined on all of X. In the rest, we
always assume that (-) on X is defined charts by charts.

Definition 7.5.5. A real form of a complex positive Poisson variety (X, m, ©, ®) is an anti-
holomorphic involution of X, such that

(1) 7 is areal from of (X, 7);

(2) 7 := 7 o (-) is an involution of positive variety (X, ©, ®);
(3) there exists a toric chart § € © such that the log-canonical part 7;; of the bracket of
coordinate functions {z;, z; } is pure imaginary.

Theorem 7.5.6. Let (G*, img+, Og+, P+ ) be the positive Poisson variety over C as in Theorem
7.4.1. Then the real form T of (G*,ing+) introduced in Theorem 5.4.3

7: G* = G* : (bb_) — <bi_7T,57T> .
is a real form of (G*, img+, O G+, Pg+).

Proof. Ttem (1) is just Theorem 5.4.3. For item (2), consider that isomorphism 7: H x (U_)? —
G* as in previous section. Thus the fix points set is given by the relation us = h~tuh. Note
that the toric charts on G* are chosen to be same on the two copies on U_. Thus for any cluster
charts or factorization charts on U_, one can show that 7 is always a monomial transformation
of the chosen toric chart. Item (3) follows from the proof of Theorem 7.4.1, since the weakly
log-canonical part of the bracket 7w+ is a rational number. &

We next want to specify a canonical choice of submanifold Y inside the fix locus of positive
complex Poisson variety (X, 7w, ®, ©) which carries the induced Poisson structure 47F,.

Let (X, 7,0, ®) be a positive complex Poisson variety with real form 7. Then we know
that 7 is an involution for the positive Poisson variety (X, 7, ©, ®). Take € © a T-compatible
chart. Recall that (X))} := (X, 0)} is the extension by scalars of the tropicalization (X, 6)" of a
positive variety (X, #) as in Eq (3.3). Recall that we have a limit explanation of tropicalization
as in Proposition 3.2.6. Thus, for s < 0 a real parameter, define the detropicalization map

Exps: (X, 0L x (81" = (C9)" S x; (7.6)

(51, oy &ny e, eﬁ“"”) — 6 (esgﬁwl, . ,655”+ﬁ“""> .
Since 7 gives rise to an anti-holomorphic involution on (C*)™, it induces involutions on real
and imaginary parts of (C*)", thus induces involutions on (X, #)%, and (S1)", through €x ¢

respectively. The fixed locus of (X, 9)]% is the submanifold (X T 9?)%, in which we have sub-
manifold (X7, @7, 9?)% (0). The fixed locus of (S1)" is

{ge (S c(©)"|(9) =g}
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and let T% be the identity component of these fixed points. Denote by
PT(X,®,0,7) = (X7,®7,67), (0) x Tk; PT(X,®,0,7)° := (X7, ®7,67), (8) x Tk.
The following proposition is straightforward.
Proposition 7.5.7. Let (X, m, ©, ®) be a positive complex Poisson variety with real form T. Let
Yrs=00€xy,(PT(X,®,0,7)) C X.

Then Y;  is independent of s < 0, which we denote by Y; = Y, s, and Y, C Fix(r). Thus the
pair (Y7, 47y) is a real Poisson manifold.

Remark 7.5.8. For the complex Poisson variety (G*,img~) with real forms as in Theorem
5.4.3, we have a Poisson variety (K*, mx~). By Theorem 7.5.6, we know (G*, img+, Og+, PG+ )
is a positive complex Poisson variety with real form 7. We then think of (Y-, 47},) as a coordi-
nate neighborhood on (K™, 7).

We leave the proof of the following proposition to the reader:

Proposition 7.5.9. Given positive complex Poisson varieties (X;, m;, ©;, ®;) with real forms
Ti, let f: (X1,71,01,P1) — (X2, m2, O2, P2) be a positive Poisson map which intertwines T
and 1. Then f restricts to a Poisson map from (Yr,,4(m1)R) to (Yr,, 4(m2)R)-

7.6 Partial tropicalization

In the previous section, we get a real Poisson manifold (Y-, 47F,) out of positive complex
Poisson variety (X, 7, ®,©) with real form 7. Now we would like to take certain limit of
(Y7, 4s7my,), which we call partial tropicalization of (X, m,©, ®,7) . We use the same notation
as in the previous section.

Given a positive complex Poisson variety (X, 7, ®,©) with involution 7, let § € O be
T-compatible chart with the standard coordinate functions 21, ..., z,.

Now let us introduce two Poisson brackets on the manifold PT (X, 0, 7). First, one can get
a constant Poisson structure on (X, 6) x (S1)" in the following way. Since 7 induced a group
homomorphism on (C*)", the bracket {z;, ;07 } is weakly log-canonical by Proposition 7.2.5.
Let w;; be the log-canonical part of the bracket, which is pure imaginary by Definition 7.5.5
and Proposition 7.2.5. Now define a constant real skew-symmetric bracket on (X, 9)]% X (S l)n
as follows:

{&i i} =i(wij —mij), {4, &} ={vi e} =0.

Set 7% to be the restriction of this bracket to PT(X, ®, 6, 7).

Definition 7.6.1. The manifold PT(X, ®, 0, 7) together with the constant Poisson structure 7%,
is called the partial tropicalization of a positive complex Poisson variety (X, 7, ®, ©) with real

form 7.
We sometimes write PT(X,6) = PT(X,®) = PT(X7) for PT(X, ®,0, 7) if the other
structures are clear from the context.

Second, denote by the 7¢ the bivector on PT(X,6) by pulling back the scaled Poisson
bivector 457}, along the isomorphism €y g ; from PT(X,0) to Y-,. Thus we have Poisson
manifold (PT(X, 6), 7?).

The bracket 2, is the limit of 7 in the following sense:
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Theorem 7.6.2. For s < 0, on the Poisson manifold (PT(X,®,0,7)°,7%), we have
7 =79 4+ 0(e®),

s =

where the term O(es‘;) indicates a bivector field whose component functions, written in terms
of the coordinates \; and ¢, are O(e*?).

Before the proof of the theorem, we need the following

Lemma 7.6.3. Given a positive complex variety (X, ©, ®), suppose that f < ® and there exists
a toric chart 0 € © such that f o 0 is regular. Then for every § > 0, fo €x g = 0(655) on
(X, @,0)5 (8) x (S1)"

Proof. By assumption f o 0 is regular and so by the triangle inequality we may assume ; = 0
for all 4. Write fs(&1,...,6n) == (fo€x0.s)(&1,-..,&n, 1,...,1). Then one gets

Jim S &) = a6 ).

Thus for (&1,...,&,) € (X, 0,8)5(0), f&(&,...,&,) > dsince f < ®. Then for s < 0,

1 ~
glnfs(él,...,fn) > 4§ > 0.
Since logarithm is monotonic, f o €x g s = O(e*°) on (X, ®, 0)g (5) x (Sl)n. &

Proof of Theorem 7.6.2. On the toric chart 6, We compute:
{2 2j}s/(2i25) = s(mij + fij), (7.7)
where we know f;; < ®. Since {-, -}, is a biderivation, so

{ersirion, oErtier)

= s°{&, &}s + is({& 5} + {01, 65}s) — {0, 05} (7.8)

es€itipi ps&jt+iv;
Combining (7.7) and (7.8) gives
s & &ts +is({Gi o5 s +{0i &) — {wirpits = s(mij + fij)- (7.9)
Recall log-canonical part 7;; of the bracket {z;, z;} is pure imaginary by definition. Thus
s {&, 65 }s — {wi ps)ts = sRfij, (7.10)

{&ojts +{wi, & }s = —imij + S fij. (7.11)

Restricting to the fixed locus of 7, for z; o 7, there exists a k such that Z; = z;, o 7 by
definition. Therefore, on PT (X, #, 7) with respect to the bracket 477,

{2.%Z;} = ziZj(wij + gij) (7.12)
with g;; < ®. Repeating calculations similar to those before (7.10) and (7.11) gives

s*{&, & }s + {1, 0i}s = sRaij, (7.13)
—{&,0its +{i,&}s = —1wi; + Sgij. (7.14)

Combining (7.10), (7.11), (7.13), and (7.14), and applying Lemma 7.6.3 gives the result. &
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7.7 Partial tropicalization of G* with real form 7

In this section, we would like to apply the construction in previous section to the positive
complex Poisson variety (G*, img+, O G+, P+ ) with real form 7.

Recall that we have the real form 7 on G* is given by
7: G* = G* : (bbo) — (bi_iT,EfT) .

and we know that ((G*)7, ®7., ©7.) is isomorphic to (B_, ®px, Op_) as positive variety via
the projection pry. Let 9 = 0y X 01 : G, X G, — H X U_ = B_ be atoric chart of B, which
extend to a T-compatible chart 6 := no (6y x 61 x 01) for G*, where 7 is given by Eq (7.4). Note

that pry 0™ = 6y x 1. Also note that (G*)7 is given by {(b, b_) e G*|b_ = EiT}, which
is isomorphic to AU_ C B_ via pry. Thus PT(G*, 9, P, 7) 2 (B, P, 9)L(0) x (SH)™
via pry and we get the following detropicalization map:

Cye: R x (SH™ — AU_

)\77" A A i A 5
Arseos Ams 0150, o) '_>19<68 oo, e et 1+W1,...,es m‘*‘Wm)_

Next we compute the constant Poisson bracket 7% of PT(G*, ) for a specific toric chart 6.
Leti € R(wq, e) be a double reduced word for (wy, €). Recall that for the seed o (i), we have
the following cluster variables on G*¢ C B_ by (4.10):

Ay = Ay, for k € [—r,—1] U [1,m],

Wik

where uy, = s;, - - - 84, for k € [1,m] and uy, = e for k € [—r, —1]. Note that Aj’s determine a
birational isomorphism

G0 — (C*)™ © g (A (9),-.-,Am(9)) -
whose inverse gives a toric chart of B_
o(i): (C)™" — G¥of — B_, (7.15)

Denote by (i) the 7-compatible chart for G* extending o (i) as in previous discussion. Then
one compute:

Theorem 7.7.1. The Poisson bivector a5 on PT(G*, ing, P+, 0(1), ) is given by

{A\e@pt =0, fork > p; (7.16)
Mk opt = (upwsy,, upwi, ) — (Wi, Wiy ), for k < p; (7.17)
{Me; At = {p, 0p} = 0. forall k,p.

Proof. Denote by {-, -}1o the log-canonical part of irg~. By Eq (7.5), the number 2iwy, j, is

{(Ak)2, (Ap o 7)1 hog
(Ag)2(Ap o)

By Theorem 5.2.4 and the fact that pry is anti-Poisson, we know 2imy, , is

Qﬁ{(Akz)Za (Ap)2}iog
(Ak)2(Ap)2

Take this into the definition, one gets desired formulas. &

21

= (wik7wip) - (ukwikaupwip)'

= (upwiy, upwi, ) — (Wi, wi,), where k < p.
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Proposition 7.7.2. For the Poisson manifold PT(G*) = PT(G*, ing+, g+, 0(i), 7) with the
0(i)

Poisson structure ms ’, we have

(1) The functions \i, are Casimirs for k € [1,m] \ e(i);

(2) The matrix B = [{\;,—, ©1 }m, where k, 1 is indexed by (1,...,m) and k~ is defined by
Eq 4.7, is of the form B = DB’ for

D= diag ((ailawi1)7 ey (Ozim,wim)) = (l/dip ey l/dim),
and B’ is an upper triangular positive integer matrix with diagonal elements being 1;

(3) Lethw: B_ — H be the highest weight map. Then the symplectic leaves of PT(G*) are
of the form
Pyv = hwg'(AY) x (SH)™,

where \¥ € X (H) @z, Ry
Proof. Foritem (1), let k € [1,m] \ e(i). By (7.16), we have { A, ¢p} = 0 for p < k. All we

need to show is {\g, pp} = 0 forp > k. Since k € [1,m] \ e(i), we know p € [1,m] \ e(i) as
well. Therefore, by (7.17),

Mk, op} = (wiy,, wiy,) — (wows,,, wows,) = 0,
because the bilinear form is W -invariant.

For item (2), recall that s; is the simple reflection generated by «;. Note that s;w; = w; — «,
and sjw; = w; for j # i. By (4.7), we have w;, = Wi, - Thus by (7.17): for k = [

{Ar-sort = (Wik,_ Wiy ) — (Wik,_ 7Sty " Sip Wiy, )

= (wimwik) - (wik? Sikwik) = (aik’wik) > 0.

For k > [, there are two possible cases. For k > k= > [, we have {\,—,¢;} = 0 by by
(7.16). For k > [ > k~, we have:

M=ot = (Wi wi) — (Wi iy o sywiy) = (Wi, wiy) — (Wi, wiy) = 0.
The equalities follows from the fact i1, ..., %; are all different from ¢;, and w;, = Wi, -

For k < I, we have {\,—, ¢} = (wik,wil — u;_lulwil) = ¢(wi,, v, ) for ¢ € Z>(, because
w; — vwj is a non-negative integer linear combination of «;’s and (o, w;j) = 0 for i # j.

For item (3), recall that
(hw(9))"*“ = Awgwraws(9), Vg€ G¢ i€ I

The tropicalization of hw with respect to the chart o (i) can then be written as a linear combina-
tion of the cocharacters lU()Oé;/ € X, (H), with the tropical functions A, «, as coefficients:

t __ t \Y
hW]R - E :Awgwi,wi ’ (w()Oéi )
A

Together with the nondegeneracy of the matrix B in previous item, this proves the claim. <>






3 Poisson-Lie duality vs Langlands
duality

8.1 Overview

Let K be a compact connected semisimple Lie group. There are two very interesting duality
constructions which involve K. First, one can associate to it the Langlands dual group K
corresponding to the root system dual to the one of K. Second, the group K carries the standard
Poisson-Lie structure wx . As a Poisson-Lie group, it admits the dual Poisson-Lie group K*.

The group KV is a compact connected semisimple Lie group while the group K* is solvable.
Despite this fact, they share some common features. Let 7' C K be a maximal torus of K and
t = Lie(T) be its Lie algebra. The Lie algebra t¥ = Lie(T") of the maximal torus 7V C K"
is in a natural duality with t:

t = Hom(S!, T)* @z R = Hom(T, S*) @7 R = t*.

The Lie algebra it = t* plays a role analogous to the one of Cartan subalgebra for the group
K*. The isomorphism above is induced by the invariant scalar product on ¢ = Lie(K) used to
define the standard Poisson structures on K and K*.

Furthermore, both the Langlands dual group and the Poisson-Lie dual group can be used
to parametrize representations of K (or finite dimensional representations of G = K©). On
one hand, by the Borel-Weil-Bott Theorem, geometric quantization of coadjoint orbits passing
through dominant integral weights in t* yields all irreducible representations of K. By the
Ginzburg-Weinstein Theorem [43], the Poisson spaces K* and £* are isomorphic to each other
and we can extend the Borel-Weil-Bott result to K*, where for a dominant integral weight
A € t* = 1t we consider the K -dressing orbit in K* passing through exp(\).

On the other hand, as we discussed in Chapter 3, from BY ¢ GY = (KV)C, Berenstein-
Kazhdan [16] constructed an integral polyhedral cone (BY, @}, )" by tropicalization, together
with a highest weight map

(hw")": (BY, @) — X (HY) = X" (H).

The fiber (hw")~*(\) carries a Kashiwara crystal structure, which isomorphisc to the the one
of irreducible representations of G with highest weight A.

This chapter is based on a joint work [6] with A. Alekseev, A. Berenstein and B. Hoffman.

81



82 CHAPTER 8. POISSON-LIE DUALITY VS LANGLANDS DUALITY

It is the goal of this paper to establish a relation between the two duality constructions
described above.

There are several tools that we are using to this effect. First, note that that of the double
Bruhat cells G*¢ C B_ and GY*%¢ C BY is a pair of cluster varieties dual to each other.
In this case, the relationship between tropicalizations can be further improved: We show that
our comparison map % maps one of these cones into the other, and preserves their Kashiwara
crystal structure (up to some scaling). This gives a new perspective on a result of Kashiwara
[58] and Frenkel-Hernandez [39].

For the discussion of the Poisson-Lie dual K™, we use the tool of partial tropicalization that
we introduced in Chapter 7. Recall that PT (K ™) comes equipped with a constant Poisson struc-
ture which induces integral affine structures on symplectic leaves. Together with the structure
of the weight lattice of K, they define a natural Bohr-Sommerfeld lattice A C (B_, @)t

We show that
P(A) = (BY, ®pp)".

That is, the integral Bohr-Sommerfeld cone A defined by the Poisson-Lie data on K* is isomor-
phic to the integral cone (BY, ®},-)! defined by the potential Y. The isomorphism is given
by the tropical duality map of the double cluster variety.

In more details, the cone (BY, @Y, )" parametrizes canonical bases of irreducible G-modules.
For the representation with highest weight A, the canonical basis in V), is parametrized by the
points of (hw")~%()\). The preimage of this set under the duality map 1 is exactly the set
of points of A which belongs to the integral symplectic leaf of PT (K ™) corresponding to the
weight A. The relations are depicted in Figure 8.1.

Integral coadjoint orbits ‘ +— |Irreducible G-modules | «+—— | Fibers of (hw" )

I

Integral symplectic
leaves of PT(K™)

Figure 8.1

8.2 Comparison maps

Let GG be a semisimple algebraic group over Q as before, whose Cartan matrix is A with
symmetrizer d = {di,...,d,}. For a pair of elements (u,v) in the Weyl group, we have a
positive variety (G*", ©y,,).

In this section, we want to compare the positive variety (G"",0,,,) and (G¥i*", 0, ).
Fori € R(u,v), let ¥;: G%¥ — GV%" be the positive rational map which is given in terms of
the toric charts x; and ;¥ by

wi(hoty, . ) > 2y (WH (R, 0y, 8.1)
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Write 3 = W} for the tropicalized comparison map

(Gu,v7 xi)t N (GV;U’U, x:/)t

Then the comparison maps ; for i € R(u, v) all agree after tropicalization. To be more precise,

Proposition 8.2.1. For i,i’ € R(u,v), the following diagram commutes,

¢
(Gwe, :Iii)t Id (Gu, xi,)t
i Py
(1dY)*

(G\/;u,vjx;/)t (G\/;u,vjx\/)t

i/
where we recall that 1d" = Idbu. = (xl_,l o x;)t by definition, and we abbreviate 1d” =

IdG\/;u,v.

Proof. By the previous discussion it is enough to assume that i and i’ are related by a single
move. Then the proposition follows by direct computation; we only give the proof for one type
of move and leave the rest to the reader.

Sayi,j € {—r,...,—1} witha; ; = —1 and a;; = —2. Without loss of generality assume
d; = 1and d; = 2. Let

. . L . o/ . L .
1= (/Llr oy Uk 0, 750 )5 V45, - '77’71)7 1 = (7,1,...7Zk,j,Z,j,Z,Zk+5,...7Zn).

Then by [21, Proposition 7.3],
Uy o .I‘i_,l o xi(h, t1,... ,tm) = Wi/(h,pl, e ,pm)
= (WH(h)apl ! P 7p%+17pk+23pi+37pk+47 -- 9y Pm )a

where

—1 2 -
tha1 trao 1 1 trhoo 1 1
pk+1_<++ 2 4 Prt2 = 24 +
thro  Tkys  Tgaa tkr1 \tka3  tria lk+3
t%+2tk+4
tk13

2
_ _ lit2 1
Dk+43 = tpyo + tpp1tpya + Phtd =tk +lpg3 | — + —

thts  Trpya

and p; = t; otherwise. On the other hand, again using [21, Proposition 7.3] one finds

(@) T oaY o W(h,ty,. .. tm) = (z¥) T oaf (FH (h), 5. . tdim)

1 1

= Wi (h),P,...,P,),

where

1 1 [t 2\ 1 1 t2 -
k42 k42
Pk:-‘rl = D) + ) * + tk-‘rl Pk+2 = + 2 + ) +
biva Tipo \Tres s Topalerr  pgtian

2
2 2
k+3 = Liya s Fler1 | +lkto k+4 = + + tpy1
_l’_
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and P; = tfi otherwise. Then it is easy to verify that ¥; and ¥y agree after tropicalization.

The proofs for the other types of move (described in Propositions 7.1, 7.2, and 7.3 of [21])
are along the same lines. The computation for the two types of moves associated to type G are
slightly more involved. One must show that some terms in the expressions for the p;’s and P;’s
do not contribute after tropicalization; this can be done using the fact that the tropicalization of
(A + B)¥ is the same as the tropicalization of A* 4+ B¥, for positive functions A and B and
positive integers k. This verification is straightforward and tedious. &

Recall we should that (G%? = H x L% GV%Y = HY x LY is a (decorated) double
cluster variety. Thus we know the tropical maps 1), agree for all 0 € |o(i)|. Next, we compare
the comparison map 1, and ¥;:

Theorem 8.2.2. For u,v € W, suppose that {(u) + £(v) = £(u~ v). Fori € R(u,v), denote
by let x; and o € |o(1)| be the factorization chart and cluster charts for G*V respectively. Then
the following diagram commutes,

(Gu’v, Z‘i)t 1d* (GU’U, O.)t
d)i wo'
(Gv\/;u,v7 x:/)t (Idv)t (C;\/;u,v7 O,V)t

where we recall that 1d" = (0= o x;)! by definition.

We split the proof into the following Lemmas:

Lemma 8.2.3. For u, v satisfying {(u)+£(v) = £(u"v) and i € R(u,v)the following diagram
commutes.

u,v\t
(Lu,v7 xi)t (™) N (Lv,u7 x—i)t

b Yo

Vv vye | @rmr)t Vi VAY:
(L m,v’m. ) (L ,v,u,x i)

i —

Proof. Recall that " can be decomposed as a sequence of “elementary moves” as in Propo-
sition 2.6.7. Let (i1,...,%p,jg,--.,J1) be a separated reduced word for (u,v). Denote by
j="(1,...,%p,—J1,4q,- -, J2). For elementary move ();, the following diagram commutes:

UV ..\t Qf USj,,V8; L\t Idt USj,,U8; A\t
(L ’xl) —>(L i1 31,.9;‘1+) _° (L 31 71’%)

lwi lwq le :

Viu, v .V\E (in)t Viusj, , 085 V \t (Idv)t V;usj, ,US; V\t
(L Y 7xi) ’ (L I Xy ) (L B ]17xj)

iy

which follows from the definition of (); and ; and of the right square is just Proposition 8.2.1
for “mixed” moves. &



8.3. COMPARISON OF BK CONES 85

Lemma 8.2.4. For u,v € W, let o € |o(—1)| be a cluster chart for L*. Then the following
diagram commutes.

LV Yy LY

lu?i l@, (8.2)

wv;u,u
LViwv 2 [Vivu

Proof. Recall that the factorization parameters can be written as monomial of the twist minors
as in 2.7.3. Also note that a;;d; = aj;d;. Direct computation will give the proof of the lemma
8.2.4. O

proof of Theorem 8.2.2. Consider the following diagram.

v,u\t
(Lv,u’x_i)t L (Lu’v,l‘i)t L (Lu,v’J)t
Ui Vs Yo (8.3)
Vi v @)Y Viuw oV 14V’ Viuo A\t
(LY x?)t ————— (LY, 2))t ———— (LYY, o)

We must show that the square on the right commutes. From Lemmas 8.2.3, the square on the
left commutes. The outer square commutes by Lemma . &

As a consequence of Proposition 4.3.4, Proposition 8.2.1 and Theorem 8.2.2, we immedi-
ately obtain the following. Recall that, for any double reduced words i, i’ for (wy, €), the toric
charts xj, zy, o (i), o(i’) on G*¢ are all positively equivalent.

Corollary 8.2.5. Let i,i’ be double reduced words for (wy,e€), and let ¢ € |o(i)| and o' €
|o(i")|. Consider the (rational) comparison maps

!pi, Wi/’!pg, LPU/ : Gw(),e - G\/;wo,e.

For any toric charts 6 € [x;] and 6 € [zY] on G*O¢ and GV0°, respectively, the tropicalized
maps
Wl W, WE WL (GO0, 0) — (GYr, V)

are all equal.

8.3 Comparison of BK cones
In this section, we focus on the positive varieties with potential (B_, ®px,Op_) and its
“dual” (BY, D%, 0% ).

Theorem 8.3.1. Fori € R(wy, e), the natural real extension (1);)r of Y restricts to an isomor-
phism of real BK cones
(B-, ®px. 2i)k — (BL, ®pp, ) ).

Moreover, the map ; restricts to an injective map of integral BK cones.
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Proof. We introduce the following notation for simplicity:

Di = Awowi,siwiy qi ‘= Awosiwi,wi S @[Lwo,e];

A\ VvV . Viwo,e
p; = Awow;/,siwly7 q4; = Awosiw;/,wiv € @[L Y ]

For each index k, one can choose a double reduced word i, = (i1, ..., %y, ) such that i,, = —k,
and iy« = (i1,...,%m) such thati; = k*. Let ag+ denote the function which sends h to h =0,
and let

(o - i) (R, 2) = o (h)qw(2).
Then by Proposition 2.7.5, the function
(o)) o ik*)t D (Bo,mi. ) = Z

can be written

(Z az‘w;/7Z§z‘€i> = dir (ape — &1) -

From Proposition 2.7.5 one also has:

dk (Oék* . qk)t . (B,, xik* )t — Z . (Z aiwzy, Zflel) — dk* (ak* — 51) .

Thus we get:
t
(e - ) 0 Wy )" = di (e - an)' -
Similarly, for the other terms, we get (p)! o ¥;, )" = dipl., where we write p(h, z) = py(z).

Then by Corollary 8.2.5, we have
(0 0 ¥o)' = divhs (o - @) 0 )" = die (e i)' (84)

where o € |o(1')], for any double reduced word i’ for (wo, ). From (8.4), a point x = (h, z)
satisfying Wt (z) € C¢"(R) if and only if

dppt(2) >0 and dp~ (g - )" (h,2) =20, Vkel.
Dividing both sides of each equation by dy, this is equivalent to the condition that
S (va (I)BK7 J)(R)

Again by Corollary 8.2.5, we can replace 1), with ;. In particular, restricting to the integral
cone GiG , the map is an injection of cones. &

Remark 8.3.2. We give an direct computation for the comparison of the BK cones for SO(5)
and Sp(4) in Section 8.6.

Theorem 8.3.3. Consider the map ; as in Theorem 8.3.1. Then for any i € I,

diodi=élods, diofi=flo;, (hw')ory=¢ohw

V

where we write €;, fifor the crystal operators in both (B_, ® gy, ;)" and (BY, DY, x ) as

described at the end of section 3.5.



8.4. COMPARISON OF LATTICES 87

Proof. Write C; := (B_,®pk,x;)! and G := (BY,®},,x))! for simplicity. We prove
the statement for é;; the one for f; follows immediately from the crystal axioms. Assume
z,é;x € C;. By Theorem 8.3.1, we have ;(z), ¢i(é;z) € C'.

From i, () = i, one sees immediately that

¥ (éi (mZ&w)) = (ﬂ}(h),zdiﬁjvj - dz‘%(m‘)) :

By convexity of €}/, the lattice points between ;(x) and v;(é;z) are contained in C;’ as well.
We will show that these are exactly the points obtained by repeatedly applying the operator €;
in Cy'.

First, by the description above
é; (ﬂ}i (’%Zfﬂj)) = (?/)(h)a Zdijfjvj - ”ne(wi(a:),i)) ey
Assume that n.(x, 1) = n.(¢i(z), ). From (3.15) applied to the crystal C;’, one gets that
ne(@i(z), i) = ne(¥i(), i) = ne(z, ),
for 0 < k < d;. So, applying €; repeatedly gives

Pi(Eix) = el ().

It remains to show that n.(x, i) = ne(1;(x), 7). Indeed,

I I I
Xi(Wi(z), i) = Z(QT)ik,idikék = Zai,ikdz’kﬁk = Zdiaik,iﬁk = d;i Xi(x,1).
k= k=1

1 k=1

So,

Ne(z,i) =max<l| 1<l <m, i =1, X(x,i) = nr%/in{Xl/(x,i) | iy = z}}

I
=

|
=

ax

ax {l 1<l<m,ip=1,diX;(z,i) = n}}n{din/(x,i) | iy = z}}

|1 << m, iy = i X(@).6) = min{ Xy (). ) | iv = z’}}
= ne(¢i(x), i)
This proves the claim. %

Remark 8.3.4. Restricting to hw*(\Y) and identifying hw~*(\Y) with Byv, Theorem 8.3.3 is
a special case of Kashiwara’s theorem as in [58, Theorem 5.1]. Note that Theorem 2.6 in [39]
is also a special case of Kashiwara’s theorem, as indicated by the authors.

8.4 Comparison of lattices

Let (K*,mx+,T) be the dual Poisson-Lie group together with the dressing action of 7'
on K. In this section, we use our results to compare two lattices on (B_, @, o (i))%. The
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first lattice comes from the crystal structure on (BY, ®%,-, " (i))!. The integrable system on
PT(K*,0(i)) gives us the second lattice A, which we call Bohr-Sommerfeld lattice.

The lattice A is built out of a lattice in h and a lattice in each integral symplectic leaf of
PT(K*). The lattice in b is ¢»~* (X *(H)); recall that the 7" action on K* determines the lattice
X*(H) in h* and that the Poisson-Lie structure 7x on K depends on a choice of an invariant
inner product on g (which, in turn, determines ).

Next, we describe the lattice in the symplectic leaves of PT(K™*). The Bohr-Sommerfeld
quantization defines a lattice (integral affine structure) in the tangent spaces to leaves as follows.
Assume \V € b is a regular dominant weight of G such that

Ai=yp(\Y) € X5 (H) ChY.
Let hw' be the tropicalization of hw: G“°-¢ — H relative to the chart (i), and let hwk be the
real extension of hw'. Recall we have symplectic leaf
Pyv i=hwp'(\Y) x (SH)™ C PT(K*, 0(i))

together with the symplectic form w := (o) 1. Let Ag € hw™*(\) be the unique point in

o0

B_, ®pk, o(i))g such that wtf, (Ag) = hwk(Ag) = AY. And denote b
R R y

Ao = {A | Yo hwh(€) = o wth(€) = A € X7 (H)} .
Consider the lattice X, (S1)™ C T1(S1)™ of cocharacters of (S1)™; this lattice is generated by

d
2r— | k=1,...,m ;.
{ dpr }

{v € Tnohwi"(\Y) | wav (v, X, (SH)™) C 272} (8.5)

is alattice in T, hwg"(\). The natural identification of hwg"(A\") with a subset of Ty, hw'(\Y)

determines the lattice A on hwﬁt()\v). Alternatively, think of the points of the set (8.5) as el-
ements of a (scaled) dual basis to X, (S')™, under the pairing given by the symplectic form.
In our choice of coordinates, the symplectic form is described by the matrix B in Proposition

7.7.2. So another description of the lattice A is

Thus the following

A= ()\0 +B(Z,..., Z)T) N(B_,®px,0())z. (8.6)

Then the lattice Ag and the lattices A on the integral symplectic leaves determine the Bohr-
Sommerfeld lattice
A:=B(Z,...,7)T + A,. (8.7)

Remark 8.4.1. Actually, the Bohr-Sommerfeld lattice on PT(K™*) is independent of the choice
of toric chart o (i), as a consequence of Lemma B2 of [6] and Theorem 6.23 of [5]. We omit the
detail of the proof here.

Theorem 8.4.2. The comparison map ;) sends the Bohr-Sommerfeld lattice to the integral
points of (BY, @}, 0¥ (1)), i, (You)r(A) = (BY, ®%p, 0¥ (i))".

Proof. From (8.6) and Theorem 7.7.2, we have

~ 1 1 1
A=(X+[(0,...,0,—2Z,—7Z,..., 7 ﬂ(B_,CI)BK,J(i))R.
di, di, d;

im

From Theorem 8.3.1, it is then clear that Wa(i))R(/N\)

Il
=
=

<
~—
L
>
Nai?
<>
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8.5 Comparison of volumes

As an application of the results of the previous section, we compare the symplectic volume
of symplectic leaves of PT(K™*) with that of symplectic leaves of £*.

Definition 8.5.1 (Notation). Let L be a lattice in R™. Then L induces a natural translation-
invariant measure 7, on R™. For a compact domain U C R™, let Vol(U, L) be the volume of U
with respect to L. For a symplectic form w on U, let Vol(U, w) be the volume of U with respect
to the Liouville form.

Proposition 8.5.2. Using notation just defined, we have

1

Gy Yol w) = Vol(lwg (), 4). (8.8)

Proof. The Liouville measure of ng is a product of the translation-invariant measure p5 on
hwg'(AY) and (27)™ times the normalized Haar measure on (S*)™. The proposition follows
immediately by Fubini theorem. &

Recall the standard Lie-Poisson structure me- on £*. Let £ := —itp(\Y) € X1 (H) be an
regular element in the positive Weyl chamber t} . Denote by O the coadjoint orbit through §.
Let w¢ be the corresponding symplectic form.

Theorem 8.5.3. Let { := —1yp(\Y) € X1 (H) be an regular element in the positive Weyl
chamber. The symplectic volume of the symplectic leaf P\v C PT(K* o(i)) is equal to the
symplectic volume of O¢ C €.

Proof. Let A := 1(\). Let V), be the irreducible G-module with highest weight A. Recall from
Theorem 3.5.9 that dim(Vy) = #(hw")~()\), the number of lattice points in (hw")~%(\).
Recall also that Weyl dimension formula is:

(A+p, )

dim(1) = [ [ o)

a>0

9

where p is the half-sum of positive roots of GG. Let IV be a positive integer. Then

i #(hw")"H(NN)
N=o0 Vol ((hw")g (N ), (hw")~¢(N X))

Also, Vol ((hw")z" (N ), (hw")~{(NX)) = N™ Vol ((hw")z"(A), (hw")~*(X)). Therefore,
1 (NA+p,a)

Vol ((hw")z*(A), (hw")7*(A)) = lim

N—oo N 50 (p, )
= lim ((/\,a) + 1)
asp Voo (p,a) N
(A @)
It is well known that
(A @)

8.9)
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see for instance Section 3.5 of [62]. Combining the fact

Vol (hwg" (¥ (N)) ,A) = Vol ((hw")z"(N), (hw*) 1 (N)) .
an (8.8), (8.9), we get the result. &
Corollary 8.5.4. Forall \Y € v~ (X*(H) + p), one has

dimVy_, = (H da> -dim Vv _ v,

a>0

where dn, = ﬁ and \ = Pp(\V).

Proof. Given a reduced word i = (i1, ..., %, ) of the longest element wy, positive roots can be
written in the following order:

Qyy SipQiny « vy Siy - o Sip Qi
Since the bilinear form is W-invariant, for positive root o = s;, - - - Si;_, Q. We get:
(o, ) = (s, ;).
Then one has [ -, do = H;nzl di;. By Theorem 8.5.3 and its proof, we get
dim Vi, = Vol ((hw")z* (), (hw") (X)) .
Taking the determinant of (1, (;))r, one finds

Vol ((hw")z"(A), (hw") = <Hd > - Vol (hwg ' (\), hw ()

a>0

= <H da> ~dim Vv _,v. &

a>0

In the following, we present a direct computation of Corollary 8.5.4. Let )(\Y) = X €
X3 (H) and denote p = 3>, o and p¥ = 1> oV as before. Note 1) preserves the
bilinear forms on h and h* and commutes with the VW -action.

Lemma 8.5.5. For each complex semisimple g one has for a formal parameter q,

H(qéwm _ q—%<pv7a>) — H (q%«x%m _ q—%(av7p>)_

a>0 aV>0

In particular, T] (p¥,a) = ] (Y, p).
a>0 V>0

Proof. Note we have the following Weyl denominator Formula:

e’ [Ta—e) =" (-n)levr.

a>0 weWw
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Let Q be the root lattice and Q' be the coroot lattice of g. Applying the ring homomorphisms
1 1
n: Z[5Q1 = Zlg*3) ¢ & = g0 Y ZISQY] » Z[gtE) < & = g
to the Weyl denominator formula for Q and QV, we obtain

[T (30" ) — g by = 37 (1)@l wn) = T (qhle") — g3),

a>0 weW aVv>0

The second assertion follows by dividing both sides with the appropriate power of q% — q_%
and taking the limit as g — 1.

<

For AV € b and X € h*, we rewrite the Weyl dimension formula: If A € X7 (H) + p, then

(hnlv&_p:: II (A’a) :::[I <avaA>

a0 (p@) (¥, p)’

where V) _, is the irreducible highest weight module with highest weight A — p. Then:

aV>0

Proof of Corollary 8.5.4. Indeed, Lemma 8.5.5 implies that

dim Vo = ] (@, pAY) _ 1 {a’, NY) _ HM: T do-dim Vio_v.

e lavipy o Sy lapY) e (aspY)
The corollary is proved. %
8.6 Example: duality between B, and (5
Note SOy, ; = Spy,. Let us focus on the case n = 2. Here we use an alternative

description of SO5. Denote
1

Jn =

The group SOj5 is isomorphic to

G={XeGLs | XJ:XT = J5},
with Lie algebra:

g={z €gl(5) |z + Jsz" J5 = 0}.

Cartan subalgebra:
h = {diag(x1, 22,0, —x2, —x1)}.

Borel subalgebra:
b = g N {upper-triangular matrices}.

Cartan matrix and a symmetrizer:
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Orthonormal basis in h*:

¢« diag(xy, 22,0, —xe, —x1) — ;.

Simple roots:
ar=0—C, a=C_.

Positive roots:
ay, g, a3:=a]+a, o4:=qa1+ 200.

Simple coroots:

oy = diag(1,-1,0,1,-1); a3 = diag(0,2,0,—2,0).

Simple root vectors:
Fi = E91 — Esq; Iy = E3p — Eug.

Fundamental weights:

w1 = a3, w9 = 50&4.
Fundamental coweights:

wy :ozlv—l—%a%/, wy =ay +ay.
Character lattice of the maximal torus:
X*(H) =7Z{on,a9}.
Cocharacter lattice of the maximal torus:
X.(H) = Z{w),wy }.
Weyl group:

W = Sy X Zsy, with generator sy, sy satisfying (s150)* = 1.

The longest element:
wo = (8182)2 = (5281)2.

Now let us compute the BK potential and the BK cone. Note that the lift of s; to G is given

by:
51=DPPy; s3=PP3Py; where P, =FE;;1 — Eii1;.

And note (8182)2 =P P,P3sP,PiP,P3sP P, P,. Let
x = exp (In(z1)wy + In(zz)wy)

and

-1 1 2
t Lt
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Then for the longest word (3132)2, generic elements of the double Bruhat cell G*°-° can be
written:

wx_l(tl)x_g(t2)$_1(t3)x_2(t4) € GWoe,

This element is equal to

] -
tits
ty 1 t1ts
—_— _|_ J— -
3 t3 t3t2
1 ts3 1
— S 1
x to tot? + t4
1 _(ts+tata)? _ta(ts +tota) 1)
2t 2ty t3t2 tits tit3
1 1 [ (t3 +taty)? tat2 (t3 + tats) t3
= St Rttty 0 1t
3 5 < 152 1 5 2 +titg ts 1 3_
Thus the potential is
(ts + tats)? 1 1 3 +tts
tib e | Fta b — e [ — 2,
< ! tat2 PP T G tats
which gives us the cone cut out by the inequalities:
1 2t 2 0;
xo 2ty 2 0;
2ty = t3 = 2ty 2 05 (8.10)
xg =ty —11;
T2 2 t3 — tQ.

Now let us describe Sp, as the dual of SO5. Denote

The group Sp, is isomorphic to
GV ={X e GLy | XJ,XT = J}}
with Lie algebra:
gV ={zecgl(d)|z— Tz =0}.
Cartan subalgebra:
h = {diag(mh €2, —I2, —.’El)}

The Borel subalgebra:
6Y = g N {upper-triangular matrices}.

Orthonormal basis in (h¥)*:

¢« diag(zy, m2, —x2, —11) — ;.
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Simple roots:
Br=¢"—¢, foa=2¢.
Positive roots:

B1, B2, B3:=201+ B2, Ps:=p1+ P

Simple coroots of g are given by:
Bi/ :diag<17_1717_1); 6%/ :dlag(0717_170>7

Simple root vectors:
Fi = Eo1 — Eyz; Fy = Ejo.

Fundamental weights:
K1 = %53, Ko = Ba.
Fundamental coweights:
W =B+ BY, Y = B+ Y.
Character lattice of the maximal torus:
X*(HY) = Z{k1, K2}
Cocharacter lattice of the maximal torus:
X.(H) =2Z{p, 55}
To calculate the potential for G, we need the lift of s; to GV:
s51=PP3; Sy=DPFP; where P, =FE; ;1 — FE;ii;.
Note (5152)2 = PLP2 P3P P, P Let
y" = exp (In(y1)B) + In(y2)55)

and

Then for the longest word (s1s2)2, generic elements of the double Bruhat cell G¥3*0¢ can be

written:
yVa? (t)aY y(t2)xY (t3)xY o (ts) € GVM0°.

This element is equal to

- 1 -
t1t3
1 tht
1 tats
Sl Tt tots
Yy 1 t t3 tots
tl t1t3 t1t4 t1t3
ty L i
1 23 (=2 ) it
L t3 t4 t3 i
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Thus the potential is

ta ¢ 21y ((tats + t)?
<t1+t2+t‘g’)+t4+y1.+y2((132)+
3 4

yo 1 y? t2t§

which gives us the cone cut out by the following inequalities:

2y1 —y2 = t1 > 0;
2y2 — 2y1 2 14 = 0;
to 2 t3 214 20
2ys — 2y1 = to — 2ty;
2y — 2y1 = 2t3 — 1o

Recall that ¢ : X, (H) — X*(H) is given by:

wlwi/ + x2w¥ = (1'1 + 1‘2)0&1 + (1'1 + 21’2)0&2.

Then the map 5 : L — L is given by:

95
1
ts )’

(8.11)

(1,25 t1, b2, t3,t4) — (1 + 22, 1 + 222311, 20, 13, 2t4).

Thus it easy to see, after replacing (y1, y2; t1, ta, ts, t4) by (1 + 2, x1 + 229; 1, 2t9, t3, 2t4),

that the real cone defined by (8.11) is the real cone defined by (8.10).






9 Action-angle Variables for Coad-
joint Orbits

9.1 Overview

There is a dichotomy in symplectic geometry between local and global coordinates. Whereas
Darboux’s theorem tells us that symplectic manifolds have no local invariants, the problem of
finding large coordinate charts often relates to subtle properties of symplectic manifolds. Most
famously, Gromov’s non-squeezing theorem demonstrates that the volume of certain coordinate
charts on a symplectic manifold may have an upper bound strictly less than the total volume of
the symplectic manifold [48].

Action-angle coordinates are a type of coordinate chart on symplectic manifolds that origi-
nate from the study of commutative completely integrable systems in classical mechanics. The
domains of action-angle coordinates are products of the form U x (S')", where U is an open
subset of R™. Such domains carry a canonical symplectic form,

werd = Y _ dAi A dep, 9.1)
i=1

where ); are coordinates on R” and ¢; are coordinates on (S*)". The Liouville-Arnold theorem
guarantees existence of local action-angle coordinates in a neighborhood of compact regular
fibers of commutative completely integrable systems [2]. A compact toric manifold of dimen-
sion 2n with Delzant polytope A has a dense subset symplectomorphic to (A x (S1)", wga),
where A denotes the interior of A. However, there are also many interesting examples of action-
angle coordinates on dense subsets that do not arise from a toric structure, such as Gelfand-
Zeitlin systems [44], Goldman systems on moduli spaces of flat connections [47, 83], bending
flow systems on moduli spaces of polygons [55], and integrable systems constructed by toric
degeneration on smooth projective varieties [51, 59, 60].

The main result of this chapter is a construction of action-angle coordinates on large subsets
of a regular coadjoint orbit for a compact semisimple Lie group K. Recall that regular coadjoint
orbits are parameterized by elements ¢ in the interior of the positive Weyl chamber (t%.)° of K.
Denote by 7' a fix maximal torus of K. The coadjoint orbit parameterized by ¢ along with its
Lie-Poisson form is denoted (O, w¢). The main result is stated as follows.

Theorem 9.1.1 (Theorem 9.5.1). Forany 6 > 0, and § € (t}.)°, there is a convex polytope /\¢
of dimension m = %(dim K — dim T') such that there exists a symplectic embedding

(De(0) x (S1)™, wsta) = (Og, we),

97
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where A\¢(6) denotes the set of points in /¢ that have distance more than 6 from the boundary
in Euclidean space R™. Moreover, for any € > 0, there exists 6 > 0 such that

Vol(Ag(8) x (S1)™, weta) > Vol(Og,we) — €.

Theorems 9.1.1 have a limitation: it does not yield action-angle coordinates on a dense
subset. In particular, these action-angle charts do not currently have an interpretation as action-
angle coordinates for a globally defined commutative integrable system. On the other hand,
these theorems illustrate that there are no non-trivial obstructions to the volume of action-angle
coordinates on regular coadjoint orbits. Note that such integrable system is known when ei-
ther K is of type A, B, or D and X\ by using Gelfand-Zeitlin systems in [79], or when K is
arbitrary type and £ is a positive scalar multiple of a dominant integral weight by using toric
degenerations by [33].

The method we use combines previous results in Chapter 7 and Chapter 8. The main idea
is that to each coadjoint orbit O¢ one can associate a family of dressing orbits Deyp,(s¢) in in
Poisson-Lie group K. The dressing orbits are symplectomorphic to O for all values of the
parameter s < 0. For s small, Dy (¢) resembles of O, and there is a natural way to include
Of in the family at s = 0. For s < 0 large, there are coordinates on Dy s¢) coming from
cluster variety theory which make its symplectic structure (exponentially) close to the constant
one. Using this, one may construct toric charts on Dy, (s¢), and hence on Of, which exhaust
the symplectic volume as s — —o0.

9.2 Gelfand-Zeitlin as a tropical limit

First of all, let us recall the Gelfand-Zeitlin system for su with the Lie-Poisson structure,
where SU,, is the special unitary group and su,, = Lie(SU,,).

Denote by #¢ the set of n x n traceless Hermitian matrices, which one can identify with
su(n)* via the non-degenerate bilinear form (X,Y’) = tr(XY’). Under this identification, the
Gelfand-Zeitlin functions on su(n)* are defined as follows. For k € [1,7], let A®*) be the k x k

principal submatrix sitting in the bottom-right corner of A. Let )\Z(k) H >R 1<i<k<n
be the ordered eigenvalues of A®*):

Note that /\,(f”) = — 2;11 A,gn) since A is traceless. The Gelfand-Zeitlin functions satisfy
“interlacing inequalities”,
AP > A > A8 Cforall 1 < i < k< n, 9.2)

and the image of map F': # — R(*+1n=1)/2  defined by the Gelfand-Zeitlin functions, is the
polyhedral cone defined by the inequalities (9.2), called the Gelfand-Zeitlin cone.

Let #y denote the open dense subset of #, where all the inequalities (9.2) are strict. The
k-torus Ty, C Uy C U, acts on # as follows:

ted := Ady-1,y A, fort € Ty, A € #o,U € Uy,

This section is based on a joint work [9] with A. Alekseev and J. Lane.
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where U is chosen such that Ady A% = diag()\gk), ce )\,E:k)). The actions of T}, and T}
commute for k # [, hence define an action of

Tpo1 x---x Ty =(51)™, where m :=n(n—1)/2.

The Gelfand-Zeitlin functions are smooth on #{y and define global action coordinates for a com-

pletely integrable system: the functions )\gn), e Aﬁf_)l are a complete set of Casimir functions.
The torus action T, is Hamiltonian with moment map {)\gk), ce A,gk)}. Angle coordinates on

(1

section o of the Gelfand-Zeitlin map and defining ¢§k) (p) =0forall p € Im(o).

dto corresponding to the global action coordinates A; " are defined by choosing a Lagrangian

Recall that for K = SU,, as a Poisson-Lie group with the standard Poisson structure 7,
has a Poisson-Lie dual (K* = AU_,mk~), where A is diagonal matrices with positive real
entries and U_ is lower triangular unipotent matrices.

Denote by # the set of positive definite n x n Hermitian matrices with determinate being
1. Then the map
¢ K* > #HT : bbb, 9.3)

is a diffeomorphism. Observed by [34], the functions ln()\gk)), define a completely integrable
system on #* (equipped with the Poisson structure ¢, 7x~). Let Sym(n) be the set of symmet-
ric nxn matrices and Symg(n) := Sym(n)N#y. This system was related to the Gelfand-Zeitlin
system on # by the following

Theorem 9.2.1. [10] There is exists a unique Poisson isomorphism y: # — ™ such that

o vy intertwines the Gelfand-Zeitlin functions

M) = (AP (), vi<i <k <n, 9.4)

o v intertwines the Gelfand-Zeitlin torus actions on #y and 36’8' .

e For any connected component C C Symy(n), C C §.

Moreover, the map -y is equivariant with respect to the conjugation action of T,, C U,, and

Y(A+ul) =e"y(4), y(4) =7(A).

Note that the map ¢! o v is a Ginzburg-Weinstein diffeomorphism. Now let us define a
family of Ginzburg-Weinstein diffeomorphisms

GW: #H — AU_, : A ¢ 1 (y(sA)), ©.5)

For all s < 0, we have (GWy),mes = (¢! 0)«(sm: ) = smx+. Let ig be the standard double
reduced word for (wy, €), which is

ih=(-1,...,—(n—=1),-1,...,—(n—2),...,—1,-2,—1).

Recall that for iy, we have a seed o (ip) for G*°¢. Denote by Ay the cluster variables of seed
o(ip), which are rational functions on B_. Then we have:
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Theorem 9.2.2. For any fixed A € #Hy and k € [—(n — 1), —1] U [1,m], the following limits
exist

Ae(A) ;== lim fln}Ak (GW(A4))

§—>—00 8§

L @A) = Tim_arg (A(GW,(4))),

hence are well defined functions on #y. Moreover, functions \i’s (resp. @) are linear combi-
nations of )\Z(,Q) (resp. w}()q) ), and the transformation matrices are unimodular.

Inspired by this theorem and the theory of partial tropicalization, we come up with the
following

Conjecture 9.2.3. Let K be a compact semisimple Lie group of rank r with standard Poisson
structure . Denote by (K* = AU_, g+ ) its Poisson-Lie dual. For a given double reduced
word i of (wy, €), denote by Ay, for k € [—r,—1] U [1,£(wo)], the cluster variables for some
seed o € |o(i)|. Then there exists a Ginzburg-Weinstein diffeomorphism GWg: ¢ — K* such
that the following limits exist

Me(A) := lim fln }Ak (GWy (A))‘, wi(A) = SEEDOO arg (A (GW(A))),

5——00 8

for A in an open dense subset U of ¥*. Moreover, the functions \;,’s and @;’s give a action-angle
coordinates for (U, me« ).

9.3 Symplectic leaves of 7,

In this section, we shall take a closer look at the symplectic leaves of (PT(K™), 7 ) by
combining the result in Chapter 7 and Chapter 8, where recall that

PT(K*) = PT(G*,7) = ((B_, ®gK,0(1))k(0) x (S1)™, 7)
with Poisson bracket 7, described by (Proposition 7.7.2)
(1) The functions A\ are Casimirs for k& € [1,m] \ e(i);
Q2 { M, A} =A{wr, op} =0, forall k,p € [—r,—1] U[1,m];
(3) The matrix B = [{\;—, i1 }]m is of the form B = DB’ for B’ € U(GL,,(Z)) and

D= dlag ((ail,wil),...,(aim,wim)) = (1/d“,,1/dlm)

Recall that for (dual) charts o(i) of B_ and ¢ (i) of BY, we have an isomorphism of real
BK cones (Theorem 8.3.1):

(S (B—vq)BK’ ( ))]R - (Bv <I)BK’ V(l))ﬁ%’

such that (hw")k o (¥;)r = ¥r o hwh (Theorem 8.3.3), where v X, (H) — X.(H") is the
group homomorphism as in Proposition 2.1.3.

Now let us equip a standard Poisson structure on (BY, @Y%, 0¥ (1)) (0) x (S1)™
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Proposition 9.3.1. There is a group automorphism 1 on (S1)™, such that
i x 0 ((B=, ®pr,0(1)R(0) x (81)™, 7o) = ((BY, @pi, 0" ())(0) x (S1)™, mq)

is a Poisson isomorphism.

Proof. Note that [{\,-, ¢;}]m = DB’ and B’ is unimodular. Thus B’ defines a group auto-
morphism 7 on (S7)™ such that

Then we get the conclusion by the definition of ;. &

Let ng be the constant symplectic structure on the symplectic leaf ®yv = hw ™ (\Y) x
(S1)™. Denote by A := 1»(\Y). As an immediate corollary, we have a symplectomorphism:

(@Av,ng ) =~ (A x (SY)™, wya)

where recall A is the string polytope.

Recall ¥ induces an isomorphism
—inp: X (H) @z R~ t*.

Then our purpose now is constructing action-angle coordinates on coadjoint. Let us align the
notation with coadjoint orbit. For example, denote by P¢ := P(_jy)-1(¢) for § € t.

Next, we discuss how the leaves &, are related to the generic symplectic leaves of K™ =
AU_. Recall that the symplectic leaves on K* are the level sets of the following Casimir
functions [75]:

CZ(b) := Tr (p; (bb*)), forb € Im(K* < B_ C G)andi € I,
where p; is the fundamental G-representation with highest weight w; and b* = v
Recall that in Section 7.7, we have the following detropicalization map:
Cge: RTTM x (SH™ — K* = AU_
Ay s Ay @1y ey o) > 0 <€S)\_T, o eSAt eshtier es’\’"”‘pm) )

where ¥ = 0y x 01: G}, x G} — H x U_ = B_ is a toric chart of B_. In the rest of this
chapter, we fix a double reduced word i of (wy, e) and let the toric chart ¥} be the cluster chart
o(i). Thus we just write &5 = & ¢ for simplicity. Direct computation shows

2
C20) = Y- lps()iel? = 32D ciad (B Dugros - Fi) ()
ik ik ik
2 (FJ : Awowi,wi ! Fk) (b) 2
=AY @) 1T+ ) cJ-,k) ‘ : (9.6)
j,k’ j7k Awowi7wi (b)

where (p; (b)), is entry of the matrix p;(b) at (j, k). The second sum is over some non-zero
sequences of indices j = (j1,...,jp) and k = (k1, ..., kq), and Fj is shorthand for Fj, ... F}, .
Here we use the standard left and right action of g on C|G].
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Proposition 9.3.2. For (X, ) € PT(K™), each term

FiAw w; wiF' s
3 oyt (@ (A @) | = O(e¥).

.. Aw Wi ,W;j
ij 0Ws,Ws

Thus for & € €} and (X, ) € P, and for eachi =1,...,r,

1
lim —Ino C;o€g-gs(N, @) = (wow;, 1€).

5——00 §

9.4 Symplectic leaves of 7,

Following the notation from the previous section. Now we study the symplectic leaves of
the Poisson bivector
s = (E5)" (sTr+).

on the space R™™ x (S1)™. Roughly, for s < 0 each of these leaves has a piece closing to
the corresponding leaf of PT(K™). For s < 0, the volume of the symplectic leaves concentrate
there, see Figure 9.1.

(a)s=-1 (b) s = —2

Figure 9.1: Volume of the symplectic leaves 11, of 7s concentrates on the part of 71, that is
close to the corresponding tropical leaf &.

First, recall that the symplectic leaves of (K™, mg~) is the dressing orbit D¢ for £ € 7.
Then the symplectic leaves of 7, is the preimage under &, of a dressing orbit. Denote the leaf
and its symplectic form by

Ny = €, 1 (Dye), w§ == (ms) 7L

Let @g := P¢ N PT(K*)° be the d-interior of P. The relation between leaves P¢ and 11
for s < 0 are stated by the following
Theorem 9.4.1. For § > 0, there exists ss, such that for any s < sg, there is a map of form

Co: P = Nge = (A @) = (es(X, 0), )

where X := (A_p, ..., A\p) and @ := (o—_1,...,9m), satisfying:

This section is based on a joint work [7] with A. Alekseev, B. Hoffman and J. Lane.
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e C, is a diffeomorphism to its image ngg = Im(<);
e at points in @g, we have (€)*ws = wS + O(e%);
o the symplectic volume of Tlgg satisfies

Vol(My¢, w§) = Vol(Me, w§) = Vol (Mg, ws) — Vol (Pe \ PL,wh,) + O(e).

Before the proof of the theorem, we need some preparations. As discussed in previous
section, the symplectic leaf 71,¢ can be described as the level set at (wowy, 1€) of function

1
feh ) = —Ine Cyo €A ), Vel 9.7)
Denote by J = {j1,...,jr} = [1,m]\ e(i) such that \;, has weight wj,. Then we compute

Lemma 9.4.2. Forall (A, ) € PT(K*)°, and k € I the derivatives
On, fr =1+ 0(e*0); O fro = O() for j # ji; Dy, fr = O(e*).

Proof. Taking Eq (9.6) into f, differentiating it gives

O fk sOu — 0Ly ; Ly .
ai)\j — 25N — 1) 8; . + Z < 8)\; + 6, ) re? Lij |

Lj

% — 25Ny, — k) Z %CZ jGZSLl,j‘
atp]’ 6g0j ’

l7j

where §; j, is the Kronecker-delta function, ¢; ;,’s are constants, and some linear combinations
L; k(X, ¢). By Proposition 9.3.2, for (X, ¢) € C° x T™,

eQS(Ajk—fk) — 1 + 0(6285); 625Lj,k — 0(6286),

which completes the proof. &

Next we recall an elementary result from calculus:

Lemma 9.4.3. Consider a smooth family of maps §s: R® — R™ for s < 0. Denote by
fi: R™ — R the ith component of Fy. Suppose that there is convex open subset U such that for
each i € [1,n],

Op, [l =14 0(e*); Oy, fl=0(*°)  forj #1i.

Then there exists a so < 0 such that for any s < so, §s|u is a diffeomorphism to its image.

Proof. Fix s for a moment. Then only thing we need to show is that §|y is injective. If not,
leta = (a1,...,a,) and b = (by,...,by,) be two points in U such that Fs(a) = Fs(b). For
0 < t < 1, consider the line ta+ (1 —)bin U since U is convex. Let g;(t) = fi(ta+ (1 —1t)b).
Thus for each i, we have ¢;(0) = ¢;(1). Then by Rolle’s Theorem, there exists a ¢; such that
gi(t;) = 0. Denote by x; = t;a + (1 — t;)b. Then we know:

gi(t) = Y _(aj — b;)0x, fi(a:) = 0. ©.8)
J
Denote by M a matrix with the entry M;; = Oﬁjfsi(mi). Thus (a1 — by,...,an —by)M =0

by Eq (9.8). By the assumption of 9, f%, one can choose s < 0 such that det(M) # 0, which
implies a = b. &
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Denote by I = [—r, —1]Ue(i), and split R"+™ = R/ x R!. Write A = (A, A;). For fixed
A7 and ¢, the intersection R7 x {1} x {¢} N @g is either a point or empty, where the point is
(Njis - -y Ajos AL, ) with A, := (wowy, i€). Denote by p := (A7, ) and by U := US(J) C
R’ x (S')™ such that for any point p € US, the intersection (R7 x {p}) N @g # (). Then

P = (]RJ x Uf(a)) N Ps.

Denote by Uf, := R’ x {p} for p € UE. Ttis clear that US = U’ x (S!)™ for some convex
open set U’ in RY. The intersection Uf, M ¢ is stated in the following Lemma.

PT(K*)

PT(K*)5/2

Figure 9.2: The intersection described in Lemma 9.4.4.
Lemma 9.4.4. There exists ss < 0 such that for all s < ss, s N Uf, =ptforanyp € UE.

Proof. First, we show 113 N Uf, # (). Fix ¢ sufficiently small such that for any p € U¢,
B = [Nj, —e,\j, +e] x - x [N, —e, N, +¢] x {p} C PT(K*)%/?,
where we recall that \j, := (wowy, 1§). By Proposition 9.6, we have,

SBI_noofk()\jla'--a)‘jk :I:’S»'-w)‘]'r?p) = >‘]'k te,

Thus there exists a s;, such that for s < s; the collection of functions (f; — Njrseoos fr— )\jr)
satisfies the assumptions of the Poincaré-Miranda Theorem on the box 3 for any p € US. Thus
there is a point in uﬁ, such that (fi — Aj,, ..., fr — Aj,) = 0, which means 715¢ N Uf, # 0. If
there are more than one points in 71, N Uf, # 0, say (As,p) and (X}, p) for example, thus we
know that

(fro s f)(Xg2) = (f1, -5 fr) (A, D).

By previous lemma, we know this can not happen. &

Proof of Theorem 9.4.1. The first bullet is proved by applying the implicit function theorem to
Fs = (fi,..., fr): R x RT x (8™ — R for local result and gluing them together by
Lemma 9.4.4. Thus, we know €, is of form

Co: P = Nge = (A ) = (cs(X ), A )

where ¢s(X, ) € R7.
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Next we prove the second bullet. For (X,Y") € T(Am)(}’g = R™ x R™ with (A, ) € @g,
by the implicit function theorem,

Dxp)€s(X,Y) = (=(DrsFs) " (Dar8s X + Dy3sY), X, Y) .
On the one hand, since the constant bivector 7, has form

Moo = _ X A Yy, forsome X, Yy € Tix )P,
k

we find (€)oo = oo + O(e%?) by Lemma 9.4.2. For the 2-form, we know
(€s)swlo = ((€5)emoe) ™! = mo +O(e”).

On the other hand, by Theorem 7.6.2, at (X, ) € PT(K*)%/2,
—1
w§ = (my) " = (7700 + 0(656)> =t + 0(e*).

Let us show the last bullet now. The first inequality is clear since volume is monotonic. By
the first two bullet
Vol(?”lgg, ws) = Vol(@g,wgo) + 0(e*).

Note that Vol(@g,wgo) = Vol(@g,wgo) — Vol(%¢ \ P W) since @g = P N PT(K*)° by
definition. Finally, by Theorem 8.5.3, we have Vol (%, wﬁo) = Vol(N, wg). &

9.5 Construction of symplectic embeddings

Let K be a compact semisimple Lie group with a fix maximal torus 7" as before. Denote
by O the regular coadjoint orbits labeled by an element § in the interior of the positive Weyl
chamber (t} )° of K. The coadjoint orbit O carries the Lie-Poisson form w¢. The goal of this
section is to complete the proof of

Theorem 9.5.1. Forany e > 0 and § € (t})°, there exists § > 0 and a symplectic embedding

(2,08.) = (8e(6) X (8)™,wita) = (O, we),
such that
Vol(Og, we) > Vol(Ag(8) x (S1)™, weta) > Vol(Og,we) — €.
Fix 0 > 0 and § € t) as before, recall from last section, we have a diffeomorphism:
Co: P — N,
Denote by mg = (@s)*wg. The construction of symplectic embedding as in Theorem 9.5.1 will
be accomplished by construction of the first arrow of

(‘@g’“’@ — (‘@5/2 “6) = (ngfwg) < (Dag, (smce)Y) -~ (O, (me) 1) -

1S

This section is based on a joint work [8] with A. Alekseev, B. Hoffman and J. Lane.
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In the other words, the goal is to construct a Moser flow that deforms /<c§ to wgo. In the rest of

this section, we omit £ from the notation of symplectic forms for simplicity. For s < 0, define
a closed 2-form w? on @g by the equation

wh = (1 —t)weo +ths, t€]0,1].
Lemma 9.5.2. For§ > 0, t € [0,1], and s < 0, the form W] is non-degenerate on @g.

Proof. By Theorem 9.4.1, we know w! = (1 — t)weo + t(wWeo + O(e%%)) = woo + O(e) is
non-degenerate for s < 0. &

Lemma 9.5.3. The two form as := ks — Weo IS exact on @g .

Proof. The form wy is exact, and so it suffices to show that wy on 71 is exact.

Recall that complex conjugation (-): K* — K™ is an anti-Poisson automorphism on K*,
which induces an anti-Poisson automorphism on R™*" x (S1)" via map &:

T: (A ) = (A, —).

Since Casimirs are invariant under 7, we have 7w = —w,. While, H*(%#) = H? ((S")™)
since A¢(d) C R™ is contractible. Therefore 7*[w] = [w] for any [w] € H 2(@? ).

Put these together, the class [ws] € H 2(@? ) is 0 and hence wj is exact. &

Lemma 9.5.4. Let o, € Q! ( (S 1)”) be a family of exact smooth forms, parametrized by s < 0
such that o5 = O(e*°) for some § > 0. Then, there exists a family s € Q'=1 ((S)™) of smooth
forms such that dy, = o and v = O(e).

Proof. We would like to use the Fourier mode of the differential forms. Let us first introduce
some standard notation from Fourier analysis on torus. Denote by J = (j1,...,J;) the multi-
indices. Let ¢ := (¢1,...,¢n) be the natural coordinates on (S)™. Denote by dp; =
dpj, A+ Adp;, al-form. Thus any w € Q! ((S')") can be written as w = > ; wde,;. For
m = (my,...,my) € Z" let m - := mypy + - -+ + myppy. Then for any smooth function
fon ((S1)"), let

Fam)= [ ftp)eimeag
(stHm
be the m™ Fourier coefficient of f. Then the Fourier expansion of f at ¢ is given by

f)= 3 Flmyexrime.

mezZm

Now one can write w = Y., /. Wy, Where wy, = €2™™® 3" 57 (m)dep s, where the
sum on the right converges uniformly because w is smooth. If w is exact, say w = d~, we have

Wm = dYm 9.9)

Note than wyg is exact if and only if wg = 0. Thus let v9 = 0. To find a primitive vy, for
m # 0, one can make use of Cartan’s magic formula, since the Lie derivative acts on w,, by
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a scale. To be more precise, for each 0 # m = (my,...,my), choose j(m) € {1,...,n} so
that 1mj(,,) # 0. Then the following form satisfying Eq (9.9):

1
=X, here X, := 0/0¢;.
m 2 j (1) EXjimyWms - W j /0¢;
Let K be a sequence of indices of length [ — 1. Because the Fourier series of w converges
uniformly, we have

2 Y m) < 3 s St = Y 3 < 575 i m) < oo

m#0 I\ g J m#0 J m#0

and hence vy := ) vm is a well-defined smooth [ — 1 form.

Now suppose w = 5. Then by the construction we have a family of [ — 1 form ~,. Let us
control the size of v5. By Plancherel’s identity and Parseval’s relation, we have

Il = S RGm < S st =3 [ el
m J m J n

Since o5 is O(e*®), we conclude > f(sl)n ||o7]|% is O(e?*?). Hence v, is O(e). &

Lemma 9.5.5. There exists a 1-form (s € Ql(@g) such that dfs = s and By is O(e®).

Proof. Fix a point Ag € A¢(J) and define a straight line retract from @g to {Ao} x (S1)™ as
Q: 0,1 x P = P+ (A 0) = QX @) = (Ao + LA = Xo), ).

Letq: Q° (@g ) — Q! (@g ) be the homotopy operator associated with £, so

1
R _ * 1 d
Vs = o —/0 (L%Q as> dt e Q (@5).

Since a; is O(e*®) and A¢ is bounded, the form v, is O(e*?). Since q is a homotopy operator
and since o is closed, one has
as = dys + Qjas.

By Lemma 9.5.3, the form Qf«; is exact and is O(e*?). So by Lemma 9.5.4, there is a form
AL e QL ({ X} x (S1)™) of O(e*) satisfying dv’, = Qfas. Then S, := 75 + 7~ has the desired
property. &

With all these preparations, we are now ready to run Moser’s trick. Let us summaries what
we have now (replace § by §/2): for s < 0, the 2-form ! is closed and non-degenerate for all
t € [0,1]; and ks — woo = dfs and f; is 0(635/2). For any such s, Moser’s equation

Lxtwh = —fs (9.10)

defines a ¢t-dependent vector field X! for ¢ € [0, 1] on @g /2. Denote by ¢% the flow of X! for all
points in @g /2 andall ¢ € [0, 1] for which it is defined.

Lemma 9.5.6. The vector field X* is O(e*%/?) for all t.
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Proof. By (9.10), we have LX§w§ = LxtWeo HlLxias = —fB5 = 0(635/2). Since « is 0(655/2)
and wo, is constant and none-degenerated, the vector field X has to be O(e*%/2). 9

Lemma 9.5.7. For § > 0, there exists s5 such that for any s < s,

o the flow qbf;\_@g : @g — @?/2 is defined for all t € [0, 1];
o the time 1 flow ¢} satisfies (¢L)* (ws) = Woo.

Proof. Fix a metric on (S*)™ and equip % with the product metric. Since X is O(e*%/2), we
may choose s < 0 such that || X7|| < ¢/2 at all points of @g. Then for all (A, ) € @g and
all t € [0,1], the distance from ¢ (X, ) to (X, ¢) is less than 6/2. Therefore the flow of X7,

restricted to @g , does not escape @2 Pfort € [0, 1]. This establishes the first claim.
The second claim is due to the standard Moser argument: By (9.10), one has

¢
owy,

ot

deéwé + dﬁs = LXEWLtg + = 07

therefore (¢%)*w! = w? = w., wherever the flow is defined. &
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