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Abstract:  

Background: With their varied pharmacophores, natural products are interesting tools to 

open the drug discovery pipeline. Several plant secondary metabolites are components of 

the human diet and have reported epigenetic activities.  In this study, we screened a small 

natural compound library for epigenetic activities. 

Methods: Seventy-one different natural products plus 17 controls collected from all 

collaborating laboratories were screened. Localized DNA methylation (DNAm) was studied 

on a stretch of the retinoic acid receptor gene RAR. All genomic 5-methylated cytosine 

(5mC) bases were then detected by high performance liquid chromatography tandem mass 

spectrometry (HPLC-MS/MS). DNA methyl transferase 1 (DNMT1) enzymatic activity was 

measured for selected compounds. Level of histone H3 trimethylation at lysine 9 and 27 

(me3H3K9 and me3H3K27) was measured by Western blot analysis. Global histone 

deacetylase inhibition (HDAC) was assayed first using a bioluminescent resonance energy 

transfer-based (BRET) assay and then with enzymatic fluorescence based-assays for most 

HDAC class 1. HDAC6 inhibition was measured by Western blot analysis. Sirtuin (Sirt2) 

inhibition was assessed first with a thermal shift assay and then using the enzymatic 

SIRTainty™ Class III HDAC assay for Sirt1 and Sirt2. 

Results: Diosmetin, (S)-equol, umbelliferone, papaverin and L-carnitine were identified as 

novel DNA demethylating agents. Emodin, rhein, aloin and D-glucuronic acid were identified 

as novel histone H3 demethylating compounds. Previously undescribed Sirt activation by 

apigenin, biochanin B, robinin, pinocembrin, aureusidine, brucine and boldine was also 

detected. 

Conclusions: High-throughput alpha screens are used for initial studies of diverse compound 

libraries; however, this approach has significant disadvantages for the study of DNAm. 

Indeed, finding unmethylated RARalleles in one cell line does not indicate the activity of 

the compound at the level of the entire genome over a given time-frame and a given dose. 

Measurement of DNMT1 activity is not useful since most natural compounds are not direct 

enzymatic inhibitors. When studying histone methylation, Western blot analysis is laborious 

http://www.lidsen.com/journals/genetics/genetics-special-issues/epigenetic_mech
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but remains a cheap and effective assay under circumstances in which several histone 

methylases (KDMs) or demethylases may be responsible for modulation of histone 

methylation. Reversible epigenetic modifications of the genome remain feasible targets for 

nutrition-based preventive strategies. However, more accurate HDAC inhibition assays are 

still required for the evaluation of flavanols, which have fluorogenic properties that disturb 

classical fluorescence-based assays. 

Keywords  

DNA and histone H3 methylation; HDAC inhibition; natural products 

 

1. Introduction 

Epigenetics is defined as the heritable changes in a genome that occur without a change in the 

DNA nucleotide sequence. Since epigenetic modifications are reversible, they have been an 

important field of research for medicinal chemists. Several natural nutrients have been found to 

affect the epigenome through modification of DNA and histone methylation and histone 

acetylation as well as modifications of micro and long non-coding RNAs. We previously reported 

that several dietary polyphenols that are well-known as in vitro anti-oxidants are also documented 

epigenetic modifiers [1, 2]; however, conflicting results were obtained [1-4]. Recent evidence 

supports a reduction in mortality risk associated with a polyphenol-rich diet [5]. In this study, we 

screened for epigenetic activities a small natural compound library assembled by a network of 

academic experts (COST action CIM1106). New positive results were obtained for each class of 

epigenetic activity studied. However, the limitations of fluorescence-based screening of some 

compounds were highlighted. 

2. Materials and Methods 

2.1 Reagents and Cell Culture  

Reagents: Cell culture reagents, enzymes and compounds were obtained from Sigma–Aldrich 

(Saint Quentin en Yvelines, France) unless specified otherwise. Compounds sent by the authors 

were prepared for screening in the Institute of Chemistry in Nice (France). The compounds were 

first diluted to 10 mM in DMSO and 100 µL aliquots were stored in the dark and frozen at -20°C 

until shipment to each screening laboratory. The final working concentration of the compound 

prepared in cell culture medium was 15 µM, except for cell viability studies, HDAC screening and 

control compounds, for which several dilutions from 5 to 15 µM were assayed.  

Cell culture: The MCF-7 (breast carcinoma) cell line was obtained from the American Type 

Culture Collection. Cells were cultured at 37°C in a humidified atmosphere of CO2/air (5%/95%). To 

prepare DNA for methylation studies, MCF7 cells were cultured in 2 triplicates in 24-wells plates 

seeded at a density of 6  104 cells/well. Cells were cultured for 5 days and the culture medium 

was replaced every other day (RPMI medium supplemented with 100 µg/mL streptomycin, 100 

IU/mL penicillin and 10% v/v heat-inactivated fetal calf serum). After one day of culture, 

compounds (15 M) were added to wells and cultures lasted 4 more days. Subsequently, the cells 
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were removed from wells into phosphate buffer saline using a rubber scraper and pelleted by 

centrifugation at 1000xg. The pellet was incubated for 12 h at 55°C in 1 mL lysis buffer (5 mM NaCl, 

10 mM Tris-HCl pH 8, 0, 25 mM EDTA), 5 µL Triton X 100 and 5 µL proteinase K aqueous solution 

(20 mg/ml). Finally, DNA was purified using a classical phenol/chloroform/isoamyl alcohol 

extraction method. A working solution of each compound was prepared at 1 µg/µL in molecular 

biology grade water.  

Cell viability: After 48 h in culture, cell viability was evaluated using the Cell Titer 96® assay kit 

(Promega, USA) according to the manufacturer’s recommendations. Results were expressed as 

IC50 values; i.e., the concentration of the compound inducing a 50% reduction in cell number by 

comparison with untreated control cultures containing 0.01% DMSO.  

2.2 DNA Methylation (DNAm) Studies 

DNA bisulfitation and methylation specific qPCR (MS-PCR): Purified DNA (100 ng) was prepared 

for MS-PCR using the EZ DNA Methylation™ Kit (ZYMO Research, USA) according to the 

manufacturer’s instructions. The methylation status of the RARβ second exon was determined by 

MS-PCR. Amplicon melting curves were generated using the Roche qPCR SYBR green kit according 

to the manufacturer's instructions, with annealing of the RARβ sense 

(GAGTAGGGTTTGTTTGGGTAT) and RARβ antisense (CCAAATAATCATTTACCATTTTCCA) primers at 

57°C for 40 cycles. MS-PCRs were conducted in duplicate with a light cycler apparatus from Roche 

and interpreted using its allele-calling software version 2.0. Positive control DNA (0.01% DMSO-

treated cells) served to distinguish fully methylated alleles (reported as 0.200 in Table 1), while 

negative control DNA (0.13 µM 5-azacytidine-treated cells reported as -0.250 in Table 1) served to 

distinguish fully unmethylated alleles; these results defined the extremities of a scale of 

methylation in which values > -0.100 were considered positive (DNA demethylation) because the 

qPCR allele-calling software was unable to resolve partially methylated alleles below this value.  

Global DNAm study: Selected DNAs were also evaluated for global 5mC levels by HPLC-MS/MS. 

DNA was first treated with RNase-A to remove any contaminating RNA and then enzymatically 

digested to individual nucleosides for HPLC-MS/MS analysis as previously reported [6]. 

Table 1 shows the mean values of duplicate measurements expressed as the percentage of the 

ratio: 5mC/total cytosine. Fully methylated positive control RAR alleles (0.01% DMSO treated) 

had a value of 1.70  0.36% and fully unmethylated negative control RARalleles (5-Aza-cytidine-

treated) had a value of 0.88  0.09%. The 5-mC DNA ELISA™ (ZYMO Research, USA) was also used 

according to the manufacturer's instructions. 

DNMT1 activity: Untreated MCF7 cells were harvested to prepare nuclear extracts using the 

Epiquik Nuclear Extraction Kit (Epigentek Inc. USA) following the manufacturer’s instructions. 

DNMT1 activity in nuclear extracts was determined using the Epiquik DNMT1 Activity Assay Kit 

(Epigentek Inc. USA) following the manufacturer’s protocol. DNMT1 activity in nuclear extracts 

was calculated as a percentage of that in the positive control (no compound).  

In silico modeling: The human DNMT1 tridimensional structure was retrieved from the Protein 

Data Bank (3PTA code) and the Auto Dock Vina software [7] was used for in silico modeling of the 

compounds/enzyme interactions. The ligand-binding preference was determined by selecting the 

complexed structures with the binding lowest free energy among the different complexes 

predicted by docking calculations. The residues located at the S-adenosyl-methionine (SAM) 
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cofactor site were then selected to conform to the docking boxes containing the catalytic and SAM 

sites; the results are presented in Supplementary Figure S1 and S2 for neoruscogenin and 

curcumin, respectively. 

2.3 Histone H3K9 and K27 Studies 

Western blot analysis was used to identify small molecules with the ability to decrease 
me3H3K9 and/or me3H3K27 levels in MCF7 cells treated as described previously [8]. Briefly, cells 
were cultured for 48 h as described in Section 2.1 and nuclear proteins were then investigated by 
Western blot analysis using antibodies for the specific detection of me3H3K9 and me3H3K27. 
GAPDH served as the protein loading control. The antibodies used were: monoclonal anti-GAPDH 
(ab8245, from Abcam, Cambridge, UK used at 1/100 dilution; polyclonal anti-me3H3K27 (No. 07-
449) used at 1/300 dilution and polyclonal anti-me3H3K9 (No. 07-442, from Millipore) used at 
1/200 dilution, and the protein bands were revealed with the horse radish peroxidase-conjugated 
goat anti-rabbit (or anti-mouse) secondary antibodies (1/200 dilution) from Dako Cytomation A/S 
(Copenhagen, Denmark). The intensity of immunoreactive protein bands was quantified by 
densitometry using the ImageJ 1.45 S software. Changes in the levels of me3HK27 and me3H3K9 
were expressed as a percentage of the levels in the positive controls (MCF7 cells treated with BIX-
01294 and with 3-deazaneplanocin A (DZNep); untreated cells served as the negative control. The 
catalytic activity of the KDM G9 was measured for (S)-evodiamine only with the EpiQuik™ 
KDM/Inhibition Assay (Epigentek, USA) as previously reported [8]. 

2.4 Histone H3K9 and K27 Studies 

BRET: A previously designed high throughput BRET assay was used to test each compound (see 

for the Supplementary Figure S1 and S2) [9, 10]. This assay is based on the use of engineered cells 

harboring two expression vectors; one encoding a bromo-domain, which recognizes acetylated 

histones, fused to Renilla luciferase (Rluc) and the second encoding histone H3 fused to the yellow 

fluorescent protein (YFP). If acetylated, histone H3-YFP recruits BrD-Rluc, and in the presence of 

the substrate of Rluc: coelenterazine, their proximity creates the conditions for an energy transfer 

between Rluc and YFP, which leads to fluorescent emission at 530 nm. Thus, this signal reflects the 

H3 acetylation created by an HDAC inhibitor. Toxicity of the compound was determined as the 

luciferase activity measured at 485 nm. Results were calculated as the mean values of three 

independent experiments at three different concentrations, with increased BRET signals indicating 

inhibitory activity. TSA, SAHA and CI994 served as positive controls.  

General HDAC inhibitory activity: the FLUOR DE LYS™ HDAC fluorometric activity assay kit (Enzo 

Life Sciences, Lausen, Switzerland) was used according to the manufacturer’s recommendations. 

The provided HeLa nuclear extract served as the source of HDACs. Results were calculated as the 

mean of three independent experiments and expressed as IC50; SAHA was used as positive control 

[10, 11]. 

Enzymatic assays: Selected compounds with an inhibitory activity 50 % were screened for 

HDAC1, 2 and 3 activities using a previously described method [10, 11].  

Western blot analysis of HDAC6: Acetylated tubulin levels were investigated in HeLa cells 

treated with selected compounds by Western blot analysis using an anti-tubulin antibody specific 

for K40 as previously described [10]. Tubastatin A served as the positive control. 
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Table 1 Screening results. In the compounds column, names are underlined when compounds were screened by Western blot analysis for 

HDAC6 inhibition as previously reported (11). In the biological activity column: IC50 values are indicated in (). The MS-PCR (methylation-

specific PCR) scale ranges from -250 (fully unmethylated RAR) to 250 (fully methylated RAR). Sirt activation is denoted by a minus sign. 

DNMT: DNA methylation transferase; SAM: S-adenosyl-methionine; SAH: S-Adenosyl-L-homocysteine; BRET: Bioluminescent resonance 

energy transfer; HDAC: Histone deacetylase; Sirt: Sirtuin; me3H3K9 and me3H3K27: trimethylated histone H3 lysine 9 and 27. 

Compounds 

Underlined when 

screened for 

HDAC6 (11) 

CAS Number Biological Activity 
(viability as IC50 in MCF7) 

MS-PCR 
HPLC-

MS/MS 

DNMT1 

Enzymatic 

activity 

 

me3H3K9 and 
me3H3K27 

levels 
(% of controls) 

HDAC 

inhibition 

(BRET) 

HDAC 
inhibition (% of 
control at 100 

µM) 
(HeLa nuclear 

extract) 

Sirt2 Thermal 

shift (Kd at 15 

µM; average 

standard 

deviation <5%) 

Sirt inhibition 

(% of control at 

60 µM) 

Plants which contain the compound 

5-Aza-cytidine 320-67-2 
DNMT1 control 
(0.13 μM ± 0.05) 

-0.250 

 

0.88 ±  

0.09 

 

Not 

applicable 
(-) (-) 

 
91 

  

Zebularine 3690-10-6 

DNMT1 control 
(426 µM ± 21) 

-0.200 
1.03 ± 

0.04 

Not 

applicable 
(-) (-) 

 
>200 

  

SGI-1027 1020149-73-8 
DNMT1 control, IC50 for DNMT1: 6 μM, 
DNMT3A: 8 μM and DNMT3B: 7.5 μM 

(4.8 µM ± 0.21) 

-0.200 
0.96 ± 

0.02 

Decreased 

(SAM) 
Weak (-) 

 
>200 

  

BIX-01294 935693-62-2 
KDM control, IC50: G9a: 2.7 μM and G9a-like 

protein: 0.7 µM 
(5.44 µM ± 0.20) 

   

H3K9: - 80% 

H3K27: - 25% 
(-) 

 
>200 

  

DZNep 102052-95-9 

 
KDM control: IC50 for EZH2: 0.8–0.24 µM 

(SAH) 
(0.0153 µM ± 0) 

 

-0.125 
1.70  ± 

0.36 
 

H3K9: - 80% 

H3K27: - 20% 
(-) 

 

>200 

  

Chaetocin 28097-03-2 KDM control IC50 for Su(var)3-9: 0.8 μM 
 

(0.8 μM ± 0.03) 

-0.300 
0.96 ± 

0.02 

No decrease 

(SAM) 

 

H3K9: - 69% 

H3K27: - 29% 
(-) 

 

>200 

  

Entinostat MS275 209783-80-2 HDAC control, IC50 for HDAC1: 0.368 μM, 
HDAC3: 1.7 μM and HDAC8: 63.4 μM 

(0.4 µM ± 0.01) 

-0.125 
1.12 ± 

0.03 
No decrease (-) + 

 

>200 

  

Tacedinaline CI994 112522-64-2 

HDAC control, IC50 for HDAC1: 18.22 ± 2.45 µM, 
HDAC2: 3.85 ± 0.11 µM, HDAC3 and HDAC6: > 

100 µM 
(0.5 µM±0.02) 

0.120 
  

(-) + 42 ± 0.9 59 
  

http://www.sigmaaldrich.com/catalog/search?term=3690-10-6&interface=CAS%20No.&lang=fr&region=FR&focus=product
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Tubastatin A 58880-19-6 
HDAC control, IC50 for HDAC6,: 34.9 ± 1.4 μM 

and HDAC8: >200 µM 
(15 µM ± 0.5) 

   
(-) (-) 

 
>200 

  

Vorinostat SAHA 149647-78-9 
HDAC control, IC50 for HDAC1: 0.35 ± 0.04 µM, 
HDAC2:0.55 ± 0.08 µM, HDAC3: 0.14 ± 0.01 µM 

and HDAC6: 0.05 ± 0.01 µM 
(0.75 µM ± 0.03) 

0.045 

  

(-) + 100 ± 1.5 31 Sirt2: 12 ± 1 

 

Trichostatin 

TSA 

58880-19-6 
HDAC control, IC50 for HDAC 1: 15.7 ± 1.5  µM, 
HDAC3: 0.0015 ± 0.1 µM and HDAC 6: 16.0 ± 

0.74  µM 
(0.052 µM ± 0.002) 

0.180 

  

(-) + 59.3 ± 4.4 >200 

  

Valproic acid 99-66-1 HDAC 1 inhibitor, IC50: 400 µM 
(20 mM ± 0.9) 

-0.125 
1.7 ± 

0.04 
No decrease (-) + 

 

56 

  

Sodium butyrate 156-54-7  HDACI 1 and 3 Control (IC50: 300 µM both) 
(8 mM ± 0.35) 

-0.050 

  

(-) + 

 

44 

  

Sirtinol 410536-97-9 
Sirt control, IC50 for Sirt1: 131 μM and Sirt2 and 

Sirt3: 8 μM 
(30 µM ± 1.2) 

-0,050 
  

(-) (-) 
 

29 Sirt2: 92.57 ± 5 
 

Tenovin 6 

 

1011557-82-6 

 

Sirt Control, IC50 for Sirt1:21 μM, Sirt2: 10 μM 
and Sirt3: 67 μM 

(6 µM ± 0.25) 

-0.125 
0.96 ± 

0.02 
No decrease (-) (-) 

 
13 

Sirt1:73.9 ± 1.3 

and Sirt2: 94.9 

± 0.4 
 

Cambinol 14513-15-6 

Sirt Control, IC50 for Sirt1: 59.5 ± 1.1 μM and 
Sirt2: 51.9 ± 1.2  μM 

(4.8 µM ± 2.3) 
   

(-) (-) 
 

>200 

Sirt1: 59.5 ± 1.0 

and Sirt2: 51.9 

± 1 
 

Anacardic acid B 22910-60-7 

HAT inhibitor, IC50 for PCAF: 5 µM and 8.5 µM 
for p300 

(85 µM ± 4.1) 

-0.250 
1.7 ± 

0.03 
 

(-) (-) 

 

>200 

 

Cashews and mango 

Scutellarin 529-53-3 

Flavone 
(15 µM ± 0.7) 

0.125 
  

(-) + 

100 ± 2.5 
HDAC1: 42.2 ± 

2.4 
HDAC2: >100 

HDAC3: 18.0 ± 
7.9 

 

53 
 

Scutellaria lateriflor and Asplenium 

belangeri 

Apigenin 520-36-5 
Flavone 

(3 µM ± 0.12) 
-0.075 

  
(-) + 

79.11±2.4 

HDAC3: 

31.2±10.6 µM 

>200 

Sirt1: 2.1 ± 7.4 

and Sirt2: 32.8 

± 1.2 

Parsley, celery, Chinese cabbage, 

garlic, apples, olive oil and 

chamomile tea 

Chrysin 480-40-0 

Flavone 
(35 µM ± 1.6) 

0.030 
  

(-) (-) 14.9  ±  5.7 >200 
 

Passiflora caerulea, Pleurotus 

ostreatus and Oroxylum indicum 

Isorhoifolin 552-57-8 Flavone -0.100 
1.16 ± 

0.01 

No decrease 

(SAH) 
(-) (-) 

 
>200 

 
Peppermint and olives 

http://www.nlm.nih.gov/cgi/mesh/2009/MB_cgi?term=99-66-1&rn=1
http://www.commonchemistry.org/ChemicalDetail.aspx?ref=156-54-7
http://www.sigmaaldrich.com/catalog/search?term=14513-15-6&interface=CAS%20No.&lang=fr&region=FR&focus=product
http://www.sigmaaldrich.com/catalog/search?term=22910-60-7&interface=CAS%20No.&lang=fr&region=FR&focus=product
http://www.commonchemistry.org/ChemicalDetail.aspx?ref=529-53-3
http://www.commonchemistry.org/ChemicalDetail.aspx?ref=480-40-0


OBM Genetics 2018; 2(3), doi:10.21926/obm.genet.1803029 
 

Page 8/20 

Diosmetin 520-34-3 Flavone 
(>150 µM) 

-0.225 
1.70 ±  

0.36 
No decrease (-) (-) 

 

42 Sirt2: 19.8 ± 5 Vicia  

Genkwanin 437-64-9 
Flavone 

(9 µM ± 0.4) 
-0.025 

  
(-) (-) 

 
>200 

 

Alnus glutinosa, Notholaena 

bryopoda and Asplenium normale 

Genistein 446-72-0 

Isoflavone 
(74 µM ± 3.4) 

-0,270 
1.12 ± 

0.01 

No decrease 

(SAH) 
(-) (-) 16.8 ± 2.0 >200 

 

Soybean, green bean, alfalfa and 

mung bean sprouts, red clover, 

chickpeas, kudzu root, peanuts and 

other legumes 

Trihydroxy 

isoflavone 
485-63-2 

Isoflavone 
(100 µM ± 4) 

-0,075 
  

(-) + 24.7 ± 0.4 >200 
 

Soy, alfalfa sprouts, red clover, 

chickpeas, peanuts, kudzu and other 

legumes 

Biochanin A 491-80-5 
Isoflavone 

(102 µM ± 5) 
-0,050 

  
(-) (-) 

 
Fluo 

Sirt1: 18.91 ± 1 

and Sirt2: 10.9 

± 1 

Chickpea 

Biochanin B 

Formononetin 
485-72-3 

Isoflavone 
(68 µM ± 3) 

-0.075 
  

(-) (-) 
 

38 

Sirt1: 14.21 ±  5 

and Sirt2: - 

14.2 ± 0 

Red clover, green beans, lima beans 

and soy 

S- (-) Equol 531-95-3 

Metabolite of isoflavone 
(100 µM ± 4) 

-0.250 
1.15 ± 

0.04 
No decrease (-) (-) 

 
>200 

 
Soybeans 

Galangin 548-83-4 Flavonol -0.075 
  

(-) + 40.77 ± 2.0 Fluo 
 

Alpinia galangal and propolis 

Kaempferol 520-18-3 
Flavonol 

(25 µM ± 1.1) 
0.150 

  
(-) + 87.74 ± 2.3 Fluo 

 

Tea, strawberries, gooseberries, 

cranberries, grapefruit, apples, peas, 

brassicas, chives, spinach, endive, 

leek and tomatoes 

Morin hydrate 654055-01-3 
Flavonol 

(40 µM ± 1.9) 
0.150 

  
(-) + 83 ± 2.1 Fluo 

  

Myricitrin 17912-87-7 

Flavonol 
(>200 µM) 

0,080 
  

(-) + 43.6 ± 0,5 Fluo 
 

Grapes, red wine, berries and 

walnuts 

Robinetin 490-31-3 
Flavonol 

(>200 µM) 
-0.100 

1.7 ± 

0.36 
No decrease (-) (-) 

 
>200 

 

Vinca erecta and Robinia 

pseudoacacia 

Quercetin hydrate 849061-97-8 
Flavonol 

(102 µM ± 4) 
-0.150 

1.19 ± 

0.1 

No decrease 

(SAH) 
(-) + 70 ± 3.0 Fluo 

Sirt1: 33.6 ± 1.2 

and Sirt2: 52.7 

± 1.6 

Onions, tea, wine, apples, 

cranberries, buckwheat and beans 

Isoquercetin 

 
482-35-9  

Flavonol 
(102 µM ± 4.8) 

-0.200 
1.12 ± 

0.01 

No decrease 

(SAH) 
(-) + 

68.6 ± 2.3 

 
Fluo 

 
Mango and rhubarb 

https://en.wikipedia.org/wiki/Vicia
http://www.commonchemistry.org/ChemicalDetail.aspx?ref=446-72-0
http://www.commonchemistry.org/ChemicalDetail.aspx?ref=531-95-3
http://www.commonchemistry.org/ChemicalDetail.aspx?ref=17912-87-7
http://www.sigmaaldrich.com/catalog/search?term=482-35-9&interface=CAS%20No.&lang=fr&region=FR&focus=product
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Ermanin 20869-95-8 Flavonol 0.050 
  

(-) + 78.61 ± 5.2 Fluo 
 

Tanacetum microphyllum 

Robinin 301-19-9 Flavonol 0.050 
  

(-) + 76.04 ± 3.2 Fluo 

Sirt1: 2.2 ± 1.7 

and Sirt2: -5.4  

± -4.5 

Vinca erecta and Robinia 

pseudoacacia 

Rutin 207671-50-9 
Flavonol 

(>150 µM) 
-0.075 

  
(-) + 81.22 ± 6.0 Fluo 

Sirt1: 19.3 ± 0.3 

and Sirt2: 3.8 ± 

1.65 

Citrus species, berries, peaches, 

apples, pagoda tree fruits, asparagus, 

buckwheat, parsley, tomatoes, 

apricots, rhubarb and tea 

(+)-Catechin 154-23-4 
Flavanol 

(>200 µM) 
-0.075 

 

No decrease 

(SAH) 
(-) + 41.62 ± 4.0 >200 

 

Tea, grapes, wine, apple juice, cocoa, 

lentils and black-eyed peas 

(-)-Epicatechin 154-23-4 

Flavanol 
(>200 µM) 

-0.075 
 

No decrease 

(SAH) 
(-) (-) -2.5 

>200 

  

Tea, grapes, wine, apple juice, cocoa, 

lentils and black-eyed peas 

(–)-

Epigallocatechin 

gallate 

989-51-5 
Flavanol 

(37 µM ± 1.5) 
-0.200 

1.12 ± 

0.01 

Decrease 

40% 
(-) (-) 

 
>200 

 
Green tea 

Rhamnetin 90-19-7 Flavanol -0.075 
  

(-) (-) 
 

Fluo 
 

Cloves 

Narirutin 14259-46-2 Flavanone -0.050 
  

(-) (-) 
 

>200 
 

Oranges 

Hesperidin 520-26-3 Flavanone -0.025 
  

(-) (-) 
 

100 
 

Citrus fruits 

Pinocembrin 480-39-7 Flavanone -0.050 
  

(-) (-) 
 

39 
Sirt1: -10.7 ± 0 

and Sirt2: 0 
Damiana, ginger root and propolis 

Chalcone 4 hydrate 1202866-96-3 Flavonoid -0.050 
  

(-) (-) 
 

Fluo 
  

Aureusidine 38216-54-5 Flavonoid -0.050 
  

(-) (-) 18.5 ± 2.3 Fluo 

Sirt1: -25.6 ± 

5.8 and Sirt2: 

1.6 ± 1.32 

Garden snapdragon 

Coumarin 91-64-5 Hydroxycinnamic acid derivative -0.030 
  

(-) (-) 
 

>200 
 

Citrus fruits and maize 

Imperatorin 482-44-0 Hydroxycinnamic acid derivative -0.250 
1.12 ± 

0.01 
No decrease (-) (-) 

 
>200 

 

Urena lobata L., Angelica 

archangelica and dahurica Glehnia 

littoralis, Saposhnikovia divaricata, 

Cnidium monnieri, Incarvillea 

younghusbandii and Zanthoxylum 

americanum mill 

https://en.wikipedia.org/wiki/Tanacetum_microphyllum
https://en.wikipedia.org/w/index.php?title=Vinca_erecta&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Vinca_erecta&action=edit&redlink=1
http://www.commonchemistry.org/ChemicalDetail.aspx?ref=154-23-4
https://www.sigmaaldrich.com/catalog/search?term=1202866-96-3&interface=CAS%20No.&lang=en&region=US&focus=product
http://toolserver.org/~magnus/cas.php?cas=91-64-5&language=fr&title=Coumarine
https://en.wikipedia.org/wiki/Maize
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Umbelliferone 93-35-6  Hydroxycinnamic acid derivative -0.170 
1.13 ± 

0.01 
No decrease (-) + 14.9 ± 5.7 Fluo 

 
Hydrangea macrophylla 

Methoxsalen 298-81-7 Hydroxycinnamic acid derivative 0.200 
  

(-) (-) 
 

>200 
 

Bergamot 

Caffeic acid 331-39-5 Hydroxycinnamic acid derivative -0.050 
 

No decrease (-) (-) 
 

111 
 

Coffee, Acai berry oil, vanilla and 

cloves 

Chlorogenic acid 
327-97-9 

202650-88 
Hydroxycinnamic acid derivative -0.075 

 
No decrease (-) + 46.16 ± 0.8 >200 

Sirt1: 5.9 ± 1 

and Sirt2: 18.7 

± 7.4 

Echinacea, strawberries, pineapple, 

coffee, sunflower seeds, blueberries 

Ferulic acid 1135-24-6 Hydroxycinnamic acid derivative 0.125 
  

(-) (-) 
 

>200 
 

Echinacea, strawberries, pineapple, 

coffee, sunflower seeds, blueberries 

Curcumin 458-37-7 Hydroxycinnamic acid derivative -0.250 
1.09 ± 

0.02 

Decrease 

70 % 
(-) (-) 

 
Fluo 

Sirt1: 10.7 ± 0.4 

and Sirt2:  40.2 

± 12.8 

Turmeric and curry powder 

Trans Resveratrol 501-36-0 
Stilbenoid 

(200 µM ± 9) 
0.200 

1.7 ± 

0.34  
(-) (-) 

 
71 

Sirt1: - 15.3 ± 

3.9 and Sirt2: 

22.4 ± 3.1 

Grape, nuts, peanuts and Japanese 

knotweed root. 

Carminic acid 1260-17-9 

Glucosidal 

Hydroxyl anthrapurin 
-0.100 

1.7 ± 

0.34 
No decrease (-) (-) 

 
Fluo 

 
Armenian and Polish cochineal 

(S)- Evodiamine 518-17-2 
Alkaloid 

(5.44 µM ± 3.2) 
-0.180 

1.03 ± 

0.02 
No decrease 

H3K9: - 100% 

H3K27: - 90% 
(-) 

 
71 

Sirt1: 4.2 ± 3.6, 

Sirt2: 71 ± 2.1 

and Sirt3: 20 ± 

2.1 

Tetradium genus of plants 

Brucine 357-57-3 
Alkaloid 

(0.9 µM ± 0.04) 
0.200 

  
(-) (-) 17.94 ± 0.7 50 

Sirt1: -10.5±0.1 

and Sirt2: 

74.9±16 

Strychnos nux-vomica 

Boldine 476-70-0 
Alkaloid 

(>160 µM) 
0.200 

  
(-) (-) 14.35 ± 2.5 100 

Sirt1: -4.3 ± 1 

and Sirt2: 24.62 

± 6.65 

Boldo tree and Lindera aggregata 

Tabersonine 4429-63-4 
Alkaloid 

(>160 µM) 
0.200 

  
(-) + 29.62 ± 2.5 >200 

 
Catharanthus roseus 

Papaverin 58-74-2 
Alkaloid 

(21 µM ± 1) 
-0.225 

1.10 ± 

0.09 
No decrease (-) (-) 

 
>200 

 
Opium poppy 

Trigonelline 

hydrochloride 
6138-41-6 

Alkaloid 
(<220 µM) 

- 0.100 
 

No decrease (-) (-) 
 

83 
 

Fenugreek , peas, hemp seed, oats, 

potatoes, Stachys species, dahlia, 

Strophanthus species, Dichapetalum 

cymosum and arabica coffee 

http://www.commonchemistry.org/ChemicalDetail.aspx?ref=93-35-6
http://www.commonchemistry.org/ChemicalDetail.aspx?ref=1135-24-6
http://www.commonchemistry.org/ChemicalDetail.aspx?ref=1260-17-9
https://en.wikipedia.org/wiki/Tetradium
https://en.wikipedia.org/wiki/Strychnos_nux-vomica
https://en.wikipedia.org/wiki/Catharanthus_roseus
https://en.wikipedia.org/wiki/Papaver_somniferum
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Vincamine 1617-90-9 Alkaloid -0.100 
 

No decrease (-) (-) 
 

>200 
 

Vinca minor 

Pilocarpine 92-13-7 Alkaloid 0.200 
  

(-) (-) 
 

>200 
 

Pilocarpus 

Protopine 130-86-9 
Alkaloid 

(400 µM ± 18) 
0.200 

  
(-) (-) 

 
>200 

 

Opium poppy, Corydalis tubers and 

Fumaria officinalis 

Caffeine 58-08-2 Alkaloid 0.270 
  

(-) (-) 
 

>200 
 

Coffee bean 

Quinine 130-95-0 Alkaloid -0.050 
   

(-) 
 

Fluo Sirt1: 9.45 ± 1 Cinchona tree 

Neoruscogenin 17676-33-4 Terpenoid - 0.100 
 

No decrease 

(SAH) 
(-) (-) 

 
36 

Sirt1: 21.62 ± 0 

and Sirt2: 26.65 

± 2.3 

Butcher's broom 

Marrubin 465-92-9 Diterpene -0.075 
  

(-) (-) 
 

>200 
 

Lion's tail and black horehound 

Cycloartenol 

acetate 
1259-10-5 Triterpene 0.200 

 
No decrease (-) (-) 

 
26 

Sirt1: -4.4 ± 1 

and Sirt2: 0 
Olive 

Glycyrrhetinic acid 471-53-4 Triterpene 0.200 
  

(-) (-) 
   

Liquorice  

Cucurbitacine 

echinocistic acid 3 

glucoside 

6199-67-3 Triterpene 0.200 
  

(-) (-) 6.24 ± 1.2 
  

Pumpkins and gourds 

Retinoic Acid 302-79-4 Terpenoid 0.200 
  

(-) (-) 
   

Mango, orange, papaya, carrots, 

spinach, sweet potatoes and crude 

palm oil 

Camphene 79-92-5 Terpenoid 0.200 
  

(-) (-) 
 

>200 
 

Turpentine, cypress, camphor, 

citronella, neroli, ginger, and valerian 

Emodin 518-82-1 Anthraquinone 0,170 
  

H3K9: - 100% 

H3K27: - 58% 
+ 42.6 ± 5.0 Fluo 

 

Rhubarb, buckthorn, and Japanese 

knotweed 

Rhein 478-43-3  Anthraquinone 0.200 
1.3 ± 

0.02 
No decrease 

H3K9: - 100% 

H3K27: - 40% 
+ 42.6 ± 5.0 Fluo 

 
Rhubarb 

Aloin 1415-73-2 Anthraquinone 0.200 
  

H3K9: - 100% 

H3K27: - 40% 
+ 72.6 ± 5.0 Fluo 

Sirt1: 39 ± 2.2 

and Sirt2: 39.7 

± 6.9 

Aloe species 

http://www.commonchemistry.org/ChemicalDetail.aspx?ref=58-08-2
https://en.wikipedia.org/wiki/Coffee_bean
https://en.wikipedia.org/wiki/Cinchona
https://en.wikipedia.org/wiki/Liquorice
http://www.commonchemistry.org/ChemicalDetail.aspx?ref=302-79-4
http://www.commonchemistry.org/ChemicalDetail.aspx?ref=518-82-1
http://www.sigmaaldrich.com/catalog/search?term=478-43-3&interface=CAS%20No.&lang=fr&region=FR&focus=product
https://en.wikipedia.org/wiki/Aloe
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Withaferin A 5119-48-2 Steroidal lactone 0.200 
  

(-) (-) 6.85 ± 0.2 >200 
 

Indian Winter cherry 

Withanone 
 

Steroidal lactone 0.200 
  

(-) (-) 
 

>200 
 

Indian Winter cherry 

D-Glucuronic acid 6556-12-03 Sugar acid 0.200 
  

H3K9: - 100% 

H3K27: - 70% 
(-) 

 
>200 

 
Gum Arabic 

Plumbagin 481-42-5 5-Hydroxy-2-methyl-1,4-naphthoquinone 0.200 
1.7 ± 

0.03  
(-) (-) 

 
Fluo Sirt2: 41.8 ± 6.9 Plumbago 

Arbutine 497-76-7 Glycosylated hydroquinone 0.200 
  

(-) (-) 
 

>200 
 

Bearberry 

Cymarine 465-84-9 Cardiac glucoside 0.200 
  

(-) (-) 8.73 ± 1.1 >200 

Sirt1: 3.6 ± 0.8 

and Sirt2:  20.4 

± 1.5 

Apocynum cannabinum and venetum 

Catalpol 2415-29-9 Iridoid glucoside 0.200 
  

(-) (-) 
 

>200 
 

Catalpa 

Lanatoside C 17575-22-3 Cardiac glucoside 0.200 
  

(-) (-) 
 

>200 
 

Digitalis lanata 

L-Carnitine 541-15-1 3-Hydroxy-4-trimethylammonio-butanoate - 0.320 
0.91 ± 

0.02 
No decrease (-) (-) -13.5 ± 1.1 >200 

 
Muscle metabolite 

Vanillin alcohol 498-00-0 Phenolic acid 0.200 
  

(-) (-) 
 

>200 
 

Acai berry oil, vanilla beans and 

cloves 

Salicylic alcohol 90-01-7 Phenolic acid 0.200 
  

(-) (-) 
 

>200 
 

Peppermint, liquorice, peanut and 

wheat 

http://toolserver.org/~magnus/cas.php?cas=91-64-5&language=fr&title=Coumarine
http://toolserver.org/~magnus/cas.php?cas=497-76-7&language=fr&title=Arbutine
http://toolserver.org/~magnus/cas.php?cas=541-15-1&language=fr&title=Carnitine
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2.5 Sirtuin Inhibition 

Equilibrium binding ligands usually increase protein thermal stability by an amount 

proportional to the concentration and affinity of the ligand. This principle was used to develop a 

high-throughput screening assay for compounds with high binding affinity for human Sirt2. The 

thermal shift assay was performed using a Rotor Gene Q (Qiagen, Sydney, Australia) 

spectrofluorimeter. The Sirt2 protein concentration was 5 µM, the ligand concentration was 15 

µM and the reaction volume was 10 µL. The samples were heated at a rate of 1°C/min and 

unfolding of the protein was monitored by measuring the fluorescence of 1, 8-anilinonaphthalene 

sulfonate (ANS) at 50–100 µM (excitation at 365 nm and emission at 460 nm). Data were analyzed 

as previously described [12]. The dissociation constant (Kd) of the control compound tenovin 6 

was 15 µM at 37°C. Samples were analyzed in triplicate and values were expressed as the mean Kd 

with average variations <5%. Values >100 were considered to be significant. The Kd values for the 

control compounds cambinol and tenovin 6 were validated as previously described [13] using the 

FLUOR DE LYS® HDAC assay kit (Enzo Life Sciences, USA) according to the manufacturer’s 

instructions. This assay relies on the deacetylation of a fluorescently labeled acetylated peptide 

substrate (Exec = 360 nm and Em = 460 nm). A nuclear magnetic resonance-based assay was also 

used [13].  

Sirt enzymatic inhibition: Compounds were screened for modulation of Sirt1 and 2 activity 

using the SIRTainty™ Class III HDAC assay kit (Merck Millipore, USA) according to the manufacturer 

instructions (Exec = 420 nm and Em = 450 nm). Modulation of Sirt activity was determined at 60 

µM and data were presented as the mean weighted to the standard error; activation is denoted by 

a minus sign [14, 15]. No humans, animals or plants were involved in this study. 

3. Results 

3.1 DNA Methylation Studies  

Figure 1 shows the MS-PCR melting curves of the RAR alleles.  Fully methylated alleles (0.01% 

DMSO-treated cells) exhibited a peak at 77.5°C; while both unmethylated alleles (0.13 µM 5-

azacytidine treated cells) exhibited a peak at 75.5°C. The results of all DNAm studies are shown in 

Table 1. Several compounds mediated strong demethylation of RAR alleles under the culture 

conditions described; however, there were differences in the results of localized DNAm and global 

5mC studies: diosmetin (-0.225 but no decrease by HPLC-MS/MS: 1.70 ± 0.36), genistein (-0.270 

versus 1.12 ± 0.01), S-equol (-0.250 versus 1.15 ± 0.04), isoquercetine (-0.200 versus 1.12 ± 0.01), 

imperatorin (-0.250 versus 1.12 ± 0.01), umbelliferone (-0.170 versus 1.13 ± 0.01) and EGCG (-

0.200 versus 1.12 ± 0.01), curcumin (-0.250 versus 1.09 ± 0.02), (S)-evodiamine (-0.180 versus 1.03 

± 0.02), and papaverin (-0.225 versus 1.10 ± 0.09). L-carnitine (-0.320 and 0.91 ± 0.02) exhibited 

the highest DNA demethylating activity. It was not possible to identify partially unmethylated 

RAR alleles due to the lack of sensitivity of the allele-calling software. The HPLC-MS/MS assay is 

not suitable as a screening tool but its results corresponded relatively well with the results 

obtained using the 5-mC DNA ELISA™ (ZYMO Research, USA) according to the manufacturer's 

instructions previously [6, 8]. For unmethylated alleles (0.13 µM 5-azacytidine treated cells), a 35% 

decrease in global 5mC content was detected by ELISA compared with a 48% decrease detected by 

HPLC-MS/MS.  
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Figure 1 MS-PCR melting curves. DNA was extracted from MCF7 treated cells with 15 

µM of each compound for 4 days. Bisulfite-treated DNA (100 ng) was analyzed by MS-

PCR. 132 corresponds to 0.01% DMSO-treated MCF7 cells (fully methylated DNA, 

designated as +200 in Table 1) and 87 correspond to MCF7 cells treated with 0.13 µM 

5 azacytidine (fully unmethylated control, designated as -250 in Table 1). 132: 

Resveratrol, 17: Vincamine, 18: Pilocarpine, 131: Tabersonine, 94: Protopine and 19: 

Cucurbitacine. 

EGCG and curcumin also decreased the DNMT1 activity by 40% and approximately 70%, 

respectively. 

In silico modeling indicated that most of the compounds did not bind to the DNMT1 catalytic 

site and were more likely to be SAH producers (Table 1). The results of molecular docking 

calculations showed that neoruscogenin and curcumin bind to the SAM pocket of DNMT1. The 

best binding modes corresponded to the highest binding affinity of the ligand in interaction with 

three amino-acids (MET 1169, GLY 1223 and ASN 1578) for neoruscogenin and with five amino-

acids (GLU 1168, MET 1169, TRP 1170, ASP 1190 and ASN 1578) for curcumin; all amino-acids 

being located within 3.5Å around each ligand. The molecular modeling of these interactions is 

illustrated in Figure S1 and S2.  

After 5 days of culture, several control compounds also produced marked decreases in 5mC 

levels. SGI-1027 is a commercially available inhibitor of DNMT1, DNMT3A and DNMT3B, which 

degrades the enzymes and competes with their cofactor, SAM. Chaetocin inhibits several KDMs 

such as SUV39 and G9a and causes a reduction in me3H3K9 via a SAM competitive pathway. 

DZNep acts as a SAM hydrolase inhibitor to induce the accumulation of SAH and also functions as 

a KDM EZH2 inhibitor. BIX-01294 is a G9a-like protein and G9a KDM inhibitor that does not 

compete with SAM [8]. Entinostat, valproic acid, anacardic acid and tenovin 6 have localized DNA 

demethylating activities that cannot be explained by SAM- or SAH-based mechanisms (Table 1). 

DNA and histone methylation studies of MCF7 cells were useful to investigate the roles of SAM 

and SAH in these processes.  
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3.2 Histone H3 Lysine 9 and 27 Trimethylation 

Molecules with the ability to decrease me3H3K9 and/or K27 levels in MCF7 treated cells were 

identified by Western blot analysis; DZNep and BIX-01294 served as positive controls [8]. (S)-

Evodiamine was identified as the most potent demethylating agent and induced decreased levels 

of me3H3K9 and me3H3K27 by 100% and 90%, respectively. All anthraquinones (emodin, rhein 

and aloin) were also active but exhibited greater activity for me3H3K9 compared with that for 

me3H3K27, while D-glucuronic acid was almost as efficient as (S)-evodiamine. G9 exhibited 30% 

lower activity with (S)-evodiamine and 80% lower activity with BIX-01294 and DZNep. We 

reported previously that (S)-evodiamine exhibited high pharmacophoric similarity with SAM and 

suggested that this was the basis for its ability to inhibit G9 activity [8]. Emodin, rhein and 

glucuronic acid did not exhibit DNA demethylating activity, suggesting a KDM activity not based on 

SAM/SAH modulation mechanisms. However, the mechanism underlying the direct inhibition of 

G9 remains to be confirmed. 

3.3 HDAC Inhibition 

We previously conducted a comprehensive comparison of our BRET screen efficiency with that 

of the nuclear global HDAC assay [9-11]. The BRET assay was performed on living cells and at 

compound concentrations of 100, 50, 25 and 12.5 µM. This assay was very sensitive to the 

solubility of the assayed compound and also to its potential toxicity. Apigenin, galangin, 

scutallerein, kaempferol, ermanin, robinin, morin, myricitrin, quercetin, isoquercetin, rutin, 

epicatechin, catechin, chlorogenic acid, emodin, rhein and aloin were found to have significant 

global HDAC inhibitory activity in both assays. However, galangin, ermanin, robinin, morin, 

myricitrin, quercetin, isoquercetin, rutin, emodin, rhein and aloin also have emissive capacities 

(excitation Exec) = 340–360 nm and emission (Em) = 440–465 nm) with the potential to 

interfere with further enzymatic assays; thus, only the non-fluorogenic compounds, apigenin and 

scutallerein, were further analyzed. These compounds can be considered as true pan-HDAC 

inhibitors that inhibit HDAC3 with high efficiency (IC50: 31.2 ± 10.6 µM and 18.0 ±7.9 µM, 

respectively). None of the tested compounds demonstrated HDAC6 inhibitory activity in Western 

blot analyses [11]. Similar results have been reported for the same compounds (flavones and 

flavanols) previously [16], although the potential emissive properties of the screened compounds 

was not addressed despite being recently documented as a concern [17]. 

3.4 Sirtuin Modulation 

The results of sirtuin modulation assays are shown in Table 1. The thermal shift assay is a good 

indicator of the fluorogenic activity of most flavonoids since most absorb between 330–380 nm; 

these are indicated as “Fluo” in Table 1. For example: biochanin A absorbs at 338 nm and emits at 

488 nm. However, flavonoids do not exhibit such emissive capacity in the SIRTainty™ assay. Thus, 

the weak Sirt inhibition observed for apigenin (Sirt2: 32.8 ± 1.2) and the activation of Sirt1 by 

biochanin B (-14.2 %) detected using this kit can be considered to be reliable results. The same 

consideration applies also to the inhibition of both Sirt1 and Sirt2 by quercetin (33.6 ± 1.2 and 52.7 

± 1.6, respectively) and curcumin (10.7 ± 0.4 and 40.2 ± 12.8, respectively). The relatively low Sirt1 

activation by pinocembrin (approximately -10%) is also reliable. This is also the case for 
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aureusidine, which has a high emissive capacity in the HDAC enzymatic assays but not in the 

SIRTainty™ assay. Aureusidine was found to be a strong Sirt1 activator (-25.6 ± 5.8 higher than for 

the reference compound resveratrol). When testing alkaloids, we did not observe any such 

emissive behavior and (S)-evodiamine mediated potent Sirt inhibition (Sirt1: 42 ± 3.6, Sirt2: 71 ± 

2.1 and Sirt3: 20 ± 2.1), which is consistent with our previous report [18]. Brucine induced obvious 

activation of Sirt1 (-10.5 ± 0.1) and potent inhibition of Sirt2 (74.9 ± 16). Boldin induced very weak 

activation of Sirt1 (-4.1 ± 1) and weak inhibition of Sirt2 (24.62 ± 6.65). Among the terpenoides, 

neoruscogenin mediated weak inhibition of both Sirt1 and Sirt2 (21.62 ± 0 and 26.5 ± 2.3, 

respectively), while cycloartenol mediated weak activation of Sirt1 alone (-4.4 ± 1). The 

anthraquinones were highly fluorogenic in all enzymatic HDAC assays, with the exception of the 

Sirt inhibition mediated by aloin (Sirt1: 39 ± 2.2 and Sirt2: 39.7 ± 6.9). Inhibition of Sirt6 was also 

recently reported for kaempferol, quercetin and myricetin [19].  

3.5 Cell Viability 

Most of the assayed compounds had very little effect on cell viability. The lowest IC50 was 

detected for apigenin (3 µM), genkwanin (9 µM) and several of the alkaloids including (S)-

evodiamine, papaverin and brucine (0.9 µM). We used these IC50 values only to optimize our cell 

cultures conditions for control compounds such as 5-azacytidine. All values are reported in Table 1. 

4. Discussion 

Given the widespread implications of the diet in the regulation of the epigenome, a strong 

evidence-based knowledge of the effects of food components is required. We have previously 

reviewed the epigenetic activities of various dietary components [1, 2] and in this study, we 

screened a small natural compound library for epigenetic activities. Some plants in which these 

compounds can be found are listed in Table 1. We identified previously unreported DNA 

methylation activities of diosmetin, S-equol, umbelliferone, papaverin and L-carnitine as well as 

histone methylation activity of emodin, rhein, aloin and D-glucuronic acid (1, 2). Finally, we 

identified previously unreported Sirt activation by apigenin, biochanin B, robinin, pinocembrin, 

aureusidine, brucine and boldine. 

Phytochemicals can be classified into major categories, such as polyphenols, including phenolic 

acids, flavonoids, and stilbenes/lignans. Flavonoids can be further divided into different groups 

such as, flavones, flavanones, isoflavones, and flavanols, based on similar chemical structures. 

Thus, it can be speculated that compounds with a given structure will be associated with similar 

functions. The results of the present study indicate that most flavanols have HDAC inhibition 

properties although this conclusion must be tempered by the knowledge that most phyto-

nutrients undergo intestinal transformation mediated by microbiota and enterocyte enzymes 

prior to absorption. Flavonoids are known to be poorly absorbed and most of what is absorbed, 

exists as metabolites that are further modified for rapid excretion [20]. The flavanols tested in this 

study are certainly not the final forms found in plasma. Their complex metabolic fate prevents an 

easy understanding of their potential health effects. In addition, their in vitro and in vivo activities 

do not necessarily correlate, a phenomenon that is best exemplified by the fact that dietary 

polyphenols are active in vitro but have little or no direct antioxidant value following digestion [20]. 

In addition, evaluation of the activity of many phytochemicals is further complicated by the 
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fluorogenic potential of many of these compounds. Thus, the epigenetic bioactivities of phyto-

nutrients remain to be elucidated definitively, even when using laborious methods similar to those 

used in this study. Indeed, selection of the optimal conditions and cell lines for screening assays is 

a significant challenge. 

Aberrantly methylated DNA can be identified on a gene per gene basis or using various higher 

throughput technologies; however, the costs involved and the interpretation of results are not the 

same. A recent epidemiological study was conducted to evaluate the in vivo effects of green tea 

consumption on human DNA. The analysis revealed that 28 regions were differentially methylated 

in relation to green tea consumption, but only in women [21]. This indicates that some genomic 

regions are relatively more sensitive to DNA demethylating compounds, which are known to act 

through several mechanisms. Catechol-containing compound such as (+)-catechin decreases DNA 

methylation indirectly by consuming SAM (SAM pumping) for their own methylation through 

cathechol-O-methyltransferase-mediated O-methylation. This process leads to excessive SAH 

production, which inhibits DNMT1 directly. Alternatively, some compounds prevent the 

methylation of the newly synthesized DNA strand by occupation of the catalytic pocket of DNMT1, 

while others bind to the DNMT1 active site and generate H2O2, which is deleterious to the enzyme. 

In addition, some compounds prevent DNA methylation by competing with the DNMT1 cofactor, 

SAM. The first three mechanisms were reported to apply to EGCG, which is the most abundant 

catechin in green tea [1, 2]. DNMT1 inhibition by EGCG requires an intact gallic acid moiety, 

although EGCG is often rearranged to reactive quinones, losing the necessary gallic acid moiety. 

Moreover, in plasma and after glucuronidation, EGCG has very poor bioavailability. Other tea 

polyphenols, such as (+)-catechin, (-)-epicatechin and quercetin have been reported to have 

similar, but weaker epigenetic activities [1, 2]. Under in vitro conditions, curcumin is poorly soluble 

in water and is mainly found in its enol form, acting as a Michael acceptor to covalently block the 

catalytic DNMT1 thiolate C1226. In vivo, curcumin is metabolized as a glucuronide and rapidly 

degraded at alkaline pH [1]. In silico, curcumin binds the DNMT1 catalytic site (Figure S2). The 

major isoflavones from soybean, genistein, and biochanin A, have also been reported to have DNA 

demethylating activity [1-4]. Although their mechanisms of action remain to be fully elucidated, in 

this study, we show that S-equol, an isoflavone metabolite, remains a strong DNA demethylating 

agent. Most flavanols acted as pan-HDAC class 1 inhibitors although, as previously emphasized, 

further specific screening is required because these compounds also have emissive capacities 

capable of interfering in fluorescence-based assays. Anthraquinones have Sirt-modulating 

capacities and also induced marked decreases in me3H3K9 and K27 levels, although the 

mechanisms of action require further investigation. Alkaloids are a rich source of drugs, among 

which brucine is a strong Sirt1 activator.  

5. Conclusions 

High-throughput screening is a well-established starting point for most discovery research 

projects conducted by medicinal chemists, although the appropriate endpoints for epigenetic 

testing including individual enzymes, histones or/and non-histones proteins modified by the 

enzymes, remain to be clarified. Robust assays to identify compounds, or rather metabolites of 

compounds, that modulate epigenetic markers in cells are required. These assays must effectively 

avoid false positive results and provide information that can be translated for the development of 
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evidence-based preventive epigenetic diets. Based on these requirements, we believe that the 

epigenetic activity of phyto-nutrients cannot yet be conclusively determined using the currently 

available techniques. Indeed, the fluorogenic properties of compounds should be screened 

systematically before further testing. 
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