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Abstract This paper deals with the problem of event discrimination in

generic video documents. We propose an investigation on the design of an

activity-based similarity measure derived from motion analysis. In an unsu-

pervised context, our approach relies on the nonlinear temporal modeling

of wavelet-based motion features directly estimated from the video frame.

Based on SVM-regression, this nonlinear model is able to learn the behavior

of the motion descriptors along the temporal dimension and to capture use-

ful information about the dynamic content of the shot. A similarity measure
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associated with our temporal model is then defined. This measure defines

a metric between video segments according to spatial and temporal prop-

erties of the movements and provides a theoretic framework to compare,

sort and classify videos. Experiments on a large annotated video database

and a comparison with a similarity measure based on motion histograms

shows that our approach is effective in discriminating between video events

without any prior knowledge.

Keywords: Video analysis, activity recognition, motion estimation, SVM

learning, video similarity measure.

1 Introduction

The problem of content-based management and manipulation of large video

collections is subject to the diversity of the contents to handle. In specific

domains such as video surveillance or medical videos, semantic content is

generally well-defined and this allows to design systems based on learning

machines that produce accurate classification of video content. In the case

of generic videos (i.e. not restricted to a particular domain), semantic con-

tent is unbounded and unpredictable, making supervised techniques of little

use. To tackle this problem, various systems have been proposed in the re-

cent literature, such as VIBE [20], VideoQ [4], VIRAGE [9] or CueVideo

[19]. These systems consider keyframes and/or video shots as basic entities

from which audio-visual feature attributes are extracted. Video modeling,

retrieval or browsing is then performed by exploring the feature space (e.g.
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using retrieval by example, clustering, ...) so as to discover structures related

to the semantic content. All of these data analysis operations are based on

similarity measures associated to features. Defining such metrics is thus a

key issue since they provide conceptual spaces to the system [8] from where

significant and meaningful audio-visual contents would be extracted.

An other key issue is the problem of defining which information is to

be considered to create relevant indices on videos. Video documents are

information-rich spatio-temporal media on which many possible descrip-

tions associated to various feature spaces exist. In [16], Roach et al have

proposed a taxonomy that defines a compact structure to store and man-

age generic video content. This taxonomy provides a decomposition of the

content within several generic properties, such as genre, event, object or

editing effects. Automatically filling these fields would then help to build

more complex representations of the knowledge and to reduce the semantic

gap between low-level information and real content of documents. Among

all properties that can characterize a video document, event information oc-

cupies an important place, since it provides a way to structure the stream,

infer video genre or retrieve particular actions and stories.

The aim of the work reported here is to determine a distance measure

able to effectively discriminate between generic events contained in video

shots. More precisely, we investigate and evaluate how spatio-temporal mo-

tion information is effective in characterizing dynamic content and retriev-

ing generic events. We assume that shots are related to one particular event
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that the author wishes to highlight. The events are then defined as the main

action of the shot (for example a goal in a soccer game, a close-view on a

person speaking, etc...). While this assumption is not always true, it is gen-

erally verified and provides us a simple but realistic event segmentation. The

problem then becomes that of defining an event-related similarity measure

between two video shots of different length.

Motion is a natural feature to characterize events since it is related to

dynamic content [7,25,26]. An efficient extraction of such an information

owes to consider both the spatial and temporal properties of the motion-

based descriptors. Spatio-temporal models have to be defined so that dy-

namic features are clearly expressed and create suitable descriptions for

video documents. Spatio-temporal histograms of optical flow or motion vec-

tor of MPEG macroblocks are frequently used [11,20,23], but more sophis-

ticated models have been proposed: Motion parameter trajectory combined

to condensation algorithm are considered in [1], temporal Gibbs model of

motion-related measures are used in [7] and a 3D Gabor decomposition

performs a spatio-temporal video analysis in [5].

Our approach relies on our previous work on global motion estimation

between two images using a wavelet-based parametric model [2]. This model

can directly be applied over the whole image without any prior (generally

unreliable) segmentation stage. The estimated motion parameters then pro-

vide a robust, global, meaningful and compact description of activity content

[3]. In this paper, a new temporal model based on time series forecasting
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is introduced is order to capture temporal information from trajectories of

the motion descriptors. In our framework, motion descriptors are estimated

between any two consecutive frames of the shot so that the video sequence is

characterized by a temporal sequence of descriptors. As video shots are con-

sidered as basic entities, the problem is to define a function able to compare

two feature sequences of different length, (the length of each shot respec-

tively) that correlates well with the similarity of events present within the

shots. The problem is tackled by modeling sequences of descriptors using

nonlinear prediction functions. The estimation of such models is done by

using Kernel Support Vector Machines in Regression [18]. This operation

can be viewed as a learning process of the temporal behavior of descriptors

where trained functions are the prediction functions. An event-based simi-

larity measure is then defined as the quadratic error between predicted and

original descriptors. This measure avoids facing the problem of temporal

alignment and shot length differences. The evaluation has been a important

part of our work since about 900 video shots have been manually anno-

tated in order to assess objectively the results provided by the similarity

measure. The evaluation is reinforced by a comparison with a state-of-the-

arts approach based on MPEG motion vector histograms, highlighting the

benefits of our wavelet-based approach.

The paper is organized as follows. Section 2 describes the wavelet-based

motion estimation and the motion descriptors derived from the motion

wavelet coefficients. The nonlinear temporal model and similarity measure
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are presented in section 3. Section 4 describes the video database and the

event annotations proposed to evaluate the similarity measure efficiency.

Experiments on this database are presented in section 5 and conclusion are

drawn in section 6.

2 Motion feature extraction

The role of motion features is to define an unambiguous signature of the

motion pattern induced by moving objects and camera displacements. More-

over, the signature has to be compact in order to present some good general-

ization properties. Many descriptors are possible such as eigenvectors [17],

histograms [6] or affine parameters [22]. The motion descriptors we used

here are based on the wavelet coefficients of the optical flow. This choice

presents several advantages, including that a compact signature gives access

to multiscale and orientation properties of the motion patterns [3].

Different strategies to estimate wavelet coefficients are also possible i.e.

from MPEG motion vectors, from a dense flow field or directly from the

image sequence. In this study, we concentrate on the latter solution. While

motion vectors extracted from MPEG videos do not require extra compu-

tation, they are noisy and provide less reliable descriptors (in addition, our

approach remains valid if videos are not MPEG encoded). An alternative

solution would be to obtain coefficients from a wavelet decomposition of

flow field estimated by other techniques. This solution does not offer any

advantages since it has been shown that it does not improve accuracy [2,
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24] and makes the computation more complex (estimation following by a

decomposition).

.

2.1 Motion wavelet coefficient estimation

In this section, we briefly outline the algorithm that we have developed to

estimate motion wavelet coefficients. Further details can be found in [2].

Consider an image sequence I(pi, t) with pi = (xi, yi) the location of

each pixel in the image. The brightness constancy assumption [10] states

that the image brightness I(pi, t + 1) at time t + 1 is a simple deformation

of the image at time t

I(pi, t) = I(pi + v(pi), t + 1), (1)

where v(pi, t) = (u, v) is the optical flow between I(pi, t) and I(pi, t + 1).

This velocity field can be globally modeled as a coarse-to-fine 2D wavelet

series expansion from given scales L to l

vθ(pi) =
2L−1∑

k1,k2=0

cL,k1,k2ΦL,k1,k2(pi)

+
l∑

j≥L

2j−1∑

k1,k2=0

[
dH

n,k1,k2Ψ
H
j,k1,k2(pi)

+dD
n,k1,k2Ψ

D
j,k1,k2(pi) + dV

n,k1,k2Ψ
V
j,k1,k2(pi)

]
, (2)

where ΦL,k1,k2(pi) is the 2D scaling function at scale L, and ΨH,D,V
j,k1,k2

(pi)

are wavelet functions, which respectively represent horizontal, diagonal and

vertical variations. These functions are dilated by 2j and shifted by k1 and
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k2. The coarsest level corresponds to L = 0 and l defines the finest level of

detail that can be fitted by the motion model.

In order to recover a smooth and regular optical flow, we use B-spline

wavelets, which are known to have maximum regularity and symmetry. The

degree of the B-spline determines the approximation accuracy.

The motion parameter vector θ, containing wavelet coefficients cL,k1,k2

and dH,D,V
j,k1,k2

for all j, k1, k2 is estimated by minimizing an objective function

θ = arg min
θ

∑

pi∈Ω

ρ (I(pi + vθ(pi), t + 1)− I(pi, t)) , (3)

where ρ(·) is a robust norm error (M-estimator). The minimization step is

achieved using an incremental and multiresolution estimation method [15].

The wavelet-based motion model enables one to estimate from successive

frames an accurate optical flow defined by its wavelet coefficients. The finer

scale l determines how precise the final estimation is. In the context of

our work, a fine estimation is not needed, as we only want discriminative

descriptors over a wide range of contents. Figures 1.b., c. and d. display the

estimated optical flows for various final scale levels. For our experiments, we

have used a final scale l = 3 which corresponds to a motion model configured

by 128 wavelet coefficients. Furthermore, using this low-resolution model

speeds up the process allowing to process videos at a frame rate of about 2

fps on a standard 2GHz PC.
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(a) Frame from Mo-

bile and Calendar

sequence

(b) Estimated flow

field at scale level

j = 2

(c) Estimated flow

field at scale level

j = 3

(d) Estimated flow

field at scale level

j = 4

Fig. 1 Frame from Mobile and Calendar sequence and global motion estimated

at various scale levels. B-spline of degree 2 were used to model motion.

2.2 Activity descriptors

As shown in Figure 1, the motion parameter vector θ contains an accu-

rate description of the optical flow. For the purpose of comparing video

content, we have observed that such an accuracy is rather a shortcoming

since large variabilities between descriptors may occur only because of local

differences within optical flows. To overcome this problem, we consider a
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variance measure of the wavelet coefficients in the different subbands of the

representation

σ =
[
σ0, σ

H
1 , σD

1 , σV
1 , σH

2 , . . . , σV
l

]
,

with

σ0 = c2
0 (4)

σH,D,V
j =

2j−1∑

k1,k2=0

∣∣∣dH,D,V
j,k1,k2

∣∣∣
2

, ∀j ∈ [1, l]

where l is the finest scale level used in (2), meaning that σ is a 10-component

vector in our case, characterizing optical flow in terms of its global magni-

tude, scale and orientation.

Hence, given an image sequence of N frames, the activity description

consists in a sequence of N − 1 descriptors σ computed over all consecu-

tive frames. Figures 3 display the temporal behavior of the descriptor σ

estimated on two videos representing a person arriving toward and leav-

ing away from the video camera (Fig. 2). As we can observe, the temporal

evolution of descriptors is clearly related to the nature the activity. Hence,

given such time series, the problem is now to define a similarity measure

that takes into account both descriptor values and their temporal behavior.
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Fig. 2 Two image sequences corresponding to activities ”arrive” and ”leave”.
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Fig. 3 Temporal sequence of the activity-based descriptor σ for activity: a) arrive

and b) leave
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3 SVM regression for nonlinear temporal modeling and

similarity measure definition

3.1 Temporal modeling as a time series prediction problem

Let S be an image sequence characterized by a set of descriptors {X0,X1, . . . ,XN},

Xt ∈ RD, with N + 1 the length of the descriptor sequence. The Hth or-

der prediction function F : RD×H → RD of the temporal series {Xt}N
t=0 is

defined as

Xt = F(Xt−1,Xt−2, . . . ,Xt−H) ∀t ∈ [H, N ]. (5)

The multidimensional function F can be considered as a temporal model of

the descriptors and therefore captures the dynamic content of the sequence

S. The order H determines the memory of the model since XT is a function

of the H previous descriptors {Xt}T−1
t=T−H . The larger H is, the more the

model is specific to the sequence and may over-fits its dynamic content. On

the other hand, the information characterized by the prediction function

tends toward zeros as the model memory decreases.

In our case, the wavelet-based descriptor components are by definition

supposed to be uncorrelated. Hence, the estimation of the multidimensional

function F (eq. 5) can be achieve separately over each component. Let us

note xl the lth component of X, the problem therefore consists in estimating

f l such as

xl
t = f l(xl

t−1, x
l
t−2, . . . , x

l
t−H). (6)
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Then

F = [f1, f2, . . . , fD]T . (7)

For the sake of simplicity in the notation, we define the H−dimensional

vector

xl
t = [xl

t, x
l
t−1, . . . , x

l
t−H ] ∀t ∈ [H,N ], (8)

so way that equation (6) can be written as xl
t = f l(xl

t−1). The main diffi-

culty in this approach is to estimate f l efficiently. As the descriptor sequence

is non-stationary, we have to estimate a nonlinear prediction function from

the set of observations. Many regression techniques can used to solve this

problem, and results obtained by using Support Vector Machines in regres-

sion show that this kernel-based algorithm is well-suited for such nonlinear

estimation [14].

3.2 Support Vector Machines for regression

We present here a short description of SVM for regression. Further details

can be found in [18,21], especially for issues related to the robustness of the

algorithm. This classical problem of regression consists in approximating

an unknown function g : RD → R from sampled data {xi, yi}N
i=1 such as

yi = g(xi) + η, with η some noise. In order to approximate g, the SVM

algorithm considers a parametrical model of the form

f(x) =
B∑

i=1

ciφi(x) + b, (9)
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where {φi}B
i=1 are basis functions. Parameters b and {ci}B

i=1 are unknown

parameters that have to be estimated from the set of training pairs {xi, yi}N
i=1

by minimizing the functional

R(f) =
1
N

N∑

i=1

|yi − f(xi)|ε + λ||c||2, (10)

with c = [c1, . . . , cB ] and λ a smoothness constraint applied to the solution

space. The error function is blind to small errors and defined as follows

|x|ε =





0 if x < ε

x otherwise.
(11)

In [21], Vapnik has shown that the function which minimize the functional

(10) has the following form

f(x, α, α∗) =
N∑

i=1

(α∗i − αi)K(x,xi) + b, (12)

with α∗i αi = 0, αi, α
∗
i ≥ 0 i = 1, . . . , N and where K(x,y) is the so-

called kernel function that describes the inner product in the D-dimensional

feature space defined by the functions φi

K(x,y) =
B∑

i=1

φi(x)φi(y). (13)

The main interest of SVM techniques is that only the kernel K has to

be known and the feature space spanned by the basis φi never need to

be explicitly computed. This allows to use several types of basis functions,

including infinite sets, providing modelers with a wide range of nonlinear

models to approximate the unknown function g.

Here, we face sequences of visual descriptors where no prior info about

the form of the solution is available. Hence, we use the radial gaussian
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kernel K(x,y) = exp(−γ||x − y||2) which can fit a large range of com-

plex functions. The scale parameter γ determines inter-distances between

observations {xt}N
t=H and thereby the smoothness of the solution in the

observation space. We set it as follow

γ =
1
2

(
1

N −H

N∑

t=H

||∆xt||2
)−1

, (14)

where ∆xt = xt−1 − xt. This setting ensures that, on average,the distance

between temporal neighbors is small enough to obtain a smooth prediction

function and to avoid over-fitting effects.

3.3 Similarity measure as a prediction error

Let F = [f1, . . . , fD]T and G = [g1, . . . , gD]T be the prediction functions

estimated on time series of descriptors {Xt}N
t=0 and {Yt}M

t=0 respectively.

From these prediction functions, we can built two new time series by crossing

models and descriptors

X̃t = G(Xt−1, . . .Xt−H), ∀t ∈ [H, N ]

Ỹt = F(Yt−1, . . .Yt−H), ∀t ∈ [H, M ], (15)

and then define the symmetric similarity measure between sequences {Xt}N
t=0

and {Yt}M
t=0

D(X,Y) =
1
2

[
d

(
{X̃t}t, {Xt}t

)
+ d

(
{Ỹt}t, {Yt}t

])
, (16)

with d(·, ·) a function to measure the error between the original and the

predicted time series. Note that here, since X and X̃ are by construction
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temporally aligned, the comparison between the two sequences may be done

point-wise and any proper distance can be used. As the quadratic norm is a

standard metric to measure such error, we have chosen to use it. We add a

normalizing term in order to make the distance invariant to the magnitude

of the descriptors

d
(
{X̃t}t, {Xt}t

)
=

1
N −H

∑N
t=H ||Xt − X̃t||∑N

t=H ||Xt||
. (17)

If the sequence {Yt}t exhibits a similar behavior to the sequence {Xt}t, the

prediction function G will be able to give a good prediction of {Xt}t. In

this case, the error of prediction d
(
{X̃t}t, {Xt}t

)
will be low. On the other

hand, dissimilar sequences will produce models unable to cross-predict each

other, leading to high values of the similarity measure.

As an illustration of the efficiency of the SVM-based similarity measure

for motion descriptors, we have applied our approach on videos containing

two classes of human activity. Each of our two classes consist in five different

persons arriving toward and leaving away from the video camera (Fig. 2).

The test set contains ten videos of length between 30 and 40 frames. A

15-order prediction function is used (H = 15).

For each image sequence, motion descriptors are estimated and a dissimi-

larity matrix D is computed between each sequence of descriptors according

to the similarity measure (16) (Fig. 4.a). As a comparison, a second dissimi-

larity matrix D′ is computed by considering the Euclidean distance between

the centroid of each sequence of descriptors, which corresponds to remove

the temporal information carried by the descriptors (Fig. 4.b). To quantify
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(a) Matrix D computed from the

temporal models
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(b) Matrix D′ computed from

the descriptor’s centroid

Fig. 4 Dissimilarity matrix computed for a set of 10 videos containing 5 sequences

with ”come” activity and 5 sequences with ”go”. Line entries 1 to 5 correspond

to ”come” activity, 6 to 10 to ”go” activity.

the benefit of the temporal model, an agglomerative clustering is applied on

these two matrices. The final classification rate is 100% for D, whereas it is

only 60% for D′. This result shows the importance of taking into account

temporal variations of the descriptors and highlights the relevance of the

proposed temporal modeling to capture activity information from descriptor

sequences.

4 The video database

In order to evaluate the proposed similarity measure, we have created a

video database containing 830 video shots. These shots have been auto-

matically extracted from the MPEG7 test video corpus using the shot de-

tector proposed in [12]. They contain various genres, including sport (foot-
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ball, basket-ball, wind-surf), sitcom series, variety program (involving many

dance sequences), TV news and documentaries. This corpus illustrates typ-

ical TV broadcast by the variety of its contents.

Each shot has been manually annotated using one of the three following

event labels:

- Action corresponds to high activity events, such as sport and dance se-

quences.

- Human moving corresponds to events representing human or crowd walk-

ing or doing large gestures.

- Talking head corresponds to close-up view on talking people, such as an-

chor scenes in news, dialog scenes in sitcom.

We chose these labels so that they meet three requirements: They should

not be too specific in order to cover as much situations as possible, they

are meaningful and they are exclusive one to each other. We note that the

proposed labels do not totally satisfy the exclusive requirement since Human

moving could also stand for Action as well as for Talking head. However, we

have stated during the annotation stage that Human moving corresponds

to situations involving human activities which do not fall neither in Talking

head nor in Action events (it can be viewed as a default label). Other video

shots that do not contain any of these three events (around 30% of the DB)

have not been annotated but are still present in the database.

Activity-based descriptors and nonlinear temporal models have been

estimated from each shot of the database, allowing to compute the similarity
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matrices for the whole database. The parameter setting is as follows: Motion

is modeled using a 3-level hierarchical B-spline decomposition of degree 2

providing a 10-dimension feature vector. Temporal models of feature vectors

are estimated by prediction functions of order 20.

Video shots, annotations, descriptors and similarity matrices are con-

tained within a SQL database associated with access tools which provides

us with an effective framework to perform automatic evaluation of descrip-

tors and similarity measures [13].

5 Experimental results

The quantitative evaluation of our method is given by Precision-Recall

graphs computed on the annotated video database. Our approach has also

been compared to a similarity measure based on motion histograms com-

puted on MPEG motion vectors. Details of the implementation may be

found in [11].

Figure 5 displays average Precision and Recall computed on all video

shots for each event label and for the two algorithms (see legend). Horizon-

tal lines in the graphs represent the statistical mean value of Precision when

documents are randomly selected (which is equal to the percentage of la-

bels in the database). The fact that P-R curves are above these lines simply

means that the retrieval operation performs better than a random selec-

tion. We can observe that for the three events, P-R curves are largely above

the “random case”, which validates the ability of the similarity measure to
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sort documents according to their dynamic content. However, it can be also

noticed that performances for our Human moving class retrieval are poor

compared to the two other classes of events. This result can be explained by

the fact that this event is quite ill-defined as it has been used to label het-

erogeneous dynamic contents. In addition, there is an non-negligible overlap

between labels since it is not obvious in some cases to decide whether a par-

ticular event should be annotated as Human moving or Talking head and

Human moving or Action. This is a recurring problem in multimedia asset

management that cannot simply be solved or ignored.

We can also note that our similarity measure outperforms the motion

histogram approach, especially for recall greater than 0.2. These results show

that the predictive model has better generalization properties, i.e. is able

to better extract the underlying characteristics of the features trajectories,

and thus permits a wider retrieval of documents belonging to the same class

of activity.

Figure 6 shows examples of query results for the three class of events.

Since characterization is done based on motion, one should keep in mind that

the temporal aspect is crucial when reviewing the results. These examples

confirm the results presented above, where videos retrieved from a Human

moving query (Fig. 6.b) exhibit more false detections than for Action and

Talking head cases (respectively in Fig. 6.a and 6.c). However, as it can

be seen in figure 6.b, we have observed that misclassified videos generally

correspond to documents with ambiguous annotation but which present



Event Discrimination Based on Nonlinear Modeling of Activity Content 21

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Action
%=23.9819

Predictive modeling
Motion block histogram

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Human motion
%=14.7059    

Predictive modeling
Motion block histogram

(b)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Talking head
%=28.0543  

Predictive modeling   
Motion block histogram

(c)

Fig. 5 Precision-Recall graphs for a) Action events, b) Human moving events and

c) Talking head events. Horizontal lines represent the percentage of each label in

the database (numerical values are given in titles). The sum is not equal to 100%

because of the non-annotated shots.
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similarities with the query document. A solution would be to refine our

annotations to avoid ambiguities on event classification.

6 Conclusion

The event-based similarity measure presented in this paper offers an unsu-

pervised tool to compare video shots according to their dynamic content.

This measure is based on the motion analysis of the image sequences. The

motion features are derived from a wavelet-based motion estimation algo-

rithm which provides a multiscale, robust and stable information on the

optical flow. Then, the temporal behavior of the descriptors is captured by

nonlinear models consisting in prediction functions estimated over the se-

quence of descriptors. An SVM algorithm is used to deal with the highly

non-stationary nature of the descriptors. The prediction error computed

between temporal models and sequences of descriptors defines a similarity

measure that is related to dynamic content over the whole shots. Using

our original approach, we emancipate from the costly process of tempo-

rally aligning sequences of different lengths, while preserving most of their

temporal information. Such information is typically lost in other current

techniques such as that based on histograms. Experiments on a large an-

notated video database gave encouraging results, also when compared to

histogram-based measure. The similarity measure is indeed able to discrim-

inate generic events related to human activities from a set of TV broadcast

video. More generally, since the approach is unsupervised and hence not
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Action Action Human moving Action Action

Action Action Action Action Action

Action Action Action Action Action

(a)

Human moving Human moving Action Human moving Human moving

Human moving Human moving Action Talking head Action

Human moving Human moving Human moving Human moving Human moving

(b)

Talking head Talking head Talking head Talking head Talking head

Talking head Talking head Talking head Talking head Talking head

Talking head Talking head Talking head Talking head Talking head

(c)

Fig. 6 First 14 samples of retrieved video shots for a query belonging to a)

Action, b) Human moving and c) Talking head. The first image on top left corner

corresponds to the query and retrieved shots are ordered from left to right and

top to down.
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restricted to particular events, the above results show the ability of the

proposed metric to map videos in a continuous representation space closely

related to our perception of events.

In the framework of nonlinear temporal modeling, future research will

focus on adding more low-level descriptors (such as color, texture, audio)

to describe video shots. Indeed, we would like to enhance the proposed

approach so as to be able to compare video content according to various in-

formation sources. Beyond this objective, our aim is to define an interactive

scheme for weighting these different information sources so that end-users

will be able to define their own video metric to browse and search video

documents.
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