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Data‑driven risk analysis 
of nonlinear factor interactions 
in road safety using Bayesian 
networks
Cinzia Carrodano 

This paper aims to demonstrate nonlinear risk factor interactions based on a data‑driven approach 
using a Bayesian network model, providing a road safety use case. Road safety is a critical issue 
worldwide, with approximately 1.3 million road traffic deaths each year (WHO). Traditional road 
safety risk assessment methods often analyze individual factors separately; however, these 
assessments fail to capture the complex dynamics of real‑world analysis, in which multiple factors 
interact through nonlinear relationships. In this study, a novel road safety risk assessment approach 
that uses a Bayesian network model to explore the nonlinear relationships among road safety risk 
factors is developed. Through the analysis of extensive crash reports from the state of Maryland, the 
complex interdependencies among various risk factors and their cumulative impact on road safety 
are investigated. Our findings show that two combined risk factors have different effects on risk level 
when considered individually. Two case studies related to human state risk factors and environmental 
risk factors, such as driving under the influence and snowy roads, as well as fatigue and snowy 
roads, have an amplified effect on the risk level. The findings highlight the importance of considering 
nonlinear interactions among risk factors when developing effective and targeted strategies for 
accident prevention and road safety improvement. This research contributes to the field of road safety 
by presenting a new methodology for understanding and mitigating road safety hazards.

The rapid expansion of urban development and increase in travel have greatly increased the potential risk of traffic 
accidents. According to the World Health Organization (WHO), traffic accidents cause 1.3 million preventable 
deaths annually worldwide and result in injuries to 20 to 50 million people. By 2030, the United Nations 
General Assembly aims to reduce traffic deaths and injuries by at least 50%1. This ambitious goal underscores 
the importance of enhancing road safety to mitigate the adverse outcomes of traffic accidents.

To understand and mitigate road safety risks, the various factors contributing to these risks must be explored. 
These complex, multifaceted risk factors include elements such as driver behavior, vehicle conditions, road 
infrastructure, and weather conditions. While the primary risk factors for road traffic accidents, such as speeding, 
driving under the influence, lack of security equipment, and distracted driving, have been well documented by 
the  WHO2, conventional road safety risk assessment approaches typically analyze each of these factors separately.

Although these methodologies can be used to identify key risk factors, they often neglect the complex 
dynamics present in real-world analysis, in which factors have complex relationships. This limitation represents 
a significant gap in current road safety research, highlighting the need for a more holistic understanding of how 
various risk factors collectively influence safety outcomes.

Previous studies have employed Bayesian methods to enhance the understanding of road safety risks. Cheng 
et al.3 utilized Bayesian spatiotemporal models with mixture components to analyze crash frequencies, focusing 
on the space–time interactions of crash occurrences  . Deublein et al.4 applied a Bayesian hierarchical approach 
to predict road accidents, highlighting the non-linear relationship between exposure measures and crash types 
through a multivariate Poisson-lognormal regression model  . Han et al.5 investigated the varying effects of road-
level factors on crash frequency across regions using Bayesian hierarchical random parameter models, accounting 
for regional variations and complex interactions between road-level factors    . Qin et al.6 explored the non-linear 
relationship between traffic volume and crash incidence using hierarchical Bayesian models, emphasizing the 
importance of considering non-linear exposure measures in safety performance functions  .
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While these studies significantly advance the field of road safety analysis, they often do not fully capture the 
combined nonlinear interactions among multiple risk factors.

To address this gap, we aim to investigate the complex and nonlinear interactions among road risk factors 
through a comprehensive data-driven analysis approach. In this work, nonlinearity refers to an analysis in which 
the combined impact of multiple risk factors on safety outcomes cannot be accurately predicted by merely 
summing their individual effects. Such an approach is essential for road safety, as variables such as driver 
behavior, vehicle conditions, and environmental factors are rarely isolated but instead interact in multifaceted 
ways, influencing the likelihood and severity of accidents. We aim to explore the nonlinear relationships among 
road safety risk factors by employing a Bayesian network model. Using this model to analyze a dataset collected 
in the state of Maryland, which includes extensive crash reports, we investigate the complex interdependencies 
among various risk factors and their nonlinear impact on road safety. The results show that the model provides 
a robust framework for examining how combined risk factors contribute to the probability and severity of road 
traffic accidents.

The Maryland crash report dataset was selected based on its comprehensiveness and the depth of information 
included on accident circumstances, outcomes, and contributing factors. This rich dataset provides a good 
foundation for examining a wide array of risk factors within a diverse range of real-world analyses, making 
it an ideal resource. The findings of this study contribute considerably to the field of road safety analysis. By 
highlighting the importance of nonlinear interactions among risk factors through data-driven analyses, we offer 
new perspectives for developing more effective and targeted strategies for accident prevention and road safety 
improvement.

To the best of our knowledge, this study is the first to demonstrate the nonlinear effects on risk level when 
factors are combined. Although we have proven this nonlinearity using two case studies related to road safety, 
the developed data-driven approach can be applied to other fields.

This paper begins with a “Related works” section dedicated to driving risk assessment and specifically to 
the Bayesian network approach. We continue with the “Methods” section, where we present the methodology 
for building the model, and the “Results” section shows the sensitivity analysis of the model followed by two 
Bayesian network applications and the demonstration of nonlinear factor interactions. We conclude this study 
with discussion and conclusion sections.

Related works
Traditional statistical approaches may not adequately capture the complex interrelationships and outcomes of 
road risk factors. A probabilistic graphical model, such as a Bayesian network, considers the intertwined nature 
of these risk factors and provides a more nuanced and holistic understanding of road safety. Many studies have 
been conducted in the field of road safety. They have examined different facets of causes that can induce a bad 
event. Major risk factors, such as human factors, road factors, environmental factors and vehicle-related factors, 
have been  identified7. Different methods have been used to assess road  risks8–11. These studies are a small part of 
a wide area of research. They perform risk assessment through specific factors using mostly statistical methods. 
Although they provide interesting results, our study focuses on the causal relationships between risk factors and 
provides a more effective method for understanding how combined risk factors interweave.

The emphasis on causal analysis of accidents stems from its ability to explain the relationships between risk 
factors to propose appropriate actions to mitigate their consequences. Causal analysis also helps to understand 
the sequence of events that results in accident outcomes.

Several studies have explored the use of the Bayesian network for risk assessment in different fields; for 
example, Zou et al.12 apply a Bayesian network for causal analysis of road accidents. They develop the model 
with an expectation–maximization (EM) algorithm to address missing data. The model shows good results in 
identifying and explaining road risk factors. They focus on the severity of injuries and the estimated damage. 
Ma et al.13 propose a Bayesian network for hazardous materials (Hazmat). More recently, Feng et al.14 present 
a Bayesian network-based risk evaluation model for railways, and Zengkai et al.15 propose a dynamic Bayesian 
network risk analysis for marine oil spills. According to many other studies, using a Bayesian network for risk 
assessment provides good results and explains causal relationships.

To provide a model that explains the effect on the risk level of combined risk factors, we choose a causal 
graph, such as a Bayesian network.

Methods
Road risk is associated with uncertainty, which can lead to negative outcomes, such as accidents that may have 
different levels of severity. An accident could result in fatalities, injuries, or material damage affecting vehicles, 
nearby structures or the environment. The causal aspect is deeply intertwined with road  risk16. Reckless behavior 
can cause a loss of vehicle control, potentially leading to an accident. A single event can be traced back to 
multiple risk sources. The weather, road conditions, and behavior of road users may interact in intricate ways, 
thus influencing the level of risk. The causal dimension of risk leads to a causal risk model, as described by Aven 
and  Thekdi16. Based on Bayes’ theorem, a Bayesian network is a graphical representation of the cause-and-effect 
relationships between different variables. It allows a precise assessment of uncertainty and probabilities.

Bayesian network modeling and estimation involve learning through artificial intelligence approaches. 
Bayesian network learning requires two  steps17.

(a) Structure learning: The variables (nodes) and the relationships among them are determined, and a direct 
acyclic graph (DAG) is constructed.

(b) Parameter learning: A conditional probability table (CPT) is learned for each node in the DAG.



3

Vol.:(0123456789)

Scientific Reports |        (2024) 14:18948  | https://doi.org/10.1038/s41598-024-69740-6

www.nature.com/scientificreports/

Our methodology is shown in the Fig. 1.
The steps are explained below.
Step I We identify the risk factors associated with driving and select our study variables, considering the 

relevance of each factor. Once the variables have been chosen, we perform the discretization process.
In the Bayesian network construction process, risk modeling is divided into two phases: structure learning 

and parameter learning.
Step II Structure learning: To obtain the network structure, we first apply the K2 algorithm in  MATLAB18 to 

determine the DAG structure. Then, based on expert knowledge, we identify the final structure of our model.
Step III Parameter learning: We determine the model parameters using Netica, a Bayesian network-based 

software developed by Norsys Software Corporation in  Canada19. Netica is a widely used tool by researchers 
across diverse fields, including climate  change20,  cybersecurity21,  health22–24, the  environment25 and road-related 
 studies26,27. We input the data into Netica and construct the structure determined in the previous step. Certain 
data might be unknown or missing, and we use the expectation–maximization (EM) algorithm to obtain these 
missing data and add them to the dataset. However, the unknown gender data were retained as unknown in 
our study to maintain the integrity of the original dataset. Missing and unknown data for all the other variables 
were handled using the EM algorithm. We then proceed to the learning stage of the process. The outcome is the 
Bayesian model of driving risk.

Step IV We analyze the performance of our model through a sensitivity analysis to evaluate the dependence of 
the nodes on the target node. In addition, we consider several applications, such as prediction, causal inference, 
and the most likely explanation.

These steps are detailed hereafter:

Step I: Dataset exploration and risk factor identification
Dataset exploration
We utilized a dataset from the state of  Maryland26, which was chosen for its high population density and focus 
on road safety. The dataset included vehicle crash reports from January to March 2018, with a total of 26,746 
individual crash reports. We filtered the dataset to include only reports with a driver and excluded drivers aged 
less than 15 years. We identified twelve main variables. The selected risk factors, including human, environmental, 
and vehicle factors and behaviors, are detailed below. The target variables are the severity and collision type. This 
dataset is highly qualitative and contains very little unknown data. The drivers’ ages (Table 1) and genders are 
described below. The other variables are provided in Appendix A.

These statistics are a description of the age of the drivers, considering only available information on age. This 
corresponds to 26,746 data points minus 4584 (= 4559 + 25) unknown or not applicable data points, which is 
equal to 22,162 data points. This corresponds to 83% of the total.

The average age of the drivers is 39.92 years. The standard error indicates that the sample is representative of 
the population. The median age is 36 years, and the most frequent age is 28 years. The measure of the dispersion 
of ages is 16.79 years. Most ages are within this range above or below the average age. The difference between 
the highest and lowest ages of drivers is 82 years. The youngest is 15 years old, and the oldest is 97 years old. 
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Figure 1.  Methodology for building the BN model and the results.



4

Vol:.(1234567890)

Scientific Reports |        (2024) 14:18948  | https://doi.org/10.1038/s41598-024-69740-6

www.nature.com/scientificreports/

The negative kurtosis indicates a slightly flatter distribution than a normal distribution, also called a platykurtic 
distribution. The distribution of drivers’ ages has fewer extreme values than expected in a normal distribution. 
The skewness of 0.743 reveals a slight positive skew where the right tail of the distribution is slightly longer, as 
also shown in Fig. 2.

The dataset is composed of 33% female, 51% male, and 16% unknown.

Risk factor identification, analysis and variable selection
This section is divided into two parts: the first part is related to risk factor identification and analysis, while the 
second part refers to variable selection.

We have analyzed official statistics (those of the WHO, NHTSA, European Commission, and Maryland 
Government) and related driving risk analysis. Three major common risk factors have been identified, in line 
with the  literature27: human factors (H), vehicle factors (V) and environmental factors (E). A description of these 
risk factors is provided below.

Human factors (H). Human factors are the primary contributors to driving risk. The World Health Organization 
(WHO) identifies major risk factors such as speeding, driving under the influence, and distracted  driving28. This 
conclusion aligns with the findings of the National Highway Traffic Safety Administration (NHTSA)29 and the 
European Commission, which highlight speed as a critical risk  factor30. The European Commission maintains 
that “Speeding increases the likelihood of an accident. Very strong relationships have been established between speed 
and accident risk.” The Maryland government identifies human factors, such as distracted driving or speed and 
aggressive driving, and impaired driving, as the most relevant driving  risks31. A substantial amount of academic 
research also refers to human behavior as a significant factor in road traffic  accidents32–35.

Table 1.  Descriptive statistics: variable AGE.

Description Statistics

Mean 39.92

Standard Error 0.113

Median 36

Mode 28

Standard Deviation 16.79

Sample Variance 281.80

Kurtosis −0.237

Skewness 0.743

Range 82

Minimum 15

Maximum 97

Sample Size 22,162
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Figure 2.  Histogram of the variable AGE.
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Environmental factors (E). Although they might not be as prominent in accident data as human factors, 
elements such as road  design28, lighting conditions (daylight or night light), and inclement weather are significant 
risk  factors36,37.

We assume that the synergistic effect of these elements might amplify risk. For instance, the probability of 
an accident can increase when poor road conditions due to wet weather are combined with inadequate lighting. 
This amplification effect is demonstrated in Sect. 4.3.

Vehicle factors (V). Advancements in vehicle technology have significantly reduced vehicle-related risk factors, 
unlike the nonuse of safety equipment, such as seat belts or correct helmet use, which continue to be regarded as 
critical risk factors in official  statistics28.

An accident has consequences of varying severity, among which we distinguish fatalities, injuries and property 
damage only. Granular information comes from the collision type, which provides information about how the 
accident occurred. The severity and collision type are the target variables. Table 2 identifies the risk factors that 
have a direct and measurable impact on road risk.

The dataset comprises 26,746 crash reports and 79 variables. It includes both major variables and numerous 
detailed variables. For example, a primary variable is the “physical condition: code 102” (Appendix A), while 
detailed variables include the “alcohol test code: test refused, positive preliminary test, evidence test”, as well as 
“alcohol test type: breath, blood, urine, others.” By concentrating on these major variables, as detailed in Appendix 
A, we ensure a relevant and impactful selection of variables that significantly influence risk factors while aligning 
with the study’s objectives and the literature review analysis (Table 2).

Bayesian networks can handle both continuous and discrete  variables58. The majority of our dataset 
variables are discrete. For continuous variables, such as the driver’s age, we performed a discretization process. 
Categorization is applied to several variables: physical condition, surface condition, weather, vehicle type, and 
safety equipment.

The variables with a consequent influence on risk used in our study are enumerated in Appendix A 
and distinguished into human factors, called “driver”, environmental factors (mentioned as “road” and 
“environment”), and vehicle factors. “Driver” includes gender, age, and physical condition. “Road” refers to 
road geometry and surface conditions. The “environment” is related to the weather and light conditions. Vehicle 
type, safety equipment, and vehicle movement are variables of the “vehicle” factor.

Step II: risk modeling: structure learning with the K2 algorithm
Constructing a Bayesian network (BN) structure using an expert-based approach can be challenging due to the 
varying assumptions of different experts. Moreover, it may be difficult to obtain the necessary information in 
the absence of an expert, which could result in an inaccurate structure. A data-driven approach may be more 
efficient, especially in complex domains, as it provides an initial structure that can subsequently be analyzed and 
fine-tuned based on expert  knowledge58. This method was used for structure learning, which is divided into three 
steps, as  in59: (1) a preliminary structure is built based on expert knowledge, (2) the structure is built using a data-
driven analysis approach, and (3) the structure is adjusted based on expert knowledge and data-driven analyses.

Several algorithms for learning structures based on data have been developed. These methods can be 
categorized into three main categories: constraint-based, score-based, and hybrid  approaches17,58,60. For our 
study, we selected the score-based K2 algorithm implemented in  MATLAB14 because score-based algorithms 
are commonly used to build Bayesian network  structures60. Additionally, the K2 algorithm is efficient for 

Table 2.  Risk identification and analysis of risk factors.

Factors Variables Reason References

Human

Age Young drivers are more likely to engage in risky driving habits and perceive less danger in various driving situations, while 
older drivers may have more medical conditions associated with higher crash risk

38–41

Gender Studies have shown that gender influences risky driving behaviors, with differences in risk perception and sensation seeking 
between males and females. Male drivers often exhibit more aggressive and risky behaviors

42,43

Physical condition The use of alcohol and drugs among drivers is linked to impaired driving performance, increased risk of accidents, and risky 
behaviors such as speeding and texting while driving. Fatigue also contributes to a higher risk

44–47

Environment

Road geometry
Road geometry design implies vehicle stability, speed selection, and driver perception of risk, contributing to the likelihood 
of accidents. Specific geometric features, such as horizontal curves and lane widths, influence accident frequency. For 
instance, accident frequency is diminished by narrow lanes and sharp horizontal curves, as these features encourage drivers 
to reduce speed and drive more cautiously. Improved road design can therefore play a critical role in enhancing road safety

48

Surface condition Surface conditions such as wetness or ice play a critical role in driving risk by affecting vehicle handling, braking distances, 
and the likelihood of hydroplaning

49,50

Weather Weather conditions such as rain, fog, and snow impact driving risk by altering visibility, road friction, and vehicle handling 51

Light condition The risk of driving varies significantly under different lighting conditions, such as daylight, dusk, dawn, and nighttime. 
Reduced visibility during nighttime and the glare from oncoming vehicles can increase the likelihood of accidents

52,53

Vehicle

Vehicle type Different vehicle types, including cars, trucks, buses, and motorcycles, have varied risk profiles due to differences in size, 
weight, maneuverability, and visibility

54

Safety equipment use Safety equipment use impacts the severity of risk accident. Seat belt use significantly reduces the risk of fatal injury to front-
seat passenger car occupants

55

Vehicle movement Different vehicle movements, including lane changing, accelerating, and navigating through occluded scenes, significantly 
impact driving risk by influencing driver’s ability to predict trajectories, react to potential hazards, and maneuver safely

56,57
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large datasets and involves a heuristic approach in which the node order is assumed to be known, which are 
characteristics that align with our driving risk dataset. Then, causal relationships are defined. The computational 
complexity of the algorithm is polynomial based on the number of  variables61. Compared to other algorithms, 
the K2 algorithm is less computationally intensive.

The K2 algorithm, developed by Cooper and  Herskovits62, is based on the concept of maximizing a score 
function to determine the best network structure and uses a heuristic method called greedy search. The algorithm 
makes a locally optimal choice at each stage according to the following steps. First, a predefined node order is 
provided by an expert. We assume that a node has no parents and then add the preceding nodes according to 
their parent nodes. Then, we calculate the score of the network as each parent is  added58. As a greedy algorithm 
that computes the local optimal choice, the K2 algorithm might not guarantee a global optimal solution; thus, 
expert knowledge is necessary to finalize the Bayesian network structure. After the initial structure is learned 
with the K2 algorithm, the structure is refined according to expert knowledge to ensure that the model accurately 
reflects the situation.

In this study, experts in the field validated the structure determined based on the K2 algorithm. The 
twelve selected variables are represented as nodes, while the connections between nodes designate the causal 
relationships among variables.

Step III: Risk modeling: Parameter learning with the EM algorithm
Once the topology of the Bayesian network has been determined, we perform parameter learning. The data in 
traffic road accident datasets are often unknown or missing. From a statistical perspective, missing or unknown 
data may lead to  bias63, and this issue can be addressed using the expectation–maximization (EM)  algorithm64–66. 
Given that our dataset contains unknown data, we use the EM algorithm to address this issue. The EM algorithm 
is a very popular parameter estimation  method65. This algorithm was introduced by Dempster et al.67. The 
algorithm operates in two steps: the expectation step (E-step) and the maximization step (M-step). The algorithm 
alternates between the E-step and the M-step in each iteration to find the maximum likelihood solutions when 
dealing with latent variables. In the E-step, missing or unknown data are estimated according to the observed data 
and current parameter estimates. In the M-step, these estimates are used to update the parameters by maximizing 
the likelihood of the observed data. The EM algorithm is explained hereafter based  on27. The EM algorithm is 
usually formulated in the context of a statistical model with observed variables, Z, and missing variables, Zm, 
depending on the parameters θ . The complete dataset is denoted as T = (Z,Zm) , with the log-likelihood l0(θ;T).

(a) First, the parameters are estimated for θ̂ (0) ; the set accuracy is ε , and the correction value is θ̂ ′.

(b) E-step: The expectation of the log-likelihood is computed using the current parameter estimate. The posterior 
distribution of the variables Zm is calculated given Z and the current parameter estimates θ(t) , where t is the 
current iteration.

where l0(θ ′;T) is the log-likelihood and E[l0
(
θ
′;T

)
|Z, θ̂

(t)
 ] denotes the expectation.

(c) M-step: The expectation computed in the E-step is maximized to update the parameter estimate. The 
parameter θ maximizes the Q-function Q(θ ′, θ̂

(t)
) computed in the E-step.

(d) The E-step and M-step are iterated until the algorithm converges.
After the model structure was created in Netica software, the “unknown” data were addressed using the EM 

algorithm. Figure 3 shows the refined version of the model after the EM algorithm was applied, where unknowns 
were assigned values and the nodes’ conditional probability distributions were computed.

Results
Our approach to building the model includes four main steps: (I) identifying the relevant risk factors, (II) 
modeling the risk factors via structure learning, (III) modeling the risk factors via parameter learning, and (IV) 
analyzing the results. This section describes Step IV of the methodology and comprises the sensitivity analysis, 
the applications of the model and a demonstration of the nonlinear effect on the risk. Our model is built based 
on the real-world dataset of the State of Maryland, which includes 26,746 crash reports from January to March 
2018. The winter season was chosen for the snowy period; additionally, this is a large qualitative dataset.

Sensitivity analysis and applications
We evaluated the performance of our model with sensitivity analyses to determine the degree to which the 
nodes were dependent on the target node. This analysis included examining the performance of our model in 
applications such as prediction, causal inference, and the most probable explanation, with the results providing 
valuable insights into the applicability of the proposed model  .

For Bayesian networks, sensitivity analyses elucidate how various nodes affect particular target nodes, thereby 
enabling us to identify important parameters.

We performed sensitivity analyses for the target nodes, namely, severity, safety equipment and collision type, 
in Netica. Tables 3, 4 and 5 show the results of the sensitivity analysis, including the mutual information and the 
variance of beliefs, which are explained as follows.

∣∣∣∣θ̂ − θ̂

′

∣∣∣∣ > ε, thenθ̂ ← θ̂
′

(1)Q(θ ′, θ̂
(t)
) = E[l0(θ ′;T)|Z, θ̂

(t)]
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Figure 3.  Parameter adjustment according to the EM algorithm.

Table 3.  Sensitivity analysis of the severity node.

Node Mutual information Percent Variance of beliefs

SEVERITY 0.88196 100.00000 0.2042617

COLLISION 0.02073 2.35000 0.0054494

SAFETY_EQUIP 0.01995 2.26000 0.0038936

PHYSICAL_COND 0.00799 0.90600 0.0018384

VEH_TYPE 0.00532 0.60300 0.0011410

GENDER 0.00349 0.39500 0.0009062

GEOMETRY 0.00276 0.31300 0.0007697

VEH_MVMT 0.00265 0.30100 0.0007220

LIGHT 0.00008 0.00870 0.0000184

AGE 0.00005 0.00603 0.0000071

SURF_COND 0.00001 0.00085 0.0000017

WEATHER 0.00000 0.00024 0.0000004

Table 4.  Sensitivity analysis of the safety equipment node.

Node Mutual information Percent Variance of beliefs

SAFETY_EQUIP 0.81343 100.00000 0.1555180

PHYSICAL_COND 0.25779 31.70000 0.0433205

GENDER 0.12149 14.90000 0.0231785

VEH_TYPE 0.03332 4.10000 0.0021846

SEVERITY 0.01995 2.45000 0.0016127

COLLISION 0.01357 1.67000 0.0019271
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Mutual information is a concept from information theory that provides a measure of the dependence 
between variables to assess the strength of their relationship. When two nodes are dependent, understanding 
the value of one node can provide information about the value of the other node. Mutual information measures 
the information gain among  nodes68. A high mutual information value implies a high degree of dependency 
between  variables69, and the mutual information, namely, the entropy reduction, is calculated using Eq. 2. The 
mutual information between Q, the query variable, and F, the varying variable, is measured in bits.

where H(Q) is the initial entropy of Q and H(Q|F) is the entropy of Q after new findings are obtained according 
to variable  F70,71.

In a Bayesian network, the variance of beliefs, s2, is the expected squared change in the posterior probability 
of a node, taken over all its states, due to the information of another node. This metric can be used to evaluate the 
possible impact or sensitivity of each element in a  network72. The variance of beliefs, s2, is expressed in Eq. 3 73.

Higher variance values indicate that our understanding of this factor can change significantly based on new 
information. Therefore, a higher variance value indicates that a factor is highly sensitive. Lower variance values 
indicate that the factor is less sensitive to new information.

Model validation was performed using sensitivity analyses for the severity, safety equipment, and collision 
nodes, as shown in Tables 3, 4 and 5, respectively. Both of them are the target variables, severity and collision 
types, and we have added the safety equipment, as it has shown a strong dependency on the severity.

The sensitivity analysis of the severity node showed mutual information values of 0.02073 for the collision 
node and 0.01995 for the safety equipment node (Table 3). The collision node had a higher mutual information 
value, indicating that this node had a stronger influence on severity. The variable with the second highest mutual 
information value is safety equipment. Both factors directly influence accident severity. These variables are 
followed by physical condition (0.00799), which has an indirect influence on severity and a direct influence 
on safety equipment and collisions. This analysis revealed the critical factors that contribute to the severity of 
accidents, emphasizing the importance of focusing on collision prevention and the use of safety equipment as 
primary interventions. Additionally, the role of physical condition suggests that strategies aimed at improving 
the DUI or fatigue of individuals could further enhance safety measures and reduce the severity of accidents.

Next, the mutual information of the safety equipment node was assessed, revealing only the first six variable 
dependencies (Table 4). The results showed a strong dependency between safety equipment use and physical 
condition (0.25779). This implies that if a driver is fatigued or under the influence of alcohol or drugs, he or 
she may be less likely to use safety equipment, such as a seat belt. This relationship underscores the need for 
educational and enforcement strategies that address not only the importance of using safety equipment but also 
the impact of physical condition on safety practices. By highlighting the influence of physical condition, gender, 
and vehicle type on the use of safety equipment, this analysis provides valuable insights for developing targeted 
interventions aimed at improving road safety and reducing the risk of severe accidents.

Table 5 shows the sensitivity analysis results for the collision type. According to the results, the collision type 
strongly depends on the vehicle movement (0.35030) and road geometry (0.18700), followed by the physical 
condition (0.04496).

This analysis highlights the critical influence of vehicle movement and road geometry on the occurrence and 
type of collisions, underscoring the importance of these factors in road safety and accident prevention strategies. 
The significant dependency on vehicle movement suggests that the way vehicles are driven, including speed and 

(2)I = H(Q)−H(Q|F) =
∑

q

∑

f

P(q, f )log2
[
P(q, f )

]

P(q)P(f )

(3)s2 =
∑

f

∑

q

P(q, f )
[
P
(
q|f

)
− P(q)

]2

Table 5.  Sensitivity analysis of the collision type.

Node Mutual information Percent Variance of beliefs

COLLISION 2.98481 100.00000 0.6936152

VEH_MVMT 0.35030 11.70000 0.0270559

GEOMETRY 0.18700 6.27000 0.0073266

PHYSICAL_COND 0.04496 1.51000 0.0013272

SURF_COND 0.00643 0.21500 0.0002478

SEVERITY 0.02073 0.69500 0.0003949

LIGHT 0.02342 0.78500 0.0020717

GENDER 0.01360 0.45600 0.0003603

SAFETY_EQUIP 0.01357 0.45500 0.0003427

WEATHER 0.00138 0.04630 0.0000537

VEH_TYPE 0.00013 0.00423 0.0000040

AGE 0.00009 0.00315 0.0000013
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directional changes, plays a key role in the risk and nature of collisions. Similarly, road geometry, which includes 
the design of roads, is shown to be a crucial determinant of the likelihood and severity of accidents.

Applications
In this section, we introduce the concept of posterior probabilistic reasoning and present two applications of the 
Bayesian network model: prediction and causal inference.

Posterior probabilistic reasoning: Prediction and causal inference
According  to17, probabilistic reasoning, also called belief updating, was introduced by  Pearl69. The use of posterior 
probabilities enables the incorporation of new information and the updating of beliefs, which is a core principle of 
Bayesian  statistics17. Bayesian networks can estimate outcomes based on causes; this process is called prediction. 
Moreover, Bayesian networks can perform causal inference, which involves determining a cause according to an 
observed outcome. The BN models of the following examples are shown in Appendix B.

Prediction
A “prediction” can be performed with the Bayesian network model by setting the predictive variables, namely, 
evidence variables, at 100%. As previously mentioned, driving under the influence (DUI) is a primary crash risk 
factor. DUI was identified as “influenced by medications, drugs, alcohol” in the “physical condition” node in our 
Bayesian network model. The variables were set to a maximum value of 100% in Netica. The DUI analysis results 
show a difference for the single vehicle factor in the collision type: the probability of a collision with a single 
vehicle notably increased from 24.8% to 38.7%. Moreover, the percentage of severe and, more specifically, fatal 
crashes increased from 0.37% to 1.23%. These results suggest that when people are driving under the influence, 
most crashes occur with a single vehicle and tend to be more severe.

For example, considering the influence of alcohol, in 2021, in the U.S., drunk driving accidents were 
responsible for the deaths of approximately 37 people each day, with a total of 13,384 deaths in one  year74. As 
explained by the National Highway Traffic Safety Administration (NHTSA)74, alcohol affects driving ability and 
how people operate vehicles. The results of the model show that drunk driving increases the probability of single-
vehicle crashes and the severity of such accidents. This result is consistent with those of previous studies, such 
as those by  Morland75, Behnood and  Mannering76, and Maistros et al.77. In addition, in this study, we evaluated 
the use of safety equipment, such as safety belts, with a lack of safety equipment increasing the severity of most 
accidents. When driving under the influence, the lack of safety equipment usage increased notably, from 2.48 
to 10.3%. The  NHTSA74 mentions that driving under the influence causes physiological impairments, such 
as reduced visual function, reduced ability to perform tasks, reduced coordination, and decreased ability to 
brake appropriately, with these impairments increasing reaction times and affecting vehicle control. By slowing 
brain function, alcohol alters judgment, reasoning and muscle  coordination78. Individuals under the influence 
of alcohol might neglect safety protocols, e.g., safety belts. Our model provides results consistent with official 
statistics and literature in the field.

Causal inference
Bayesian networks can be used to perform simulations of causal inference by intervening on variables. We 
propose hereafter an example of a prediction statement compared to official analysis. This will provide another 
way to validate the model. The target variable in this analysis is the collision node, which represents “the angle 
meets the left turn head on”. The results revealed two obvious changes during collisions, namely, an increase in 
the intersection factor (from 24.5 to 55.6%) in the geometry category and an increase in the “making a left turn” 
factor (from 8.41 to 41.7%) in the vehicle movement category. In addition, the dark/no lights factor in the light 
category increased from 8.76 to 15%. The results suggest that these kinds of crashes tend to occur at night, and 
the physical condition of the driver appears to be normal (changing from 76.9 to 70.7%), which implies that light 
conditions are the principal risk factor for this kind of road geometry.

Intersections and left turns are critical points in traffic flow. Moreover, such driving maneuvers require high 
vigilance. During the night, visibility is reduced, making it more difficult for drivers to see other vehicles, other 
drivers, pedestrians and road signs. Moreover, making left turns requires drivers to assess oncoming traffic and 
judge speed and distance, which is more challenging under low light conditions. The glare caused by headlights 
may also impact the driver’s vision, making it more difficult to determine the position and speed of other vehicles. 
Additionally, driver fatigue typically increases during nighttime driving, which may increase the probability of 
accidents.

Demonstration of nonlinear factor interactions
We investigated the application of Bayesian networks (BNs) for road safety analysis, focusing on analyses derived 
from the model. These analyses provide insights into the factors affecting fatal accident severity and the interplay 
among various risk factors. Then, we consider the nonlinear effect of these combined risk factors. In our first 
analysis, we aim to broadly understand the influence of different factors on accident severity. The values of the 
analysis presented hereafter are obtained from the BN model (Fig. 3) by setting evidence variables indicated 
on a scale from 0 to 100%. The “Base” column refers to the original BN model in Fig. 3. The obtained results 
are shown in Appendices C and D. In the table, we include only variables that have a notable impact. We focus 
primarily on fatal accidents to determine the most important risk factors (Table 6). Furthermore, we consider the 
obtained specific factors in combination and evaluate the probability of a fatal accident occurring in each case 
(Table 7). This analysis deepens the understanding of the previous risk factors. Finally, we determine whether 
two combined risk factors have a greater impact on the overall risk than the sum of the same factors considered 
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separately (Tables 8 and 9). The goal of the first two analyses is to define interesting risk factors for use in the 
demonstration.

Analysis #1: fatal accident analysis
This first analysis is designed to investigate cases with fatal outcomes, revealing marked changes in several 
variables (Table 6). The analysis is based on the BN model (Fig. 3) mentioned in the “Base” column in Table 6. The 
next column is the result with the evidence variable “severity, fatal” set at 100%. The output might be interpreted 

Table 6.  Analysis #1: The evidence variable is set for severity-fatal of the BN model (base = Fig. 3).

Analysis #1

Node Code Description Base Values Relative change

Severity

1 Fatal 0.366 100.000

2 Injury 27.515 0.000

3 Damage only 72.119 0.000

Collision

3 Same direction rear end 26.842 26.819 0%

11 Same movement angle 12.192 13.227 8%

17 Single vehicle 24.751 41.484 68%

Physical cond
101 Normal 76.942 70.363  − 9%

102 DUI 5.325 17.953 237%

Safety Equip
101 None 2.475 29.521 1093%

102 Belt 83.394 59.006  − 29%

Table 7.  Analysis #2: Several evidence variables are included in the model (Fig. 3). Primary influences with 
different variables: DUI, single vehicle, and safety equipment use.

Analysis #2

Node Code Description Base Values Relative change Values Relative change Values Relative change Values Relative change

Severity

1 Fatal 0.366 1.235 237% 1.179 222% 0.438 20% 7.940 2068%

2 Injury 27.515 28.009 2% 26.281  − 4% 22.980  − 16% 58.610 113%

3 Damage only 72.119 70.756  − 2% 72.540 1% 76.582 6% 33.450  − 54%

Collision

3 Same direction 
rear end 26.842 24.556  − 9% 0.000 0.000 0.000

11 Same movement 
angle 12.192 3.971  − 67% 0.000 0.000 0.000

17 Single vehicle 24.751 38.735 56% 100.000 100.000 100.000

Physical cond
101 Normal 76.942 0.000  − 100% 0.000 0.000 0.000

102 DUI 5.325 100.000 100.000 100.000 100.000

Safety Equip
101 None 2.475 10.260 315% 10.260 315% 0.000 100.000

102 Belt 83.394 83.033 0% 83.033 0% 100.000

Table 8.  Results for Analysis #3 (DUI/Snow), nonlinear risk factor demonstration.

Analysis #3 : DUI / Snow A B C D E (computed)

Node Code Description Normal situation Physical condition Surface condition Combined factors Added factors E = (C-A) + B)

Severity

1 Fatal 0.332 1.228 0.350 1.329

2 Injury 29.517 27.924 28.951 28.655

3 Damage only 70.151 70.848 70.699 70.015

Physical cond

101 Normal 100 100

102 DUI 100 100

104 Fatigue

Surface cond
102 Dry 100 100

103 Snow 100 100

Physical condition Surface condition Normal Dry DUI Dry Normal Snow DUI Snow DUI Snow

Severity level: fatal 0.332 1.228 0.350 1.329 1.245

delta vs. normal sit.(A) 0.895 0.018 0.997 0.913
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as changes in the probabilities (relative change column) of accidents being fatal compared to the base rate (base 
column). Table 6 shows only the most important impact factors. Details are shown in Appendix C. The results 
show that single vehicle collisions were associated with a marked increase (+ 68%) in fatalities. Moreover, driving 
under the influence (DUI) was strongly associated with fatalities (+ 237%), while fatalities notably decreased 
when safety equipment, particularly seat belts, was used (-29%). These results demonstrate the critical impact 
of driving under the influence and the lack of safety measures on fatal accidents. We investigate these findings 
further in the next analysis.

Analysis #2: interactions among DUI, safety equipment use, and single vehicle collisions
This section aims to deepen the previous analysis. In this analysis, we build upon the findings of the previous 
analysis by adding the variables single vehicle, DUI, and safety equipment usage. These predictive variables, set 
at 100%, are determined as evidence variables in our BN model to investigate their effect on accident severity. 
Similarly, as in the previous analysis, we only mention the key factors in Table 7. The details are shown in 
Appendix D.

The analysis results indicate that when driving under the influence (DUI) in a single-vehicle collision, the 
risks of fatal outcomes and injury are lower when using a seat belt (fatal outcomes, 0.44% with a seat belt vs. 
7.94% without seat belt; injury, 22.98% with a seat belt vs. 58.61% without seat belt). Under the same conditions, 
if 100% of drivers used seat belts instead of 83%, the number of fatalities would decrease from 1.18% to 0.44%, 
and the number of injuries would decrease from 26.28% to 22.98%. This analysis highlights the increased risk 
associated with neglecting seat belts and the exacerbating effect of DUI on accident severity, which were also 
identified by the NHTSA and the WHO as major driving risk factors.

Analyses #3 and #4: effect of risk factors associated with physical conditions and surface 
conditions
In this section, we demonstrate the nonlinear effect of risk factors. We have chosen the previous key factor, the 
DUI for physical conditions, for the first demonstration. We have focused this study on two risk factors, human 
and environment. Therefore, we have provided a normal situation considering a low risk level (human normal 
state for drivers combined with dry road surface conditions). We have analyzed it with a higher level of risk 
(DUI human state combined with snowy road surface conditions). The DUI was chosen because we previously 
identified it as a key risk factor. As we wanted to provide a second demonstration, we chose another variable for 
the human state, such as fatigue, instead of DUI. In the following analyses, we assess the effects of combining two 
risk factors: DUI and snowy conditions (Analysis #3) and fatigue and snowy conditions (Analysis #4). We provide 
two different situations to show that nonlinearity is present in different cases. Analysis #3 revealed that the 
combined impact of driving under the influence and snowy driving conditions on fatalities (1.329–0.332 = 0.997) 
was greater than the sum of their individual effects ((DUI 1.228–0.332) + (SNOW 0.35–0.332) = 0.913). This 
effect is much lower for Analysis #4, in which the combined impact of fatigue and snowy conditions was more 
similar to the sum of both factors. Next, we provide the details of the analysis (Tables 8 and 9) followed by a more 
concise explanation of the nonlinearity demonstration. The details of Tables 8 and 9 are shown in Appendix E.

This finding reveals the nonlinear relationships among risk factors, which differ from the effects of individual 
risk factors (Tables 8, 9). We describe the nonlinearity effect hereafter for Analyses #3 and #4. We have 
demonstrated this effect for two cases, considering that other situations should be studied in further analysis.

We start with fatalities in a normal situation (normal human state and dry road conditions), which represent 
a lower risk situation. We then consider fatalities for two other higher risk situations, one for the human state 
(human state = DUI) and the other for the road condition (road = snow). We compute the variation, representing 
the effect of these factors. We sum both risk variations for both situations (a). We consider the risk for fatalities 
with two risk factors (human state = DUI and road = snow) (b). The subtraction of both situations (a) – (b) shows 
that the combined factors have a greater effect than the added factors.

Table 9.  Results for Analysis #4 (Fatigue/Snow), nonlinear risk factors demonstration.

Analysis #4: Fatigue / Snow A B C D E (computed)

Node Code Description Normal situation Physical condition Surface condition Combined factors Added factors E = (C-A) + B)

Severity

1 Fatal 0.332 0.497 0.350 0.534

2 Injury 29.517 27.329 28.951 27.775

3 Damage only 70.151 72.174 70.699 71.691

Physical cond

101 Normal 100 100

102 DUI

104 Fatigue 100 100

Surface Cond
102 Dry 100 100

103 Snow 100 100

Physical condition Surface condition Normal Dry Fatigue Dry Normal Snow Fatigue Snow Fatigue Snow

Severity level: fatal 0.332 0.497 0.350 0.534 0.515

delta vs. normal sit.(A) 0.165 0.018 0.201 0.183
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We performed a similar calculation for another human state, such as fatigue, instead of DUI (Analysis #4). 
This case shows a weaker effect than the previous one.

Analysis #3 Fatal Variation Description

Fatalities in normal situation 0.33 – Human state = normal; road = dry

Fatalities with DUI 1.23 0.895 Human state = DUI; road = dry

Fatalities with Snow 0.35 0.018 Human state = normal; road = snow

Subtotal 0.913 (a)

Fatalities with DUI and Snow 1.33 0.997 (b) Human state = DUI; road = snow

Difference (a)—(b) −0.084

Analysis #4 Fatal Variation Description

Fatalities in normal situation 0.33 – Human state = normal; road = dry

Fatalities with Fatigue 0.50 0.165 Human state = fatigue; road = dry

Fatalities with Snow 0.35 0.018 Human state = normal; road = snow

Subtotal 0.183(a)

Fatalities with Fatigue and Snow 0.534 0.201 (b) Human state = fatigue; road = snow

Difference (a)—(b) −0.018

These analyses provide a comprehensive view of how different risk factors, both individually and in 
combination, influence the likelihood and severity of road accidents. The analysis highlights the complex 
interactions among these factors and their nonlinear impact on road safety.

Discussion and conclusion
Our study provides a comprehensive analysis of the nonlinear interactions among various risk factors 
contributing to road safety to elucidate the complex dependencies that traditional methods may overlook. We 
propose a novel holistic approach to risk analysis considering the multifaceted nature of risk for a specific study 
case, such as road safety. In this study, the concept of nonlinearity means that the combined influence of multiple 
risk factors on safety outcomes is not simply the summation of their separate effects. Nonlinear risk factor 
interactions are demonstrated with a data-driven approach, such as a Bayesian network.

In this study, various analyses using a data-driven model demonstrated the nonlinear interactions among road 
safety risk factors. These nonlinear effects are particularly evident in the previous analysis involving combined 
risk factors, such as DUI and adverse weather conditions. The other analysis, combining fatigue and adverse 
weather conditions results in a less pronounced nonlinear effect. While fatigue does impair a driver’s alertness 
and reaction time, its impact is generally less severe than that of DUI. Fatigued drivers may experience slower 
reflexes and reduced attention, but they retain more control over their cognitive functions compared to drivers 
under the influence of alcohol or drugs. Therefore, the combined effect of fatigue and snowy conditions, is not 
as much amplified as the effect of DUI and adverse weather conditions.

The increased risk when these factors co-occur suggests a complex, multiplicative effect rather than a simple 
additive effect. This underscores the importance of considering interactions among risk factors to understand 
and mitigate road safety hazards. By emphasizing these interactions, the study provides a more comprehensive 
framework for policymakers to design targeted strategies.

Our results are consistent with previous findings in the literature, such as those of the WHO, which identified 
individual factors such as DUI and poor weather conditions as significant contributors to road accidents. 
However, by quantifying the compounded impact of these factors, our research provides a novel perspective, 
illustrating how their interactions increase the probability of severe outcomes. Unlike traditional statistical 
methods, a BN captures the complex interrelationships of risk factors and is more suitable for this kind of analysis. 
Although many studies propose risk assessment using Bayesian  networks12–15, none of them has analyzed the 
nonlinear effects of combined risk factors compared to individual effects.

Our findings have important implications for road safety policies and intervention strategies. Identifying the 
increased risk due to the combination of factors such as DUI and inclement weather can inform the development 
of targeted enforcement strategies. For instance, law enforcement agencies might prioritize DUI checks during 
bad weather conditions, or public safety campaigns could specifically address the heightened risks of driving 
under the influence during adverse weather conditions. Additionally, our study highlights the critical role of 
safety equipment, suggesting that interventions promoting its use could substantially mitigate risks, especially 
in high-risk analysis.

While our study offers important insights, some limitations should be considered. Because we focused on 
road data collected in Maryland, the results should be considered in this specific context, and these findings 
might vary in different geographic locations or cultural environments.

Future research should aim to replicate this study for other road risk locations. The method can be generalized 
to other fields, such as health or leisure activities, like cycling and skiing, to evaluate the universality of these 
nonlinear interactions. Although we performed the demonstration using two risk factors, the analysis may also 
include more risk factor interactions.

Our study utilized only three months of data, which may exclude natural seasonal variability in crash data 
and its potential influence on risk analysis. Seasonal variations can significantly impact factors such as weather 
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conditions, traffic volume, and driving behavior. Future research should aim to include data spanning all seasons 
of the year to capture these variations and provide a more comprehensive analysis of risk factors. This approach 
will ensure that the findings are applicable across different times of the year.

In conclusion, our study contributes to road safety research by elucidating the nonlinear interactions among 
risk factors through a data-driven approach. The findings suggest that new paradigms for assessing and managing 
road safety risks should be developed. Approaches that consider the complex relationships among multiple risk 
factors can lead to more effective and targeted road safety policies and interventions, ultimately contributing to 
a reduction in road traffic accidents and fatalities. Considering the generalizability of this risk analysis method 
to other fields, this may also contribute to enhancing preventive measures across various domains.

Data availability
The dataset is open source and is published by the Maryland Government: (https:// catal og. data. gov/ datas et/ 
maryl and- state wide- vehic le- crash es- cy2018- quart er-1).
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