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Abstract

Structural equation models have been around for now a long time. They are intensively

used to analyze data from different fields such as psychology, social sciences, economics,

management, etc. Their estimation can be performed using standard statistical packages

such as LISREL. However, these implementations suffer from an important drawback: they

are not suited for cases in which the variables are far from the normal distribution. This

happens in particular with ordinal data that have a non symmetric distribution, a situation

often encountered in practice. An alternative approach would be to use generalized linear

latent variable models (GLLVM) as defined for example in Bartholomew and Knott 1999
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and Moustaki and Knott (2000). These models consider the data as they are, i.e. binary or

ordinal but the loglikelihood function is intractable and needs numerical approximations to

compute it. Several approaches exist such as Gauss-Hermite quadratures or simulation based

methods, as well as the Laplace approximation, i.e. the Laplace approximated maximum

likelihood estimator (LAMLE) proposed by Huber, Ronchetti, and Victoria-Feser (2004) for

these models. The advantage of the later is that it is very fast and hence can cope with

relatively complicated models. In this paper, we perform a simulation study to compare

the parameters’ estimators provided by LISREL which is taken as a benchmark, and the

LAMLE when the data are generated from a confirmatory factor analysis model with normal

variables which are then transformed into ordinal ones. We will show that while the LISREL

estimators can provide seriously biased estimators, the LAMLE not only is unbiased, but

one can also recover an unbiased estimator of the correlation matrix of the original normal

variables.

Keywords: Confirmatory factor analysis, Laplace approximation, covariance structure,

LISREL, Generalized Linear Latent Variable Models, LAMLE.
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1 Introduction

In many scientific fields researchers use models based on theoretical concepts that cannot

be observed directly. These theoretical concepts include for example the standard of living

or welfare in economics, intelligence or anxiety, etc., in psychology, marketing orientation in

management, etc. These concepts are very important within the framework of theoretical

models, but when these models are validated by means of observed data, the problem of

measurement arises. In these situations, observable quantities (manifest variables) that are

proxies for the concepts of interest are used to build up the theoretical concepts (latent

variables). For this kind of problems statistical methods have long been available. Principal

component analysis, factor analysis and structural equation modelling (see e.g. Jöreskog

1969 and Arminger and Küsters 1988) are suitable methods. For the later, analysis can be

used that are available in now standard software such as LISREL (Jöreskog and Sörbom

1993).

Although LISREL incorporates methods dealing with a wide variety of applied problems,

it is based on the assumption that the manifest variables are multivariate normal. When this

is obviously not the case (as in the case of binary or ordinal variables), the manifest variables

are taken as indirect observations of multivariate normal variables and standard inference

based on the maximum likelihood estimator (MLE) is then performed (see Jöreskog 1990).

This approach, as implemented in LISREL and other packages, suffers from an important

drawback: the resulting estimators can be seriously biased when the data generating distri-

bution is far from the normal one, especially when it is non symmetric. Several simulation

studies have shown this feature; see e.g. DiStefano (2002).
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In our opinion, it is essential that the manifest variables are treated as they are, i.e.

binary, ordinal or continuous, and that the model that formalizes the relationship between

the manifest and the latent variables should take the type of data into account. Such

models were first investigated by Bartholomew (1984a, 1984b) who considered the case of

binary data. More recently, Moustaki (1996) and Moustaki and Knott (2000) considered

mixtures of manifest variables. They proposed a generalized linear latent variable model

(GLLVM) that allows one to link latent variables to manifest variables of different type (see

also Bartholomew and Knott 1999).

The statistical analysis of GLLVM presents a difficulty: since the latent variables are

not observed, they must be integrated out from the likelihood function. One could con-

sider several approaches to solve this problem. Moustaki (1996) proposes using a simple

Gauss-Hermite quadrature as a numerical approximation method. However, it is known

that a simple Gauss-Hermite quadrature can lead to a poor approximation. Moreover, it

is often infeasible when the number of latent variables is large. A possible improvement is

provided by an adaptive Gauss-Hermite quadrature which appropriately centers and rescales

the quadrature nodes. This technique is implemented in the function gllamm in Stata (see

Rabe-Hesketh, Skrondal, and Pickles 2002) to fit generalized latent and mixed models (Skro-

ndal and Rabe-Hesketh 2004) and can be used to fit our models. However, the procedure

is at the moment extremely slow. We propose instead using the Laplace approximation of

the likelihood function, resulting in the so-called Laplace approximated MLE, i.e. LAMLE

(see Huber, Ronchetti, and Victoria-Feser 2004) which is implemented in a software called

LCube. In the case of generalized linear mixed models (GLLAMM), which can be seen as a
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generalization of GLLVM, a simplified version of the Laplace approximation is used by Bres-

low and Clayton (1993) and Lin and Breslow (1996) which results in the same estimator as

that proposed by McGilchrist (1994) and Lee and Nelder (1996) (see also Huber, Ronchetti,

and Victoria-Feser 2004). Laplace approximation of the likelihood has the important advan-

tage with respect to quadrature that it allows one to estimate more complex models in an

efficient and fast way. Alternative estimation methods include methods based on stochastic

approximations such as MCMC and MCEM; see e.g. Yau and McGilchrist (1996). While

these methods have been applied successfully in many complex situations, there are potential

drawbacks such as long computation times and stopping rules.

In this paper, we compare the performance in terms of bias and variance of the LAMLE

versus the estimator provided by LISREL which is taken as a benchmark. We do that

through a simulation study, using a typical and quite important factor analysis model for

ordinal data. In particular, we will show that while the LISREL estimates can be seriously

biased when the ordinal data are non symmetric, the LAMLE is never biased. We will start

by briefly describing the proposed estimators for GLLVM and then present the design and

the results of the simulation study.

2 Alternative estimators for the GLLVM

2.1 The underlying variable approach of LISREL

The underlying variable approach assumes that all the manifest variables are multivariate

normal. If a variable is not normal, it is assumed to be an indirect observation of an underly-
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ing normal variable. This approach can be formulated as follows. Let x(j), j = 1, . . . , p, one

of the p manifest variables, be a Bernoulli variable, z = [1, z1, . . . , zq]T = [1, zT(2)]
T a vector

of latent variables with q < p, and αj = [αj0, . . . , αjq]
T a vector of parameters (also called

loadings). Let the conditional distribution of y(j) given z be normal with mean αTz and

unit variance. Given z, a link is then established between x(j) and y(j) in that it is assumed

that x(j) takes the value 1 if y(j) is positive and 0 otherwise. Then,

E
£
x(j) | z)

¤
= P (y(j) > 0 | z) = Φ(αT

j z),

where Φ(·) is the normal cumulative distribution function. We obtain from the last equation

that

probit
¡
E
£
x(j) | z

¤¢
= Φ−1

¡
E
£
x(j) | z

¤¢
= αT

j z.

Consequently, the assumption of an underlying normal variable in the LISREL approach

can be compared to the one with the GLLVM (see below), except that the link function is a

probit instead of a logit. These two link functions are very close (see e.g. Lord and Novick

1968), so that in our simulations the estimators provided by LISREL can be compared to

the LAMLE.

In practice, the model parameters are estimated in three steps (Jöreskog, 1969, 1990).

First, the thresholds of the underlying variables are estimated from the univariate means of

the manifest variables. In a second step, the correlation matrix between manifest and under-

lying variables is estimated using polychoric, polyserial and Pearson correlations depending

on the type of manifest variables, and finally, the model parameters are obtained from a

6



factor analysis. For the later, several methods are available (see Jöreskog and Sörbom 1993),

and a popular one is the weighted least squares estimator (WLSE).

2.2 The LAMLE

The LAMLE of Huber, Ronchetti, and Victoria-Feser (2004) has been design to estimate the

parameters of a GLLVM. The later describes the relationship between p manifest variables

x(j)and the q latent variables zk by means of the conditional distributions gj(x(j)|z), which

belong to the exponential family (with canonical link)

gj(x
(j)|z) = exp

(
x(j)αT

j z− bj(α
T
j z)

φj
+ cj(x

(j), φj)

)
, (1)

where bj and cj are known functions that depend on the chosen distribution gj and φj is

a scale parameter (McCullagh and Nelder 1989). Note that the canonical link for ordinal

variables is the logit function. The essential assumption in GLLVM is that, given the la-

tent variables, the manifest variables are conditionally independent, and therefore the joint

conditional distribution of the manifest variable is

pY
j=1

gj(x
(j)|z)h(zT(2)). (2)

where h(zT(2)) is the density of the latent variables which is assumed to be the standard

normal with covariance Iq. The last assumption of independence can actually be relaxed.

Since the latent variables are not observed, their realizations are treated as missing, and are

7



integrated out, giving the marginal density of the manifest variables

fα,φ(x) =

Z (
pY

j=1

gj(x
(j)|z)

)
h(zT(2))dz

T
(2). (3)

with α = [α1 . . .αp]
T and φ =

£
φ1 . . . φp

¤T
.

Given a sample xi = [x
(1)
i , . . . , x

(p)
i ], i = 1, . . . , n, one can use the log-likelihood function

to estimate the parameters α and φ. The later contains a multidimensional integral which

cannot be computed explicitly, except when all the gj are normal. Huber, Ronchetti, and

Victoria-Feser (2004) propose to use a Laplace approximation for the integrals (see also Tier-

ney and Kadane 1986) leading to implicit estimators that we do not present here. The error

rate is of order p−1, where p is the number of manifest variables and hence the approximation

improves as the number of latent variables grows (because with more latent variables one

needs more manifest variables). In addition, the Laplace approximation yields automatically

estimates of individual latent scores bzj (see Huber, Ronchetti, and Victoria-Feser 2004). Fi-
nally, Huber, Ronchetti, and Victoria-Feser (2004) show that the LAMLE belongs to the

class of M-estimators from which they derive the asymptotic normality and inference.

It should also be noted, that the model in (3) is not identifiable unless one imposes

constraints on the loadings α. Huber, Ronchetti, and Victoria-Feser (2004) provide the

necessary conditions for the LAMLE of α to be unique. Alternatively, one can use a rotation

such as a varimax rotation.
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3 Simulation study

3.1 Design

The aim of the simulation study is to compare two different estimators for a confirmatory

factor analysis model, namely the LAMLE (i.e. provided by LCube) and the one based

on a normal factor analysis with polychoric correlations as input and with the WLSE (i.e.

provided by LISREL). The population model we consider here is presented in Figure 1. We

have 10 manifest ordinal variables and through a factor analysis (unconstrained but with

varimax rotation) we try to recover the model. The factors Z1 and Z2 are independent and

normally distributed with zero mean and unit variance. Given these factors, the manifest

variables are (in a first step) normally distributed with means computed by means of the

factor loadings and unit variances. These variables are then transformed in ordinal variables

(5 categories) following two methods:

• Ordinal-symmetric: the first 5% on the normal values were assigned the value of 1 on

the ordinal scale, the following 21% the value of 2, the following 48% the value of 3,

the following 21% the value of 4 and the 5% remaining the value of 5.

• Ordinal-non-symmetric: the cutoff points were chosen to correspond to 75%, 15%, 5%,

3% and 2% of the normal values.

Half of the manifest variables were transformed in ordinal-symmetric variables, the others

in ordinal-non-symmetric (see model in Figure 1). We consider 2 sample sizes, namely 100

and 300. We made 100 replications for each sample size.
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From the estimates distribution, we are able to check two important aspects of the model.

The first and most natural one is the estimator’s bias in estimating the factor loadings. We

do so by estimating a unconstrained two factors model and apply a varimax rotation. The

second aspect, is the correlation matrix of the underlying normal manifest variables. In other

words we ask the following question: given that the true generating process for the manifest

variables is the normal distribution with mean 0 and correlation matrix

R = αTα+Ψ (4)

where Ψ is the diagonal matrix of so-called residual variances (or uniqueness) and is such

that diag
¡
αTα+Ψ

¢
= 1, can the estimators, after transforming the normal variables into

ordinal ones, recover the original correlation matrix? This will be done by analyzing the bias

distribution of the constructed correlation matrices using the LAMLE and of the polychoric

correlation matrices provided by LISREL

3.2 Loadings estimates

We present the results in the form of boxplots of the estimators bias distributions. These

are given in Figures 2 and 3 for the loadings of respectively the first and second latent

variable, with n = 100. The 10 graphs in each Figure corresponds to the 10 loadings of the

unconstrained two factors model. The estimates are those obtained after varimax rotation

and centered at the true value of the corresponding loading. In each graph, the left boxplot

is for the estimators provided by LISREL (LIS) and the right boxplot is for the LAMLE
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provided by LCube (LCu).

For the first latent variable Z1 (Figure 2), one notices that both estimators are unbiased

for the loadings corresponding to a nil value (i.e. for X5 to X10). However, for the loadings

of X1 to X4, the LISREL estimator is clearly biased for the ordinal-non-symmetric variables

(i.e. X2 and X4) and even slightly biased for the ordinal-symmetric ones. On the other

hand, the LAMLE is unbiased in all situations. For the second latent variable (Figure 3),

the same conclusion can be drawn.

We also performed the same analysis with n = 300 but do not present the results here.

We found the same features, that is to say that the LISREL estimator is biased, whereas the

LAMLE is not. In fact, the bias of the LISREL estimator doesn’t disappear as n grows.

3.3 Correlation estimates

We also present the results in the form of boxplots of the estimators’ bias distributions. For

the LAMLE, we use the relationship (4) to estimate the correlation matrix of the original

manifest variables. For LISREL, we use the provided polychoric correlations. Figure 4 is

for the LAMLE and Figure 5 is for LISREL. Each graph in each Figure corresponds to one

row of R. In each row, one of the correlation is by definition equal to 1, and therefore the

corresponding boxplot is just a line at 0.

For the LAMLE (Figure 4), all correlation estimators are unbiased. For the polychoric

correlations provided by LISREL (Figure 5), one can notice that about half of the corre-

lations estimators are biased. The polychoric correlations actually underestimate the true

correlations when both variables load on one of the latent variables. This explains why
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the resulting loadings, obtained by a factor analysis based on the polychoric correlation are

themselves biased.

4 Conclusion

Latent variable models are important in many disciplines and have recently attracted a con-

siderable attention (see e.g. Bartholomew and Knott 1999 and Skrondal and Rabe-Hesketh

2004). When the manifest variables are not normal but instead ordinal for example, the es-

timation problem is challenging because of the complicated form of the likelihood function.

Several estimators have been proposed sofar like the one based on polychoric, polyserial

and Pearson correlations as implemented in most statistical packages, LISREL being one

of them. Other estimators are based on numerical approximations of the integrals in the

likelihood function which include simple or adaptive Gauss-Hermite quadratures, stochastic

approximations such as MCMC and MCEM and the Laplace approximation (as proposed

by Huber, Ronchetti, and Victoria-Feser 2004). We have argued that an adaptive Gauss-

Hermite quadrature or stochastic approximations are very computationally intensive so that

complicated models are almost impossible to estimate, whereas the LAMLE is quite fast and

can be used with relatively complex models. The question we have addressed in this paper

is to what extent and in practice, the LAMLE can improve a statistical analysis compared

to a traditional approach such as LISREL. For that, we have performed a simulation study

involving a quite common model with ordinal manifest variables, some of which are non

symmetrically distributed. It should be stressed that this type of situation is very common

in practice. We have concluded that the LISREL estimates can be seriously biased, that even
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if the resulting estimator is based on the underlying (normal) variable approach, it cannot

recover the original normal correlation structure, whereas on the other hand, the LAMLE is

unbiased and is able to recover the original correlation structure.
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Figure 3: Bias distribution of loadings’ estimates for Z2, n = 100
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structed from the LAMLE, n = 100
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