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Abstract

To date, the contribution of disrupted potentially cis-regulatory conserved non-coding sequences (CNCs) to human disease
is most likely underestimated, as no systematic screens for putative deleterious variations in CNCs have been conducted. As
a model for monogenic disease we studied the involvement of genetic changes of CNCs in the cis-regulatory domain of
FOXL2 in blepharophimosis syndrome (BPES). Fifty-seven molecularly unsolved BPES patients underwent high-resolution
copy number screening and targeted sequencing of CNCs. Apart from three larger distant deletions, a de novo deletion as
small as 7.4 kb was found at 283 kb 59 to FOXL2. The deletion appeared to be triggered by an H-DNA-induced double-
stranded break (DSB). In addition, it disrupts a novel long non-coding RNA (ncRNA) PISRT1 and 8 CNCs. The regulatory
potential of the deleted CNCs was substantiated by in vitro luciferase assays. Interestingly, Chromosome Conformation
Capture (3C) of a 625 kb region surrounding FOXL2 in expressing cellular systems revealed physical interactions of three
upstream fragments and the FOXL2 core promoter. Importantly, one of these contains the 7.4 kb deleted fragment. Overall,
this study revealed the smallest distant deletion causing monogenic disease and impacts upon the concept of mutation
screening in human disease and developmental disorders in particular.
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Introduction

Many recent studies have provided insights into the biological

relevance of the non protein-coding portion of the human

genome, previously referred to as junk DNA. One of them is the

ENCODE pilot study, which has revealed that the number of

functional genomic elements is much higher than previously

anticipated, and that the vast majority of elements regulating gene

expression are contained in the non-protein coding portion of the

genome. In addition, it shed light on the pervasively transcribed

nature of the human genome [1].

Comparative analysis of genomes is a major tool for the

identification of regulatory elements. In this context, several

arbitrary criteria have been used to define evolutionarily conserved

elements, such as conserved non-coding sequences (CNCs) that

were originally defined as elements sharing $70% homology over

$100 bp of ungapped alignment of human and mouse sequences

[2–4]. A fraction of them (i.e. the most conserved ones) have been

shown to function as cis-regulatory elements, predominantly

controlling the spatiotemporal expression of developmental genes

[5–7]. To date, the contribution of disrupted potentially regulatory

CNCs to human genetic disease is most likely underestimated, as

PLoS Genetics | www.plosgenetics.org 1 June 2009 | Volume 5 | Issue 6 | e1000522



no systematic screens for putative deleterious variations in CNCs

have been conducted in this respect. One of the reasons for this is

the large extent of the regions to be investigated, as the regulatory

domain of a gene can stretch beyond 1 Mb in both directions of its

transcription unit. In addition, putative functional consequences of

variations outside a transcription unit are difficult to assess.

An example of a developmental gene with a strictly regulated

spatiotemporal expression pattern is FOXL2 (NM_023067). It is

known to be the disease-causing gene of blepharophimosis-ptosis-

epicanthus inversus syndrome (BPES) [MIM 110100], a rare

autosomal dominant development disorder of the eyelids with

(BPES type I) or without (BPES type II) premature ovarian failure

(POF) [8]. Overall, sporadic and familial BPES can be explained

by intragenic mutations and gene deletions in 71% and 11% of the

patients respectively [9]. Interestingly, we identified microdeletions

upstream and downstream of FOXL2 in 4% of BPES [9,10]. In

addition, 3 translocation breakpoints upstream of FOXL2 have

been described [8,11,12]. Until now, there is no evidence for

genetic heterogeneity of this condition. From the 5 reported

microdeletions outside FOXL2, one is located 39 to FOXL2, while

the others are located 59 to FOXL2 and share a smallest region of

deletion overlap (SRO) of 126 kb [10]. This SRO is located

230 kb upstream of FOXL2, telomeric to the three previously

characterized translocation breakpoints, and contains several

CNCs, harbouring putative transcription factor binding sites.

Moreover, the SRO contains the human orthologue of the Polled

Intersex Syndrome (PIS) mutation in goat. The PIS goat is a

natural animal model for BPES associating absence of horns

(polledness) and intersexuality. The sex reversal exclusively affects

female animals in a recessive manner, whereas the absence of

horns is dominant in both sexes. The phenotype is caused by a

regulatory 11.7 kb deletion located 280 kb upstream of goat

FOXL2. It was shown that the deletion alters the transcription of at

least three genes: FOXL2, the non-protein coding gene PISRT1

(PIS-regulated transcript 1) (AF404302) and PFOXic (promoter

FoxL2 inverse complementary) (AY648048) [13–15]. In agreement

with the findings in the translocation patients and in the PIS goat,

the distant microdeletions found in human BPES were hypoth-

esized to disturb long-range transcriptional control of FOXL2

expression through the disruption of one or more cis-acting

regulatory elements. These findings added to an increasing

number of long-range genetic defects in human development

conditions [16–19].

Apart from translocations and microdeletions/duplications of

cis-regulatory elements, subtle copy number variations (CNVs) or

sequence variations of cis-regulators can also be associated with a

phenotype in humans. These have been found in the long-range

limb-specific cis-regulatory element ZRS of the SHH gene

(NM_000193), leading to preaxial polydactyly (PPD) (PPD2,

MIM 174500), isolated triphalangeal thumb (MIM 174500), and

triphalangeal thumb-polysyndactyly (TPTPS) phenotypes (MIM

174500) [20–23]. In addition, Benko et al. reported a heterozygous

point mutation in a highly conserved non-coding conserved

sequence located 1.44 Mb upstream of SOX9 in a patient with

Pierre Robin sequence (PRS, OMIM 261800) [19].

To date, the underlying molecular defect remains unknown in

12% of BPES patients [9]. Here, we focus on the contribution of

previously unidentifiable and subtle deletions/duplications, and

sequence variations in putative cis-regulatory elements surround-

ing FOXL2 in BPES. We developed a combined strategy consisting

of microarray based comparative genome hybridization (array

CGH), high-resolution quantitative PCR (qPCR) and sequencing

of CNCs located in the SRO 59 to FOXL2. Samples from 57 BPES

patients who do not carry an intragenic FOXL2 mutation or gene

deletion were studied, revealing a distant 7.4 kb deletion as the

most prominent finding. The deletion harbours putative regula-

tory elements. Functional studies in cellular systems were

performed to assess their regulatory potential. In addition,

Chromosome Conformation Capture analysis (3C) was conducted

to provide insights into the spatial organisation and interaction

patterns of a normal and a disrupted FOXL2 locus.

Results/Discussion

Comparative analysis of genomes is a major tool for the

identification of regulatory elements [2]. In this context, a

comparative analysis of the human and mouse orthologous regions

spanning the SRO revealed 25 CNCs with an average length of

165 bp and average homology of 82.5% (Table 1). These

identified CNCs were an important focus here. We included 57

patients with a diagnosis of BPES who tested negative for

intragenic mutations and copy number changes of FOXL2. First,

these patients were screened for copy number changes outside

FOXL2, with special interest for the initial SRO region of upstream

deletions. This was carried out by one or a combination of the

following assays: microsatellite analysis, arrayCGH and two qPCR

assays called qPCR-3q23 (Figure 1) and qPCR-CNC (Figure 2)

respectively. The use of different techniques can be explained by

the availability of more convenient techniques in the course of the

study. In a second step, the remaining negative patients were

specifically screened for sequence variants of CNCs within the

initial SRO (Figure 2). In addition, functional analyses (i.e.

luciferase assays) were performed for wild type and variant CNCs

in different cellular systems. Finally, the chromosome conforma-

tion of the FOXL2 locus was investigated by 3C.

ArrayCGH revealed 1 novel extragenic deletion 59 to FOXL2

which was further delineated by qPCR-CNC at the centromeric

end (Deletion A) (Figure 1 and Figure 2). In addition, qPCR-3q23

with 3 amplicons located in the SRO revealed 3 more novel

extragenic deletions (Deletion B–D). Deletion B and C, both

encompassing all 3 amplicons and identified in typical BPES

Author Summary

Long-range genetic control is an inherent feature of genes
harbouring a highly complex spatiotemporal expression
pattern, requiring a combined action of multiple cis-
regulatory elements such as promoters, enhancers, and
silencers. Consequently, disruption of the long-range
genetic control of a target gene by genomic rearrange-
ments of regulatory elements may lead to aberrant gene
transcription and disease. To date, the contribution of
mutated regulatory elements to human disease has not
been studied frequently. Here, we explored the contribu-
tion of genetic changes in potentially cis-regulatory
elements of the FOXL2 gene in blepharophimosis syn-
drome (BPES), a developmental monogenic condition of
the eyelids and ovaries. We identified a de novo very subtle
deletion of 7.4 kb causing BPES. Moreover, we studied the
functional capacities and chromosome conformation of
the deleted region in FOXL2 expressing cellular systems.
Interestingly, the chromosome conformation analysis
demonstrated the close proximity of the 7.4 kb deleted
fragment and two other conserved regions with the FOXL2
core promoter, and the necessity of their integrity for
correct FOXL2 expression. Finally, our study revealed the
smallest distant deletion causing monogenic disease and
emphasized the importance of mutation screening of cis-
regulatory elements in human genetic disease.

Pathogenic 7.4 kb Distant Deletion
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patients, were subsequently further delineated using additional

amplicons (Figure 1). Deletions B and C were found to be 190 kb–

478 kb and 1.12 Mb–2.3 Mb in size respectively (Figure 1).

Deletions A, B and C can be added to the previously described

relatively large deletions 59 to FOXL2, which were believed to be

pathogenic through the deletion of cis-regulatory elements [10].

Here, the de novo occurrence could be assessed for deletion C for

which parental DNA was available.

Most remarkable, however, was the identification of the very

subtle deletion D, which encompassed only 1 amplicon. Deletion

D could be mapped to a region of minimum 6 kb and maximum

12.5 kb in size using qPCR-CNC. Subsequent long-range PCR

and direct sequencing of the junction PCR fragment allowed us to

define its extact size (7358 bp) and location (chr3:140,431,841-

140,439,199), being 283 kb upstream of FOXL2 (Figure 2). This

deletion is entirely retained within the previously described SRO

of 126 kb and thus defines a drastically reduced SRO. Further-

more, segregation analysis suggested a de novo occurrence of this

small deletion, sustaining its pathogenic potential. Despite its small

size, the deletion is presumed to lead to a classic BPES phenotype

in a 7-year-old sporadic male.

The observation that all known and novel regulatory deletions

do not show recurrent breakpoint regions argues against non-

allelic homologous recombination (NAHR) as a possible mecha-

nism underlying this subtle deletion [24]. Other models such as

non-homologous end joining (NHEJ) or Forkhead Stalling and end

Switching (FoSTeS) might explain the formation of the deletion,

although there is no scar at the junction fragment [24]. To unravel

the mechanism responsible for this deletion, bioinformatics

analyses of the breakpoint junctions was performed. A 70 bp

ClustalW alignment of the abnormal junction sequence with the

reference genomic sequence from both breakpoint regions, did not

Table 1. Mapped CNCs within the initial SRO.

CNC #Chr Start (hg18) Stop (hg18)
Length
(bp)

% id.
Hs-Mm

% id.
Hs-Galgal

Beysen
et al.
2005 [10]

Crisponi et al.
2004 [69]

Reduced SRO
(Figure 2
and 4)

3C (Figures
1, 2 and 5;
Figure S2)

CNC8 chr3 140384474 140384783 310 82,3 no match

CNC9 chr3 140387170 140387278 109 87,2 no match

CNC10 chr3 140389814 140389935 122 76,2 no match

CNC11 chr3 140404369 140404478 110 71,8 no match

CNC12 chr3 140415708 140415847 140 80,0 no match

CNC1 chr3 140430011 140430163 153 85,0 33,3 CNG3 9 kb conserved block interacting
fragment 133

CNC2 chr3 140430359 140430589 231 75,8 50,2 CNG2 9 kb conserved block interacting
fragment 133

CNC3 chr3 140431968 140432183 216 99,1 94,0 CNG4 9 kb conserved block 7.4 kb deletion interacting
fragment 133

CNC13 chr3 140432327 140432425 99 80,8 few bases 9 kb conserved block 7.4 kb deletion interacting
fragment 133

CNC4 chr3 140434920 140435316 397 94,2 71,5 CNG5 9 kb conserved block 7.4 kb deletion interacting
fragment 133

CNC14 chr3 140435755 140435885 131 80,2 no match 9 kb conserved block 7.4 kb deletion interacting
fragment 133

CNC5 chr3 140436196 140436391 196 87,2 61,7 CNG6 9 kb conserved block 7.4 kb deletion interacting
fragment 133

CNC15 chr3 140436467 140436614 148 72,3 no match 9 kb conserved block 7.4 kb deletion interacting
fragment 133

CNC6 Chr3 140438276 140438409 134 78,4 75,4 CNG7 9 kb conserved block 7.4 kb deletion interacting
fragment 133

CNC16 chr3 140438782 140438885 104 80,8 no match 9 kb conserved block 7.4 kb deletion interacting
fragment 133

CNC17 chr3 140467213 140467325 113 85,0 no match

CNC18 chr3 140469910 140470106 197 72,6 no match

CNC7 chr3 140473283 140473397 115 92,2 73,9 CNG9

CNC19 chr3 140488450 140488549 100 86,0 no match

CNC20 chr3 140491469 140491687 219 84,0 no match

CNC21 chr3 140494100 140494210 111 86,5 no match

CNC22 chr3 140494313 140494442 130 86,2 no match

CNC23 chr3 140494476 140494759 284 91,9 no match

CNC24 chr3 140496676 140496848 173 78,0 no match

CNC25 chr3 140499555 140499663 109 73,4 no match

All CNCs overlap with PhastCons (28 species, UCSC table, hg18).
Abbreviations: chr.: chromosome; id.: identity; Hs: Homo sapiens; Mm: Mus musculus; Galgal: Gallus gallus.
doi:10.1371/journal.pgen.1000522.t001

Pathogenic 7.4 kb Distant Deletion
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reveal any significant homologies, although there is some minor

sequence similarity. Similarly, BLAST2 analysis of the 2 kb

breakpoint regions did not reveal any significant similarities either.

Analysis with RepeatMasker indicated a 36-bp low complexity

region at the centromeric end of the deletion, but no additional

repetitive elements. At the telomeric end it revealed a LINE2

repeat in very close proximity of the breakpoint and at a larger

distance a 25-bp simple repeat and a 123-bp low complexity

region. Tandem repeats and palindromes were excluded in a

region of 300 bp around the breakpoints using Mreps and

Palindrome. In addition, the GC content of a 1-Mb region

around the 7.4 deletion appeared not to be above average.

Interestingly, with DNA Pattern Finder three motifs, known to be

implicated in DNA rearrangements elsewhere, were identified in

70-bp regions surrounding the breakpoints, including one of the

immunoglobulin heavy chain class switch repeats (GGGCT), a

deletion hotspot consensus site (TG[AG][AG][GT][AC]) and a

DNA polymerase a pause site core sequence GC [GC]. It cannot

be excluded, however, that the occurrence of these motifs is

coincidental. Manual inspection of the breakpoint regions and the

junction fragment revealed a mirror repeat at the telomeric

breakpoint. Such mirror repeats have the capacity to form

noncanonical, three stranded structures referred to as H-DNA,

being one of the non-B DNA structures [25]. H-DNA-forming

sequences have previously been identified in regions that are prone

to genomic rearrangements [25–28]. Interestingly, the pentanu-

cleotide motif present in this mirror repeat is also seen on the

reverse strand at the centromeric end of the deletion (Figure 3).

We thus hypothesize that a double-stranded break (DSB) at the

telomeric side triggered the deletion, followed by a DSB repair

mechanism guided by the formation of a knot loop between the

reverse complement of the pentanucleotide motif at the centro-

meric end (Figure 3).

The drastically reduced SRO contains 8 out of 25 CNCs

identified in the initial SRO. Moreover, 4 out of 8 are conserved

up to chicken, adding weight to an assumed functional role

(Table 1). According to several miRNA databases the reduced

SRO does not contain any miRNAs. We also investigated the

regulatory potential of the deleted region using regulatory tracks.

Based on the currently available data, the region is devoid of CpG

islands, transcription start sites, conserved transcription factor

binding sites, miRNA regulatory sites, VISTA enhancers,

regulatory elements from OregAnno, DNaseI hypersensitivity sites

and CTCF binding sites. While the new SRO is devoid of known

human genes, it does contain 4 human ESTs. Three are unspliced

ESTs from two testis cDNA libraries, sharing a common telomeric

Figure 1. Human Genome Browser view of the FOXL2 region. The FOXL2 region (chr3:138,720,000–143,780,300) with custom tracks showing
the BACs and qPCR-3q23 amplicons used in the study. Locations and sizes of the novel deletions are indicated by horizontal bars. The red bars
indicate the minimal deleted regions and the pink bars indicate the regions harbouring deletion breakpoints. Two tracks indicate the human
orthologous regions of caprine PISRT1 and the caprine PIS deletion based on BLAST searches. The last two tracks at the bottom represent the EcoRI
restriction sites used for 3C and the 3C fragments interacting with the fragment containing the FOXL2 promotor (in green). The figure was drawn
according to the UCSC, Human Genome Browser, March 2006.
doi:10.1371/journal.pgen.1000522.g001

Pathogenic 7.4 kb Distant Deletion
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end position (Figure 2). BLASTn analysis with EST AI204197 as

query sequence retrieved 51 hits, including a significant alignment

with Capra hircus PISRT1 mRNA and Mus musculus Pisrt1 partial

mRNA sequence. PISRT1 is one of the genes affected by the causal

PIS deletion in goat. The PIS goat is the only known natural

animal model for BPES associated with absence of horns

(polledness) and intersexuality, caused by a regulatory 11.7 kb

deletion located 280 kb upstream of goat FOXL2. It was shown

that the deletion does not contain, but alters the transcription of at

least three genes: FOXL2, the non-protein coding gene PISRT1,

and PFOXic [14,15]. Pailhoux et al. (2001) suggested that the PIS

deletion harboured elements involved in long-range cis-regulation

of goat FOXL2 and PISRT1, as the expression of both genes is

affected by the deletion [14]. This was further supported by our

previous findings, revealing that the initial 126 kb SRO 59 to

FOXL2 contains the PIS locus [10]. Here, the 7.4 kb deletion

proved to contain the PISRT1 orthologue, but not the PIS deletion

(Figure 2). This suggests the existence of distinct interspecies cis-

regulatory elements, which have similar effects when disrupted.

Caprine PISRT1 encodes a long non-coding transcript (ncRNA) of

1.5 kb that is highly expressed in adult testis [13]. A full-length

cDNA of 758 bp was identified by 59 RACE PCR starting from

the known testis ESTs containing a polyadenylation site (Figure

S1). These findings confirm its expression in human testis. In

addition, no expression could be detected in fibroblasts, while a

low PISRT1 expression could be observed in KGN cells, indicating

a co-expression of PISRT1 and FOXL2 in adult ovarian granulosa

cells. These findings are consistent with expression profiles in goat

and mice [13]. The latter is in line with a presumed regulatory

function of PISRT1, requiring a tissue and cell-type specific

expression.

Apart from copy number analyses, the remaining negative

patients were specifically screened for sequence variants of CNCs

within the initial SRO (Figure 2). To date, there are only a few

human phenotypes found to be associated with sequence

variations within cis-regulators [19,20,29,30]. In this study, we

identified 15 single nucleotide substitutions within CNCs or in

flanking nucleotides and a 4-bp deletion mapping immediately

Figure 2. Human Genome Browser view of the initial and reduced SRO. UCSC Genome Browser view of the SRO region (chr3:140,377,900–
140,504,100) with: 25 CNCs mapping within the initial SRO; 3 amplicons of the qPCR-3q23 assay located in the initial SRO; 36 amplicons designed for
the qPCR-CNC assay; the amplicons designed for sequencing analysis of CNCs and the two deletions delineated by qPCR-CNC (A,D). The red bars
indicate the minimal deleted regions and the pink bars indicate the maximum deleted region. The next track indicates the delineation of deletion D
at nucleotide level. The remaining tracks at the bottom display: unspliced ESTs in the reduced SRO; the human orthologue of caprine PISRT1 based on
BLAST searches; the human orthologue of the PIS deletion based on BLAST searches; the EcoRI restriction sites used for 3C; in green the 3C fragments
(133, 158) interacting with the fragment containing the FOXL2 promotor; the conservation profile of the region extracted from the UCSC genome
browser (blue and brown). The figure was drawn according to the UCSC, Human Genome Browser, March 2006.
doi:10.1371/journal.pgen.1000522.g002

Pathogenic 7.4 kb Distant Deletion
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upstream of CNC14 (Table S1). Only 3 nucleotide substitutions

were found in BPES patients exclusively. However, no parents

were available of these particular patients for segregation analysis

(Table S1). Moreover, computational transcription factor binding

site (TFBS) prediction on any of the wild type and variant CNCs

did not support the creation or abolition of a TFBS.

Although comparative sequence analysis has been proven to be

a powerful approach to identify regulatory elements, experimental

studies are required to confirm their role in gene regulation. The

ability to modulate expression of a linked minimal promoter

element in transient cell transfections is a widely exploited in vitro

test of cis-regulatory potential [31]. Thus, for 24/25 CNC

identified in the original SRO, in vitro luciferase assays were

conducted (CNC19 could not be cloned). In both the KGN and

293T cell line, 29% (7/24) of the tested CNCs showed a significant

difference in luciferase activity compared to the basal activity of

the vector itself (T-test, P value,0.05) (Figure 4). Interestingly,

cell-type specific regulatory potential could be observed among the

constructs tested, three of which map within the 7.4 kb reduced

SRO (CNC14, CNC5 and CNC15). This cell type specific

regulatory activity supports that at least a fraction of the tested

CNCs might be involved in the tissue-specific expression of

FOXL2. We also addressed the putative functional impact of the

identified nucleotide variants, but did not detect significant effects.

A small quantitative and tissue-specific cis-regulatory effect of an

individual CNC variation cannot be ruled out however. These

results suggest that sequence variations within individual CNCs do

not directly contribute to the molecular pathogenesis of BPES in

our study.

As an additional experimental tool, 3C was conducted for a

large region of 625 kb flanking the FOXL2 gene. Using 3C,

physical interactions between regulatory elements and their target

genes can be demonstrated [32]. In the FOXL2 expressing KGN

cell line, the FOXL2 core promoter containing EcoRI fragment 58

proved to come in close vicinity to EcoRI restriction fragments 109,

133 and 158, located 177, 283 and 360 kb upstream of FOXL2

respectively (Figure S2). Moreover, an identical but lower

interaction profile was detected in expressing fibroblast cells from

a normal individual (F2) (Figure S2). These data demonstrate that

in the nucleus of expressing cells, the promoter region of the

FOXL2 gene interacts with three long-distance cis-regulatory

sequences.

To validate mutual interactions between these three regulatory

regions, 3C was performed in EBV, KGN and F2 cells with

fragments 109, 133 and 158 respectively as anchor fragments in a

second step (Figure 5). It was found that in expressing cells, all

three distant sequences mutually interact and contact the FOXL2

core promoter, assuming that the intervening DNA loops out.

Interestingly, fragment 133 contains the 7.4 kb fragment that is

deleted in deletion D (Figure 1 and Figure 2; Table 1). To

investigate the consequences of a heterozygous deletion of

interacting fragment 133 on the interaction profile of the FOXL2

locus, we analysed the mutual interactions of these three fragments

in a fibroblast cell line F1, obtained from a BPES patient carrying

an upstream deletion defining the initial SRO [10]. As a control,

we used the fibroblast cell line F2. Interactions of the promoter

with the two elements 109 and 158 that are not located within the

deletion are not reduced. Thus, this suggests that even on the

Figure 3. Characterization of 7.4 kb deletion. Top: Sequence electropherogram of the junction fragment of deletion D. The dotted vertical line
indicates the position of the junction. Bottom: Schematic representation of the proposed mechanism underlying the 7.4 kb deletion. The deleted
fragment is delineated by the vertical lines and represented in red. The retained basepairs are formatted in bold. It is hypothesized that a double-
stranded break (DSB) at the telomeric side triggered the deletion, followed by a DSB repair mechanism guided by the formation of a knot loop
between the reverse complement of the pentanucleotide motif at the centromeric end.
doi:10.1371/journal.pgen.1000522.g003

Pathogenic 7.4 kb Distant Deletion
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deleted chromosome these elements can interact with the FOXL2

promotor despite the absence of fragment 133. Furthermore,

fragments 109 and 158 appear to mutually interact even in the

absence of 133. The upstream deletion disrupts fragment 133

within the reduced SRO, and causes a BPES phenotype. The

latter might lead to the conclusion that the retained interactions

between fragments 109 and 158 and the FOXL2 core promoter are

not sufficient to correctly regulate FOXL2 transcription in the adult

expressing cell system studied here. Moreover, it implies that the

interactions between the cis-regulatory element(s) located in

fragment 133 and the FOXL2 core promoter are essential for this.

General conclusions and perspectives
We identified a de novo distant 7.4-kb deletion that is causally

related to BPES. To our knowledge, this is the smallest fully

characterized distant deletion implicated in the causation of a

human genetic condition (Table S2). This deletion disrupts a long

ncRNA PISRT1 and 8 CNCs, 4 of which are conserved up to

chicken. Functional assays suggest a cis-regulatory and tissue-

specific potential of 3 of them. The biological relevance of these

findings was corroborated by the 3C study of a normal and

aberrant FOXL2 locus in expressing adult cellular systems

respectively, demonstrating a close proximity of the 7.4 kb deleted

fragment and two other conserved regions with the FOXL2 core

promoter, and the necessity of the integrity of the regulatory

domain for correct FOXL2 expression.

Altogether, we identified and characterized a novel tissue-

specific cis-regulatory domain of FOXL2 expression. As we

demonstrated the consequences of its disruption, our findings

impact mutation screening of strictly regulated developmental and

other disease genes. Specifically, our study emphasizes the need for

high-resolution copy number screening of their cis-regulatory

domains. Genome-wide tools such as oligonucleotide or SNP

arrays and next-generation sequencing will play a prominent role

Figure 4. Regulatory activity of wild-type and variant CNCs in FOXL2 expressing and non-expressing cells. The 25 identified CNCs and
their putative pathogenic variants were cloned into a luciferase reporter vector and assayed for their regulatory role into expressing KGN and non-
expressing 293T (human kidney cells) cells. (A) Bar chart showing the regulatory activity of each independent wild type CNC (CNCwt) in KGN (brown
bars) and 293T (blue bars) relative to the basal activity of the empty vector (pTAL). Significant changes (one sample T-test, p value,0.05) are
highlighted by an asterisk. CNCs with a .2 fold-change in activity between cell lines and a significant p value are shown in red. (B) Bar chart of
wtCNCs and variant CNCs (CNCmut) regulatory activity in 293T and KGN cell lines respectively. Each CNC activity is first normalised to the basal
activity of the empty vector and significant changes between wt and mut were then assessed by a two-samples T-test. No significant p values were
found for any assayed construct (P value,0.05).
doi:10.1371/journal.pgen.1000522.g004
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in this. In addition, a well-selected patient population is another

requirement, as illustrated here: (1) we only included patients with

a diagnosis of BPES, a clinically distinguishable but rare disorder,

and (2) they all underwent a uniform pre-screening excluding

intragenic FOXL2 mutations and gene deletions.

Sequence variations within individual CNCs did not contribute

to the molecular pathogenesis of BPES in our study. This can be

explained by the fact that sequence changes within individual

CNCs might result in a more subtle, different or even normal

phenotype, as the cis-regulatory elements they represent might act

Figure 5. 3C analysis of FOXL2 region: mutual interactions between three regulatory sequences upstream of FOXL2. (A–C) In a first step
3C analysis of the FOXL2 region demonstrated a close proximity of three evolutionarily conserved fragments 109, 133, and 158 with a fragment
containing the FOXL2 core promoter in expressing cells (KGN and control fibroblasts F2) (Figure 1, Figure 2, and Figure S2). Fragment 133 contains the
7.4 kb deletion. Second, to validate mutual interactions between these three regulatory fragments, 3C was performed in non-expressing EBV and
expressing KGN and F2 cells with fragments 109 (A), 133 (B) and 158 (C) as anchor fragments respectively. The X-axis shows the genomic positions
relative to the respective anchor fragments 109, 133 and 158 respectively; the Y-axis indicates normalized interaction frequencies measured by semi-
quantitative PCR. At the Y-axis there are no peaks in interaction frequencies because an anchor fragment cannot interact with itself. Regions of
interaction are highlighted with yellow rectangles. In expressing cells, all three distant fragments mutually interact and contact the FOXL2 core
promoter, assuming the intervening DNA loops out. Interaction frequencies between the FOXL2 promoter and the regulatory sequences (represented
in Figure S2) are significantly lower compared to interaction frequencies observed amongst the interacting fragments themselves (A–C). (D–F) The X-
axis shows the genomic positions relative to the respective anchor fragments 109, 133, and 158 respectively; the Y-axis indicates normalized
interaction frequencies measured by semi-quantitative PCR. At the Y-axis there are no peaks in interaction frequencies because an anchor fragment
cannot interact with itself. Regions of interaction are highlighted with yellow rectangles. Experiments with anchor primers 109, 133, and 158
respectively (D–F), revealed interaction comparable to those in EBV cells in the deleted region. Moreover, Figure 5D and 5F show that in F1 cells,
restriction fragments 109 and 158 maintain their mutual interaction in spite of absence of interaction with fragment 133. This demonstrates that
retained mutual interactions and interactions between fragments 109 and 158 and the FOXL2 core promoter are not sufficient for a normal cell-
specific control of FOXL2 expression.
doi:10.1371/journal.pgen.1000522.g005
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in a tissue-specific and quantitative manner [5,6,19,33]. The most

striking example of the latter is the differential phenotype caused

by point mutations in SHH and in its limb-specific enhancer ZRS

of SHH, resulting in holoprosencephaly type III (HPE3) (OMIM

142945) and PPD respectively [20,34].

Other mechanisms may explain the phenotype in the remaining

53 molecularly undefined BPES patients. Although there is no

clear evidence for locus heterogeneity in BPES, mutations in other

disease genes apart from FOXL2 cannot be excluded in some of the

remaining molecularly unresolved cases. Another possibility is the

occurrence of regulatory variants within the untranslated regions

(UTRs) or the core promoter. A number of non-pathogenic

sequence variants have been reported in the FOXL2 putative core

promoter and untranslated regions (UTRs) up to now. However, a

single basepair insertion in the FOXL2 39UTR was found to co-

segregate with BPES in a large Chinese type II BPES family, and

was shown to be located in an AU rich repeat [35]. No functional

studies were provided however to unequivocally prove a

relationship between the insertion and the phenotype in this

family. Interestingly, in the FOXP3 gene (NM_014009), encoding

another forkhead transcription factor, a presumed disease-causing

sequence change was found in the 39UTR within the poly(A)

signal, in affected members of a five-generation family with X-

linked immune dysfunction, polyendocrinopathy, enteropathy

(IPEX) (MIM 304790) [36]. The occurrence of interesting

pathogenic or modifying variants in 39UTRs is in line with their

important role in the regulation of gene expression at both pre-

mRNA, mature mRNA and post-transcriptional level through cis-

acting elements that interact with a variety of trans-acting factors

[37]. This is highlighted by their many conserved sequence motifs,

including microRNA (miRNA) targets [37]. It cannot be ruled out

that changes in post-transcriptional regulation by altered miRNA

targeting may result in BPES. A unique example of a variant that

alters the gene expression level by modifying miRNA targeting

activity is a 39UTR SNP in human SLITRK1 (NM_052910), which

is implicated in Tourette syndrome (MIM 137580) [38].

Finally, this study considerably adds to the importance of an

intact tissue-specific cis-regulatory domain in this and other

developmental disorders. This impacts upon the concept of

mutation screening of developmental disease in particular, and

of human genetic disease in general. In the future, online

databases such as Decipher and the Database of Genomic

Variants which collect information on copy number changes,

might help to interpret copy number changes affecting putative

regulatory regions that might lead to disease [39,40].

Materials and Methods

Patients
Genomic DNA (gDNA) from 57 consenting BPES patients

without intragenic mutation or copy number change of the FOXL2

coding region was used in this study. Criteria described previously

were used to accept a diagnosis of BPES [9]. The study was

conducted following the tenets of Helsinki and was approved by

the local Ethics Committee of the Ghent University Hospital.

Microsatellite analysis
In order to detect hemizygous regions outside FOXL2,

microsatellite analysis was performed as described previously

[10]. Microsatellite analysis was conducted for 19 molecularly

unresolved patients for whom parental DNA was available.

ArrayCGH
In order to detect copy number changes outside the transcrip-

tion unit of FOXL2, a new purpose-built bacterial artificial

chromosome (BAC) array, consisting of 132 unique genomic

clones covering a region of 3 Mb around FOXL2 and 95 control

BACs (3 on each chromosome and 26 on the X chromosome), was

designed in-house as previously described [41,42]. In total, 500 ng

of DNA was labelled by a random prime labelling system

(BioPrime ArrayCGH genomic labelling system, Invitrogen) using

Cy3 and Cy5 labelled dCTPs (Amersham Biosciences). Hybrid-

izations were performed automatically using the HS400 hybrid-

ization station (Tecan) for 21 molecularly unresolved patients, of

which 13 were previously screened by microsatellite analysis. The

scan images were processed with Imagene software (Biodiscovery)

and further analysed with arrayCGHbase [43].

Real-time quantitative PCR (qPCR) in the FOXL2 region
(qPCR-3q23)

Quantitative qPCR (qPCR-3q23) was performed as described

for a second group of patients as an alternative to arrayCGH, in

order to detect copy number changes encompassing the initial

SRO [44]. First, 3 qPCR amplicons located within the SRO 59 to

FOXL2 were designed and used to identify possible extragenic

deletions overlapping the SRO in 24 molecularly unresolved

patients, not previously screened by array CGH. Second, 10

additional in-house designed amplicons were used to further

delineate 3 new extragenic deletions. All 13 amplicons were designed

in silico as described (primer sequences available upon request) [44].

qPCR was carried out using the qPCR Core kit for SYBR Green I

(Eurogentec) on the LightCycler 480 (Roche). Calculation of the gene

copy number was performed with qBase software [45]. Two

reference genes, ZNF80 (NM_007136) and GPR15 (NM_005290),

were used for normalization of the relative quantities.

Comparative sequence analysis (identification of CNCs)
A comparative analysis of the SRO region (delineated by SNP

rs10935309 and rs4894405) was performed by pairwise compar-

ison of the human and mouse genomes. More specifically, the

GALA genome browser implemented with hg16 build was used to

identify all non-coding sequences of $100 bp and sharing $70%

identity with the mouse [46]. The analysis resulted in the

identification of 25 CNCs that are reproducibly mapped when

implementing the hg17 build.

Subsequently, using the multiZ alignment track in the UCSC

genome browser, the conservation of all identified CNCs was

examined in the genomes of placental mammals, chicken and

pufferfish. In addition, the overlap of all the identified CNCs with

previously reported PhastCons sequences was evaluated using the

PhastCons conservation in the UCSC Genome Browser [47,48].

qPCR for CNCs in the SRO (qPCR-CNC)
In order to detect subtle copy number changes within or nearby

the identified CNCs specifically, 36 qPCR amplicons were designed

within the initial SRO: 19/36 map within CNCs (no successful assays

were obtained for CNC10, 14, 15, 21, 23 and 25) while the 15

additional assays map within some long flanking regions. The latter

amplicons were designed following CNC copy-number analysis in

order to increase the screen resolution or to verify the mapping of

putative copy-number variants. SYBR Green I qPCR-CNC was

performed in 53 selected patients as described [49]. All amplicons

were designed in silico using PrimerExpress (Applied Biosystems)

(primers available upon request) and validated as described [49].

Deletion-junction PCR, sequencing, and in silico analysis
of the breakpoint regions

For the patient with deletion D long-range PCR was performed

using the qPCR primers delineating the deletion. For long-range
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PCR the iProof high-fidelity PCR kit (Biorad) was used according

to the manufacturer’s instructions.

In order to determine the junctions at base pair resolution,

direct sequencing was performed on the 5 kb product using 8

internal sequencing primers (available upon request) (ABI 3730xl

Applied Biosystems). We used several web-based tools to unravel

the mechanism by which the 7.4 kb deletion occurred. Genomic

sequences of several sizes and centered on the breakpoints were

obtained from the UCSC genome browser. First, CLUSTALW

was used to align the junction sequence (70 bp) with the reference

genomic sequence from both the proximal and the distal

breakpoint region [50]. Second, BLAST2 was run under default

conditions to perform a pairwise sequence comparison of the 2 kb

proximal and distal breakpoint regions [51]. Third, several

programs (RepeatMasker, Mreps, Palindrome, and Censor) were

employed to screen for repetitive elements/structures, low-

complexity sequences, tandem and palindromic inverted repeats

[52–54]. For sequence analysis with RepeatMasker and Censor we

used the 2 kb breakpoint regions and for analysis with Mreps and

Palindrome 300 bp regions. In addition, the fractional GC content

of the breakpoint regions was calculated using GEECEE.

DNA Pattern Find was applied to locate specific sequence

motifs within the 70 bp breakpoint regions and the junction

fragment [55]. The investigated specific sequences are known to

be implicated in DNA rearrangements elsewhere [56].

In silico analysis of the reduced SRO
Several tracks within the UCSC genome browser (Genes and

Gene Prediction Tracks, mRNA and EST Tracks and Regulation

Tracks) were used to screen the reduced SRO (chr3:140,431,841-

140,439,199). In addition, the Ensembl regulatory features track

was used to gain information about possible DNaseI hypersensi-

tivity sites and CCCTC-binding factor (CTCF) binding sites.

Several RNA databases (RNAdb, miRDB, miRNAMap, miRBase

and NONCODE v2.0) were consulted in order to extract possible

non-coding RNA sequences [57–61]. Finally, BLASTn was run

under default conditions to define the human orthologue of

caprine PISRT1 (AF404302) within this reduced SRO. In order to

define the location of the human 7.4 kb deletion with respect to

the deletion in the PIS goat, BLAST2 was performed for goat

BAC 376H9 and a 100 kb extract from human chromosome 3

NT_005612.15 containing the reduced SRO (45.400.000–

45.500.000).

Expression analysis and 59 RACE of human PISRT1
Relative PISRT1 expression levels were determined in several

human cell lines/tissues using real-time quantitative RT-PCR with

newly designed primers (available upon request). Primers were

designed as described [44]. cDNA prepared from fibroblasts from

a control individual and from human granulosa KGN cells (Riken

Institute) and cDNA from testis (human testis Marathon-Ready

cDNA, Clontech) were used for PISRT1 expression analysis.. RNA

was isolated from fibroblasts and KGN cells as described (RNeasy,

Qiagen), and treated with RNase-free DNAse (Promega), followed

by cDNA synthesis as described (iScript cDNA synthesis kit, Bio-

Rad); qPCR was carried out using the qPCR Core kit for SYBR

Green I (Eurogentec) on the LightCycler 480 (Roche) as described

above. PISRT1 expression levels were normalized using 3 house-

keeping genes (HPRT1, GAPDH and YWHAZ) (NM_000194,

NM_002046 and NM_145690). The obtained data were analyzed

using qBase plus [45].

To characterize the full-length human PISRT1 transcript, 59

rapid amplification of the cDNA ends (59 RACE, Clontech) was

performed according to the manufacturer’s protocol, using the

Advantage cDNA PCR Kit and human testis Marathon-Ready

cDNA (Clontech) as a template (primers available upon request).

For our novel human PISRT1 transcript, an accession number was

requested at the GenBank (accession number FJ617010).

Sequencing of CNCs
Primers surrounding each of the 25 CNCs (650 bp of the core

CNC) were designed with Primer3 (primers available upon

request) [62]. A specific amplicon could be obtained for 24/25

CNCs, except for CNC19. Sequence analysis of 24 CNCs was

performed in 32 molecularly unresolved patients. In a second step,

targeted sequencing of CNCs mapping within the reduced SRO

defined by the 7.4 kb deletion, was performed in the remaining 21

patients.

Sequence analysis of the first set of patients was performed with

RedTaq (Jumpstart kit, Sigma) under standard touchdown PCR

conditions. For the second set of patients new amplicons were

designed for closely mapping CNCs instead of single CNC

analysis. Thus, CNC5, 15, 6, 16, 4 and 14 were pooled as follows:

CNC5-15 (amplicon size: 573 bp), CNC6-16 (amplicon size:

962 bp) and CNC4-14 (amplicon size: 1140 bp). In this case, PCR

amplification was carried out with the iProof High-Fidelity DNA

polymerase (BioRad) as indicated by the manufacturer. Each

amplicon was directly sequenced in forward and reverse

orientation using an ABI 3130 analyser (Applied Biosystems). To

align and identify nucleotide variants the Sequencher software

(Gene Codes Corporation) was used. Multispecies alignments

extracted from the UCSC Genome browser were used to evaluate

the conserved nature of nucleotides presenting variants. Compu-

tational transcription factor binding site predictions were per-

formed with the MATCH interface of the TRANSFAC database

[63,64].

Luciferase constructs and assays
In vitro luciferase assays were performed in FOXL2 expressing

KGN cells, and non-expressing 293T cells (human kidney cells,

ATCC). Wild-type (WT) and variant CNCs were directly PCR

amplified from normal and affected genomic DNA respectively,

with the same sets of primers and PCR conditions used for CNC

sequencing, except for CNC1. For CNC1 new primers were

designed as described above based on a recent conservation

pattern survey. The new CNC1 amplicon adds approximately

260 bp to the original one and covers the full conserved alignment

that can be observed in UCSC and that overlaps with an

extremely conserved sequence with highly regulatory potential

[65]. Two types of luciferase constructs were produced: (1) pTAL-

Luc CNC constructs, for which each PCR product was cloned into

the TOPO-TA PCR II vector after amplification (Invitrogen);

colonies with insert in reverse orientation (i.e. 39-59) were

specifically selected and sequenced. Subsequent subcloning into

the pTAL-Luc vector (Clontech) expressing the firefly luciferase

was achieved by SacI-XhoI digestion of both the TOPO-CNC

constructs and pTAL-Luc vector (Clontech). The amplicon

encompassing CNC1 contained internal SacI and XhoI, and was

subcloned using SpeI-BglII restriction sites. The fragment was

subsequently cloned into a modified pTAL-Luc vector containing

part of the multiple cloning site of TOPO-TA II. (2) pTAL-SV40

CNC constructs, for which the pTAL-Luc backbone was digested

with BglII and HindIII in order to remove the minimal TATA-like

promoter and replace it by a SV40 promoter. Subsequently, all

pTAL-Luc CNCs were digested with SacI-XhoI (SpeI-BglII for

CNC1) and subcloned into a pTAL-SV40 (Promega) digested with

similar enzymes. In both approaches, reverse-orientated CNC

constructs were obtained. We specifically decided to investigate the
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regulatory potential of CNCs in their native orientation with

respect to FOXL2.

Luciferase Assays in 293T and KGN. The assay was

performed as previously described [31]. For KGN, transfections

were performed with minor modifications; briefly, 16105 cells/

well were grown into 24 wells and transiently transfected with

0.5 mg of each pTAL-SV40 CNCs construct along with 100 ng of

renilla control plasmid (pRL-SV40).

For both cell lines, each construct was assayed in triplicate in

three independent experiments. Firefly and renilla luciferase

activities were measured using the Dual-Glo Luciferase Assay

System (Promega) and a microplate luminometer (VICTOR3,

PerkinElmer). We determined the luciferase activity driven by

each construct by first measuring the firefly to renilla luciferase

ratio for each transfection. In a second step, the signal was

normalized to the control ratio (pTAL-Luc/pRL-SV40 or pTAL-

SV40/pRL-SV40) included on each plate. Standard deviations

were calculated for each construct.

In a next step, the putative influence of the variant on the level

of transcription was expressed as the fold change in luciferase

activity over the basal activity of the luciferase with the WT

version of the respective CNC. P-values were calculated by 2-

sample T-test. Significant differences, i.e. P,0.05, were indicated

by an asterisk.

Chromosome conformation capture (3C)
BAC selection and control library preparation. To create

a standard for normalization of relative PCR efficiencies, a control

template for the human FOXL2 locus and gene desert regions

(ENCODE region ENr313) was generated using a set of minimally

overlapping bacterial artificial chromosome (BAC) clones [66,67].

The following five BAC clones were used for the FOXL2 locus:

RP11-579O13, RP11-259D13, RP11-1129G19, RP11-111F8 and

RP11-203B18. A set of four BAC clones was selected to cover the

0.5-Mb gene desert region and include RP11-197K24, RP11-

609A13, RP11-454G21 and CTD-2133M23. These BAC clones

were obtained from the Children’s Hospital Oakland Research

Institute (CHORI) and Invitrogen. BAC preparations were

quantified by real-time quantitative PCR with SYBR Green I

using universal primers that amplify part of the BAC vector

backbone. Subsequently, BAC DNA was mixed in equimolar

ratios, digested with EcoRI and randomly ligated, to obtain a

collection of all possible ligation products in equimolar amounts.

Cell lines and culture conditions. The KGN cell line was

grown as described [68]. A control EBV cell line and fibroblasts

were grown in standard conditions. The EBV cell line was derived

from EBV-transformed B-lymphocytes of a healthy control.

Template F1 was generated from fibroblasts from a BPES

patient, carrying a deletion outside the transcription unit of

FOXL2 described by us [10]. A fibroblast cell line derived from a

normal individual was used to create the F2 template. FOXL2

expression in the KGN, F1 and F2 cell lines was verified by real-

time quantitative PCR (primers available upon request).

3C assay and PCR analysis of the ligation products. This

was essentially performed as described [32,66,67]. Primers were

designed to flank EcoRI sites with an orientation that allows

amplification of potential ligated sequences. The 59 side of each

restriction fragment was used to design primers unless this

coincided with repetitive DNA sequences (primers available

upon request). The sizes of the predicted PCR products varied

from 172 to 388 bp. The linear range of amplification was

determined by using serial dilutions of the control template and all

experimental templates for four different primer pairs. PCRs were

conducted in 25 ml under the same cycling conditions, followed by

agarose electrophoresis quantified on a Kodak Image Station 440

CF (Kodak).

Experimental controls. Several experimental controls were

included to rule out potential artefacts [66]. First, a BAC control

template was generated to normalize for differences in primer

efficiency. This control template contains equimolar amounts of all

possible ligation products of the region of interest and the gene

desert regions. Second, the level of background random collisions

was assessed by determination of interactions between sites

separated by increasing genomic distances, ranging from 0 to

130 kb both 39 and 59 of FOXL2. In all cell lines, highest

interaction frequencies were found with neighbouring fragments

upstream and downstream of the FOXL2 core promoter, reflecting

non-functional random collisions from adjacent restriction

fragments. Moreover, interaction frequencies gradually

decreased with fragments located further away on the DNA

template. Finally, to allow direct quantitative comparison of

interaction frequencies determined in all cell lines, interaction

frequencies were normalized using a set of 18 interaction

frequencies detected in gene desert regions (ENCODE region

ENr313), assuming that this region has a similar conformation in

all cell types. The average log ratio of these interaction frequencies

was calculated in all cell types to determine the average fold

difference in interaction frequencies between the EBV template

and the KGN, F1 or F2 template.

Web resources
Ensembl Genome Browser, http://www.ensembl.org/index.

html

GEECEE, http://mobyle.pasteur.fr/cgi-bin/MobylePortal/

portal.py?form=geecee

GenBank (MapViewer), http://www.ncbi.nlm.nih.gov/mapview/

static/MVstart.html

Online Mendelian Inheritance in Man (OMIM), http://www.

ncbi.nlm.nih.gov/omim/

Palindrome, http://bioweb.pasteur.fr/seqanal/interfaces/

palindrome.html

Repeatmasker, http://www.repeatmasker.org

UCSC Genome browser, http://genome.ucsc.edu/

Supporting Information

Figure S1 Alignment of PISRT1 homologues based on BLAST

searches and 59 RACE. Goat mRNA sequence AF404302 was

used for BLASTN searches against human and mouse genomes.

The homologous regions were localized on human contig

NT_005612.15 at position 45445646–45447509 and on the

mouse contig NT_039476.7 at position 18278112–18279127.

These retrieved sequences, the human EST AW268472 and the

canine EST CO633486.1 were aligned with ClustalW. Identifica-

tion of the full-length human transcript was performed by 59

RACE starting from testis-specific EST AW268472 using a testis

cDNA library. The 2 gene specific primers used for 59 RACE are

indicated in red. The 59 end of the full-length transcript is marked

by a vertical black line. The reference number of the novel human

PISRT1 was requested and retrieved at Genbank (FJ617010).

Found at: doi:10.1371/journal.pgen.1000522.s001 (7.21 MB TIF)

Figure S2 3C analysis of the human FOXL2 locus in EBV, KGN

and F2 cells. Schematic representation of the FOXL2 locus. In the

top line, genes located in this region are depicted by coloured

boxes. The second line indicates the SROs of the downstream

deletion (dashed line on the left) and the initial SRO of upstream

deletions (red dashed line on the right respectively). Hatch marks

on the third line represent midpoint distances of the EcoRI
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restriction fragments to anchor fragment 58. Arrowheads

correspond with the location of the respective primers. The

positions of the three known translocation breakpoints at 3q23 in

BPES and of the orthologue of the PIS deletion are indicated by

vertical arrows at the top. At the bottom, dot plot of 3C analysis

representing interaction frequencies between the EcoRI fragment

overlapping the FOXL2 promoter (fragment 58) and restriction

fragments throughout the FOXL2 locus in non-expressing EBV

cells, and expressing adult granulosa KGN and fibroblast cells F2.

The X-axis shows the genomic position relative to anchor

fragment 58; the Y-axis indicates normalized interaction frequen-

cies measured by semi-quantitative PCR. Regions of interaction

are highlighted with yellow rectangles. In the KGN cell line, the

fragment containing (58) the FOXL2 core promoter is shown to

come in close vicinity to EcoRI restriction fragments 109, 133, and

158, located 177, 283, and 360 kb upstream of FOXL2

respectively. The fold differences (average ratio of normalised

interaction frequencies) of these interactions are 8, 11, and 39

respectively. An identical but lower interaction profile is seen in

expressing fibroblast cells from a normal individual (F2). EcoRI

fragments 109, 133 and 158 all correspond to evolutionarily

conserved elements described by Crisponi et al. 2004 (see also

Figure 1, Figure 2, and Table 1). Fragment 133 contains the

reduced SRO of 7.4 kb and thus the PISRT1 transcript.

Altogether, these 3C data demonstrates that in the nucleus of

expressing cells, the promoter region of the FOXL2 gene comes in

close vicinity to three distant cis-regulatory sequences that

correspond to conserved sequence blocks.

Found at: doi:10.1371/journal.pgen.1000522.s002 (8.46 MB TIF)

Table S1 Variants identified by sequence analysis of CNCs.

Found at: doi:10.1371/journal.pgen.1000522.s003 (0.04 MB

DOC)

Table S2 Reported extragenic deletions in human genetic

disorders.

Found at: doi:10.1371/journal.pgen.1000522.s004 (0.11 MB

DOC)
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