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Time-resolved electronic spectroscopy has grown into a technique that provides hundreds
to thousands of electronic spectra with femtosecond time resolution. This enables complex
questions to be interrogated, with an obvious cost that the data are more detailed and thus
require accurate modelling to be properly reproduced. Data analysis of these data comes
in a variety of forms, starting with a variety of assumptions about how the data may be
decomposed. Here, four different types of analysis commonly used are discussed: band-shape
analysis, global kinetic analysis, lifetime distribution models, and soft-modelling. This review
provides a ‘user’s guide’ to these various methods of data analysis, and attempts to elucidate
their successes, domains in which they may be useful, and potential pitfalls in their usage.
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Introduction

Ever since the inception in 1950 of flash photolysis,[1, 2] time-resolved spectroscopy
in the electronic domain (hereafter referred to as transient spectroscopy or a
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transient experiment) has been widely recognised as a significant tool for the
unravelling of chemical dynamics and kinetics.[3, 4] The initial implementation of
flash photolysis had a time resolution of 1 millisecond at best and very few spectra
could be collected for each reaction, meaning that the interpretation of the results
had to be relatively simple. Now, the terrain is considerably different - pulsed lasers
and precise, automateable delay stages mean that time-resolved techniques that
record hundreds to thousands of electronic spectra with femtosecond time resolution
are now widespread.[5, 6] This allows one to answer more detailed questions, but
this comes with a cost: the data that these instruments provide has also become
more detailed and thus requires accurate modelling to be properly reproduced. This
review discusses this issue - data analysis in transient electronic spectroscopy.

This review is organised in the following fashion: in Section 1 we will describe the
format of electronic transient spectroscopy data, as well as any spectral artefacts
that can impede analysis of the underlying kinetics. Furthermore, we will describe
how one can remove and/or model these artefacts.

In Section ??, we will introduce and explain ‘band-shape analysis’ methods - here,
the shape of the electronic spectrum is mathematically described and/or empirically
decomposed, and the temporal behaviour is inferred afterwards from the spectral
decomposition.

In Section 3, we will describe here-called ‘global kinetic’ models, as they combine
the assumptions of classical kinetics with the simultaneous analysis of all time traces
measured in the experiment.

In Section 4, we will discuss ‘lifetime distribution’ models, including the maximum
entropy model. These models all assume that the underlying lifetimes in the
experiment may be described by a smooth distribution and all attempt (in various
manners) to recover said distribution.

Finally, in Section 5 we will discuss ‘soft-modelling’ methods - these include
multivariate curve resolution, singular value decomposition, and related methods.
These methods do not insist upon a formal mathematical description of the time
traces nor the band shapes, and can in some sense be described as dimensionality
reduction methods (though, formally, one could think of all the methods described
in this review as such).

This review does not discuss an in a sense ‘alternative’ method, i.e. the use of (a vari-
ety of) simulation techniques (possibly parametrised using experimental data, though
not necessarily) to calculate observables and compare them to transient spectroscopy
data. This does not in any sense denigrate this approach - it is most valuable, and
has provided a variety of interesting insights in electron transfer,[7–10] vibrational
relaxation,[11, 12] donor-acceptor dyads [13] and donor-acceptor complexes’[14] struc-
tural dynamics. It is however different in conceptual approach to the data analysis
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1. The Experiments and their Data

We will concern ourselves in this review primary with two experimental methods:
broadband electronic transient absorption (TA) and broadband fluorescence upcon-
version spectroscopy (FLUPS). These spectroscopies deal primarily with electronic
absorption and emission covering a range of ∼350-800 nm, with TA experiments
sometimes extending into the near-IR. Familiarity with such experiments has been
assumed for the purposes of this review, and we only provide here a cursory overview
of the experimental principles. For more detailed descriptions, the reader is referred
to the papers of Lang,[15] Megerle et al.[16], Zhang et al.[17] and Gerecke et al.[6]

Both TA and FLUPS experiments begin with impinging a UV-vis laser pulse upon
a sample in order to create a small excited state population at a well-defined point
in time. This pulse is termed the ‘pump’ and the time at which it arrives is taken to
be t = 0 (‘time-zero’). In a TA experiment, a white-light ‘probe’ pulse covering the
UV-vis region is passed through the sample at some later time in order to investigate
differences in the sample’s absorption spectrum due to the effect of the pump pulse.
The time between the pump and probe pulses is then varied and a ∆A spectrum
recorded at each time step. For FLUPS, the emission of the pumped sample is focused
onto a non-linear crystal and crossed with a delayed ‘gate’ pulse in order to upconvert
a small temporal slice of the fluorescence through sum frequency generation. This
upconverted fluorescence is then separated from the rest of the emission and its
spectrum imaged and recorded. The delay between the pump and gate is then scanned
and an emission spectrum recorded at each position. The data resulting from both
TA and FLUPS experiments are typically stored as an m × n matrix, D, with m
representing the rows that make up the wavelength/wavenumber axis and n the
columns that constitute the time axis.

Figure 1. Simulated transient electronic absorption spectra and a schematic energy level diagram
of the transitions involved. The line marked ‘ti’ on the left panel corresponds to the time from which
the spectrum in the middle panel was extracted. These data have been simulated according to the
procedure described in Appendix A. The bands in the middle panel and transitions outlined on
the right panel are the ground state bleach (GSB), stimulated emission (SE), and two excited state
absorptions (ESA1 and ESA2) as described in the text.

Because TA experiments are difference measurements, the signal may have
both positive and negative contributions. Positive contributions arise from new
absorptions induced by the pump. These may arise from excited state absorption,
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ESA, of the initially prepared state or photoproducts from state changes or reactions,
or from e.g. a non-equilibrated ground-state population. Negative contributions
arise from the missing ground state population, giving rise to a ground-state
bleach (GSB), as well as from stimulated emission (SE) due to interactions
between the probe pulse and excited state population. These contributions are
illustrated schematically in Figure 1. For FLUPS experiments, the signal is the
gated emission intensity at each time step and is always positive. This signal arises
from emission of the excited population prepared by the pump in addition to any
emissive states populated thereafter. The stimulated emission measured by TA and
fluorescence collected by FLUPS originate from the same photophysical process and
should, in principle, exhibit the same dynamics (though the fluorescence dynam-
ics may be difficult to extract from the TA due to the presence of overlapping bands).

The remainder of this section will discuss six important considerations when pro-
cessing TA or FLUPS data: background contributions and how they may be removed;
the instrument response function and the limitations it puts on the experimental time
resolution; various artefacts arising from the interaction of the laser pulses with the
solvent, solute, sample cell, and themselves; calibration of pixel vs. wavelength; chirp
correction and identification of time-zero; and, finally, spectral response corrections.

1.1. Background Subtraction

Background contributions in transient spectroscopy are defined here as any contri-
butions to the data which are not time-dependent, i.e. contributions which have no
time-dependence upon pump and probe but which nonetheless manifest in the data.
The most common background contributions in transient experiments are scattered
light from the pump and spontaneous emission (which, being emission that is not
‘gated’ by the white-light pulse, arrives at the detector as a background contribu-
tion). In order to remove these, an average of multiple spectra from negative time
delays (i.e. well before the temporal overlap of pump and probe) is subtracted from
the overall data matrix, under the assumption that they do not change throughout
the experiment. For the scattered pump this does not always hold due to fluctuations
of the laser intensity during the experiment. Thus, the pump region is often simply
removed from the experimental data matrix (or not measured at all, as is the case in
the vast majority of FLUPS experiments). An example of the subtraction procedure
is shown in Figure 2.

1.2. The Instrument Response Function

As in all time-resolved spectroscopies, the ultimate time-resolution of a TA or FLUPS
experiment is mostly limited by temporal widths of the pump and probe/gate pulses.
One way of characterizing this resolution is to measure the response generated by the
instrument to an infinitely fast stimulus, typically accomplished using measurements
of a scattering process or the optical Kerr effect (OKE).[6, 16, 18, 19] The resulting
measurement is termed the ‘instrument response function’ (IRF). In a real measure-
ment, the signal detected by the instrument will always have this response convolved



June 18, 2020 International Reviews in Physical Chemistry Beckwith_Analysis

6 Joseph S. Beckwith, Christopher A. Rumble and Eric Vauthey

Figure 2. A. TA signal with pump scatter and spontaneous background emission present. B. An
average of signals measured at negative time delays. C. TA signal with the spectrum plotted in B
subtracted from every time step - only time-dependent components remain. For FLUPS data the
principle is in essence the same, though the spectral region of the pump is not often measured,
meaning only background emission is subtracted.

with that of the system being investigated:
S(t; ν̃) = IRF(t)⊗ I(t) (1)

S(t; ν̃) =

∫ +∞

−∞
IRF(t− τ ; ν̃)I(t; ν̃)dτ, (2)

where S(t; ν̃) is the signal recorded by the instrument at time t and wavenumber ν̃,
IRF(t; ν̃) is the instrument response function, and I(t; ν̃) is the signal arising directly
from the sample. In our case, the signals are either ∆A for TA or the fluorescence
intensity for FLUPS.
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Figure 3. A comparison of decays convolved with a δ function (black, upper panel) and convolved
with a 100 fs width Gaussian IRF (decays in red, Gaussian IRF in grey; lower panel). As may be
seen, around the region where the IRF is prominent the decay is considerably broadened with respect
to the decay convolved with the δ function. This thus becomes most relevant where the lifetime is
comparable to the IRF width.
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As shown in Figure 3, the IRF serves to temporally broaden the observed decay
during the time when the IRF is prominent. The width of the IRF, and the cor-
responding achievable time-resolution, depends strongly on factors such as sample
thickness, the walls of the cuvette, and group velocity dispersion from other trans-
missive optical elements. These sources of broadening can be compensated for in the
experiment with the use of prism compressors or chirped mirrors to recompress pulses
before they reach the sample and maximize time-resolution. Due to the dependence
of the solvent refractive index on wavenumber, the width of the IRF also changes
with the probe wavenumber [5, 20]. This can effect a 500 fs difference in IRF width
across the visible spectrum as demonstrated in Figure 4. Therefore, one must keep
this in mind when simultaneously fitting data collected at multiple wavenumbers. No
matter the IRF, broadening can mask and distort data collected during the timescale
of the IRF, and one must find a way of dealing with this in order to extract reliable
dynamics from an experiment.

Figure 4. a) A 4th-order polynomial fitted to experimental FHWM data points derived from an
OKE measurement of DMSO, excited at 400 nm, done by the authors (i.e. a measurement of the
instrument IRF). b) Example OKE trace (blue dots) and a Gaussian fit (red, from which the FWHM
was extracted). Note in a) that the FWHM changes by almost 500 fs across the electronic spectrum.

1.2.1. Deconvolution
For processes that are significantly slower than the IRF, one can simply ignore

the short-time portion of the experiment and deal only with data at later times
which are unperturbed by the IRF. In a typical ultrafast experiment this amounts to
truncating all data before 0.3–0.5 ps. On the other hand, processes such as solvation
dynamics, vibrational relaxation, and ultrafast reactions can approach the time
scale of the IRF and be impossible to treat without removing the IRF broadening.
One must then turn to deconvolution procedures which are intended to remove the
effect of the IRF on the data and extract the ‘intrinsic’ system response from the
experiment.

IRF deconvolution is typically accomplished by convolute-and-compare fitting
algorithms which construct S(t; ν̃) according to Eq. 2 in one of two ways. In the first
method, a measured IRF is convoluted numerically with a parameterized model of
I(t; ν̃). Least squares algorithms are then used to optimize the parameters of I(t; ν̃)
versus the experimental data in order to extract the ideal system response.[19] While
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effective, this method can encounter problems due to slight differences between the
systems used to measure the IRF and those of the sample.[21]. A more robust method
of deconvolution is to build S(t; ν̃) by assuming an analytical form for the IRF and
convolving that with the I(t; ν̃) model. Such a method allows one to optimize the
IRF and I(t; ν̃) parameters simultaneously and typically results in higher quality
fits. This can be accomplished with numerical convolution as before, but analytical
expressions exist for the convolution of some common IRF and I(t; ν̃) models. Such is
the case for the commonly encountered sum-of-Gaussians IRF and multi-exponential
I(t; ν̃), where the analytical expression for this convolution is known and used to fit
experimental data directly.[22] It can be shown (see e.g. Section 5.1.7 of [23]) that
careful IRF deconvolution can allow the determination of time constants shorter
than the IRF, but only under the conditions high point-density and signal-to-noise.
As demonstrated in the following simulations, time-constants extracted in this way
will come with corresponding higher uncertainties.

In order to demonstrate the limits of deconvolution, we present the results of fitting
large simulated data sets with varying IRF widths, signal-to-noise ratios (SNRs),
and underlying dynamics. In the simulations that follow, we will assume our signal
originates from multi-exponential dynamics convoluted with a Gaussian IRF. Such a
signal can be calculated according to

I(t) =

N∑
1

AN

2
exp{− τ−1

N (t− t0)}exp{0.5·τ−2
N ·σ

2}
[
1+erf

(
t− t0 − τ−1

N ·σ
2

√
2σ

)]
, (3)

where N is the number of exponential components, AN and τN are the amplitude
and lifetime of component N , t0 is the time-zero offset assumed here to be 0, σ is
the width of the Gaussian IRF, and ‘erf’ is the error function. Gaussian noise is then
added to each point to simulate real experimental conditions.

The simulated noisy data are then fit using Eq. 3 to attempt to extract the param-
eters used to generate the simulations. The uncertainty in the fitted parameters will
be quantified using the standard error:

θn(err) =
θn −Gn

Gn
× 100, (4)

where θn is the nth recovered parameter from the fit and Gn is the corresponding
parameter used to simulate the data. Further details of the simulations are provided
in Appendix A.

The first set of simulations we will consider deals with the effect of the IRF and
SNR on the determination of fast dynamics. Here we have simulated monoexponen-
tial signals according to Eq. 3 with a fixed IRF width (σ) of 100 fs, exponential
time constants (τ) ranging from 20 fs to 100 ps, and Gaussian noise with SNRs of
10, 100, and 1000. Each [σ, τ ] pair is simulated 10,000 times then fit with Eq. 3. The
standard errors of σfit and τfit are then calculated and averaged. The results of these
simulations are presented in Figure 5. We see in the bottom panel of Figure 5 that the
relative errors in σfit and τfit track strongly with SNR, but are < 3% for all simulated
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Figure 5. Upper panels: Example fits (red) to simulated data (blue). Longest trace shows an accu-
rate fit due to a large τ relative to the σ, the middle trace an accurate fit where τ=σ and on the
shortest trace a less accurate fit where the τ << σ. Lower panels: Percentage error on recovered
parameters from fitting the equation 3, where N=1, to data simulated using the same equation.
Data points are averaged accuracy of 10,000 fits. σ = 100 fs. Further details on all simulations may
be found in appendix A.

time constants longer than 0.5 ps. Therefore, one can be quite confident when ex-
tracting time constants a factor of 5 or more greater than the IRF width even under
poor SNR conditions. These errors begin to grow as τ approaches the IRF width
and reach up to ∼10% for SNR = 10 when τ is a factor of 5 smaller than the IRF.
These errors are still reasonably good for such short time constants and demonstrate
the power of good deconvolution for extracting fast dynamics from experimental data.

Although deconvolution can produce statistically good results even under poor ex-
perimental conditions, IRF broadening is not the only source of uncertainty in TA
and FLUPS experiments. Day-to-day variation in instrument performance and sam-
ple preparation can have profound impacts on the reproducibility of the measured
dynamics, and can greatly outweigh the uncertainty from just the data processing
method. It is therefore imperative that, when possible, replicate measurements be
conducted in order to properly characterize uncertainties in the reported dynam-
ics. Additionally, deconvolution requires making an assumption about the dynamics
within the IRF. These are, often, assumed exponential. However, this needs not al-
ways be the case - early solvation dynamics are non-exponential.[21]

1.3. Additional Ultrashort Pulse Induced Artefacts

Sub-picosecond pulses can induce additional spectral artefacts which can contam-
inate the dynamics under investigation. For TA data, the artefacts liable to be
present are cross-phase modulation, Raman scattering, two-photon absorption of
the solvent, the coherent artefact and the perturbed polarisation decay. For FLUPS
data, only Raman scattering of the solvent is observed. Cross-phase modulation
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(XPM) is a signal that that originates from the time-dependent modulation of the
refractive index due to the intense pump pulse.[24] When the pump and probe pulses
overlap in time and space, the modulation of the refractive index is experienced by
the spectrally broad probe and thus the probe’s spectral distribution is modified,
giving rise to a signal near time-zero. Raman artefacts (RAs) arise when the
pump wavelength is close to the probe wavelengths. RAs arise from low-frequency
vibrations excited by an ultrashort pump pulse, and the amplitude of the change can
be considerable.[5, 24] Two-photon absorption (2PA) arises from the high incident
peak intensity of short laser pulses, which may enable the simultaneous absorption
of two photons. This can lead to a distortion in the signal around time-zero in a
transient experiment, though if the excitation wavelength is above 350 nm, the only
solvents that have been observed to show 2PA are benzene and toluene.[24, 25] The
coherent artefact is an effect that arises when the pump and probe pulses overlap in
both frequency and time, and may be thought of as originating from a third-order
non-linear polarization produced by the pump and probe beams. This polarization
then radiates into the direction of the probe pulse, resulting in an increase of the
probe intensity, the coherent artefact.[26] As this arises when the pump and probe
are at the same frequency, it is often obscured by scattering from the pump. The
perturbed polarisation decay occurs when the probe pulse interacts with the system
before the pump pulse (i.e. before time zero). It may be interpreted as the pump
pulse perturbing the polarisation created by the probe pulse, leading to a variation of
the light transmitted just before time zero, which in the spectral domain translates
to an oscillation with a frequency proportional to the time delay between pump
and probe pulses.[27, 28] This effect is only significant when the dephasing time
is longer than the duration of the pulses involved.[29] Both the coherent artefact
and the perturbed polarisation are intrinsic to any pump-probe measurement, and
do not arise from the solvent. In principle this means that they cannot be simply
subtracted, as XPM an RA signals may be. They are both, in principle, able to be
simulated using time-dependent perturbation theory, and are often more relevant in
degenerate pump-probe experiments (i.e. where the pump and probe frequencies are
identical). An example of XPM and RA signals in TA data is shown in Figure 6.

These signals originate from the temporal overlap of the pump and probe pulses,
therefore they disappear outside of the cross-correlation region. For a rigorous treat-
ment of the origin of the coherent artefact, XPM and RAs the reader is referred to the
derivations by Kovalenko et al.[5] and Ekvall et al.[20] There are multiple methods
by which these signals may be eliminated, and three most common approaches will
be reviewed here. It should be noted that, as mentioned in Section 1.2.1, if extremely
fast dynamics are not under investigation it is sufficient to only consider data outside
of the cross-correlation region and avoid these artefacts completely.

1.3.1. Subtraction
The simplest method entails subtraction of the neat solvent response measured

under the same experimental conditions. This involves a relatively simple, but non-
trivial,[30, 31] measurement and is easy to implement in the data post-processing
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Figure 6. Cross-phase modulation (blue) and combination of stimulated Raman scattering and
cross-phase modulation (green) measured in dichloromethane upon 400 nm excitation. Signal at
457 nm assigned as being partially due to Raman scattering due to its similarity to simulated RA
signals (see e.g. Figure 10 of reference [5]) and its occurrence at the anticipated Raman shift for
dichloromethane excited at 400 nm.

procedure. Often in this method involves subtracting the measured signal scaled by a
factor typically determined by simple visual inspection. One constructs the corrected
signal Dcorr by

Dcorr = Dinit −−→η · S (5)

where S is the measurement of the neat solvent, Dinit is the initial data matrix and
Dcorr is the corrected data matrix and −→η is a wavenumber dependent scaling factor,
dependent upon the sample absorption.

1.3.2. Modelling of the Solvent Signal
A second, considerably more involved method for subtracting the artefacts involves

modeling the signals explicitly [5, 20] from a measurement of the solvent alone,
followed by subtraction. This method is more established in transient absorption,
where more artefacts are present. To model the 2PA, one can use a simple Gaussian
or skewed-Gaussian function.[24, 25] To model the XPM, the simplest method is to
fit it with the the frequency-dependent cross-correlation function [5] Fcc(ω2, t) (where
ω2 is probe frequency and t is time delay) between the pump and supercontinuum
probe, as well as its 1st and 2nd derivatives. For the RAs, two equations (one for the
low-frequency impulsive-stimulated Raman and one for the high-frequency Raman
excitations) are possibly needed for signal modelling.

It must be noted that in the ‘best’ case, i.e. only XPM contributions at the particu-
lar wavenumber under consideration, the model is a fitting function with 5 adjustable
parameters, thus iterating over all the wavenumbers measured and subtracting all of
these modelled signals is a potentially quite laborious process. Where Raman contri-
butions become relevant, the amount of parameters involved in the model becomes
almost absurd. It is for this reason that it is not recommended to explicitly model
the artefact signals for their subtraction.
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1.3.3. Asymmetric Least-Squares
A third method of artefact removal is to use penalised least-squares. This

method is based on the 1922 mathematical work of Whittaker [32] and was
implemented by Eliers.[33] This was then slightly modified to use an asymmetric
least-squares method and applied to ultrafast TA data by Devos et al.[30] The goal
of this method is to ‘smooth out’ the sharp signals that arise from XPM and other
contributions, leaving only the ‘smooth’ signals originate from the chemical dynamics.

Devos et al. note that, in the implementation for TA artefact removal, cross-
validation procedures (automated procedures to select optimal parameters, discussed
in Section 4.4.5) cannot be used for the optimisation of the smoothing procedure,[30]
meaning that one has to use a grid-search method on ‘similar’ synthetic data to op-
timise the root mean square error. This means that a priori one should be able to
separate artefact and kinetics, which is the goal of the artefact removal - a somewhat
circular piece of reasoning. Additionally, the authors admit that ‘mild deformation’
of their simulated data are obtained. Finally, one loses statistical information in the
smoothing as one generates new data rather than in e.g. the subtraction/simulation
methods, where one simply subtracts a signal. Thus for these reasons, this method
is not preferred to the subtraction method.

1.4. Wavelength Calibration

For TA, the wavelength calibration (i.e. the conversion of pixel in the experiment to
wavelength) may be performed by e.g. comparing the spectrum measured by insert-
ing a Holmium oxide glass filter in the probe pulse path to a reference absorption
spectrum of the same filter. The pixel-to-wavelength calibration is then performed by
finding the best overlap of the measured sample with the reference using the equation

λ = (p× scale) + constant (6)
where p corresponds to the pixel in question, and scale and constant are the

fitting parameters to optimise the overlap. It must be noted that the above equation
assumes a grating spectrograph - for a prism spectrograph, the equation is different
(taking into account the focal length of the optical element that couples into the
spectrograph) and a full discussion of the pixel to wavelength correction procedure
for this type of spectrograph is found in Section 3.1 of [16]. This correction procedure
should be re-done after each realignment of the white-light generation optics, thus
in general before each set of experiments.

For FLUPS, the situation (naturally) differs, as one may not take an absorption
spectrum of a known standard. The simplest method is to take a light source with
known spectral lines (e.g. a mercury lamp, or to scan the excitation source of a
calibrated steady-state fluorometer) and couple this into the detection system. One
may then record this data and calibrate the known spectral locations of the lines vs.
pixels, with either equation 27 in reference [34] in the case of a prism spectrograph
or equation 6 in the case of a grating spectrograph. This procedure should only
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need to be repeated if the spectrograph itself is realigned, thus a pixel-to-wavelength
calibration for the FLUPS need not be done as frequently as in the TA.

1.5. Time-Zero Correction

In transient absorption, as well as FLUPS experiments, the time zero of the
experiment will generally be dependent upon the probe wavelength, due to the
manner of the generation of the white light pulse and/or the optics traversed before
the pump and probe (or gate) pulses interact. A number of procedures exist to
correct for this, the two simplest and most robust in terms of implementation (in
our experience) are outlined here.

In transient absorption, in order to correct for the wavelength-dependent time-zero,
the optical Kerr effect (OKE) of the pure solvent may be measured in identical condi-
tions to the TA experiment itself. The OKE experiment utilises the ability of isotropic
samples (liquids in this case) to become anisotropic under the application of an ap-
plied electric field (the Kerr effect) - in this case, the electric field associated with an
intense light pulse. Thus, in essence, the polarization analyser before the probe detec-
tor is rotated such that the probe intensity is virtually extinguished. Then, when the
intense pump pulse induces a birefringence in the solvent, the probe pulse is again
visible due to the rotation of its polarisation upon propagation through this bire-
fringent medium. OKE responses have two components: an instantaneous electronic
response and a nuclear response with a finite time constant. The instantaneous re-
sponse dominates for simple liquids,[35] and so the peak position in time of the OKE
signal with wavelength may be used as a measure of the wavelength-dependent time
zero and the time behaviour of the instantaneous response may be taken as a measure
of the pump-probe cross-correlation.[36] The central position of the OKE signal may
be easily determined at each wavelength (as the electronic part of the OKE had a
well defined Gaussian shape in time and a constant sign over the region of interest)
and these values may be then fitted with a polynomial of the form [18]

t0(λ) = a+
105b

λ2
+

106c

λ4
. (7)

This whole procedure allows one to precisely determine the wavelength-dependent
time zero, t0(λ). The absorbance values at each wavelength are then reassigned to
a modified time delay based on equation 7, via interpolation of the measured time
traces. The algorithm that does so should be designed such that generation of a
large number of data points on a ‘synthetic’ time grid that is far finer than that the
time grid measured in experiment is avoided.

Alternately, some groups have discussed using the artefacts present during the
cross-correlation period (discussed in more detail in the subsection preceding) to
perform a similar procedure.[16] This is not preferred to the measurement of the
OKE as to fit the coherent artefacts requires the use of a model requiring a very
large number of parameters, as discussed above. By contrast, to fit the centre of the
OKE is a simple Gaussian fit, which is extremely quick to calculate.
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Figure 7. a) Electronic optical Kerr effect signal measured in DMSO upon 400 nm excitation. The
solid line represents a fit of equation 7 to the central positions of the electronic OKE signal at each
wavelength. Electronic OKE centre point density thinned for clarity. b) Example data (dots) and
fit (lines) of the electronic OKE signal at several wavelengths, showing the wavelength-dependent
time zero and FWHM of the electronic OKE signal.

For FLUPS experiments, the procedure for the correction of the time-zero may
involve using a high-intensity pump pulse to generate a white-light continuum in the
solvent used for experiments,[17] fitting these time profiles at each wavelength to a
Gaussian then using equation 7 as above. This may be experimentally difficult how-
ever - Zhang et al. used 10µJ to make white-light in methanol, which is a considerable
amount of power (particularly when one considers the short pulse width of c. 40 fs
used in these experiments). A more simple option experimentally (also discussed in
reference [17]) is to measure the fluorescence of the laser dye BBOT, whose intensity
is assumed to rise promptly upon excitation, in the solvent used in the experiments
and fit the time profiles with a sum-of-exponentials (with the rise time reflecting the
IRF) to accurately recover the time-zero as a function of wavelength, correcting again
using equation 7.

1.6. Spectral Response Correction

If one wishes to extract meaningful properties (shapes, positions, populations)
in a reliable fashion (i.e. in a way that facilitates inter-laboratory comparison)
from transient spectra, it is essential that they accurately reflect the absorption
or emission response of the chromophore in question - i.e. one needs to reach
enough photometric precision to be able to compare transient spectroscopy data
to steady-state data. Correction of the spectral response of the detection system
may therefore be needed. For transient absorption spectroscopy, this (if chromatic
aberration effects are excluded) is not in principle necessary due to the balanced
detection scheme.[15]

For FLUPS however, the raw data must be corrected for the wavelength-dependent
response characteristics of the instrument in order for the data to accurately report
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the correct emission spectrum of the sample as a function of time (assuming no
effects such as reabsorption or the secondary inner-filter effect [37] are significant).
In essence, the correction of the spectral response involves the measurement of
an emissive ‘standard’ (or series of standards) with a known spectrum (or known
spectra), and comparing the measured response with the correct emission spectrum.
Various options for this exist - the use of a spectral irradiance standard, the use of a
calibrated excitation source/calibrated reference detector, and the use of secondary
emissive standards. The first option is, for most laboratories, prohibitively expensive
[38] (in addition to aging effects on calibration lamps being a significant issue
[39, 40]) and the second quite difficult to apply accurately.[38] For a fuller discussion
of issues relating to these, as well as the construction of a correction function,
references [38, 40] are both very thorough.

The use of secondary emission standards (i.e. a set of dyes with known spectral
responses) is considered the easiest method to determine the wavelength-dependent
spectral response function of one’s instrument. Molecular dyes in liquid solutions
are preferred, as these largely do not suffer from the problems of scattering that
solid samples exhibit, nor the polarisation issues of phosphors (due to their rapid
rotation in liquid solution). Multiple choices for such standards exist, the most
‘common’ of which we will discuss here. Gardecki and Maroncelli characterised
a set of secondary emissive standards for steady-state fluorescence spectroscopy
from an emission range of 300-800 nm and the spectral data may be found in
reference [38]. These are all commercially available fluorophores and thus easily
available, and were shown by Gardecki and Maroncelli to accurately recapitulate
the National Bureau of Standards and Technology standard Quinine Sulfate. Whilst
Resch-Genger et al. pointed out that some of these dyes exhibited photostability
issues (in the case of two dyes) and minor anisotropy (in the case of one dye),
these still represent a valuable set of emission standards due to their ease of
availability and shown accuracy. The Federal Institute for Materials Research and
Testing group in Berlin (the BAM) have also published and manufacture a set of
secondary emission standards,[40, 41] which are less recommended as their chemical
structures are unknown and the exact data of the spectral response unpublished,
unlike the open-source nature of the procedure of Gardecki and Maroncelli. A
set of secondary emissive standards specifically tested for use in FLUPS may be
found in reference [17]. These, similar to the procedure of Gardecki and Maroncelli,
are provided with functions that should recapitulate the standard shape of the
spectrum needed for obtaining a correction function. As these dyes were specifically
tested for the use in the FLUPS experiment, the dyes outlined in reference [17] are
most recommended for this purpose (they are all also commonly available laser dyes).

For the FLUPS, the upconverted nature of the signal as well as the spectral response
of the instrumentation must be taken into account when obtaining the fluorescence
response. A thorough description may be found in Section III A of [17] and Section
6 of reference [34].
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1.7. Conclusions

Thus we have a brief overview of the structure of transient spectroscopy data, and
ways in which it may be processed before data analysis begins. We have been able to
demonstrate the effects of the IRF upon the data, and that care must be taken when
extracting parameters that have comparable time behaviour. We have also seen vari-
ous methods of the removal of various ultrashort pulse induced artefacts in transient
spectroscopy, and their relative advantages and disadvantages. Finally, correction for
the probe-dependent time zero (essential in both TA and FLUPS experiments) and
the spectral response (essential only in FLUPS experiments) was discussed.
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2. Band-Shape Analysis

2.1. Introduction

We now discuss the methods of analysing these data and extracting the underlying
dynamics. In order to do this, it is useful to first ask ourselves: ‘what do absorption
and emission spectra represent?’ The observed absorption or emission intensity at
a particular energy is related to the number of molecules undergoing transitions at
that same energy. Therefore, the observed spectra are related to distributions of
energies for populations of molecules in a particular state. By tracking changes in
the intensity and shape of these distributions we may follow chemical and physical
processes.

In a perfect world, one would be able to calculate all spectra and kinetics
from first principles using quantum chemical methods. Methods for calculating
steady-state and time-dependent electronic spectra do exist, but are technically
demanding and prohibitively expensive for trajectories longer than a few tens of
of picoseconds.[42, 43] Instead, experimentalists typically analyse spectra using
empirical models from which physically meaningful parameters can be extracted.
This has lead to the development of numerous forms of ‘band-shape analysis’ where
particular functions or combinations thereof are used to simulate spectra. Fits
are then performed independently at every time-point of the experiment and the
time-dependent model parameters extracted for later analysis and interpretation.

Before covering a number of important band-shape functions and their uses, we
must pause to consider two technical aspects of the fitting procedure. The first re-
lates to the horizontal axis the spectra are presented in. Spectrometers based on
grating spectrographs typically record spectra as intensity vs. wavelength due to the
dispersion of a grating being linear with wavelength. As wavelengths are inversely
proportional to energy, spectra presented in this representation appear compressed
on the short-wavelength side and stretched on the long-wavelength side relative to
their distribution in energy space. To correct for this, spectra can be presented as a
function of wavenumber: ν̃ = λ−1. For absorption spectra, which are ratios of inten-
sities, this amounts to simply plotting the observed spectra vs. ν̃ instead of λ. On the
other hand, emission spectra are counting experiments and the non-linear energy bin
size of wavelength spectra must be accounted for. This is accomplished by weighting
the spectra according to

F (ν̃) = F (λ)λ2. (8)
Although the spectra are now spaced linear in energy, they still cannot be used to
directly calculate populations of states. The Einstein coefficients for absorption and
emission are proportional to ν̃ and ν̃3, respectively, and again distort the spectra
with respect to the underlying population distribution.[44] By removing these depen-
dencies we convert the spectra into the ‘lineshape’ or ‘transition dipole moment’[45]
representation:

a(ν̃) = A(ν̃)ν̃−1

f(ν̃) = F (ν̃)ν̃−3,
(9)
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where a(ν̃) and f(ν̃) are the absorption and emission lineshapes, respectively. Spectra
in this representation are directly proportional to populations and can now be used
for kinetic analyses. One drawback of fitting spectra in the lineshape representation
is that the noise and uncertainty in the data are now weighted by ν̃−1 or ν̃−3 (or
possibly ν̃−3λ2). In order to fit lineshapes to spectra with proper weights without
having to deal with error propagation, it is advisable to calculate the model fit in the
lineshape representation and convert this fit to the wavelength representation for the
calculation of residuals.[46]

2.2. Band-Shape Functions

A variety of functions for the fitting of band-shapes and approaches to their simula-
tion exist in the physical and chemical literature, for numerous purposes. Here, we
will describe popular and/or successful functions and approaches, though it is noted
that an exhaustive description of all band-shape analysis approaches and functions
is beyond the scope of this review.

2.2.1. Lorentzian
According to the phenomenological Bloch model,[47] an homogeneously broadened

spectral line is Lorentzian and can be represented as

S(ν̃) =
I0
πγ

[
γ2

(ν̃ − µ)2 + γ2

]
(10)

where the µ and γ refer to centre and width parameters and I0 defines the band
area.[48] Useful properties of the Lorentzian function are its analytical full width half
maximum

Sl(ν̃)(FWHM) = 2γ (11)
and analytical integral ∫ ∞

−∞
Sl(ν̃) = I0 (12)

which enable easy quantification of the width and area of the band in question.
It should be noted that this model is rarely useful in the simulation of electronic
absorption and fluorescence spectra. However, the Lorentzian band shape is usually
applicable to the infrared. This is due to the fact that the vibrational dephasing
dynamics can often be well approximated by an exponential function.

2.2.2. Gaussian
Electronic dephasing dynamics in liquid are known to more complex than assumed

by the Bloch model and cannot be accurately represented by a single exponential
function. As a consequence, electronic band-shapes are generally not Lorentzian but
can sometime be reproduced by a Gaussian function:

Sg(ν̃) =
I0

σ
√
2π

exp

{
− (ν̃ − µ)2

2σ2

}
(13)
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where the µ and σ refer to centre and width parameters and I0 defines the band
area.[48] This band shape does not often replicate true absorption and/or fluorescence
spectra very well, though it has found use in the simulation of charge-transfer (CT)
bands.[46, 49] Useful properties of the Gaussian function are its analytical full width
half maximum

Sg(ν̃)(FWHM) = 2
√
2ln2σ (14)

and analytical integral ∫ ∞

−∞
Sg(ν̃) = I0 (15)

which enable easy quantification of the width and area of the band in question. It
should be noted that this model will ill-fit spectra where some vibrational structure
and/or asymmetry is observed.

2.2.3. Log-Normal
The log-normal function describes an asymmetric absorption or emission band,

and is celebrated for its widespread applicability to the simulation of absorbtion
and fluorescence spectra.[50] The widespread applicability arises from the fact that
asymmetry is almost omnipresent in electronic spectra, due to the common scenario
(discussed in a simplified model framework in reference [51]) of a differing curvature
of the potential energy surface in the ground and excited electronic states. The log-
normal function [48, 52] is defined as

Sln(ν̃) = I0

{
exp[−ln(2){1 + α(ν̃)/β}2] if α(ν̃) > −1
0 if α(ν̃) ≤ −1

(16)

where

α(ν̃) =
2β(ν̃ − ν̃0)

σ
(17)

with I0 as the band intensity, β the asymmetry parameter, ν̃0 the peak position
and σ the width parameter. Equally, a useful feature of the log-normal function is
that of the analytical integral∫ ∞

−∞
Sl(ν̃) = I0

σ

2
exp

[
β2

4ln2

]√
π

ln2
(18)

enabling easy quantification of band areas. The log-normal does not directly connect
to a model of the physics of the chromophore and will not reproduce spectra with
vibrational structure. However, it will perform considerably better than the Gaussian
for asymmetric bands.

2.2.4. Displaced Harmonic Oscillator
The displaced harmonic oscillator (DHO) models for absorption,[53] and

emission,[53, 54] are connected to a simplified model of the physics of absorption
and emission, i.e. from a purely harmonic potential to another (displaced, thus the
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name). The DHO models, which may be derived from a classical treatment of the
spectra,[53] are defined as

Aabs(ν̃) = Iν̃

∞∑
m=0

Sm
abse

−Sabs

m!
exp

{
−(hν̃0abs +mℏω − hν̃)2

2σ2abs

}
(19)

and

Fem(ν̃) = Iν̃3
∞∑

m=0

Sm
eme−Sem

m!
exp

{
−(hν̃0em −mℏω − hν̃)2

2σ2em

}
. (20)

These represent a spectrum built on a progression of vibronic transitions with width
Γ = σ

√
8ln2 built on a ‘0-0’ frequency, ν̃0, and resulting from a single harmonic

mode of frequency, ω, displaced by an amount ∆ = (2S)1/2, with S representing the
Huang-Rhys factor. Disadvantages of this model are that there are a large number
of free parameters (though this may be remedied by e.g. measurement of steady-
state absorption and emission spectra in non-polar solvents and fixing the vibrational
frequency to these values)[55] and a lack of an analytical integral for the band area.
Additionally, being a simplified physical model, the DHO model will not be able to
fit spectra where significant anharmonicity plays a role in the spectra, or where the
vibrational progression is more complex than a single ‘effective’ mode. Additionally,
equation ?? only considers emission from the lowest vibrationally excited state. If
emission from higher-lying vibrational states is to be considered, one must calculate
the Franck-Condon factors for emission from an excited electronic vibrational state
m to the n vibrational state of the electronic ground state and use

Fm,n = exp(−S)m!n!

[min(m,n)∑
r=0

(−1)n−r(
√
S)m+n−2r

r!(m− r)!(n− r!)

]2
(21)

and then use these to construct the fluorescence from all considered excited elec-
tronic vibrational states to all considered ground state vibrational states using

Iem(ν̃) = Iν̃3
∑
n

Fm,nexp

(
− (ν̃ − ν̃0 + (n−m)ν̃vib)

2

2σ2

)
. (22)

where, as above, the width, ‘0-0’ frequency and single harmonic modes are defined
by σ, ν̃0 and ν̃vib.

Recently, the formalism has been further extended by Fedunov et al. to explicitly
include vibrational relaxation processes in the electronic excited state, as well as
explicitly connecting the relaxation dynamics of the fluorescence spectrum to an
arbitrary solvent relaxation function.[56] In addition, and significantly, they were also
able to circumvent the long-standing problem [21] of the estimation of the fluorescence
spectrum pre-solvation (discussed in Section ??) by using information about the
pump pulse used for excitation of the fluorophore to calculate the build-up dynamics
of the excited-state wavepacket.[56]
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2.2.5. Sulzer-Wieland Formalism
The Sulzer-Wieland formalism [57] is a formalism developed to describe the tem-

perature dependence of the absorption spectrum of a diatomic molecule. It has also
been used to compute the absorption of vibrationally ‘hot’ polyatomic molecules,
e.g. after a rapid decay to a vibrationally excited electronic ground state after
photoexcitation.[58] Within the formalism, the molar absorption coefficient of the
molecule as a function of the temperature T may be computed as

ε(ν̃, T ) = εm0
ν̃

ν̃0,eff

{
tanh

(
Θvib

2T

)}1/2

exp

[
− tanh

(
Θvib

2T

)
·
(
ν̃ − ν̃eff
∆ν̃0

)2]
(23)

where
Θvib = hcν̃vib/kB (24)

is the characteristic temperature of the excited mode with vibrational frequency ν̃vib,
h is Planck’s constant, c is the speed of light and kB is the Boltzmann constant. The
peak molar absorption coefficient and the spectral width of the absorption band at
a reference temperature (for example 0 K) are denoted by εm0 and ∆ν̃0 respectively.
The effective spectral position of the absorption band at temperature T is given by
the spectral position at 0 K, ν̃0 and includes an instantaneous red shift that arises
from the average vibrational energy in the excited mode i.e.

ν̃eff = ν̃0 − ν̃vib[exp(Θvib/T )− 1]−1 (25)
which introduces a temperature-dependent shift of the electronic resonance. Influ-
ence of vibrational excitation of a polyatomic molecule on the spectral shape of its
electronic resonances is thus reduced to the coupling of a single ‘effective’ vibrational
degree of freedom to the electronic transition dipole. The assumptions inherent in
this model are as follows: the band is of a Gaussian shape, the upper state potential
is assumed to be repulsive and is approximated by a straight line fit to the curved
potential, and that the Franck-Condon integrals (and thus the oscillator strength)
does not change with temperature. Despite the bold nature of these assumptions,
the Sulzer-Wieland formalism has been successfully applied to the understanding of
vibrational cooling of polyatomics. The Sulzer-Wieland formalism has been extended
to polyatomics and systems with multiple effective relaxation modes, see Appendix
A2 of the paper of Schalk et al.[58] for a more thorough discussion. For molecules
with almost any structure of their absorption spectra however, it is often too crude
to be useful.

2.2.6. Time-Zero Emission Estimates
The method of time-zero estimation of a fluorescence spectrum (i.e. pre-solvation)

was introduced by Horng et al. [21] to estimate the position of the fluorescence spec-
trum prior to any solvent relaxation. This corresponds to the emission spectrum
expected to be observed following vibrational relaxation, but before solvent relax-
ation. For some molecules (such as the Coumarin 153 the Maroncelli group used) this
assumption may be assumed to be correct, but for other molecules this may not be
accurate.[59] The calculation of the time-zero emission spectrum uses the absorption
and emission spectrum of the probe in a reference solvent, and the absorption in
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the solvent under consideration. With the intrinsic line shape function of absorption
denoted as g(ν̃) and the distribution of spectral shifts δ caused by the solvent en-
vironment distribution denoted as p(δ), one expresses the absorption spectrum in a
polar solvent (P) by

AP(ν̃) ∝ ν̃

∫
g(ν̃ − δ)p(δ)dδ (26)

and the time-zero emission spectrum is thus given as

FP(ν̃, t = 0, ν̃ex) ∝ ν̃3
∫

g(ν̃ex − δ)p(δ)f(ν̃ − δ)dδ. (27)

The functions one thus needs to compute the time-zero emission spectrum are g(ν̃),
f(ν̃) and p(δ). These are assumed to be related to the steady-state absorption and
emission spectra in the non-polar reference solvent, using the relations

g(ν̃) ∝ ν̃−1Aref(ν̃) (28)
and

f(ν̃) ∝ ν̃−3Fref(ν̃) (29)
with the p(δ) function assumed to be Gaussian (equation ??, with I0 set to 1 and

δ replacing the ν̃). One may thus construct the time-zero emission estimate by it-
erative fitting of the polar absorption spectrum. This method was successfully used
by Maroncelli when broadband fluorescence up-conversion techniques were not avail-
able, and is useful in any context where one has vibronic structure that will be lost
as solvent relaxation occurs.[46, 49] Kumpulainen et al. recently showed it to be in
good agreement with the time-zero emission spectra extracted using broadband fluo-
rescence up-conversion techniques.[60] As noted above however, the recent extension
of the DHO model by Fedunov et al.[56] was able to circumvent the need for this
estimation.

2.2.7. Empirical Spectral Decomposition
If one does not have ‘easily’ computable band shapes for the measured spectra, then

it is possible to decompose the spectra at time t using extracted band shapes from
the separate experiments.[61] We take the example of a bimolecular photoinduced
reaction:

M∗(S1) + Q P

where M represents the reactant that is photoexcited, Q the quencher and P the
product. We may then write the observed TA spectrum as

∆A(c, ν̃, t) = ∆AM(c, ν̃, t) + ∆AP(c, ν̃, t) (30)
where Q is at concentration c, the spectrotemporal map ∆A(c, ν̃, t) may be

decomposed into a map of M*(S1), ∆AM(c, ν̃, t), and the products, ∆AP(c, ν̃, t).
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By measuring transient absorption maps of M*(S1) alone, it is possible to access
∆A(c = 0, ν̃, t) as well as the intrinsic excited state lifetime τM and recast the equation
for the transient absorption map in the presence of the quencher as

∆A(c, ν̃, t) = qM(c, t)∆A(0, ν̃, t) + ∆AP(c, ν̃, t) (31)
where qM(c, t) is the survival probability of M*(S1). To solve this problem, it may

be assumed that the transition dipole is unaffected by any processes that give rise
to spectral dynamics in ∆AM. Thus, one may assume that the ratio of areas under
different parts of the spectrum corresponding to the same given species are conserved.
From this assumption, the dynamics of a photochemical reaction are obtained with
the single assumption of conservation of transition dipole moment.[61] This, it should
be noted, is not an assumption that may be reasonably made for most intramolecular
processes due to many of these involving a spectral shift coupled to movement along
a potential/free energy surface that will lead to a change in the transition dipole
moment. This method (for which for full details see reference [61]) has key advantages,
namely that there is no assumption of a specific functional form of the band shape,
and that the time evolution of multiple different transients can be determined without
the assumption of any model.

2.2.8. Numerical Band Integrals
Perhaps the simplest method of band-shape analysis is that of numerical band

integrals. This is simply a method of taking the area of a spectral band numerically.
It is also possible to access the band position, band width and band skewness using
this procedure. To avoid effects of the frequency dependence, the data should be
converted to the lineshape representation [45] before this analysis as detailed in
Section ??.

The band area, band position and band width may also be referred to as the 0th,
1st and 2nd moments of the specified range. The calculation of the 0th moment may
be done by:

M0(t,∆ν̃) =

∫ ν̃2

ν̃1

D(t, ν̃) dν̃ (32)

where D(t, ν̃) refers to the time point of the data matrix in question. The calculation
of the 1st moment may be done by:

M1(t,∆ν̃) =

∫ ν̃2
ν̃1

D(t, ν̃)×ν̃ dν̃

M0(t,∆ν̃)
(33)

and the 2nd by:

M2(t,∆ν̃) =

√∫ ν̃2
ν̃1

D(t, ν̃)×(ν̃ −M1(t,∆ν̃))2 dν̃

M0(t,∆ν̃)
. (34)

It should be noted that the higher order moments will have corresponding higher
uncertainties and thus these values are correspondingly sensitive to data quality.
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2.2.9. Absorptive Band-Shapes
A difficulty in the use of band-shape analysis in transient absorption experiments

(as opposed to transient fluorescence experiments) is that one has multiple overlap-
ping contributions of differing sign. The empirical spectral decomposition (Section
??) method is able to deal with this, however does rely on experimental band shapes
being available. For e.g. unimolecular systems, this may not be the case. A differing
method to simplify transient absorption spectra is to add the steady-state spectra to
the matrix in such a way that only positive contributions remain. This allows us to
extract the excited state absorption lineshape without contamination of the negative
ground state bleaches and stimulated emission. Thus explicitly we assume the GSB
and SE are unchanging with time. The GSB we may describe using the steady state
absorption spectrum, but the stimulated emission may not be described using the
steady state emission spectrum, as this is spontaneous emission. To convert this into
the stimulated emission spectrum, a correction factor,[62]

F (λ)stim = F (λ)spontλ
4, (35)

must be applied. Here, F (λ)stim is the stimulated emission spectrum and F (λ)spont
is the spontaneous emission spectrum. For systems with strong SE solvatochromism
this approach will fail to remove the unrelaxed emission. In these cases, if one may
use an alternate measurement (e.g. FLUPS) to fully describe this behaviour, it
may then be possible to remove the unrelaxed emission. Additionally, this method
may also have problems when relaxation back to the ground state potential energy
surface is fast and thus ‘hot ground state’ features contaminate the GSB, as this
may sufficiently distort the GSB area of the spectrum as to render the recovery of an
entirely smooth filled-in spectrum difficult by only the addition of the steady-state
spectrum.

Once negative features are removed, the data is more amenable to a band-integral
analysis, or to other band-shape analysis. This has been used by Kovalenko et
al.[63] and Wilcken et al.[64] for, in the former case, the analysis of vibrational
cooling and, in the latter case, photoproduct quantum yield determination. In
the case of Kovalenko et al. the removal of the GSB was accomplished visually,
thus the procedure of using second derivatives (the procedure of Wilcken et al.) is
preferred. This procedure involves taking the second derivative of a (smoothed) TA
spectrum and comparing it to the second derivative of the corresponding steady-state
spectrum of the same species. Where a ‘mirror’ image of the second derivative of the
steady-state spectrum exists in the second derivative of the TA spectrum, this area
provides a useful marker of how much of the steady-state spectrum one should add
to remove it from the TA spectra. This mirror image peak should be removed i.e.
the steady-state spectrum should be added until the second derivative is ideally flat
(demonstrated in Figure ??).

Thus, from this, one may add the steady-state spectra to one’s TA data to remove
these negative contributions. Wilcken et al. simply did this for a very small number
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Figure 8. A demonstration of the addition method outlined by Wilcken et al., as described above.

of spectra [64] for the measurement of quantum yields, and doing so for every time
step in a TA experiment would likely be laborious. Thus, it is suggested that one
may use Singular Value Decomposition (discussed in more detail in Section 5, and
in reference [65]). One may add the steady-state spectra to the separated spectral
components and then reconstruct the overall matrix using all of the SVD matrices
with the spectral components edited to remove the steady-state components. In this
way, the steady-state contributions are removed for the whole data matrix with the
statistical information regarding the errors on one’s measurement retained.

2.3. Published Implementations

Whilst many groups have used the methods of band-shape analysis, no implementa-
tions of a program (to our knowledge) exists in the ultrafast literature purely to
fit band-shapes. The only program that does engage with fitting band-shapes is
the program published by Grubb et al., KOALA (Kinetics Observed After Light
Absorption).[66] This program however only decomposes bands into sums of Gaus-
sians or Lorentzians, considerably hampering its use in the electronic regime. In
addition, Grubb et al. assert that shifting or narrowing of a spectrum is a result
of a kinetic process, which is not necessarily accurate. The program also imposes a
kinetic model whilst fitting the components of each spectra, which may be unhelpful
for non-exponential processes.

2.4. Applications

A significant use of band-shape analysis has been in understanding solvation
dynamics. In a landmark 1995 paper Horng et al. measured the time-resolved
fluorescence of Coumarin 153 (C153, Figure ??) in 24 solvents. This was achieved by
using a single-wavelength fluorescence up-conversion instrument, taking time profiles
at multiple different wavelengths for each of these solvents and reconstructing the
time-resolved emission spectra.[21] These spectra were then fitted with log-normal
functions and the band maximum and average frequencies taken from these fits were
used as measures of solvent relaxation.
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Figure 9. Molecules used as fluorescent solvation probes.

These were then used to construct spectral response functions,

Sν̃(t) ≡
ν̃(t)− ν̃(∞)

ν̃(0)− ν̃(∞)
(36)

where ν̃(t) is the band maximum at time t, ν̃(∞) is the band maximum after all
solvent relaxation is complete, and ν̃(0) is the band maximum at t = 0 (accomplished
in their case using the method outlined in Section ??). A selection of these are shown
in Figure ??. These could then be analysed to give the characteristic solvation times
in the 24 solvents measured. Using this method, they were able to demonstrate that
a significant part of the solvent response is inertial, confirming predictions made
by earlier classical molecular dynamics simulations. In addition, Horng et al. could
compare their observed solvent response with predictions from models based on the
dielectric response of the pure solvent and show that these provide semi-quantitative
understanding of solvation dynamics, as well as showing cases of the failure of these
theories - quadrupolar solvents such as dioxane and benzene are not well-described
by the dielectric response.

Figure 10. 5 spectral response functions constructed from fitting transient fluorescence data with
log-normal functions, showing the variation of solvation dynamics with differing polar aprotic
solvent. CH3CN is acetonitrile, φCN is benzonitrile and HMPA is hexamethylphosphoramide.
Reprinted with permission from reference [21]. Copyright 1995 American Chemical Society.

In the 1995 paper of Horng et al., the effect of excess energy was perceived to
be of minimal interference (determined by measuring the relaxation of C153 in
cyclohexane, where no solvent relaxation was anticipated to take place) and that
vibrational relaxation should not affect the position of the fluorescence band and
thus have no interference in the measure of solvent relaxation. This view was
revisited with the considerably greater spectral resolution of the FLUPS experiment
of Sajadi et al., and it was shown that in fact if one excites a non-polar solute in
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a polar or non-polar solvent, the peak position may ‘excessively’ redshift (Figure
??) if one excites with vibrational excess energy. This was also deduced using
band-shape analysis, specifically from fitting a log-normal to the full spectrum at
each time step and observing the time-dependence of the peak position and width.[59]

Figure4. TheStokesshift of C343inacetonitrilehasthesameeWavenumber/103cm-1

Figure 11. Example fits (left panel) of time-resolved fluorescence spectra of C153 measured in
acetonitrile. The band maximum (right panel, as deduced from a log-normal fit to the data) of
C343 (Figure ??) if it is excited at 450 nm (black) or 400 nm (red). Note the magnitude of the
shift maximum and minimum is the same, but the origins differ with vibrational excess energy
(though the final position of the spectrum is the same). Adapted with permission from reference
[59]. Copyright 2013 American Chemical Society.

The effect was interpreted in terms of the transient heating of the electronically
excited chromophore, as well as the time-dependence of the cavity size of the
molecular probe. As such, this improved spectral resolution coupled with the
band-shape analysis techniques enabled Sajadi et al. to show that excitation at
the red edge of the absorption spectrum is, in theory, a necessary condition before
constructing the spectral response function and comparing this to theories of solvent
response or simulations.[59]

Gerecke et al. also explored the behaviour of water molecules around nonpolar
groups using N-methyl-6-oxyquinolinium betaine (MQ, Figure ??) and a derivative
where the H atom in position 3 is replaced with a tertiary butyl group (3tBu-MQ,
Figure ??).[67] This difference in the molecular structure between the two molecules
lead to a minor difference in the solvation dynamics between the two (Figure ??).
This difference in solvation dynamics, by comparison with molecular dynamics
simulations,[68] was ascribed to the coupling of solute vibrations to hydration
water. This implied that a common view in the field of solvation dynamics - that
the solvation dynamics measured should not be dependent on the molecular probe
- is not necessarily correct. This elegant insight could only be made possible by
the advent and usage of broadband fluorescence up-conversion, coupled with a
band shape analysis that enabled the very small difference in shift times to be
uncovered.[67]

Band-shape analysis has also recently been used in a study to detect excited



June 18, 2020 International Reviews in Physical Chemistry Beckwith_Analysis

28 Joseph S. Beckwith, Christopher A. Rumble and Eric Vauthey

Figure 12. Fluorescence band maximum as a function of time for MQ (black) and 3tBu-MQ (red)
after excitation a 400 nm in water. Reprinted with permission from reference [67]. Copyright 2017
American Chemical Society.
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Figure 13. Molecules used as probes of excited-state symmetry breaking, vibrational energy relax-
ation, electron transfer and fast internal conversion.

state symmetry breaking (ES-SB) in the molecules L1 (a molecule where ES-SB
was anticipated to take place) and L2 (a molecule where ES-SB was anticipated
to not occur) (Figure ??). ES-SB is a transition from a state where the electronic
excitation is delocalised evenly over the whole molecule to a state where it is
localised on one side of the molecule. Consequently, the excited state changes from
quadrupolar to dipolar. ES-SB had previously been observed in real-time using
transient IR spectroscopy,[69] but not in a molecule lacking localised IR marker
modes. By analysing the time-resolved fluorescence of L1 and L2 using the DHO
model, equation ??, it was possible to decouple the spectral shift dynamics and
the population dynamics. This is shown in Figure ??. This enabled access to
the instantaneous transition dipole moment, µem which was shown to track the
excited-state symmetry breaking, with the authors observing a decrease of µem upon
ES-SB.[70] This also enabled the previous assertion [71] that the fluorescence shift
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tracks excited-state symmetry breaking to be refuted (Figure ??). This method has
since been used by others [72] to track excited-state symmetry breaking in molecules
lacking localised IR marker modes, giving further insight into this phenomenon.

Figure 14. FLUPS data for compared to fitting with equation ?? for a) L1 (a molecule where
ES-SB is anticipated) and for b) L2 (a molecule where ES-SB is not anticipated) in DMSO . Data
and fit peak normalised to ease viewing. Adapted with permission from reference [70]. Copyright
2017 American Chemical Society.

Band-shape analysis has also been used in the study of vibrational energy
relaxation. Kasajima et al. studied the vibrational relaxation of perylene (Pe)
and 12-(3-perylenyl)dodecanoic acid (PD) (Figure ??) using fluorescence up-
conversion.[73] By taking fluorescence time traces at different wavelengths, and then
subtracting the steady-state fluorescence (1 in Figure ??) they were able to observe
the emission from higher-lying vibrational states populated at early times by the 400
nm excitation pulse. They then decomposed the fluorescence into contributions from
S1(ν ′ = 0, 1, 2) by using a DHO model which takes into account fluorescence from
higher-lying vibrational states (equations ?? and ??) - first defining the Huang-Rhys
factor by using the DHO to model the steady-state fluorescence, then using this
value to simulate fluorescence from S1(ν ′ = 1, 2). Using this, they were able to
deduce the contributions of these states to the fluorescence at each time step and
thus the vibrational populations, shown in panel 2 of Figure ??. From this, and the
fitting of these populations with a kinetic model, they showed that the relaxation
rate of PD was higher than Pe, attributed to a higher number of vibrational degrees
of freedom, and that direct relaxation in the excited state from |2⟩ → |0⟩, as well as
|2⟩ → |1⟩ and |1⟩ → |0⟩ were possible (under the assumptions of classical kinetics,
which may not necessarily [74] apply to vibrational relaxation).

The Pe molecule and the electron donor N,N -dimethylaniline (DMA, Figure
??) have also been used in conjunction with the spectral decomposition method
(Section ??) in order to study bimolecular electron transfer. In these experiments
the decomposition method was used to extract the time evolution of different
populations (acceptor, Pe, in the S1 state, ionic product, accceptor in the T1 state)
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Figure 15. Time dependence of µem of a) L1 in cyclohexane (CHX), 1-propanol (PrOH), tetrahy-
drofuran (THF) and DMSO, and b) of L2 in CHX and DMSO. In L1, the µem decreases as
symmetry breaking occurs in PrOH and DMSO. In L2, no symmetry breaking occurs in even the
most polar DMSO. All traces are normalised to steady state value of µem at long times. Note the
change of axis at 2 ps. µem vs the peak position of the emission band of c) L1 in CHX, PrOH, THF
and DMSO and d) L2 in CHX and DMSO. As can be seen, the peak shift does not correlate with
the change in the µem and is thus not a sufficient marker of ES-SB. Adapted with permission from
reference [70]. Copyright 2017 American Chemical Society.

Figure 16. 1) Time-resolved difference spectra constructed from fluorescence up-conversion mea-
surements of a) Pe and PD in 2-methyltetrahydrofuran. Steady-state fluorescence spectra shown in
top panels. 2) Vibrational populations of ν′ = 0, 1 and 2 in a) Pe and b) PD as a function of time as
deduced from band-shape analysis. Reprinted with permission from reference [73]. Copyright 2004
American Chemical Society.
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in both conventional [61] and ionic [75] solvents. In both of these experiments, the
populations were compared to modelling using a diffusion reaction equation, which
was found to well-describe the reaction dynamics over 5 orders of time, 3 orders of
viscosity and at a range of quencher concentrations using a single set of parameters.
This was in stark contrast to formal kinetics, which was unable to provide adequate
population fits to the data even with a complex system of ad hoc states and
time-independent rates. This experiment showed the weaknesses of the assumption
of the formal kinetics model when the processes are involved are ill-described by
well-separated states, and that clear physical insight could be obtained in using
a theory that incorporates diffusion. A comparison between the encounter theory
results and the formal kinetics results is shown in Figure ??. This method was also
used to understand the same electron transfer reaction in ionic liquids - showing that
the charge separation is not significantly affected by the ionic nature of the solvent,
but the screening of the Coulomb interaction significantly enhances the generation of
free ions.[75] The decomposition method, coupled with the comparison to a solvent
of the same viscosity but non-ionic in nature (a DMSO/Glycerol mixture) and the
use of a diffusion reaction equation, enabled this insight which is of potential use for
a variety of applications where free ions are desired.

Figure 17. Time evolution of the different populations involved in the photoinduced bimolecular
electron transfer reaction between Pe and DMA in DMSO/Glycerol mixtures of differing viscosity
extracted using the spectral decomposition method (blue: Pe in the S1 state, red: Pe anion, green:
Pe in the T1 state). Coloured lines are a formal kinetic simulation, dashed lines are diffusion
reaction simulation). Note the failure of the formal kinetics model. Reproduced from reference [61]
with permission from the PCCP Owner Societies.

Band-shape analysis was also used to understand the photophysics of the stable
radical 1,3,5-triphenylverdazyl (Verdazyl, Figure ??). By doing a transient absorp-
tion experiment on Verdazyl, exciting the D1 ← D0 transition using 800 nm light,
Weinert et al. observed that after a c. 500 fs induction period (which they deduce to
possibly provide an upper limit on the D1 lifetime), the transient absorption spec-
tra decay display a time-dependent peak position which shifts to higher energy with
time, and that the time traces display non-exponential relaxation back to zero.[76]
They thus interpreted this as the signature of a rapid internal conversion back to
the ground state, producing a vibrationally hot ground state. Thus, they used the
Sulzer-Wieland formalism (equations ?? - ??) to simulate the steady-state spectrum,
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then (using those results) the time-dependent spectrum to access the cooling dynam-
ics. By scaling the D1 ← D0 transition (found to be necessary due to the presence,
deduced using time-resolved anisotropy measurements, of additional transitions that
are accessible upon thermal excitation), a good approximation of the time-dependent
band shape was simulated for each time step, and thus the temperature at each time
step could be accessed and its time behaviour interrogated (the spectra, and the
simulated spectra are shown in Figure ??). Weinert et al. found that the cooling
could best be described as a biexponential function, and suggested that the shorter
time constant could be attributed to intramolecular vibrational redistribution and
the longer to intermolecular vibrational relaxation. In this way, they were able to
gain a full picture of the relaxation of the Verdazyl chromophore upon excitation
to its lowest excited state. It should be noted however, that the strict partitioning of
VER into intra- and the intermolecular to different time scales in solution has been
questioned.[73] Nonetheless, the paper presents a remarkably detailed investigation
of the relaxation of the Verdazyl chromophore.[76]

Figure 18. (a) Transient absorption spectra of Verdazyl in acetonitrile after 800 nm excitation at
time delays specified by colour. (b) Simulation of the spectra using equations ?? - ??. (c) As in (b)
but with the D1 ← D0 transition scaled, as was needed for direct comparison. Time delays are 500 fs
(brown), 1 ps (red), 2 ps (orange), 3 ps (green), 5 ps (light blue), and 10 ps (dark blue). Reproduced
from reference [76] with permission from the PCCP Owner Societies.

2.5. Conclusions

Band-shape analysis methods can provide extremely useful insight into processes
where the spectra are anticipated to shift and where the shape of the spectra may
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directly be related to a physical quantity or process of interest. The monitoring and
understanding of solvation and vibrational relaxation are two fields where this is
highly relevant, and two fields where band-shape analysis has found much use. More
recently the analysis has found application in understanding excited-state symmetry
breaking and electron transfer.

The techniques have, historically, found more use in transient fluorescence than
in transient absorption, likely due to the complications of non-unipositive data and
multiple superimposed band-shapes that transient absorption represents. The recent
decomposition method by Angulo et al.,[61] as well as the steady-state contribution
removal of Kovalenko et al.[63] and Wilcken et al.[64] does signal progress in this
direction. As such, these are useful techniques if one wishes to, without the pre-
imposition of a kinetic model, access populations of states or the dynamics of a
relaxation process. In this respect, band-shape analysis methods are versatile and
useful.
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3. Global Kinetic Analysis

Global kinetic models (GKMs) combine the assumptions of classical kinetics with
a ‘global’ view of the data - the simultaneous analysis of all time traces. First, we
will discuss both the classical kinetic assumption and the ‘global’ view of the data,
then the common algorithms and common kinetic models. Finally, we will discuss
the limitations of these models, and some examples of their use.

The fundamental assumption underlying classical kinetics is that the chemical
reaction under consideration can be described as transitions between well-defined
states.[3] This leads to the assumption that each chemical transformation can be
quatified by a rate constant independent of time. In addition, an assumption that
follows is that each well-defined state has a time-invariant electronic spectrum. These
assumptions often work well for both the gas phase and solution phase, particularly
for processes occurring on timescales much longer than those of vibrational and/or
solvent relaxation.[4, 77] For ultrafast processes in liquids that takes place on similar
time scale to vibrational relaxation and/or solvent motion, these assumptions can
become more problematic, as we will see in this and other sections. For transient
spectroscopy, this assumption (along with the common assumption that one may
treat the reaction under consideration as a series of exponential steps) results in
the comparison between the measured time traces and a sum of exponential decays
(which may or may not be convolved with an IRF).

The assumption that underlies a ‘global’ view of the data is that the data is bilinear.
‘Bilinear’ is a term that means that the data are separable with respect to two
variables - here, wavenumber and time. The assumption specifically is that the data
are assumed to be separable in wavenumber and time according to

D = S(ν̃)·C(t) (37)

where C(t) is a k by n matrix and S(ν̃) is a m by k matrix (hereafter the (t)
and (ν̃) are assumed implicit). The number of time points in the experiment is n,
m the number of wavenumber points and k is the number spectra and time traces
needed to describe the data, C and S thus being concentration and spectral matrices
respectively. k should be the smallest number of components needed to fully describe
the data above the noise level. Thus, to reiterate, the key assumption is that one
may separate the spectral and temporal behaviour of the data (i.e. we may assume
bilinearity). This ties into the assumption of classical kinetics - we have well-defined
species and thus time-invariant spectra of these species. The assumption of data bi-
linearity will (obviously) break down when these assumptions are invalid, and thus we
see wavenumber-dependent kinetics. In transient spectroscopy, this can be observed
when solvent relaxation and/or vibrational cooling occur on the same timescales
as the population kinetics, which is particularly common for transient spectroscopy
data with sub-ps time resolution. Though various authors only discuss that this is
the case for fast population kinetics,[31, 78] the breaking down of the assumption of
bilinearity is not restricted to this case - it will occur when vibrational relaxation and



June 18, 2020 International Reviews in Physical Chemistry Beckwith_Analysis

University of Geneva 35

solvation compete with the population kinetics. As an example, if one measures a
photochemical or photophysical process in high viscosity media such as ionic liquids,
the solvation time can reach close to 1 ns.[79] Thus, as has been discussed in more
detail previously,[80] any application of global kinetic models to processes involving
vibrational relaxation and/or solvation, and interpretation of any extracted time con-
stants, should be done with extreme care. It should also be noted that equation 37
represents the same type of Soft-Modelling decomposition that will be discussed in
Section 5 but the difference to methods discussed in that Section being that here we
will impose a functional form on the time behaviour.

3.1. Theory

3.1.1. Motivation
What is the motivation to ‘go global’? One might say it would be easier to fit

time traces at the maxima of various spectral bands and see what time constants
one finds in common. Indeed, this is a perfectly reasonable first step in data
analysis of transient spectroscopy data. It may quickly show if the kinetics are
strongly wavenumber-dependent, and thus if it is worth attempting a global analysis.
However, there are clear mathematical limitations to this in terms of the number and
proximity of the lifetime components that we may resolve. In an elegant paper dis-
cussing exponential analysis of physical phenomena, Istratov and Vyvenko show that
even for a signal-to-noise ratio (SNR) of 104, the smallest ratio of time constants that
one may distinguish in a biexponential fit is 1.2.[81] To give some context, a ‘typical’
SNR for data taken in our laboratory for step-scan TA is 40 [82] (rapid-scan TA will
natrually reach a much higher SNR [15, 83]) and for FLUPS is 90.[70] Thus for these
lower SNRs the ratio of time constants that one can distinguish is much larger. Thus,
if one simply analyses one time trace and the ‘real’ kinetics have two time constants
that are rather close together in value, one will not be able to distinguish them easily.

We may test this idea using simulations (further details of which are described in
Appendix A) where we repeatedly (with a re-drawn noise each time) simulate fitting
a biexponential (i.e. N=2 in equation 3) curve with various ratios between the two
lifetimes. We may then get an error on the recovered parameters, calculated as
before (equation 4) and observe how well the parameters are recovered. The results,
as well as some example fits, are shown in Figure 19. What Figure 19 demonstrates
is that, even for very high SNRs, as the ratio of the time constants decreases, the
error on the parameters increases to levels such that no confidence in the recovered
parameters may be had. In fact, the error on the longer time constant rises to above
1000% below a ratio of 1.25 for SNRs below 1000.

In addition, the Istratov/Vyvenko paper provides a thorough discussion of the
limits of distinguishability of a double or triple exponential fit, and provides an
exceptionally useful discussion of the various algorithms that have historically been
used to analyse these data.[81]
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Figure 19. Upper panels: example fits (red) to data (blue) generated in these simulations. The
examples are of a less accurate fit where the τ1 ≃ τ2 (left panel) and an accurate fit where τ1 ≪ τ2
(right panel). Lower panels: Percentage error on recovered parameters from fitting the equation 3
with N=2 to data simulated using the same equation. Data points are averaged accuracy of 10,000
fits. A1 = A2 = 0.5, τ1 = 100 ps, σ = 100 fs. Further details on all simulations may be found in
appendix A.

Fortunately, there is a combined experimental and analytical workaround to the
problem shown in Figure 19 - analysing multiple traces simultaneously. This was
demonstrated by Beechem et al.[84–86] in an instructive example that will be
recapitulated here. The example shows that by simultaneously analysing more than
one trace where one may assume that the time constants are the same (or share a
known relationship) the error surface one optimises over becomes much more defined
and thus the time constants are more easily distinguished.

One typically optimises with respect to a χ2
ν metric, a goodness-of-fit metric that

is defined as

χ2
ν =

1

ν

N∑
i=1

[D(ti)−Dfit(ti)]
2

σ2i
(38)

where the data is D(t), Dfit(t) is a fitting function, and σi is the error on data
point i. ν is the degree of freedom

ν = ndata − pfit. (39)
where ndata is the number of data points and pfit is the number of fitted

parameters. A χ2
ν ≫ 1 indicates a poor model fit, χ2

ν > 1 indicates the fit has not
fully captured the data and in principle χ2

ν = 1 indicates a fit to within experimental
uncertainties.

It is possible to simulate such a χ2
ν surface for the analysis of a single biexponential

decay, where the decay is described by equation 3 and the parameters contained in
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Table 1. The time grid is linear from -2 to 50 ns, with 8192 data points describing
the decay, ‘typical’ of a time-resolved fluorescence experiment performed using the
time-correlated single photon counting (TCSPC) technique.[23]

Trace τ1/ns A1 τ2/ns A2 σ/ns
1 4 0.25 5 0.75 0.1

Table 1. Parameters of equation 3 used to simulate trace for Figure 20 a).

The surface (Figure 20a) shows several interesting features. First, it is very flat
around the minimum region around the parameter space of 4 and 5 ns (dark blue
areas correspond to χ2

ν values ≤ 1.2, values where one would typically consider a fit
reasonable). Thus, even if one’s algorithm successfully finds this minimum, the error
analysis will reveal that one may have no confidence in the parameters recovered.
The alleys along each parameter axis also indicate that the one lifetime value
may wander far from the true value and the χ2

ν value may be almost completely
compensated by the other lifetime’s amplitude. Additionally, there is a point along
the principal diagonal where τ1 = τ2, i.e. the analysis of the biexponential decay
converges to a monoexponential fit with a τ of 4.25 (the weighted mean of the two
lifetimes). The decrease in χ2

ν in proceeding from this monoexponential fit to the
biexponential one is relatively minor (<10%) and thus the justification to attempt
a biexponential fit (to a curve that is biexponential by construction) is statistically
marginal.

Figure 20. Surface constructed [86] from χ2
ν values for fitting a biexponential model to a single trace

(a) or two traces (b) simultaneously. White areas outside of coloured surface plot correspond to χ2
ν

values > 3. In plot a, the model simulated corresponds to equation 3 with the parameters of Table
1, whereas in plot b, to the parameters contained in Table 2. NB that dark blue areas correspond
to a χ2

ν ≤ 1.2. The SNR for these simulations was 1000.

If however, one is fortunate enough to have more than one decay trace and is able
to assume that the time constants are identical (or have some known relationship),
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it is possible to analyse them simultaneously and this combination of multiple
traces results in an error surface with a considerably better defined minimum. If
one examines the error surface obtained upon the simultaneous analysis of the two
decays, both described by equation 3 and simulated using the parameters contained
in Table 2, it is clear from Figure 20b that the error surface minimum is better
defined and near the correct values of 4 and 5 ns.

Trace τ1/ns A1 τ2/ns A2 σ/ns
1 4 0.25 5 0.75 0.1
2 4 0.75 5 0.25

Table 2. Parameters of equation 3 used to simulate traces for Figure 20 b).

The covariance valleys (i.e. the large areas where we may change the lifetime by a
large amount with very little difference to the χ2

ν parameter) along each parameter
axis have been almost completely eliminated, and thus the justification of the use
of a biexponential is now clear. This considerable improvement arises from the fact
that multiple experiments may be viewed as sets of rotated error surfaces, and
that in the global analysis the union of these surfaces is minimised. The larger the
degree of variation in the amplitudes is, the larger the rotation between the in-
dividual error surfaces, and the greater the ease of minimisation to the correct answer.

Here, we have extended the simulations of Beechem et al. to also show the effect
of noise on this χ2

ν surface (note the range of lifetimes that define the surface has
been increased). This is shown in Figure 21, where we may clearly see that as
the noise level increases the area where the χ2

ν ≤ 1.2 may occupy considerable
parameter space (in the case of an SNR of 10, almost the whole surface). Thus whilst
the simultaneous analysis of two traces does lead to a more defined error surface,
enabling us to find a more statistically meaningful minimum, it is still imperative to
(if one wishes to report parameters with confidence) explore the error surface and to
know the experimental noise level.

In addition, an exploration of how the SNR effects the error on the recovered
parameters is shown in Figure 22 as a function of the ratio between the two lifetimes.
It is clear that the error on the parameters is considerably less than for the single
trace experiments shown in Figure 19 in all cases. Thus the surfaces (shown in
Figures 20 and 21) and parameter error simulations (shown in figures 19 and 22)
clearly highlight one of our rationales to ‘go global’ - we will be able to find more
statistically meaningful minima and more accurately extract parameters from our
data.

Another reason for using global analysis is that the speed of fitting is considerably
increased - if one individually fits nt traces with ncomp time constants (thus ncomp

amplitudes), one has 2(nt·ncomp) free parameters to optimise. If one simply links
the time constants the number of free parameters is lessened to (nt·ncomp) + ncomp.
This can produce a formidable increase in efficiency - Beechem et al.[85] discuss an
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Figure 21. Surface constructed [86] from χ2
ν values for fitting a biexponential model to two traces

simultaneously with different levels of relative noise added. Specifically, a) corresponds to an SNR
of 1000, b) to an SNR of 100 and c) to an SNR of 10. White areas outside of coloured surface plot
correspond to χ2

ν values > 3. The model simulated corresponds to equation 3 with the parameters
of Table 2. NB that dark blue areas correspond to a χ2

ν ≤ 1.2.
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Figure 22. Upper panels: example fits (red) to data (blue) generated in these simulations. The
examples are of a less accurate fit where the τ1 ≃ τ2 (left panel) and an accurate fit where τ1 ≪ τ2
(right panel). Lower panels: Percentage error on recovered parameters from fitting the equation 3
and linked time constants to data simulated using the same equation. Data points are averaged
accuracy of 10,000 fits. τ1 = 100 ps, σ = 100 fs, A1=0.25, A2=0.75, A3=0.75, A4=0.25. Further
details on all simulations may be found in Appendix A.

example of a multi-wavelength fluorescence anisotropy experiment where the single-
wavelength analysis took months to perform, whereas the globally linked optimisation
simply took a matter of hours (one may safely assume that these timescales would
be considerably shortened today - nonetheless, the increase in efficiency is striking).
Recasting of the problem using matrices enables the number of free parameters in
the optimisation to be only ncomp free parameters, increasing the speed much further.
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3.1.2. Matrix Method of Global Kinetic Analysis
The final rationale behind global analysis is an outcome that simplifies the assign-

ment of the time constants to associated spectra. When one links the time constants
across all wavenumbers in the experiment, the spectral matrix in equation 37 will
contain the wavenumber-dependence of the amplitude of the time constant in ques-
tion. It is, in general, considerably easier to assign a contribution by looking at a
spectrum than by looking at the time constant alone. If one simply takes the spectral
shape associated with the amplitudes in S from equation 37, these are referred to as
the decay associated spectra (DAS),[78] or DADS, where the second D stands for
difference in the case of TA measurements, as they are directly associated with the
decay profiles in C from equation 37.[78] The fact that they are directly associated
to the decay profiles enables one to remove these as fitting parameters - one simply
guesses the time constants, then uses these to compute the DAS (from which the
calculation of the fit matrix Dfit follows). For guessing the DAS, one guesses the C
matrix and then computes the S matrix via:

Ŝ = D(CTC)−1CT (40)
which may be simplified to

Ŝ = D·C+. (41)
A+ is the Moore-Penrose pseudoinverse,

A+ = (ATA)−1AT, (42)
of the matrix A, and is used due to it being both rapidly and stably able to

compute the best-fit solution to a system of linear equations. The circumflex above
S denotes ‘estimator of’.[78]

The fit matrix may then be computed by

Dfit = S·C(θ). (43)
i.e.

Dfit = D·C+·C(θ) (44)
Where S may be referred to as conditionally linear [87] parameters, as they are

solved for conditionally on the unknown parameters θ, using equation 40. This
method of computation of the fit matrix and subsequent fitting is referred to
informally as the ‘matrix method’ of global kinetic analysis (GKA). The model for
the C matrix is dependent upon θ in a non-linear fashion, thus iterative numerical
methods must be used to solve the problem. It should also be noted that this method
works perfectly for single traces, as these are formally matrices with one of the
axes simply being of length one (thus one may also use this method to speed up
fitting of single traces). The optimal algorithms for the solution of this problem will
not be discussed here, and are well described by van Stokkum and co-workers, who
have done much to profligate Global Kinetic Analysis in the transient spectroscopy
field - the review in Biochimica et Biophysica Acta is exceptionally thorough in



June 18, 2020 International Reviews in Physical Chemistry Beckwith_Analysis

University of Geneva 41

the discussion of the mathematics, implementation and usage of Global Kinetic
Models.[78, 87, 88]

The species associated spectra or SAS (sometimes referred to as SADS in TA
spectroscopy, where the second D again stands for difference) are spectra that are
said to reflect the exact spectra of the specific species. Thus the DAS are equivalent
to these only if the C matrix has been constructed using a kinetic equation that
explicitly takes into account the assumed decay pathways - these can be solved using
matrix methods, as has been well described by Berberan-Santos and Martinho.[89] If
one however simply uses the most simple sum-of-exponentials approach, a shortcut
exists if one wishes to convert between the DAS and something that many use as
an ‘approximation’ to the SAS - the evolution associated spectra (EAS or EADS).
Evolution associated spectra describe how time-resolved spectra evolve over time,
but can be assigned to species or states only under the assumptions of classical
kinetics and bilinearity. Under the same reasoning, the associated time constants
will not always correspond to a well-defined process. However, the determination
of EAS can be useful for visualizing the dominant spectral changes and their
associated timescales, and thus be useful in the selection of a model. The SAS on
the other hand correspond to genuine species spectra (if the kinetic model used is
correct). The DAS correspond to the SAS if and only if the kinetic process under
investigation is that of ncomp parallel decay components - i.e. for a ground state A
and 2 photoexcited components, B and C, the model one would have in mind is
shown in Figure 23.

A

k
1hν

B + C

hν
k 2

Figure 23. Parallel decay scheme.

This is a model that is only likely for mixtures of molecules which do not interact
in any way. The spectra associated with this model are easily transformed to the
SAS of the model of a sequential decay, i.e. for the scheme in Figure 23, the
corresponding scheme of a sequential decay is shown in Figure 24.

The results of transforming the spectra assuming a sequential decay model are only
valid to refer to as the SAS if the sequential model is indeed appropriate. Otherwise
the assumption of a sequential model results in the recovery of the EAS from the
DAS. The DAS are transformed to the EAS by the use of the so-called B matrix,
a lower triangular matrix which expresses that the i -th EAS is a linear combination
of the i -th and following DAS. The B matrix is constructed using [78]:
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A

hν

B
k1

C

k 2

Figure 24. Sequential decay scheme.

blj =

j−1∏
n=1

(kn − kl)

kn
(45)

where bl1 = 1, j ≤ l, ki is the rate constant associated with spectral component i.
The EAS are then constructed from the DAS using:

EAS = DAS·B. (46)
The Matrix Method of Global Kinetic Analysis is able to recover time constants

that are close together in ratio even at relatively low SNR, as well as being
remarkably fast to compute. Its performance is encapsulated in Figure 25, and as can
be seen it is exceptionally accurate for almost all SNRs, as well as very accurately
recovering the EAS used in simulating the data.
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Figure 25. Upper panels: example fits (solid lines) to data (coloured points) generated in these
simulations. The example is of an accurate fit where the τ1 ≃ τ2 (time traces in left panel, EAS
in right panel). Lower panels: Percentage error on recovered parameters from fitting the equation
43 to data simulated using the same equation. Data points are averaged accuracy of 10,000 fits.
τ1 = 100 ps, σ = 100 fs. Further details on all simulations may be found in Appendix A.
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3.1.3. Wavenumber-dependent method of Global Kinetic Analysis
As was pointed out by Fita et al.,[90] the Matrix Method of fitting the transient

spectroscopy data with IRF deconvolution requires that there is no wavenumber-
dependence of the IRF width, which is not a valid assumption for many experiments,
as the assumption is that the number of components in the C matrix is the same
as the number of independent time traces that may be multiplied by the spectral
matrix S to construct the dataset. Multiple methods have been developed to
circumvent this problem. The simplest is to truncate the data to after the IRF at
all wavenumbers, then analyse the resulting matrix. This does preclude the analysis
of components comparable to one’s time resolution however, and thus may lead to a
loss of information.

The method used by Fita et al.[90] was to use Tikhonov regularisation [91]
(discussed in relation to lifetime density methods in Section 4) to deconvolve the
time traces and then fit them using the Matrix Method. This is in some ways not
an ideal strategy - the Tikhonov regularisation deconvolves the data and returns a
‘noise free’ matrix - thus one loses the statistical information on the measurement if
one fits this returned matrix, and so an error in the Tikhonov regularisation could
cause a large and unknown error in the Global Kinetic Analysis.

A superior method is to implement an analysis that is able to take into account the
wavenumber dependence of the IRF. This was discussed glancingly by Mullen and van
Stokkum [92] as well somewhat more thoroughly by Slavov et al.,[93] though Slavov
et al.’s primary goal was to use a method to fit data without first chirp correcting the
data matrix. The paper itself is, from a programming perspective, scant on actual
detail, simply stating that the construction of the fit matrix occurs in the same way as
by the Matrix Method used by van Stokkum, Fita and others.[78, 90] This is untrue
if one wishes to implement a wavenumber dependence of the IRF or the time zero
position (i.e. the chirp). In fact, one no longer has a concentration guess matrix C,
but a concentration guess tensor, C which has dimensions of m by n by ncomp, where
m is number of wavenumbers, n is number of time points and ncomp is number of fit
components. Thus (if one simply is fitting with a multiexponential model),

C(t, ν̃, ncomp) =
1

2
exp{−τ−1(t−t0(ν̃))}exp{0.5·τ−2·σ(ν̃)2}

[
1+erf

(
t− t0(ν̃)− ·τ−1·σ(ν̃)2√

2σ(ν̃)

)]
(47)

where t0(ν̃) and σ(ν̃) are wavenumber dependent time-zero and IRF width pa-
rameters (i.e. this tensor is generated iteratively over the wavenumbers). A spectral
amplitude matrix S is then constructed by the use of the Moore-Penrose pseudoin-
verse as before:

S(ν̃) = D·C+ (48)

Then, the fit matrix is generated by the summation over the ncomp axis of the
tensor:
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Dfit =

ncomp∑
i=1

SC(t, ν̃, i) (49)

and calculation of the EAS may proceed in the same manner as in equation 46.
Clearly, as the construction of the tensors is a wavenumber-dependent process, the
method is considerably slower than the standard Matrix Method. Thus, if one has
sufficiently thin sample cells or sufficiently slow kinetics that one does not need a
wavenumber-dependent IRF or does not need to fit the IRF (respectively) the simpler
Matrix implementation of equation 43 is preferred.

3.2. Published Implementations

Multiple groups have published programs and packages for the transient spectroscopy
community’s use. Wilderen et al. [94] and Slavov et al. [93] have both published
MATLAB based implementations, largely differing in the support for multi-pulse
experiments (the Wilderen et al. package) and wavelength-dependent analysis (the
Slavov et al. package). The Slavov et al. package also supports Lifetime Density
Analysis, which will be discussed in Section 4. The Wilderen et al. package has been
used in the study of gold and silver clusters, as well in the study of a variety of
biomolecules by a number of groups.[95–99] The Slavov et al. package has also been
used for analysis of transient spectroscopy of biomolecules and photoswitches.[100]

The group of van Stokkum, as well as publishing extensively detailed papers on
the theory [78] and algorithms [87, 88] of Global Kinetic Analysis, has published the
R-based software package TIMP [92], as well as the Java-based GUI for said package,
Glotaran [101]. This package is the most widely used by the transient spectroscopy
community, with thus far (according to Google Scholar in early 2020) 593 citations
to its name.

3.3. Applications

Global Kinetic Analysis has been applied to an extremely wide variety of problems in
transient spectroscopy. As such, given the goal of this literature review is to provide a
broad overview, not all uses of GKA have been elucidated here. Given the number of
uses (the van Stokkum review on Global Analysis has 1135 citations in early 2020 ac-
cording to Google Scholar), this would likely be impossible. This section simply gives
a few, significant examples to demonstrate the successes and failures of the technique.

The first applications where GKA made a significant mark were largely in transient
fluorescence experiments with ∼ 100s of ps time resolution. The various molecules
used in these experiments are shown in Figure 26. Thus, the assumption of bilinearity
in equation 37 holds for all of these experiments, given that vibrational relaxation
and solvation have sub-ps timescales in the solvents used. GKA quickly showed its
use in enabling researchers to disentangle complex mixtures of fluorophores. In an
experiment where a mixture of fluorophores was prepared in ethanol, the method
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was able to accurately recover the lifetimes and spectra of POPOP (5-Phenyl-2-
[4-(5-phenyl-1,3-oxazol-2-yl)phenyl]-1,3-oxazole, τfl of 1.25 ns), anthracene (τfl of
4.27 ns), and 9,10-diphenylanthracene (τfl of 6.21 ns), even in the regions where
the anthracene spectrum is very faint.[102] In addition, this study showed that the
algorithm was able to accurately describe the excited-state proton-transfer of a pH
3 study of 2-naphthol, using the kinetic scheme in Figure 27.

O
N

O
N

POPOP Anthracene
OH

2-Naphthol

9,10-Diphenylanthracene

N

NH2

9-Aminoacridine

Figure 26. Fluorophores used to demonstrate the versatility of global analysis in time-resolved
fluorescence.
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Figure 27. Parallel decay scheme.

The GKA well-describes the reaction, providing well-separated SAS (the small
‘hump’ at 355 nm was ascribed to Raman scatter) that sum to the steady-state
fluorescence spectrum (Figure 28), with rate constants that agreed reasonably well
with the predicted pH-dependence of the rate constant kB from a previous study on
the same molecule at different pH. Thus, here, GKA was able to show the reaction
to be well described by the proposed kinetic scheme and to provide good estimates
for the fluorescence spectra of the individual species.

GKA was also used to greatly speed up and improve the analysis of fluorescence
anisotropy experiments. Beechem et al. pointed out that Global Kinetic Methods
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Figure 28. Analysis of the excited-state proton transfer of 2-napthol. 16 wavelengths were used in
the GKA. The SAS assuming the values of kB (k2 + k4) and kA (k1 + k3) extracted (red symbols
symbols) and for the lowest possible value of kB (blue symbols) illustrating that this does not well
describe the data. The black line is the steady-state spectrum. Replotted with permission from
reference [102]. Copyright 1986 American Chemical Society.

were able to discriminate between the anisotropic and isotropic rotor model for
9-aminoacridine (Figure 26) - analysis in a single-wavelength manner enabled a
perfect description in terms of a simple isotropic rotor, which a global analysis
revealed to be inaccurate - the molecule is best described as an anisotropic rotor,
but as the time constants only differ by c. 20%, single-wavelength analysis is
unable to discriminate, whereas Global Kinetic methods justified the use of the
anisotropic rotor model statistically.[85] The method was also used in the study of
the binding of epidermal growth factor to its receptor, and its simultaneous use on
the stopped-flow fluroescence anisotropy data at multiple different concentrations
allowed the unambiguous resolution to the question of if there were multiple affinity
classes in the receptor populations (there were), which the non-global studies did
not have enough statistical information to properly interrogate.[103]

GKA has also been shown to be very effective for ns time resolution transient
absorption experiments - as an example, the complete cycle of the motor inversion
of the Hemithioindigo 1 (HTI1) from A to D shown in Figure 29 was studied by
the Wilcken et al. using transient absorption experiments from the sub-ps to the
18 ms time regime.[64] The combination of this data and the use of global analysis
enabled the disentanglement of the triplet excited state of A and the product B (a
product that had not been directly observed), as well as the observation of product
D (equally, never before directly observed). This enabled a complete picture of
the rotation scheme of 1, as shown in Figure 30. In addition, the global spectra
were able to be ‘filled in’ with the correct amount of ground state bleach to give
the ‘pure’ absorption spectra of B and D. The deduction of the full motor cycle
(using the GKA) also enabled the authors to provide stronger conclusions about
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how to improve molecular motors - using a simplified rate model they were able to
deduce that the most logical parameters to concentrate upon to increase the ‘easily
accessible’ rotation rate (i.e. the rotation rate under relatively undemanding ambient
light) would be to increase the quantum yields of the inversion steps (i.e. A to B,
B to C) and to reduce the thermal barriers, rather than to reducing the parasitic
triplet processes. Here, GKA enabled physical insight, a mechanistic picture to be
developed and to reveal clear and improved design principles for future chemistry.

Figure 29. (a) Comparison of the theoretical (blue) and experimentally determined (black) ground
state energy profile of HTI1. Only (S)-enantiomers are shown. (b) Molar absorption coefficients of
all four isomers A–D of HTI1. The spectra of the B and D isomers are extracted from the transient
absorption measurements. Reprinted with permission from reference [64]. Copyright 2018 American
Chemical Society.

Figure 30. Mechanism of HTI1 motor operation under irradiation conditions at ambient temper-
ature. All measurements were conducted at 22 ◦C in dichloromethane. Processes involving excited
states are shown in blue or gray arrows; thermal processes in the ground state are shown with pink
arrows. Reprinted with permission from reference [64]. Copyright 2018 American Chemical Society.

GKA is less reliable for experiments where effects such as vibrational relaxation
and/or solvation cause the data to deviate from bilinearity. These conditions most
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often manifest themselves on very short timescales and thus interpretation of
transient experiments with ∼ 10s-100s of femtoseconds time resolution requires more
care and can lead to considerably more errors. In their paper on the excited-state
behaviour of the Schiff bases HNAQ and HNAN (Figure 31), Fita et al.[90] thus
compared their single-wavelength fits at 5 wavelengths in their experiment to the
time constants shown by the global analysis. As they found high coincidence, they
deduced that the global analysis technique was acceptable to use in this case, though
they noted that they did not analyse the DADS of HNAQ as nonexponential
processes distorted their shape severely.[104] They were able to interpret the various
decay processes (Figure 33) involved using said spectral shapes (Figure 32) to
attempt to describe fully the excited-state proton-transfer and other processes of
the Schiff bases. Due to the ‘dip’ in the 4 ps DAS coinciding with the shape of the
fluorescence spectrum, this DAS was assigned to the decay of the relaxed keto S1
state. The ∼ 20-30 fs component was assigned as the initial proton transfer and the
0.5 ps to the vibrational relaxation by comparison with the HNAQ time constants,
though it seems more likely (given the short nature of the time constants) that
these are occurring simultaneously and in a nonexponential manner, and thus the
separation of the processes described here is simply due to the stepwise model
imposed. The 13 ps component is thus assigned to the relaxation back to the enol
form, and the residual to a photoproduct, speculated to be the E-enol form. As
pointed out, the nonexponential nature of vibrational relaxation [74] and the short
time constants make assignment speculative at best but here GKA was able to at
least identify the fluorescent state of the HNAN and its photochromism, and thus
enabled a clearer photophysical picture of the molecule.

O
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Figure 31. HNAQ and HNAN.

One area where global kinetic analysis finds an at first glance surprising use is in
the analysis of wavepackets arising from the coherent excitation of vibrations. There
are two ways in which it has been used for this purpose.

The older usage of GKA is in essence a ‘sophisticated subtraction technique’ - one
uses enough exponentials until the residuals contain only oscillatory components
and background noise.[105] These residual maps can then be Fourier transformed to
reveal the power spectrum of the excited vibrations. A noteable use of this was in
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Figure 32. Decay associated difference spec-
tra (DADS) of HNAN, excited at 400 nm,
after deconvolution and GKA. Reprinted
with permission from Ref [90]. Copyright
2006 American Institute of Physics.

Figure 33. Jablonski diagram illustrating
the relaxation routes in HNAN proposed
by Fita et al. Straight and wavy arrows de-
note radiative and non-radiative transitions,
respectively. Reprinted with permission from
Ref [90]. Copyright 2006 American Institute
of Physics.

the study of a synthetic switch molecule by Gueye et al.[106] In their comparison of
the synthetic Rhodopsin analogues Z -1 and E -2, (Figure 34) where the Z and E
refer to the most stable ground state isomer, which undergo EZ isomerisation upon
excitation at 400 nm.

O

N⊕

Z-1

O

⊕
N

E-2

Figure 34. Z -1 and E -2.

An example of these data and analysis are shown in Figure 35. The high quality
of the data and the comparison between on- (excitation centred at 400 nm) and
off-resonance (excitation centred at 800 nm) allowed them to discriminate between
vibrational coherences on the S0 surface and the S1 surface. Using this, they were
able to assign a low-frequency mode of 80 cm−1 which is propagated from the S1
surface to the S0 surface through a conical intersection. This enabled them to draw
conclusions as to the motion of how Z -1 and E -2 approach the conical intersection:
Z -1 ballistically, E -2 diffusively, and showed the single chemical modification
necessary to change this behaviour to preserve the vibrational coherence across the
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conical intersection.

Figure 35. Data and analysis from the paper of Gueye et al. a) Transient Absorption Data of Z -1
upon excitation using a 8.5 fs pulse centred at 400 nm., showing a clear ‘node’ at 250 fs, taken to be
the moment of impulsive S1 decay of 1 at the conical intersection. b) Selected time traces at 380 nm
and 446 nm, as well as the global fit used to subtract the population dynamics. c) Residuals at time
traces of b. d) Residuals at all wavelengths of the global fit of the TA data. e) Power spectra of the
residuals in d (blue), and from off-resonant excitation centred at 800 nm (red). f) The same Fourier
analysis of the results in d, performed on a sliding 1-ps long time window starting at 0.1 ps (red) or
0.3 ps (blue), i.e. before or after the impulsive decay. g) Same as f, for E -2, with an inset displaying
the five dominant mode intensities as a function of the initial position of the Fourier window. All
experiments were done in methanol. Reproduced with permission from reference [106].

The second (and newer) method of using GKA to study wavepackets was published
independently by van Stokkum et al.[107] and Schott et al.[108] The essence of the
approach is to simultaneously model the population dynamics and the oscillations,
using the equation
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S(t, ν̃) = C(θ) · S +

Nosc∑
n=1

DOASn(ν̃)× cos(ωnt
′ − ϕn(ν̃))exp(−γnt′) (50)

where the first term is a parametrised global kinetic fit as in equation 2.10
or 2.15, and the second term represents a sum of n oscillations ωn, with a
wavenumber-dependent phase (Φn(ν̃)), which dephase in an exponential manner
with rate constant γn and have amplitudes across the wavenumber range contained
in the ‘Damped Oscillation Associated Spectrum’ DOASn(ν̃). In the framework
of this equation, the pump-related artefacts (i.e. XPM, RAs, the coherent artefact
and the perturbed polarisation decay) are able to be considered and separated
by their damping behaviour (i.e. damping that is within the IRF), and thus this
enables the entire dataset to be analysed - as opposed to e.g. the paper on Z -1
and E -2, which only considers data after 100 fs to avoid this. There are a number
of potential advantages and disadvantages to this method of wavepacket analysis
- a clear advantage is that one is able to extract the frequencies of all vibrations
involved up to the noise level of one’s data - not necessarily possible by using a
Fourier transform, as minor vibrations are able to be obscured by larger amplitude
and/or broad ones. Additionally, one gets the phase information, which is also not
achieved by the simple Fourier transform. However, these come with a significant
caveat (noted in the paper of van Stokkum et al.[107] and not mentioned in the
paper of Schott et al.[108]) that the fitting assumes a perfect Lorentzian line shape
(i.e. a single exponential dephasing time [47]). As noted by van Stokkum et al. this
is not necessarily an accurate assumption - bath memory and coherence transfer
may perturb this, and so the number of resolved oscillations can not be said to
correspond to the number of coherences present. It was noted that the agreement
between the extracted parameters plotted as Lorentzian line shapes and the Fourier
transform were in good agreement however, indicating that the vibrational frequency
and damping rates were at least well described (though it was noted that in multiple
cases likely the same vibration is described by more than one DOAS due to the
non-exponential nature of the damping of the vibration in question). The other
clear disadvantage is that the fitting of a considerable number of parameters (e.g. 35
oscillations for the complex biomolecule measured in the van Stokkum study)[107]
does increase computational time, in direct contrast to the Fourier transform (a
computationally extremely quick calculation).

The method of oscillation modelling was used by the Schott et al. to distinguish
between the various possibilities of products after the photodissociation of the D∞h

trihalide ions I−3 , Br−3 , IBr−2 and ICl−2 , finding no neutral products present imme-
diately after excitation and only a single diatomic product. They were also able to
observe that in the C∞h point group trihalides I2Br− and I2Cl−, only the homonu-
clear product is observed, not easily identifiable from the absorption spectra alone.
Thus, the method of modelling the oscillations is able to give additional useful chem-
ical insight to this problem and, while the assumptions of the model must make one
wary of over-interpretation of the ‘individual’ vibrations, can assist in understanding



June 18, 2020 International Reviews in Physical Chemistry Beckwith_Analysis

52 Joseph S. Beckwith, Christopher A. Rumble and Eric Vauthey

wavepackets when there are vibrations of considerably different intensity involved in
the problem.

3.4. Conclusions

Global Kinetic Models have enabled considerably clearer insight into a variety of
chemical problems, particularly in sub-ns transient fluorescence and ns transient ab-
sorption experiments, where solvation and vibrational relaxation are not generally
observed and so the key assumption of data bilinearity holds. In these domains, these
models have enabled a full kinetic model of an archetypal rotor molecule to be elu-
cidated and for guidelines for rotor design to be deduced,[64] for the unambiguous
assignation of 9-aminoacridine as an anisotropic rotor [85] and for an excellent de-
scription of an excited-state proton transfer reaction [102], amongst others. When
non-bilinear contributions are present in the data and/or the population dynamics
under investigation are highly nonexponential, the separation of the single exponen-
tial components into genuine ‘states’ should be done with extreme care, as it can
prove actively unhelpful in the comprehension of the real physics of the system.
Comparison with steady-state data (as in the Fita paper)[90] is a useful strategy in
this case, as is a ‘holistic’ view of any very short time constants observed. These
models have also found use as a background-subtraction technique in the analysis of
wavepackets, with insight into the approach to a conical intersection being recently
gained.[106] The models have also been extended to explicitly account for vibrations,
a method that is very useful for the extraction of weak vibrations and phase infor-
mation. Overall the use of Global Kinetic Models can be useful - if one keeps in mind
the wide selection of assumptions that go into these models, and avoids the spectre
of over-interpretation.
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4. Lifetime Distribution Models

Lifetime distribution models (LDMs) are data analysis techniques which attempt to
describe the data by a continuous distribution of exponential decays. LDMs can be
divided into three classes. These are: 1, fitting the underlying distribution directly (i.e.
assuming a distribution to simulate the decay and optimising the parameters of the
chosen distribution vs. the data); 2, a regularised deduction of the lifetime distribution
from the data; and 3, non-parametric approaches that ‘straddle the line’ between
LDMs and Soft-modelling (Section 5) methods, though these are are less common.
The regularisation methods (which will be defined and discussed in more detail in
Section 4.4) typically differ from how the global kinetic models in Section 3 worked
in that regularisation methods are often applied to each wavelength separately and
then a lifetime ‘map’ of the data is plotted. Additionally, both regularisation methods
and non-parametric approaches lie at the interface of model-dependent and model-
independent data analysis. This is due to the fact that the model of classical kinetics
(and thus exponentials) underlies these analyses but no bias is imposed upon the
shape of the distribution. Thus these methods do not in general make the assumption
of bilinearity, though they do make the assumption of classical kinetics. Direct fitting
may or may not assume bilinearity depending on the particular method employed.

4.1. Theory

4.1.1. Motivation
Why should we care about large distributions of rates? Are they common? It is

entirely possible that they are more common than one would imagine - as shown
in 1985 by James and Ware,[109] it is possible to achieve satisfactory fits using
a biexponential function when the underlying data have in fact been generated
from distributions. This is pictorially illustrated in Figure 36, which shows that a
biexponential model may fit data generated using a Gaussian distribution of rates
very well, despite these two functions implying very different things about the
underlying process.

Figure 36. Data generated using a single Gaussian distribution (blue line in inset in lower panel)
and fit using a biexponential function (red sticks in inset in lower panel). As may be seen, the
biexponential function well describes the data and gives unstructured residuals.
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James and Ware showed this more thoroughly by generating data from multiple
rate distributions: two delta functions (i.e. a genuine biexponential function), from
one or two Gaussians, and from two triangular distributions. In each of these
cases ‘realistic’ noise (not described) was added to the dataset and a biexponential
function was sufficient to describe all of the simulated data sets.

The question of ’how well does a biexponential function fit data simulated using a
distribution’ has here been re-tested for single traces generated using equations 51 -
52,

Γ(k) =
1

σ1
√
2π

exp

{
− (k − µ1)

2

2σ21

}
+

1

σ2
√
2π

exp

{
− (k − µ2)

2

2σ22

}
(51)

I(t) =

∫ ∞

0

Γ(k)exp{ − kt}dk⊗IRF

≃
k=10∑

k=10−6

Γ(k)exp{ − k(t− t0)}exp{0.5·k2·σ2}
[
1 + erf

(
t− t0 − k·σ2√

2σ

)]
,

(52)

which are decays generated from a rate distribution Γ(k) of two Gaussians, centred
at 0.3 and 0.03 ps−1 (Figure 37), convolved with a Gaussian IRF of 100 fs width.
More detail on these simulations is provided in appendix A. These data then had
noise added and were then fit using a biexponential trial function (with an initial
guess provided by an exploration of a large range of guess lifetimes using a simulated
annealing procedure) and the χ2

ν recorded. The procedure of the addition of noise
and fitting was done 10,000 times and and an average χ2

ν calculated. These results
show that even when the distributions are remarkably broad (Gaussian FWHM
being 25% of the centre) one must have a SNR of greater than 100 to distinguish
that a biexponential is not an accurate description of the data. This is an important
observation - unless one has exceptional data quality, a priori one cannot distinguish
between a distribution of rates and a biexponential. Thus, it would be of use to be
able to analyse the data without the assumption of a specific rate model (or to trial
fitting with an assumed distribution), ideally using an algorithm that is as unbiased
as possible toward a specific description of the data.

Additionally, there are a variety of physical and chemical problems where one should
anticipate a distribution of rates. For example, where one has a chromophore in mul-
tiple conformations and/or environments - chromophores in multiple protein-induced
conformations [110] adsorbed to surfaces,[111] or heterogeneous and slowly relaxing
solvent environments (e.g. ionic liquids or glasses)[112] among others.

4.2. Rate Distributions

If one presumes that one’s kinetics may be described by a distribution, it then be-
comes reasonable to ask what distributions may we expect to see. These will be
more relevant for the direct fitting method, as this method requires the assumption
of a functional form of the rate distribution. Here, two common rate distribution
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Figure 37. Reduced Chi Squared values of decay data generated using equations 51 and 52, and
then fit assuming a biexponential decay. Data points are averaged Reduced Chi Squared values of
10,000 fits, shading is standard deviation. µ1 = 0.3 ps−1, µ2 = 0.03 ps−1.

forms will be discussed and their properties elucidated, as well as one uncommon,
but potentially useful distribution.

4.2.1. Gaussian Distribution
The Gaussian distribution is used to represent the probability density function of

a normally distributed random variable - thus, if one anticipates a normal distribu-
tion of a molecule about a certain parameter the Gaussian distribution is the natural
distribution to model this. In addition, the central limit theorem states that if one
considers any N number of random variables (with not necessarily Gaussian proba-
bility density functions), as N increases the distribution of this sum approaches the
Gaussian distribution.[113] Thus, even if one has multiple sources of heterogeneity
that are non-Gaussian, a Gaussian may be the result. As such, this is an exceptionally
useful and pervasive function. The Gaussian distribution of rates, Γg(k), is defined
as

Γg(k) =
1

σ
√
2π

exp

{
− (k − µ)2

2σ2

}
(53)

where µ is the expected value and σ is the standard deviation of the distribution.

4.2.2. Skewed-Gaussian Distribution
The Skewed Gaussian [114] distribution of rates, Γln(k),

Γsk(k) =


1

σ
√
2π

exp

{
− (k − µ)2

2(σ + β)2

}
if k < µ

1

σ
√
2π

exp

{
− (k − µ)2

2(σ − β)2

}
if k ≥ µ

(54)

where µ and σ are defined as in the Gaussian Distribution and β is an additional
skewness factor. This distribution has been described as useful when minor asym-
metry is present in a distribution, that is when the distribution may be considered
‘near-normal’. The derivation of such a class of distributions arose from the doubts
about the unqualified use of normality, which may be summed up in a quote by Geary
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[114]: ‘Normality is a myth; there never was, and never will be, a normal distribution’.
To our knowledge, the Skewed-Gaussian distribution has not been widely applied to
rate distributions, but could be a function of use if one’s rate distribution is indeed
near-normal.

4.2.3. Stretched and Compressed Exponential
A function that has been used to describe various relaxation phenomena that corre-

sponds to an underlying rate distribution is that of the stretched exponential function,

I(t) = exp
[
− (t/τ0)

β
]

(55)
which is often used as a purely empirical decay law, with 0 < β < 1. τ0 is the

lifetime parameter (corresponding to the exponential lifetime when β = 1). This
equation (approximately, the distribution may only be represented by elementary
functions for β = 1/2) corresponds to a rate distribution (Γ(k)) of the form:

Γβ(k) = τ0
B

(kτ0)(1−β/2)/(1−β)
× exp

[
− (1− β)ββ/(1−β)

(kτ0)β/(1−β)

]
f(k) (56)

where the auxiliary function f(k) is

f(k) =

{
1/[1 + C(kτ0)

δ], δ = β(0.5− β)/(1− β), if β ≤ 0.5

1 + C(kτ0)
δ, δ = β(β − 0.5)/(1− β), if β > 0.5

(57)

and the parameters B and C, arising from fitting the approximate analytical
equation 56 to the numerically integrated exact solution, corresponding to different
β values are shown in Table 3 (values of β in between these are accessible by
interpolation).

β 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
δ 2/45 3/40 3/35 1/15 0 3/20 7/15 6/5 18/5
B 0.145 0.197 0.243 0.285 1/(2π1/2) 0.306 0.360 0.435 0.700
C 0.89 0.50 0.35 0.25 0 0.13 0.22 0.4015 0.33

Table 3. Exponent δ and parameters B and C in Equations 56 and 57.

This numerical equation for the distribution was presented by Berberan-Santos et
al.,[115] and the derivation (as well as an extensive discussion of the mathematical
properties of the stretched exponential function) may be found in this paper. This
numerical equation, whilst useful, does illustrate a shortcoming of the stretched ex-
ponential - it is only for very few values of β that analytical solutions for the rate
distribution exist, which complicates interpretation if one uses it as the fitting func-
tion. A clear advantage however is that the implementation is simple - one uses it
as a replacement for an exponential in making the C matrix as defined in equation
37, and then one may use it in a global or non-global spectral model to analyse the
data as in Section 3. The other disadvantage of the stretched exponential model is
that the rate constant at time zero is infinite - not a behaviour that would appear
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to correspond to a genuine physical picture. The problems associated with this un-
desirable short-time behaviour were ameliorated by Berberan-Santos et al. with the
introduction of the Modified Stretched Exponential,[115]

I(t) = exp

[
1−

(
1 +

t

τ0

)β]
(58)

which was derived by setting t = τ0 as the time origin, and renormalising. The
distribution of rate constants may be easily obtained as

Γm
β (k) = exp(1− kτ0)Γβ(k). (59)

A further modification was introduced, enabling any time to be selected as the time
origin by defining the dimensionless parameter α

α =
t0
τ0

(60)

and the further modified stretched exponential

I(t) = exp

[
αβ −

(
α +

t

τ0

)β]
(61)

and distribution

Γαm
β (k) = exp(αβ − αkτ0)Γβ(k). (62)

Here, for a large α, the decay becomes a stretched exponential only for very long
times. For further discussion, the reader is again referred to the original paper.[115]
The modified versions of the stretched exponentials thus may be useful distributions
to be used in the analysis of transient spectroscopy data where a distribution is
presumed. In general however the stretched exponential is not presumed to have an
underlying physical basis and the distribution is not interpreted. Typically the value
of β is taken to give a degree of the amount of heterogeneity in the rate, but not
interpreted further.

The compressed exponential is defined as equation 55 where β > 1. This may be
interpreted as that the rate increases with time, starting from zero, and the decay
is super-exponential. This has received considerably less attention and use than the
stretched exponential, however it has found some use in the literature - it was pre-
viously found to be relevant in protein folding kinetics, with the interpretation that
they were observed due to a free diffusion down a potential energy surface.[116] In
addition, it was found to be relevant in non-equilibrium charge recombination, with
the interpretation being that the speeding up of this process with time was due to
the excited state being initially populated far from the crossing region between the
reactant and product states.[117]
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4.3. Direct Simulation of the Rate Distribution

The method of directly simulating a rate distribution and then comparing the time
decay that would arise from this distribution is conceptually the simplest of the
methods discussed in this section. The method is, if done in a ‘non-global’ manner, a
matter of simulating the rate distribution Γ(k), dependent on parameters θ and then
using equation 52 to simulate the time trace. This time trace is then compared to the
data and the parameters θ are optimised to achieve the best agreement. If done in a
global manner, the initial step is the same but simply the result of equation 52 is used
as the time behaviour of one ‘species’ in the C matrix, and then the optimisation of
the parameters θ proceed as in equations 41-43.

4.4. Regularisation Methods

If one wishes to directly access the rate distribution Γ(k), which enters into the ‘true’
intensity decay of one’s system via:

f(t) =

∫ ∞

0

Γ(k)exp{ − kt}dk (63)

then one would, formally, have to perform an inverse Laplace transform to access
the form of Γ(k). This problem is ill-conditioned [118] (i.e. a small error in the initial
data may cause a large error in the answers) and thus to attempt to solve it one
must make use of two tools: discretisation and regularisation. Discretisation enables
us to approximate the continuous distribution by a tractable number of points in the
presumed distribution of rates/lifetimes. Thus, one can describe the time evolution
at a single wavenumber as:

D(ν̃) =

n∑
j=1

θj(kj , ν̃)exp{ − kjt}⊗IRF(t, ν̃) (64)

where θ(kj , ν̃) are the pre-exponential amplitudes that represent the probability of
the process with rate k. In the equivalent matrix form this equation is expressed as

Dfit(ν̃) = Eθν̃ (65)
where Dfit is a vector of length n, i.e. one time trace, θν̃ is a vector of length nrates

containing the pre-exponential amplitudes associated with the number of rates. E is
an m× n matrix of the IRF convolved exponential decays.

Discretising does improve the conditioning of the problem (and thus the stability
and tractability). However, this number can however still be very large (possibly
comparable to the number of data points in the experiment) and thus whilst the
conditioning is improved, it is still not sufficiently improved. If one simply analyses
the data without regularisation, the most mathematically optimal solution will be
found - with the large number of fitting parameters, this will be a result that fits to
both the data and the noise, an undesirable occurrence. Regularisation, is, in essence,
a process whereby the fitting function is modified with a ‘penalty’ term to prevent
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undesirable outcomes of the fitting procedure. This penalty term often effectively
smooths the data in some way, though this is not necessarily the case. Regularisation
introduces a bias into the fitting procedure to attempt to make the deduction of the
underlying rate distribution less sensitive to noise. These problems generally take the
form of the equation

minimize
θ

χ2
N + α(R(θ)) (66)

where

χ2
N =

1

ndata

N∑
i=1

[D(ti)−Dfit(ti)]
2

σ2i
(67)

where ndata is the number of data points and σi is the noise variance associated
with the ith point. The χ2

N differs from the χ2
ν defined in equation 38 by the lack

of division by degrees of freedom. Instead, one divides simply by the number of
data points as in principle the number of “fitted parameters” could be as large as
the number of data points here. This definition of χ2

N follows that of Livesey and
Brochon.[119] In essence, one minimises the difference between the fit and the data,
with the fit constructed using the parameters θ, with the compensating regulariser
R reducing the bias in the solution. The regulariser is therefore also dependent upon
the fit parameters θ in some way. The hyper-parameter (a positive value) α controls
the trade-off between the residual minimisation and the regularisation. As α tends to
zero one will get a very accurate, but exceptionally sensitive to perturbation, result
- by contrast, if one has a high α, one anticipates that the resulting distribution of
lifetimes will be less noisy.

It should be noted that here the χ2
N statistic has been chosen for convenience and

readability - in actual fact, the χ2
N statistic may be replaced by a simple sum of

squared residuals, a log-likelihood function, or in essence any fit statistic one may
think of.

Various forms of regularisation exist in the literature - common ones that will be
discussed here are: Tikhonov regularisation (also known as ℓ2 regularisation or ridge
regression), LASSO (or ℓ1-regularisation), elastic net regularisation (a combination
of LASSO and Tikhonov regularisation) and the maximum entropy method.

4.4.1. Tikhonov regularisation
Tikhonov regularisation [91, 93, 118, 120] is the method of regularisation that has

likely been in use the longest, having been introduced by Tikhonov in 1964.[121]
It places a direct penalty upon the amplitudes of the fit parameters (θ) using an
ℓ2-norm, which we define for a vector x as

||x||22 =

√√√√ n∑
k=1

|xk|2. (68)
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In short, the minimisation problem 66 becomes

minimize
θ

χ2
N + α||Lθ||22 (69)

where L is a matrix which is most frequently the identity matrix, though a number
of alternative matrices may be used (1st and 2nd derivative approximations, as well
as a fusion of the identity and the 1st derivative matrix)[120]. This problem may be
elegantly optimised by using augmented matrices - this is well explained in the paper
by Dorlhiac et al.[120] The use of the ℓ2-norm presumes that the noise in the data and
the parameters (i.e. the rate distribution) are normally distributed, thus will produce
broader kinetic distributions than may be genuinely present - it may thus also prove
difficult to separate out closely spaced kinetic contributions.

4.4.2. LASSO
The LASSO (least absolute shrinkage and selection operator)[122] is similar to

Tikhonov regularisation - it places a penalty upon the amplitudes of the fit parame-
ters, it is simply that this penalty is the ℓ1-norm instead of the ℓ2-norm. The ℓ1-norm
is defined for a vector x as

||x||1 =
n∑

k=1

|xk|. (70)

This does have the advantage that as whilst in Tikhonov regularisation no param-
eter will be shrunk to zero, the use of the ℓ1-norm enables such behaviour. As such,
the LASSO produces sparser solutions,[122] with the downside that the problem

minimize
θ

χ2
N + α||Lθ||1 (71)

does not have a closed form solution (unless it is the rare case where the columns
of the E matrix are orthogonal). Fortunately, relatively efficient algorithms have
been developed to solve this regularisation problem, with an efficient one, replicated
here, being [123]

Algorithm 1.
1. Set initial guess for θν̃ to the Tikhonov regularised solution
2. Compute γ1, γ1 is the largest eigenvalue of ETE
3. Set B = γ1Ip−ETE where Ip is the p× p identity matrix, where p is the number
of parameters
4. Set K to 0, K being an iteration counter
5. For each coefficient j in θν̃

While
θKj − θK−1

j

θK−1
j

> 10−12 ∧ θK−1
j ̸= 0 a) K = K + 1

b) U(K) = ETEjθj +Bjθ
(K−1)

c) θ(K) = sgn(U)(
|U|
γ1
− α)+
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with more detail being provided in the original paper by Xiong et al., as well as
the paper by Dorlhiac et al..[120, 123]

4.4.3. Elastic Net
Elastic net regularisation is simply a combination of Tikhonov regularisation and

LASSO - it has been seen to outperform the LASSO whilst maintaining the ability
to provide sparser solutions than the pure Tikhonov regularisation. The elastic net
minimisation is

minimize
θ

χ2
N + α(ρ||Lθ||1 + (1− ρ)||Lθ||22) (72)

with 0 ≤ ρ ≤ 1 being an additional hyper-parameter that determines the weight of
the two different norms. The use of augmented matrices is also useable here, as again
discussed in the paper by Dorlhiac et al.[120]

4.4.4. Maximum Entropy
The maximum entropy method [124–126] (MEM) has a somewhat different form of

the regulariser. The equation that is to be minimised in this case is

minimize
θ

χ2
N − αS(θ) (73)

where S is the Shannon-Jaynes entropy,[127] defined as

S = −
M∑
j=1

θj ln

(
θj
Θj

)
(74)

where θ is, as before, the rate distribution and Θ is the so-called prior
distribution,[128] which incorporates any prior knowledge about the distribution. Of-
ten this, if no knowledge is available, is simply set as flat (as is the initial guess).[129]
The MEM has several advantages over the other forms of regularisation discussed here
- the primary one being that it, unlike the other forms of regularisation, is strictly
justified in information theory terms.[124, 125, 128, 129] Thus the MEM seeks to
find the distribution that best describes the data with the least amount of bias in
the solution (thus, the maximum entropy) - the solution that is strictly justified by
the data. The disadvantage relative to the previous forms of regularisation discussed
is that, at least in the form described in equation 74, the rate distribution may only
have positive amplitudes - not necessarily true if one has e.g. a transient absorption
experiment or rising terms in a transient fluorescence experiment. Fortunately this
problem was addressed by simply expressing the rates as a difference of two positive
sets of amplitudes and computing the Shannon-Jaynes entropies of these terms sepa-
rately then summing them,[128, 130] overcoming this and enabling rate distributions
of any sign to be analysed using this method.

4.4.5. The Hyper-Parameter
Some attention deserves to be paid to the hyper-parameter. It is readily apparent

that the manner in which all of these regularisation techniques will succeed or fail
in converging in a manner which we would consider accurate is dependent upon the
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value of the hyper parameter(s) α (and ρ). Too large a value and the χ2
N statistic will

be virtually irrelevant and the parameters will have nothing to do with the data, too
small a value and we will be fitting to miniscule amounts of noise. Choosing the value
of the hyper-parameter in a non-automated manner would be both deeply biased and
deeply tedious, and so is not recommended. There are a variety of automated meth-
ods for picking the best hyper-parameter, based on the data and the regulariser. For
Tikhonov regularisation, LASSO and elastic net there are multiple popular methods
to select the best hyper-parameter. These include the generalised-[93, 120] and k-fold
[131] cross validation, the Cp statistic,[120, 122] the L-curve [93, 120] and the min-
imal product method.[93] Their use and a comparison of their effectiveness is more
thoroughly described in the paper of Dorlhiac et al.,[120] and the paper by Slavov et
al.[93] For the MEM, the subject of the regularisation parameter is often ill-discussed
(it is hardly mentioned in the paper by Kumar et al.)[128] however this was remedied
in a paper by Lórenz-Fonfría and Kandori [132] where they discuss the effective-
ness and use of the generalised cross validation, L-curve, Bayesian inference methods
(also discussed previously by Skilling and Gull [133]) and the so-called ‘discrepancy’
criterion (optimising the α parameter until the χ2

N value reaches 1).

4.4.6. Comparison of Regularisation Methods
All of the regularisation methods mentioned above are similar in that they aim to

numerically stabilise the inverse Laplace transform to extract the genuine underly-
ing rate distribution from experimental data. They differ in the regularisation term
and thus will give different answers for identical data. As such, a (brief) compari-
son between the methods and a guide of when they are useful to use is presented
here. A more detailed discussion has recently been presented by Smith et al.[134]
The Tikhonov regulariser, as discussed, assumes that the noise and fit parameters
are normally distributed. If this assumption is known to hold it may be advantageous
to use this method as due to the augmented matrix implementation it is both fast
and easy - however it will have difficulty separating out closely spaced kinetic contri-
butions and so if one does not anticipate a broad distribution of rates it may not be of
use. The LASSO, having changed the ℓ2-norm for the ℓ1-norm, will provide sparser
solutions. The disadvantages of this method are that it may provide overly sparse
solutions and that there is no closed form solution, making implementation harder
than Tikhonov regularisation. A potential solution to this is that of the elastic net,
which provides a mixture between the Tikhonov and the LASSO regularisers, and so
may be considered to be a better pick when nothing may be anticipated about the
underlying distribution. A clear disadvantage of the elastic net is that as there are two
hyper-parameters (one to control the amount of regulariser used in the optimisation
and one to control the trade-off between Tikhonov regularisation and LASSO regu-
larisation) and as such selection of these optimal parameters is more time-consuming.
A significant problem is that none of the preceding regularisers are unbiased - the
Tikhonov regulariser will tend to a solution of a normal distribution, the LASSO a
sparse distribution. This is due to the form of the specific regularisers - chosen to
stabilise the solution, not chosen to pick the correct solution. The maximum entropy
regulariser is different, in that the regulariser is chosen to specifically arrive at the
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least biased solution from an information theory perspective.[124, 125, 128, 129] This
means that is has the clear advantage that one will arrive at the least biased solution
and the solution that is explicitly justified by the data. The clear disadvantages of
this method are the difficulty of implementation, though there is recent work in this
direction.[135] Overall, the maximum entropy method is, if able to be implemented,
clearly superior in terms of the robustness of the solutions.

4.5. Non-Parametric Methods

In addition, multiple approaches exist that ‘straddle the line’ between LDMs
and Soft-modelling (Section 5) methods. These methods re-represent the kinetics
by use of a numerical transform in order to provide a characterisation of the
data. Stazger and Zinth [136] suggested the use of differentiation of the data
on a logarithmic time scale (calling their method Logarithmically differentiated
absorption changes, LDAC) to visualise the lifetime components in the data, and
pointed out that this could aid in the identification of distributions in lifetimes.
They noted that numerical differentiation of the data could run into problems due to
noise, but suggested various options of smoothing the data to overcome this (though
it should be noted that this smoothing does represent a loss of statistical information).

Berg and Kaur recently suggested the use of log-moments [137] to characterise ki-
netics in one or many dimensions, thoroughly describing the mathematics behind the
method and illustrating its use on a variety of different types of decay function.[137]
They show that the lower log-moments are relatively insensitive to data fluctuations
(making them likely more attractive than the LDAC process), and that the number
of stable, reproducible, log-moments provides information on the information content
of the data. They also noted that log-moments do require convergence of the data
at short and long times, though noted that this is not necessarily a weakness in the
method, but a legitimate data concern: measurements lacking sufficient time range
and resolution may misrepresent the system kinetics.[137] For a full discussion the
original paper is much recommended.

4.6. Published Implementations

For Tikhonov Regularisation, LASSO and Elastic Net Regularisation free software
exists in Python (open source)[120] though it should be noted that upon testing
by us, various elements of the Program ‘PyLDM’ crashed, and no option to save
the analysis currently exists in the program. A closed source option programmed in
the Matlab programming language ‘OPTIMUS’ also exists, which also can perform
global kinetic analysis as described in Section 3.[93] Recently Ðorđević et al. also
published an open-source implementation in Python, validated using data taken by
(some of) the authors of this review.[131] For the MEM, Steinbach et al.[138] has
published a freeware program that is still currently available and was last updated in
late 2017 (it is also closed source). It is noted by us that all of these do (at present)
appear to be significantly less used by the transient spectroscopy community than the
implementations of Global Kinetic Models discussed in Section 3 - 89 citations for the
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Steinbach freeware as of early 2020 according to Google Scholar, 5 for the ‘PyLDM’
program and 51 for the OPTIMUS program. For simulations of rate distributions to
fit the underlying the distribution directly, as well as the non-parametric methods,
there exists no published software explicitly for this purpose (to our knowledge).

4.7. Applications

Similar to the situation with GKMs, LDMs have been applied to a wide range
of problems. As such only a select few examples of their use, in addition to their
strength and weaknesses, will be given here.

The analysis of assuming a rate distribution and optimising its parameters to reach
closest agreement with the data has been applied to study the spatial distribution
of hydroxyl groups on γ- and δ-alumina surfaces by Métivier et al.[139] Specifically,
they studied the time-resolved fluorescence of a pyrene derivative PPTEOS (Figure
38) which was able to be covalently grafted to the hydroxyl groups of alumina using
TCSPC.

O Si(OEt)3

Figure 38. PPTEOS.

As pyrene molecules may form excimers when close in space, the distribution of the
fluorescence lifetimes (as well as the relative intensity of the excimer fluorescence)
enabled the clear deduction that γ and δ-alumina surfaces are very different. This
was shown by separately analysing the excimer and monomer fluorescence decays
using a sum of two stretched exponentials, one corresponding to a rising component
in the excimer fluorescence case. The distributions of rise times of the excimer were
narrower for the δ-alumina, and the centre of the decaying lifetime distribution
was also lower, providing evidence that there was more interactions amongst the
excimers in this alumina (Figure 39). This enabled Métivier et al. to gain the clear
physical insight that δ-alumina has a larger number of Lewis acid sites and much
larger (or more frequent) clustered zones than the γ-alumina, due to this narrower
and shifted distribution.

Though this gave additional physical insight, it did have the disadvantage that (as
discussed earlier) that the stretched exponential is a phenomenological function (in
general) and that the Laplace inversion of it is not analytical except for a few values
of β. Another example of analysis of assuming a rate distribution and optimising its
parameters to reach closest agreement with the data is a study of tryptophan (Trp,
Figure 40) residues in a variety of proteins.[140] As compared to the fluorescence
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Figure 39. Lifetime distributions of rising components (negative peak) and decaying components
(positive peak) from the fit of two stretched exponentials to the excimer fluorescence of Pyrene
attached to γ-1 or δ-2 alumina surfaces. Reproduced from reference [139] with permission from the
PCCP Owner Societies.

of Trp in buffer, which gave a single exponential decay, the fluorescence decays
from the Trp in proteins were non-exponential. These were analysed in terms of
distributions, which were interpreted as arising from the protein fluctuating around
a set of conformational coordinates.

N
H

NH2

O

OH

Figure 40. Tryptophan, Trp.

A significant achievement of this paper was that the distributions were able
to be explicitly related to a physical model of the protein,[110] wherein a single
potential well of conformations with a width related to the motional degree of
freedom is related to the lifetimes. This enabled Alcala et al. to conclude that a
single potential well of conformational distributions is appropriate in the protein
ribonuclease T1 (at physiological temperatures) but that multiple potential wells
are needed to explain the conformational distributions of neurotoxin variant
3.[110, 140] A disadvantage of their analysis is that, for some proteins, there was
little significant difference when analysing the distributions with a uniform model (a
model that we would not anticipate to correspond to a genuine physical picture) and
a Gaussian model. This is a disadvantage as compared to the regularisation approach.

The regularisation approach has also been used to study protein heterogeneity, by
incorporating a synthetic amino acid Aladan (Figure 41) into streptococcal protein
G at 7 different sites, thus creating 7 mutants which may report on solvation of
a separate protein area.[141] In addition, the derivative NAAA (Figure 41) was
measured alone as a control comparison. 2 sites buried in the protein were replaced
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(F30, L7), 2 sites that were partially exposed to the solvent were replaced (W43, Y3)
and 3 sites fully exposed to the solvent were replaced (A24, V21, T16). Fluorescence
up-conversion was used to extract the time-resolved Stokes shift of the different
proteins, and this multiexponential Stokes shift was analysed using the MEM. This
is shown in Figure 42.

NMe)2(

O COO−

NH+
3

Aladan

NMe)2(

O CONH2

NHAc

N-acetyl-Aladanamide (NAAA)

Figure 41. The synthetic amino acid and free dye control from the paper of Abbyad et al..

Figure 5. Dynamic Stokes shift, as characterized by the peak emission
energy of the time-resolved emission spectra (see text), of Aladan at
sites T16 (gray), V21 (red), A24 (orange), Y3 (green), W43 (cyan),
L7 (blue), and F30 (purple) in GB1 and NAAA in buffer (black)
measured by upconversion spectroscopy and TCSPC following excita-

J. Phys. Chem. B, Vol. 111, No. 28, 2007 8273

a) b)

Figure 42. a) The time-dependent Stokes shifts of Aladan in the 7 protein environments specified
as well as that of NAAA in a pH 5.4 buffer. The IRF is indicated using the vertical dashed line.
Solid curves are site averages, dotted lines individual data sets. b) Rate distributions of the dynamic
Stokes shifts in a using the MEM. Reprinted with permission from reference [141]. Copyright 2007
American Chemical Society.

The MEM analysis reveals that the rate distributions of the Stokes shifts in the
three exposed residues (T16, V21, A24) are qualitatively very similar to that of
the free dye derivative NAAA. However, the distributions in the partially and
completely buried residues differ significantly, with rate distributions at longer
lifetimes in the buried residues of F30 and L7. Using this analysis Abbyad et al.
were able to clearly show that the solvation response in a protein is not most
controlled by the local secondary structure - the V21 and A24 are in very different
secondary structures but have very similar rate distributions. In fact, the solvation
response in a protein is simply controlled by the level of exposure to the solvent. A
key disadvantage of the MEM is simply put that it is complicated to implement -
Abbyad et al. used the software of Steinbach [138] and almost all papers using the
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MEM also function as a presentation of a particular group’s implementation of the
MEM, suggesting that the effort involved in programming the method is large.
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Figure 43. The various azobenzene derivatives investigated by Slavov et al.[142]

Another example of the use of regularisation methods was in the study of
azobenzene derivatives (Figure 43) by Slavov et al.[142] The specific regulariser used
was not specified in the paper nor the supplementary information, but the software
used was the OPTIMUS program published by the same group,[93] so it can be
assumed that it was Tikhonov, LASSO or elastic net regularisation. The lifetime
maps (Figure 44) were able to give these authors insight into the physics of the
azobenzene derivatives that was not available using GKA methods. For the E → Z
isomerisation reaction, the transient spectroscopy of which is shown in Figure 44,
they were able to clearly identify the hot ground states by the tilted nature of the
lifetime distribution visible at c. 10 ps in all lifetime maps. Additionally, the authors
were able to show that in fact the previously observed ‘biexponential’ decay to the
conical intersection was more accurately described as a distribution - a considerably
different picture of the physics as a probability distribution in the search for the
conical intersection region caused by differences in the ground-state distribution.
This shows a clear advantage of LDMs over GKMs - the non-exponential vibrational
energy dissipation and/or solvation is implicitly taken into account by the use of a
distribution of rates. Thus here the LDM was advantageous for clarifying how these
processes may be viewed.

It must be noted that a large amount of the applications of LDMs are in biophysical
problems involving proteins (likely due to their recognised dynamically heterogeneous
nature), with seemingly less uptake in the transient spectroscopy of ‘small’ molecules.
As the example of Slavov et al. demonstrates, these models can also offer useful
clarification for their chemistry and physics - enabling in their case a clearer picture
of how the molecule reaches the conical intersection to isomerise.
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Figure 44. Transient absorption data for 1 (A), m-2 (C), o-2 (E), p-2 (G) and the corresponding
lifetime density maps (B-H). Excitation was to the π-π∗ transition for the E → Z isomerisation
reaction. Reproduced from reference [142] with permission from the PCCP Owner Societies.

4.8. Conclusions

Lifetime density methods can provide considerably clearer pictures of decay processes
in heterogeneous environments than a global kinetic analysis that assumes clearly sep-
arated states. This is particularly relevant for proteins,[110, 141] molecules in confined
spaces (e.g. micelles) and adsorbed on heterogeneous surfaces. Distributions are not
only relevant to these situations however, and may provide clearer explanations for
phenomena in ‘small’ molecules.[142] One must keep in mind that this does still as-
sume that formal kinetics may be used to model the system, and thus that one has a
distribution of rate constants. If differing physics enter one’s system (e.g. diffusion)
then these models may be considered inappropriate. A key success of these techniques
is also that they are not exclusive to systems that have broad distributions of life-
times - they may also be used to analyse systems that have discrete states. Indeed,
given that LDMs do not require the assumption of bilinearity, they would seem well
suited as both a ‘first look’ analysis and as an analysis that can be used to provide
insight into the chemical and physical processes in the investigated molecular system.
If one is able to equally well describe the data using a biexponential where the two
lifetimes coincide with the centre of two peaks in the lifetime distribution map, then
this simply provides more evidence that the data are ‘truly’ described by a biexpo-
nential and not a distribution.[109] The significant downside to these methods is that
they are more complex to implement than the GKMs, and less functioning software
is available. With the recent paper discussing their positives in fluorescence by Smith
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et al.[134] it is hoped that these may be overcome and the use of LDMs may become
more commonplace in transient spectroscopy.
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5. Soft-Modelling Methods

Soft-modelling methods are methods that do not assume a rate distribution, as the
GKMs or LDMs do. They also do not assume that particular spectral shapes are to
be expected in the data, as band-shape analysis models do. Soft-modelling methods
assume that the data are bilinear and then endeavour to decompose the data into
the smallest ‘necessary’ number of components to describe the data. As they do not
assume explicit functions for the time or spectral behaviour, they are sometimes
considered as preliminary ‘exploratory’ methods to assist in the postulation of a
reasonable model.

5.1. Theory & Motivation

How can one say how many ‘components’ one has in a data set? To do so in a mini-
mally biased way is of use both for learning about the system under investigation and
for clarifying any future modelling that may occur (e.g. the number of rates antici-
pated in a GKM). This is the objective of soft-modelling or factor analysis methods.
The term soft-modelling arises from its comparison to ‘hard-modelling’, i.e. paramet-
ric model fitting such as GKM. An additional useful property of these methods is that
they may be applied to so-called ‘multi-variate’ or ‘multi-way’ data - i.e. one may
simultaneously analyse multiple experiments using a connected set of parameters.
This is, in theory, possible with the methods discussed in the previous sections, how-
ever it is done with considerable more ease in soft-modelling. Soft-modelling methods
assume (in general) only that the data is bilinear and then endeavour to decompose
the matrix into the significant components. In essence, all attempt to find a set of L
basis vectors and scores that minimise the reconstruction error of the data. The main
approaches that have been used in transient spectroscopy are singular value decompo-
sition (SVD), and multivariate curve resolution-alternating least squares (MCR-ALS,
of which SVD also forms the basis of).

5.1.1. Singular Value Decomposition
In a sense, the SVD may be thought about as a generalisation of an eigendecom-

position to non-square matrices.[122] The fundamental equation of SVD is

D = USVT (75)
thus any real or complex matrix D (of dimensions m× n) may be factorised in the

form USVT. This is represented pictorially in Figure 45.

U is an m × n matrix as well, whilst S and VT are n × n matrices. The matrices
U and V are orthonormal vectors, i.e.

UTU = VTV = I (76)
and are usually referred to as the left-singular vectors and right-singular vectors of

D, respectively. U are a set of orthonormal eigenvectors of DDT and V are a set of
orthonormal eigenvectors of DTD. S is a diagonal matrix and the diagonal contains
the singular values si in descending order. The singular values of a real matrix
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Figure 45. A pictorial representation of SVD.

are always positive and real, and the non-zero singular values are the square roots
of the non-zero eigenvalues of both DDT and DTD. An extremely large amount
of information may be extracted from the SVD - for a full description of a large
number of its uses in chemistry, Chapter 5 of the Maeder and Neuhold book is
recommended.[65] We will simply discuss using SVD to deduce the rank of a matrix,
and to reconstruct a matrix.

The rank of a matrix is the number of linearly independent rows or columns in
said matrix. The rank of a matrix may thus be useful as a way of estimating the
number of components in a data set for further analysis or indeed for identifying
the number of chemical/physical states involved in the photochemical/photophysical
process. As the singular values are ordered in decreasing magnitude the eigenvectors
continually lose importance and once the singular values are small enough, their
contribution may be safely ignored. Thus in the ideal case of noiseless data, the
‘small’ singular values are zero and thus the number of singular values of importance
gives us an estimation of the rank. Hence, a powerful result of SVD is that it enables
us to estimate the matrix rank, as well as the influence of the noise. As a motivating
example, let us examine a simulated dataset of transient absorption data and the
use of SVD to estimate its rank. The simulation is of an intersystem crossing process
using spectral shapes for the fluorescence, singlet excited state absorption and triplet
excited state absorption described using equations ?? - ??, and is shown in Figure
46. Notably, this is a simulated data set containing two spectral components where
bilinearity holds perfectly.

If one decomposes this data matrix using SVD assuming different SNR, one sees
that the singular values (Figure 47) are less and less easily separated as the noise
on the data is increased - thus, the SVD may also tell us about the noise on our
data. The eigenvectors also become similarly ‘noisier’ as the noise on the data is
increased.[65] Thus, the SVD has given us information about the structure of our
data - the rank, which we can use to further refine models, and the noise level.
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Figure 46. a) Contour plot of simulated TA data. b) Spectra at times indicated as cuts in a. c)
model used to simulate the dynamics of the data. Spectra are simulated using equations ?? and ??
using the parameters in Table A1.

Figure 47. Singular values from SVD of data from matrix shown in Figure 46, with different levels
of noise added.

This, it must be noted, is predicated on the assumption that the noise in the
data is uniform and normal in character, and that the assumption of bilinearity
holds. If this is not the case, structured noise may appear at a larger singular value
than a ‘genuine’ contribution to the data.[94] A demonstration of this may be seen
below - if one performs SVD on a system which shifts with a ∆ν of 1600 cm−1 and
single time constant of 2 ps, (an oversimplification of the complex time behaviour
of solvent relaxation [21]) from an unrelaxed fluorescent state to a relaxed one
(simulated data shown in Figure 48) the number of components found by the SVD
is highly dependent on the noise level, with less of a clear separation than in the
case where bilinearity holds (Figure 49). Thus its use as a method to detect the
number of independent components in data should be done only if one is confident
that bilinearity applies to the area where one performs the SVD.

This brings us to the other common use of SVD - reconstruction. If one can clearly
see (for example, in the case of the data without noise in Figure 47) that one has a
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Figure 48. a) Contour plot of simulated time-resolved fluorescence data. b) Spectra at times indi-
cated as cuts in a. c) model used to simulate the dynamics of the data. Spectra are simulated using
equation ?? using the parameters in Table A2.

Figure 49. Singular values from SVD of data from matrix shown in Figure 48, with different levels
of noise added.

number of significant singular values in a data set that are below the total number of
singular values, then it is possible to ignore the contribution of these singular values,
thus

D̃ = ŨS̃ṼT (77)
where the tildes represent that a reduced number of singular values have been

used in the reconstruction. This is demonstrated graphically in Figure 50.

This is an attractive feature for the ‘removal’ of noise, at first glance. However,
one loses the statistical information that one has gained by putting the effort
into doing an experiment (and, as stated before, if the noise on the experiment is
non-normal, one may be discarding ‘real’ contributions). Thus, whilst this is possibly
an acceptable way of ‘cleaning up’ data before presenting it in a Figure (though we
would argue that this is still not a good thing to do) to reconstruct a matrix using
SVD and then to analyse this data (as has been done by some groups [143]) is not
recommended.
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Figure 50. A pictorial representation of SVD using the reduced number of dimensions.

It should be noted that the rank one obtains from SVD is an estimate - any lin-
ear dependencies between the concentrations/spectra of the components will cause
the matrix to be so-called rank-deficient, i.e. that the rank of the matrix will be
lower than the ‘true’ number of components in the system. In addition, as differ-
ence spectra always contain the initial state spectrum, a rank-deficient data set is
automatically obtained. Thus, in transient spectroscopy where difference spectra are
obtained the matrix will be rank-deficient irrespective of the process being full-rank
or rank-deficient.[144] Maeder and Ruckebusch have suggested the use of evolving
factor analysis (EFA), essentially a technique where SVD is used iteratively as one
increases the number of time points of one’s matrix, as a confirmatory tool.[31, 65]

5.1.2. MCR-ALS
Multivariate curve resolution (MCR) methods make the assumption that the data

may be described by a bilinear model (as in 37) but that no specific mathematical
function is known for the C(t) or S(ν̃) matrices.[31] Generally the MCR model is
written as

D = S(ν̃) ·C(t) + E (78)
where C(t) or S(ν̃) are defined as in 37, and E is the variation unexplained by the

bilinear model. This can be seen as being related to SVD by e.g. the C(t) effectively
being represented by S·VT. The alternating least squares algorithm implementation
of MCR (MCR-ALS) is very widely used due to its flexibility - one may incorporate a
wide variety of prior knowledge in one’s analysis, and one may apply the algorithm to
multiple sets of data simultaneously with ease.[31, 65] The prior knowledge is incor-
porated as constraints (e.g. concentrations/spectra must be non-negative, unimodal
and/or exactly equal to a known profile) and constraints may be imposed on the spec-
tral, concentration or both/neither domain. Under these constraints, the MCR-ALS
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approach alternately updates the spectral and the concentration profiles to reduce
the E matrix to some convergence condition.[65]

5.2. Published Implementations

SVD is implemented in virtually every programming language, and generally in a
highly computationally efficient manner. The most widely-used program for MCR-
ALS (321 references according to Google Scholar at time of writing) has been pub-
lished by de Juan et al. and is written in MATLAB, with the code freely available.[145]
Due to the wide applicability of MCR-ALS in chemometrics, the software is relatively
developed, a graphical user interface provided and tutorials available.[146]

5.3. Applications

The use of SVD as a rank estimator prior to GKA is recommended by van Stokkum,
among others [78, 94] and thus its usage in this fashion is sufficiently pervasive that to
report on all instances of this would be virtually impossible. A significant example of
the usage of SVD in the analysis of transient spectroscopy data comes from Ernsting
et al.,[105] where SVD was used in order to separate the kinetic process from the
wavepacket-induced oscillations of the spectrum. In short, this was accomplished by
constructing a K ×K rotation matrix R such that the data D may be described by

D = USR−1RV
T
. (79)
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Figure 51. Enol and Keto form of BBXHQ.

Using this, they demonstrated that by using Fourier transforms on the rows of
VT, they could iteratively fill in the rotation matrix R to ‘sweep’ the oscillations
arising from both coherent excitation of vibrations and from pump-induced artefacts
into row K of RVT. This enabled them to separate out the kinetic modelling
and discussion of the oscillations. By separating these out, they showed that the
excited state proton transfer of the molecule 2,5-bis(2’-benzoxazolyl)hydroquinone
(BBXHQ, Figure 51) is irreversible and occurs during the first half-period of an
in-plane bending motion of the molecule.[105] This insight was only able to be
accomplished by the comprehensive modelling of the spectra i.e. the simultaneous
(but separated) analysis of the kinetics and the oscillations. Notably, here, the SVD
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kinetics were fit (leading to, as discussed earlier, a loss of statistical information)
but the transformations involved in the fit could be applied also to the experimental
data and compared, leading to a comparison with the ‘real’ data (Figure 52), which
Ernsting et al. stated showed the approximations taken were reasonable.

Figure 52. Population dynamics for the fit of an irreversible proton transfer model Enol → Keto∗
→. Fit using SVD is thick lines, transformation applied to experimental data is thin lines. E repre-
sents enol, K∗ excited keto immediately after reaction, and K the relaxed keto form. G represents
instrument response function. Oscillations in thin lines between K and K∗ is due to the similarity in
their spectra. Reprinted with permission from reference [105]. Copyright 2001 American Chemical
Society.

The use of MCR-ALS in transient spectroscopy is not widespread - to our
knowledge, it is confined to the group of Ruckebusch and collaborators. Nonetheless,
they have applied it to a number of spectroscopic problems, some of which will
be discussed here. For a more thorough overview of their work, the review in
reference [31] is instructive. Here, a number of molecules where the group has applied
MCR-ALS will be discussed (the molecules are detailed in Figure 53).

Aloïse et al. applied MCR-ALS to benzophenone and 4-methoxybenzophenone
in an attempt to clarify the thorny issue of how the molecule benzophenone
undergoes such a fast ISC (∼ 10 ps characteristic time) from an S1(n, π∗) state to an
T1(n, π

∗) state, in clear violation of El-Sayed’s rule.[147] With the imposition of a
kinetic model as a constraint on the MCR, they observed 3 states to be necessary to
describe the photophysics, with the kinetic equation applied being shown in Figure 54.

When they compared the results of the 4-methoxybenzophenone (which has a
solvent-dependent ordering of the T2(π, π

∗) and T1(n, π
∗) states) they observed

striking similarities of the spectral shapes between the intermediate state in of
4-methoxybenzophenone in cyclohexane and of the benzophenone in all solvents.
As the ordering of the triplet states is similar in cyclohexane, this pointed to a
direct comparison being valid. When the solvent polarity was changed to bring the
π, π∗ triplet state lower than the n,π∗ triplet (Figure 55), the authors observed
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Figure 53. Molecules where MCR-ALS has been used to assist in the understanding of their pho-
tochemistry/photophysics.

S1(n, π
∗) IS T1(n, π

∗).
Figure 54. Kinetic scheme used by Aloïse et al.[147] IS is defined as an unknown intermediate state.

no necessary intermediate state and thus concluded that the T2(π, π
∗), either by

vibronic interaction with the T1(n, π
∗) state or by direct population (the simple

kinetic model was not able to distinguish between these two possibilities), played a
crucial role in the photophysics of benzophenone,[147] as anticipated previously.

The combination of MCR-ALS and a formal kinetic model is perhaps less
impressive if the process under investigation is significantly obscured by the IRF,
and occurs in an ultrafast manner. This is the case for salicylidene aniline (Figure
53), which Mouton et al. investigated. The authors themselves point out that a sum
of exponential functions is likely inappropriate for processes occurring on such a
fast timescale,[148] but do not discuss the fact that their deconvolution procedure
assumes a single Gaussian width for the IRF, which (as discussed by Fita et al.[90]
and shown for data measured in our laboratory in Figure 4) is inaccurate and likely
leads to distortion of the ensuing ‘intrinsic’ deconvolved time profile.[148]

A power of MCR-ALS (as discussed above) is the ease of which one may
simultaneously model data from multiple experiments. This was used to further
understand excited-state symmetry breaking by Dereka et al.[149] Time-resolved
infrared (TRIR) spectroscopy [69] and time-resolved fluorescence spectroscopy
[70] had previously been used to study these systems, with the quadrupolar,
intermediate and dipolar states showing clear and distinct spectral signatures in the
TRIR [69] and the fluorescence transition dipole moment decreasing upon ES-SB.
Transient UV-Visible Absorption however, had not been shown to be unambiguously
sensitive to the symmetry breaking process. By simultaneously analysing TRIR
and Transient UV-Visible Absorption data on the same system (Q1, Figure 53)
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Figure 55. TA spectra, decomposed spectra from MCR-ALS and concentration profiles of decom-
posed states for 4-Methoxybenzophenone in a) and d) cyclohexane, b) and e) acetonitrile, and
a) and d) 3:1 water/acetonitrile. Reprinted with permission from reference [147]. Copyright 2008
American Chemical Society.

distinct spectral signatures were able to be extracted from the visible TA data that
corresponded to the timescale of symmetry breaking. They showed that the main
spectral changes upon symmetry breaking are red-shifts of the SE that may not
be unambiguously attributed to symmetry breaking without the multi-set analysis.
Thus, here the MCR-ALS assisted in the assignment of symmetry breaking to a
transient spectroscopy technique where it had not been hitherto unambiguously
observed (Figure 56).

5.4. Conclusions

SVD and MCR-ALS are powerful approaches for e.g. rank estimation, error esti-
mation and decomposition of the data where a priori nothing is known about the
chemical system under investigation. These may feed into information for a more
detailed and specific model (e.g. the models of Section 3 or 4) or may themselves be
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Figure 56. Spectra from the TRIR (left) and UV–vis TA (right), along with corresponding time
constants obtained from the multiset analysis using the MCR-ALS approach with a kinetic constraint
(A → B → C → GS) applied on the time-dependent concentration profiles. A is in cyclohexane (no
ES-SB), B in chloroform (partial ES-SB), C in DMSO (complete ES-SB). Reprinted with permission
from reference [149]. Copyright 2017 American Chemical Society.

sufficient to fully describe the data. It should be noted here however that as the MCR-
ALS model makes the explicit assumption of bilinearity, this approach will provide
an inaccurate representation of the number of processes involved in a photophysi-
cal/photochemical process if vibrational relaxation and/or solvation are observed in
the data to a significant degree. This can be taken explicitly into account, as shown
by the work of Ernsting et al.,[105] but requires detailed analysis and care to be
taken.
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6. Overall Conclusions

It is hoped that this review has been an informative jaunt through the many
methods of data analysis available to the experimentalist in the quest to extract
more information from one’s data, and as to how to use these methods. All of the
methods have their strengths and weaknesses, and thus a direct comparison is not
necessarily applicable. Nonetheless, for general guidelines an attempt will be made.

Band-shape analysis models (Section ??) have been shown to be highly useful in
the description of non-exponential processes (e.g. vibrational relaxation, solvation)
and in fluorescence more generally. As no bilinearity is assumed, these methods can
be directly applied to these problems and (if the appropriate model is employed)
give some physical insight into the origin of the absorption/emission.[73] A difficulty
of these methods is that if one has a large number of overlapping bands, separation
may be difficult. With the advent of the empirical decomposition scheme of Angulo
et al.[61] and a proposal for the easy removal of the steady-state contributions
[63, 64] these methods will hopefully become of more use in transient absorption
spectroscopy. This would be a boon to this field, as this would enable extraction of
clear populations of excited states, photoproducts and the decoupling of these from
solvation and vibrational relaxation.

Global kinetic models (Section 3) were shown to be of great use if one may
assume bilinearity and a classical kinetic process - the global description makes
a great improvement over single-wavelength analysis in extracting close-by rate
components (Figure 25) and has been shown to greatly assist in e.g. unambiguously
discriminating between anisotropy models in TCSPC [85] and in deducing the full
photocycle of a molecular motor.[64] However, when the assumption of bilinearity
may not be made and non-exponential dynamics interfere with the data matrix,
the results may be severely perturbed (Figure 49) - thus one should be sure that
a classical kinetic model is an accurate representation of the process and that
vibrational relaxation and/or solvation do not contribute before staking one’s life on
the time constants extracted.

Lifetime density models (Section 4) can be powerful if one anticipates that one
will have a rate distribution in the process under investigation, and as a model
that makes ‘minimal’ assumptions other than that the process may be described
in a classical kinetic (i.e. sum of exponentials) manner. They have been shown to
enable the discrimination of protein environments and show that the solvation in
proteins is likely solvent-exposure related, not secondary-structure related (Figure
42).[141] As the method does not fit the data ‘globally’ it does not suffer from the
bilinearity problem however this does mean close-by kinetic contributions would be
difficult to distinguish. In addition, these models are computationally demanding
and more intensive from a programming perspective. However, with more published
implementations and discussions on their speed,[120, 134] improvement in this
direction is expected.
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Soft-modelling methods (Section 5) are powerful as an ‘initial glance’ at the data,
without any explicit assumptions of classical kinetics. Their assumption of bilinear-
ity may cause significant problems if one endeavours to use them as a method to
assign a number of anticipated ‘states’ to data where this assumption does not hold.
Nonetheless, they can be shown to be of use in e.g. the separation of ‘pure’ kinetic
contributions from oscillatory contributions [105] and also for the ease of the analysis
of multiple datasets simultaneously.[149] In addition, if the band-shape is explicitly
known, accurate populations may be recovered.
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Appendix A. Simulation Details

All simulations of data and fitting were done in Python 3.6.7 code written by the
authors. The numPy,[150] pandas,[151] xarray,[152] matplotlib,[153] seaborn,[154]
and sciPy [155] libraries were used. All code is available upon a request to the authors.

For simulations in which the accuracy of repeated fitting events was tested, the
following procedure was used. The signal corresponding to the e.g. biexponential
decays (either single decays or decays across a spectrum) was first simulated and
then for each different fitting event normally distributed random noise was added
corresponding to the overall SNR level. A fit to the data using the corresponding (e.g.
biexponential) equation was then attempted, using the scipy.optimize.least_squares
optimizer and thus optimising to the lowest(

signal − fit

error

)2

.

The initial guesses of all parameters were set to be 10% away from the genuine
parameters used in the simulation of the data. In the case of Figure 25, the spectra
were simulated on a 320-point grid (320 points corresponding to the number of pixels
typically filled by white light in TA experiments in our laboratory) which spanned
from 14,000 to 30,000 cm−1 in steps of 50 cm−1. The spectral shapes were simulated
using equations ?? and ?? and the parameters specified in Table A1. The shorter
component was made up of the Ground State Bleach, Fluorescence and ESA1 line
shapes (i.e. was computed as ESA1 - (Ground State Bleach + Fluorescence) and
the longer component was made up of the Ground State Bleach and ESA2 (i.e. was
computed as ESA2 - Ground State Bleach).

Component Lineshape Equation ν0 σ S ω
Ground State Bleach ?? 25 0.8 1.5 1
Fluorescence ?? 22.5 0.5 1.25 1.2
ESA1 ?? 14.5 0.5 2.5 1
ESA2 ?? 13 0.7 3 1.5

Table A1. Parameters of equations ?? and ?? used simulate absorption and emission spectra for
testing fitting using equation 44 in Figure 25. All parameters reported in 103 cm−1.

For simulations testing the accuracy of fitting data generated from distributions
of rates to a biexponential equation, the rate grid was formed of 10,000 points
from 10−6 to 10 ps on a logarithmic grid. These were then used to simulate traces
in accordance with equations 51 - 52. The initial guess was found using the
scipy.differential_evolution algorithm to find the best parameters on the global
fitting surface (lifetime search from 100 fs to 10 ns on both of the lifetime fitting
parameters). These guesses were then given to the scipy.optimize.least_squares
optimizer.

For simulations of applying SVD to shifting spectra, the spectra were also simulated
on a 320-point grid spanning 14,000 to 30,000 cm−1. The initial time-zero spectrum
was simulated using the parameters shown in Table A2, with the ν0 shifting with a



June 18, 2020 International Reviews in Physical Chemistry Beckwith_Analysis

88 Taylor & Francis and I.T. Consultant

2 ps time constant to 26.4×103 cm−1. SVD was performed using the numpy.linalg.svd
package.

Lineshape Equation ν0 σ S ω
?? 28 1 2 1.2

Table A2. Parameters of equation ?? used simulate emission spectra for testing how many SVD-
detected components were found. All parameters reported in 103 cm−1.
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Appendix B. Abbreviations and Acronyms

2PA Two-Photon Absorption
∆A Change in Absorption
ALS Alternating Least Squares
CT Charge Transfer
Dn Doublet n state
DADS Decay Associated Decay Spectra
DAS Decay Associated Spectra
DHO Displaced Harmonic Oscillator
DMA N-N -Dimethylaniline
DOAS Damped Oscillation Associated Spectrum
EADS Evolution Associated Decay Spectra
EAS Evolution Associated Spectra
EFA Evolving Factor Analysis
ESA Excited-State Absorption
ES-SB Excited State Symmetry Breaking
ET Electron Transfer
FLUPS Fluorescence Up-conversion
FWHM Full Width at Half Maximum
GDD Group Delay Dispersion
GKA Global Kinetic Analysis
GKM Global Kinetic Model
GS Ground State
GSB Ground State Bleach
GUI Graphical User Interface
IC Internal Conversion
IR Infrared
IRF Instrument Response Function
ISC Intersystem Crossing
IVR Intramolecular Vibrational Relaxation
LASSO Least Absolute Shrinkage and Selection Operator
LDAC Logarithmically Differentiated Absorption Changes
LDM Lifetime Distribution Models
MCR Multivariate Curve Resolution
MEM Maximum Entropy Method
OD Optical Density
OKE Optical Kerr Effect
RA Raman Artefact
Sn Singlet n state
SADS Species Associated Decay Spectra
SAS Species Associated Spectra
SE Stimulated Emission
SNR Signal-to-Noise Ratio
SVD Singular Value Decomposition
SW Sulzer-Wieland
Tn Triplet n state
TA Transient Absorption
TCSPC Time Correlated Single Photon Counting
TRIR Time Resolved Infrared
UV Ultraviolet
UV-Vis Ultraviolet-Visible
VC Vibrational Cooling
VER Vibrational Energy Relaxation
XPM Cross-Phase Modulation


