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Résumé

Les groupes agissant sur des arbres enracinés constituent une classe très intéressant de

groupes, dont beaucoup montrent des propriétés uniques. Comme exemple principal, le

groupe de Grigorchuk est un 2-groupe qui est de type fini mais pas de présentation finie, tous

ses quotients non-triviaux sont finis, il est moyennable mais pas élémentairement moyennable

et il est le premier exemple de groupe à croissance intermédiaire.

Cette thèse se concentre sur les groupes spinaux, une famille concrète de groupes agissant

sur des arbres enracinés. En restreignant le type de générateurs possibles, leur étude devient

abordable. Pourtant, les groupes spinaux contiennent toujours des exemples remarquables

de groupes agissant sur des arbres enracinés. Il est particulièrement intéressant de constater

comme certaines propriétés de ces exemples peuvent ou ne peuvent pas se généraliser pour

autres groupes similaires.

Les graphes de Cayley sont des représentations de l’action d’un groupe de type fini sur

lui-même par multiplication à gauche. Les graphes de Schreier généralisent cette notion

pour des actions quelconques. Étant donné que les groupes agissant sur des arbres enracinés

possèdent une action naturelle sur l’arbre, les graphes de Schreier par rapport à cette action

deviennent un outil clé pour leur étude.

Dans cette thèse, nous construisons les graphes de Schreier associés à l’action des

groupes spinaux sur chacun des niveaux finis de l’arbre, ainsi que sur son bord, par rapport

à un système de générateurs naturel. Pour les graphes infinies, nous trouvons leur nombre

de buts et classes d’isomorphisme, les deux comme des graphes avec et sans étiquettes. En

outre, nous étudions le système dynamique donné par les graphes de Schreier considérés

comme un sous-ensemble de l’espace topologique des graphes marqués.

Nous étudions ensuite les graphes de Cayley et de Schreier des groupes spinaux depuis

une perspective de théorie spectrale des graphes, en contribuant avec des exemples addi-

tionnels à la courte liste des types de spectre connus pour des graphes de Cayley ou de

Schreier. En particulier, nous trouvons le spectre des opérateurs d’adjacence sur les graphes

de Schreier des groupes spinaux avec deux méthodes différentes, par des approximations
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finies des graphes et à l’aide de fonctions de renormalisation. Nous concluons que ce spectre

est l’union de deux intervalles si le groupe agit sur l’arbre binaire ou l’union d’un ensemble

de Cantor avec un ensemble dénombrable de points qui s’accumulent sur lui autrement. Pour

le cas binaire, de plus, le spectre de l’opérateur d’adjacence sur le graphe de Cayley coincide

avec celui sur le graphe de Schreier.

Par la suite, nous étendons l’analyse spectrale en traitant les mesures spectrales de

l’opérateur d’adjacence sur les graphes de Schreier. Pour le cas binaire, nous obtenons

explicitement la densité des mesures spectrales sur tous les graphes de Schreier sauf une

orbite, et donnons la densité d’une mesure spectrale pour cette orbite. Les deux sont

absolument continues par rapport à la mesure de Lebesgue.

Nous poursuivons l’analyse spectrale avec le cas non-binaire, en trouvant les fonctions

propres de l’opérateur d’adjacence explicitement. Pour les graphes de Schreier associés à un

sous-ensemble explicite du bord de l’arbre à mesure uniforme de Bernoulli égale à un, nous

montrons que toutes les mesures spectrales sont discrètes.

Également, nous présentons des exemples de graphes de Schreier pour lesquels les

mesures spectrales possèdent une partie singulière non triviale. Nous donnons une décompo-

sition de l’espace de fonctions sur certaines graphes de Schreier comme la somme directe

des espaces propres et un sous-espace explicite, et nous montrons que la mesure spectrale de

toute fonction dans le deuxième est singulière.

Finalement, nous concluons cette thèse en étudiant des notions de basse complexité sur

les systèmes dynamiques formés par les graphes de Schreier. Nous rappelons ces notions pour

des sous-décalages linéaires et donnons des généralisations dans le contexte des systèmes

dynamiques de Schreier, et nous caractérisons quand elles sont satisfaites pour le cas des

groupes spinaux.
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Abstract

Groups acting on rooted trees constitute a very interesting class of groups which features

countless groups exhibiting rather uncommon properties. As main example, Grigorchuk’s

group is a finitely generated, not finitely presented 2-group which is just infinite, amenable

but not elementary amenable and the first example of a group with intermediate growth.

This thesis focuses on spinal groups, a particular family of groups acting on rooted trees.

By restricting the type of generators such groups may have, their study becomes tractable.

However spinal groups still contain many of the remarkable examples of groups acting on

rooted trees. It is of special interest to see how known properties of such examples generalize

or fail to generalize for other similar groups.

Cayley graphs are representations of the action of a finitely generated group on itself by

left-multiplication. Schreier graphs generalize this notion by representing any other action.

Provided that groups acting on rooted trees are naturally equipped with their action on the

tree, the Schreier graphs associated with this action become a very useful tool for their study.

In this thesis, we construct the Schreier graphs associated with the action of spinal groups

on each of the finite levels of the tree, as well as its boundary, with respect to a natural spinal

generating set. For the infinite graphs, we discuss their number of ends and isomorphism

classes, both as labeled and unlabeled graphs. In addition, we study the dynamical system

given by the Schreier graphs regarded as a subset of the topological space of marked graphs.

Afterwards, we study Cayley and Schreier graphs of spinal groups from a spectral graph

theory perspective, thus contributing with additional examples to the short list of known

shapes of spectra of Cayley and Schreier graphs. In particular, we compute the spectrum

of the adjacency operator on Schreier graphs of spinal groups via two approaches, namely,

by finite approximation of the graphs and using renormalization maps. We find that this

spectrum is the union of two intervals if the group acts on the binary tree or the union

of a Cantor set with a countable set accumulating on it otherwise. For the binary case,

moreover, the spectrum of the adjacency operator on the Cayley graph coincides with that of

the Schreier graph.
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Next, we extend the spectral analysis by discussing the spectral measures of the adjacency

operator on the Schreier graphs. For the binary case, we compute the explicit density of the

spectral measures for all Schreier graphs except one orbit, and also give the density of one

spectral measure for that orbit. Both of them are absolutely continuous with respect to the

Lebesgue measure.

The spectral analysis is continued with the non-binary case, by finding the eigenfunctions

of the adjacency operator explicitly. For the Schreier graphs of an explicit subset of points

in the boundary of the tree of uniform Bernoulli measure one, we show that all spectral

measures are purely discrete, so the spectrum is pure point.

We also exhibit examples of Schreier graphs for which the spectral measures have

nontrivial singular continuous part. We provide a decomposition of the space of functions on

certain Schreier graphs as the direct sum of the eigenspaces and an explicit subspace, and

show that any function in the latter has a purely singular continuous spectral measure.

Finally, we conclude this thesis with the study of several notions of low complexity on

the dynamical systems formed by Schreier graphs. We recall such notions for linear subshifts

and give their generalizations in the context of Schreier dynamical systems, and characterize

when they are satisfied for the case of spinal groups.
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Resum

Els grups que actuen sobre arbres amb arrel constitueixen una classe de grups de gran interès,

que presenta un nombre considerable de grups amb propietats poc freqüents. Com a exemple

principal, el grup de Grigorchuk és un 2-grup finitament generat però no finitament presentat,

tots els seus quocients no trivials són finits, és amenable però no elementalment amenable i

és el primer exemple de grup amb creixement intermedi.

Aquesta tesi se centra en els grups espinals, una família concreta de grups que actuen

sobre arbres amb arrel. Restringint el tipus de generadors possibles, el seu estudi esdevé

abordable. No obstant això, els grups espinals encara contenen exemples notables de grups

que actuen sobre arbres amb arrel. És particularment interessant constatar com certes

propietats d’aquests exemples poden o no poden generalitzar-se per a altres grups similars.

Els grafs de Cayley són representacions de l’acció per multiplicació a l’esquerra d’un

grup finitament generat sobre si mateix. Els grafs de Schreier generalitzen aquesta noció

representant qualsevol altra acció. Atès que els grups que actuen sobre arbres amb arrel

poseeixen una acció natural sobre l’arbre, els grafs de Schreier associats esdevenen una eina

molt important per al seu estudi.

En aquesta tesi, construïm els grafs de Schreier associats a l’acció dels grups espinals

sobre cadascun dels nivells de l’arbre, així com sobre la seva vora, respecte d’un conjunt

generador natural. Per als grafs infinits, parlem sobre el seu nombre d’extrems i les seves

classes d’isomorfisme, com a grafs amb i sense etiquetes. A més, estudiem el sistema

dinàmic donat pels grafs de Schreier com a subespai de l’espai topològic de grafs marcats.

Després, estudiem els grafs de Cayley i de Schreier dels grups espinals des del punt de

vista de la teoria espectral de grafs, contribuent amb exemples addicionals a la curta llista

de tipus d’espectres coneguts per a grafs de Cayley i de Schreier. En particular, trobem

l’espectre de l’operador d’adjacència sobre els grafs de Schreier dels grups espinals emprant

dos mètodes diferents, per aproximació per grafs finits i utilitzant funcions de renormalització.

Observem que aquest espectre és la unió de dos intervals si el grup actua sobre l’arbre binari

o la unió d’un conjunt de Cantor amb un conjunt numerable que s’hi acumula altrament. Per
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al cas binari, a més, l’espectre de l’operador d’adjacència sobre el graf de Cayley coincideix

amb aquell sobre el graf de Schreier.

Tot seguit, estenem l’anàlisi espectral parlant de les mesures espectrals de l’operador

d’adjacència sobre els grafs de Schreier. Per al cas binari, calculem explícitament la densitat

de les mesures espectrals per a tots els grafs de Schreier llevat d’una òrbita, i també donem la

densitat d’una mesura espectral per a aquesta òrbita. Totes dues són absolutament contínues

respecte de la mesura de Lebesgue.

Continuem l’anàlisi espectral amb el cas no binari, trobant les funcions pròpies de

l’operador d’adjacència de manera explícita. Per als grafs de Schreier d’un subconjunt

explícit de punts de la vora de l’arbre de mesura uniforme de Bernoulli u, provem que totes

les mesures espectrals són purament discretes.

També exhibim exemples de grafs de Schreier per als quals les mesures espectrals tenen

una component singularment contínua no trivial. Proporcionem una descomposició de l’espai

de funcions sobre aquests grafs de Schreier com a suma directa dels espais propis amb un

subespai explícit, i provem que la mesura espectral de tota funció d’aquest subespai és

singularment contínua.

Per acabar, concloem aquesta tesi amb l’estudi de diverses nocions de baixa complexitat

sobre els sistemes dinàmics formats pels grafs de Schreier. Recordem aquestes nocions per

a subdecalatges lineals i en donem generalitzacions en el context de sistemes dinàmics de

Schreier, i caracteritzem quan aquestes generalitzacions són satisfetes en el cas dels grups

espinals.
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Resumen

Los grupos que actúan sobre árboles con raíz constituyen una clase de grupos muy interesante,

que presenta una cantidad considerable de grupos con propiedades poco comunes. Como

ejemplo principal, el grupo de Grigorchuk es un 2-grupo finintamente generado pero no

finitamente presentado, todos sus cocientes no triviales son finitos, es amenable pero no

elementalmente amenable y es el primer ejemplo de grupo con crecimiento intermedio.

Esta tesis se centra en los grupos espinales, una familia concreta de grupos que actúan

sobre árboles con raíz. Restringiendo el tipo de generadores posibles, su estudio se hace

abordable. Sin embargo, los grupos espinales aún contienen ejemplos notables de grupos

que actúan sobre árboles con raíz. Es particularmente interesante comprobar cómo ciertas

propiedades de dichos ejemplos pueden o no generalizarse para otros grupos similares.

Los grafos de Cayley son representaciones de la acción por multiplicación a la izquierda

de un grupo finitamente generado sobre sí mismo. Los grafos de Schreier generalizan esta

noción representando cualquier otra acción. Como los grupos que actúan sobre árboles con

raíz poseen una acción natural sobre el árbol, los grafos de Schreier asociados constituyen

una herramienta muy importante para su estudio.

En esta tesis, construimos los grafos de Schreier asociados a la acción de los grupos

espinales sobre cada uno de los niveles del árbol, así como sobre su borde, respecto a un

conjunto generador natural. Para los grafos infinitos, tratamos su número de extremos y

sus clases de isomorfismo, como grafos con y sin etiquetar. Además, estudiamos el sistema

dinámico dado por los grafos de Schreier como subespacio del espacio topológico de grafos

marcados.

Posteriormente, estudiamos los grafos de Cayley y de Schreier de los grupos espinales

desde el punto de vista de la teoría espectral de grafos, contribuyendo con ejemplos adi-

cionales a la corta lista de tipos de espectros conocidos para grafos de Cayley y de Schreier.

En particular, encontramos el espectro del operador de adyacencia sobre los grafos de

Schreier de los grupos espinales a través de dos métodos diferentes, por aproximación por

grafos finitos y utilizando funciones de renormalización. Observamos que dicho espectro es

ix



la unión de dos intervalos si el grupo actúa sobre el árbol binario o la unión de un conjunto

de Cantor con un conjunto numerable que se le acumula si no. Para el caso binario, además,

el espectro del operador de adyacencia sobre el grafo de Cayley coincide con aquél sobre el

grafo de Schreier.

A continuación, extendemos el análisis espectral tratando las medidas espectrales del

operador de adyacencia sobre los grafos de Schreier. Para el caso binario, calculamos

explícitamente la densidad de las medidas espectrales para todos los grafos de Schreier salvo

una órbita, y también damos la densidad de una medida espectral para esta órbita. Ambas

son absolutamente contínuas respecto a la medida de Lebesgue.

Continuamos el análisis espectral con el caso no binario, hallando las funciones propias

del operador de adyacencia de manera explícita. Para los grafos de Schreier de un subconjunto

explícito de puntos del borde del árbol de medida uniforme de Bernoulli uno, demostramos

que todas las medidas espectrales son puramente discretas.

También exhibimos ejemplos de grafos de Schreier para los cuales las medidas es-

pectrales tienen una componente singularmente contínua no trivial. Proporcionamos una

descomposición del espacio de funciones sobre estos grafos de Schreier como suma directa

de los espacios propios y un subespacio explícito, y demostramos que la medida espectral de

toda función de dicho subespacio es singularmente contínua.

Para terminar, concluimos esta tesis con el estudio de varias nociones de baja complejidad

sobre los sistemas dinámicos formados por los grafos de Schreier. Recordamos estas nociones

para subdecalajes lineales y damos generalizaciones en el contexto de sistemas dinámicos

de Schreier, y caracterizamos cuando estas generalizaciones se satisfacen en el caso de los

grupos espinales.
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Chapter 1

Introduction

The main focus of this thesis lies in the intersection between the theory of groups acting on

rooted trees and spectral analysis on graphs. These particularly rich group actions give rise

to certain families of graphs which exhibit uncommon properties, notably from the point of

view of spectral graph theory. Their special structure allows to develop a variety of methods

(finite approximation, renormalization, dynamical simulation) that can serve as an approach

to spectral problems.

The motivation for the study of groups acting on rooted trees responds to the fact that

they characterize residually finite groups. Even though residually finite groups had been

studied since earlier, as well as other related aspects like automata, wreath products or

branching subgroup structures, groups acting on rooted trees owe their importance to the

definition of a group of interval exchange transformations by Grigorchuk in 1980 [31]. This

group arose as an answer to the general Burnside problem, which asked whether an infinite,

finitely generated group could be periodic. Even though this was not the first example of

such a group, it turned out to be an incredibly interesting example. In addition to being a

finitely generated, infinite periodic group, it features many other striking properties, the most

important of which is arguably its intermediate growth.

The definition of Grigorchuk’s group in terms of interval exchange transformations was

reformulated in terms of automorphisms of the binary rooted tree. This inspiring example

opened a new page in the study of groups acting on rooted trees. Ever since, this subject

has been widely studied and has provided numerous examples of new groups with special

properties. Moreover, such active research gave rise to some important abstract definitions

of group properties, as for instance self-similar or branch groups.

Grigorchuk provided an uncountable family G of groups of intermediate growth acting

on the binary tree in [32], and in [33] he generalized it to the p-ary tree, for any prime p.

The Gupta-Sidki p-groups were introduced in [47]. As time passed, the generalizations

diversified and became more sophisticated. In this thesis, we focus on one of them, spinal
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1. INTRODUCTION

groups.

The family of spinal groups was defined in [7] as a subclass of a larger family of groups

introduced in [34], and later studied in [5, 65], with the purpose of generalizing Grigorchuk’s

family G, as mentioned above. Spinal groups recover and extend this family, providing an

uncountable family of groups Sd,m for every d ≥ 2 and m ≥ 1, in such a way that S2,2

coincides with G. More generally, each Sd,m is a self-similar family of groups which is

a generalization of a self-similar group, in the same way that G is a self-similar family of

groups generalizing Grigorchuk’s group. All spinal groups are amenable [49].

Spinal groups constitute a considerably rich source of examples, yet its study remains

tractable, which allows to explore how several properties of Grigorchuk’s group extend or do

not extend to other cases.

For any finitely generated group G, and finite generating set S, we naturally consider

its Cayley graph Cay(G,S). Cayley graphs have long been employed as powerful tools

in geometric group theory and also studied in their own right as interesting examples of

vertex-transitive graphs. One way of regarding Cayley graphs is as representations of the

action of G on itself by left multiplication. Schreier graphs arise as representations of generic

actions of finitely generated groups, in particular on topological or measured spaces. Despite

losing vertex-transitivity, Schreier graphs are still regular, oriented, edge-labeled graphs,

which often exhibit interesting properties. If the action is free, then Schreier graphs on every

orbit are isomorphic to the Cayley graph. A new motivation to consider Schreier graphs

comes from the recent interest in non-free actions [67].

For G acting on a set X , we obtain a family of Schreier graphs (Γx)x∈X . Under mild

conditions, Schreier graphs are generally locally isomorphic but not necessarily isomorphic.

The Schreier graphs (Γx)x∈X of an action of a group G on a topological space or a measured

space X gives rise to an interesting dynamical system. The space of marked graphs G∗,S
is equipped with the natural topology of local convergence, a basis of which is formed by

subsets of graphs with a fixed ball around the marked point. If we consider Schreier graphs

as marked graphs, the map x 7→ (Γx, x) provides a way of transporting the action of G on X
to the graphs themselves, by shifting the marked point.

There are in the literature numerous examples of the study of Schreier graphs, for ac-

tions of groups in families such as branch groups, Thompson groups [61, 62] or automata

groups [42, 43, 18, 2, 12, 3, 21]. They have been useful both as interesting families of

graphs in their own right (spectral theory [43, 15], expansion [42, 26], growth [42, 10, 11],

statistical physics models [19, 20, 56], automata theory [42, 43, 18, 12, 15, 21], dynamical

systems [21]) and as tools in the study of the acting group (amenability [61, 62], random

walks [64], maximal subgroups [30], and even the construction of simple groups of interme-

diate growth [58]).

2



Cayley graphs and Schreier graphs of finitely generated groups constitute an important

class of examples in spectral graph theory. Conversely, spectral properties of the Laplace

operator play a significant role in the theory of random walks on groups and more generally

in geometric group theory. The first natural question that arises is whether the spectrum

determines the group in some way, or, as formulated by Alain Valette in [66] paraphrasing

Mark Kac, Can one hear the shape of a group?.

Spectral computations are notoriously difficult, and the variety of methods limited.

Indeed, very few examples of spectra for infinite graphs or infinite families of graphs have

been explicitly computed. Not even qualitative results are abundant. The list of known

shapes of spectra of Cayley graphs is short: an interval, the union of an interval with one or

two isolated points, the union of an interval with countably many points accumulating to a

point outside the interval [41], the union of two disjoint intervals (Grigorchuk’s group [24])

and the union of two disjoint intervals with one or two isolated points (free products of two

finite cyclic groups [16]). For Schreier graphs, the first examples exhibiting a Cantor set or

the union of a Cantor set and a countable set of points accumulating on it as spectrum were

obtained in [4]. It is still open whether Cantor spectrum can occur on a Cayley graph.

Another interesting spectral property is the spectral measure type, albeit very little is

known in this regard. Lamplighter groups remain the only family of infinite groups for which

the spectral measure has been shown to be purely discrete (see [44] for the original result on

the lamplighter over Z, and [51] for a generalization to lamplighters with arbitrary bases). It

is also the case for typical Schreier graphs of the Basilica group [15]. In [60] an example

of a graph was shown to have a nontrivial singular continuous part. This graph happens to

be the Schreier graph of the Hanoi group on three pegs with respect to the stabilizer of a

neighborhood of a singular point for the action of the group on the boundary of the ternary

tree. There are so far no examples of Cayley graphs with nontrivial singular continuous part.

Recently, a new interesting connection has emerged, relating the study of certain self-

similar groups and families of groups with quasicrystals or subshifts of low complexity [68,

54, 55, 63]. In particular, Schreier graphs of Grigorchuk’s group have been related with

linear subshifts of aperiodic type. This connection has allowed the computation of spectra of

Laplacians corresponding to weighted random walks [38, 39], thus providing examples with

purely singular continuous spectra. In particular, Schreier graphs of spinal groups acting on

the binary tree can be encoded as simple Toeplitz subshifts. However, this correspondence is

lost for spinal groups acting on trees of higher degree, because the Schreier graphs do not

have linear structure in that case.

There are plenty of open questions in this area, and the link between self-similar groups

and subshifts of low complexity represents fertile ground for new research to develop.

The main objective of this thesis is the study of different aspects of Schreier graphs
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of spinal groups, in order to prove that they exhibit rare properties for which other known

examples are few to none. The features we consider range from purely graph theory to

spectral graph theory, with an insight in dynamical systems.

In Chapter 3, we thoroughly describe the Schreier graphs associated with the action

of spinal groups on both the tree and its boundary. We first give an inductive method to

construct them in Sections 3.1 and 3.2. Then, in Sections 3.3 to 3.6, we discuss some

geometric properties including their number of ends and their isomorphism classes, both

as labeled and unlabeled graphs. We conclude the chapter in Section 3.7 by studying the

dynamical system formed by the space of Schreier graphs as a subset of the space of marked

graphs with local convergence.

Chapter 4 is devoted to the computation of several Laplacian spectra on Schreier graphs

of spinal groups. We provide two different approaches, in Sections 4.1 and 4.2. The former

is by finite approximation, so the spectra on the finite Schreier graphs is used in order to find

the spectra on the infinite Schreier graphs. The latter uses renormalization maps to find the

spectra on the infinite graphs directly, even on limit graphs in the space of Schreier graphs.

However, despite being more elegant than the former, it does not apply for all spinal groups.

For spinal groups acting on the binary tree, we find that the spectrum on any Schreier graph

is the union of two intervals, while for the rest it is the union of a Cantor set and a countable

set of points accumulating on it.

In addition, we prove in Section 4.3 that the spectrum on the Cayley graph, for spinal

groups acting on the binary tree, coincides with that of the Schreier graphs (see [23]), and in

Section 4.4 we study the dependence of the spectrum on the chosen generating set.

Spectral measures on Schreier graphs of spinal groups are discussed in Chapter 5. First,

we explicitly compute the empirical spectral measure for the Schreier graphs of any spinal

group, in Section 5.1. The rest of the chapter exhibits the different possibilities of spectral

measure types for Schreier graphs of spinal groups, again finding remarkable differences

between the binary and the non-binary cases. For spinal groups acting on the binary tree, we

provide in Section 5.2 the explicit densities of the spectral measures on the typical Schreier

graphs and on one of the isolated Schreier graphs. Both are absolutely continuous with

respect to the Lebesgue measure.

In Section 5.3, for each spinal group acting on a non-binary tree, we present a family of

Schreier graphs with purely discrete spectral measures. We do so by explicitly computing

the eigenfunctions and showing that they form a complete system. This family of Schreier

graphs corresponds to a set of points of uniform Bernoulli measure one in the boundary of

the tree ∂Td. The proof of the pure point spectrum and some results about the eigenfunctions

are, to the best of our knowledge, new in the literature, even for the Fabrykowski-Gupta

group, whose spectrum was computed in [4].
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Additionally, in Section 5.4 we exhibit certain Schreier graphs of spinal groups for which

the spectral measures have nontrivial singular continuous part. In particular, we decompose

the space of functions on the graphs as the direct sum of the eigenspaces plus an explicit

subspace, all of whose functions have purely singular continuous spectral measures. The

graphs for which this happens arise naturally as limit of Schreier graphs of points in the

boundary of the tree in the space of marked graphs with local convergence.

Finally, in Chapter 6 we recover the setting of Schreier dynamical systems from [35]

and accommodate in it all Schreier graphs of spinal groups. Such dynamical systems have

been studied in [68] for Grigorchuk’s group, in [18] for the Basilica group and in [61, 62] for

Thompson’s groups. We review some classical notions of low complexity for linear subshifts

and, in hopes of broadening the bridge between the study of Schreier graphs and the theory

of linear subshifts, we extend them to the framework of Schreier dynamical systems and

characterize when the dynamical systems defined by spinal groups satisfy them in this more

general setup.
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Chapter 2

Preliminaries

In this chapter, we gather the definitions and some basic results of the main objects discussed

in the thesis.

2.1 Groups acting on rooted trees

Let d ≥ 2 be an integer and let Td be the d-ary infinite rooted tree. If we consider the

alphabet X = {0, . . . , d− 1}, vertices in Td are in bijection with the set X∗ of finite words

in X . The root is represented by the empty word ∅ and, if v represents a vertex, vi represents

its i-th child, for i ∈ X . For n ≥ 0, the n-th level of Td is the set of vertices of Td which are

at distance n from the root. It is in bijection with the set Xn of words on X of length n.

The group of all graph automorphisms of Td is denoted Aut(Td). Any automorphism

of Td must fix the root, as it is the only vertex with degree d, and hence must map Xn to

itself, for every n ≥ 0. Any automorphism g ∈ Aut(Td) can be inductively described by

the permutation τ ∈ Sym(X) it induces on the vertices of the first level and its projections

gi ∈ Aut(Td), i = 0, . . . , d− 1, to the d subtrees attached at the root. Symbolically it can

be written as

g = τ(g0, . . . , gd−1),

where, for every v = v0 . . . vn−1 ∈ Xn,

g(v0 . . . vn−1) = τ(v0)gv0(v1 . . . vn−1).

We may extend this to any vertex of the tree by defining the projection gv of an element

g ∈ Aut(Td) on a vertex v ∈ X∗ as the automorphism satisfying, for every w ∈ X∗,

g(vw) = g(v)gv(w).
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Some natural subgroups to look at in the context of groups acting on rooted trees are

vertex stabilizers. For G ≤ Aut(Td), the stabilizer of a vertex v ∈ Xn is the subgroup

StabG(v) = {g ∈ G | g(v) = v}.

Furthermore, we consider the level stabilizers, which are the subgroups

StabG(n) =
⋂
v∈Xn

StabG(v),

for every n ≥ 1. Notice that they are of finite index for any G ∈ Aut(Td).

In addition to the tree Td, we consider its boundary ∂Td, which is the set of infinite,

non-backtracking paths from the root. This is a compact space that arises naturally from the

structure of Td. The boundary ∂Td is in bijection with the set XN of infinite sequences in

the set XN. The action of a group on Td can be naturally extended to its boundary ∂Td due

to the fact that any automorphism of Td preserves prefixes. As for vertices of the tree, we

also consider the stabilizers of points in the boundary. The stabilizer of a point ξ ∈ XN is

the subgroup

StabG(ξ) = {g ∈ G | g(ξ) = ξ}.

Due to the self-similar nature of the tree, there is a natural transformation of the boundary

which corresponds to identifying any of the subtrees rooted at the first level with the whole

tree. This is the shift map σ on the boundary of the tree, and corresponds to delete the first

digit of any point in the boundary. Namely,

σ : XN → XN

ξ0ξ1ξ2 . . . 7→ ξ1ξ2 . . .
.

Finally, let us introduce some broad families of groups acting on rooted trees. The family

of spinal groups that we consider throughout this thesis is not fully contained in any of them,

but most of its remarkable examples lie precisely in the intersection of these families.

Let G ≤ Aut(Td) be a group acting on Td. We say that G is self-similar if for every

g ∈ G and every v ∈ X∗, its projections gv belong to G. Equivalently, if for every i ∈ X ,

its projections gi belong to G.

Another class of groups acting on rooted trees we would like to introduce is that of

automata groups. In order to do so, we first need to define Mealy automata.

A finite-state Mealy automaton is a tuple A = (Q,Σ, φ, ψ) such that Q is a finite set

called the set of states, Σ is a finite alphabet, φ : Q× Σ→ Q is a map called the transition

function and ψ : Q×Σ→ Σ is another map called the output function. We call an automaton

A invertible if, for every q ∈ Q, the map ψq : Σ → Σ, defined as ψq(x) = ψ(q, x), is a

bijection of Σ.
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A very convenient way of representing automata is via a directed graph, with set of

vertices Q, and the following edges: for every q ∈ Q and x ∈ Σ, there is an edge from q to

φ(q, x), labeled by x|ψ(q, x).

Every state q ∈ Q of an invertible automaton A induces an automorphism of the rooted

tree Td, with d = |Σ|, which we abusively denote q as well, recursively given by q(∅) = ∅
and q(xv) = ψ(q, x)φ(q, x)(v), for every x ∈ Σ, v ∈ Σ∗. We say that the group generated

by an invertible automaton A is the group GA ≤ Aut(Td) generated by the automorphisms

of Td induced by all q ∈ Q. Conversely, we say that a group G ≤ Aut(Td) is an automaton

group if there exists an invertible automaton A such that G = GA.

Example 2.1.1. Grigorchuk’s group is the subgroup of Aut(T2) generated by the following

automorphisms:

a = τ(1, 1)

b = (a, c)

c = (a, d)

d = (1, b)

,

where τ is the nontrivial element of Sym(X). See Figure 2.1 for an illustration of the

generators. Notice the relations a2 = b2 = c2 = d2 = bcd = 1. Grigorchuk’s group is a

finitely generated infinite 2-group, and it is not finitely presented. It is just infinite, i.e. any

nontrivial quotient is finite. It has intermediate growth, and it is amenable but not elementary

amenable. Grigorchuk’s group is self-similar and an automaton group.

a b c d

Figure 2.1: The generators of Grigorchuk’s group.

Example 2.1.2. Another well-known example of group acting on the binary tree is the

Basilica group. Again setting τ to be the nontrivial permutation of Aut(X), it is generated

by the following automorphisms, depicted in Figure 2.2.

a = (1, b)

b = τ(a, 1)
.
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a b

Figure 2.2: The generators of the Basilica group.

The Basilica group was introduced in [45] as a self-similar automaton group, and its

Schreier graphs were fully described in [18]. It has exponential growth, because a and b

generate a free non-abelian semigroup, and it is amenable but not elementary amenable.

Example 2.1.3. A very interesting example of a group acting on a non-binary rooted tree

is the Fabrykowski-Gupta group. First introduced in [28], it remains arguably the simplest

nontrivial example of group acting on the ternary tree. It is defined by the following

automorphisms:

a = τ(1, 1, 1)

b = (a, 1, b)
,

with τ being the 3-cycle (012) in Sym(X), so that a cyclically permutes the subtrees on the

first level. The generators are illustrated in Figure 2.3.

a b

Figure 2.3: The generators of the Fabrykowski-Gupta group.

The Fabrykowski-Gupta group is also a self-similar automaton group, and was shown to

have intermediate growth in [6].

Example 2.1.4. The Hanoi towers group (on k pegs, k ≥ 3) is another example of group

10
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acting on the k-ary tree. For k = 3, it is the subgroup of Aut(T3) generated by

a = (01)(1, 1, a)

b = (02)(1, b, 1)

c = (12)(c, 1, 1)

,

see Figure 2.4 for a depiction of the generators.

a b c

Figure 2.4: The generators of the Hanoi towers group on three pegs.

The Hanoi towers groups appeared in [42] as a model of the homonymous combinatorial

problem. Indeed, the Hanoi towers problem (on k pegs) can be reformulated in terms of

distances between vertices in the Schreier graphs, which happen to be finite approximations

of the Sierpiński gasket. The Hanoi towers group (on k pegs) is a self-similar automaton

group for each k ≥ 3. It is known to be amenable but not elementary amenable for k = 3.

However, for k ≥ 4, the question of amenability is still open.

2.2 Spinal groups

Let us now define the family of groups acting on rooted trees which will constitute the focus

of the thesis, the family of spinal groups. This family was defined in [7] as a subclass of

a family of groups defined in [34], and was further studied in [5, 65]. It contains a variety

of examples of groups with very interesting properties. Within this family, we find branch

groups, groups of intermediate growth, just-infinite groups or infinite finitely-generated

torsion groups. The family of spinal groups is indexed by three parameters: the width of the

tree d ≥ 2, an integer m ≥ 1 and a sequence ω on a finite alphabet Ω = Ωd,m.

Consider the automorphism a ∈ Aut(Td) defined by

a = (01 . . . d− 1)(1, . . . , 1).

This automorphism cyclically permutes the vertices of the first level, and hence the subtrees

rooted at them. Equivalently, a is the automorphism defined by

a(iv) = (i+ 1)v,

for any i ∈ X and v ∈ X∗, where the sum is taken modulo d. We set A = 〈a〉 ≤ Aut(Td),

and we have A ∼= Z/dZ.

11



2. PRELIMINARIES

Let now m ≥ 1 be an integer and B = (Z/dZ)m, and let ω = (ωn)n≥0 ∈ Epi(B,A)N

be a sequence of epimorphisms from B to A. For every b ∈ B, we define the automorphism

bω ∈ Aut(Td) as follows

bω = (ω0(b), 1, . . . , 1, bσω),

where σ is the map which deletes the first epimorphism of ω. These automorphisms are often

called spinal automorphisms, as they fix the rightmost ray of the tree (the spine). They act as

aj on the subtree rooted at (d− 1)r0, if ωr(b) = aj . Equivalently, the automorphisms bω are

defined by

bω((d− 1)riv) =

{
(d− 1)r0ωr(b)(v) if i = 0

(d− 1)riv otherwise
,

for any r ≥ 0, i ∈ X and v ∈ X∗. A picture of the generators can be found in Figure 2.5.

Notice that every vertex different from the root can be written as (d− 1)riv, so the definition

is complete. Let Bω = 〈bω | b ∈ B〉 ≤ Aut(Td).

a

ω0(b)

ω1(b)

ω2(b)

bω

Figure 2.5: Both types of generators of a spinal group. The spinal generating set contains all
the powers of a and bω for all b ∈ B.

The set Epi(B,A) of epimorphisms from B to A is always nonempty, as m ≥ 1. In

particular, every bω stabilizes the first level of the tree. Let Ω = Ωd,m ⊂ Epi(B,A)N be the

set of sequences satisfying the condition

∀i ≥ 0,
⋂
j≥i

Ker(ωj) = 1. (2.1)

Then, for every ω ∈ Ω, the action of Bω on Td and ∂Td is faithful.

We say that Gω = 〈A,Bω〉 is the spinal group defined by d, m and ω. We will abuse

notation and write B = Bω. The action of any spinal group on Td is transitive at every level.

Spinal groups admit a natural generating set, S = (A ∪ B) \ {1}, which we call spinal

generating set. Unless stated otherwise, we consider spinal groups with this generating set.
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The definition of spinal groups in [7, 5] slightly differs from the definition given above.

It allows for more general groups A and B, but at the same time restricts Ω by assuming an

extra condition, namely

∀i ≥ 0,
⋃
j≥i

Ker(ωj) = B. (2.2)

This condition ensures that the groups Gω are torsion. In this thesis, we will use the term

spinal groups for the groups Gω with A = Z/dZ, B = (Z/dZ)m and ω ∈ Ω as defined

above, not assuming this extra condition and thus considering both torsion and non-torsion

groups. For fixed d ≥ 2 and m ≥ 1, we denote Sd,m the family of spinal groups defined by

d, m and any sequence ω ∈ Ω.

It was proven in [7] that all torsion spinal groups are of intermediate growth. Also all

groups in S2,2 have intermediate growth, as shown in [32]. The same proof can be extended

to S2,m, m ≥ 2. Moreover, in [29] it is proved that almost all groups in S3,m with respect to

the uniform Bernoulli measure on Ω3,m have intermediate growth too. The problem is open

for non-torsion groups in Sd,m, with d ≥ 4 and m ≥ 1. The main result in [49] implies that

all spinal groups are amenable.

Example 2.2.1. Let d = 2 and m = 1. Let also π be the only epimorphism in Epi(B,A).

In this case, Ω contains only the constant sequence πN. The spinal group GπN is generated

by two involutions a and b, and is in fact isomorphic to the infinite dihedral group D∞. This

is the only example of spinal group which is not a branch group, and its behavior will often

be different to the rest of spinal groups.

Example 2.2.2. Let d = 2 and m = 2. Then, B = {1, b, c, d}, with b2 = c2 = d2 = bcd =

1. The set Epi(B,A) has three epimorphisms, let us call them πb, πc and πd, in such a

way that πx(x) = 1, for x ∈ {b, c, d}. The family S2,2 is the uncountable family of groups

of intermediate growth constructed by Grigorchuk in [32]. Their spinal generating set is

precisely S = {a, b, c, d}.
In particular, the first group known to have intermediate growth, so-called Grigorchuk’s

group, corresponds to the spinal group Gω ∈ S2,2 with ω = (πdπcπb)
N. This group is an

outstanding example in the context of groups acting on rooted trees. In addition of having

intermediate growth, it is a branch group, it is a 2-group, it is not finitely presented, it is

just-infinite and is amenable but not elementary amenable. In fact, the very definition of

spinal groups arises as a generalization of this group.

Another notable example in S2,2 is the so-called Grigorchuk-Erschler group. This is the

spinal group Gω ∈ S2,2 with ω = (πdπc)
N. It also has intermediate growth, but the element

ab has infinite order, so it is not torsion.
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Example 2.2.3. Let d = 3, m = 1 and ω = πN, where π ∈ Epi(B,A) is the epimorphism

mapping the generator b of B to a. The spinal group Gω defined by these parameters is the

Fabrykowski-Gupta group. It was shown in [6] that it has intermediate growth. Its spinal

generating set is S = {a, a−1, b, b−1}.

Example 2.2.4. Let p be an odd prime, and let d = p andm = 2, so thatA = {1, a, . . . , ap−1}
and B = 〈b, c〉. For every i ∈ X , define πi ∈ Epi(B,A) as πi(b) = a, πi(c) = ai, and

π ∈ Epi(B,A) as π(b) = 1, π(c) = a. The family defined by spinal groups with d = p,

m = 2 and ω ∈ Ωp,2 ∩ {π0, . . . , πd−1, π}N is precisely the one defined in [33], in one of the

first attempts to generalize the family S2,2 for trees of higher degree.

Example 2.2.5. Let p be a prime, m ≥ 1 and f a polynomial in Z/pZ[x] of degree m.

Following [65], if we set A = Z/pZ and B = (Z/pZ)m we can define a group Gp,f acting

on Tp. The choice of f is equivalent to the choice of α ∈ Epi(B,A) and ρ ∈ Aut(B). This

defines a family of groups which we call Šunić groups.

This family of groups is recovered as a family of spinal groups with d = p, keeping

m ≥ 1 and setting ω = ω0ω1 . . . such that ωn = α ◦ ρn, for every n ≥ 0. Some examples

of groups in this family are the infinite dihedral, Grigorchuk’s group or Fabrykowski-Gupta

group. However, by construction the sequence ω is always periodic, which is not necessarily

the case for spinal groups in general.

Proposition 2.2.6. Let Gω be a spinal group. Then, Gω is self-similar if and only if Gω is a

Šunić group. Equivalently, if and only if for every n ≥ 0 there exists ρ ∈ Aut(B) such that

ωn = ω0 ◦ ρn.

Proof. It is clear from the definition that any Šunić group is self-similar. If Gω is a self-

similar spinal group, then for every b ∈ B there must exist some b′ ∈ B such that b′ = b|d−1,

so ωn+1(b) = ωn(b′) for every n ≥ 0. If there was b′′ ∈ B for which this was also true, then

b′(b′′)−1 would be in Ker(ωn) for every n ≥ 0, which would violate condition (2.1) unless

b′ = b′′. Therefore b′ is unique, and thus we can define an endomorphism ρ : B → B as

ρ(b) = b′. If 1 6= b ∈ Ker(ρ), then ωn(b) = 1 for every n ≥ 1, which again would violate

condition (2.1), hence ρ is an automorphism. If we define α to be ω0, we are in the setting of

a Šunić group.

Example 2.2.7. According to [57], an automorphism group of a rooted tree T is an iterated

monodromy group of a post-critically finite backward iteration of polynomials if and only if

it is generated by a dendroid set of automorphisms of T.

We will omit the details, but it can be proven that any spinal group Gω for which at

most m different Ker(ωi) occur, for all i ≥ 0, admits a dendroid generating set. This

means that there are many iterated monodromy groups in the spinal family, self-similar or
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2.3. Schreier graphs

not. A particular case of iterated monodromy groups of a sequence of polynomials is when

this sequence is the constant sequence fN, and so we call the iterated monodromy group

IMG(f). In our setting, this happens only when m = 1. Further details can be found

in [57].

2.3 Schreier graphs

We now define the graphs which constitute the main objects of study of the thesis, so-called

Schreier graphs. Let G be a group, generated by a finite set S, and let H ≤ G. The Schreier

graph of G associated with H with respect to S, denoted Sch(G,H, S), is the graph whose

vertex set is the set of lateral classes G/H with the following edges: for every s ∈ S and

gH ∈ G/H , there is an edge from gH to sgH labeled by s. Notice that Schreier graphs may

have loops or multiple edges, and their edges are oriented and labeled by the finite generating

set S. We say that a s-edge is an edge labeled by s ∈ S. Similarly, if T ⊂ S, a T -edge is an

edge labeled by a generator t ∈ T . Schreier graphs are |S|-regular, since every vertex gH

has exactly one outgoing edge labeled by each s ∈ S. Cayley graphs are a particular case of

Schreier graphs, where H is the trivial subgroup.

We usually consider Schreier graphs of groups G ≤ Aut(Td), with H = StabG(x),

for x ∈ X∗ t XN. If the action of G is transitive at every level of the tree, as is the

case for spinal groups, then the Schreier graph Sch(G, StabG(v), S) coincides for every

v ∈ Xn. Consequently, for any spinal group Gω, we denote Γn = Sch(Gω, StabGω(v), S),

where v ∈ Xn and S is the spinal generating set. Similarly, for ξ ∈ XN, we write

Γξ = Sch(Gω,StabG(ξ), S).

There is a natural bijection between the sets G/ StabG(x) and the orbits Gx. Hence,

any Schreier graph can be regarded as the so-called orbital Schreier graph, with vertex set

Gx instead of G/ StabG(x). The edges are then given by the action, so for every s ∈ S
and y ∈ Gx there is a s-edge from y to s(y). In our context, these two perspectives are

equivalent, and we will use the latter when describing Schreier graphs, usually labeling

vertices of the graph with the sets Xn or Gωξ, the orbits of vertices or boundary points,

respectively.

Example 2.3.1. Consider the action of a on the first level of the tree X . The Schreier

graph associated with the generating set {a} has vertex set X and is a d-cycle, as shown in

Figure 2.6.
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Figure 2.6: Schreier graph of the action of 〈a〉 on X with generating set {a}.

2.4 Spectral properties

2.4.1 Adjacency operator

Many of the results in the thesis involve the spectral properties of the Laplacian operator on

a graph. Instead, we will consider the adjacency operator, the study of which is equivalent to

the study of the Laplacian for regular graphs. Let Γ be a graph, and let us abuse notation

by denoting its vertex set also by Γ. Then `2(Γ) is the space of square-summable functions

on the vertices, which is a Hilbert space. The adjacency operator of Γ is the operator

∆Γ : `2(Γ)→ `2(Γ), defined by

∆Γf(v) =
∑
w∼v

f(w),

where ∼ denotes the adjacency relation between vertices.

This operator is self-adjoint. If Γ is k-regular, we may normalize the adjacency operator,

and then MΓ = 1
k∆Γ is the Markov operator on Γ. Similarly, the operator 1−MΓ is usually

called the Laplacian operator on Γ.

In the thesis we study adjacency operators on Schreier or Cayley graphs of spinal groups.

For every n ≥ 0, we shall write ∆n for the adjacency operator on Γn, while, for ξ ∈ XN,

∆ξ shall denote the adjacency operator on Γξ. More precisely, they are defined by

∆nf(v) =
∑
s∈S

f(sv), ∆ξf(ξ′) =
∑
s∈S

f(sξ′).

2.4.2 Spectrum

We particularly interest ourselves in the spectra of these operators. IfH is a Hilbert space

over C and T : H → H is a bounded linear operator, the spectrum of T is the set

sp(T ) = {λ ∈ C | T − λI is not invertible}.
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2.4. Spectral properties

The spectrum of T is contained in the ball of radius ‖T‖. If T is self-adjoint, then by the

spectral theorem its spectrum is contained in the real line. Therefore, in that case, we have

sp(T ) ⊂ [−‖T‖ , ‖T‖].
An eigenvalue of T is a solution λ ∈ C to the equation Tv = λv, for v ∈ H, v 6= 0. An

eigenvector (or eigenfunction) of T of eigenvalue λ ∈ C is an element v ∈ H for which the

equation Tv = λv holds. Notice that every eigenvalue of T belongs to sp(T ). IfH has finite

dimension, then sp(T ) is exactly the set of eigenvalues of T . If H is infinite-dimensional,

sp(T ) may contain other values.

In this thesis, we consider H = `2(Γ), with Γ being a Schreier or Cayley graph of

some spinal group. We compute spectra of adjacency operators on such graphs, which are

|S|-regular. These operators are always self-adjoint, and their operator norm is exactly |S|.
Their spectra are therefore contained in the interval [−|S|, |S|].

2.4.3 Spectral measures

Spectral measures constitute another important object of study of this thesis. Let H be a

Hilbert space and T : H → H be a bounded, linear self-adjoint operator. For every v, w ∈ H,

there is a unique measure µv,w on sp(T ) satisfying, for every n ≥ 0,∫
sp(T )

xn dµv,w(x) = 〈Tnv, w〉.

We shall call this measure the spectral measure of T associated with v and w. Notice that

µv,w(sp(T )) = 〈v, w〉, so µv,w is a finite measure, but could in general take negative values.

For w = v, the measure µv,v is positive. In that case, we call it the spectral measure of T

associated with v, and denote it simply µv = µv,v.

IfH = `2(Γ) for some graph Γ, we may consider the Dirac delta function δp, for p ∈ Γ,

which takes value 1 on p and vanishes everywhere else. The spectral measure associated

with such a function, denoted µp = µδp , is sometimes called the Kesten spectral measure of

p.

Spectral measures are interesting as they provide more detailed information than just

the spectrum of an operator as a set. The spectral measures are supported on the spectrum.

According to a refinement of Lebesgue’s decomposition Theorem, for any v ∈ H, the

spectral measure µ = µv can be decomposed into three mutually singular measures µ =

µpp + µac + µsc, where µpp is a pure point or discrete measure, consisting only of atoms

with positive measure, µac is absolutely continuous with respect to the Lebesgue measure,

and µsc is called the singular continuous part. This allows us to define three subspacesHpp,
Hac andHsc ofH, containing vectors whose spectral measures are absolutely continuous

with each of µpp, µac and µsc, respectively. These subspaces are invariant under T , and in

virtue of the spectral theorem, we haveH = Hpp ⊕Hac ⊕Hsc.
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2. PRELIMINARIES

In this thesis we study how different Schreier graphs of spinal groups provide different

outcomes in this decomposition for the adjacency operator. We exhibit for instance Schreier

graphs where the spectral measures are all absolutely continuous with respect to the Lebesgue

measure. We also show Schreier graphs with pure point spectrum, or, equivalently, for which

there exists a basis of eigenfunctions. Furthermore, we present examples of Schreier graphs

with nontrivial singular continuous spectrum.
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Chapter 3

Construction of the Schreier graphs

In this chapter we present the construction of Schreier graphs of spinal groups. We shall

start by describing the Schreier graphs associated with the action of a spinal group on the

n-th level of the tree Xn, and then we will provide some tools to study the action on XN, the

boundary of the tree.

We discuss the number of ends of any given Schreier graph, and we characterize when

two Schreier graphs are isomorphic as marked graphs, both as edge-labeled and unlabeled

graphs. We also compute the size of the isomorphism classes in terms of the uniform

Bernoulli measure µ on XN. Moreover, we provide a way of encoding any Schreier graph

Γξ as a tree with two equivalent definitions, one purely combinatorial and the other purely

geometrical.

Finally, one can transfer an action of a finitely generating group on a topological space

to an action on the so-called space of marked Schreier graphs. We do so for the action of any

spinal group on XN, and we study the new action with respect to the original one.

3.1 Schreier graphs on Xn

Let d ≥ 2, m ≥ 1 and ω ∈ Ω, and let Gω be the spinal group defined by these parameters.

Let also S be the spinal generating set for Gω. Our goal is to describe the graphs Γn for

every n ≥ 1. We recall that Γn = Sch(Gω, StabGω(v), S) for every v ∈ Xn, as the action

of Gω on Xn is transitive. Let us start by describing the Schreier graph on the first level.

Lemma 3.1.1. The Schreier graph Γ1, associated with the action of Gω on X and spinal

generating set S, is the graph with vertex set X and edges:

• ∀i ∈ X , ∀k = 1, . . . , d− 1, an ak-edge from i to i+ k.

• ∀i ∈ X , ∀b ∈ B, a b-loop on i.
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3. CONSTRUCTION OF THE SCHREIER GRAPHS

Proof. For every i ∈ X , i is mapped to i+ 1 by a, so it is mapped to i+ k by ak. Moreover,

every b ∈ B stabilizes all vertices in the first level, so b(i) = i for every i.

We describe the rest of graphs Γn recursively. In order to do so, let us define the following

operation on graphs.

Definition 3.1.2. Let Γ be a graph and v ∈ Γ be a vertex. We set Γ̃ to be a copy of Γ but

with all loops on v removed. Let Λ be a finite graph on k vertices, with k ≥ 2, which we call

p0, . . . , pk−1.

Let Γ̃0, . . . , Γ̃k−1 be k disjoint copies of Γ̃, with v0, . . . , vk−1 be the vertices correspond-

ing to v in Γ̃, respectively. We define the graph Star(Λ,Γ, v) as the disjoint union of Λ and

all Γ̃i, identifying pi with vi for every i = 0, . . . , k − 1. Namely,

Star(Λ,Γ, v) =

(
Λ t

k−1⊔
i=0

Γ̃i

)/
{pi = vi | i = 0, . . . , k − 1}.

Observe that no edges are identified in the process. We will slightly abuse notation by

calling Γi the i-th copy of Γ in Star(Λ,Γ, v). If the graphs Γ and Λ are edge-labeled, so is

Star(Λ,Γ, v). The vertex set of Star(Λ,Γ, v) is in bijection with Γ× {0, . . . , k − 1}.

The Star graph operation is similar to the inflation of graphs used in [9] and [12], but

taking loops into account. We may now use it in order to recursively describe the graphs Γn.

Proposition 3.1.3. The Schreier graph Γn, associated with the action of Gω on Xn and

spinal generating set S, is defined by

Γ1 = Star(Θ,Ξ, ∅), Γn+1 = Star(Λωn−1 ,Γn, (d− 1)n−10) ∀n ≥ 1,

where Ξ, Θ and Λπ are the following finite graphs:

• Ξ is the graph with vertex set {∅} which has dm−1 loops, each labeled with a different

element b ∈ B \ {1}.

• Θ is the graph with vertex set X , which has an edge labeled by ak from i to i+ k, for

every i ∈ X and for every k = 1, . . . , d− 1.

• If π ∈ Epi(B,A), Λπ is the graph with vertex set X with the following edges: for

every b ∈ B \ {1}, let k be such that π(b) = ak. Then, for every i ∈ X , there is an

edge from i to i+ k. Notice that this implies adding loops for all b ∈ Ker(π).

Some examples of these graphs can be found in Figure 3.1.
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Figure 3.1: Blocks composing the Schreier graphs of spinal groups for some values of d ≥ 2
and m ≥ 1.

Proof. The claim about Γ1 is the object of Lemma 3.1.1. Now assume n ≥ 1, and let

Γ′n+1 = Star(Λωn−1 ,Γn, (d− 1)n−10). By construction, their vertex sets are both Xn+1, so

let us prove that their edges are the same. Let v = v0 . . . vn ∈ Xn+1, we will prove that its

set of outgoing edges is the same in both Γn+1 and Γ′n+1. Let us call w = v0 . . . vn−1 ∈ Xn,

so that v = wvn.

In Γn+1, there is exactly one outgoing edge for every generator s ∈ S from v to s(v).

So, for every s ∈ S, we must prove that in Γ′n+1 there is exactly one outgoing s-edge from v

to s(v). Notice that s(v) = s(wvn) = s(w)vn unless w = (d− 1)n−10 and s ∈ B.

Suppose first that w 6= (d − 1)n−10. In that case, in Γn, w has an outgoing s-edge

towards s(w). Moreover, as w 6= (d − 1)n−10, the outgoing s-edge from v cannot go

outside its copy of Γn. Therefore, v must have an outgoing s-edge to s(w)vn, and in fact

s(w)vn = s(v), again because w 6= (d− 1)n−10.

Assume now that w = (d− 1)n−10. If s ∈ A, s(w) 6= w, so the outgoing s-edge is not a

loop, and so it is not removed in the construction of Γ′n+1, hence there is an outgoing s-edge
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3. CONSTRUCTION OF THE SCHREIER GRAPHS

from v to s(w)vn in Γ′n+1. Because s ∈ A changes only the first digit of any vertex, we have

s(v) = s(w)vn.

Finally, suppose w = (d− 1)n−10 and s ∈ B. In this case s(w) = w, so the edge in Γn

is a loop and is indeed removed in the construction of Γ′n+1. But the vertex v is identified

with the vertex labeled by vn in Λωn−1 , which has an outgoing s-edge towards the vertex

labeled by vn + k in Λωn−1 , where ωn−1(s) = ak. Therefore, in Γ′n+1, the vertex v has an

outgoing s-edge towards the vertex w(vn + k). As it turns out, s(v) = s((d− 1)n−10vn) =

(d− 1)n−10ωn−1(s)(vn) = w(vn + k), which completes the proof.

Remark 3.1.4. With this characterization, notice that diam(Γn) = 2n − 1.

Let us use Proposition 3.1.3 to obtain the Schreier graphs of some notable examples of

spinal groups.

Example 3.1.5. The finite Schreier graphs of the infinite dihedral group (d = 2, m = 1),

depicted in Figure 3.2 are segments with labels alternating between a and b.

a
b b

1 0
Γ1

a a
b

b
b

11 01 00 10
Γ2

a a a a
b

b b b
b

111 011 001 101 100 000 010 110
Γ3

Figure 3.2: Finite Schreier graphs for the infinite dihedral group.

Example 3.1.6. The finite Schreier graphs for Grigorchuk’s group were already described

in [4], and more generally for any spinal group with d = 2 and m = 2 in [55]. Some

examples of such graphs can be found in Figure 3.3.

Example 3.1.7. The simplest example with d = 3 and m = 1 is the Fabrykowski-Gupta

group, some finite Schreier graphs of which, described in [4], are displayed in Figure 3.4.

Example 3.1.8. In order to give an example with higher d, Figure 3.5 shows some finite

Schreier graphs for the spinal group with d = 5, m = 1 and constant sequence ω = πN, with

π(b) = a.

22



3.2. Schreier graphs on XN

a
c

b

d

c

b

d

1 0
Γ1

a a
c

b

d

b

c

d d

c

b

d

11 01 00 10
Γ2

a a a a
c

b

d

b

c

d d

b

d

c c

b

c

d d

c

b

d

111 011 001 101 100 000 010 110
Γ3

Figure 3.3: Finite Schreier graphs for Grigorchuk’s group.

3.2 Schreier graphs on XN

Let d ≥ 2, m ≥ 1 and ω ∈ Ω, and let Gω be the spinal group defined by these parameters.

Let also S be the spinal generating set for Gω. We now want to describe the Schreier graphs

associated with the action of Gω on the boundary of the tree XN. More precisely, for every

ξ ∈ XN, we are interested in the graph Γξ = Sch(Gω, StabGω(ξ), S).

Notice that XN is endowed with the shift operator σ : XN → XN, which removes the

first letter of a sequence. We say that two points ξ, η ∈ XN are cofinal if they differ at

most in finitely many letters, that is, if there exists some r ≥ 0 such that σr(ξ) = σr(η).

Cofinality is an equivalence relation, and we call the equivalence class of ξ its cofinality

class, denoted Cof(ξ).

Proposition 3.2.1. For every ξ ∈ XN, Gωξ = Cof(ξ).

Proof. Because a only changes the first digit of the sequence and any b ∈ B either fixes the

sequence or changes the first digit after a prefix (d− 1)n0, any generator changes at most

one digit of the sequence. Let η ∈ Gωξ, so there exists g ∈ G such that η = gξ. Then, g

changes at most |g|S digits in ξ, which implies that η and ξ are cofinal.

Conversely, we can check that starting from ξ and performing transformations corre-

sponding to the generators (changing the first letter and changing the first letter after a

specific pattern), we can obtain any point η cofinal with ξ.

Proposition 3.2.2. Let ξ ∈ XN. The Schreier graph Γξ, associated with the action of Gω
on the orbit of ξ, has vertex set Cof(ξ) the following edges:
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Figure 3.4: Finite Schreier graphs for the Fabrykowski-Gupta group. For clarity, only
generators a and b are drawn. Edges labeled by their inverses are the same but reversed.

• ∀η = η0η1 · · · ∈ Cof(ξ), ∀k = 1, . . . , d−1, there is an edge from η to (η0+k)η1η2 . . .

labeled by ak.

• ∀η = η0η1 · · · ∈ Cof(ξ), ∀b ∈ B \ {1},

– If the n-prefix of η is (d− 1)n−10 for some n ≥ 1, then there is a b-edge from η

to (d− 1)n−10(ηn + k)σn+1η, where k is such that ωn−1(b) = ak.

– Otherwise there is a loop at η labeled by b.
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Γ1

Γ2

Figure 3.5: Finite Schreier graphs for the spinal group with d = 5, m = 1 and ω = πN. For
clarity, vertex and edge labelings have been omitted. Black edges correspond to powers of a,
colored edges correspond to powers of b.

Proof. Proposition 3.2.1 shows that the orbit of ξ is its cofinality class, and the edges follow

from the definition of the action of A and B on XN.

Definition 3.2.3. Let ξ ∈ XN and η ∈ Cof(ξ). We define the following subgraphs of Γξ,

for every n ≥ 0:

Γnη = Xnσnη = {vσnη | v ∈ Xn},

Λnη = (d− 1)n0Xσn+2η = {(d− 1)n0iσn+2η | i ∈ X}.
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3. CONSTRUCTION OF THE SCHREIER GRAPHS

Notice that Γnη has dn vertices and contains η, for every n ≥ 0, Moreover, the subgraph

Γnη does not depend on η0 . . . ηn−1, the prefix of η of length n. The subgraphs {Γnη}η∈Cof(ξ)

are either disjoint or coincident, and every vertex of Γξ belongs to exactly one of them.

Furthermore, no vertex in Γnη has outgoing edges to Γξ \ Γnη except for (d− 1)n−10σnη and

possibly (d− 1)nσnη, depending on whether it is fixed by B or not.

The subgraph Λnη has exactly d vertices, and it does not depend on η0 . . . ηn+1, the prefix

of η of length n + 2. If η is fixed by B, then it does not belong to Λnη for any n ≥ 0.

Otherwise, η belongs to exactly one Λnη , for some n ≥ 0. Observe that Λnη contains only

B-edges. In fact, Λnη is isomorphic to Λωn from Proposition 3.1.3 and Figure 3.1.

Proposition 3.2.4. Let ξ ∈ XN, η ∈ Cof(ξ) and n ≥ 1. Let Γ̄nη be the graph obtained from

Γnη after removing all loops on the vertices (d − 1)n−10σnη and (d − 1)nσnη. Similarly,

let Γ̄n be the graph obtained from Γn after removing all loops on the vertices (d− 1)n−10

and (d− 1)n. Then Γ̄nη and Γ̄n are isomorphic. The position of η in Γnη depends only on its

n-prefix η0 . . . ηn−1.

Proof. Consider the bijection between the vertex sets given by ϕ : vσnη 7→ v. Let v ∈ Xn

and s ∈ S, and let us prove that vσnη has an outgoing s-edge to s(v)σnη in Γnη iff v has an

outgoing s-edge to s(v) in Γ̄n.

Suppose first that v is different from (d− 1)n−10 and (d− 1)n, so no loops are removed

on v nor vσnη, and therefore v has an outgoing s-edge to s(v). For such v, we have

s(vσnη) = s(v)σnη, and so ϕ(s(vσnη)) = ϕ(s(v)σnη) = s(v).

Suppose now that v is (d − 1)n−10 or (d − 1)n. If s ∈ A, again s(vσnη) = s(v)σnη,

and so ϕ(s(vσnη)) = ϕ(s(v)σnη) = s(v). Because s(v) 6= v, the edge is not a loop and

hence is not removed in neither of the graphs.

Assume s ∈ B. As v = (d− 1)n−10 or v = (d− 1)n, s(v) = v and so v has a s-loop

in Γn, which is removed in Γ̄n, so v has no outgoing s-edge in Γ̄n.

In Γξ, vσnη has an outgoing s-edge to s(v)s|v(σnη) = vs|v(σnη). Two things may

happen. If s|v(σnη) = σnη, then vσnη has an s-loop in Γnη , which is later removed in Γ̄nη . If

s|v(σnη) 6= σnη, then the s-edge goes from vσnη to a vertex in Γξ \ Γnη , hence the vertex

vσnη has no outgoing s-edge in the subgraph Γnη . In any of the two cases, vσnη has no

outgoing s-edge in Γ̄nη .

Proposition 3.2.4 is a powerful tool in order to describe the graph Γξ . The subgraphs Γnη

are isomorphic to Γn up to the loops at two vertices. We will often abuse notation and say

that these subgraphs Γnη are copies of Γn in Γξ.

For every n ≥ 1, we can then regard Γξ as the disjoint union of copies of Γnη , joined

together through the subgraphs Λrη, r ≥ n− 1.
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3.2. Schreier graphs on XN

Remark 3.2.5. Let ξ ∈ XN, η ∈ Cof(ξ) and n ≥ 0. We denote by Bv(r) the ball centered

at a vertex v of radius r ≥ 0. Combining Propositions 3.2.4 and 3.1.3, we can check the

following properties.

⋃
v∈Λnη

Bv(2n+1 − 1) = Γn+2
η . (3.1)

⋃
v∈Λnη

Bv(2k − 1) = Xk(d− 1)n−k0Xσn+2η, 0 ≤ k ≤ n. (3.2)

Remark 3.2.6. After we fix d ≥ 2 and m ≥ 1, the Schreier graphs Γn for spinal groups

Gω ∈ Sd,m only differ in the labeling of the B-edges, for every n ≥ 0. Indeed, by

Proposition 3.1.3 the construction depends on ω only in the graphs Λπ, for π ∈ Epi(B,A),

which implies that these graphs are all isomorphic as unlabeled graphs.

As we will see later in Section 3.5, for every d ≥ 2 and m ≥ 1, once ξ ∈ XN is fixed

all graphs Γξ are isomorphic as unlabeled graphs for every spinal group Gω ∈ Sd,m. This

allows to extend the results about the Schreier graphs of one particular example Gω ∈ Sd,m
to all groups in Sd,m, as long as these results do not depend on the edge labeling.

Similarly, if we only fix d ≥ 2, the unlabeled Schreier graphs of spinal groups in Sd,m
are obtained from those for spinal groups in Sd,1, but with additional B-loops and multiple

B-edges. Again this is true because the same holds for the graphs Λπ, for π ∈ Epi(B,A),

which are the building blocks of the Schreier graphs.

Example 3.2.7. There are two infinite Schreier graphs up to isomorphism for the infinite

dihedral group (d = 2, m = 1), shown in Figure 3.6. One corresponds to the orbit of the

point 1N, while the other is the Schreier graph of any other point ξ in XN.

a a a a
b

b b b b

1 0 00 10 100 000 010 110 1100
Γ1N

a a ab b b b
Γξ

Figure 3.6: Infinite Schreier graphs for the infinite dihedral group. Vertex labels in Γ1N are
to be concatenated with 1N.

Example 3.2.8. We exhibit two examples of infinite Schreier graphs for Grigorchuk’s group

(d = 2, m = 2). The graphs Γ1N and Γ0N are a one-ended line and a two-ended line,

respectively. They are depicted in Figure 3.7.
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a a a a
c

b

d

b

c

d d

b

d

c c

b

c

d d

c

d

b b

1 0 00 10 100 000 010 110 1100
Γ1N

a a ac

d

b b

b

c

d d

b

d

c c

b

c

d d

1101 11 01 0 1 101 001 011
Γ0N

Figure 3.7: Infinite Schreier graphs for Grigorchuk’s group. Vertex labels in Γ1N or Γ0N are
to be concatenated with 1N or 0N, respectively.

Example 3.2.9. Figure 3.8 illustrates two infinite Schreier graphs for the Fabrykowski-Gupta

group (d = 3, m = 1). As we will see later in this chapter (Theorem 3.3.1), the graph Γ2N is

one-ended and Γ0N is two-ended.

3.3 Number of ends

When studying infinite graphs, an important invariant is the number of ends. In [18], the

authors count the number of ends of the Schreier graphs associated with the Basilica group.

The method described in [12] allows to compute the number of ends of Schreier graphs

of self-similar automata groups. We will use it for spinal groups to see that their Schreier

graphs are either one or two-ended.

We say that a graph Γ has k ends, or is k-ended, if, for every finite subgraph F ⊂ Γ, the

subgraph Γ \ F has not more than k infinite connected components, and this k is minimal.

The number of ends is a property of unlabeled, unmarked graphs, and loops or multiple edges

do not play any role. Therefore, the number of ends of a Schreier graph Γξ of a spinal group

depends only on d and ξ ∈ XN, but not on m or the sequence ω ∈ Ωd,m (see Remark 3.2.6).

We can therefore count the number of ends for Schreier graphs of the spinal groups Gd
defined, for each d ≥ 2, by m = 1 and ω = πN, where π maps the generator of b of B to a.

The groups Gd happen to be automata groups (see Figure 3.9), so we can apply the results

on the ends of Schreier graphs of automata groups from [12].

Theorem 3.3.1. Let Gω be a spinal group and ξ ∈ XN. We partition XN = E1 t E2 with

E2 = X∗{0, d− 1}N \ Cof((d− 1)N), E1 = XN \ E2.

Then Γξ is 2-ended if and only if ξ ∈ E2 and Γξ is 1-ended if and only if ξ ∈ E1.

Proof. As mentioned above, it suffices to show the claim for the groups Gd, d ≥ 2. G2 is

the infinite dihedral group, for which E2 = XN \ Cof(1N) and E1 = Cof(1N). Any ξ ∈ E2
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Γ2N

2

0

1

01
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1121
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201
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001

101

011 021

111

211 121

221

002

102

012

022

112 212

122

222

2201

2202

22201

22202
Γ0N

Figure 3.8: Infinite Schreier graphs for the Fabrykowski-Gupta group. For clarity, only
generators a (in black) and b (in blue) are drawn. Edges labeled by their inverses are the same
but reversed. Vertex labels in Γ2N or Γ0N are to be concatenated with 2N or 0N, respectively.

has trivial stabilizer, so all the corresponding Schreier graphs are isomorphic to the Cayley

graph, a two-ended line alternating a and b-edges. The stabilizer of 1N contains B, so Γ1N is

a one-ended line. Section 5.2 in [12] shows it for the Fabrykowski-Gupta group G3. The

same proof applies for d > 3, by replacing 2 by d− 1 and 1 by {1, . . . , d− 2}.

The set XN is naturally equipped with the uniform Bernoulli measure µ. Let us compute

the measure of the sets E1 and E2 for d ≥ 2.

Lemma 3.3.2. If E ⊂ XN such that µ(E) = 0, then µ(X∗E) = 0.
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3. CONSTRUCTION OF THE SCHREIER GRAPHS

1

b a

i|i j|j + 1

0|0

d− 1|d− 1

b2

a2

i|i

j|j + 1 0|0 d− 1|d− 1

bd−1

ad−1

i|i

j|j + 1

0|0

d− 1|d− 1

. . .

Figure 3.9: Finite-state automaton generating Gd. The letters i and j stand for any i ∈
X \ {0, d− 1} and j ∈ X , respectively.

Proof. We can decompose X∗E =
⊔
n≥0

⊔
w∈Xn

wE, so

µ(X∗E) =
∑
n≥0

∑
w∈Xn

µ(wE) =
∑
n≥0

∑
w∈Xn

µ(E)

dn
=
∑
n≥0

µ(E) = 0.

Theorem 3.3.3. Let Gω be a spinal group and E1 and E2 as in Theorem 3.3.1.

• If d = 2, then µ(E1) = 0 and µ(E2) = 1.

• If d ≥ 3, then µ(E1) = 1 and µ(E2) = 0.

Proof. For d = 2, we have E1 = Cof(1N) and E2 = XN \ Cof(1N). By Lemma 3.3.2,

µ(E1) = µ(X∗1N) = µ(1N) = 0.

For d ≥ 3, we have µ(E2) ≤ µ(X∗{0, d− 1}N). Decomposing after the first digit, we

obtain µ({0, d−1}N) = 2
dµ({0, d−1}N), so µ({0, d−1}N) = 0. Again using Lemma 3.3.2,

we obtain µ(E2) = 0.

Theorem 3.3.3 shows a difference between binary spinal groups and the rest. For spinal

groups with d = 2, all Schreier graphs are two-ended except for one orbit, while for d ≥ 3

the set of points of the boundary whose Schreier graph is one-ended has measure one, even

though there are uncountably many orbits with two-ended graphs.
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3.4. Isomorphism classes of labeled Schreier graphs

3.4 Isomorphism classes of labeled Schreier graphs

Let us call the isomorphism class of (Γξ, ξ) as a marked labeled (unlabeled) graph its labeled

(unlabeled) isomorphism class. The measure of an isomorphism class is the uniform Bernoulli

measure of the set of boundary points ξ ∈ XN for which (Γξ, ξ) is in the isomorphism class.

If the Schreier graphs (Γξ, ξ) are considered as marked, labeled graphs, the answer to

the isomorphism problem is immediate.

Proposition 3.4.1. Let Gω be a spinal group with ω ∈ Ωd,m, excluding the case d = 2,

m = 1. For ξ, η ∈ XN, the graphs (Γξ, ξ) and (Γη, η) are isomorphic as marked labeled

graphs if and only if ξ = η.

Proof. For any branch group, Proposition 2.2 in [35] implies that the stabilizers of different

points of XN are different. Since the graph Γξ is the Schreier graph of a spinal group Gω
with respect to the stabilizer of the point ξ ∈ XN, two graphs (Γξ, ξ) and (Γη, η) cannot be

isomorphic as marked labeled graphs unless ξ = η.

Corollary 3.4.2. There are uncountably many labeled isomorphism classes of marked

Schreier graphs (Γξ, ξ), each of measure zero.

Notice that there is only one exception in Proposition 3.4.1. The only spinal group with

d = 2,m = 1 is the infinite dihedral group, which is the only spinal group which is not a

branch group. All points ξ ∈ XN \ Cof(1N) give rise to Schreier graphs (Γξ, ξ) isomorphic

to the Cayley graph. Therefore, all these graphs are isomorphic as marked edge-labeled

graphs. The remaining graphs (Γξ, ξ) for ξ ∈ Cof(1N) are pairwise non-isomorphic, as they

are different markings of the same graph Γ1N , which is a one-ended line. Hence, for the

infinite dihedral there is one labeled isomorphism class of measure one, and countably many

of zero measure.

3.5 Isomorphism classes of unlabeled Schreier graphs

Let us now consider the isomorphism problem for Schreier graphs as marked unlabeled

graphs. Unlike for the labeled case, the unlabeled isomorphism classes are nontrivial.

3.5.1 Binary case

For the case of the infinite dihedral (d = 2, m = 2), the unlabeled isomorphism classes

coincide with the labeled ones. Let us start with the study of the rest of spinal groups with

d = 2.
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3. CONSTRUCTION OF THE SCHREIER GRAPHS

Proposition 3.5.1. Let Gω be a spinal group with ω ∈ Ωd,m, with d = 2, m ≥ 2. For

ξ, η ∈ XN, ξ 6= η, the graphs (Γξ, ξ) and (Γη, η) are isomorphic as marked unlabeled

graphs if and only if ξ, η 6∈ Cof(1N).

Proof. For ξ 6∈ Cof(1N), Γξ is a two-ended line. Each vertex has 2m−1 − 1 loops, one edge

to one neighbor and 2m−1 edges to the other neighbor. The graph does not depend on ξ, so

they are all isomorphic. If ξ, η ∈ Cof(1N), the distance to 1N is different for each of them,

so there are no nontrivial isomorphisms.

Corollary 3.5.2. For d = 2, there is one unlabeled isomorphism class of marked Schreier

graphs (Γξ, ξ) of full measure, and countably many unlabeled isomorphism classes of

measure zero.

3.5.2 Non-binary case

Let us now describe the possible isomorphisms of marked unlabeled Schreier graphs for

spinal groups with d ≥ 3. Let Gω be a spinal group with ω ∈ Ωd,m, with d ≥ 3, m ≥ 1. We

start by giving some necessary conditions.

Lemma 3.5.3. Let ξ, η ∈ XN, and let ϕ : (Γξ, ξ)→ (Γη, η) be an isomorphism of marked

unlabeled graphs. For every ξ′ ∈ Cof(ξ) and n ≥ 0,

ϕ(Λnξ′) = Λnη′ and ϕ(Γnξ′) = Γnη′ ,

where η′ = ϕ(ξ′).

Proof. We will abuse notation and denote subgraphs and their vertex sets in the same way.

Notice that, even though we consider isomorphisms between unlabeled graphs, vertices that

are fixed byB must be mapped to vertices that are fixed byB, otherwise they have a different

number of loops. The second statement is trivial for n = 0, as ξ′ is mapped to η′ = ϕ(ξ′).

Let us show the second statement for n = 1.

We know that Γ1
ξ′ = Xσ(ξ′). Since 1σ(ξ′) is fixed by B, then B1σ(ξ′)(1) = Γ1

ξ′ . Hence

ϕ(Γ1
ξ′) = ϕ(B1σ(ξ′)(1)) = Bϕ(1σ(ξ′))(1) ⊃ Γ1

ϕ(1σ(ξ′)) = Γ1
η′ .

The last equality comes from the fact that ϕ(1σ(ξ′)) is also fixed by B, and so can only be

joined by an A-edge to η′. The other inclusion then follows from the cardinality of the sets.

Let us now prove the first statement for all n ≥ 0. Let ξ′′ ∈ Λnξ′ , therefore ξ′′ =

(d− 1)n0iσn+2(ξ′), and denote η′′ = ϕ(ξ′′). Since ξ′′ is not fixed by B, its image η′′ is also

not fixed by B, so η′′ ∈ Λkη′ for some k ≥ 0. We decompose Bξ′′(1) = Γ1
ξ′′ t

(
Λnξ′ \ {ξ′′}

)
and similarly Bη′′(1) = Γ1

η′′ t
(

Λkη′ \ {η′′}
)

. The isomorphism ϕ maps one ball onto the
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3.5. Isomorphism classes of unlabeled Schreier graphs

other, but by the previous case, it maps Γ1
ξ′′ to Γ1

η′′ . Hence, it must map Λnξ′ to Λkη′ . We can

suppose without loss of generality that k ≤ n. To show k = n, let us suppose k + 1 ≤ n for

a contradiction. Using Remark 3.2.5, notice that∣∣∣∣∣∣∣
⋃
v∈Λn

ξ′

Bv(2k+1)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
⋃
v∈Λn

ξ′

Bv(2k+1 − 1)

∣∣∣∣∣∣∣+ d(d− 1) =

=
∣∣∣Xk+1(d− 1)n−k−10Xσn+2(ξ′)

∣∣∣+ d(d− 1) = dk+2 + d(d− 1),

while ∣∣∣∣∣∣∣
⋃
v∈Λk

η′

Bv(2k+1)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
⋃
v∈Λk

η′

Bv(2k+1 − 1)

∣∣∣∣∣∣∣+ p(d− 1) =

=
∣∣∣Γk+2
η′

∣∣∣+ p(d− 1) = dk+2 + p(d− 1),

with p = 1 or p = 2 depending on whether σ(η′) is fixed by B or not, respectively. In

any case, one ball must be mapped onto the other, so p = d ≥ 3, which is a contradiction.

Therefore Λnξ′ must be mapped to Λnη′ .

Finally, let us prove the second claim for n ≥ 2. Again by Remark 3.2.5 we have

ϕ(Γnξ′) = ϕ

 ⋃
v∈Λn−2

ξ′

Bv(2n−1 − 1)

 =
⋃

v∈Λn−2
ξ′

ϕ
(
Bv(2n−1 − 1)

)
=

=
⋃

v∈Λn−2
ξ′

Bϕ(v)(2
n−1 − 1) =

⋃
v∈Λn−2

η′

Bv(2n−1 − 1) = Γnη′ .

The important consequence of this Lemma is that, even if we consider unlabeled graphs,

isomorphisms are not allowed to map A-edges to B-edges or vice versa. Furthermore, for

every n ≥ 0, they are only allowed to map copies of Γn to copies of Γn, which is quite

restrictive.

Lemma 3.5.4. Let ξ, η ∈ XN, and let ϕ : (Γξ, ξ)→ (Γη, η) be an isomorphism of marked

unlabeled graphs. For every n ≥ 0, ξn = 0 if and only if ηn = 0.

Proof. The case n = 0 is a consequence of the first statement in Lemma 3.5.3. Let n ≥ 1

such that ξn = 0.

The second statement in Lemma 3.5.3 implies that Γnξ = Xn0σn+1(ξ) is mapped to

Γnη = Xnηnσ
n+1(η). If ηn = d−1, then the latter has a vertex in Λkη′ , for some η′ ∈ Cof(η)

and k ≥ n+ 1, while the former does not have any vertex in Λkξ′ for any ξ′ ∈ Cof(ξ) and
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3. CONSTRUCTION OF THE SCHREIER GRAPHS

k ≥ n+ 1. By the first statement in Lemma 3.5.3, this is a contradiction, hence ηn 6= d− 1.

Suppose also ηn 6= 0 for a contradiction. In that case, the vertex (d− 1)nηnσ
n+1(η) is fixed

by B, while (d− 1)n0σn+1(ξ) is not. Now by Remark 3.2.5 we have∣∣∣∣∣∣∣
⋃

v∈Λn−2
ξ

Bv(2n−1)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
⋃

v∈Λn−2
ξ

Bv(2n−1 − 1)

∣∣∣∣∣∣∣+ 2(d− 1) =

=
∣∣Γnξ ∣∣+ 2(d− 1) = dn + 2(d− 1),

and ∣∣∣∣∣∣
⋃

v∈Λn−2
η

Bv(2n−1)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
⋃

v∈Λn−2
η

Bv(2n−1 − 1)

∣∣∣∣∣∣+ d− 1 =

=
∣∣Γnη ∣∣+ d− 1 = dn + d− 1,

which is also a contradiction. Hence ηn = 0.

Lemma 3.5.4 states that for two points in XN to have isomorphic marked unlabeled

Schreier graphs they must have zeros in the same positions. This excludes any isomorphism

between graphs of points with finitely and infinitely many zeros. Moreover, if we write

ξ ∈ XN as ξ = w00w10 . . . , with wk ∈ (X \ {0})∗, then its image must have the form

ϕ(ξ) = w̃00w̃10 . . . , with |wk| = |w̃k| for every k ≥ 0.

Let n ≥ 0 and 0 ≤ m ≤ n− 1. The sets

Ym = (X \ {0})n−m−1(X \ {0, d− 1})(d− 1)m, Yn = {(d− 1)n}

define a partition of the set (X \ {0})n = tnm=0Ym.

Definition 3.5.5. We call ξ, η ∈ XN compatible (and we denote this by ξ ∼ η) if they are

of the form ξ = w00w10 . . . , η = w̃00w̃10 . . . , with wk, w̃k ∈ (X \ {0})∗ t (X \ {0})N,

|wk| = |w̃k|, and wk ∈ Ymk if and only if w̃k ∈ Ymk , for every k ≥ 0 such that |wk| <∞.

Notice that compatibility is an equivalence relation on XN.

Proposition 3.5.6. Let ξ, η ∈ XN, and let ϕ : (Γξ, ξ) → (Γη, η) be an isomorphism of

marked unlabeled graphs. Then, ξ ∼ η.

Proof. By Lemma 3.5.4, we can assume that ξ = w00w10 . . . and η = w̃00w̃10 . . . with

wk, w̃k ∈ (X \ {0})∗ t (X \ {0})N and |wk| = |w̃k| for every k ≥ 0 such that |wk| <∞.

Let us assume, for a contradiction, that there exists some k ≥ 0 such that, if n = |wk|,
wk ∈ Ym and w̃k ∈ Ym′ , with m < m′. Let also Nr =

∑r−1
s=0(|ws|+ 1), so that σNk(ξ) =

wk0wk+10 . . . and σNk(η) = w̃k0w̃k+10 . . . .
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3.5. Isomorphism classes of unlabeled Schreier graphs

Assume first m < m′ = n, then wk = wi(d − 1)m and w̃k = (d − 1)n, for some

i ∈ X \ {0, d− 1} and w ∈ (X \ {0})n−m−1. We exclude the case k = 0 because then B

would fix ξ but not η, which is absurd. Hence we assume k ≥ 1 and so Nk > 0. We define

the following subgraphs of Γξ and Γη, respectively:

ΓNkξ = XNkwi(d− 1)m0σNk+1(ξ),

ΓNkη = XNk(d− 1)n0σNk+1(η).

These subgraphs are copies of ΓNk which respectively contain ξ and η. By Lemma 3.5.3, we

have ϕ(ΓNkξ ) = ΓNkη . The latter contains the vertex (d− 1)Nk+n0σNk+1(η), which belongs

to ΛNk+n
η′ for some η′ ∈ Cof(η). However, since i 6= 0, d− 1, the former does not contain

any vertex which belongs to ΛMξ′ for any ξ′ ∈ Cof(ξ) and M ≥ Nk. Again by Lemma 3.5.3,

this is a contradiction.

Assume now m < m′ < n. Then m < n − 1 or equivalently n −m − 1 > 0. In this

case, we consider the following subgraphs of Γξ and Γη, respectively:

ΓNk+n−m−1
ξ = XNk+n−m−1i(d− 1)m0σNk+1(ξ),

ΓNk+n−m−1
η = XNk+n−m−1(d− 1)m+10σNk+1(η).

These subgraphs are copies of ΓNk+n−m−1 which respectively contain ξ and η. Again

Lemma 3.5.3 implies ϕ(ΓNk+n−m−1
ξ ) = ΓNk+n−m−1

η . Similarly to the previous case,

the latter contains the vertex (d − 1)Nk+n0σNk+1(η), which belongs to ΛNk+n
η′ for some

η′ ∈ Cof(η). In the former, there is not any vertex belonging to ΛMξ′ , for any ξ′ ∈ Cof(ξ)

and M ≥ Nk + n − m − 1. As n − m − 1 > 0, once more by Lemma 3.5.3 this is a

contradiction.

We have shown that compatibility is a necessary condition to find an isomorphism of

marked unlabeled graphs. Our next goal will be to prove the converse. Namely, that for any

two compatible points there exists an isomorphism mapping their graphs to each other. To

this purpose, let use introduce the following notation.

Definition 3.5.7. Let ξ, ξ′ ∈ XN. We defineR = Rξ,ξ′ = min{s | σs(ξ) = σs(ξ′)}. Notice

that R <∞ if and only if ξ′ ∈ Cof(ξ). Also note that R = 0 if and only if ξ′ = ξ and that

otherwise, by minimality, ξR−1 6= ξ′R−1.

Definition 3.5.8. Let ξ, η ∈ XN. We define τn = τn,ξ,η = (ξn ηn) ∈ Sym(X). Let us also

define the map ϕ = ϕξ,η : (Γξ, ξ)→ (Γη, η) as

ϕ(ξ′) =

{
η if ξ′ = ξ

ξ′0 . . . ξ
′
R−2τR−1(ξ′R−1)σR(η) if ξ′ 6= ξ, with R = Rξ,ξ′

.
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3. CONSTRUCTION OF THE SCHREIER GRAPHS

Remark 3.5.9. Suppose ξ ∼ ξ′, and let η′ = ϕ(ξ′).

1. Rη,η′ = Rξ,ξ′ . It is clear that Rη,η′ ≤ Rξ,ξ′ , and if it was strictly smaller, then, setting

n = Rξ,ξ′ − 1, we would have ηn = τn(ξ′n), and so ξn = ξ′n, which is a contradiction

with the minimality of Rξ,ξ′ .

2. ψ = ϕη,ξ is the inverse of ϕ = ϕξ,η. Indeed, ψ(ϕ(ξ)) = ξ, and, for ξ′ 6= ξ,

ψ(ϕ(ξ′)) = ψ
(
ξ′0 . . . ξ

′
R−2τR−1(ξ′R−1)σR(η)

)
=

= ξ′0 . . . ξ
′
R−2τ

2
R−1(ξ′R−1)σR(ξ) = ξ′0 . . . ξ

′
R−2ξ

′
R−1σ

R(ξ) = ξ′.

Hence, ϕ is a bijection between the vertex sets of Γξ and Γη.

Proposition 3.5.10. Let ξ, η ∈ XN such that ξ ∼ η. Then ϕξ,η : (Γξ, ξ) → (Γη, η) is an

isomorphism of marked unlabeled graphs.

Proof. Let ϕ = ϕξ,η. We already proved in Remark 3.5.9 that ϕ is a bijection between the

sets of vertices, so we only have to prove that edges are preserved. Every A or B-edge joins

vertices in the same Γ1
ξ′ or Λnξ′ , respectively, for some ξ′ ∈ Cof(ξ) and n ≥ 0. Let then

ξ′ ∈ Cof(ξ), n ≥ 0, set η′ = ϕ(ξ′) and let us prove ϕ(Γ1
ξ′) = Γ1

η′ and ϕ(Λnξ′) = Λnη′ .

For the first claim, let us consider two cases. If ξ ∈ Γ1
ξ′ , then we have

ϕ(Γ1
ξ′) = ϕ(Γ1

ξ) = ϕ ({ξ} t {jσ(ξ) | j 6= ξ0}) =

= {η} t {τ0(j)σ(η) | j 6= ξ0} = {η} t {jσ(η) | j 6= η0} = Γ1
η.

Since Rξ,ξ′ ≤ 1, by Remark 3.5.9 Rη,η′ ≤ 1, so Γ1
η = Γ1

η′ .

Assume now ξ 6∈ Γ1
ξ′ , so R = Rξ,ξ′ ≥ 2. In that case, Rξ,v = R for all v ∈ Γ1

ξ′ . Then

ϕ(Γ1
ξ′) = ϕ({jξ′1 . . . ξ′R−1σ

R(ξ) | j ∈ X}) =

= {jξ′1 . . . ξ′R−2τR−1(ξ′R−1)σR(η) | j ∈ X} = Γ1
η′ .

To prove the second claim, set R = minv∈Λn
ξ′
Rξ,v. In this case, R cannot be n + 2,

since vn+1 takes all values in X when v runs through Λnξ′ . We will consider four different

cases, depending on the value of R.

Suppose first R = 0. This means that ξ ∈ Λnξ′ . Moreover, Rξ,v = n+ 2 for all v ∈ Λnξ′

except for v = ξ. Therefore,

ϕ(Λnξ′) = ϕ({ξ} t {(d− 1)n0jσn+2(ξ) | j 6= ξn+1}) =

= {η} t {(d− 1)n0τn+1(j)σn+2(η) | j 6= ξn+1} =

= {η} t {(d− 1)n0jσn+2(η) | j 6= ηn+1} =
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= {(d− 1)n0jσn+2(η) | j ∈ X} = Λnη .

And Λnη = Λnη′ , because Rη,η′ = Rξ,ξ′ ≤ n+ 2, so σn+2(η) = σn+2(η′).

Suppose now 1 ≤ R ≤ n. For the vertex v = (d − 1)n0ξn+1σ
n+2(ξ′) ∈ Λnξ′ we must

haveRξ,v = R ≤ n. This implies ξ = ξ0 . . . ξR−1(d−1)n−R0ξn+1σ
n+2(ξ) and σn+2(ξ) =

σn+2(ξ′). Additionally, since ξ ∼ η, we can write η = η0 . . . ηR−1(d− 1)n−R0ηn+1σ
n+2(η).

For every w ∈ Λnξ′ , w 6= v, we have Rξ,w = n+ 2. Then,

ϕ(Λnξ′) = ϕ
(
{v} t {(d− 1)n0jσn+2(ξ) | j 6= ξn+1}

)
=

= {(d− 1)R−1τR−1(d− 1)(d− 1)n−R0ηn+1σ
n+2(η)}t

t{(d− 1)n0τn+1(j)σn+2(η) | j 6= ξn+1} =

= {(d− 1)n0ηn+1σ
n+2(η)} t {(d− 1)n0jσn+2(ξ) | j 6= ηn+1} = Λnη .

where we used τR−1(d−1) = d−1 because ξ ∼ η. In addition, againRη,η′ = Rξ,ξ′ ≤ n+2,

so Λnη = Λnη′ .

The third case is R = n + 1. The vertex v = (d − 1)n0ξn+1σ
n+2(ξ′) ∈ Λnξ′ satisfies

Rξ,v = R = n + 1. This implies σn+2(ξ) = σn+2(ξ′). For any other w ∈ Λnξ′ , we must

have Rξ,w = n+ 2. Therefore,

ϕ(Λnξ′) = ϕ({v} t {(d− 1)n0jσn+2(ξ) | j 6= ξn+1}) =

= {(d− 1)nτn(0)ηn+1σ
n+2(η)} t {(d− 1)n0τn+1(j)σn+2(η) | j 6= ξn+1} =

= {(d− 1)n0ηn+1σ
n+2(η)} t {(d− 1)n0jσn+2(η) | j 6= ηn+1} = Λnη ,

where we used τn(0) = 0 because of Lemma 3.5.4 and provided that ξ ∼ η. Once more,

Rη,η′ = Rξ,ξ′ ≤ n+ 2, so Λnη = Λnη′ .

Finally, assume R ≥ n + 3. We can write Λnξ′ = {(d − 1)n0jσn+2(ξ′) | j ∈ X} =

{(d− 1)n0jξ′n+2 . . . ξ
′
R−1σ

R(ξ′) | j ∈ X}. In this case, Rξ,v = R for every v ∈ Λnξ′ , and

also Rξ,ξ′ = R, which implies σR(ξ) = σR(ξ′). Then,

ϕ(Λnξ′) = ϕ({(d− 1)n0jξ′n+2 . . . ξ
′
R−1σ

R(ξ) | j ∈ X}) =

= {(d− 1)n0jξ′n+2 . . . ξ
′
R−2τR−1(ξ′R−1)σR(η) | j ∈ X} =

= Λnξ′0...ξ′R−2τR−1(ξ′R−1)σR(η),

and notice that η′ = ξ′0 . . . ξ
′
R−2τR−1(ξ′R−1)σR(η), so

Λnξ′0...ξ′R−2τR−1(ξ′R−1)σR(η) = Λnη′ .
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Theorem 3.5.11. Let Gω be a spinal group with ω ∈ Ωd,m, with d ≥ 3, m ≥ 1. For

ξ, η ∈ XN, the graphs (Γξ, ξ) and (Γη, η) are isomorphic as marked unlabeled graphs if

and only if ξ ∼ η.

Proof. One direction of the equivalence is the object of Proposition 3.5.6, while the converse

is that of Proposition 3.5.10.

If we consider Schreier graphs as unmarked graphs, we can adapt Theorem 3.5.11 easily.

Corollary 3.5.12. Let Gω be a spinal group with ω ∈ Ωd,m, with d ≥ 3, m ≥ 1. For

ξ, η ∈ XN, the graphs Γξ and Γη are isomorphic as unmarked unlabeled graphs if and only

if there exists η′ ∈ Cof(η) such that ξ ∼ η′.

Proof. Let ϕ : Γξ → Γη be an isomorphism of unmarked graphs. Then η′ = ϕ(ξ) ∈ Cof(η),

and so ϕ̃ : (Γξ, ξ) → (Γη, η
′) is an isomorphism of marked graphs. By Theorem 3.5.11,

ξ ∼ η′.
Conversely, if there exists η′ ∈ Cof(η) such that ξ ∼ η′, again by Theorem 3.5.11 (Γξ, ξ)

and (Γη, η
′) are isomorphic as marked graphs, and so in particular Γξ and Γη are isomorphic

as unmarked graphs.

Finally, let us compute the measure of each isomorphism class.

Theorem 3.5.13. For d ≥ 3, there are uncountably many unlabeled isomorphism classes of

marked Schreier graphs (Γξ, ξ), each of measure zero.

Proof. Let ξ ∈ XN, and let C = Comp(ξ) ⊂ XN be its compatibility class. We will show

µ(C) = 0.

Suppose first that ξ has finitely many zeros. In that case, there exists N ≥ 0, w ∈ XN

and ξ′ ∈ (X \ {0})N such that ξ = wξ′. Moreover, C ⊂ XN (X \ {0})N, so

µ(C) ≤ µ(XN (X \ {0})N) = µ((X \ {0})N) = 0.

Assume now that ξ has infinitely many zeros, so there is an infinite sequence of

words (wk)k, wk ∈ (X \ {0})∗ such that ξ = w00w10 . . . . Let nk = |wk| and Ck =

Comp(wk0wk+10 . . . ). By Lemma 3.5.4, any compatible point must have the same zeros at

the same positions, so we have

µ(C) ≤ µ(Xn00C1) =
1

d
µ(C1).

If we iterate this inequality, we have that, for any k ≥ 0,

µ(C) ≤ 1

dk
µ(Ck).

In particular, for any ε > 0, by choosing k so that 1
dk
≤ ε, µ(C) ≤ 1

dk
µ(Ck) ≤ ε. Hence,

µ(C) = 0.
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Corollary 3.5.14. For d ≥ 3, there are uncountably many unlabeled isomorphism classes

of unmarked Schreier graphs Γξ, each of measure zero.

Proof. Let ξ ∈ XN, and let Comp(ξ) ⊂ XN be its compatibility class. Let us define

D = ∪g∈Gω Comp(gξ). In light of Corollary 3.5.12, Γξ is isomorphic to Γη if and only

if η ∈ D. Theorem 3.5.13 implies that µ(Comp(ξ)) = 0. Since the action preserves the

measure µ, for every g ∈ Gω, we have µ(Comp(gξ)) = 0. Therefore, we conclude that

µ(D) = 0.

3.6 Encoding of the Schreier graphs

In order to better understand the infinite Schreier graphs Γξ of spinal groups, we will encode

their structure in sequences of integers characterizing its marked unlabeled isomorphism

class. Each sequence may be used to build a tree describing the shape of Γξ. This purely

combinatorial object serves as a way to visualize the infinite Schreier graphs. For spinal

groups on the binary tree, by Proposition 3.5.1 we know that all their unlabeled Schreier

graphs are isomorphic except for one orbit. Therefore, we assume d ≥ 3 for all the section

unless stated otherwise.

Definition 3.6.1. Let ξ ∈ XN. We define its associated infinite sequence {cn}n≥1 by c1 = 0

and, for every n ≥ 0,

cn+2 =


0 if ξ0 . . . ξn = (d− 1)n0

k + 1 if ξk+1 . . . ξn = (d− 1)n−k−10 and ξk 6= d− 1

n+ 1 if ξn 6= 0

.

The value of cn+2 depends only on ξ0 . . . ξn, the prefix of length n+ 1 of ξ. Intuitively,

cn+2 is the minimal length of the prefix we have to change to ξ0 . . . ξn to obtain (d− 1)n0.

Notice therefore that cn < n for every n ≥ 1.

Proposition 3.6.2. Let ξ, ξ′ ∈ XN, and let {cn}n≥1 and {c′n}n≥1 be, respectively, their

associated sequences. Then ξ ∼ ξ′ if and only if cn = c′n for every n ≥ 1.

Proof. First, suppose that ξ and ξ′ are compatible. This means that ξn = 0 if and only if

ξ′n = 0, and hence cn+2 = c′n+2 = n + 1 for every n ≥ 0 such that ξn, ξ′n 6= 0. Now let

n ≥ 0 such that ξn, ξ′n = 0. We can assume for a contradiction that cn+2 > c′n+2, in which

case we have, for some i ∈ X , i 6= 0, d− 1,

. . . k k + 1 . . . n− 1 n . . .

ξ . . . i d− 1 . . . d− 1 0 . . .

ξ′ . . . d− 1 d− 1 . . . d− 1 0 . . .

.
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We decompose ξ as w00w10 . . . and ξ′ as w̃00w̃10 . . . , with |wk| = |w̃k| for every k,

and let r be such that ξk belongs to wk and, respectively, ξ′k belongs to w̃k. We see from the

table above that wr and w̃r cannot belong to the same Ym, which is a contradiction with the

fact that ξ and ξ′ are compatible.

Conversely, let us suppose that cn+2 = c′n+2, for every n ≥ 0. Now let n ≥ 0 such that

ξn = 0, so cn+2 < n+ 1, and thus c′n+2 < n+ 1. This implies that ξ′n = 0, so ξ and ξ′ do

have zeros at the same positions. To see that they are indeed compatible, assume that they

are not, and thus that there exists some n such that ξn = ξ′n = 0 for which there is some

k < n satisfying ξk+1 . . . ξn = ξ′k+1 . . . ξ
′
n = (d− 1)n−k−10 and ξk 6= ξ′k = d− 1, without

loss of generality. In that case, we are actually in the same situation as in the table above,

which implies that cn+2 > c′n+2, which contradicts the fact that the sequences are equal.

Hence ξ and ξ′ must be compatible.

Definition 3.6.3. Let ξ ∈ XN, with associated sequence {cn}n≥1. We define the tree of ξ,

denoted T (ξ), as the graph with vertex set N = {0, 1, 2, . . . } and undirected edges between

n and cn for every n ≥ 1. The following properties are easy to check:

• As cn < n for every n ≥ 1, the graph T (ξ) is indeed a tree.

• Any vertex n ≥ 1 has exactly 1 neighbor k such that k < n.

• The degree of any vertex n ≥ 1 is between 1 and 3. The degree of the vertex 0 is

between 1 and 2.

• T (ξ) and {cn}n≥1 contain precisely the same amount of information. We can construct

T (ξ) knowing {cn}n≥1 and vice versa.

Remark 3.6.4. We can regard T (ξ) as a tree with an induced ordering in the set of vertices.

Whenever we say that two such trees are equal, we assume that this ordering in the vertices

is preserved.

Proposition 3.6.5. Let ξ, ξ′ ∈ XN, and let T (ξ) and T (ξ′) be, respectively, their associated

trees. Then ξ ∼ ξ′ if and only if T (ξ) = T (ξ′).

Proof. By Proposition 3.6.2, ξ and ξ′ are compatible if and only if their associated sequences

are the same, which happens if and only if T (ξ) = T (ξ′).

The notion of the associated tree of a point ξ ∈ XN can be used to visualize a schema of

the graph Γξ . In order to do that, we will introduce an alternative, purely geometric definition

for T (ξ), which will make clear how the tree describes the shape of the graph.
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Definition 3.6.6. Let ξ ∈ XN. Consider the sequence {Γnξ }n≥0 of finite subgraphs of Γξ.

Recall that Γnξ = Xnσnξ for every n ≥ 0, see Definition 3.2.3. As Γn+1
ξ contains Γnξ for

every n ≥ 0, we have an ascending sequence of finite subgraphs, such that
⋃
n≥0

Γnξ = Γξ. In

some sense, these subgraphs play the role of balls centered at ξ, although they are much

more convenient to describe Γξ.

In addition, let us define the notion of center of the subgraphs Γnξ . For n ≥ 2, we

define the center of Γnξ as its subgraph Λn−2
ξ . Recall that Λn−2

ξ = (d− 1)n−20Xσnξ, see

Definition 3.2.3. For convenience, we set the centers Λ−2
ξ = Γ0

ξ = {ξ} and Λ−1
ξ = Γ1

ξ =

Xσξ.

Notice that, for every n ≥ 0, Γnξ contains all centers Λkξ for k = −2, . . . , n− 2, and does

not contain any center Λkξ , for k ≥ n− 1. Moreover, Γnξ intersects one or two other centers.

It intersects Λn−1
ξ at the vertex (d− 1)n−10σnξ if n ≥ 1. It intersects another center Λkξ , for

k ≥ n, if and only if the vertex (d− 1)nσnξ is not fixed by B.

Definition 3.6.7. Let ξ ∈ XN. We define the graph T ′(ξ) as the graph with vertex set

N = {0, 1, 2, . . . } and undirected edges between k and n for each k > n ≥ 0 satisfying one

of these two conditions:

• Λn−2
ξ and Λk−2

ξ have non-empty intersection, and this intersection is not contained in

any other Λlξ, for l ≤ n− 3.

• Λn−2
ξ and Λk−2

ξ do not intersect, but there exists a path in Γξ between them satisfying:

– The endpoint in Λn−2
ξ does not belong to Λlξ, for any l ≤ n− 3.

– The endpoint in Λk−2
ξ does not belong to Λlξ, for any l ≤ k − 3.

– The inner vertices of the path do not belong to Λlξ for any l ≥ −2.

Notice that as Λ−2
ξ = {ξ} ⊂ Xσξ = Λ−1

ξ , there is always an edge from 1 to 0.

These conditions illustrate how the centers of Γξ are connected. This is sufficient in

order to know how the subgraphs Γnξ are connected, and hence to recover the shape of Γξ

itself. The following notion of blocking centers simplifies the evaluation of these conditions.

Definition 3.6.8. Let r, s ≥ 1. We say that the centers Λn1−2
ξ , . . . ,Λnr−2

ξ block the centers

Λk1−2
ξ , . . . ,Λks−2

ξ if any path from any of Λk1−2
ξ , . . . ,Λks−2

ξ to any other center Λl−2
ξ , with

l 6= n1, . . . , nr and l 6= k1, . . . , kr, contains an inner vertex in one of Λn1−2
ξ , . . . ,Λnr−2

ξ .

In that case, the vertices k1, . . . , ks of T ′(ξ) can only have edges among them or to

n1, . . . , nr, but they cannot have edges to any other l.

Proposition 3.6.9. For every ξ ∈ XN, T (ξ) = T ′(ξ). Equivalently, T (ξ) ∼= T ′(ξ) and they

have the same vertex ordering.
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Proof. It follows from the definition that both graphs have an edge between 1 and 0. Let us

show that, for every n ≥ 2, the set of edges between n+ 2 and {0, . . . , n+ 1} is the same

for T (ξ) and T ′(ξ). Notice that in the first, there is always exactly one such edge, which

goes from n+ 2 to cn+2.

Let n ≥ 0, and define v = (d− 1)n0σn+1(ξ), the only vertex in the intersection of Γn+1
ξ

and Λnξ . Let also p be the smallest index such that v ∈ Λp−2
ξ . If p was 2, . . . , n + 1, then

vp−2 = 0, which contradicts the definition of v. So the only possibilities are p = 0, 1, n+ 2.

If p = 0, then v = ξ, so cn+2 = 0. On the other hand, because every path from Λnξ to

any of Λlξ with l ≤ n− 1 goes through v, the only edge between n+ 2 and {0, . . . , n+ 1}
joins n+ 2 and 0. If p = 1, v = (d− 1)σ(ξ), so cn+2 = 1. Similarly, in T ′(ξ), we have the

edge n + 2 to 1 for the same reason as before. Now assume p = n + 2 for the rest of the

proof. Λn+2 is the only center containing v. We have three possibilities, according to the

value of ξn.

If ξn 6= 0, d− 1, then cn+2 = n+ 1, and Γnξ is only connected to Γξ \ Γnξ through the

vertex u = (d− 1)n−10σn(ξ). Because this vertex u belongs to Λn−1
ξ , this means that Λn−1

ξ

blocks the centers Λlξ for every l ≤ n− 2. Therefore, the only edge in T ′(ξ) between n+ 2

and {0, . . . , n+ 1} is from n+ 2 to n+ 1.

Suppose that ξn = d− 1, so again cn+2 = n+ 1. Let u be the vertex (d− 1)n−10σn(ξ)

and w be the vertex (d − 1)nσn(ξ). Notice that u ∈ Λn−1
ξ ∩ Γnξ and w ∈ Γnξ , and Γnξ is

only connected to Γξ \ Γnξ through u and possibly w. If w is fixed by B, then we are in the

same situation as above: Λn−1
ξ blocks Λlξ for every l ≤ n− 2. Otherwise, w ∈ Λrξ , for some

r ≥ n + 1, and then Λn−1
ξ and Λrξ block the centers Λlξ for every l ≤ n − 2. In any case,

there is only one edge in T ′(ξ) between n+ 2 and {0, . . . , n+ 1}, joining n+ 2 and n+ 1.

Assume now for the rest of the proof ξn = 0, and let k be the smallest such that

ξk+1 . . . ξn = (d− 1)n−k−10. As v 6= ξ, necessarily k ≥ 1, and by minimality ξk 6= d− 1.

In this case, we have cn+2 = k + 1.

Let u = (d − 1)k0σk+1(ξ) ∈ Λkξ , and observe that Γk+1
ξ is connected to Γn+1

ξ \ Γk+1
ξ

only through the vertex u. The former contains all centers Λlξ for every l ≤ k − 1, while

the latter contains all centers Λlξ with k ≤ l ≤ n − 1. Any path from Λnξ to Λlξ with

k ≤ l ≤ n− 1 must then contain the vertex u ∈ Λkξ , which prevents any edge in T ′(ξ) from

n+ 2 to {k + 2, . . . , n+ 1}.
Now Γkξ is connected to Γξ\Γkξ only through the vertices u′ = (d−1)k−10σk(ξ) ∈ Λk−1

ξ

and possibly w = (d − 1)kσk(ξ). If w is fixed by B, then Λk−1
ξ blocks all centers Λlξ for

l ≤ k − 2. Otherwise, we have ξk = 0, and in fact u = w. Then Λk−1
ξ and Λkξ block

all centers Λlξ for l ≤ k − 2. In any case, this prevents any edge in T ′(ξ) from n + 2 to

{0, . . . , k}. Hence, the only possible edge from n+ 2 to {0, . . . , n+ 1} is to k + 1.

Finally, any path within Xk(d− 1)σk+1(ξ) joining v and (d− 1)k−10(d− 1)σk+1(ξ) ∈
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Λk−1
ξ connects the centers Λnξ and Λk−1

ξ without intersecting any other center. Hence, there

is indeed an edge in T ′(ξ) between n + 2 and k + 1. In any of the cases we showed that

T (ξ) and T ′(ξ) have the same edges between n + 2 and {0, . . . , n + 1} for every n ≥ 0.

This suffices to conclude that T (ξ) and T ′(ξ) are the same tree.

Remark 3.6.10. Recall that, by Theorem 3.5.11, (Γξ, ξ) and (Γη, η) are isomorphic as

marked unlabeled graphs if and only if ξ and η are compatible. We also proved in Propo-

sition 3.6.2 that ξ and η are compatible if and only if their associated sequences {cn}n≥1

coincide, or, equivalently, by Proposition 3.6.5, if and only if T (ξ) and T (η) are the same

tree (with the induced ordering). Now Proposition 3.6.9 implies that we have two ways of

building this tree. The first way is purely combinatorial, only using the sequence {cn}n≥1,

which is obtained straightforward from the digits of ξ. The second is purely geometrical, as

it is based in paths between the centers inside Γξ.

Remark 3.6.11. These two additional characterizations of compatibility, namely the asso-

ciated sequence and tree, are useful in both directions. On the one hand, we can take any

ξ ∈ XN, find its associated sequence {cn}n≥1 and from it build its tree T (ξ). We may now

use the tree to recover the Schreier graph Γξ as follows:

1. Let Γ be an unlabeled copy of the graph Γ1 without loops at the vertices u1 = 0 and

u2 = d− 1. Let also z be the vertex labeled by ξ0. Call the vertices u and v open and

the rest closed.

2. For every n ≥ 0, do the following:

(i) Let Λn be an unlabeled copy of Λωn from Proposition 3.1.3. Call all its vertices

open. Let v ∈ Λn.

(ii) If cn+2 = 0, identify v with z in Γ and call the identified vertex closed.

If cn+2 = 1 and u1 is open, identify v with u1 in Γ and call the identified vertex

closed. Otherwise identify v with u2 in Γ and call the identified vertex closed.

If cn+2 = k + 2 for k ≥ 0, let w ∈ Λk be an open vertex. Let Γ′k+1 be a copy of

Γk+1 without loops on the vertices v′ = (d−1)k+1 and w′ = (d−1)k0. Call all

its vertices closed. In Γ, identify v with v′ and w with w′, and call both identified

vertices closed.

3. Finally, for every n ≥ 0 and every open vertex w ∈ Λn, let Γ′n+1 be a copy of Γn+1

without loops on the vertex w′ = (d− 1)k0. Call all its vertices closed. In Γ, identify

w with w′, and call the identified vertex closed.

4. The resulting marked graph (Γ, z) is isomorphic to the Schreier graph (Γξ, ξ), with

Λn corresponding to the center Λnξ for every n ≥ 0.
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On the other hand, we can work backwards if we start from a marked graph (Γ, z) and

we want to know if there exists some ξ ∈ XN such that (Γ, z) ∼= (Γξ, ξ). In this case, we

can build the tree from Γ using the second definition, and extract the sequence {cn}n≥1 from

it. Finally, we only have to use its definition to unravel a set of conditions on the digits of ξ,

which will determine its compatibility class.

We may also wonder what happens if instead of prescribing a graph we prescribe a tree

T (or, equivalently, a sequence {cn}n≥1) and we try to find ξ ∈ XN such that T = T (ξ). As

it turns out, not every tree or sequence can be realized as the associated of point ξ ∈ XN.

Let us characterize the sequences {cn}n≥1 arising in such a way.

Proposition 3.6.12. Let {dn}n≥1 ⊂ N. {dn}n≥1 is the associated sequence of some ξ ∈ XN

if and only if

• dn ≤ n− 1, ∀n ≥ 1.

• dn+2 6= n+ 1 =⇒ dr+2 ≥ n+ 1, ∀r > n.

Proof. Every sequence defined as in Definition 3.6.1 satisfies these conditions. For the

converse, let {dn}n≥1 satisfy both conditions. Let N∗ = N \ {0}. We define a point ξ ∈ XN

in the following way:

1. Set I = {n ∈ N∗ | dn+2 < n+ 1} and J = {n ∈ N∗ | dn+2 = n+ 1}. By the first

condition, I t J = N∗.

2. If dn+2 = 0 for some n ∈ I , we define ξ0 . . . ξn = (d−1)n0. By the second condition,

there can only be one such n, so this is well defined.

3. For each k such that 0 ≤ k ≤ n− 1, if dn+2 = k + 1 for some n ∈ I , then we define

ξk+1 . . . ξn = (d − 1)n−k−10. This is well defined because if n′ ∈ I , with n′ < n,

then by the second condition dn+2 ≥ n′ + 1, so they define disjoint sets of digits of ξ.

4. After this procedure, we set any undefined digit of ξ to 1.

Let {cn}n≥1 be the associated sequence of this ξ. Let us verify that, indeed, dn = cn

for every n ≥ 1. First, we have c1 = d1 = 1, and cn+2 = n+ 1 for every n ≥ 0 such that

ξn 6= 0. By construction, ξn 6= 0 if and only if n ∈ J , equivalently if dn+2 = n+ 1.

Now let n ≥ 0 such that cn+2 = 0. Then, ξ0 . . . ξn = (d− 1)n0. Again by construction

of ξ, dn+2 = 0 too.

Finally, if cn+2 = k + 1 with 0 ≤ k ≤ n − 1, then ξk+1 . . . ξn = (d − 1)n−k−10, and

ξk 6= d− 1. But then once again dn+2 must also be k + 1 by construction of ξ.
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3.6. Encoding of the Schreier graphs

In addition, we can use the tree description to illustrate the computation of the growth of

the graphs Γξ, previously shown in [9].

Proposition 3.6.13. Let Gω be a spinal group with ω ∈ Ωd,m with d ≥ 2 and m ≥ 1, and

let ξ ∈ XN. The growth of the Schreier graph Γξ is polynomial of degree log2(d).

Proof. Without loss of generality (see Remark 3.2.6), let us prove the statement for spinal

groups Gd, defined by m = 1 and ω = πN, with π mapping the generator of B to the

generator of A. Moreover, in [10] it is proved that the growth rate of the graphs Γξ is the

same for every ξ ∈ XN, so let us restrict to the point ξ = (d− 1)N.

Consider the tree T (ξ), which is a one-ended line with vertex labels in N and edges

(n, n+ 1) for every n ≥ 0. Identifying each vertex n with the center Λn−2
ξ , and each edge

(n, n+ 1) with the finite subgraph connecting Λn−2
ξ and Λn−1

ξ in Γξ, we observe that, for

any n ≥ 1, the subtree {0, . . . , n} represents the finite subgraph Γn−1
ξ . This subgraph is,

up to some loops, isomorphic to the finite Schreier graph Γn−1, and therefore has diameter

2n−1−1 and contains dn−1 vertices. Moreover, the ball of radius 2n−1−1 around ξ coincides

with Γn−1
ξ .

Let r ≥ 0 and define k such that 2k−1 ≤ r ≤ 2k − 1. The subgraph represented by

{0, . . . , k}, of diameter 2k−1 − 1, is then contained in the ball of radius r around ξ, and this

is contained in the subgraph represented by {0, . . . , k + 1}, of diameter 2k − 1. The size

of the ball is then bounded between dk−1 and dk. Since k − 1 = dlog2(r)e, it is bounded

between ddlog2(r)e and ddlog2(r)e+1, and is thus equivalent to rlog2(d), as

dlog2(r) = dlog2(d) logd(r) = rlog2(d).

Let us now illustrate the computation of the sequences {cn}n≥1 and the trees T (ξ) with

some examples.

Consider the Fabrykowski-Gupta group (d = 3, m = 1). We will compute the associated

sequences {cn}n≥1 using Definition 3.6.1 and display the associated trees for the points

2N, 0N, (110)N and (210)N in XN. The first, third and fourth yield one-ended Schreier

graphs (see Theorem 3.3.1), and the second a two-ended Schreier graph. For comparison,

the last two are compatible points, so by Theorem 3.5.11 their unlabeled Schreier graphs are

isomorphic.

In the illustrating Figures 3.10, 3.11, 3.12 and 3.13, vertex labels are to be concatenated

with the appropriate shift of ξ. Subgraphs denoted Γn are copies within Γξ of the finite

Schreier graphs Γn, in the sense of Proposition 3.2.4. The associated tree T (ξ) is overlapped

to show its relation with Γξ.
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Figure 3.10: Schema of the Schreier graph Γξ for the Fabrykowski-Gupta group with ξ = 2N.
The tree T (ξ) is overlapped in red.

Example 3.6.14. Let ξ = 2N. Its sequence {cn}n≥1 satisfies cn+2 = n+ 1 for every n ≥ 1,

so it is (0, 1, 2, 3, 4, 5, 6, . . . ). The associated tree T (ξ) is then a one-ended line labeled by

the natural numbers in order. A schema of Γξ and the tree T (ξ) are displayed in Figure 3.10.

Γ1

Γ1

Γ2

Γ2

Γ3

Γ3

Γ4

Γ4

2

ξ

1

01

02

21

22

201

202

221

222

2201

2202

2221

2222

22201

22202

22221

222220

1

2

3

4

5

Figure 3.11: Schema of the Schreier graph Γξ for the Fabrykowski-Gupta group with ξ = 0N.
The tree T (ξ) is overlapped in red.

Example 3.6.15. Let ξ = 0N. Its sequence {cn}n≥1 satisfies cn+2 = n for every n ≥ 0,

so it is (0, 0, 1, 2, 3, 4, 5, . . . ). The associated tree T (ξ) is then a two-ended line labeled

by increasing even numbers on one side of 0 and increasing odd numbers on the other. A

schema of Γξ and the tree T (ξ) are displayed in Figure 3.11.

Example 3.6.16. Let ξ = (210)N. Its sequence {cn}n≥1 is given by c1 = 0 and, for n ≥ 0,

cn+2 =

{
n if n ≡ 2 mod 3

n+ 1 if n 6≡ 2 mod 3
,

so it is the sequence (0, 1, 2, 2, 4, 5, 5, . . . ). The associated tree T (ξ) is the one-ended tree

displayed in Figure 3.12 overlapped on a schema of the Schreier graph Γξ.
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Γ1

Γ1

Γ2Γ2

Γ3

Γ3 Γ4

Γ4

Γ5Γ5

1

ξ 0 02

00

22

20

201202

221222

2201

2200

2221

2220 22202

22200

22222

22220

222201222202

222221222222

0 1 2

3

4 5

6

Figure 3.12: Schema of the Schreier graph Γξ for the Fabrykowski-Gupta group with
ξ = (210)N. The tree T (ξ) is overlapped in red.
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Figure 3.13: Schema of the Schreier graph Γξ for the Fabrykowski-Gupta group with
ξ = (110)N. The tree T (ξ) is overlapped in red.

Example 3.6.17. Let ξ = (110)N. As it is compatible with (210)N, their associated se-

quences coincide, hence {cn}n≥1 is given by c1 = 0 and, for n ≥ 0,

cn+2 =

{
n if n ≡ 2 mod 3

n+ 1 if n 6≡ 2 mod 3
,

so it is the sequence (0, 1, 2, 2, 4, 5, 5, . . . ). A schema of the Schreier graph Γξ is shown in

Figure 3.13, together with the tree T (ξ). By comparing Figures 3.12 and 3.13, it becomes
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3. CONSTRUCTION OF THE SCHREIER GRAPHS

evident that the unlabeled Schreier graphs are isomorphic and that both associated trees

coincide.

3.7 Space of Schreier graphs

For the action of a group G with a finite generating set S on a topological space X by

homeomorphisms, it is particularly interesting to consider Schreier graphs as marked graphs,

by adding a marked vertex. We then regard Schreier graphs as elements of G∗,S , the space

of marked graphs with edge labels in S, which is equipped with the topology of local

convergence (or Gromov-Hausdorff topology). A basis for this topology is formed by the

so-called cylinder sets, each of which contains all graphs with isomorphic r-balls around the

marked vertex, for r ≥ 0. Namely, by the sets

C(Γ,x)(r) = {(Γ′, x′) ∈ G∗,S | B(Γ,x)(r) ∼= B(Γ′,x′)(r)},

for given (Γ, x) ∈ G∗,S and r ≥ 0. Note that we write (Γ, x) for a graph Γ marked at the

vertex x. We can define a map Sch from X to the space of marked, directed, labeled graphs

G∗,S as
Sch : X → G∗,S

x 7→ (Γx, x)
,

so we obtain a family Schreier graphs (Γx, x)x∈X .

If G is a finitely generated group of automorphisms of a rooted spherically homogeneous

tree T that acts transitively of all levels of the tree then, for each boundary point ξ ∈ XN, the

sequence of finite Schreier graphs (Γn, ξ0 . . . ξn−1) converges to (Γξ, ξ). Let now Gω be a

spinal group with spinal generating set S, with ω ∈ Ωd,m for d ≥ 2, m ≥ 1.

Proposition 3.7.1. Let ξ ∈ XN. The map Sch is continuous at the point ξ if and only if

ξ 6∈ Cof((d− 1)N).

Proof. Let ξ be a point in the boundary, and let Sch(ξ) be its image. A neighborhood of

Sch(ξ) is a set of marked graphs such that, for some r ≥ 0, their balls of radius r around

the marked vertex are isomorphic to B = Bξ(r). Fix r ≥ 1 and let U be the corresponding

neighborhood of Sch(ξ).

Let now R ≥ 0 be such that B ⊂ ΓRξ and such that B does not contain the vertices

(d− 1)R−10σRξ and (d− 1)RσRξ. There is always an R satisfying the first condition and

such that B does not contain the first vertex, but to ensure that it does not contain the second,

we need ξ 6∈ Cof((d− 1)N).

Now consider the neighborhood ξ0 . . . ξR−1X
N of ξ, and let η be a point of this neigh-

borhood. We need to show that Sch(η) ∈ U , so that B′ = Bη(r) is isomorphic to B. Using
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3.7. Space of Schreier graphs

Proposition 3.2.4, both B and B′ are isomorphic to the ball of radius r around ξ0 . . . ξR−1 in

ΓR. Hence, Sch is continuous everywhere outside Cof((d− 1)N).

For points ξ = w(d−1)N ∈ Cof((d−1)N), consider the sequence (w(d−1)n0N)n, which

converges to ξ. Any ball centered at w(d− 1)n0N big enough will contain (d− 1)|w|+n0N,

which is not fixed by B, and hence outgoing edges which are not loops for some b ∈ B, on

that vertex, while (d− 1)N is fixed by B, and therefore all its outgoing B-edges are loops.

The balls will not be isomorphic, and so Sch is not continuous on Cof((d− 1)N).

If X0 ⊂ X is the set of continuity points of the map Sch, we define the space of Schreier

graphs as GG,X = Sch(X0), the closure of the image of the continuity points of the map Sch.

The group G acts on the space of Schreier graphs by shifting the marked vertex. In order to

describe the space of Schreier graphs for spinal groups, in Theorem 3.7.3, we first need the

following Lemma.

Lemma 3.7.2. Let ξ, η ∈ XN. If Bξ(r) and Bη(r) are isomorphic, then ξ and η share a

prefix of length blog2(r)c.

Proof. Let k = blog2(r)c, so we have r ≥ 2k. By Proposition 3.2.4 we know that the sub-

graphs Γkξ and Γkη are copies of Γk. Because the diameter of Γk is 2k − 1 (see Remark 3.1.4),

they must be fully contained in Bξ(r) and Bη(r), respectively. The isomorphism between

the balls must then restrict to an isomorphism between Γkξ and Γkη , which maps ξ to η. Both

are mapped to the same vertex of Γk, hence their prefixes of length k must coincide.

Theorem 3.7.3. Let Gω be a spinal group, with ω ∈ Ωd,m, for any d ≥ 2,m ≥ 1 except

d = 2,m = 1. Then

1. The map Sch : XN → G∗,S is injective. Its continuity points are XN \ Cof((d− 1)N).

2. The set of isolated points of Sch(XN) is Sch(Cof(1N)), if d = 2.

3. The set Sch(XN) does not have isolated points, if d ≥ 3.

4. The space of Schreier graphs GGω ,XN contains a countable set which consists of

finitely many d-ended graphs with arbitrary marked vertex. These graphs are Γπ =

Star(Λπ,Γ(d−1)N , (d− 1)N), for every π ∈ Epi(B,A) repeating infinitely often in ω.

5. The space of Schreier graphs GGω ,XN is the disjoint union of either Sch(XN\Cof(1N))

if d = 2 or Sch(XN) if d ≥ 3 with this countable set.

Proof. The injectivity of Sch follows from the fact that spinal groups except d = 2,m = 1

are branch groups [5], and the stabilizers of boundary points are all different for the action of
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3. CONSTRUCTION OF THE SCHREIER GRAPHS

a branch group on the boundary of the tree (see Proposition 2.2. in [35]). In Proposition 3.7.1

we find the continuity points of Sch.

Let (ξ(n))n be a sequence of continuity points of Sch in XN such that (Γξ(n) , ξ(n))

converges to some marked graph (Γ, ξ). For any r ≥ 0, there exists some N ≥ 0 such

that, for every n ≥ N , the balls Bξ(n)(r) are all isomorphic. By Lemma 3.7.2, for every

n ≥ N , all ξ(n) share the same prefix of length blog2(r)c. Hence, (ξ(n))n converges to a

point ξ(∞) ∈ XN.

If ξ(∞) is a continuity point, then by continuity (Γ, ξ) = (Γξ(∞) , ξ(∞)), so assume the

opposite, which means that ξ(∞) ∈ Cof((d − 1)N). By continuity of the action, we can

assume without loss of generality that ξ(∞) = (d − 1)N. Now two things can happen:

either ξ(n) is fixed by B for all large enough n or not. If that is the case, then (Γ, ξ) =

(Γ(d−1)N , (d − 1)N), so graphs corresponding to points in Cof((d − 1)N) are not isolated.

Notice that this cannot happen if d = 2, as no continuity point is fixed by B, and so they

cannot approximate (d− 1)N.

Suppose now that ξ(n) is not fixed by B for all large enough n. This means that

ξ(n) has a prefix (d − 1)kn0, for all n large enough. Because the balls Bξ(n)(1) must all

be isomorphic, this means that, for every b ∈ B, if the image of (d − 1)kn0iσkn+2ξ(n)

by b is (d − 1)kn0jσkn+2ξ(n), then the image of (d − 1)kn′0iσkn′+2ξ(n′) by b must be

(d− 1)kn′0jσkn′+2ξ(n′), for every n′ ≥ n. Equivalently, ωkn is the same epimorphism π for

every n large enough. This can only happen and does happen for epimorphisms π repeating

infinitely often in ω. Therefore, the graph (Γ, ξ) coincides with (Γπ, η), with η being any

vertex of Λπ.

Λπ

Γ(d−1)N

Γ(d−1)N Γ(d−1)N

Figure 3.14: Graph Γπ for d = 3.
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3.7. Space of Schreier graphs

Remark 3.7.4. Notice that the d-ended graphs Γπ arising in Theorem 3.7.3 have the product

Cof((d− 1)N)×X as vertex set and the following edges:

• For every η ∈ Cof((d− 1)N) \ {(d− 1)N}, i ∈ X and s ∈ S, there is an s-edge from

(η, i) to (sη, i).

• For every i ∈ X and k = 1, . . . , d − 1, there is an ak-edge from ((d − 1)N, i) to

(ak(d− 1)N, i).

• For every i ∈ X and b ∈ B \ {1}, there is a b-edge from ((d − 1)N, i) to ((d −
1)N, π(b)i).

If we consider the map (ξ, i) 7→ ξ, it becomes clear that Γπ is a d-covering of Γ(d−1)N ,

for any π ∈ Epi(B,A). While the graphs Γξ are Schreier graphs of subgroups StabG(ξ),

for m = 1 the graphs Γπ are Schreier graphs of StabG(N(ξ)), the pointwise stabilizer of a

neighborhood N(ξ) of a point ξ ∈ Cof((d− 1)N). More generally, for m ≥ 1, the Schreier

graphs associated with StabG(N(ξ)) are dm−1-coverings of the graphs Γπ.
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Chapter 4

Spectra on Schreier and Cayley graphs

This chapter is devoted to the computation of the spectra of different adjacency operators on

Schreier and Cayley graphs of spinal groups with respect to the spinal generating set. We

present two ways of computing the spectra of the adjacency operators ∆ξ on the Schreier

graphs Γξ, with ξ ∈ XN. In the former, we compute first the spectra of the adjacency

operators ∆n on the finite Schreier graphs Γn, for n ≥ 0, and then use a finite approximation

argument to find the spectra on Γξ. This approach involves the actual computation of

the characteristic polynomials for the adjacency matrices of the graphs, via the Schur

complement. The latter is more elegant, and allows to compute the spectra of ∆ξ without the

finite approximations. We use two renormalization maps in the space of graphs, under which

the set of Schreier graphs is fixed, and establish relations between the operators ∆ξ and ∆σξ .

Nevertheless, this approach is not as general as the former, as it is restricted to spinal groups

with m = 1.

Afterwards, we prove that the spectra on the Cayley graphs coincide with those on the

infinite Schreier graphs for spinal groups with d = 2, hence providing another negative

answer to the question "Can one hear the shape of a group?", within the context of spinal

groups.

Finally, we explore the dependence of these spectra with respect to the generating set,

and provide some examples to illustrate the different phenomena that may occur.

Let Gω be a spinal group with parameters d ≥ 2, m ≥ 1 and ω ∈ Ωd,m. Unless stated

otherwise, we consider the spinal generating set S = (A ∪B) \ {1}.

4.1 Spectra on Schreier graphs via finite approximation

In this section, we shall first compute the spectra sp(∆n) in Theorem 4.1.7, for every n ≥ 0,

using the strategy in [4], namely by finding a recurrence relation between sp(∆n) and
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4. SPECTRA ON SCHREIER AND CAYLEY GRAPHS

sp(∆n−1) and solving it to explicitly obtain the spectrum of ∆n, with n ≥ 0. This will allow

us later to find sp(∆ξ) for every ξ ∈ XN in Theorem 4.1.10.

4.1.1 Spectra on finite Schreier graphs

Since the Schreier graphs Γn are finite, let us start by computing the matrix of ∆n. The set

of vertices of Γn is Xn, let us order them lexicographically. The matrix of ∆n is a matrix of

size dn× dn. We will usually write it as a d× d block matrix where each block is a matrix of

size dn−1 × dn−1. A block denoted by a scalar is the corresponding multiple of the identity

matrix Idn−1 .

Lemma 4.1.1. For every n ≥ 0, the matrix of ∆n is An +Bn, where

A0 = d− 1, B0 = dm − 1,

and, if n ≥ 1,

An =



0 1 . . . 1 1

1 0 . . . 1 1
...

...
. . .

...
...

1 1 . . . 0 1

1 1 . . . 1 0


∈Mdn(R),

Bn =



dm−1An−1 + dm−1 − 1

dm−1 − 1
. . .

dm−1 − 1

Bn−1


∈Mdn(R).

Proof. In order to write the adjacency matrix of Γn, let us first write the adjacency matrices

associated with each of the generators in S we consider. For a generator s ∈ S, we denote

its associated adjacency matrix for Γn by sn, and if u, v ∈ Xn, its coefficient (u, v) is 1 if

s(u) = v and 0 otherwise.

Recall that a is the generator ofA, and it permutes the subtrees of the first level cyclically.

This means that, for every i ∈ X and v ∈ Xn−1, a(iv) = (i+ 1)v. We can therefore write

the adjacency matrix of this generator as

a0 = 1, an =



0 1

0 1
. . . . . .

0 1

1 0


, ∀n ≥ 1.
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4.1. Spectra on Schreier graphs via finite approximation

Now, for any b ∈ B and k ≥ 0, if we write the matrix

b0,k = 1 bn,k =



ωk(b)n−1

1
. . .

1

bn−1,k+1


, ∀k ≥ 0, ∀n ≥ 1,

then the adjacency matrix for Γn associated with b is bn = bn,0.

Recall that these matrices have size dn × dn, so every block is itself a matrix of size

dn−1 × dn−1, and scalars denote the corresponding multiple of the identity matrix Idn−1 .

Now notice that, for every n ≥ 0,

d−1∑
i=1

ain = An,
∑

b∈B\{1}

bn = Bn.

The former is clear, and, for the latter, we have, for every k ≥ 0,

∑
b∈B\{1}

bn,k =



∑
b∈B\{1}

ωk(b)n−1

dm − 1
. . .

dm − 1 ∑
b∈B\{1}

bn−1,k+1


=

=



dm−1An−1 + dm−1 − 1

dm − 1
. . .

dm − 1 ∑
b∈B\{1}

bn−1,k+1


.

The sum in the first block does not depend on k, since ωk is an epimorphism and all

elements of A have exactly dm−1 preimages in B. Hence we can inductively conclude that∑
b∈B\{1}

bn = Bn. Finally, the matrix of ∆n is then the sum of sn for every s ∈ S:

∑
s∈S

sn =

d−1∑
i=1

ain +
∑

b∈B\{1}

bn = An +Bn.
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If we now try to find the characteristic polynomial of ∆n, we will not find any explicit

relation with that of ∆n−1. Instead, we consider the matrix

Qn(p, q) := Bn + pAn − q.

These additional parameters will allow us to find a relation between the determinant of

Qn(p, q) and Qn−1(p′, q′), for some different p′ and q′. According to Lemma 4.1.1, by

setting p = 1, q = 0, we recover the matrix of ∆n, so more specifically we want to find

sp(∆n) = {q | |Qn(1, q)| = 0}.
As mentioned above, the strategy consists of two steps. First, we will provide the relation

between the determinants of Qn(p, q) and Qn−1(p′, q′) (Proposition 4.1.4). Second, we will

solve this recurrence to find a factorization of the determinant ofQn(p, q) (Proposition 4.1.6).

Our computations involve matrices of the form rAn + s, with r, s ∈ R, so let us start

with the following result, which will be useful later on.

Lemma 4.1.2. Let r, s, r′, s′ ∈ R. Then,

1. A2
n = (d− 2)An + d− 1.

2. |rAn + s| =
[
(s− r)d−1(s+ (d− 1)r)

]dn−1

.

3. (rAn + s)−1 = 1
(r−s)(s+(d−1)r)(rAn − (d− 2)r − s).

4. (rAn + s)(r′An + s′) = [(d− 2)rr′ + rs′ + r′s]An + (d− 1)rr′ + ss′.

Proof. For (1), if we square An then we will get a sum of d − 1 ones for elements in the

diagonal and d− 2 ones for the rest, which shows the claim.

For (2), we have

|rAn + s| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

s r . . . r r

r s . . . r r
...

...
. . .

...
...

r r . . . s r

r r . . . r s

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

s− r 0 . . . 0 r − s
0 s− r . . . 0 r − s
...

...
. . .

...
...

0 0 . . . s− r r − s
r r . . . r s

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

= (s− r)(d−1)dn−1

∣∣∣∣s− (d− 1)r(r − s)
s− r

∣∣∣∣ =
[
(s− r)d−1(s+ (d− 1)r)

]dn−1

.

For (3), we can verify, using (1), that

(rAn + s) (rAn − (d− 2)r − s) = r2A2
n − (d− 2)r2An − (d− 2)rs− s2 =

= r2 ((d− 2)An + d− 1)− (d− 2)r2An − (d− 2)rs− s2 = (r − s)(s+ (d− 1)r).

Claim (4) can be checked directly, again using (1).
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Proposition 4.1.3. For n = 0 and n = 1, we have

|Q0(p, q)| = α+ p and |Q1(p, q)| = (α+ p)βd−1,

where

α = α(p, q) := dm − 1− q + (d− 2)p

and

β = β(p, q) := dm − 1− q − p.

Proof. By direct computation,

|Q0(p, q)| = B0 + pA0 − q = dm − 1− q + (d− 1)p = α+ p,

|Q1(p, q)| = |B1 + pA1 − q| = |pA1 + dm − 1− q| =

= (dm − 1− q + (d− 1)p)(dm − 1− q − p)d−1 = (α+ p)βd−1.

We are now ready to compute the determinant of Qn(p, q) for n ≥ 2.

Proposition 4.1.4. For n ≥ 2, we have

|Qn(p, q)| = (αβd
2−3d+1γd−1)d

n−2 ∣∣Qn−1(p′, q′)
∣∣ ,

with α and β as in Proposition 4.1.3,

p′ :=
dm−1β

αγ
p2 and q′ := q +

(d− 1)δ

αγ
p2,

where
γ = γ(p, q) := q2 − ((d− 3)p+ dm − 2)q − ((d− 2)p2 + (d− 3)p+ dm − 1),

δ = δ(p, q) := q2 − ((d− 3)p+ dm + dm−1 − 2)q− ((d− 2)p2 + (dm−1 + d− 3)p− d2m−1 + dm + dm−1 − 1).

Proof. We start computing the determinant of |Qn(p, q)| directly, performing elementary

transformations of rows and columns in determinants.

|Qn(p, q)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

dm−1An−1 + dm−1 − 1− q p . . . p p

p dm − 1− q . . . p p
...

...
. . .

...
...

p p . . . dm − 1− q p

p p . . . p Bn−1 − q

∣∣∣∣∣∣∣∣∣∣∣∣∣
=
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=

∣∣∣∣∣∣∣∣∣∣∣∣∣

β + p . . . p p p
...

. . .
...

...
...

p . . . β + p p p

p . . . p dm−1An−1 + dm−1 − 1− q p

p . . . p p Bn−1 − q

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

β p+ q + 1− dm−1 − dm−1An−1 0
. . .

...
...

β p+ q + 1− dm−1 − dm−1An−1 0

p . . . p dm−1An−1 + dm−1 − 1− q p

p . . . p p Bn−1 − q

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

β p+ q + 1− dm−1 − dm−1An−1 0
. . .

...
...

β p+ q + 1− dm−1 − dm−1An−1 0

0 . . . 0 dm−1An−1 + dm−1 − 1− q − (d−2)p(p+q+1−dm−1−dm−1An−1)
β p

0 . . . 0 p− (d−2)p(p+q+1−dm−1−dm−1An−1)
β Bn−1 − q

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

= (βd−2)d
n−1

∣∣∣∣∣∣ d
m−1An−1 + dm−1 − 1− q − (d−2)p(p+q+1−dm−1−dm−1An−1)

β p

p
(

1− (d−2)(p+q+1−dm−1−dm−1An−1)
β

)
Bn−1 − q

∣∣∣∣∣∣ =

= (βd−3)d
n−1

∣∣∣∣∣ β(dm−1An−1 + dm−1 − 1− q)− (d− 2)p(p+ q + 1− dm−1 − dm−1An−1) p2

β − (d− 2)(p+ q + 1− dm−1 − dm−1An−1) Bn−1 − q

∣∣∣∣∣ =

= (βd−3)d
n−1

∣∣∣∣∣ dm−1(α− p)(An−1 + 1) + γ p2

(d− 2)dm−1(An−1 − (d− 1)) + (d− 1)β Bn−1 − q

∣∣∣∣∣ .
We set for convenience

Cn := dm−1(α− p)(An + 1) + γ,

Dn := (d− 2)dm−1(An − (d− 1)) + (d− 1)β.

We continue the computation of the determinant by taking the first Schur complement.

Namely, whenever a matrix P is invertible, we have equality

∣∣∣∣∣ P Q

R S

∣∣∣∣∣ = |P ||S−RP−1Q|:

|Qn(p, q)| = (βd−3)d
n−1

∣∣∣∣∣ Cn−1 p2

Dn−1 Bn−1 − q

∣∣∣∣∣ =

= (βd−3)d
n−1 |Cn−1|

∣∣Bn−1 − q − p2Dn−1C
−1
n−1

∣∣ .
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Let us now compute these two determinants. First, using Lemma 4.1.2 with r =

dm−1(α− p) and s = γ + dm−1(α− p), we obtain

|Cn| =
[
(s− r)d−1(s+ (d− 1)r)

]dn−1

= (αβγd−1)d
n−1

,

as well as

C−1
n =

−1

αβγ

[
dm−1(α− p)(An − (d− 1))− γ

]
.

Similarly, again by Lemma 4.1.2 but now with

r = (d− 2)dm−1, s = (d− 1)
(
β − (d− 2)dm−1

)
,

r′ = dm−1(α− p), s′ = −(γ + (d− 1)dm−1(α− p)),

we find

DnC
−1
n =

−1

αγ

[
dm−1βAn − (d− 1)δ

]
.

Indeed,

(d− 2)rr′ + rs′ + r′s =

= (d− 2)rr′ − r(γ + (d− 1)r′) + r′(d− 1)(β − r) =

= −drr′ − rγ + (d− 1)βr′ =

= dm−1 [(d− 1)β(α− p)− (d− 2)(γ + dm(α− p))] =

= dm−1β[α− (d− 1)p] = dm−1β2,

and

(d− 1)rr′ + ss′ =

= (d− 1)rr′ − (d− 1)(β − r)(γ + (d− 1)r′) =

= (d− 1)(drr′ + rγ − β(γ + (d− 1)r′)) =

= (d− 1)(r(γ + dr′)− β(γ + (d− 1)r′)) =

= (d− 1)(rαβ − β(γ + (d− 1)r′)) =

= −(d− 1)β(γ + (d− 1)dm−1(α− p)− (d− 2)dm−1α) =

= −(d− 1)β(γ + dm−1(α+ (d− 1)p)) =

= −(d− 1)β(γ + dm−1β) = −(d− 1)βδ.

Therefore,

Bn−1 − q − p2Dn−1C
−1
n−1 =

Bn−1 − q +
p2

αγ

[
dm−1βAn−1 − (d− 1)δ

]
=
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Bn−1 +
dm−1β

αγ
p2An−1 −

(
q +

(d− 1)δ

αγ
p2

)
=

= Bn−1 + p′An−1 − q′ =

= Qn−1(p′, q′).

Finally, we conclude the computation of the determinant of Qn(p, q):

|Qn(p, q)| = (βd−3)d
n−1 |Cn−1|

∣∣Bn−1 − q − p2Dn−1C
−1
n−1

∣∣ =

= (βd−3)d
n−1

(αβγd−1)d
n−2 ∣∣Qn−1(p′, q′)

∣∣ =

= (αβd
2−3d+1γd−1)d

n−2 ∣∣Qn−1(p′, q′)
∣∣ .

This concludes the first part of the strategy, finding a recurrence relation between the de-

terminants of Qn(p, q) and Qn−1(p′, q′). For the next part, we need to unfold this recurrence

relation to get a factorization of |Qn(p, q)|. Proposition 4.1.3 provides it for n = 0, 1. Let us

inductively compute it for n ≥ 2.

Proposition 4.1.5. For n = 2, we have

|Q2(p, q)| = (α+ p)β(d−2)d+1Hd−1
0 ,

where

Hx := Hx(p, q) = q2− ((d−2)p+dm−2)q− ((d−1)p2 + (dm−1x+d−2)p+dm−1).

Proof. Let α′ := α(p′, q′) and β′ := β(p′, q′) following the definition in Proposition 4.1.3.

Then, by that Proposition and Proposition 4.1.4,

|Q2(p, q)| = αβd
2−3d+1γd−1

∣∣Q1(p′, q′)
∣∣ = αβd

2−3d+1γd−1(α′ + p′)β′d−1.

We can verify the following relations

α′ + p′ =
β

α
(α+ p), β′ =

β

γ
H0.

Therefore,

|Q2(p, q)| = αβd
2−3d+1γd−1β

α
(α+ p)

(
β

γ
H0

)d−1

=

= (α+ p)β(d−2)d+1Hd−1
0 .
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The motivation for the definition of the polynomials Hx from Proposition 4.1.5 will

become apparent in Proposition 4.1.6. They form a family of polynomials in p and q indexed

by the point x ∈ R. For different values of x ∈ R, the equation Hx = 0 defines different

hyperbolas in p and q.

Proposition 4.1.6. For any n ≥ 2, we have the factorization

|Qn(p, q)| = (α+ p)β(d−2)dn−1+1
n−2∏
k=0

∏
x∈F−k(0)

H(d−2)dn−k−2+1
x ,

with α and β as in Proposition 4.1.3, Hx as in Proposition 4.1.5 and F being the map

F (x) = x2 − d(d− 1).

Proof. The case n = 2 is shown in Proposition 4.1.5. We use again the recurrence in

Proposition 4.1.4 to show the result for n ≥ 3 inductively. Let H ′x := Hx(p′, q′). We can

verify

H ′x =
β

αγ

∏
y∈F−1(x)

Hy.

Using this relation and the fact that, for any k ≥ 0, |F−k(0)| = 2k, we have

|Qn(p, q)| =
(
αβd

2−3d+1γd−1
)dn−2 ∣∣Qn−1(p′, q′)

∣∣ =

=
(
αβd

2−3d+1γd−1
)dn−2

(α′ + p′)β′(d−2)dn−2+1
n−3∏
k=0

∏
x∈F−k(0)

H ′(d−2)dn−k−3+1
x =

=
(
αβd

2−3d+1γd−1
)dn−2 β

α
(α+p)

(
β

γ
H0

)(d−2)dn−2+1 n−3∏
k=0

∏
x∈F−k(0)

 β

αγ

∏
y∈F−1(x)

Hy

(d−2)dn−k−3+1

=

= (αγ)
dn−2−1

β
(d2−2d−1)dn−2+2

(α+p)H
(d−2)dn−2+1
0

n−3∏
k=0

(
β

αγ

)2k((d−2)dn−k−3+1) ∏
x∈F−(k+1)(0)

H
(d−2)dn−k−3+1
x =

= (αγ)d
n−2−1β(d2−2d−1)dn−2+2(α+ p)H

(d−2)dn−2+1
0

(
β

αγ

)dn−2−1 n−2∏
k=1

∏
x∈F−k(0)

H
(d−2)dn−k−2+1
x =

= (α+ p)β(d2−2d)dn−2+1
n−2∏
k=0

∏
x∈F−k(0)

H(d−2)dn−k−2+1
x =

= (α+ p)β(d−2)dn−1+1
n−2∏
k=0

∏
x∈F−k(0)

H(d−2)dn−k−2+1
x .

61



4. SPECTRA ON SCHREIER AND CAYLEY GRAPHS

The relation between the determinants of Qn(p, q) and Qn−1(p′, q′) is given by the

substitution p 7→ p′, q 7→ q′. For Q2, one of the factors of the determinant is the polynomial

we called H0. To compute the determinant of Q3, we have to develop H ′0. It is in this

analysis that the polynomials Hx and the map F arise. They are the link between H ′x and

Hy that allows us to unfold the recurrence.

From the factorization in Proposition 4.1.6 we can extract sp(∆n), as we mentioned

above, by setting p = 1. Recall that |S| = dm + d− 2.

Theorem 4.1.7. Let Gω be a spinal group with d ≥ 2, m ≥ 1 and ω ∈ Ωd,m, and let ∆n be

the adjacency operator for the spinal generating set S on the Schreier graph Γn, for n ≥ 0.

We have

sp(∆0) = {|S|},

sp(∆1) = {|S|, |S| − d},

and, for n ≥ 2,

sp(∆n) = {|S|, |S| − d} ∪ ψ−1

(
n−2⋃
k=0

F−k(0)

)
,

where F (x) = x2 − d(d− 1) and ψ(x) = 1
dm−1 (x2 − (|S| − 2)x− (|S|+ d− 2)).

Proof. We already established that sp(∆n) = {q | |Qn(1, q)| = 0}. By Propositions 4.1.3

and 4.1.6, the determinant vanishes in the following cases:

• α+ 1 = 0. Then |S| ∈ sp(∆n) with multiplicity 1, for every n ≥ 0.

• β = 0. Then dm− 2 = |S|−d ∈ sp(∆n) with multiplicity (d− 2)dn−1 + 1, if n ≥ 1.

• Hx = 0, for some x ∈ F−k(0) with 0 ≤ k ≤ n− 2. This implies that

|S| − 2

2
±

√(
|S| − 2

2

)2

+ |S|+ d− 2 + dm−1x ∈ sp(∆n)

each with multiplicity (d−2)dn−k−2+1. These two eigenvalues are the two preimages

of x by the map ψ defined above.

Remark 4.1.8. Note that, for spinal groups with m = 1, we have the equality ψ(x) =

F (x− (d− 2)). In that case, we can rewrite

sp(∆n) = {|S|} ∪
n−1⋃
k=0

G−k(d− 2), ∀n ≥ 1,

with G(x) = ψ(x) + d− 2 = F (x− (d− 2)) + d− 2.
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−2 2
−2

2

0

F−1(0)
−2 2

−2

2

F−1(0)

F−2(0)

Figure 4.1: Construction of the preimages of 0 by F for d = 2. The set of all preimages is
dense in the interval [−2, 2].

−3 3
−3

3

0

F−1(0) −3 3
−3

3

F−1(0)

F−2(0)

Figure 4.2: Construction of the preimages of 0 by F for d = 3. The set of all preimages
accumulates on a Cantor set.

Remark 4.1.9. The map ψ is symmetric about its minimal point |S|−2
2 , and satisfies

ψ−1(d) = {|S|,−2} , ψ−1(−d) =

 |S| − 2

2
±

√(
|S| − 2

2

)2

+ 2(d− 2)

 ,

ψ−1(−d(d− 1)) = {|S| − d, d− 2} .

The preimages of 0 by the map F are contained in [−d, d], as shown in Figures 4.1

and 4.2 for d = 2, 3, and they accumulate on its Julia set, which is the entire interval [−2, 2]

if d = 2 or a Cantor set if d > 2.
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4.1.2 Spectra on infinite Schreier graphs

Let us now find the spectra sp(∆ξ) on the Schreier graphs Γξ , for ξ ∈ XN. Having computed

sp(∆n), for any n ≥ 0, in Theorem 4.1.7, finding sp(∆ξ) becomes immediate, as shown

next in Theorem 4.1.10.

Theorem 4.1.10. Let Gω be a spinal group with d ≥ 2, m ≥ 1 and ω ∈ Ωd,m, and let ∆ξ

be the adjacency operator for the spinal generating set S on the Schreier graph Γξ. Then,

for every ξ ∈ XN, we have

sp(∆ξ) = {|S| − d} ∪ ψ−1

⋃
n≥0

F−n(0)

 , (4.1)

where F (x) = x2 − d(d − 1) and ψ(x) = 1
dm−1 (x2 − (|S| − 2)x − (|S| + d − 2)). In

particular, sp(∆ξ) does not depend on ξ.

For d = 2, we have sp(∆ξ) = [−2, 0] ∪ [2m − 2, 2m].

For d > 2, we can decompose

sp(∆ξ) = Λ ∪K,

where Λ is a Cantor set of zero Lebesgue measure andK = {|S|−d}∪ψ−1

⋃
n≥0

F−n(0)


is a countable set of isolated points accumulating on Λ.

Proof. For every ξ ∈ XN, we have the equality

sp(∆ξ) =
⋃
n≥0

sp(∆n).

Indeed, the inclusion ⊂ follows from Theorem 3.4.9 in [22] by an argument of weak

containment of representations. The other inclusion holds if Γξ is amenable. Since the

graphs Γξ have polynomial growth (see Proposition 3.6.13 and [9]), they are amenable.

The description of sp(∆ξ) follows from this equality and Theorem 4.1.7. The value |S|
is obtained as the limit of the sequence (ψ−1

1 ◦ F−n1 (0))n, where ψ−1
1 and F−1

1 denote

the positive branch of the inverse of ψ and F , respectively, so it is not necessary to add it

explicitly.

For d = 2, the map F is F (x) = x2 − 2, whose Julia set is the interval [−2, 2], and ψ

becomes ψ(x) = 1
2m−1 (x2 − (2m − 2)x− 2m). For any y ∈ [−2, 2], we find its preimages

x by ψ:

y = ψ(x) ⇐⇒ x2 − (2m − 2)x− (2m + 2m−1y) = 0,

x = 2m−1 − 1±
√

(2m−1 − 1)2 + 2m + 2m−1y.
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Hence, if y ∈ [−2, 2], then

x ∈ 2m−1 − 1±
√

(2m−1 − 1)2 + 2m + 2m−1[−2, 2] =

= 2m−1 − 1±
√

4m−1 + 1 + [−2m, 2m] =

= 2m−1 − 1±
√

[(2m−1 − 1)2, (2m−1 + 1)2] =

= 2m−1 − 1± [2m−1 − 1, 2m−1 + 1] =

= [−2, 0] ∪ [2m − 2, 2m].

If d ≥ 3, then the Julia set of F is a Cantor set of zero Lebesgue measure [53], and its

two preimages by ψ are still Cantor sets lying on the different sides of the minimal point of

ψ, |S|−2
2 . This completes the proof. Intuitively, we can regard K as two infinite trees (one

for each branch of the inverse of ψ), and Λ as their boundary.

Remark 4.1.11. Recall that for spinal groups with m = 1 we had the equality ψ(x) =

F (x− (d− 2)). In this case, we may now rewrite

sp(∆ξ) =
⋃
n≥0

G−n(d− 2), (4.2)

with G(x) = ψ(x) + d− 2 = F (x− (d− 2)) + d− 2. In this case sp(∆ξ) = Λ ∪K, with

Λ being the Julia set of G and K =
⋃
n≥0G

−n(d− 2) accumulating on Λ. Notice that Λ is

an interval if and only if d = 2, and otherwise it is a Cantor set [53].

Even though we discuss spectral measures in detail in Chapter 5, it is worth already

noting a direct consequence of Theorem 4.1.10 for spinal groups with d ≥ 3.

Corollary 4.1.12. Let Gω be a spinal group with d ≥ 3, m ≥ 1 and ω ∈ Ωd,m, and let ∆ξ

be the adjacency operator for the spinal generating set S on the Schreier graph Γξ. Then,

for every ξ ∈ XN, any spectral measure of ∆ξ has trivial absolutely continuous part.

Proof. Any spectral measure of ∆ξ has support contained in sp(∆ξ), which has Lebesgue

measure zero for d ≥ 3. Its absolutely continuous part must therefore be trivial.

4.2 Spectra on Schreier graphs via renormalization

The goal of this section is to provide another approach to compute the spectra of the adjacency

operators ∆ξ on the Schreier graphs Γξ of spinal groups with m = 1 using a renormalization

approach, in Theorem 4.2.8. Even though for ∆ξ it is a particular case of Theorem 4.1.10,

the strategy is more elegant, and the result is valid not only for the graphs Γξ, ξ ∈ XN, but

also for the d-ended graphs Γπ from Theorem 3.7.3, so for all graphs in the space of Schreier
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graphs GGω ,XN . This method was developed by Quint in [60] for a graph related with the

Pascal graph. In that case, the renormalization maps are an example of a more general

construction studied in [48] called the para-line graph. Nevertheless, such construction is not

suitable for our case, so we use a different approach to define the renormalization maps.

Let Gω be a spinal group with d ≥ 3, m = 1 and ω ∈ Ωd,1. Let ξ ∈ XN and Γξ be

its Schreier graph with respect to the spinal generating set S, and let us write `2ξ = `2(Γξ).

Recall that the shift map σ : XN → XN removes the first digit of any point in XN. This shift

induces an operator Π∗ : `2σξ → `2ξ , defined as Π∗f(η) = f(ση). Conversely, we consider

as well the operator Π : `2ξ → `2σξ, defined as Πf(η) =
∑

i∈X f(iη). As it turns out, Π and

Π∗ are adjoint operators, and we have the relation ΠΠ∗ = d.

Geometrically, we can think of Γξ as an inflated version of Γσξ, where every vertex has

been replaced by a graph on d vertices. If f ∈ `2σξ assigns a certain value to a vertex in Γσξ,

then Π∗f assigns the same value to all d vertices replacing it. Conversely, if f ∈ `2ξ , then

Πf assigns to a vertex the sum of the values of f at the d corresponding vertices in Γξ. See

Figure 4.3 for a description of Π∗.

α

βj γj

7−→Π
∗

Γσξ

αα

αα

α

βj

βj

βj
βj

βj γj

γj

γj

γj

γj

Γξ

Figure 4.3: The operator Π∗ copies the value of the function at each vertex p in Γσξ to the
corresponding d vertices ip, i ∈ X , in Γξ.

In a similar way, we may define the renormalization maps Π∗ and Π for Γπ as well. Let

Gω be a spinal group with d ≥ 3, m = 1 and ω ∈ Ωd,1. Let π ∈ Epi(B,A) occurring

infinitely often in ω. The d-ended Schreier graphs Γπ from Theorem 3.7.3 correspond to

Schreier graphs of neighborhoods of the point (d− 1)N ∈ XN (see Section 3.7).

Recall that the graphs Γπ have vertex set Cof((d− 1)N)×X , and can be decomposed

as d copies of Γ(d−1)N joined by a copy of Λπ. Let `2π = `2(Γπ) and ∆π be the adjacency

operator on Γπ. We can extend the renormalization maps Π∗ and Π to the graphs Γπ in a

natural way as Π∗,Π : `2π → `2π as Π∗f(η, i) = f(ση, i) and Πf(η, i) =
∑

j∈X f(jη, i).

These operators Π∗ and Π are the renormalization maps that we will use in order to relate

∆ξ with ∆σξ and ∆π with itself in order to find their spectra.
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Lemma 4.2.1. Let G be the quadratic polynomial G(x) = x2 − 2(d− 2)x− 2(d− 1). We

have

G(∆ξ)Π
∗ = Π∗∆σξ, ΠG(∆ξ) = ∆σξΠ,

G(∆π)Π∗ = Π∗∆π, ΠG(∆π) = ∆πΠ.

Proof. We only provide the proof for ∆ξ , as the proof for ∆π is analogous. Let f ∈ `2σξ , and

let p ∈ Γσξ. Let qj and rj be its A and B-neighbors, respectively, for j = 1 . . . d− 1. Let

us write α, βj and γj to denote the values of f at p, qj and rj , respectively, and let us set

β =
∑d−1

j=1 βj and γ =
∑d−1

j=1 γj . We have, for any i ∈ X ,

Π∗f(ip) = f(p) = α,

∆ξΠ
∗f(ip) =


β + (d− 1)α, i = 0

2(d− 1)α, i 6= 0, d− 1

γ + (d− 1)α, i = d− 1

and

∆2
ξΠ
∗f(ip) =


(2d− 3)β + (d− 1)α+ γ + (d− 1)α+ 2(d− 2)(d− 1)α, i = 0

2(d− 1)2α+ β + γ + 2(d− 1)α+ 2(d− 1)(d− 3)α, i 6= 0, d− 1

(2d− 3)γ + (d− 1)α+ β + (d− 1)α+ 2(d− 2)(d− 1)α, i = d− 1

=

=


2(d− 1)2α+ (2d− 3)β + γ, i = 0

2(d− 1)(2d− 3)α+ β + γ, i 6= 0, d− 1

2(d− 1)2α+ (2d− 3)γ + β, i = d− 1

.

On the other hand, we have that Π∗∆σξf(ip) = ∆σξf(p) = β + γ. Hence,

G(∆ξ)Π
∗f(ip) = (∆2

ξ − 2(d− 2)∆ξ − 2(d− 1))Π∗f(ip) =

=


2(d− 1)2α+ (2d− 3)β + γ − 2(d− 2)β − 2(d− 2)(d− 1)α− 2(d− 1)α, i = 0

2(d− 1)(2d− 3)α+ β + γ − 4(d− 2)(d− 1)α− 2(d− 1)α, i 6= 0, d− 1

2(d− 1)2α+ (2d− 3)γ + β − 2(d− 2)γ − 2(d− 2)(d− 1)α− 2(d− 1)α, i = d− 1

=

= β + γ = Π∗∆σξf(ip).

This shows the first relation while the second one is its dual, as ∆ξ, ∆σξ are self-adjoint

operators.

Remark 4.2.2. The map G arising in Lemma 4.2.1 is the same as the map G defined in

Remark 4.1.11 relating the maps ψ and F from Theorem 4.1.10 form = 1. For spinal groups

with m ≥ 2, there does not exist any quadratic map playing the role of G in Lemma 4.2.1,

which limits this approach to spinal groups with m = 1.
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We will now use the equalities in Lemma 4.2.1 to find a relation between the spectrum of

∆σξ (∆π) with that of ∆ξ|H (∆π|H ), the restriction of ∆ξ (∆π) to a subspace H of `2ξ (`2π).

In order to do that, we will need a general result from functional analysis. We only include

its statement (Lemma 4.2.3), for its proof, see [60].

Lemma 4.2.3. Let H be a Hilbert space and T a self-adjoint bounded operator of H.

Let q ∈ R[x] be a quadratic polynomial. Let K ⊂ H be a closed subspace such that

q(T )K ⊂ K and K and TK generate H. Then q(sp(T )) = sp(q(T )|K). Moreover, if

T−1K ∩K = 0, then sp(T ) = q−1(sp(q(T )|K)).

Let H = 〈Π∗`2σξ,∆ξΠ
∗`2σξ〉 (alternatively H = 〈Π∗`2π,∆πΠ∗`2π〉) be the subspace of `2ξ

(`2π) generated by the images of the operators Π∗ and ∆ξΠ
∗ (∆πΠ∗). Now we are ready to

establish the relation between sp(∆ξ|H) and sp(∆σξ) (sp(∆π|H) and sp(∆π)).

Proposition 4.2.4. For every ξ ∈ XN, H is invariant under ∆ξ (∆π). Moreover,

sp(∆ξ|H) = G−1(sp(∆σξ)),

sp(∆π|H) = G−1(sp(∆π)).

Proof. We provide again the proof only for ∆ξ, as for ∆π it is analogous. For any f ∈ `2σξ,
∆ξΠ

∗f ∈ H by definition and, by Lemma 4.2.1,

∆2
ξΠ
∗f = Π∗∆σξf + 2(d− 2)∆ξΠ

∗f + 2(d− 1)Π∗f ∈ H.

Therefore H is invariant under ∆ξ.

Let K be the image of Π∗. 1√
d
Π∗ is an isometry from `2σξ to K, as ΠΠ∗ = d, which

implies that sp(G(∆ξ)|K) = sp(∆σξ) by Lemma 4.2.1. Now set L = {f ∈ `2σξ | ∆ξΠ
∗f ∈

K} and let f ∈ L. Let p ∈ Γσξ, and let qj , rj be its A and B-neighbors, respectively, for

j = 1, . . . , d− 1. Let α, βj , γj denote the values of f at p, qj and rj , respectively, and set

β =
∑d−1

j=1 βj and γ =
∑d−1

j=1 γj . Recall from the proof of Lemma 4.2.1 that, for every

i ∈ X , we have

∆ξΠ
∗f(ip) =


β + (d− 1)α, i = 0

2(d− 1)α, i 6= 0, d− 1

γ + (d− 1)α, i = d− 1

.

Since ∆ξΠ
∗f ∈ K, it must be constant over the vertices of Γξ of the form ip, i ∈ X .

This means that β = γ = (d − 1)α. Similarly, for every j = 1, . . . , d − 1, we deduce

(d− 1)βj = β − βj + α and (d− 1)γj = γ − γj + α. Equivalently, that βj = γj = α for

every j = 1, . . . , d− 1. Thus f is constant, and hence f = 0, so L = 0.
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4.2. Spectra on Schreier graphs via renormalization

Now let g ∈ ∆−1
ξ K ∩K, so both g,∆ξg ∈ K. There exists h ∈ `2σξ such that g = Π∗h,

and so ∆ξΠ
∗h = ∆ξg ∈ K. Consequently, h ∈ L, but then h = 0 and therefore g = 0, so

∆−1
ξ K ∩K = 0. We may now use Lemma 4.2.3 to obtain

sp(∆ξ|H) = G−1(sp(G(∆ξ)|K)) = G−1(sp(∆σξ)).

Proposition 4.2.4 establishes a relation between the part of the spectrum of ∆ξ (∆π)

which corresponds to the subspace H in `2ξ (`2π) to the whole spectrum on `2σξ (`2π), via

the quadratic map G. We now want to find the part of the spectrum corresponding to the

orthogonal complement of H , denoted H⊥. Once we know both parts, we will be able to

find an explicit description of the spectrum of ∆ξ (∆π).

Lemma 4.2.5. sp(∆ξ|H⊥) = sp(∆π|H⊥) = {d− 2,−2}.

αd−1α0

α3α1

α2

(d− 1)p0p

3p1p

2p

β0
j

β2
j

β1
j

β3
j

βd−1
j γ0

j

γ2
j

γ1
j

γ3
j

γd−1
j

Figure 4.4: Values of the function f ∈ H⊥ at the vertices ip, iqj and irj of Γξ, for i ∈ X
and j = 1, . . . , d− 1.

Proof. Once again the proof for ∆π is analogous so we do not include it. Let f ∈ H⊥. Let

p ∈ Γσξ, and let qj , rj be its A and B-neighbors, respectively, for j = 1, . . . , d − 1. For

each i ∈ X , set αi = f(ip), βij = f(iqj), γij = f(irj), as in Figure 4.4. Because f ∈ H⊥,

we have

0 = 〈f,Π∗δp〉 = 〈Πf, δp〉 = Πf(p) =
∑
i∈X

f(ip) =
∑
i∈X

αi.

Likewise, we obtain, for every j = 1, . . . , d− 1,∑
i∈X

βij =
∑
i∈X

γij = 0.

As in the proof of Lemma 4.2.1, we will find ∆ξf(ip) and ∆2
ξf(ip). In order to simplify

notation, we will write β =
∑d−1

j=1 β
0
j and γ =

∑d−1
j=1 γ

d−1
j . Using the equalities above, we
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4. SPECTRA ON SCHREIER AND CAYLEY GRAPHS

have

∆ξf(ip) =


β − α0, i = 0

(d− 2)αi, i 6= 0, d− 1

γ − αd−1, i = d− 1

.

Again because f ∈ H⊥, we obtain

0 = 〈f,∆ξΠ
∗δp〉 = 〈Π∆ξf, δp〉 = Π∆ξf(p) =

∑
i∈X

∆ξf(ip) =

= β − α0 + (d− 2)
∑

i∈X,i 6=0,d−1

αi + γ − αd−1 =

= β + γ − (d− 1)(α0 + αd−1).

Furthermore, again using the equalities we have established,

∆2
ξf(ip) =


∑d−1
j=1(α0 + β − 2β0

j ) + (d− 2)
∑
k∈X,k 6=0,d−1 α

k + γ − αd−1, i = 0

(d− 1)(d− 2)αi + (d− 2)
∑
k 6=0,i,d−1 α

k + β − α0 + γ − αd−1, i 6= 0, d− 1∑d−1
j=1(αd−1 + γ − 2γ0

j ) + (d− 2)
∑
k∈X,k 6=0,d−1 α

k + β − α0, i = d− 1

=

=


(d− 1)α0 + (d− 3)β − (d− 2)(α0 + αd−1) + γ − αd−1, i = 0

(d− 1)(d− 2)αi + (d− 2)
∑
k 6=0,i,d−1 α

k + (d− 2)(α0 + αd−1), i 6= 0, d− 1

(d− 1)αd−1 + (d− 3)γ − (d− 2)(α0 + αd−1) + β − α0, i = d− 1

=

=


dα0 + (d− 4)β, i = 0

(d− 2)2αi, i 6= 0, d− 1

dαd−1 + (d− 4)γ, i = d− 1

.

This implies that in H⊥ we have the equality ∆2
ξ − (d− 4)∆ξ − 2(d− 2) = 0. Indeed,

(∆2
ξ − (d− 4)∆ξ)f(ip) =


dα0 + (d− 4)α0, i = 0

2(d− 2)αi, i 6= 0, d− 1

dαd−1 + (d− 4)αd−1, i = d− 1

= 2(d− 2)f(ip).

Equivalently, in H⊥ we have (∆ξ − (d− 2))(∆ξ + 2) = 0. This shows that sp(∆ξ|H⊥) =

{d− 2,−2}.

For x ∈ sp(∆ξ) (sp(∆π)), let us denote by Ex the eigenspace of ∆ξ (∆π) associated

with x in `2ξ (`2π). We will now find the eigenspaces associated with d− 2 and −2. To that

end, we need the following result.

Lemma 4.2.6. 2(d− 1) and −(d− 1)2 − 1 are not eigenvalues of ∆ξ (∆π).
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4.2. Spectra on Schreier graphs via renormalization

Proof. The analogous proof for ∆π is omitted. Let f ∈ `2ξ be an eigenfunction of ∆ of

eigenvalue 2(d−1). Since f ∈ `2ξ , f must be bounded and reach its maximum value on some

vertices. Let Σ be the set of vertices of Γξ attaining that maximum. If p ∈ Σ and qj are its

neighbors, j = 1, . . . , 2(d−1) because Γξ is 2(d−1)-regular, then 2(d−1)f(p) = ∆f(p) =∑2(d−1)
j=1 f(qj). But f(qj) ≤ f(p), and therefore, f(qj) = f(p) for all j = 1, . . . , 2(d− 1),

so qj ∈ Σ for every j = 1, . . . , 2(d − 1). Since Γξ is connected, f must be constant, and

since f ∈ `2ξ , f must be zero.

For the second claim, we know that ‖∆‖ = |S| = 2(d− 1), and since (d− 1)2 + 1 >

2(d− 1) for every d > 2, −(d− 1)2 − 1 cannot be in sp(∆).

Recall from Definition 3.2.3 that Γ1
η is the subgraph Xσ(η) of Γξ, for η ∈ Cof(ξ). We

will call any such subgraph anA-piece. Similarly, Λnη is the subgraph (d−1)n0Xσn+2(η) of

Γξ, for n ≥ 0 and η ∈ Cof(ξ). We will call such subgraph an n-piece, and, more generally,

we will call any n-piece aB-piece. Finally, for convenience, we will sometimes callA-pieces

(−1)-pieces. In Figures 4.3 and 4.4, B-pieces are drawn in blue, while A-pieces are drawn

in black.

Notice that every vertex belongs to exactly one A-piece and every vertex not fixed by

B belongs to exactly one B-piece. Moreover, every A-piece has d vertices, joined together

only by A-edges. More precisely, for every k = 1, . . . , d− 1, any vertex iη from an A-piece

in Γξ has an ak-edge to (i + k)η in the same A-piece. Similarly, any B-piece has also d

vertices, joined together by only B-edges. For every b ∈ B \ {1}, any vertex (d− 1)n0iη

from a B-piece in Γξ has a b-edge to (d− 1)n0(i+ k)η in the same B-piece, if ωn(b) = ak.

For the graphs Γπ, we may extend these notions in a natural way. A-pieces (equivalently

(−1)-pieces) are subgraphs of the form (Γ1
η, i) = (Xση, i), for η ∈ Cof((d − 1)N) and

i ∈ X . n-pieces are subgraphs of the form (Λnη , i) = ((d− 1)n0Xσn+2(η), i), for n ≥ 0,

η ∈ Cof(ξ) and i ∈ X . We define the subgraph ((d − 1)N, X) to be the only ∞-piece.

Again, we call any n-piece a B-piece, for n ≥ 0 or n =∞.

Intuitively, A and B-pieces in Γπ are exactly those within the d copies of Γ(d−1)N , with

the exception of the new∞-piece which joins the d copies together.

Lemma 4.2.7. The eigenspace E−2 is trivial, while Ed−2 is the subspace of H⊥ given by

Ed−2 = {f ∈ `2ξ | Πf = 0, f constant on B-pieces}.

Proof. Once more, we provide only the proof for ∆ξ , as that for ∆π is analogous. Let us first

show that both Ed−2 and E−2 are contained in H⊥. Let f ∈ Ed−2. Then, by Lemma 4.2.1,

∆σξΠf = ΠG(∆ξ)f = G(d− 2)Πf = (−(d− 1)2 − 1)Πf.
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But Lemma 4.2.6 then implies Πf = 0. In addition, Π∆ξf = (d − 2)Πf = 0. Now, for

every g ∈ `2σξ, we have

〈f,Π∗g〉 = 〈Πf, g〉 = 0,

and

〈f,∆ξΠ
∗g〉 = 〈Π∆ξf, g〉 = 0.

Consequently, f ∈ H⊥.

Let now f ∈ E−2. Again by Lemma 4.2.1, we have

∆σξΠf = ΠG(∆ξ)f = G(−2)Πf = 2(d− 1)Πf.

But because of Lemma 4.2.6, Πf = 0. Similarly, Π∆ξf = −2Πf = 0, and so analogously

as before, f ∈ H⊥. This shows that H does not contain any eigenfunction of eigenvalue

d− 2 nor −2.

Let us show now that Ed−2 = {f ∈ `2ξ | Πf = 0, f constant on B-pieces}. First, if

f ∈ `2ξ is constant on B-pieces and satisfies Πf = 0, then, for any ip ∈ Γξ,

∆ξf(ip) = Πf(p)− f(ip) + (d− 1)f(ip) = (d− 2)f(ip).

Conversely, if f ∈ Ed−2, we already know that Πf = 0. Let ipj ∈ Γξ be the vertices of

a B-piece, with j ∈ X , and let αj = f(ipj), for all j ∈ X . Then,

∆ξf(ipj) = Πf(pj)− αj +
∑
k 6=j

αk = −αj +
∑
k 6=j

αk.

Since ∆ξf = (d − 2)f , we obtain (d − 1)αj −
∑

k 6=j αk = 0 for every j ∈ X . This

corresponds to the following system of equations:

d− 1 −1 . . . −1 −1

−1 d− 1 . . . −1 −1
...

...
. . .

...
...

−1 −1 . . . d− 1 −1

−1 −1 . . . −1 d− 1





α0

α1

...

αd−2

αd−1


=



0

0
...

0

0


,

all of whose solutions are constant vectors. Hence, f is constant on B-pieces.

Finally, let us show E−2 = 0. Let f ∈ E−2. Again, we know that Πf = 0. For every

ip ∈ Γξ fixed by B, ip has d− 1 loops labeled by the generators in B \ {1}. Therefore,

∆ξf(ip) = Πf(p)− f(ip) + (d− 1)f(ip) = (d− 2)f(ip).

Since ∆ξf = −2f , we obtain df(ip) = 0, so f must vanish at every vertex fixed by B. In

addition, if ipj are the vertices of a B-piece, for j ∈ X , then, for every j ∈ X ,

∆ξf(ipj) = Πf(pj)− f(ipj) +
∑
k 6=j

f(ipk) = −f(ipj) +
∑
k 6=j

f(ipk).
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4.2. Spectra on Schreier graphs via renormalization

But ∆ξf = −2f , so
∑

j∈X f(ipj) = 0, or equivalently that f has zero sum on all B-pieces.

For the remaining part of the proof, we will consider the subgraphs Γnη = Xnσn(η) of

Γξ, for n ≥ 1, η ∈ Cof(ξ) (see Definition 3.2.3). Notice that such subgraphs can only be

connected to Γξ \ Γnη by two vertices: (d− 1)n−10σn(η) and (d− 1)nσn(η). We shall call

them the extremes of Γnη . We claim that for every subgraph Γnη of Γξ, f is antisymmetric at

its extremes, i.e., that f((d− 1)n−10σn(η)) = −f((d− 1)nσn(η)). Indeed, we proceed by

induction on n.

If n = 1, the subgraphs Γ1
η for η ∈ Cof(ξ) are precisely A-pieces. Since Πf = 0, the

sum of the values of f at its d vertices is 0. However, f vanishes on vertices whose first

digit is different from 0, d − 1, as they are fixed by B, and is hence antisymmetric on the

remaining two vertices, which are the extremes of Γ1
η.

Assume the claim to be true for n ≥ 1, and consider Γn+1
η , for η ∈ Cof(ξ). We

decompose Γn+1
η as d subgraphs Γn

ζ(i) , i ∈ X , where ζ(i)
k = ηk for all k ∈ N \ {n}

and ζ(i)
n = i. Each of these subgraphs has extremes pi = (d − 1)niσn+1(η) and qi =

(d− 1)n−10iσn+1(η), i ∈ X , and the qi form a B-piece. Our goal is to show that f(p0) =

−f(pd−1).

Notice that the vertices pi, i 6= 0, d−1, are fixed byB, and so f(pi) = 0, i 6= 0, d−1. By

induction hypothesis we have f(pi) = −f(qi) for every i ∈ X , so in particular f(qi) = 0,

for i 6= 0, d − 1. Finally, the qi form a B-piece, so
∑

i∈X f(qi) = 0, which implies

f(q0) = −f(qd−1). Now we conclude

f(pd−1) = −f(qd−1) = f(q0) = −f(p0).

0

0

0

0

0

0

α −α α −α

Figure 4.5: Any (−2)-eigenfunction f is antisymmetric on the extremes of the subgraph Γnξ ,
for all n ≥ 1 and η ∈ Cof(ξ). Therefore it must be zero.

Hence if f(p) = α 6= 0 for some p ∈ Γξ, we can find an infinite path on Γξ on which f

has alternating values α,−α, which is a contradiction with the fact that f is square summable.

Then f = 0 and so E−2 = 0.
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Notice that for d = 2 the eigenspace Ed−2 is also trivial. We may now conclude with

the explicit computation of the spectrum of the adjacency operator ∆ξ (∆π) on the Schreier

graphs Γξ (Γπ).

Theorem 4.2.8. Let Gω be a spinal group with d ≥ 3, m = 1 and ω ∈ Ωd,1. Let ∆ be the

adjacency operator on any Schreier graph Γ in the space of graphs GGω ,XN , i.e., either Γξ

for ξ ∈ XN or Γπ for π ∈ Epi(B,A) repeating infinitely often in ω. Then,

sp(∆) = Λ ∪
⋃
n≥0

G−n(d− 2), (4.3)

where G(x) = x2 − 2(d − 2)x − 2(d − 1) and Λ is its Julia set, which is a Cantor set of

zero Lebesgue measure. In particular, sp(∆) does not depend on ξ nor π.

Proof. We only provide the proof for ∆ξ , since for ∆π it is analogous. By induction on n ≥
0, and in parallel for all the graphs Γξ with ξ ∈ XN, let us show that G−n(d− 2) ⊂ sp(∆ξ).

The case n = 0 is a consequence of Lemma 4.2.5. Suppose that
⋃n
k=0G

−k(d − 2) ⊂
sp(∆σξ) for some n ≥ 1. Then, by Proposition 4.2.4,

⋃n+1
k=0 G

−k(d− 2) ⊂ sp(∆ξ). Hence⋃
n≥0G

−n(d − 2) ⊂ sp(∆ξ). Since sp(∆ξ) is closed, and Λ is the adherence of this set,

Λ ⊂ sp(∆ξ) too.

Now let x ∈ sp(∆ξ) such that x 6∈
⋃
n≥0G

−n(d − 2). In that case, Proposition 4.2.4

and Lemma 4.2.5 imply that Gn(x) ∈ sp(∆σn(ξ)) for every n ≥ 0. Therefore the sequence

Gn(x) is bounded, which means that x ∈ Λ.

Remark 4.2.9. The map G is the same map from Remark 4.1.11, so it satisfies G(x) =

ψ(x) + d− 2 = F (x− (d− 2)) + d− 2, where ψ and F are the maps from Theorem 4.1.10

with m = 1.

As with Corollary 4.1.12, the Cantor spectrum in Theorem 4.2.8 allows us to conclude

an immediate consequence about spectral measures.

Corollary 4.2.10. Let Gω be a spinal group with d ≥ 3, m = 1 and ω ∈ Ωd,1. Let ∆ be the

adjacency operator on any Schreier graph Γ in the space of graphs Sch(XN), i.e., either

Γξ for ξ ∈ XN or Γπ for π ∈ Epi(B,A) repeating infinitely often in ω. Then any spectral

measure of ∆ has trivial absolutely continuous part.

Proof. The support of any spectral measure of ∆ is contained in sp(∆). Since the Lebesgue

measure of sp(∆) is zero, its absolutely continuous part must be trivial.
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4.3 Spectra on Cayley graphs

We are now interested in finding the spectrum of the adjacency operator on Cayley graphs of

spinal groups. Note that for the rest of the chapter we will consider the Markov operator, i.e.,

the adjacency operator normalized to have operator norm ≤ 1. In particular, the spectra of

the adjacency operator and the Markov operator on a regular graph differ only by a factor

equal to the degree of the graph. If G is a group generated by a finite set S, we denote the

Markov operator on its Cayley graph Cay(G,S) with respect to S by MG. For any H ≤ G,

we denote the Markov operator on the Schreier graph Sch(G,H, S) by MH .

For a countable group G, the left-regular representation λG of G is the unitary represen-

tation on the Hilbert space `2(G) given by

λG(g)f(x) = f(g−1x).

Similarly, if H ≤ G, the quasi-regular representation λG/H of G on `2(G/H) is given by

λG/H(g)f(xH) = f(g−1xH).

Both representations can be extended to the group algebra C[G] by bounded operators,

setting, for every t =
∑

g∈G cgg ∈ C[G], λG(t) =
∑

g∈G cgλG(g) and λG/H(t) =∑
g∈G cgλG/H(g). If we set u = 1

|S|
∑

s∈S s ∈ C[G], the representations λG(u) and

λG/H(u) are the same operators as MG and MH .

There is a notion of weak containment of unitary representations of a group. We will

use the characterization shown in [22], which says that a unitary representation ρ of G is

weakly contained in another unitary representation η of G (denoted ρ ≺ η) if and only if

sp(ρ(t)) ⊂ sp(η(t)) for every t ∈ C[G]. Amenability and weak containment of unitary

representations are strongly related by Hulanicki’s Theorem, which we now recall.

Theorem 4.3.1 (Hulanicki’s Theorem). Let G be a locally compact group, and let λG be

its left-regular representation. G is amenable if and only if λG weakly contains any unitary

representation of G.

Let Gω be a spinal group with d = 2, m ≥ 1 and ω ∈ Ω2,m and spinal generating set S.

We write Mξ = MStabGω (ξ) = 1
|S|∆ξ . Since all spinal groups with d = 2 are amenable [49],

Hulanicki’s Theorem implies that sp(MGω) ⊃ sp(Mξ), for every ξ ∈ XN. Recall that, as a

consequence of Theorem 4.1.10, sp(Mξ) does not depend on ξ. We now want to prove the

other containment again using Hulanicki’s Theorem. This implies that there are uncountably

many isospectral non quasi-isometric spinal groups, as was shown in [24]. In fact, the proof

we provide is a variation of their proof for the smaller family S2,2 of spinal groups, which

uses a version of Hulanicki’s Theorem for graphs. For us it is enough to use the classical

version of Hulanicki’s Theorem stated above.
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4. SPECTRA ON SCHREIER AND CAYLEY GRAPHS

Theorem 4.3.2. Let Gω be a spinal group with d = 2, m ≥ 1 and ω ∈ Ω2,m, and let Mξ be

the Markov operator with respect to the spinal generating set S on the Schreier graph Γξ.

Then, for every ξ ∈ XN, we have

sp(MGω) = sp(Mξ) =

[
− 1

2m−1
, 0

]
∪
[
1− 1

2m−1
, 1

]
. (4.4)

Proof. Theorem 4.1.10 implies the second equality, for any ξ ∈ XN. Since Gω is amenable,

we know by Hulanicki’s Theorem that λGω/H ≺ λGω , where H = StabGω(ξ), for ξ ∈ XN.

Considering u = 1
|S|
∑

s∈S s ∈ C[Gω], this implies that sp(λGω/H(u)) ⊂ sp(λGω(u)), or,

equivalently, sp(Mξ) ⊂ sp(MGω), for any ξ ∈ XN. To prove the other inclusion, consider

the element t ∈ C[Gω] defined as follows:

t =
1

2m−1

∑
b∈B

b− 1.

Observe that t2 = 1. Indeed,

t2 =

(
1

2m−1

∑
b∈B

b− 1

)2

=

=
1

4m−1

∑
b∈B

∑
b′∈B

bb′ + 1− 1

2m−2

∑
b∈B

b =

=
1

4m−1

∑
b∈B

∑
c∈B

c+ 1− 1

2m−2

∑
b∈B

b =

=
1

2m−2

∑
c∈B

c+ 1− 1

2m−2

∑
b∈B

b = 1.

It follows that the subgroup D = 〈a, t〉 of the group algebra C[Gω] is a dihedral group

(in fact infinite), as a2 = t2 = 1.

Let ρ = λGω |D be the restriction of the regular representation to D ⊂ C[Gω]. Since

both a and t are involutions, ρ(a) and ρ(t) are unitary operators, and hence ρ is a unitary

representation. By Hulanicki’s Theorem, provided that D is amenable, we have that ρ ≺ λD,

where λD is the regular representation of D on `2(D). This implies that sp(ρ(w)) ⊂
sp(λD(w)) for every w ∈ C[Gω]. Notice that u = a

2m + t
2 + 2m−1−1

2m ∈ C[D], so we have

sp(MGω) = sp(λGω(u)) = sp(ρ(u)) ⊂ sp(λD(u)).

We only have to compute the latter, which is not hard to do as it corresponds to the

spectrum of the Markov operator associated with a random walk on Z with 2-periodic proba-

bilities. In particular, the probability of staying at a vertex is 2m−1−1
2m , and the probabilities

of moving to a neighbor are 2-periodic of values 1
2 and 1

2m .

To find the spectrum of a 2-periodic graph we can use the elements of Floquet-Bloch

theory (see for instance [8]). As the graph is 2-periodic, a fundamental domain parametrized
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4.4. Dependence on the generating set

by k ∈ [−π, π] is given by any two consecutive vertices. Using the 2-periodicity of the graph

we build a 2× 2 matrix for each k with the transition probabilities, find its eigenvalues and

we take the closure of their union for all k. The computations are shown below.

0 =

∣∣∣∣∣∣
2m−1−1

2m − x 1
2m + 1

2e
−ik

1
2m + 1

2e
ik 2m−1−1

2m − x

∣∣∣∣∣∣ =

(
2m−1 − 1

2m
− x
)2

−
(

1

4m
+

1

4
+

1

2m
cos(k)

)
.

x =
2m−1 − 1

2m
± 1

2m

√
4m−1 + 1 + 2m cos(k).

sp(λD(u)) =
⋃

k∈[−π,π]

sp (λD(u)k) =

=
2m−1 − 1

2m
± 1

2m
[2m−1 − 1, 2m−1 + 1] =

[
− 1

2m−1
, 0

]
∪
[
1− 1

2m−1
, 1

]
.

Remark 4.3.3. As m→∞, sp(MGω) shrink from two intervals to two points.

We can therefore conclude in Corollary 4.3.4 that, for spinal groups, as for other classes

of groups [23, 24], the spectrum on the Cayley graph does not determine the group.

Corollary 4.3.4 (See [24]). There are uncountably many pairwise non quasi-isometric

isospectral spinal groups.

Proof. Theorem 4.3.2 shows that sp(MGω) for spinal groups with d = 2 depends only on m.

For instance, for m = 2, we obtain the family of groups S2,2 defined by Grigorchuk in [32].

This family contains uncountably many groups with different growth function, which is

a quasi-isometric invariant. Hence, there are uncountably many isospectral spinal groups

which are pairwise non quasi-isometric.

4.4 Dependence on the generating set

All the results discussed so far in this chapter concerned spinal groups with the spinal

generating set S = (A ∪ B) \ {1}. One might also wonder what are the spectra like if

we consider different generating sets, for instance minimal ones. Some progress has been

achieved, for example in [38] the authors characterize whether the spectra of the weighted

Markov operator on the Schreier graphs of Grigorchuk’s group are either a union of intervals

or a Cantor set, depending on the weights on its usual generators.

For spinal groups acting on the binary tree (d = 2), the infinite Schreier graphs Γξ have

linear shape. The Schreier graphs of a minimal generating set can then be obtained by erasing

double edges in the Schreier graph Γξ corresponding to the spinal generators S. This can
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4. SPECTRA ON SCHREIER AND CAYLEY GRAPHS

be translated into considering a Markov operator on Γξ with non-uniform distribution of

probabilities on S. The spectra of such anisotropic Markov operators were studied in [39].

Their analysis implies the next result. As in Section 4.3, Mξ denotes the Markov operator

on the Schreier graph Γξ with respect to the spinal generating set S, for ξ ∈ XN, and MGω

denotes the Markov operator on the Cayley graph also with respect to the spinal generating

set S. For other generating sets T , we will explicitly write ΓTξ , MT
ξ and MT

Gω
.

Proposition 4.4.1. Let Gω be a spinal group with d = 2, m ≥ 2 and ω ∈ Ωd,m, and let MT
ξ

be the Markov operator on the graph ΓTξ , with generating set T ⊂ S. For π ∈ Epi(B,A),

we define qπ = |T ∩B \Ker(π)|. Two cases may occur:

• If the numbers qπ are all equal over π ∈ Epi(B,A) appearing infinitely often in ω,

then sp(MT
ξ ) is a union of intervals.

• Otherwise, sp(MT
ξ ) is a Cantor set of zero Lebesgue measure.

Proof. First notice that a ∈ T , or else T would generate a finite group. We observe that we

can relabel the vertices in ΓTξ by Z in such a way that the number of edges between them is

the following:

• There is one a-edge between any vertex v ∈ 2Z and v + 1.

• There are |T ∩B \Ker(ω0)| = qω0 edges, between any vertex v ∈ 4Z + 1 and v + 1,

and |T ∩Ker(ω0)| loops on each of v, v + 1.

• There are |T ∩B \Ker(ω1)| = qω1 edges between any vertex v ∈ 8Z + 3 and v + 1,

and |T ∩Ker(ω1)| loops on each of v, v + 1.

...

• In general, for every i ≥ 0, there are |T ∩ B \ Ker(ωi)| edges between any vertex

v ∈ 2i+2Z + 2i+1 − 1 and v + 1, and |T ∩Ker(ωi)| loops on each of v, v + 1.

Hence, the simple random walk on ΓTξ is given by a weighted random walk on Z, defined

by the following probabilities:

• Probability of 1
|T | of transitioning between any vertex v ∈ 2Z and v + 1.

• For every i ≥ 0, probability of qωi
|T | of transitioning between any vertex v ∈ 2i+2Z +

2i+1 − 1 and v + 1.

• For every i ≥ 0, probability of 1− qωi
|T |−

1
|T | of staying at any vertex v ∈ 2i+2Z+2i+1−1

or v + 1.
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4.4. Dependence on the generating set

These probabilities follow a periodic pattern if and only if the numbers qπ are all equal

for every π ∈ Epi(B,A) occurring infinitely often in ω. If this is not the case, we may use

Corollary 7.2 in [39] to obtain that sp(MT
ξ ) is a Cantor set of Lebesgue measure zero.

Suppose now that qπ are all equal for every π ∈ Epi(B,A) occurring infinitely often in

ω, so the probabilities are periodic on Z, let l be that period. We may compute sp(MT
ξ ) using

Floquet-Bloch theory. To do so, we first compute the spectrum of a fundamental domain,

parametrized by k ∈ [−π, π], with some boundary conditions. This gives a set of eigenvalues

{x1(k), . . . , xl(k)}, which are the roots of a polynomial of degree l. These polynomials

only depend on cos(k). Now sp(MT
ξ ) is just the union of these sets of eigenvalues for all

k ∈ [−π, π]. Since the roots will vary continuously as cos(k) ∈ [−1, 1], this union will be a

union of at least one and at most l intervals.

This result provides, for any generating set T ⊂ S, a characterization of the type

of spectrum on the Schreier graphs in terms of the numbers qπ. We already know from

Theorem 4.1.10 that the second option in Proposition 4.4.1 is realized when T = S, the spinal

generating set. The following result states that, except one degenerate example corresponding

to Gω = D∞ (d = 2, m = 1), every spinal group on the binary tree has a generating set

which gives a Cantor spectrum.

Corollary 4.4.2. For every spinal group Gω with d = 2, m ≥ 2 and ω ∈ Ωd,m there exists a

minimal generating set T ⊂ S for which sp(MT
ξ ) is a Cantor set of Lebesgue measure zero.

Proof. Let π, π′ ∈ Epi(B,A) be two different epimorphisms occurring infinitely often in

ω. Recall that B is a vector space over Z/2Z, and let K = Ker(π) and K ′ = Ker(π′). We

know that [B : K] = [B : K ′] = 2, and [K : K ∩K ′] = 2 because π′ surjects K onto A

with kernel K ∩K ′, since K 6= K ′. Hence, we have [B : K ∩K ′] = 4. In particular, we

can choose m − 2 elements x1, . . . , xm−2 ∈ K ∩K ′ which generate K ∩K ′. Moreover,

we can choose elements y ∈ K \K ′ and y′ ∈ K ′ \K to complete the generating set to one

of K or K ′, respectively, and such that {x1, . . . , xm−2, y, y
′} generate B.

If we now define T = {a, x1, x2, . . . , xm−2, y, yy
′} ⊂ S, it is clear that it is a minimal

generating set forGω, since |T | = m+1. Moreover, we have qπ = |T∩B\K| = |{yy′}| = 1

and qπ′ = |T ∩B \K ′| = |{y, yy′}| = 2. By Proposition 4.4.1, sp(MT
ξ ) is a Cantor set of

Lebesgue measure zero.

We can also find a condition on the generating set T ⊂ S under which the spectrum on

the Schreier graphs is one interval, for certain spinal groups Gω.

Proposition 4.4.3. Let Gω be a spinal group with d = 2, m ≥ 2 and ω ∈ Ω2,m, with

generating set T ⊂ S. If qωi = 1 for every i ≥ 0, then sp(MT
ξ ) is the interval [1− 4

|T | , 1].
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4. SPECTRA ON SCHREIER AND CAYLEY GRAPHS

Proof. In the proof of Proposition 4.4.1, we established that the simple random walk on ΓTξ
is given by a weighted random walk on Z. Since qωi = 1 for every i ≥ 0, the probabilities

are reduced to:

• Probability 1
|T | of transitioning between any vertex v ∈ Z and v + 1.

• Probability 1− 2
|T | of staying at any vertex v ∈ Z.

The fact that the probabilities are periodic allows us to use Floquet-Bloch theory in order to

find sp(MT
ξ ), and since the period is 1, the computation is rather simple. The only eigenvalue

of a fundamental domain, parametrized by k ∈ [−π, π], is the solution of the equation

0 = 1− 2

|T |
+

1

|T |
eik+

1

|T |
e−ik−x = 1− 2

|T |
+

2

|T |
cos(k)−x =⇒ x = 1− 2

|T |
+

2

|T |
cos(k).

Finally,

sp(MT
ξ ) =

⋃
k∈[−π,π]

sp(MT
ξ (k)) =

⋃
k∈[−π,π]

{
1− 2

|T |
+

2

|T |
cos(k)

}
=

[
1− 4

|T |
, 1

]
.

Recall that self-similar groups within the family of spinal groups were studied by

Šunić [65]. For every d and m, there are finitely many of them, and they can be specified in

terms of an epimorphism α ∈ Epi(B,A) and an automorphism ρ ∈ Aut(B). The groups in

Šunić’s family are then the spinal groups defined by the periodic sequence ω = (ωn)n given

by ωn = α ◦ ρn. Moreover, it was shown that any of these groups admits a natural minimal

Šunić generating set T = {a, b1, . . . , bm}, contained in the spinal generating set S, such that

a = (1, 1)σ b1 = (1, b2) b2 = (1, b3) . . . bm−1 = (1, bm) bm = (a, b′),

for some b′ ∈ B. Notice that, for i = 1, . . . ,m − 1, α(bi) = 1 and ρ(bi) = bi+1, while

α(bm) = a and ρ(bm) = b′. The choice of this b′ ∈ B in such a way that ρ is an

automorphism determines the group. It was also shown in [65] that a Šunić group is infinite

torsion if and only if all ρ-orbits intersect Ker(α).

Example 4.4.4. Grigorchuk’s group is the group G in Šunić’s family with d = 2, m = 2,

A = {1, a}, B = {1, b1, b2, b1b2} and ρ(b2) = b1b2. With the standard notation b, c, d

for the generators, we have b1 = d, b2 = b and b1b2 = c. The only nontrivial ρ-orbit

is b1 7→ b2 7→ b1b2 7→ b1, which intersects Ker(α) at b1, hence the group is infinite

torsion. The minimal Šunić generating set is T = {a, b1, b2} and the spinal generating set is

S = {a, b1, b2, b1b2}, with

a = τ(1, 1) b1 = (1, b2) b2 = (a, b1b2) b1b2 = (a, b1),
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where τ is the nontrivial element of Sym(X). By Theorem 4.3.2, we have

sp(Mξ) = sp(MG) =

[
−1

2
, 0

]
∪
[

1

2
, 1

]
.

We may consider any of the minimal generating sets Tb1 = {a, b2, b1b2}, Tb2 = {a, b1, b1b2}
or T = {a, b1, b2}. In that case, thanks to Proposition 4.4.1, any of sp(M

Tb1
ξ ), sp(M

Tb2
ξ )

and sp(MT
ξ ) is a Cantor set, for any ξ ∈ XN. It would be interesting to know, for any of

these minimal generating sets, what is the spectrum on the Cayley graph. So far, we only

know it must contain this Cantor set.

Example 4.4.5. One natural choice in the construction of Šunić groups above is to take

d = 2 and ρ such that b′ = b1. This gives one group for each m ≥ 2, which we call Gm. We

have

a = τ(1, 1) b1 = (1, b2) b2 = (1, b3) . . . bm−1 = (1, bm) bm = (a, b1),

again for τ being the nontrivial element of Sym(X). The element ab1 . . . bm is of infinite

order. We consider two generating sets: the spinal generating set S = (A∪B) \ {1}, of size

2m, and the Šunić minimal generating set T = {a, b1, . . . , bm}, of size m+ 1. On the one

hand, Theorem 4.3.2 yields that, for any ξ ∈ XN,

sp(Mξ) = sp(MGm) =

[
− 1

2m−1
, 0

]
∪
[
1− 1

2m−1
, 1

]
.

On the other hand,

sp(MT
ξ ) =

[
m− 3

m+ 1
, 1

]
.

Indeed, for any two-ended ΓTξ , the simple random walk translates into the weighted random

walk on Z with probability 1
m+1 of moving to a neighbor and probability m−1

m+1 of staying on

any vertex. By taking a one-vertex fundamental domain parametrized by k ∈ [−π, π] and

using Floquet-Bloch theory, we have:

0 =
m− 1

m+ 1
+

1

m+ 1
(eik + e−ik)− x =⇒ x =

1

m+ 1
(m− 1 + 2 cos(k))

sp
(
MT
ξ

)
=

⋃
k∈[−π,π]

sp
(
MT
ξ (k)

)
=

⋃
k∈[−π,π]

{
1

m+ 1
(m− 1 + 2 cos(k))

}
=

[
m− 3

m+ 1
, 1

]
.

Proposition 4.4.6. Let G be a Šunić group with d = 2 and m ≥ 2, with minimal Šunić

generating set T . Then the spectrum on the Schreier graph with respect to T is
[
m−3
m+1 , 1

]
if

G = Gm or a Cantor set of zero Lebesgue measure otherwise.
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Proof. We found above the spectrum on the Schreier graphs for the groups Gm. Suppose

now that sp(MT
ξ ) is a union of intervals. By Proposition 4.4.1, we have that the numbers qπ

are all equal over π ∈ Epi(B,A) occurring infinitely often in ω. By definition of the minimal

Šunić generating set T , we know that qω0 = m− 1, so, as ω is periodic, qωn = m− 1 for

every n ≥ 0.

Now, for any k = 0, . . . ,m−1, we know that ωk(bm−k) = ω0ρ
k(bm−k) = ω0(bm) = a,

so bm−k 6∈ Ker(ωk). As qωk = m−1, the only possibility is that, for every j = 0, . . . ,m−1,

bj ∈ Ker(ωk) if and only if j 6= k. In particular, this implies that bm = (a, b1), so that we

are in fact in the case of the group Gm.

We also have

Lemma 4.4.7. The Cayley graph of Gm with generating set T is bipartite, for any m ≥ 2.

Proof. We only have to show that all relations in the group Gm have even length. Let w be a

freely reduced word on T , and let |w| represent its length and |w|t the number of times the

generator t ∈ T occurs in w.

Suppose that w represents the identity element of Gm. In that case, |w|a must be even,

or otherwise its action on the first level would be nontrivial. This allows us to write the word

w as a product of bi and bai . Let w0 and w1 be the two projections of the word w into the first

level, before reduction. Let us look at the decomposition of a generator t ∈ T . If t = a, then

it decomposes as 1 on both subtrees. If t = bi, then it decomposes as bi+1 on the right and as

1 on the left, or as a if i = m. Notice that the decomposition of bai is that of bi exchanging

the two projections.

It is clear that both w0 and w1 represent the identity, too. Hence, |w0|a and |w1|a must

both be even as well. But |w0|a + |w1|a = |w|bm , so |w|bm must also be even.

By iterating this argument we can conclude that |w| must be even. In general, let wu be

the projection of w onto the vertex u in Xk, the k-th level of the tree, for 1 ≥ k ≥ m. For

any u ∈ Xk, wu must represent the identity, and hence |wu|a must be even. But tracing back

the a’s occurring in wu we obtain∑
u∈Lk

|wu|a =
∑

u∈Lk−1

|wu|bm = · · · =
∑
u∈L1

|wu|bm−k+2
= |w|bm−k+1

.

This shows that |w|t is even, for every t ∈ T , which implies that |w| is indeed even and

hence that the Cayley graph with the generating set T is bipartite.

The spectrum of a bipartite graph is symmetric about 0. At the same time, for amenable

groups, the spectrum on any Schreier graph is contained in the spectrum on the Cayley graph.

Hence we have,

sp(MT
Gm) ⊃ − sp(MT

ξ ) ∪ sp(MT
ξ ) =

[
−1,

3−m
m+ 1

]
∪
[
m− 3

m+ 1
, 1

]
.
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Two cases are of special interest: m = 2 and m = 3. In these cases, the union of the

two intervals above is the whole interval [−1, 1] and we can thus conclude that the spectrum

of the Cayley graphs of G2 and G3 with respect to the minimal Šunić generating set is the

whole interval [−1, 1]. For m ≥ 4, the union of intervals is actually disjoint, so we can only

conclude that the spectrum of the Cayley graph contains two intervals [−1,−β] and [β, 1],

with β > 0.

Note that the group G2 was studied in [27] and is therefore sometimes called the

Grigorchuk-Erschler group. It is the only self-similar group in the Grigorchuk family (spinal

groups with d = 2 and m = 2) besides Grigorchuk’s group. The group G3 is known as

Grigorchuk’s overgroup [4] because it contains Grigorchuk’s group as a subgroup. Indeed,

the automorphisms b2b3, b1b3, b1b2 are the generators b, c, d of Grigorchuk’s group.

Corollary 4.4.8. For the Grigorchuk-Erschler group G2 and Grigorchuk’s overgroup G3

the spectrum of the Cayley graph is a union of two disjoint intervals with respect to the spinal

generating set and the interval [−1, 1] with respect to the minimal Šunić generating set.

The groups Gm with respect to the minimal Šunić generating set T satisfy the first

condition in Proposition 4.4.1. In particular, for every n ≥ 0, the numbers qωn are all equal

to m− 1, hence the spectrum on the Schreier graphs is a union of intervals, as we computed

above. Nevertheless, they are the only Šunić groups to satisfy this condition for T , as shown

in Proposition 4.4.6.

Example 4.4.9. Another non-torsion example in Šunić’s family of self-similar groups is the

group G given by d = 2, m = 3 and ρ such that ρ(b3) = b1b2b3. We have

a = (1, 1)σ b1 = (1, b2) b2 = (1, b3) b3 = (a, b1b2b3).

Indeed, the element b1b3 decomposes as (a, b1b3), so it constitutes a ρ-orbit which does not

intersect Ker(α). Hence, the element ab1b3 is of infinite order. This group contains the

subgroup 〈a, b2b3, b1b2, b1b3〉, which is isomorphic to the Grigorchuk-Erschler group. For

the spinal generating set S, we have

sp(Mξ) = sp(MG) =

[
−1

4
, 0

]
∪
[

3

4
, 1

]
.

Its minimal Šunić generating set is {a, b1, b2, b3}. As G is not Gm, by Proposition 4.4.6 we

can conclude that sp(MT
ξ ) is a Cantor set of zero Lebesgue measure. More precisely, the

sequence ω is 4-periodic and we have qω0 = qω3 = 2 while qω1 = qω2 = 1.
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Chapter 5

Spectral measures

This chapter extends the study of the spectral properties of adjacency operators on Schreier

graphs of spinal groups by computing their spectral measures. The spectrum of the adjacency

operator ∆ξ on the Schreier graph Γξ associated with a point ξ ∈ XN is a subset of R.

Spectral measures are measures with support in the spectrum, and provide more information

than just the spectrum as a set. For instance, a function in `2ξ = `2(Γξ) projects trivially onto

a given eigenspace of eigenvalue x if and only if its associated spectral measure vanishes for

the set {x}.
The chapter is divided in four sections. We first compute the so-called empirical spectral

measure, a measure which only depends on the finite Schreier graphs Γn and represents an

averaging of all spectral measures. Then we exhibit three different types of spectral measures

that may occur for infinite Schreier graphs of spinal groups. For spinal groups with d = 2,

we show that all spectral measures on the graphs Γξ are absolutely continuous with respect

to the Lebesgue measure and give their density explicitly. For spinal groups with d ≥ 3,

we construct a complete basis of eigenfunctions for `2ξ = `2(Γξ) for all ξ in a subset of XN

of uniform Bernoulli measure one, which implies that all spectral measures on the graphs

Γξ of these groups are discrete. Finally, we consider the Schreier graphs Γπ that occur

as accumulation points of graphs {(Γξ, ξ)}ξ in the space of Schreier graphs GGω ,XN (see

Theorem 3.7.3). We decompose the space `2π = `2(Γπ) as the direct sum of two nontrivial

subspaces, whose functions have associated spectral measures which are singular continuous

and discrete, respectively, thus providing new examples of Schreier graphs with nontrivial

singular continuous component in the spectral measures.

5.1 Empirical spectral measure

In the proof of Theorem 4.1.7 we actually found the explicit multiplicities of the eigenvalues

of ∆n. These multiplicities allow us to compute the so-called empirical spectral measure (or
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density of states) of the graphs {Γn}n.

Definition 5.1.1. Let {Yn}n be a sequence of finite graphs, and, for every n ≥ 0 let ∆n be

the adjacency operator on Yn and νn be the counting measure on sp(∆n). Namely,

νn =
1

|Yn|
∑

x∈sp(∆n)

δx,

where δx takes value 1 at x and vanishes anywhere else, and the eigenvalues are counted

with multiplicity. Following [46], if the measures νn weakly converge to a measure ν, we

call ν the empirical spectral measure or density of states of {Yn}n.

Theorem 5.1.2. Let Gω be a spinal group with d ≥ 2, m ≥ 1 and ω ∈ Ωd,m. Let ν be the

empirical spectral measure of {Γn}n. If d = 2, ν is absolutely continuous with respect to

the Lebesgue measure. Its density is given by the function

g(x) =
|x− 2m−1 + 1|

π
√
x(x+ 2)(2m − x)(x− 2m + 2)

. (5.1)

If d ≥ 3, then ν is discrete. More precisely,

ν =
d− 2

d
δ|S|−d +

∑
n≥0

d− 2

dn+2

∑
x∈ψ−1(F−n(0))

δx.

Proof. Let νn be the counting measure on the spectrum of ∆n, i.e.

νn =
1

dn

∑
x∈sp(∆n)

δx.

From the multiplicities computed in the proof of Theorem 4.1.7, we have that ν0 = δ|S|,
ν2 = 1

d(δ|S| + (d− 1)δ|S|−d) and, for n ≥ 2,

νn =
1

dn

δ|S| + ((d− 2)dn−1 + 1
)
δ|S|−d +

n−2∑
k=0

(
(d− 2)dn−k−2 + 1

) ∑
x∈ψ−1(F−k(0))

δx

 .

For d ≥ 3, we observe, taking the limit as n→∞, the measure

ν =
d− 2

d
δ|S|−d +

∑
n≥0

d− 2

dn+2

∑
x∈ψ−1(F−n(0))

δx.

as in the statement.

For d = 2, all the multiplicities of the eigenvalues in the finite graphs are 1, or equiva-

lently, every eigenvalue of ∆n has the same mass, 1
dn . When taking the limit, the measure of

each atom tends to zero and the set of eigenvalues becomes dense in either one (m = 1) or

two (m ≥ 2) intervals. Therefore, any set of positive empirical spectral measure is the union
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−4 −2 0 2 4

−4 −2 0 2 4

Figure 5.1: Density functions of the empirical spectral measure ν for Grigorchuk’s group
(d = 2,m = 2, above) and the Fabrykowski-Gupta group (d = 3,m = 1, below).

of cones of the set of preimages of F (x) = x2 − d(d − 1) plus their closure, which has

positive Lebesgue measure. Hence, ν is absolutely continuous with respect to the Lebesgue

measure. We can find its precise density if we notice the following, for d = 2 and n ≥ 1:

sp(∆n) =

{
2m − 2

2
+ ε
√

4m−1 + 1 + 2m cos θ
∣∣ ε ∈ {±1}, θ ∈ 2πZ

2n

}
\ {0,−2}.

Indeed, from the proof of Theorem 4.1.7 we recover the two branches of the inverse of

ψ:

ψ−1
ε (x) =

2m − 2

2
+ ε
√

4m−1 + 1 + 2m−1x.

Any x ∈ F−k(0) can be written as x = ±
√

2 + y, with y ∈ F−(k−1)(0). We can hence

complete the proof of the equality above by induction, using the trigonometric identity

2 cos
(
θ
2

)
= ±

√
2 + 2 cos(θ). This allows us to find an injective, measure-preserving map

χ : [0, π]× {0, 1} → R, defined by

χ(θ, ε) =
2m − 2

2
+ ε
√

4m−1 + 1 + 2m cos θ,

with the spectrum uniformly distributed with respect to the Lebesgue measure λ on [0, π]×
{0, 1}. The empirical spectral measure of any subset E ⊂ R is then given by ν(E) =
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λ(χ−1(E)). The density g(x) of ν is thus given by

g(x) =
1

2π

d

dx
χ−1(x),

which coincides with the expression in the statement.

5.2 Absolutely continuous spectral measures

This section is devoted to the computation of the spectral measures of the adjacency operator

∆ξ on Schreier graphs Γξ of spinal groups with d = 2, for ξ ∈ XN. Our goal is to prove that

the Kesten spectral measure µξ coincides with the empirical spectral measure ν, for every

ξ ∈ XN \ Cof(1N), whose density is given in Theorem 5.1.2 and displayed in Figure 5.1.

Additionally, we compute the density of the Kesten spectral measure µ1N .

Theorem 5.2.1. Let Gω be a spinal group with d = 2, m ≥ 1 and ω ∈ Ω2,m. Let ∆ξ be the

adjacency operator on the Schreier graph Γξ, for ξ ∈ XN. The Kesten spectral measure µξ
is absolutely continuous with respect to the Lebesgue measure. If ξ ∈ XN \ Cof(1N), then

µξ coincides with the empirical spectral measure ν (see Theorem 5.1.2).

Proof. First recall that for any ξ ∈ XN \ Cof(1N) the graph Γξ is a two-ended line, and

does not depend on ξ up to the edge labels (see Proposition 3.5.1). More precisely, every

vertex has 2m−1 − 1 loops, 2m − 2m−1 edges to one neighbor and one edge to the other

neighbor. The simple random walk on such graphs is described by the Markov chain on Z
with probability 1

2 −
1

2m of staying at any vertex, and alternating probabilities 1
2 and 1

2m on

the other edges. This implies that the Kesten spectral measures µξ do not depend on this

point ξ, except for ξ in the orbit of 1N.

The empirical spectral measure ν is the integral of the Kesten measures µξ over all XN

(see Theorem 10.8 in [35]), but we just showed that they are all equal in a subset of XN of

measure one. Hence, we necessarily have µξ = ν for every ξ in that subset.

Let us now compute the explicit density of the spectral measure µ1N to illustrate the

difference with the typical case.

Theorem 5.2.2. Let Gω be a spinal group with d = 2, m ≥ 1 and ω ∈ Ω2,m. Let ∆ξ be the

adjacency operator on the Schreier graph Γξ , for ξ ∈ XN. The Kesten spectral measure µ1N

has density

h(x) =
|x(x+ 2)|

2mπ
√
x(x+ 2)(2m − x)(x− 2m + 2)

. (5.2)

Proof. We compute the density h(x) of µ1N with an approach similar to that in [36]. It

uses the fact that the Stieltjes transform of the density of a spectral measure of the Markov

operator on a graph coincides with its moment-generating function.
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We know that the Schreier graph Γ1N is one-ended, with the following adjacency matrix:

T =



2m − 1 1

1 2m−1 − 1 2m−1

2m−1 2m−1 − 1 1

1 2m−1 − 1
. . .

. . . . . .


.

Let Γ0
1N

be the graph Γ1N after removing 2m−1 − 1 loops at every vertex. Its adjacency

matrix is then

T 0 =



2m−1 1

1 0 2m−1

2m−1 0 1

1 0
. . .

. . . . . .


,

and it represents the matrix of the operator ∆1N − (2m−1 − 1). By Theorem 4.1.10, its

spectrum is I ∪ J , with I = [−2m−1 − 1,−2m−1 + 1] and J = [2m−1 − 1, 2m−1 + 1].

Notice that the simple random walk on Γ0
1N

is given by the Markov chain on Z with

2-periodic probabilities 1
2m−1+1

and 2m−1

2m−1+1
. Let ϕ(t) =

∑
n≥0 P

n
1N,1N

tn be the Green

function of the random walk, with the coefficients being the probabilities of return to 1N

after n steps. We can define the moment-generating function of T 0

M(z) =
1

z

∑
n≥0

mn

zn

where mn is top left coefficient of the matrix (T 0)n. Our goal is to prove that this moment-

generating function M(z) is the Stieltjes transform of the following density

h̃(x) =
1

2mπ

√
(x+ 2m−1 − 1)(x+ 2m−1 + 1)

(x− 2m−1 + 1)(2m−1 + 1− x)
.

This will show that the density of the spectral measure for the operator ∆1N − (2m−1 − 1) is

h̃, which will conclude the proof, provided that h(x) = h̃(x− (2m−1 − 1)), and so h will

be the density of the spectral measure µ1N for the operator ∆1N .

There is a correspondence between the moment-generating functions of Jacobi matrices
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and continued fractions (see [1], for instance). In the case of T 0, we have

M(z) =
1

z − 2m−1 −
1

z −
4m−1

z −
1

z − . . .

.

If we write

ρ =
1

z −
4m−1

z −
1

z − . . .

,

then the relation ρ =
1

z −
4m−1

z − ρ

is satisfied. Therefore ρ is a root of the quadratic equation

zρ2 + (4m−1 − 1− z2)ρ+ z = 0.

With the appropriate choice of the branch of the square root, we find

ρ =
z2 + 1− 4m−1 −

√
(z − 2m−1 − 1)(z − 2m−1 + 1)(z + 2m−1 − 1)(z + 2m−1 + 1)

2z
,

and so

M(z) =
1

z − 2m−1 − ρ
=

=
2z

z2 − 2mz + 4m−1 − 1 +
√

(z − 2m−1 − 1)(z − 2m−1 + 1)(z + 2m−1 − 1)(z + 2m−1 + 1)
=

= − 1

2m

(
1−

√
(z + 2m−1 − 1)(z + 2m−1 + 1)

(z − 2m−1 + 1)(z − 2m−1 + 1)

)
.

With the expression of the moment-generating function M(z), we just need to find the

Stieltjes transform for the density h̃(x).

The Stieltjes transform of a measure µ on R is defined as

Sµ(z) =

∫
R

dµ(x)

z − x
.

So the Stieltjes transform of the measure with density h̃(x) is

S(z) =
1

2mπ

∫
R

1

z − x

√
(x+ 2m−1 − 1)(x+ 2m−1 + 1)

(x− 2m−1 + 1)(2m−1 + 1− x)
dx =
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=
1

2mπ

∫
I∪J

1

z − x

√
(x+ 2m−1 − 1)(x+ 2m−1 + 1)

(x− 2m−1 + 1)(2m−1 + 1− x)
dx.

In order to solve this integral, let z ∈ C \ (I ∪ J), and let γI and γJ be closed curves in

C around I and J respectively so that z lies in their exterior. Let γ = γI ∪ γJ . Consider now

k(w) =
1

z − w

√
(w + 2m−1 − 1)(w + 2m−1 + 1)

(w − 2m−1 + 1)(w − 2m−1 − 1)
,

and let us first solve the integral I(z) =
∫
γ k(w)dw.

Let Cε be the circle of center z and radius ε. Choose ε small enough so that it does not

intersect γ. Finally, let CR be a circle big enough so that both Cε and γ lie entirely on the

inside. We have I(z) =
∫
CR

k(w)dw−
∫
Cε
k(w)dw. We will find an expression for I(z) by

computing the residues of k at w =∞ and w = z. On the one hand,∫
CR

k(w)dw = −
∫
C1/R

k(1/u)
du

u2
=

= −
∫
C1/R

1

z − 1/u

√
(1/u+ 2m−1 − 1)(1/u+ 2m−1 + 1)

(1/u− 2m−1 + 1)(1/u− 2m−1 − 1)

du

u2
=

= −
∫
C1/R

1

u(uz − 1)

√
(1 + (2m−1 − 1)u)(1 + (2m−1 + 1)u)

(1− (2m−1 − 1)u)(1− (2m−1 + 1)u)
du =

= lim
u→0

−2πi

uz − 1

√
(1 + (2m−1 − 1)u)(1 + (2m−1 + 1)u)

(1− (2m−1 − 1)u)(1− (2m−1 + 1)u)
= 2πi.

On the other hand,∫
Cε

k(w)dw = lim
w→z

2πi

√
(w + 2m−1 − 1)(w + 2m−1 + 1)

(w − 2m−1 + 1)(w − 2m−1 − 1)
=

= 2πi

√
(z + 2m−1 − 1)(z + 2m−1 + 1)

(z − 2m−1 + 1)(z − 2m−1 − 1)
.

Therefore,

I(z) = 2πi

(
1−

√
(z + 2m−1 − 1)(z + 2m−1 + 1)

(z − 2m−1 + 1)(z − 2m−1 − 1)

)
= −2m+1πiM(z).

Taking the limit as ε tends to zero, we have

lim
ε→0

I(z) = 2

∫
I∪J

1

z − x

√
(x+ 2m−1 − 1)(x+ 2m−1 + 1)

(x− 2m−1 + 1)(x− 2m−1 − 1)
dx =

= −2i

∫
I∪J

1

z − x

√
(x+ 2m−1 − 1)(x+ 2m−1 + 1)

(x− 2m−1 + 1)(2m−1 + 1− x)
dx = −2m+1πiS(z).

Finally, putting together both equalities, we have S(z) = M(z).
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−4 −2 0 2 4

Figure 5.2: Densities of the Kesten spectral measures µξ for Grigorchuk’s group (d = 2 and
m = 2). In blue, the symmetric density corresponds to any point ξ ∈ XN \ Cof(1N), whose
Schreier graphs are two-ended lines. In orange, the asymmetric density corresponds to the
point 1N, whose Schreier graph is a one-ended line.

Recall that there are uncountably many spinal groups with d = 2 and a given m, which

are isospectral in virtue of Theorem 4.1.10. Moreover, for those groups, Theorem 5.2.1

concludes that, for a subset of boundary points of measure one, the Kesten spectral measures

µξ on the Schreier graphs Γξ coincide. It would be very interesting to determine the Kesten

spectral measures of the adjacency operator on the Cayley graphs of these groups.

5.3 Discrete spectral measures

In this section, we consider the spectral measures of the adjacency operator ∆ξ on the

Schreier graphs Γξ of spinal groups with d ≥ 3. Our goal is to prove that all of them are

discrete, for every ξ in an explicit subset of XN of uniform Bernoulli measure one. We prove

this by explicitly constructing a complete basis of eigenfunctions of `2ξ , all of which have

finite support. To do so, we first find the eigenfunctions of the adjacency operators ∆n on

the finite Schreier graphs Γn, for n ≥ 0, in Proposition 5.3.3 and Corollary 5.3.4. Next, we

translate them to the infinite graphs Γξ, in Theorem 5.3.5. Finally, we conclude by showing

in Theorem 5.3.9 that these eigenfunctions form a complete system for all ξ in an explicit

subset of XN of uniform Bernoulli measure one. This implies in Corollary 5.3.10 that the

spectrum of ∆ξ is pure point in that case.

5.3.1 Eigenfunctions of ∆n

Let us start by computing the eigenfunctions of ∆n, for n ≥ 0. Since sp(∆n) ⊂ sp(∆n+1)

for every n ≥ 0, for every eigenvalue x of ∆n there exists N ≥ 1 such that x ∈ sp(∆N ) \
sp(∆N−1). We will first construct a basis of the x-eigenspace of ∆N , and use it to construct
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a basis of the x-eigenspace of ∆n, for every n ≥ N . Let us write `2n = `2(Γn) and

`2ξ = `2(Γξ).

We define a notion of antisymmetry on the graphs Γn, which we will exploit to find the

eigenfunctions. Let τi = (i, i+1) ∈ Sym(X), for i ∈ {0, . . . , d−2}, and let Φi
n : Γn → Γn

be the automorphisms of Γn defined by

Φi
n(v0 . . . vn−1) = v0 . . . vn−2τi(vn−1),

for every v = v0 . . . vn−1 ∈ Xn. Recall that the graph Γn can be decomposed as d copies

of Γn−1 each of which is connected to the others only through one vertex. Intuitively, Φi
n

exchanges the i-th and (i + 1)-th copies of Γn−1 in this decomposition. We will say that

f ∈ `2n is antisymmetric with respect to Φi
n if f = −f ◦Φi

n. In particular, this implies that f

is supported only on the i-th and (i+ 1)-th copies of Γn−1 in Γn.

Proposition 5.3.1. Let N ≥ 1 and x ∈ sp(∆N ) \ sp(∆N−1). There is a basis Fx,N =

{f0, . . . , fd−2} of the x-eigenspace of ∆N , such that fi is antisymmetric with respect to Φi
n,

for every i ∈ {0, . . . , d− 2}. In particular, each fi is supported in XN−1i tXN−1(i+ 1).

Proof. We know that the multiplicity of x in sp(MN ) is exactly d− 1, as we computed in

the proof of Theorem 4.1.10. Due to the symmetry of ΓN , given a x-eigenfuction f ∈ `2n, we

know that fi := f−f ◦Φi
n is antisymmetric with respect to Φi

n and is still an x-eigenfunction,

for any i ∈ {0, . . . , d−2}. Furthermore, the fact that these functions are linearly independent

becomes clear upon examination of their supports.

Now, using the notation from Proposition 5.3.1, we partition the basis Fx,N into the

following three parts:

FAx,N := {fd−2}, FBx,N := {f0}, FCx,N := Fx,N \ {f0, fd−2}.

We would like to translate these eigenfunctions from ΓN to Γn, for any n ≥ N . Recall that

the graph Γn+1 consists of d copies of Γn joined together by a central piece. We will take

advantage of this decomposition. Let n ≥ 1 and i ∈ X . We define the following linear

operators (see Figure 5.4):

ρin : `2n → `2n+1, ρinf(vj) = f(v)δi,j ,

where δi,j is 1 if i = j or 0 otherwise. We set ρn =
∑

i∈X ρ
i
n.

Now, in order to get the eigenfunctions of ∆n+1 from those of ∆n, we apply these

transition functions ρin in the following way, for any n ≥ N ,

FAx,n+1 := ρd−1
n (FAx,n), FBx,n+1 := ρ0

n(FAx,n),
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Figure 5.3: Eigenfunctions of eigenvalues x = 1 and x = 1±
√

6 on the graphs Γ1 and Γ2

for the Fabrykowski-Gupta group (d = 3, m = 1).

FCx,n+1 :=
⊔

i 6=0,d−1

ρin(FAx,n) t ρn(FBx,n) t
⊔
i∈X

ρin(FCx,n).

Finally, we set Fx,n := FAx,n t FBx,n t FCx,n.

Remark 5.3.2. One can look at the supports of the functions in FAx,n, FBx,n and FCx,n to

verify that these three sets are disjoint for every n ≥ N . Moreover, the following statements

can be inductively proven, for every n ≥ N :

|FAx,n| = |FBx,n| = 1,

|FCx,n| = (d− 2)dn−N − 1,

|Fx,n| = (d− 2)dn−N + 1,

Furthermore, notice that, by construction, the following statements hold, for every n ≥ N :

∀f ∈ Fx,n \ FAx,n, f((d− 1)n) = 0,

∀f ∈ Fx,n \ FBx,n, f((d− 1)n−10) = 0.

Proposition 5.3.3. Let N ≥ 1 and x ∈ sp(∆N ) \ sp(∆N−1). Then Fx,n is a basis of the

x-eigenspace of ∆n, for every n ≥ N .
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fΓn 7−→
ρin

f

0

0

Γn+1

fΓn 7−→
ρn

f

f

f

Γn+1

Figure 5.4: Transition operators ρin and ρn. The former copies f on the i-th copy of Γn in
Γn+1 and vanishes elsewhere; the latter copies f on all the copies of Γn.

Proof. Let us proceed by induction on n, with the base case n = N covered in Proposi-

tion 5.3.1.

Let f ∈ Fx,n be an x-eigenfunction of ∆n. and let v ∈ Xn, j ∈ X and s ∈ S. On the

one hand we have

ρin∆nf(vj) = ∆nf(v)δi,j =
∑
s∈S

f(s(v))δi,j .

On the other hand, if v 6= (d− 1)n−10, we have s(vj) = s(v)j. In that case,

∆n+1ρ
i
nf(vj) =

∑
s∈S

ρinf(s(vj)) =
∑
s∈S

ρinf(s(v)j) =
∑
s∈S

f(s(v))δi,j .

So we have ∆n+1ρ
i
nf(vj) = ρin∆nf(vj) = xρinf(vj) if v 6= (d − 1)n−10. For v =

(d− 1)n−10, we need to further decompose the sums. Since v is fixed by all b ∈ B,

ρin∆nf(vj) = ∆nf(v)δi,j =

=
d−1∑
k=1

f(ak(v))δi,j +
∑

16=b∈B
f(b(v))δi,j =
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Figure 5.5: Eigenfunctions of eigenvalue x = 1 on the graph Γ2 transferred from Γ1 via the
operators ρi1 and ρ1 for the Fabrykowski-Gupta group (d = 3, m = 1).

=

d−1∑
k=1

f(ak(v))δi,j +
∑

1 6=b∈B
f(v)δi,j ,

and

∆n+1ρ
i
nf(vj) =

=

d−1∑
k=1

ρinf(ak(vj)) +
∑

16=b∈B
ρinf(b(vj)) =

=

d−1∑
k=1

ρinf(ak(v)j) +
∑

16=b∈B
ρinf(vωn−1(b)(j)) =

=

d−1∑
k=1

f(ak(v))δi,j +
∑

16=b∈B
f(v)δi,ωn−1(b)(j).

By substracting both expressions, we get

(∆n+1 − x)ρinf(vj) =
∑

16=b∈B
f(v)(δi,ωn−1(b)(j) − δi,j).

We observe now, by Remark 5.3.2, that if f ∈ Fx,n \ FBx,n, by construction, we have

f(v) = 0, and so ρinf is an x-eigenfunction of ∆n+1. Else, if f ∈ FBx,n, we add the equations
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5.3. Discrete spectral measures

for all i ∈ X:

(∆n+1 − x)ρnf(vj) =
∑

16=b∈B
f(v)

∑
i∈X

(δi,ωn−1(b)(j) − δi,j) = 0.

In this case, ρnf is an eigenfunction of ∆n+1.

To conclude, we can inductively verify that the functions in Fx,n+1 are linearly inde-

pendent by looking at the supports of the images of the functions from Fx,n by ρin and ρn.

Finally, we already know that |Fx,n+1| = (d− 2)dn+1−N + 1, which equals the multiplicity

of x for ∆n+1, and so the dimension of the x-eigenspace of ∆n+1.

In Proposition 5.3.3, we have constructed a basis of the x-eigenspace of ∆n, for every

n ≥ N . We can obtain a basis of `2n of eigenfunctions of ∆n if we take the union of the

bases of each of the x-eigenspaces for every x ∈ sp(∆n). For convenience, let us set F1,n to

be the singleton containing the constant function equal to one in `2n, for n ≥ 0.

Corollary 5.3.4. The set ⊔
x∈sp(∆n)

Fx,n

is a basis of `2n that consists of eigenfunctions of ∆n.

5.3.2 Eigenfunctions of ∆ξ

We are now ready to describe the eigenfunctions of the adjacency operator ∆ξ on the Schreier

graph Γξ, with ξ ∈ XN. We do so by transferring the eigenfunctions on the finite graphs Γn

to Γξ via the transfer operators defined next. For n ≥ 0, we set

ρ̃n : `2n → `2ξ , ρ̃nf(η) = f(η0 . . . ηn−1)δσn(ξ),σn(η).

where again δζ,ζ′ = 1 if ζ = ζ ′ or vanishes otherwise. Intuitively, ρ̃n = · · · ◦ ρξn+1

n+1 ◦ ρ
ξn
n .

We define the following set:

Fx :=
⋃
n≥N

ρ̃n(FCx,n).

If there exists r ≥ 0 such that σr(ξ) = (d− 1)N, let it be minimal and set R = max{r,N}.
In that case, we also include the function ρ̃R(FAx,R) in the definition of Fx.

Theorem 5.3.5. Let N ≥ 1 and x ∈ sp(∆N ) \ sp(∆N−1). Then every f ∈ Fx is a

x-eigenfunction of ∆ξ, for every ξ ∈ XN.

Proof. Let n ≥ N and f ∈ FCx,n. We will show that ρ̃nf is a x-eigenfunction of Mξ. Let

η ∈ Cof(ξ) and denote by v its prefix of length n, so that η = vσn(η). Assume first that v is
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not (d− 1)n nor (d− 1)n−10. In that case, for any s ∈ S, s(η) = s(vσn(η)) = s(v)σn(η).

On the one hand,

∆ξρ̃nf(η) =
∑
s∈S

ρ̃nf(s(η)) =
∑
s∈S

ρ̃nf(s(v)σn(η)) =

=
∑
s∈S

f(s(v))δσn(ξ),σn(η).

On the other hand,

ρ̃n∆nf(η) = ∆nf(v)δσn(ξ),σn(η) =
∑
s∈S

f(s(v))δσn(ξ),σn(η).

We observe that both expressions are equal. Therefore, as f is an x-eigenfunction of ∆n,

∆ξρ̃nf(η) = ρ̃n∆nf(η) = xρ̃nf(η).

Assume now v = (d− 1)n, (d− 1)n−10. In that case, as f ∈ FCx,n, we have f(v) = 0

(see Remark 5.3.2). Then,

∆ξρ̃nf(η) =
∑
s∈S

ρ̃nf(s(η)) =
∑
s∈S

ρ̃nf(s(vσn(η))) =

=
∑
s∈S

ρ̃nf(s(v)sv(σ
n(η))) =

∑
s∈S

f(s(v))δσn(ξ),sv(σn(η)).

In addition,

ρ̃n∆nf(η) = ∆nf(v)δσn(ξ),σn(η) =
∑
s∈S

f(s(v))δσn(ξ),σn(η).

We have two cases: either s ∈ A, which means that sv is trivial, or s ∈ B, so s(v) = v

and then f(s(v)) = f(v) = 0. In any case, the two expressions above coincide. Conse-

quently, ∆ξρ̃nf(η) = ρ̃n∆nf(η) = xρ̃nf(η) as well for v = (d− 1)n, (d− 1)n−10, which

shows that f is a x-eigenfunction of ∆ξ.

The case ξ cofinal with (d − 1)N and f ∈ FAx,R is proven in a very similar way. The

only difference is that now f(v) is not necessarily zero for v = (d− 1)R. However, for any

s ∈ B, δσn(ξ),sv(σn(η)) = δs−1
v (σn(ξ)),σn(η) = δσn(ξ),σn(η), since σn(ξ) = (d − 1)N is fixed

by s−1
v . Therefore, both expressions are equal and the statement remains true for this case

too.

Remark 5.3.6. Notice that if x ∈ sp(∆N ) \ sp(∆N−1), the size of the support of any

f ∈ Fx is either 2dN−1 or 2dN .
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5.3. Discrete spectral measures

Figure 5.6: Supports of eigenfunctions of ∆ξ of eigenvalue 1 for the Fabrykowski-Gupta
group (d = 3, m = 1).

Finally, we introduce the set

F :=
⋃
N≥1

⋃
x∈sp(∆N )
x 6∈sp(∆N−1)

Fx.

We want to prove that F is a complete set of eigenfunctions of ∆ξ, i.e. that 〈F〉 = `2ξ .

To that end, we will use spaces of antisymmetric functions, as in [15]. First, let us define the

space of antisymmetric functions on Γn as

`2n,a = 〈f ∈ `2n | ∃i ∈ {1, . . . , d− 2}, f = −f ◦ Φi
n〉.

Notice that we exclude i = 0 in this definition. The reason is the fact that antisymmetric

functions with respect to Φ0
n do not vanish on the vertex (d − 1)n−10, which is the one

through which the copies of Γn in Γn+1 are connected. Eigenfunctions of ∆n not vanishing

on that vertex do not transfer directly to eigenfunctions of ∆n+1 via the operators ρin, as

manifested in Proposition 5.3.3 and the construction of Fx,n.

Lemma 5.3.7 below gives a basis for the finite-dimensional antisymmetric subspaces

`2n,a. We will later define `2ξ,a as an extension of the antisymmetric subspaces `2n,a to the

infinite graph Γξ, and prove in Lemma 5.3.8 that `2ξ,a is actually contained in 〈F〉. Finally,

we will use this result to show in Theorem 5.3.9 that F is a complete set of eigenfunctions of

∆ξ.
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Figure 5.7: Supports of eigenfunctions of ∆ξ of eigenvalue 1 ±
√

6 for the Fabrykowski-
Gupta group (d = 3, m = 1).

Lemma 5.3.7. For every n ≥ 1, `2n,a admits the basis

n−1⊔
N=1

⊔
x∈sp(∆N )
x 6∈sp(∆N−1)

d−2⊔
i=1

(ρi+1
n−1 − ρ

i
n−1)(FAx,n−1 t FCx,n−1) t

⊔
x∈sp(∆n)
x 6∈sp(∆n−1)

FAx,n t FCx,n.

Proof. First notice that all these functions belong to `2n,a by construction. Indeed, let

1 ≤ N ≤ n − 1 and x ∈ sp(∆N ) \ sp(∆N−1). Let also f ∈ FAx,n−1 t FCx,n−1 and

1 ≤ i ≤ d− 2. On the one hand we have(
(ρi+1
n−1 − ρ

i
n−1)f ◦ Φi

n

)
(v0 . . . vn−1) = (ρi+1

n−1 − ρ
i
n−1)f(v0 . . . vn−2τi(vn−1)) =

= f(v0 . . . vn−2)(δi+1,τi(vn−1) − δi,τi(vn−1)).

On the other hand,

(ρi+1
n−1 − ρ

i
n−1)f(v0 . . . vn−1) = f(v0 . . . vn−2)(δi+1,vn−1 − δi,vn−1).

If vn−1 6= i, i+ 1, then τi(vn−1) = vn−1 and so both expressions vanish. Otherwise, since

τi exchanges i and i+ 1, the first expression equals the second with opposite sign.

If we now take x ∈ sp(∆n) \ sp(∆n−1) and f ∈ FAx,n t FCx,n, the fact that f is

antisymmetric follows from Proposition 5.3.1.
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Finally, we will check that the dimension of both subspaces is the same. We know

by construction that dim(`2n,a) = (d − 2)dn−1 and that the functions in the statement are

linearly independent, again inductively and using the fact that we know their supports. The

number of functions is

n−1∑
N=1

∑
x∈sp(∆N )
x6∈sp(∆N−1)

d−2∑
i=1

|FAx,n−1 t FCx,n−1| +
∑

x∈sp(∆n)
x 6∈sp(∆n−1)

|FAx,n t FCx,n| =

=
n−1∑
N=1

∑
x∈sp(∆N )
x 6∈sp(∆N−1)

d−2∑
i=1

(d− 2)dn−1−N +
∑

x∈sp(∆n)
x 6∈sp(∆n−1)

(d− 2) =

= (d− 2)2
n−1∑
N=1

dn−1−N | sp(∆N ) \ sp(∆N−1)| + (d− 2)| sp(∆n) \ sp(∆n−1)| =

= (d− 2)2
n−1∑
N=1

dn−1−N2N−1 + (d− 2)2n−1 =

= (d− 2)(dn−1 − 2n−1) + (d− 2)2n−1 =

= (d− 2)dn−1 = dim(`2n,a).

Let Pn : `2ξ → `2ξ be the orthogonal projector to the subspace of functions with support

in Γ̃n := Γnξ = Xnσn(ξ), so that Pnf(η) = f(η)δσn(ξ),σn(η). Let also P ′n : `2ξ → `2n be the

operator defined by P ′nf(v) = f(vσn(ξ)), so that P ′n ◦ ρ̃n is the identity in `2n. We define

the space of antisymmetric functions on Γξ as

`2ξ,a = 〈f ∈ `2ξ | ∃n ∈ Iξ, supp(f) ⊂ Γ̃n, P ′nf ∈ `2n,a〉,

where Iξ = {n ∈ N | ∀r ≥ 0, (d−1)r0 is not a prefix of σn(ξ)} is the set of indices n such

that σn(ξ) is fixed by B. Equivalently, it is the set of indices for which Γ̃n is connected to

the rest of Γξ by just one vertex.

Lemma 5.3.8. The space of antisymmetric functions `2ξ,a is contained in 〈F〉.

Proof. Let f ∈ `2ξ,a. Then there exists some n ∈ Iξ such that supp(f) ⊂ Γ̃n and P ′nf ∈ `2n,a.

In particular, either there exists some r ≥ 0 such that ξn . . . ξn+r = (d − 1)rj, with

j 6= 0, d− 1, or σn(ξ) = (d− 1)N, in which case we set r =∞. Let Tn be the basis of `2n,a
from Lemma 5.3.7. We claim that for every h ∈ Tn, ρ̃nh ∈ 〈F〉.

Indeed, let 1 ≤ N ≤ n− 1, x ∈ sp(∆N ) \ sp(∆N−1) and i ∈ {1, . . . , d− 1}. Given a

function g ∈ FAx,n−1 t FCx,n−1, since i 6= 0, we have ρin−1g ∈ FAx,n t FCx,n. If r =∞, then
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ρ̃nρ
i
n−1g ∈ F directly. Otherwise, then as ξn . . . ξn+r = (d − 1)rj and j 6= 0, d − 1, we

have

ρ
ξn+r
n+r . . . ρ

ξn
n ρ

i
n−1g = ρjn+rρ

d−1
n+r−1 . . . ρ

d−1
n ρin−1g ∈ FCx,n+r+1.

Therefore,

ρ̃nρ
i
n−1g = ρ̃n+r+1ρ

ξn+r
n+r . . . ρ

ξn
n ρ

i
n−1g ∈ F .

Hence, for any generator h ∈ Tn of the form h = (ρi+1
n−1 − ρin−1)g, we showed ρ̃nh ∈ 〈F〉.

Similarly, let x ∈ sp(∆n) \ sp(∆n−1), and g ∈ FAx,n t FCx,n. If r = ∞, then again

directly ρ̃ng ∈ F . Otherwise, since ξn . . . ξn+r = (d− 1)rj and j 6= 0, d− 1, we have

ρ
ξn+r
n+r . . . ρ

ξn
n g = ρjn+rρ

d−1
n+r−1 . . . ρ

d−1
n g ∈ FCx,n+r+1.

This implies

ρ̃ng = ρ̃n+r+1ρ
ξn+r
n+r . . . ρ

ξn
n g ∈ F .

Finally, for every generator h of Tn, of the form h = g, ρ̃nh must also be in 〈F〉.
To conclude, since P ′nf ∈ `2n,a, let us decompose P ′nf =

∑
i cihi, with ci ∈ R and

hi ∈ T . The support of f is contained in Γ̃n, so f = ρ̃nP
′
nf =

∑
i ciρ̃nhi ∈ 〈F〉, and hence

`2ξ,a is contained in 〈F〉.

Our next step is to show that `2ξ,a is dense in `2ξ . However, we are only able to do this

under some extra conditions on ξ ∈ XN, which fortunately define a subset W of uniform

Bernoulli measure one in XN. Observe that the antisymmetric subspace `2ξ,a is of infinite

dimension if and only if the set Iξ = {n ∈ N | ∀r ≥ 0, (d− 1)r0 is not a prefix of σn(ξ)}
is infinite. Equivalently, if and only if Γξ is one-ended (see Theorems 3.3.1 and 3.3.3).

To prove that F is a complete system of eigenfunctions, we need in fact a slightly

stronger condition than Γξ being one-ended. We will need not only that Iξ is infinite, but

also that it contains consecutive pairs k and k + 1 infinitely often. Let us consider the subset

W ⊂ XN defined as W = {ξ ∈ XN | k, k + 1 ∈ Iξ for infinitely many k}. Note that this

set only depends on d, and does not depend on m nor on ω ∈ Ωd,m.

Theorem 5.3.9. Let Gω be a spinal group with d ≥ 3, m ≥ 1 and ω ∈ Ωd,m, and let ∆ξ

be the adjacency operator on the Schreier graph Γξ, for ξ ∈ XN. If ξ ∈ W , then F is a

complete system of finitely supported eigenfunctions of ∆ξ . The set W has uniform Bernoulli

measure 1 in XN.

Proof. Let µ be the uniform Bernoulli measure on XN. We show first that the set W has

measure one. Indeed, the set W can be rewritten as

W = {ξ ∈ XN | ∀l ≥ 0, ∃k ≥ l, k, k + 1 ∈ Iξ},
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and so its complement is X∗Z, with

Z = {ξ ∈ XN | ∀k ≥ 0, k 6∈ Iξ or k + 1 6∈ Iξ}.

Notice that if, for some k ∈ N, ξk 6= 0, d− 1, then k ∈ Iξ. Equivalently, for any k 6∈ Iξ,
then necessarily ξk = 0, d − 1. Therefore, for any point ξ ∈ Z, either 0 6∈ Iξ or 1 6∈ Iξ,
which implies that at least one of ξ0, ξ1 is 0 or d− 1. Hence,

µ(Z) ≤

(
1−

(
d− 2

d

)2
)
µ(Z) =⇒ µ(Z) = 0.

Finally, µ(W ) = 1− µ(XN \W ) = 1− µ(X∗Z) = 1− µ(Z) = 1.

We will now prove that the set F is complete for every ξ ∈ W ⊂ XN. Let f ∈ 〈F〉⊥,

and let us show that f = 0. In particular, by Lemma 5.3.8, f ⊥ `2ξ,a. Now let n be the

smallest such that ‖Pnf‖`2 ≥
4
5 ‖f‖`2 and both n, n+ 1 ∈ Iξ, which exists as ξ ∈W . Our

goal is to define an antisymmetric function approximating Pnf . Because Pnf concentrates

the major part of the norm of f , and f ⊥ `2ξ,a, this function will allow us to derive an

inequality concluding that f must be zero.

As n, n + 1 ∈ Iξ, both ξn and ξn+1 are not 0. Let i ∈ {1, . . . , d − 2} such that

ξn ∈ {i, i + 1}. Define g := ρξnn P ′nf − ρξnn P ′nf ◦ Φi
n+1 ∈ `2n+1,a ⊂ `2n+1 and also

h := ρ̃n+1g ∈ `2ξ,a ⊂ `2ξ . Then,

0 = 〈f, h〉`2ξ = 〈P ′n+1f, g〉`2n+1
=

= 〈P ′n+1f, ρ
ξn
n P

′
nf〉`2n+1

− 〈P ′n+1f, ρ
ξn
n P

′
nf ◦ Φi

n+1〉`2n+1
=

=
∥∥∥ρξnn P ′nf∥∥∥2

`2n+1

− 〈P ′n+1f ◦ Φi
n+1, ρ

ξn
n P

′
nf〉`2n+1

=

= ‖Pnf‖2`2ξ − 〈Qnf, Pnf〉`2ξ ,

with Qn : `2ξ → `2ξ defined as

Qnf(η) = f(η0 . . . ηn−1τi(ηn)σn+1(η))δσn(η),σn(ξ).

Notice that the function Qnf is supported in Γ̃n and its values are those of f on the subgraph

Xnτi(ξn)σn+1(ξ) = Γnξ0...ξn−1τi(ξn)σn+1(ξ). Therefore, its norm is not greater than the norm

of f − Pnf , supported in Γξ \ Γ̃n, so ‖Qnf‖`2ξ ≤ ‖f − Pnf‖`2ξ . Now we have, using the

Cauchy-Schwarz inequality,

0 = ‖Pnf‖2`2ξ − 〈Qnf, Pnf〉`2ξ ≥

≥ 42

52
‖f‖2`2ξ − ‖Qnf‖`2ξ ‖Pnf‖`2ξ ≥
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≥ 42

52
‖f‖2`2ξ − ‖f − Pnf‖`2ξ ‖f‖`2ξ ≥

≥ 42

52
‖f‖2`2ξ −

√
1− 42

52
‖f‖2`2ξ =

≥
(

16

25
− 3

5

)
‖f‖2`2ξ =

1

25
‖f‖2`2ξ .

Hence f = 0.

We conclude the section by translating Theorem 5.3.9 in terms of the spectral measures

of ∆ξ.

Corollary 5.3.10. Let Gω be a spinal group with d ≥ 3, m ≥ 1 and ω ∈ Ωd,m, and

let ∆ξ be the adjacency operator on the Schreier graph Γξ, for ξ ∈ XN. If ξ ∈ W ,

then all spectral measures of ∆ξ are discrete and supported on the set of eigenvalues

{|S| − d} ∪ψ−1(
⋃
n≥0 F

−n(0)) (see Theorem 4.1.10), i.e. the spectrum of ∆ξ is pure point.

The set W has uniform Bernoulli measure 1 in XN.

5.4 Singular continuous spectral measures

In order to illustrate the different possibilities for spectral measures of adjacency operators on

Schreier graphs of spinal groups, the goal of this section is to exhibit some Schreier graphs

for which the spectral measures of the adjacency operator associated with certain explicit

functions have nontrivial singular continuous part. In particular, we will decompose the space

`2π as the direct sum of the eigenspaces of the adjacency operator and an explicit subspace Φ,

whose functions have singular continuous spectral measures. To prove that, we recover the

renormalization maps Π∗ and Π as well as the quadratic mapG(x) = x2−2(d−2)x−2(d−1)

from Section 4.2 and use a version of the Ruelle-Perron-Frobenius Theorem (Theorem 5.4.10)

as main tool. For this section, let Gω be a spinal group with d ≥ 3 and m = 1, and ω ∈ Ωd,1.

Recall that the graphs Γπ have vertex set Cof((d− 1)N)×X , and can be decomposed

as d copies of Γ(d−1)N joined by a copy of Λπ. We set `2π = `2(Γπ) and let ∆π be the

adjacency operator on Γπ. Recall that the renormalization maps Π∗,Π : `2π → `2π as

Π∗f(η, i) = f(ση, i) on the graphs Γπ are defined as Πf(η, i) =
∑

j∈X f(jη, i).

Notice the nontrivial symmetries that arise in the graph Γπ. For any τ ∈ Sym(X), the

map (η, i) 7→ (η, τ(i)) is a graph automorphism of Γπ. This corresponds to exchanging the

copies of Γ(d−1)N according to τ .

5.4.1 Eigenfunctions of ∆π

In order to describe the spectral measures, we will first give in Proposition 5.4.3 an isomor-

phism between the eigenspaces of the adjacency operators on the Schreier graphs. As in
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Section 4.2, the statements are valid for both ∆ξ and ∆π. However, here we shall only state

them for the latter, since it is for which the singular continuous spectral measures appear.

Lemma 5.4.1. We have

Π∆πΠ∗ = 2(d− 1)2 + ∆π

Proof. Let f ∈ `2π, and let p ∈ Γπ. Let qj and rj be its A and B-neighbors, respectively,

for j = 1 . . . d − 1. Let us write α, βj and γj to denote the values of f at p, qj and rj ,

respectively, and let us set β =
∑d−1

j=1 βj and γ =
∑d−1

j=1 γj . Using computations similar to

those in the proof of Lemma 4.2.1, we have

Π∆πΠ∗f(p) = β + γ + 2(d− 1)α+ 2(d− 2)(d− 1)α =

= β + γ + 2(d− 1)2α = (2(d− 1)2 + ∆π)f(p).

Corollary 5.4.2. Let f, g ∈ `2π. Let α = 2(d−1)2

d and β = 1
d . Then

〈∆πΠ∗f,Π∗g〉 = α〈Π∗f,Π∗g〉+ β〈G(∆π)Π∗f,Π∗g〉.

Proof. By Lemmas 5.4.1 and 4.2.1, and the fact that ΠΠ∗ = d,

〈∆πΠ∗f,Π∗g〉 = 〈Π∆πΠ∗f, g〉 = 2(d− 1)2〈f, g〉+ 〈∆πf, g〉 =

=
2(d− 1)2

d
〈ΠΠ∗f, g〉+

1

d
〈ΠΠ∗∆πf, g〉 =

=
2(d− 1)2

d
〈Π∗f,Π∗g〉+

1

d
〈G(∆π)Π∗f,Π∗g〉.

Let H be the subspace generated by the image of Π∗ and ∆πΠ∗, and recall that it

is invariant under ∆π by Proposition 4.2.4. We denote by Ex the eigenspace of ∆π of

eigenvalue x ∈ sp(∆π). For any x ∈ R, we define the operator Rx : `2π → H ⊂ `2π as

Rxf = (x− 2(d− 2))Π∗f + ∆πΠ∗f.

Proposition 5.4.3. Let x ∈ sp(∆π). Then x is an eigenvalue of ∆π|H if and only if G(x) is

an eigenvalue of ∆π. Moreover, Rx induces an isomorphism between the eigenspaces of ∆π

EG(x) and Ex.
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Proof. Let f ∈ H such that ∆πf = xf . We must have either Πf 6= 0 or Π∆πf 6= 0, or

otherwise, for every g ∈ `2π,

0 = 〈Πf, g〉 = 〈f,Π∗g〉, 0 = 〈Π∆πf, g〉 = 〈f,∆πΠ∗g〉,

and so f ∈ H⊥, which then implies f = 0. Moreover, as Π∆πf = xΠf , we conclude that

Πf 6= 0. By Lemma 4.2.1, ∆πΠf = ΠG(∆π)f = G(x)Πf , which means that Πf is an

eigenfunction of ∆π of eigenvalue G(x).

Conversely, let g ∈ `2π such that ∆πg = G(x)g. We have, by Lemma 4.2.1,

∆πRxg = (x− 2(d− 2))∆πΠ∗g + ∆2
πΠ∗g =

= (x− 2(d− 2))∆πΠ∗g + Π∗∆πg + 2(d− 2)∆πΠ∗g + 2(d− 1)Π∗g =

= x∆πΠ∗g +G(x)Π∗g + 2(d− 1)Π∗g =

= x∆πΠ∗g + (x2 − 2(d− 2)x− 2(d− 1))Π∗g + 2(d− 1)Π∗g =

= x∆πΠ∗g + x(x− 2(d− 2))Π∗g =

= x((x− 2(d− 2))Π∗g + ∆πΠ∗g) = xRxg.

Hence Rxg is an eigenfunction of ∆π|H of eigenvalue x.

Let us now prove that the restriction of Rx to EG(x) is an isomorphism between EG(x)

and Ex. Let g ∈ EG(x). Notice that, by Lemma 5.4.1,

ΠRxg = (x− 2(d− 2))ΠΠ∗g + Π∆πΠ∗g =

= d(x− 2(d− 2))g + 2(d− 1)2g + ∆πg =

= d(x− 2(d− 2))g + 2(d− 1)2g +G(x)g =

= (x2 + (4− d)x− 2(d− 2))g =

= (x+ 2)(x− (d− 2))g.

By Lemma 4.2.7, we know that x 6= −2, d− 2, so Rx|EG(x)
is indeed an injective operator.

Finally, let us show that Rx|EG(x)
is surjective. Let f ∈ Ex ⊂ H , and assume that f is

orthogonal to Rx(EG(x)). In that case, for every g ∈ EG(x),

0 = 〈f,Rxg〉 = (x− 2(d− 2))〈f,Π∗g〉+ 〈f,∆πΠ∗g〉 =

= (x− 2(d− 2))〈Πf, g〉+ 〈Π∆πf, g〉 =

= (x− 2(d− 2))〈Πf, g〉+ x〈Πf, g〉 =

= 2(x− (d− 2))〈Πf, g〉.

Hence, Πf = 0. Since f ∈ H , by the argument at the beginning of the proof we must have

f = 0.
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Recall from Section 4.2 and Definition 3.2.3 that A-pieces (equivalently (−1)-pieces)

in Γπ are subgraphs of the form (Γ1
η, i) = (Xση, i), for η ∈ Cof((d − 1)N) and i ∈ X .

Similarly, n-pieces are subgraphs of the form (Λnη , i) = ((d− 1)n0Xσn+2(η), i), for n ≥ 0,

η ∈ Cof((d− 1)N) and i ∈ X , and the only∞-piece is the subgraph ((d− 1)N, X). Finally,

we called any n-piece a B-piece, for n ≥ 0 or n =∞.

Proposition 5.4.4. Let x ∈ G−n(d− 2), with n ≥ 0, and f ∈ Ex. Then f has zero sum on

(n− 1)-pieces and is constant on N -pieces, for every N ≥ n.

Proof. We proceed by induction on n, in parallel for all the graphs Γξ, ξ ∈ XN. The case

n = 0 is a consequence of Lemma 4.2.7.

Let f ∈ Ex. As n ≥ 1, x 6= d− 2, so by Lemmas 4.2.5 and 4.2.7 we have f ∈ H . By

Proposition 5.4.3, there exists g ∈ EG(x) such that f = Rxg. By induction hypothesis, g has

zero sum on (n− 2)-pieces, and is constant for N -pieces for all N ≥ n− 1. Let us show

that f has zero sum on (n− 1)-pieces, and is constant for N -pieces for all N ≥ n.

Let k ≥ 0 and let pi be the vertices of a k-piece in Γπ, for i ∈ X . Abusing notation by

writing σ(η, i) = (ση, i), the vertices qi = σpi form a (k − 1)-piece in Γπ, for i ∈ X . Let

δp be the function with value 1 at the vertex p and zero everywhere else. We have

Π∗g(pi) = 〈Π∗g, δpi〉 = 〈g,Πδpi〉 = 〈g, δqi〉 = g(qi),

∆πΠ∗g(pi) = 〈∆πΠ∗g, δpi〉 = 〈g,Π∆πδpi〉 = 〈g, (d− 1)δqi +
∑
j 6=i

δqj 〉 =

= (d− 2)〈g, δqi〉+
∑
j∈X
〈g, δqj 〉 = (d− 2)g(qi) +

∑
j∈X

g(qj)

and so

f(pi) = Rxg(pi) = (x− 2(d− 2))Π∗g(pi) + ∆πΠ∗g(pi) =

= (x− 2(d− 2))g(qi) + (d− 2)g(qi) +
∑
j∈X

g(qj) =

= (x− (d− 2))g(qi) +
∑
j∈X

g(qj).

If k = n− 1, then the vertices qj form a (n− 2)-piece, so
∑

j∈X g(qj) = 0 by hypothesis.

In that case, ∑
i∈X

f(pi) = (x− (d− 2))
∑
i∈X

g(qi) = 0.

So f has zero sum on n-pieces.

If k ≥ n, then the vertices qj form a k−1-piece, with k−1 ≥ n−1, and so g is constant

on all qj , j ∈ X . Let us write γ = g(qj). Then

f(pi) = (x− (d− 2))γ + dγ = (x+ 2)γ

is constant over the vertices pi. Therefore, f is constant on all N -pieces, with N ≥ n.
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Notice that Proposition 5.4.4 implies that all eigenfunctions are constant on the unique

∞-piece of Γπ.

Corollary 5.4.5. Let x ∈
⋃
n≥0G

−n(d−2). Then the eigenspace Ex has infinite dimension

and is generated by finitely-supported functions.

Proof. The result is true for x = d − 2 by Lemma 4.2.7, and it extends to any other

x ∈
⋃
n≥0G

−n(d− 2) via Proposition 5.4.3.

5.4.2 Spectral measures of ∆π

We are now ready to study the spectral measures of the adjacency operator ∆π on the Schreier

graph Γπ. We will find an explicit subspace of `2π for which the spectral measures are singular

continuous. More precisely, we will decompose `2π as the direct sum of the eigenspaces of

∆π plus a subspace Φ, whose functions have purely singular continuous spectral measures.

We follow a strategy based on [60].

Let us start by relating the spectral measure of a function f ∈ `2π with that of Π∗f ∈ `2π.

To do so, we will use as main tool the transfer operator Lq,κ. An exposition of results

concerning operators of this type can be found in [59].

Definition 5.4.6. Let q ∈ R[x] be the quadratic polynomial q(x) = (x − u)2 + t, with

u, t ∈ R. Let κ : R \ {u} → R be a measurable function. We define the transfer operator

Lq,κ as

Lq,κα(y) =
∑

x∈q−1(y)

κ(x)α(x),

for every measurable function α : R \ {u} → R and y ∈ (t,∞).

Let µ be a positive measure on (t,∞). If, for µ-almost every y ∈ (t,∞), κ is positive

on both preimages of y by q, then, after performing a change of variables, there is a measure

ν on R \ {u} such that ∫
R\{u}

α dν =

∫
(t,∞)

Lq,κα dµ.

for every positive measurable function α : R \ {u} → R. We shall denote this measure ν by

L∗q,κµ.

In order to find the relation between the spectral measures of ∆π associated with f ∈ `2π
and Π∗f ∈ `2π, we need the following general result about these transfer operators, the proof

of which can be found in [59].

Lemma 5.4.7. LetH be a Hilbert space and T a self-adjoint bounded operator ofH. Let

K ⊂ H be a closed subspace such that q(T )K ⊂ K and K and TK generateH. Suppose

that there exist α, β ∈ R such that, for every v, w ∈ H, 〈Tv,w〉 = α〈v, w〉+ β〈q(T )v, w〉.
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Let v ∈ K and let µ and µ′ be the spectral measures of T and q(T ) associated with v,

respectively. If µ′({t}) = 0, then µ({u}) = 0 and µ = L∗q,θµ
′, with θ : R \ {u} → R given

by

θ(x) =
1

2

(
1 +

α− u+ βq(x)

x− u

)
.

For every x ∈ sp(T ), x 6= u, we have θ(x) ≥ 0.

We may now apply Lemma 5.4.7 to our situation.

Proposition 5.4.8. Let f ∈ `2π. Let µf and µΠ∗f be the spectral measures of ∆π associated

with f and Π∗f , respectively. Then µΠ∗f ({d− 2}) = 0 and µΠ∗f = L∗G,θµf , with θ(x) =
x+2

2 .

Proof. Let µ′Π∗f be the spectral measure of G(∆π) associated with Π∗f . By Lemma 4.2.1,

notice that µf =
µ′

Π∗f
d . Indeed, for any n ≥ 0,

〈G(∆π)nΠ∗f,Π∗f〉 = 〈Π∗∆n
πf,Π

∗f〉 = d〈∆n
πf, f〉.

We find ourselves in the precise situation of Lemma 5.4.7, with H = H , T = ∆π,

q = G, so that u = d − 2 and t = −(d − 1)2 − 1, and K = Π∗`2π. By Corollary 5.4.2,

α = 2(d−1)2

d and β = 1
d . In addition, we know that µ′Π∗f ({−(d − 1)2 − 1}) = 0 after

Lemma 4.2.6. Since µΠ∗f is the spectral measure of ∆π associated with Π∗f , Lemma 5.4.7

implies that µΠ∗f ({d− 2}) = 0 and µΠ∗f = L∗G,θ′µ
′
Π∗f , with

θ′(x) =
1

2

(
1 +

α− u+ βq(x)

x− u

)
=
x+ 2

2d
.

Finally, because µf =
µ′

Π∗f
d , if we set θ(x) = x+2

2 , we have

µΠ∗f = L∗G,θ′µ
′
Π∗f = L∗G,θ′(d µf ) = L∗G,θµf .

We now need to use a version of the Ruelle-Perron-Frobenius Theorem, which is stated

in terms of full shifts on binary alphabets. In our case, we shall prove that the dynamical

system given by the action of G on its Julia set Λ is conjugate to the shift on {0, 1}N.

Lemma 5.4.9. The dynamical system (Λ, G) is conjugate to the full shift on {0, 1}N.

Proof. By Remark 4.1.11, we know that Λ ⊂ [−2, 2(d−1)]. In fact, Λ ⊂ G−1(Λ) = I0∪I1,

where I0 = [−2, d− 2−
√
d(d− 2)] ∪ I1 = [d− 2 +

√
d(d− 2), 2(d− 1)].

We may define a map Λ→ {0, 1}N as follows. For every x ∈ Λ, we assign the sequence

(εn)n≥0 such that Gn(x) ∈ Iεn , for every n ≥ 0. This map is well-defined since Λ ⊂ I0∪ I1.

Let us show that it is a bijection.
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Let x, y ∈ Λ have the same associated sequence (εn)n≥0. Notice that

|G(x)−G(y)| = |x2 − 2(d− 2)x− y2 + 2(d− 2)y| =

= |x2 − y2 − 2(d− 2)(x− y)| = |x− (d− 2) + y − (d− 2)||x− y|.

However, x and y both lie on the same side of d− 2, so

|x− (d− 2) + y − (d− 2)| = |x− (d− 2)|+ |y − (d− 2)| ≥ 2
√
d(d− 2) ≥ 3.

Hence |G(x)−G(y)| ≥ 3|x−y|. If x 6= y, then for some n ≥ 0 the distance |Gn(x)−Gn(y)|
would be greater than the length of the intervals I0, I1 and so Gn(x) andGn(y) would not lie

in the same one, which contradicts the fact that x and y have the same associated sequence.

Therefore the map is injective. To prove that it is surjective, let us define the intervals

Iε0...εn =
n⋂
k=0

G−k(Iεk) = Iε0 ∩G−1(Iε1...εn),

for ε0 . . . εn ∈ {0, 1}n+1, n ≥ 0. The preimage of any interval in [−2, 2(d − 1)] by G

is a union of two intervals: one included in I0 and another in I1. We can use this fact to

inductively verify that none of these intervals is empty. In addition, we have the inclusions

Iε0 ⊃ Iε0ε1 ⊃ · · · ⊃ Iε0...εn ⊃ . . .

Hence, for any sequence (εn)n≥0, we have a decreasing sequence of closed, non-empty

intervals, which implies that the intersection⋂
n≥0

Iε0...εn

is non-empty. By construction, all points in this intersection must have (εn)n≥0 as associated

sequence, but by injectivity there can only be one. Therefore, the map Λ→ {0, 1}N defined

above is a bijection.

Lemma 5.4.9 enables us now to use the following version of the Ruelle-Perron-Frobenius

Theorem, whose proof can be found in [59, §2.2]. For I ⊂ R, let C(I) denote the space of

continuous functions on I , endowed with the topology of uniform convergence, and let R∗+
denote the set of strictly positive real numbers.

Theorem 5.4.10. Let κ : Λ→ R∗+ be a Hölder function. Consider Lq,κ as an operator on

C(Λ), and let λκ be its spectral radius. Then there exists a unique probability measure νκ
on Λ and a unique strictly positive function lκ ∈ C(Λ) such that

Lq,κlκ = λκlκ, L∗q,κνκ = λκνκ and
∫

Λ
lκdνκ = 1.
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Moreover, the spectral radius of Lq,κ restricted to the space of functions with zero integral

with respect to νκ is strictly smaller than λκ. Also, for every g ∈ C(Λ), we have

lim
n→∞

1

λnκ
Lq,κg =

∫
Λ
gdνκ.

Let us now define the subspace Φ, whose orthogonal complement in `2π will be the direct

product of all eigenspaces of ∆π. Let pi denote the vertex ((d − 1)N, i) ∈ Γπ, for i ∈ X ,

and let ϕi ∈ `2π be the function which takes value 1 at pi, −1 at pi−1 and 0 everywhere else

(see Figure 5.8), for i ∈ X . We define Φ as the following subspace:

Φ = 〈∆n
πϕi | n ≥ 0, i ∈ X〉.

(
Γ
(d−1)N , i

)

(
Γ
(d−1)N , i− 1

)
1

0

0 0

−1

Figure 5.8: The functions ϕi ∈ `2π.

Lemma 5.4.11. For every i ∈ X ,

Π∗ϕi = (∆π + 2)ϕi.

Proof. Notice that ∆πϕi is supported in the A-pieces containing pi and pi−1. It takes value

1 at the A-neighbors of pi and pi−1, and value −1 at the A-neighbors of pi−1 and pi. On the

other hand, Π∗ϕi takes value 1 on the full A-piece containing pi and −1 on that containing

pi−1. This proves the claim.
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Recall that we set θ(x) = x+2
2 , and let k(x) = x + 2, h(x) = 2(d − 1) − x and

ρ(x) = 1
2 . Notice that θ = kρ and that hk = h ◦ G. From now on, for any measurable

function κ : Λ→ R, we shall write Lκ = LG,κ.

Proposition 5.4.12. Let νρ be the probability measure on Λ from Theorem 5.4.10, so that

L∗ρνρ = νρ. Then, for every i ∈ X , the spectral measure of ∆π associated with ϕi is

µϕi = 2
dhνρ. Moreover, µϕi is singular continuous.

Proof. Let µ = µϕi be the spectral measure of ∆π associated with ϕi, and let µ′ = µΠ∗ϕi be

the spectral measure of ∆π associated with Π∗ϕi. By Lemma 5.4.11, we know that Π∗ϕi =

k(∆π)ϕi, so µ′ = k2µ. Using Proposition 5.4.8, we know moreover that µ({d− 2}) = 0

and µ′ = L∗θµ. Combining these two results, we obtain that L∗θµ = k2µ.

As a consequence of Lemma 4.2.7, we know that µ({−2}) = 0. Therefore, for any

measurable function α : Λ→ R, we have, using that θ = kρ,∫
Λ
Lρ/kα dµ =

∫
Λ
Lθ

α

k2
dµ

L∗θµ=k2µ
=

∫
Λ
k2 α

k2
dµ =

∫
Λ
α dµ,

which implies thatL∗ρ/kµ = µ. Furthermore, by Lemma 4.2.6, we know that µ({2(d−1)}) =

0 as well. Consequently, using the relation hk = h ◦G,∫
Λ
Lρ/k

α

h
dµ =

∫
Λ
Lρ

α

hk
dµ =

∫
Λ
Lρ

α

h ◦G
dµ =

∫
Λ

1

h
Lρα dµ.

Equivalently, that L∗ρ(
1
hµ) = 1

hL
∗
ρ/kµ, and hence that L∗ρ(

1
hµ) = 1

hµ.

By Proposition 5.4.4, any eigenfunction of ∆π must be constant on the B-piece formed

by pi, for i ∈ X , and therefore it must be orthogonal to ϕi, for i ∈ X . We then conclude that

µ
(⋃

n≥0G
−n(d− 2)

)
= 0, so µ has to be concentrated on Λ, in light of of Theorem 4.2.8.

The spectral radius of Lρ is λρ = 1. Indeed, since Lρ1 = 1 by an elementary calculation,

we have

lim
n→∞

1

λnρ
= lim

n→∞

1

λnρ
Lnρ1 =

∫
Λ
dνρ = νρ(Λ) = 1.

This implies that, for every g ∈ C(Λ),

lim
n→∞

Lnρg =

∫
Λ
g dνρ.

We have proven that L∗ρ(
1
hµ) = 1

hµ. Our goal now is to show that 1
hµ is a finite measure,

and then by unicity of νρ, they must be multiples of one another.

Let g ∈ C(Λ) such that g vanishes on a neigborhood of 2(d− 1) and 0 <
∫

Λ
g
h dµ <∞.

We know that Lnρg converges uniformly to the constant function
∫

Λ g dνρ. Using this and

L∗ρ(
1
hµ) = 1

hµ, we find, for n ≥ 0 big enough,∫
Λ

g

h
dµ =

∫
Λ

1

h
Lnρg dµ =

∫
Λ

1

h

(∫
Λ
g dνρ

)
dµ =

∫
Λ
g dνρ

∫
Λ

1

h
dµ.
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Therefore, the measure 1
hµ must be finite, so it must be a multiple of νρ. Let us show that

they differ by a factor of 2
d .

Notice that µ(Λ) = ‖ϕi‖2 = 2. We also remark that Lρh = d. Indeed, for any y ∈ Λ,

Lρh(y) =
∑

x∈G−1(y)

ρ(x)h(x) =
1

2

∑
x∈G−1(y)

(2(d− 1)− x) =

=
1

2

(
2d− 2− (d− 2)−

√
(d− 1)2 + 1 + y

)
+

1

2

(
2d− 2− (d− 2) +

√
(d− 1)2 + 1 + y

)
=

=
1

2
(d+ d) = d.

Since L∗ρνρ = νρ, we have∫
Λ
h dνρ =

∫
Λ
Lρh dνρ = d

∫
Λ
dνρ = d.

We conclude ∫
Λ
dµ = µ(Λ) = 2 =

2

d

∫
Λ
h dνρ.

Hence µ = 2
dhνρ.

Finally, let us show that µ is singular continuous. We already know that it is supported

on Λ, a Cantor set of zero Lebesgue measure, so its absolutely continuous part is trivial. In

addition, the measure νρ is atomless. Indeed, Theorem 5.4.10 implies that the action of G

on Λ preserves the measure νρ. If x ∈ Λ was such that νρ({x}) > 0, then νρ({Gn(x)}) =

νρ({x}) for any n ≥ 0, which is absurd as νρ is a probability measure. In conclusion, µ has

trivial absolutely continuous and discrete parts, so it is indeed singular continuous.

In order to prove the decomposition of the space `2π into the direct sum of the eigenspaces

of ∆π and Φ, we will need to introduce another function besides the ϕi. Before that, recall

that Φ = 〈∆n
πϕi | n ≥ 0, i ∈ X〉 or, equivalently, Φ = 〈p(∆π)ϕi | p ∈ C[x], i ∈ X〉.

Lemma 5.4.13. The subspace Φ is invariant under the operators ∆π, Π∗ and Π.

Proof. First, notice that Φ is invariant under ∆π by definition. Let p ∈ C[x], then, by

Lemmas 4.2.1 and 5.4.11,

Π∗p(∆π)ϕi = p(G(∆π))Π∗ϕi = p(G(∆π))(∆π + 2)ϕi ∈ Φ,

so Φ is also invariant under Π∗.

We observe that Πϕi = ϕi. In addition, by Lemma 5.4.11,

Π∆πϕi = Π(Π∗ − 2)ϕi = (d− 2)ϕi.
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Once again by Lemma 4.2.1, we have

ΠG(∆π)nϕi = ∆n
πΠϕi = ∆n

πϕi

and

ΠG(∆π)n∆πϕi = ∆n
πΠ∆πϕi = (d− 2)∆n

πϕi.

Let p ∈ C[x], and let us decompose it as p(x) =
∑N

n=0 anG(x)n +
∑N

n=0 bnG(x)nx,

for some coefficients an, bn ∈ C. We then conclude

Πp(∆π)ϕi =

N∑
n=0

anΠG(∆π)nϕi +

N∑
n=0

bnΠG(∆π)n∆πϕi =

=

N∑
n=0

an∆n
πϕi + (d− 2)

N∑
n=0

bn∆n
πϕi ∈ Φ,

so Φ is invariant under Π.

(
Γ
(d−1)N , i

)

1

1

1 1

1

Figure 5.9: The function ψ ∈ `2π.

We now introduce the function ψ ∈ `2π, defined by ψ(pi) = 1 for every i ∈ X , and zero

everywhere else. Observe that ψ is orthogonal to ϕi for all i ∈ X .

Lemma 5.4.14. We have

Π∗ψ = (∆π − (d− 2))ψ.
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Proof. On the one hand, Π∗ψ is the function which takes value 1 on theA-pieces to which pi
belong, for every i ∈ X , and zero everywhere else. On the other hand, ∆πψ takes value d−1

on pi and value 1 on its A-neighbors, for every i ∈ X . Hence (∆π −Π∗)ψ = (d− 2)ψ.

We briefly recall the functions θ(x) = x+2
2 , k(x) = x + 2, h(x) = 2(d − 1) − x,

ρ(x) = 1
2 , and the relations θ = kρ and hk = h ◦ G. Let us define as well the functions

l(x) = x− (d− 2), τ = θ
l2

and σ = τ
k = ρ

l2
.

Proposition 5.4.15. The spectral measure of ∆π associated with ψ is discrete. More

precisely, ψ is contained in the direct sum of the eigenspaces of ∆π.

Proof. Let µ = µψ|Λ be the restriction to Λ of the spectral measure of ∆π associated with

ψ. By Theorem 4.2.8, we have to show that µ = 0. Let µ′ = µΠ∗ψ|Λ be the restriction to Λ

of the spectral measure of ∆π associated with Π∗ψ.

By Lemma 5.4.14, µ′ = l2µ, and by Proposition 5.4.8, µ′ = L∗θµ, so we obtain

L∗θµ = l2µ. As a consequence of Lemma 4.2.6, µ({2(d− 1)}) = 0, so, for any measurable

function α : Λ→ R, ∫
Λ
Lθ
α

l2
dµ =

∫
Λ
l2
α

l2
dµ =

∫
Λ
α dµ.

Therefore 1
l2
L∗θµ = µ. Furthermore,∫

Λ
Lτα dµ =

∫
Λ
Lθ/l2α dµ =

∫
Λ
Lθ
α

l2
dµ =

∫
Λ
α dµ,

which shows that L∗τµ = µ.

Notice that Lnτh = hLnσ1 for any n ≥ 0. Indeed, inductively on n, the statement is trivial

for n = 0 and, for any y ∈ Λ,

Lnτh(y) =
∑

x∈G−1(y)

τ(x)Ln−1
τ h(x) =

∑
x∈G−1(y)

τ(x)h(x)Ln−1
σ 1(x) =

=
∑

x∈G−1(y)

σ(x)k(x)h(x)Ln−1
σ 1(x) =

∑
x∈G−1(y)

σ(x)h(G(x))Ln−1
σ 1(x) =

= h(y)
∑

x∈G−1(y)

σ(x)Ln−1
σ 1(x) = h(y)Lnσ1(y),

where we used the relations τ = σk and hk = h ◦G. Notice also that Lσ1 < 1 on Λ, as for

every y ∈ Λ we have

Lσ1(y) =
∑

x∈G−1(y)

σ(x) =

=
1

2

 1(
d− 2− (d− 2)−

√
(d− 1)2 + 1 + y

)2

+
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+
1

2

 1(
d− 2− (d− 2) +

√
(d− 1)2 + 1 + y

)2

 =

=
1

2

(
1

(d− 1)2 + 1 + y
+

1

(d− 1)2 + 1 + y

)
=

1

(d− 1)2 + 1 + y
,

which is strictly smaller than 1, provided that d > 2.

Let now λσ be the spectral radius of Lσ, and let νσ be the probability measure on Λ from

Theorem 5.4.10. Since L∗σνσ = λσνσ, we have

λσ =

∫
Λ
λσ dνσ =

∫
Λ
Lσ1 dνσ <

∫
Λ
dνσ = 1.

Because 1
λnσ
Lnσ1 uniformly converges to

∫
Λ dνσ = 1, Lnσ1 uniformly converges to 0. But

since Lnτh = hLnσ1, we conclude that Lnτh must also converge to 0. Finally, as L∗τµ = µ,∫
Λ
h dµ =

∫
Λ
Lnτh dµ→ 0.

Hence, µ(Λ \ {2(d− 1)}) = 0, but we already proved that µ({2(d− 1)}) = 0, so, in fact,

µ = 0.

Recall that for f, g ∈ `2π, the spectral measure µf,g is the measure whose moments are

〈∆n
πf, g〉, for every n ≥ 0, so that µf = µf,f .

Lemma 5.4.16. For every f, g ∈ `2π, we have µΠf,g = G∗µf,Π∗g.

Proof. For every p ∈ C[x], and using Lemma 4.2.1,∫
R
p dµΠf,g = 〈p(∆π)Πf, g〉 = 〈Πp(G(∆π))f, g〉 =

= 〈p(G(∆π))f,Π∗g〉 =

∫
R
p ◦G dµf,Π∗g.

We are now ready to prove the decomposition of the space `2π into the direct sum of

eigenspaces of ∆π and Φ.

Proposition 5.4.17. For every f ∈ Φ⊥, the spectral measure µf of ∆π associated with f is

discrete. The eigenvalues of ∆π|Φ⊥ are
⋃
n≥0G

−n(d− 2).

Proof. First, we know by Corollary 5.4.5 that the eigenspaces Ex are nontrivial for every

x ∈
⋃
n≥0G

−n(d − 2). Let P be the orthogonal projector to Φ⊥ in `2π. Lemma 5.4.13

implies that P commutes with ∆π, Π∗ and Π. Let us show that, for every f, g ∈ `2π, the
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5.4. Singular continuous spectral measures

measure µPf,g is discrete and concentrated on
⋃
n≥0G

−n(d− 2). It suffices to consider f

finitely supported.

Let Γnπ = (Γn
(d−1)N

, X) be the subgraph of Γπ consisting of vertices of the form (Xn(d−
1)N, X), for every n ≥ 0. Notice that only d vertices in Γnπ have edges to Γπ \ Γnπ, more

precisely those having the form ((d− 1)n−10(d− 1)N, i), i ∈ X . Let us call these vertices

qni , and recall that pi were the vertices in the central B-piece, of the form ((d − 1)N, i),

i ∈ X .

For every i ∈ X , qni has exactly d − 1 B-neighbors, which lie outside Γnπ. Let us call

them rni,j , for j = 1, . . . , d−1. Intuitively, the subgraph Γnπ is the same as
⋃
i∈X Bpi(2n−1),

and
⋃
i∈X Bpi(2n) is the subgraph spanned by the union of Γnπ and {rni,j | i ∈ X, j =

1, . . . , d − 1}. Let us call this other subgraph Γ̄nπ. See Figure 5.10 for a picture of these

graphs.

p0
p1

p2 p3

pd−1

qn0

qn1

qn2 qn3

qnd−1

rn0,1

rn0,2rn0,3

rn0,d−1

Figure 5.10: The subgraph Γnπ contains qni , for i ∈ X . The subgraph Γ̄nπ contains also the
vertices rni,j , for i ∈ X and j = 1, . . . , d− 1.

Consider now the subspace Ln of functions vanishing outside Γ̄nπ which are constant on
rni,j , for j = 1, . . . , d− 1. Namely,

Ln =
{
f ∈ `2π

∣∣ supp(f) ⊂ Γ̄nπ, ∀i ∈ X,∀j, j′ = 1, . . . , d− 1, f(rni,j) = f(rni,j′)
}
.

For every n ≥ 0, notice that both ΠLn+1 and Π∆πLn+1 are contained in Ln. The

former is immediate, and so is, for the latter, the inclusion of the support in Γ̄nπ. If f ∈ Ln+1
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and we set α to be its value at qn+1
i and β its value at rn+1

i,j , for all j = 1, . . . , d− 1, then

the value of Π∆πf at rni,j is equal to α+ (2d− 3)β for all j = 1, . . . , d− 1, so it does not

depend on j. See Figure 5.11 for an illustration of these facts.

Γn+1
π

qn+1
i

rn+1
i,1 rn+1

i,2

rn+1
i,3

rn+1
i,d−1

α

β β

β

β

f

∆π7−→
Γn+1
π

β

β

β

β

β

β

β

β

β

ββ

β

β

ββ

β

qn+1
i

rn+1
i,1 rn+1

i,2

rn+1
i,3

rn+1
i,d−1

γ γ

γ

γ

7−→

Π

Γnπ
qni

rni,1 rni,2

rni,3

rni,d−1

β β

β

β

7−→

Π

Γnπ
qni

rni,1 rni,2

rni,3

rni,d−1

δ δ

δ

δ

Figure 5.11: For any f ∈ Ln+1, both Πf and Π∆πf belong to Ln. For better readability,
we set γ = α+ (d− 2)β and δ = α+ (2d− 3)β.

We will show, by induction on n ≥ 0, that for every f ∈ Ln and every g ∈ `2π, the

measure µPf,g is discrete and concentrated on
⋃
n≥0G

−n(d− 2).

For n = 0, we can see that the subspace L0 is generated by {ϕi,∆πϕi, ψ,∆πψ | i ∈ X}.
If f = ϕi or f = ∆πϕi, we have Pf = 0, and so µPf,g = 0 for every g ∈ `2π. If

f = ψ or f = ∆πψ, Proposition 5.4.15 implies that µPf,g is discrete and concentrated on⋃
n≥0G

−n(d− 2) for every g ∈ `2π.

Now assume the claim to be true for some n ≥ 0, and let f ∈ Ln+1. Since both Πf and

Π∆πf belong to Ln, we know that the measures µPΠf,g = µΠPf,g and µPΠ∆πf,g =

µΠ∆πPf,g are discrete and concentrated on
⋃
n≥0G

−n(d − 2) for every g ∈ `2π. By

Lemma 5.4.16, the measures µPf,Π∗g and µPf,∆πΠ∗g are discrete and concentrated on⋃
n≥0G

−n(d − 2). Equivalently, if H is the image of the operators Π∗ and ∆πΠ∗, the

measure µPf,g is discrete and concentrated on
⋃
n≥0G

−n(d− 2) for every g ∈ H . However,

by Lemma 4.2.5 we know that sp(∆π|H⊥) = {d − 2,−2}, so the measure µPf,g must
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5.4. Singular continuous spectral measures

be discrete and concentrated on
⋃
n≥0G

−n(d − 2) ∪ {−2} for every g ∈ `2π. Finally, by

Lemma 4.2.7, we know that the eigenspace E−2 is trivial, so µPf,g({−2}) = 0 and therefore

µPf,g is discrete and concentrated on
⋃
n≥0G

−n(d− 2).

Combining the results of Propositions 5.4.12, 5.4.15 and 5.4.17, we obtain the following

Theorem:

Theorem 5.4.18. Let Gω be a spinal group with d ≥ 3, m = 1 and ω ∈ Ωd,1, and let ∆π

be the adjacency operator on the Schreier graph Γπ from Theorem 3.7.3, for π ∈ Epi(B,A)

occurring infinitely often in ω. The space `2π can be decomposed as Φ⊕ Φ⊥, with Φ being

the subspace spanned by the functions ∆n
πϕi, for n ≥ 0 and i ∈ X . Φ⊥ is the direct sum of

the eigenspaces of ∆π. The spectrum of ∆π|Φ is singular continuous and the spectrum of

∆π|Φ⊥ is pure point.

Remark 5.4.19. This Theorem together with the results of Sections 3.7 and 5.3 allows to

observe that the spectral type of the adjacency operator is not preserved under the Gromov-

Hausdorff convergence in the space of marked graphs. Indeed, let us consider the example

of Schreier graphs of the Fabrykowski-Gupta group. Using the notation from Section 3.7,

we have

(Γπ, pi) = lim
n→∞

(Γ1N , (d− 1)n01N),

with π ∈ Epi(B,A) mapping b to a and pi = ((d− 1)N, i) ∈ Γπ. The graph Γ1N has pure

point spectrum, by Theorem 5.3.9, and the marking of the graph does not change the spectral

measures. Nonetheless, Theorem 5.4.18 implies that Γπ has a Kesten spectral measure with

nontrivial singular continuous part. A possible explanation for the appearance of the singular

continuous component might be the fact that Γπ exhibits a natural nontrivial symmetry, given

by the maps (ξ, i) 7→ (ξ, j), for any i, j ∈ X . On the other hand, no marking of Γ1N yields a

similar type of symmetry.
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Chapter 6

Complexity

Linear subshifts constitute a remarkable subject of study in the area of symbolic dynamics,

and spinal groups have previously been related to their Schreier graphs [38, 63, 39], although

only for the binary case. In this chapter we review some notions of low complexity related to

linear subshifts and extend them to the context of Schreier dynamical systems. We moreover

characterize when they are satisfied by the dynamical systems arising from spinal groups.

6.1 Linear subshifts

Let A be a finite alphabet, A∗ = ∪n∈NAn the free monoid of finite words on A, and let

AZ be the set of all two-ended sequences of symbols in A, equipped with the product

topology. For ω ∈ AZ and n ∈ N, we call Wn(ω) = {ωi . . . ωi+n−1 | i ∈ Z} ⊂ An the set

of all possible subwords of ω of length n, and we write W (ω) = ∪n∈NWn(ω) ⊂ A∗. If

u ∈ A∗ or u ∈ AN, we also denote by Wn(u) the set of all subwords of u of length n and

W (u) = ∪n∈NWn(u) ⊂ A∗.
Consider the shift operator T : AZ → AZ, given by (Tω)n = ωn+1. A subshift

is a pair (Ω, T ), where Ω ⊂ AZ is closed and invariant under T . For n ∈ N, we set

Wn = Wn(Ω) = ∪ω∈ΩWn(ω) ⊂ An, the set of all subwords in Ω of length n. The shift T

defines an action of Z on Ω. We call a subshift minimal if this action is minimal, i.e., if all

orbits are dense. There exist various measures of complexity of minimal subshifts, let us

introduce two of them.

Definition 6.1.1. We say that a subshift (Ω, T ) is linearly repetitive if

∃C ≥ 1, ∀n ≥ 0, ∀u ∈Wn, ∀w ∈WCn, u ∈Wn(w).

In other words, if there is a constant C ≥ 1 for which every subword of length n occurs in

every subword of length Cn.
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Linear repetitivity is a strong form of minimality, and it has been widely studied (see [17],

[25] and [50]).

Definition 6.1.2. We say that a subshift (Ω, T ) satisfies the Boshernitzan condition (B) if

there exists a T-invariant ergodic probability measure ν on Ω such that

lim sup
n→∞

nε(n) > 0,

where ε(n) = min{ν(C(u)) | u ∈ Wn} and C(u) = {ω ∈ Ω | ω0 . . . ωn−1 = u}. Here

C(u) is the cylinder of u, i.e., the set of sequences having u at the positions 0 to n− 1, and

ε(n) is the minimum measure of these sets over all subwords u. This value represents the

minimal probability among all the possible subwords of length n.

This condition was introduced by Boshernitzan in [13], and it was shown to imply unique

ergodicity for minimal subshifts in [14].

Toeplitz subshifts constitute a remarkable family of subshifts which provides examples

of aperiodic subshifts but yet is simple enough to be studied in detail. A typical example

of the so-called simple Toeplitz subshifts is the substitutional subshift which encodes the

Schreier graphs of Grigorchuk’s group. It was introduced in [55] and has been studied in a

slightly different form in [38] and [37]. Some very explicit results about combinatorics and

complexity of simple Toeplitz subshifts are proven in [63].

Definition 6.1.3. Let (ak)k ∈ AN be a sequence of letters and (nk)k ∈ NN such that nk ≥ 2

for all k ∈ N. We define p(0) ∈ A∗ as the empty word and, recursively, for k ≥ 0,

p(k+1) = p(k)akp
(k) . . . akp

(k),

where the word p(k) appears nk times and the letter ak appears nk − 1 times. Because p(k)

is a prefix of p(k+1) for every k ≥ 0, the sequence (p(k))k converges to a one-ended infinite

word p(∞) ∈ AN. The simple Toeplitz subshift associated with the coding sequences (ak)k

and (nk)k is

Ω = {ω ∈ AZ |W (ω) ⊂W (p(∞))},

i.e., the set of all two-ended words whose subwords all occur as subwords of p(∞).

There is an equivalent definition of simple Toeplitz sequences via a hole-filling procedure,

which can be found in [63]. By construction, we can verify that for any ω ∈ Ω in a simple

Toeplitz subshift and for any i ∈ Z, there exists n ∈ Z such that ωi+nk are all equal, for all

k ∈ Z.

Proposition 6.1.4 ([52]). Simple Toeplitz subshifts are minimal and uniquely ergodic.
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We bring our attention to the simple Toeplitz subshifts defined by (ak)k ∈ AN and

(nk)k ∈ NN such that nk = 2 for every k ∈ N. In this case, for k ≥ 0 we have

p(k+1) = p(k)akp
(k).

By a result in [63], we can characterize when simple Toeplitz subshifts are linearly repetitive

or satisfy (B). Even though this characterization is given in general, here we will consider

only the aforementioned subfamily of simple Toeplitz subshifts with nk = 2 for every k ≥ 0.

Let Ã be the eventual alphabet of (ak)k, i.e., the set of letters which occur infinitely often

in (ak)k. Let also mk ≥ 1 be the smallest m for which {ak, . . . , ak+m−1} = Ã, for every

k ∈ N.

Proposition 6.1.5 ([63]). Let (ak)k ∈ AN and (nk)k ∈ NN such that nk = 2 for every

k ∈ N and consider the simple Toeplitz subshift (Ω, T ) they define. Then

• (Ω, T ) is linearly repetitive if and only if (mk)k is bounded.

• (Ω, T ) satisfies (B) if and only if (mk)k has a bounded subsequence.

As illustrated by this result, in the context of simple Toeplitz subshifts, the Boshernitzan

condition (B) is a weaker analog of linear repetitivity.

Example 6.1.6. The Schreier graphs associated with Grigorchuk’s group (d = 2, m = 2)

can be encoded as a simple Toeplitz subshift, which can also be obtained via a substitution.

Let A = {a, x, y, z} and (ak)k ∈ AN defined as a0 = a, ak = x, y, z whenever k is

congruent with 1, 2, 3 modulo 3, respectively, for every k ≥ 1. Let (Ω, T ) be the simple

Toeplitz subshift associated with this sequence and (nk)k, with nk = 2 for every k ≥ 0.

In [38], this subshift was used in order to study spectral properties on the Schreier graphs

of Grigorchuk’s group. We can alternatively construct this subshift with the following

substitution on A:

τ(a) = axa, τ(x) = y, τ(y) = z, τ(z) = x.

The sequence (τk(a))k converges to a one-ended infinite word η ∈ AN. The set of all

two-ended words ω ∈ AZ whose subwords are subwords of η is equal to Ω. The resulting

simple Toeplitz subshift (Ω, T ) is minimal, uniquely ergodic, linearly repetitive and satisfies

(B).

It is moreover shown in [39] that Schreier graphs of all spinal groups with d = 2 can be

encoded by simple Toeplitz subshifts, however only few of them are substitutional.

123



6. COMPLEXITY

6.2 Schreier dynamical systems

Following the similarities found between linear subshifts and Schreier graphs of spinal

groups acting on the binary tree, it is our goal now to extend the notions studied for linear

subshifts to more general dynamical systems arising from Schreier graphs, not necessarily

linear.

Let G be a group generated by a finite set S, and let G act on a topological space X by

homeomorphisms. Recall from Section 3.7 that Sch : X → G∗,S is the map assigning to

each point x ∈ X its marked Schreier graph (Γx, x), and let X0 ⊂ X be the set of continuity

points of Sch. We defined the space of Schreier graphs by

GG,X = Sch(X0),

with G acting on GG,X by shifting the marked vertex. Recall also that in the space of marked

graphs G∗,S we consider the topology of local convergence, a basis of which is given by the

cylinder sets

C(Γ,x)(r) = {(Γ′, x′) ∈ G∗,S | B(Γ,x)(r) ∼= B(Γ′,x′)(r)},

for given (Γ, x) ∈ G∗,S and r ≥ 0.

Definition 6.2.1. We call the pair (GG,X , G) a Schreier dynamical system.

Remark 6.2.2. Schreier dynamical systems are similar to subshifts in the sense that

GG,X = {(Γ, x) ∈ G∗,S | ∀r ≥ 0, ∃x′ ∈ X0, (Γ, x) ∈ C(Γx′ ,x
′)(r)}.

Recall that (GG,X , G) is minimal if the action of G on GG,X is minimal, i.e., if all orbits

are dense. Equivalently, if there is an isomorphic copy of any ball in the orbit of any graph in

Ω. Formally, if

∀r ≥ 0, ∀(Γ, x), (Γ′, x′) ∈ GG,X , ∃g ∈ G s.t. g(Γ′, x′) ∈ C(Γ,x)(r).

Proposition 6.2.3. Any Schreier dynamical system (GG,X , G) is minimal.

Proof. By continuity, it suffices to show that, for every x, x′ ∈ X0 and r ≥ 0, there exists

g ∈ G such that (Γx′ , gx
′) ∈ C(Γx,x)(r). Let U = Sch−1(C(Γx,x)(r)) ∩ X0, which is

open since cylinders are open and Sch is continuous on X0. We have x ∈ U , because

(Γx, x) ∈ C(Γx,x)(r). Since the action of G on X is minimal, there exists g ∈ G such that

gx′ ∈ U . Hence, (Γx′ , gx
′) ∈ C(Γx,x)(r).

Let us now establish some notions of complexity for Schreier dynamical systems, which

are inspired by the analogy with linear subshifts.
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Definition 6.2.4. We say that (GG,X , G) is linearly repetitive if there is an isomorphic copy

of any ball at a linear distance from the marked vertex of any graph in GG,X . Formally, if

∃C ≥ 0 s.t. ∀r ≥ 0, ∀(Γ, x), (Γ′, x′) ∈ GG,X ,

∃g ∈ G, |g| ≤ Cr, s.t. g(Γ′, x′) ∈ C(Γ,x)(r).

Notice that this definition is a strengthening of minimality. If we compare both conditions,

for linear repetitivity, we need g not only to exist but also to have length bounded linearly on

r.

Definition 6.2.5. We say that (GG,X , G) satisfies the Boshernitzan condition (B) if there is

a G-invariant, ergodic probability measure ν on GG,X such that

lim sup
r→∞

rε(r) > 0

where ε(r) = min{ν(C(Γ,x)(r)) | (Γ, x) ∈ GG,X }.

Notice that the set D(r) = {C(Γ,x)(r) | (Γ, x) ∈ GG,X } is finite, so ε(r) is well defined

as a minimum. Let dr = |D(r)| be the number of possible r-balls that occur in GG,X .

Notice also that because of minimality, all r-balls are found in any orbit. Since ν is an

invariant measure, ν(C(Γ,x)(r)) = 1/dr for any (Γ, x) ∈ GG,X . We can hence rewrite the

Boshernitzan condition as

lim sup
r→∞

r

dr
> 0.

Definition 6.2.6. We say that (GG,X , G) satisfies the condition (B′) if it satisfies the same

condition as for linear repetitivity but, instead of for every r ≥ 0, for an increasing sequence

going to infinity. Formally, if

∃C ≥ 0, ∃(rn)n ↗∞ s.t. ∀n ≥ 0, ∀(Γ, x), (Γ′, x′) ∈ GG,X ,

∃g ∈ G, |g| ≤ Crn, s.t. g(Γ′, x′) ∈ C(Γ,x)(rn).

Notice that linear repetitivity implies (B′).

Remark 6.2.7. We may now consider any minimal linear subshift (Ω, T ) over an alphabet

A as a Schreier dynamical system. Let G = 〈ta | a ∈ A〉 be the free product of |A| copies

of Z. The group G acts on Ω as follows

taω =

{
Tω a = ω0

ω a 6= ω0

.

Under this action, each ω ∈ Ω is stabilized by all ta but tω0 . Assuming the subshift

(Ω, T ) is aperiodic, the associated Schreier graphs are as linear as in Figure 6.1. We can
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tω−2 tω−1 tω0 tω1 tω2

T−2ω T−1ω ω Tω T 2ω T 3ω

Figure 6.1: Schreier graph of the action of G on Ω, for the orbit of a point ω ∈ Ω. Loops are
omitted.

verify that the dynamical system given by (Ω, T ) is equivalent to the Schreier dynamical

system (GG,Ω, G).

In this setting, the conditions for linear repetitivity and (B) for (GG,Ω, G) coincide with

the classical ones for the linear subshift (Ω, T ).

Extending the notion of simple Toeplitz is more involved. Its definition involves the

concatenation of words, which should be interpreted and redefined for graphs. Additionally,

the group acting on a linear subshift is always Z, which is no longer the case for Schreier

dynamical systems. We now extend the notion of concatenation to graphs. Let Gd∗,Σ denote

the space of graphs with edge labels in an alphabet Σ and d marked vertices, for d ≥ 1.

Definition 6.2.8. Let Σ be a finite alphabet and d1, d2 ≥ 1. Let Γ1 ∈ Gd1∗,Σ and Γ2 ∈ Gd2∗,Σ,

with marked vertices (v0, . . . , vd1−1) and (w0, . . . , wd2−1), respectively. The concatenation

of Γ1 and Γ2 at the vertices vi and wj , for 0 ≤ i ≤ d1 − 1 and 0 ≤ j ≤ d2 − 1, is the graph

Γ1
vi|wj

Γ2 = (Γ1 t Γ2)/{vi = wj} ∈ G(d1+d2−2)∗,Σ,

whose marked vertices are (v0, . . . , v̂i, . . . , vd1−1, w0, . . . , ŵj , . . . , wd2−1).

Γ1

v0
v1

v2

Γ2

w0 w1

w2

vi = wj

Γ1
i|j Γ2 =

Figure 6.2: Concatenation of Γ1 and Γ2 at vi and wj .

This definition of graph concatenation will allow us to extend the notion of simple

Toeplitz subshifts to Schreier dynamical systems.

Definition 6.2.9. Let d ≥ 2 and let S be a finite, symmetric, generating set of a group G.

Let Ξ ∈ G1∗,S be a finite graph, marked at the vertex ξ, and letA ⊂ Gd∗,S be a finite alphabet

of finite graphs, whose elements will be called letters. Let (Λk)k ∈ AN be a sequence of

letters. We recursively define Γ(k) ∈ G2∗,S as follows:
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6.2. Schreier dynamical systems

• Γ(0) is the graph with one vertex and no edges. We consider it marked twice at that

vertex.

• For k ≥ 0, let Γ0, . . . ,Γd−1 be d disjoint copies of Γ(k) ∈ G2∗,S , with each Γi marked

at the vertices (γi, γ
′
i). Let also Ξ1, . . . ,Ξd−2 be d − 2 disjoint copies of the graph

Ξ ∈ G1∗,S , with each Ξi marked at the vertex ξi. We set

Γ̃i =

{
Γi

γ′i|ξi Ξi 1 ≤ i ≤ d− 2

Γi i = 0, d− 1
.

Let (λ0, . . . , λd−1) be the marked vertices of Λk. We define Γ(k+1) ∈ G2∗,S as

Γ(k+1) = Λk
λ0|γ0

Γ̃0
λ1|γ1

Γ̃1
λ2|γ2

. . .
λd−1|γd−1

Γ̃d−1,

with marked vertices (γ′0, γ
′
d−1).

ΛkΓ0 λ0 = γ0γ′0

Γ1

Ξ1

λ1 = γ1

γ′1 = ξ1
Γ2

Ξ2

λ2 = γ2

γ′2 = ξ2

Γd−1
λd−1=

γd−1
γ′d−1

Γ(k+1)

Figure 6.3: Construction of the graph Γ(k+1).

Notice that this construction is well defined, since Γ(k) ∈ G2∗,S for every k ≥ 0. Indeed,

this is true by definition for k = 0. For k ≥ 1, the graphs Γ̃i belong to G1∗,S for 1 ≤ i ≤ d−2,

and to G2∗,S if i = 0, d − 1. We concatenate a graph with d marked vertices with d − 2

graphs with one marked vertex and 2 graphs with two marked vertices, so the resulting graph

has two marked vertices.

Now, once the sequence (Γ(k))k of finite graphs is defined, let (vk, v
′
k) be the marked

vertices of Γ(k) ∈ G2∗,S . For any r ≥ 0, the ball BΓ(k),v′k
(r) will be isomorphic for k big

enough. Hence, we have a sequence of marked graphs (Γ(k), v′k) ∈ G1∗,S which converges

to a marked graph (Γ̃(∞), v∞) ∈ G1∗,S in the local convergence topology. Let Γ̂0, . . . , Γ̂d−1
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be d disjoint copies of Γ̃(∞), marked at the vertices v0, . . . , vd−1, and let Λ ∈ A occurring

infinitely often in (Λk)k, marked at the vertices λ0, . . . , λd−1. We finally define

Γ(∞) = Λ
λ0|v0

Γ̂0
λ1|v1

Γ̂1
λ2|v2

. . .
λd−1|vd−1

Γ̂d−1.

Notice that not every graph constructed in such a way is necessarily a Schreier graph.

Whenever it is, we will call it a simple Toeplitz graph. The coding information of a simple

Toeplitz graph is the tuple (d,Ξ, (Λk)k). We set

GΓ(∞) = {(Γ, x) ∈ G∗,S | ∀r ≥ 0, ∃v ∈ Γ(∞), (Γ, x) ∈ C(Γ(∞),v)(r)}.

A simple Toeplitz Schreier dynamical system is a Schreier dynamical system (GG,X , G)

such that GG,X = GΓ(∞) for some simple Toeplitz graph Γ(∞).

Remark 6.2.10. Let (Ω, T ) be a simple Toeplitz subshift defined by an alphabet A and

the sequences (ak)k ∈ AN and (nk)k ∈ NN, with nk = 2 for every k ≥ 0. Suppose that

ak 6= a0 for every k ≥ 1. We may recover this subshift as a simple Toeplitz Schreier

dynamical system by setting d = 2 as follows. For a0 ∈ A, we set Λa0 to be the graph

with two vertices u and v and an undirected a0-edge between them, marked at (u, v). For

a ∈ A \ {a0}, we set Λa to be the graph with two vertices u and v and an undirected a-edge

between them, plus a′-loops on u and v for every a′ ∈ A \ {a0, a}, marked at (u, v). Let

A′ = {Λa | a ∈ A} ⊂ G2∗,A. The sequence (Λak)k ∈ A′N defines a simple Toeplitz graph

Γ(∞). If we let G = 〈ta | t2a = 1, ∀a ∈ A〉 be the free product of |A| copies of Z/2Z, acting

on Ω as

taω =


Tω a = ω0

T−1ω a = ω−1

ω otherwise

,

then GΓ(∞) = GG,Ω, and the orbits are the same as for (Ω, T ). Notice that for d = 2 the

graph Ξ does not play any role in the construction of Γ(∞).

Proposition 6.2.11. Let Gω be a spinal group with d ≥ 2, m ≥ 1 and ω ∈ Ωd,m. The

Schreier dynamical system (GGω ,XN , Gω) is simple Toeplitz.

Proof. Let Ξ, Θ and Λπ, for π ∈ Epi(B,A), be as in Proposition 3.1.3. We can verify that

the construction from Definition 6.2.9 with parameters (d,Ξ, (Λk)k) given by Λ0 = Θ and

Λk = Λωk−1
, for k ≥ 1, yields the same space of graphs as GGω ,XN .

In Proposition 6.1.5, a characterization for linear repetitivity and (B) for linear simple

Toeplitz subshifts was provided. We now want to give similar statements for the simple

Toeplitz Schreier dynamical systems defined by spinal groups.
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6.2. Schreier dynamical systems

Let (GG,X , G) be a simple Toeplitz Schreier dynamical system, defined by (d,Ξ, (Λk)k).

We define a sequence of integers (mk)k as follows. For every k ≥ 0, mk is the smallest

integer such that {Λk, . . . ,Λk+mk−1} = {Λn}n≥k. For the Schreier dynamical system

(GGω ,XN ,Gω) associated with a spinal group Gω, for every k ≥ 0, mk is the smallest integer

such that {ωk, . . . , ωk+mk−1} = {ωn}n≥k.

Theorem 6.2.12. Let Gω be a spinal group with d ≥ 2, m ≥ 1 and ω ∈ Ωd,m, and let

(GGω ,XN , Gω) be its associated Schreier dynamical system. Then (GGω ,XN , Gω) is linearly

repetitive if and only if (mk)k is bounded.

Proof. Suppose that mk ≤ M for every k ≥ 0. Let r ≥ 0. As linear repetitivity is a

local condition and the action is minimal, it suffices to consider two points ξ, ξ′ ∈ Γξ, for

ξ ∈ XN \ Cof((d− 1)N). We have to find g ∈ Gω, of length not greater than Cr, such that

the balls B = B(Γξ,ξ)(r) and B(Γξ,gξ′)(r) are isomorphic, for a constant C independent of ξ,

ξ′ and r.

Let us consider the foldings ϕk : Γξ → Γk, for every k ≥ 0, given by η 7→ η0 . . . ηd−1,

and let R ≥ 0 be the smallest such that ϕR is injective on B. We will assume R ≥ 2, as the

possibilities for smaller R are not many and can be checked directly or absorbed into C.

Recall that ΓRξ = XRσR(ξ) is the copy of ΓR which contains ξ. By definition of R, it

contains B. Moreover, we set Bi = B ∩ ϕ−1
R (XR−1i), so that B = ∪d−1

i=0Bi. Let si be the

smallest such that ϕsi is injective on Bi, and set s = maxi∈X si. Notice that si ≤ s ≤ R− 1.

By minimality of R, ϕR(B) contains the central piece ΛωR−2 of ΓR, and by definition of

s we have diam(ϕR(B)) ≤ 2 diam(Γs) + 1. In addition, by minimality of s and si, we find

that diam(ϕR(B)) ≥ diam(Γs−1) + 2. We then have

diam(Γs−1) + 2 ≤ 2r ≤ 2 diam(Γs) + 1,

2s−1 ≤ 2r ≤ 2s+1 − 1.

Let us assume first that s ≤ R − 2. In this case, ϕR(B) is contained in the subgraph

Xs(d − 1)R−2−s0X of ΓR, and so B and ϕR(B) are isomorphic. By assumption, there

exists some t, with s ≤ t ≤ s+M − 1, such that ωt = ωR−2. By choosing t minimal, we

may assume s ≤ t ≤ R− 2. We define the following injective map

ψ : Xs(d− 1)R−2−s0X → Γt+2

w(d− 1)R−2−s0i 7→ w(d− 1)t−s0i
.

Notice that since ωt = ωR−2, ψ preserves the edges of the graphs, and so it is in fact

an isomorphism with its image. In particular, since B is isomorphic to ϕR(B), it is also

isomorphic to ψ(ϕR(B)).

129



6. COMPLEXITY

Define now g ∈ Gω to be the labeling of a shortest path in Γt+2 from ϕt+2(ξ′) to

ψ(ϕR(ξ)), and set B′ = B(Γξ,gξ′)(r). We have

ϕt+2(B′) = B(Γξ,ϕt+2(gξ′))(r) = B(Γξ,gϕt+2(ξ′))(r) =

= B(Γξ,ψ(ϕR(ξ)))(r) ∼= ψ(ϕR(B)) ∼= B.

This implies that ϕt+2(B′) is contained in the subgraph Xt0X of Γt+2, and so that B′ and

ϕt+2(B′) are isomorphic. Hence, B ∼= B′. Moreover,

|g| ≤ diam(Γt+2) = 2t+2 − 1 ≤ 2s+M+1 − 1 ≤ 2M+3r.

Assume now s = R − 1. For every g ∈ Gω such that gϕR(ξ′) = ϕR(ξ) in ΓR, we set

B′ = B(Γξ,gξ′)(r), and we have

ϕR(B′) = B(Γξ,ϕR(gξ′))(r) = B(Γξ,gϕR(ξ′))(r) =

= B(Γξ,ϕR(ξ))(r) = ϕR(B).

Notice also that ϕR must also be injective on B′, as otherwise we would have 2r =

diam(B′) > diam(ϕR(B′)) = diam(ϕR(B)) = 2r. Let u be the vertex (d − 1)R in

ΓR. We have either u ∈ ϕR(B) or u 6∈ ϕR(B).

If u 6∈ ϕR(B), then let g ∈ Gω be the labeling of a shortest path from ϕR(ξ′) to ϕR(ξ)

in ΓR. In this case, we trivially have B ∼= B′, and furthermore

|g| ≤ diam(ΓR) = 2R − 1 = 2s+1 − 1 ≤ 8r.

If u ∈ ϕR(B), let v be its unique preimage in B. We proceed differently depending on

whether B fixes v or not.

Assume first that v is fixed by B, which may only happen if d ≥ 3. Let g be the

labeling of a shortest path from ϕR+1(ξ′) to ϕR(ξ)1 in ΓR+1. Since ϕR is injective on both

B and B′, so is ϕR+1. Moreover, ϕR+1(B) ⊂ XRi for some i ∈ X while by definition

ϕR+1(B′) ⊂ XR1. The unique preimage v′ of u in B′ is also fixed by B, which implies that

B ∼= B′. In addition,

|g| ≤ diam(ΓR+1) = 2R+1 − 1 = 2s+2 − 1 ≤ 16r.

Suppose now that v is not fixed by B, and belongs to a copy of ΛωN , for some N ≥ R.

By assumption, there exists some t, with R ≤ t ≤ R + M − 1, such that ωt = ωN . We

may choose t minimal so that t ≤ N . Define g ∈ Gω as the labeling of a shortest path

from ϕt+1(ξ′) to ϕR(ξ)(d − 1)t−R0 in Γt+1. Again as ϕR is injective on both B and B′,
so is ϕt+1. Moreover, ϕt+1(B) ⊂ XR(d − 1)t−R+1 and ϕt+1(B′) ⊂ XR(d − 1)t−R0 by
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definition. Notice that B and B′ are isomorphic if and only if the loops at v and v′ are labeled

by the same generators. The former has loops labeled by generators in Ker(ωN ), while the

latter has loops labeled by generators in Ker(ωt). Since we chose t such that ωt = ωN ,

B ∼= B′. Furthermore,

|g| ≤ diam(Γt+1) = 2t+1 − 1 ≤ 2R+M − 1 = 2s+M+1 − 1 ≤ 2M+3r.

This concludes the proof of the implication⇐, as in all cases we found an element g ∈ Gω
for which the ball of radius r around gξ′ is isomorphic to the ball of radius r around ξ, and if

we take C = 2M+4, we have |g| ≤ Cr.

Conversely, assume that the Schreier dynamical system is linearly repetitive and (mk)k

is not bounded. Let C be the linear repetitivity constant, and set M such that C ≤ 2M−3 −
1. Since (mk)k is not bounded, there exist n ≥ 0 and N ≥ n + M such that ωN 6∈
{ωn, . . . , ωn+M−1}. We assume moreover that N is minimal and set r = 2n+2 − 1.

Let now ξ ∈ XN \ Cof((d − 1)N) and ξ′ ∈ Cof(ξ) be two vertices of Γξ, such that

ϕN+2(ξ) = (d − 1)N00 =: v and ϕN+2(ξ′) = (d − 1)N−1000 =: v′. Because of linear

repetitivity, there exists g ∈ Gω with |g| ≤ Cr such that B := B(Γξ,ξ)(r)
∼= B(Γξ,gξ′)(r) =:

B′.
Notice that r = diam(Γn+2) ≤ diam(ΓN+1). As ϕN+2(ξ) belongs to the subgraph

XN00 of ΓN+2, this implies that ϕN+2 is injective on B, and hence that it must be also

injective on B′. We had that B ∼= B′, so in particular

B(ΓN+2,v)(r) = ϕN+2(B) ∼= ϕN+2(B′) = B(ΓN+2,gv′)(r).

At the same time,

|g|+ r ≤ (C + 1)r ≤ 2M−3(2n+2 − 1) ≤ 2n+M−1 − 1 < 2N − 1 = d(v, v′).

Therefore ϕN+2(B′) must be confined to the subgraph XN+10 of ΓN+2. However, the

central piece of ΓN+2, a copy of ΛωN , is contained in ϕN+2(B), so its image by the

isomorphism must be mapped to a copy of Λωs within XN+10, for some s ≤ N − 1. If

n ≤ s ≤ N − 1, we have ωs = ωN , which is a contradiction by minimality of N , and if

s < n then ϕN+2 cannot be injective on B′, which is also a contradiction.

Theorem 6.2.13. Let Gω be a spinal group with d ≥ 2, m ≥ 1 and ω ∈ Ωd,m, and let

(GGω ,XN , Gω) be its associated Schreier dynamical system. Then (GGω ,XN , Gω) satisfies

(B′) if and only if (mk)k has a bounded subsequence.

Proof. The proof is analogous to the proof of Theorem 6.2.12. For the implication⇐, let

(mkn)n be the bounded subsequence of (mk)k. We call a radius r ≥ 0 admissible if there

exists some n ≥ 0 such that 2kn−1 ≤ 2r ≤ 2kn − 1, and define the sequence of radii from
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the definition of condition (B′) as the increasing sequence of admissible radii, which is

clearly unbounded.

Let r be an admissible radius, with 2k−1 ≤ 2r ≤ 2k−1 with k = kn for some n ≥ 0, and

define the sequence of radii from the definition of condition (B′) as the increasing sequence

of admissible radii, which is clearly unbounded. We proceed as for linear repetitivity and

define R and s. The inequality 2s−1 ≤ 2r ≤ 2s+1 + 1 then implies k − 1 ≤ s ≤ k.

For the case s ≤ R − 2, we precise that the t is chosen such that k ≤ t ≤ k +M − 1,

instead, but we obtain the inequality s ≤ t ≤ s + M , which later allows us to conclude

that |g| ≤ 2M+4r. If s = R− 1, we proceed again as for linear repetitivity. The inequality

k − 1 ≤ R− 1 ≤ k allows us to find the same bounds for the length of g in each case.

The proof of the converse is analogous to the proof of Theorem 6.2.12 too. Assume

that the Schreier dynamical system satisfies (B′), which sets the constant C and defines the

sequence of admissible radii, and let M be as above. If (mk)k does not have a bounded

subsequence, then there exists some n ≥ 0 such that, for every k ≥ n, {ωk, . . . , ωk+M−1} 6=
{ωl}l≥k. Now possibly the radius 2n+2 − 1 is not admissible, but in that case we let r be an

admissible radius such that r ≥ 2n+2 − 1 and set n′ such that r ≤ 2n
′+2 − 1. As n′ ≥ n,

there exists some minimal N ≥ n′ + M − 1 such that ωN 6∈ {ωn′ , . . . , ωn′+M−1}. From

this point on, we proceed as in the proof of Theorem 6.2.12, but writing n′ in the place of

n.

Corollary 6.2.14. Let d ≥ 2 and m ≥ 2, and let ΩLR and ΩB′ be the subsets of Ωd,m for

which (GGω ,XN , Gω) is linearly repetitive and satisfies (B′), respectively. If µ is the uniform

Bernoulli measure on Epi(B,A)N, we have

µ(ΩLR) = 0, µ(ΩB′) = 1.

Proof. First notice that ω ∈ ΩLR if and only if (mk)k is bounded. If we set

ΩM
LR = {ω ∈ Ωd,m | ∀k ≥ 0, {ωk, . . . , ωk+M−1} = {ωn}n≥k}},

then ΩLR = ∪M≥1ΩM
LR. Because ΩM

LR cannot contain any sequence with constant M -prefix,

we have

µ
(
ΩM
LR

)
≤ µ

 ⊔
ω0...ωM−1
not constant

ω0 . . . ωM−1ΩM
LR

 =
EM − E
EM

µ
(
ΩM
LR

)
,

where E denotes |Epi(B,A)|. Hence, µ
(
ΩM
LR

)
must be zero, and as ΩLR is the countable

union of sets of measure zero, it must have measure zero itself.

Similarly, notice that ωB′ if and only if (mk)k has a bounded subsequence. Setting

ΩM
B′ = {ω ∈ Ωd,m | ∀k ≥ 0, ∃l ≥ k, {ωl, . . . , ωl+M−1} = {ωn}n≥l}},
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we have ΩB′ = ∪M≥1ΩM
B′ . In this case, for M ≥ E, we can bound the measure of ΩM

B′ from

below by adding the restriction that the M -prefix contains all epimorphisms in Epi(B,A).

Hence, we reduce the problem to finding the probability that a givenM -tuple of Epi(B,A)M

contains all the epimorphisms. Using the union bound, we see that the probability that the

tuple does not contain all of them is not greater than (|E| − 1)
(
|E|−1
|E|

)M−1
, and therefore

µ
(
ΩM
B′
)
≥ µ

 ⊔
{ω0,...,ωM−1}=

=Epi(B,A)

ω0 . . . ωM−1ΩM
B′

 ≥

≥

(
1− (|E| − 1)

(
|E| − 1

|E|

)M−1
)
µ
(
ΩM
B′
)
.

This coefficient tends to 1 as M increases, which shows that µ(ΩB′) = 1.

Theorems 6.2.12 and 6.2.13 are intended as analogous statements of Proposition 6.1.5

for the Schreier dynamical systems arising from spinal groups. For linear repetitivity, we

obtain indeed a parallel result. Nevertheless, while in Proposition 6.1.5 the weaker analog

for linear simple Toeplitz subshifts is condition (B), in Theorem 6.2.13 it is condition (B′).

These conditions are in fact equivalent in the context of linear simple Toeplitz subshifts.

However, we do not know whether this is the case for simple Toeplitz Schreier dynamical

systems in general. A reasonable starting point to solve this question would be finding out

whether this is true for spinal groups.
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Appendix A

Visualization tool for Schreier graphs of automata groups

In the study of Schreier graphs of groups acting on rooted trees, the first step is always to

understand those associated with the action on the finite levels of the tree. These finite graphs

can be computed algorithmically with little effort. However, understanding their underlying

structure is key if one wants to extrapolate to other possibly infinite Schreier graphs.

During the realization of this thesis, and with the aim of making this task simpler, an

interactive graphical tool to visualize Schreier graphs of automata groups was developed. It

can be found at https://unige.ch/~perezper.

In this appendix, we provide a brief description of the tool as well as some screenshots

to illustrate it, but we actively encourage the reader to visit the URL and play around with

the examples that are included.

The first dropdown menu contains a list of examples of automata groups. After choosing

one, and selecting a level of the tree from the second dropdown, clicking on Visualize
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will create a view where the Schreier graph of the chosen automata group with respect to the

stabilizer of any vertex of the selected level will be displayed.

The vertices will rearrange themselves in a way that minimizes the distance between

neighbors but forcing a separation so that the graph is readable. Notice that loops are not

drawn.

Any vertex can be dragged and dropped from their position, and the rest of the graph

will adapt consequently.

136



In the first dropdown menu, the option labeled Custom... allows to specify any valid

automaton within the size bounds and visualize its associated Schreier graphs. When selected,

a new panel appears. After choosing the number of states and the size of the alphabet, two

tables must be filled, in order to specify the output and successor of each state and input. The

graph will be displayed after clicking on Visualize. We provide here an example where

the Hanoi towers group on 3 pegs is specified as custom automaton.
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