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ABSTRACT

We are aiming at using EEG source localization in the framework of a Brain Computer Interface project. We propose
here a new reconstruction procedure, targeting source (or equivalently mental task) differentiation.

EEG data can be thought of as a collection of time continuous streams from sparse locations. The measured electric
potential on one electrode is the result of the superposition of synchronized synaptic activity from sources in all the
brain volume. Consequently, the EEG inverse problem is a highly underdetermined (and ill-posed) problem. Moreover,
each source contribution is linear with respect to its amplitude but non-linear with respect to its localization and
orientation. In order to overcome these drawbacks we propose a novel two-step inversion procedure.

The solution is based on a double scale division of the solution space. The first step uses a coarse discretization and has
the sole purpose of globally identifying the active regions, via a sparse approximation algorithm.

The second step is applied only on the retained regions and makes use of a fine discretization of the space, aiming at
detailing the brain activity. The local configuration of sources is recovered using an iterative stochastic estimator with
adaptive joint minimum energy and directional consistency constraints.

Keywords: Brain Computer Interface, EEG, source localization, inverse problem, regularization, stochastical estimators

1. INTRODUCTION

Solving the EEG inverse problem arises in various medical fields as a tool for correct and relevant interpretation of EEG
(electroencephalograph) data. The goal is to map back the data measured on the scalp surface to the brain volume,
allowing for direct physiological analysis. Unfortunately, for two major reasons, solving the EEG inverse problem is not
a straightforward task.

First, and most importantly, the problem is highly underdetermined. Indeed, the EEG data is a distant measurement of
the brain activity in an inhomogeneous medium. The measuring system is composed of a number of electrodes which
may vary, roughly, between 16 and 256, which sample more or less regularly the scalp surface. Thus, the 3D electric
field is measured on a discrete set of points on a 2D surface. The Laplace equation insures uniqueness of the source
distribution for a given electric field, but this property is ineffective because of the EEG data incompleteness. Moreover,
the scalp-air interface provokes an important smearing effect which inherently reduces the relative differences between
potential fields distributions. We are therefore facing the task of volume source reconstruction from sparse
measurements of a low-pass filtered 2D electric field distribution.

Secondly, the EEG data is not only incomplete, attenuated and smeared but also exhibits high noise values of very
differing nature, to name a few, electrode noise, eye blinking artifacts and 50 (or 60) Hz noise. This may not only cover
the brain activity, but also mislead the reconstruction by transforming one potential field into another.

We concentrate in this article on how to properly constrain the EEG inverse problem in order to achieve robust data
reconstruction, in spite of the above obstacles.

EEG measurement has one significant advantage over its complement, MEG (magnetoencephalography), that is its high
temporal resolution, which enables temporal redundancy of source data. Most of the state of the art solutions tend to
ignore the temporal information, concentrating on spatial modeling, mostly because of the computational complexity
required and of the absence of any explicit quantifiable priors on temporal brain activity behavior. We introduce in this
paper (Section 6) implicit temporal regularization induced by structural constraints, made possible by the
aforementioned redundancy. We will thus solve a spatiotemporal problem, using overlapping time-windows. This will
be our first aid in overcoming the noise and underdetermination drawbacks.



The second is derived out of the observation that the relevant information we are looking for is usually confined in a
reduced portion of the brain volume. This is the case for our main targeted application, Brain Computer Interface, where
the main goal is discerning between different mental states of a user. This is the case as well for numerous medical
applications, e.g. epileptic seizure localization. Thus, instead of full space reconstruction, we can fully reconstruct a
well-selected subvolume only and approximate elsewhere. This leads us to a two-step solution (Section 7) based on a
double scale division of the solution space. The first step uses a coarse discretization and has the sole purpose of
globally identifying the active regions, while the second step is applied only on the retained regions and makes use of a
fine discretization of the space, aiming at detailing the brain activity.

We begin this paper by describing the physical model at the basis of our research (Section 2). We continue with the
mathematical formulation of the EEG inverse problem in Section 3 and the description of our solution framework in
Section 4. Sections 5, 6 and 7 define the constraints which we will impose on our EEG inverse solution. Section 8 is
dedicated to the presentation of qualitative and quantitative results, compared with some state of the art techniques.

2. PHYSICAL MODEL: FORWARD PROBLEM

We discuss in this section the physical relationships between a given brain source activity and the corresponding EEG,
as we need to solve the forward problem before attacking the inverse one.

2.1. EEG origin

The origin of the scalp measured electric activity of the brain lies in the synaptic activity of neurons. However, the
identification of an appropriate model for source modeling is not a trivial problem. Consider a multipolar decomposition
of source configurations. Theoretically, any term of such decomposition can be expressed as a combination of monopole
sources of smaller size, but it is obvious that there are no independent electric charges present in the brain. We need to
investigate the underlying process of synaptic activity.

The propagation of neuronal excitations is done through axon potentials, which exhibit quadripolar fields. The intensity
of these local fields is however too weak to explain the EEG data. The current widely accepted explanation [1] relies on
the synchronization of activities of multiple neurons at the dendrite-dendrite level. The neuron to neuron excitation
transmission at dendrite level can be modeled, from the physical point of view, as an accumulation of charges (ions),
and thus, as a current dipole. Synchronization of excitations leads to measurable electric fields, integrating all the
smaller currents into an observable one. This explains the adoption of the dipole model as the brain source model in all
the EEG community. Moreover, while it is not obvious to justify the dipole source character at a larger scale, any higher
order multipole can be obtained through finer scale dipole configurations, albeit with an increase in complexity.

2.2. Forward problem

It is quite easy to express the field of a current dipole in a homogeneous infinite conductive volume. The human head is
however neither homogeneous nor infinite. The most accurate methods for computing the EEG corresponding to one
dipole rely on realistic head models and finite or boundary elements techniques ([2], [3] and [4]). The complexity of
these methods is very high, and the computations should be repeated for each different subject. Our goal is to compare
and validate inversion methods, and for that purpose the use of a generic spherical models is more than sufficient, also
allowing easy benchmarking. This explains the large use of these models in researches related to this problem.

We use in this paper a 4-layer spherical head model as described by Zhang in his paper [5], under the name of Stokl
head. We also employ the analytical expansion which is presented therein, which can be written in simplified form as
(for a unit radius sphere with isotropic layers):
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where V' is the measured scalp potential, D, and D; represent the radial and the tangential components of the dipole, Ry
stands for the dipole's eccentricity (Figure 1, from [5]), P, and P,’ are the Legendre and respectively the associated
Legendre polynomials, Gscalp is the scalp conductivity, § and y are dipole-electrode geometry related parameters and the

J» functions are also linked with the layers parameterization. V is, of course, the field potential at the electrode position.



Figure 1. N-layer spherical model

For more details refer to Zhang's paper [5], which also describes a fast method for approximation, now rendered
obsolete by the increase in processors' speed.

3. PROBLEM FORMULATION

We have considered in the previous section the relationship between one dipole source and the corresponding scalp
measurements. In practice we need to estimate brain activity over the full gray matter volume. We can write:
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[ in equation (2) is the lead-field operator defined according to the Zhang formula (1) as the potential field at the
electrodes for a unitary dipole at position 7y, which spans the gray matter volume, and ] is the source current density.

One needs to model the above integral in discrete form in order to perform computer assisted inversion.
The first possibility is to restrain the number of sources to a finite and preferably small value. This way, the integral in

(2) reduces to a finite sum:
V=> I(r)j(r 3
2 ()i(x) )
This type of solution is considered in numerous papers, such as [6], [7]. The main drawback consists in the nonlinearity
of the lead-field operator with respect to the source position, which imposes the use of nonlinear optimization
techniques, reputedly slow. Also, the source reconstruction necessarily yields nonrealistic Dirac-like sources.
We prefer to use a distributed modelization of the brain volume [2], which transforms (2) into a linear equation. The
gray matter volume is discretized into voxels (volume pixels) of fixed positions, which should be small enough to
preserve the coherence of the lead-field inside one voxel. Given that the lead-field is linear with respect to the source
amplitude (1), we simply have (with L the lead-field matrix containing on rows the / corresponding to each voxel):
V=1LJ @)
It is necessary to emphasize that the number of voxels is much higher than the number of electrodes. We have traded the
nonlinearity issue with an underdetermination issue. However, this distributed model not only allows for fast linear
operations, but also permits realistic reconstruction results (continuous spatial activity as opposed to Dirac-like).
We complete our formulation with the inclusion of the temporal dimension (i as the time sample) and of an additive
noise term 7. Finally:

Vi=L3' +n' (%)



Both in equations (4) and (5) L is the lead-field matrix associated with the electrodes and the voxels obtained through
volume discretization, and J is a column vector containing the current source amplitudes in each voxel. Since a current
dipole is a vector quantity, the size of the matrices involved in equation (5) are:

V,n=1xN, with N the number of electrodes

J=1x3M, with M the number of voxels

L= Nx3M
Typically M is of the order of thousands and N ranges from 16 to 256. We use in the results section a simulated system
of 4024 voxels and 123 electrodes.
From this point on, any reference to the EEG inverse problem in this paper should be interpreted as a reference to
equation (5), as we base our analysis on the linear distributed model with additive noise.

4. INVERSION FRAMEWORK

As the EEG inverse problem is a highly underdetermined problem, an infinite number of solutions exist for any EEG
measurements. One needs to constrain the inverse solution in order to impose uniqueness and counter ill-posedness.
Two main approaches are present in the literature concerning generic inverse problems: deterministic regularization and
stochastic estimators.

4.1. Deterministic regularization

This is the approach which is used in the state of the art techniques for the EEG inverse problem (Loreta [10], [14],
Laura [12], Focuss [9]). The solutions are based on Tikhonov-like regularization [11], [13], [14], evaluating the current
density as:

3 =argmin(|V - L|f + 2w’ 6)

The W parameter is a weighting matrix, and A is a regularization parameter. Loreta actually discards the first term and
minimizes the second term over the set of exact solutions, with ¥ the second order derivative operator (Laplacian).
The Laura solution keeps the regularization parameter A, but no hint is given by the authors as to the setting of this
parameter. The weighting matrix # is a more generic high pass filter based on the distance between voxels (which can
yield the Laplacian operator). Generally, the solution to the equation (6) is given in the form (with / the identity matrix):
J=WIL (LWL + A1V (7)
Notice that one considerable difficulty resides in the inversion of the weighting matrix, because of the sheer size of W.
The Focuss solution is somehow more elaborate as it iteratively updates W as the energy of the previous estimate,
yielding finally more focused solutions.
None of the above solutions explicitly take into account noise and source modeling, although the form of the
regularization functional (L2 norm) implicitly considers Gaussian noise and Gaussian sources. We address these issues
in the present paper.

4.2. Spatiotemporal MAP framework

We place our analysis in the framework of stochastic estimators, more precisely MAP estimator. We evaluate J as the
maximizing functional of the a posteriori probability:

J=argmax| p(V[3)p(J)] (8)
Taking the natural logarithm and inverting the sign:
J =argmin[ @, (V-L1)+®, (J)]
®, (V-LI)==Inp(V|JI);®,(J)=—Inp(J)
The first term of the functional in (9) is only noise distribution dependent, while the second one is source distribution
dependent. Therefore, we can consider separately the noise and source modeling. However, we apply the principle in
equation (9) not for a time sample, but for a time window, which requires the probability distributions involved to be

treated as spatiotemporal distributions. Their modelization (and implicitly of the regularization functional) is the subject
of the following sections
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5. NOISE MODELING

Noise definition demands the investigation of both the spatial and temporal characteristics. In this paper we make the
assumption of temporally white noise, meaning that noise realization at sample i+1 is independent of the realization at
sample i. We do not make any a priori assumptions about the spatial correlations of the noise, as we plan to determine it
from the data, but we assume Gaussian probability distribution:

[ 1 5
p,(n')=————€exp
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Superscript ¢ in equation (10) stands for transposed, and R, is the spatial covariance matrix of the data. The Gaussian
assumption allows for the first functional term in equation (9) to be quadratic:

c1>n(V—|_J)=%(v-|_J)tR;;(V—LJ) (11)
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We privilege quadratic assumptions (in the absence of confirmed priors) mainly for their low computational cost, as the
minimization of quadratic functionals yields closed-form solutions. This is not a negligible advantage when considering
high-dimensionality problems as the EEG inverse problem. This also explains their wide use in deterministic
regularization methods (see previous section). It is also obvious that if R,, is the identity matrix we particularize to the
first term of the deterministic functional (6).

5.1. Estimation

In order to estimate the covariance matrix of the data we rely on our previous assumption of temporally whiteness and
also on a frequency-band related information. The frequency band of brain signals spreads from 3 to roughly 40-100 Hz
(while there can be discussion about the exact value of the upper bound, it is certainly below 100 Hz, and in most
medical applications it is set at 30 or 40 Hz), while the sampling frequencies of EEG are usually set at the values of 512
or 1024 Hz. This implies that we have a physiologically out-of-band spectrum ranging from the upper-bound frequency
to the Nyquist frequency, which we can use to determine the noise characteristics through the spectral density. The
proposed estimation scheme is then (with 7ouomana the out-of-band noise):

n = high_ pass(EEG _signal, f,, )

outofband

. (12)
R, = &K COV(N,,opang ) With k = ————
f,-2f,
/s in equation (12) is the sampling frequency, while f,, is the upper physiological frequency. The normalization constant
k is imposed by the white noise assumption (we have the same noise spectral density in the physiological band).

6. SOURCE MODELING

We treat in this section the source modeling possibilities and the constraints which can be imposed on the inverse
solution from this perspective. We address, as in the previous section, the probability distribution characterization, but
also introduce the structural constraints, used for implicit temporal regularization.

6.1. Spatial covariance matrix

As we use a double scale division of the solution space we need to model the probability distributions both at local (fine
scaling) and at global (coarse scaling) level. We assume, similarly to the previous section, time independency of the
realizations.

6.1.1. Local statistics

We model the prior source distribution locally as Gaussian:

pJIocaI (‘] i ) = L % eXpiE(J
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(13)



Although there are no grounds to claim the validity of this prior, it leads to the classical quadratic term used in
deterministic regularization approaches. We actually use it in an iterative fashion, described in section 7, modifying the
covariance matrix at each iteration step, which finally yields a non-Gaussian data-dependent distribution.

In [8] we have studied the properties of an EEG electrode system with respect to the single source localization in the
framework of quadratic norm based inversion. We use the localization kernel R, as defined therein corresponding to
our noise level and convolute it to the covariance matrix R jocaiprior in (13). This way we use the prior knowledge of the
system’s spatial resolution to estimate collectively sources which can not be separated. Thus we define the blurred
covariance matrix R jjocqs as:

R =conv| R

— L
prior model localization PSF

JJlocal JJlocalprior ? Rres ( 14)

Finally, our second term of the regularization functional in (9) is:

JJlocal

1 _
(DJJlocaI(‘J):E‘]IR ) J (15)

We still need to estimate R jocaiprior from the data. The estimation procedure is explained in subsection 6.3. and is used in
the framework of the iterative algorithm section 7.

6.1.2. Global statistics

We express the global statistics in similar fashion to the local statistics, without the localization kernel, as we use at this
level a coarse discretization of the space, such that the voxels are larger than the width of the localization point spread
function. At the global level we have then:

R =R

JJglobal JJglobalprior

1 _ (16)
cDJJgIobaI (J ) = E J' RJJlg|oba| J

We use the same estimation procedure at the global level for R jgora as at the local level for Riocaiprior

6.2. Structural constraints

Consider the following set of common knowledge facts about the EEG measurements and brain activity:
e  The synaptic pathways do not change over time (at least for the duration of one recording).
e The EEG sampling frequency is considerably higher than the native frequencies of brain signals.
From the above statements we draw the directional consistency principle:
If the duration of an inversion time window is properly chosen, inside that time window the reconstructed dipoles
should have the same orientation.
Moreover, the above principle should apply both at local and at global level. We use the above principle as an implicit
regularization tool, through the use of the directional consistency measure I as a selection criterion in the framework of
our iterative algorithm:
1

Ji_Ji+1
:_E v 17
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T is the length of the time window.
Now consider a second set of common knowledge facts:
e Discontinuities are natural between neighboring but functionally different brain regions.
e All regions are active, but only a few produce measurable, high intensity fields.
e These regions are mental task related regions.
The above considerations enable our global level space reduction approach:
1. Partition the brain volume into functionally different regions.
2. Select the active brain regions using global priors.
3. Inverse locally in the selected regions.
Since the inversion is simultaneously performed on several time frames, the space reduction procedure acts as an
implicit continuity constraint (same volumes are selected for reconstruction in successive time frames).



6.3. Estimation

We discuss in this subsection the estimation of local and global covariance matrices. As we do not have any prior
information about the source position, we use covariance matrices of the form:

RJJprior = 82 I (1 8)

In equation (18) / is the identity matrix and & is a scalar value which needs to be set at the mean energy of the source.
As we are considering Gaussian processes we should have:

Ry =Ry +&’Ll' & &2 =(LL') (R, ~R,,) (19)

Ryy is the estimated covariance matrix of the data. However, since our ideal modeling is not perfect, the equality (19)
will not hold. We can nevertheless estimate & as:

) _Trace(RW -R,)

£ Trace( LU) 20
We can now compare our result with (7) and note that the functionals are identical when particularizing:
&R =W
R, =11

The benefit of our modeling is that not only it is derived from a generic framework, allowing for different types of
parameterization, but also that it includes automatic data-driven estimation of regularization parameters.

7. RECONSTRUCTION SCHEME

We synthesize in this section the previously described conjectures and modeling work by defining the reconstruction
procedure which encompasses them. We begin by the description of the core algorithm, iterative Gaussian based, and
continue with the full regularization scheme.

7.1. Gaussian Iterative algorithm

Most of our modeling is based on Gaussian distributions, which allow for closed-form solutions and therefore fast
computations, a primary concern for large systems such as ours. True distributions, however, are not usually Gaussian.
In order to approximate non-Gaussian source data we propose an iterative algorithm which is at each step Gaussian but
whose parameters evolve at each iteration. In the spirit of the previous sections we will proceed by space-reduction.

We begin by estimating the noise covariance matrix through the method described in 5.1. We pursue with the
computation of the associated resolution kernel and of the mean source energy as described in subsection 6.3. Then we
obtain an estimate of the current density by:

A t t -1
J=R,L'(LR,L' +R,,) V 1)

Using the current estimate we select for the next iteration a reduced solution space by imposing a relative lower
threshold for either the energy of the estimate or for the directional consistency measure, e.g.:
r >k, (22)

selected = ™r— max

ks 1s the relative lower threshold. The pertinence of the selection criterion is a highly influential factor on the success of
the procedure, (see section 8). The lower threshold evolves between a minimum and a maximum, increasing at each
iteration step. We repeat the estimation-selection couple, updating at each step the mean estimate energy of the sources,
until the cumulative probability P, of the estimated noise (error) is below a certain tolerance fol:

P (||n||RXX >V -L3], ) <tol (23)

Thus we stop when the predicted error is no longer explained by the noise, which implies that some sources should be
localized in the discarded space, and restore the last good estimation. The above stopping criterion holds for regions
with low signal-to-noise ratio, where the functional ¢, is dominant with respect to ¢. A complete condition for
interruption would take into consideration the evolution of the MAP functional (9), but (23) is sufficient in our targeted
SNR zone (EEG data typically exhibits SNR below 10 dB).

Two remarks are necessary at this point:



1) It may happen that during the selection procedure the number of retained possible sources drop below the number of
electrodes, turning the system into an overdetermined problem. Instead of (21) we need to use the regularized least-
square-like solution of MAP problem:

A -1
J=(UR'L+R}) LRV (24)
2) Unlike the classical MAP formulation, two source configurations may produce the same measurement ¥ and error

”\/ -LJ .- In this case, the source closer to the surface is privileged, as the second term in the regularization functional

Ron
minimizes ”j “ We use then in equations (21) and (24) a normalized (weighted) version of the source covariance

matrix:
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In equation (25) L; and L; are columns of the lead-field matrix, and wRj; is the weighted source covariance matrix. To
summarize the Gaussian iterative algorithm:

e  Estimate the noise covariance matrix Rnn, (12) compute the resolution kernel Ryes

Estimate the mean source energy (20)

Compute the current source estimate through (21) or (24)

Stop according to (23) and return the previous result

Else select the new solution space (22) and loop back to energy estimation

7.2. Full scheme
We base our full reconstruction scheme (Figure 2) on the constraints defined in the previous section and on the iterative

Solution Iterative solution, Iterative solution,
space global priors (Gaussian) local priors
~\
- EEG data, N
= moving time irecti
§ win d%ws Global Local D(ljrictlonal I
e statistics statistics an empora
g constraints
Noise statistics - —/7'
- / -
4 - : :
5 . ) Iterative solution,
\VCentroids \V/Centroids selection Gaussian local priors

Figure 2. Reconstruction scheme

Gaussian algorithm described in subsection 7.1. The upper branch in Figure 2 does not make any use of the region
partitioning and simply iterates on the initial solution space. The lower branch operates first on the geometrical centres
(VCentroids) of the different regions defined, using global statistics, and then only on the volumes corresponding to the
selected VCentroids, using local statistics. At both levels we use the same iterative algorithm, but differently
parameterized. Abrupt increases of the minimum selection threshold % are fitted for focalized solutions (generally used
at global level), while smooth increases or stagnation correspond to smooth source distributions (normally at local



level). We are in this manner able to apply smoother or sharper priors while using the same core algorithm with
different settings.

Our two-step technique not only reduces the underdetermination of the system (5), but also authorizes the use of more
memory demanding techniques such as explicit temporal regularization. This is however beyond the scope of the
present paper.

8. RESULTS

We used a simulated environment for testing our reconstruction scheme. We concentrated on the lower branch of Figure
2 and performed statistical analysis with random sources in the presence of additive noise, investigating mainly
localization errors, both for principal and secondary (lower energy) sources. We also present qualitative results
(reconstruction images) to exemplify our technique.

8.1. Simulation setup

On a simulated 4-layer spherical head of unit radius (see section 2) we superposed an 123 electrode system in
Neuroscan spherical positions. 4024 cubic voxels' of edge length 0.06 (unitless, corresponds to roughly 7mm for an
average human head) were used to discretize the gray-matter volume (solution space). Neighboring voxels were further
regrouped into 41 cubic regions, yielding a mean of 100 voxels per region.

We then placed randomly one, two and three-dipoles configurations in the brain volume, generating half-a-second long
oscillatory sequences of source data, with random frequencies ranging from 3 to 40 Hz and sampled at f, =512Hz .

After computing the ideal potential measurements at the electrodes’ positions we added white Gaussian noise with
corresponding SNR ranging from 0 to 30 dB and performed the inversion procedure as described in section 7.

For each SNR value and configuration type (one, two or three dipoles) we repeated the above procedure for N 100

times, generating a total number of 4800 reconstructions (16 SNR values, 3 configuration types), as we only
reconstructed the data for the first time-window. The length Ny of the time window was set in concordance with the
Nyquist frequency:

trials

f
N, = floor| — (26)
21,
In our case the corresponding value is 6. Also, the to/ parameter was set to 0.1.

8.2 Analysis
We base our analysis on the definition of the mass-center 7,45 0f the reconstructed sources:

XA
== SJA)] -

A(r) represents the amplitude of the estimated dipole at position . We compare the position of this mass-center with the
position of the original source in order to obtain the localization error Ar,, :

err *
Arerr = Fass —fo (28)
For the case of double or triple dipole configurations we begin by dividing the solution space in a number of
subvolumes equal to the number of original sources, and then compute the center of mass for each of the subvolumes.

The subvolume selection for each solution point is done according to (29):
Ir =
IAl

We also denote as the principal source the original source with the highest amplitude, as the (first) secondary source the
second amplitude source and as the second secondary source the lowest amplitude source in the case of three dipoles
configurations.

isubvolume (r) = arg min (29)

! The corresponding positions were obtained courtesy of Rolando Grave de Peralta and Sara Gonzales-Andino from the
“Hopital Universitaire de Geneve”



As we mentioned in section 7, the stopping criterion (23) is not well suited for low noise regimes, and tends to produce
early stops above the SNR value of 18. We call focalized solutions the reconstructions where at least one step of space
reduction has been successful (number of retained points smaller than 4024). The percentage of focalized solutions is of
approximately 100% from 0 to 15 dB and tends to decrease towards 30 dB (Figure 3, left).

Focalized solutions in function of the SMR Localization error
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Figure 3. Influence of the stopping criterion on focalization (left) and single source localization error (in voxels, right)
The horizontal axis is the SNR expressed in dB

We retain for computation purposes only the focalized solutions, as no iteration is performed on the non-focalized ones.
The first obvious measure is the standard deviation of the single source localization error (Figure 3, right). The values
decrease from roughly 3-4 voxels around 0 dB to 1.5 voxels at 10 dB and remain constant until the 30 dB limit. Notice
that an error of 4 voxels at 0dB (where the noise power equals the signal power) represents an error volume of only,
roughly, 1.5% of the full brain volume. More interestingly , the distribution of these errors presents a very large
percentage of small errors and a few outliers which negatively influences the values in Figure 3. This brings us to a very
common measure in the EEG inverse problem community, the exact localization and distribution of errors. More
specifically we look at the cumulative distribution at the exact localization (<1voxel), one voxel ([1-2) voxels) and two
voxel ([2-3) voxels) errors limits.
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Figure 4. Primary source localization cumulative distribution.
Left: results for singe source configurations. Middle: primary source, double dipoles. Right: primary source, triple dipoles.
Points represent exact localization values, stars one voxel errors and diamonds two voxel errors

Unfortunately there are no real studies in the presence of noise, as usually authors test their general purpose methods
(Laura, Loreta) in noise free situations and only for single source configurations. However, from Figure 4, our method
outperforms both Laura and Loreta (tested without noise in [12]) from the 9dB line and above, when comparing voxel
errors (moreover their reported edge length is more than double 0.136 with respect to 0.06). Considering the voxel size,
our method yields comparable results even with the EPIFOCUS method, described in the same paper [12], which is
specifically designed for single source localization (projective method which explicitly assumes the presence of only
one source). Notice that our method is able to recover the primary source even in more complex configurations
comprising two or three dipoles (Figure 4).

Figure 5 illustrates the recovery of secondary sources. Although the performance is quite low in the high noise regimes,
the secondary sources are generally identified in more than 50% of the simulations at 10 dB and 80% at 30 dB (left and
middle). Even the second secondary source (right) is recovered in roughly 50% of the cases in the range 15-30 dB.
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Figure 5. Secondary source localization cumulative distribution.

The abovementioned rates of success for secondary sources can be improved by use of a local thresholding system
instead of the global (22).We finish the results section with an example of typical results at 10 dB noise (Figure 6).

Noisy image

Selected VCentroids

Final reconstructed image

Dipoles are represented as points, colors indicate orientation.

Figure 6. Typical results, 6 frames time-window sample. Time evolution of sources from left to right and then up to down.
View top-down, scalp potentials in transparent mode, with red for positive values and blue fro negative.

The correct selection of VCentroids (down-left ), although not explaining the data, ensures a fast and reliable solution
(down-right). Observe that performing the inverse solution also acts as a denoising tool for the EEG data (compare the
scalp potentials from the final image with the original up-left and the noisy version up-right).

9. CONCLUSIONS AND FUTURE WORK

We have proposed in this paper a generalized MAP framework for constraining and solving the EEG inverse problem.
We proved that such an approach not only can particularize to classical solutions, but also allows for automatic
regularization parameters estimation. Moreover, our reconstruction scheme easily accepts new constraints such as
temporal and structural priors. We also introduced anatomically derived principles, such as the directional consistency



measure and the brain partitioning technique. The results confirm the achievement of our main goal, robustness of
reconstruction in noisy conditions.

We intend to continue the refinement of our method by firstly identifying the blocks of our reconstructions scheme (that
is to obtain statistics of real data). We are currently performing theoretical studies of the equivalence of our Gaussian
iterative algorithm with direct minimization of non-Gaussian functionals, aiming for optimal selection (thresholding)
methods, as a functions of the prior data statistics. We also plan of introducing explicit temporal constraints (or
equivalently losing the temporal independency assumption), benefiting from our space reduction technique.

Finally we will implement our reconstruction scheme as a feature extraction method in the context of a Brain Computer
interface. We need to analyze the possibility of direct online use of the algorithm, or of implicit offline use. We will also
use it, coupled with the optimal placement technique from [8] to design application targeted optimal portable (reduced
number of electrodes) EEG systems.
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