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Small self-contained quantum thermal machines function without external source of work or control but using
only incoherent interactions with thermal baths. Here we investigate the role of entanglement in a small self-
contained quantum refrigerator. We first show that entanglement is detrimental as far as efficiency is concerned—
fridges operating at efficiencies close to the Carnot limit do not feature any entanglement. Moving away from the
Carnot regime, we show that entanglement can enhance cooling and energy transport. Hence, a truly quantum
refrigerator can outperform a classical one. Furthermore, the amount of entanglement alone quantifies the
enhancement in cooling.
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I. INTRODUCTION

The study of quantum thermal machines has a long
history, from the thermodynamic analysis of lasers [1–3]
to considerable work on quantum cycles and the second
law [4–17]. Recently, models of small self-contained quantum
thermal machines [18–22] have attracted attention. The key
feature of such machines is that they function without any
external source of work or control. Only incoherent interaction
with thermal baths are required. Interestingly, there exists
no fundamental limit on the size of such machines [18] or
on their efficiency [19]. Their main interest resides in their
simplicity, which makes them an ideal test for exploring
quantum thermodynamics.

Beyond the fundamental interest, these models may also
turn out to be relevant from a more practical point of view.
Proposals for experimental realizations were made considering
various physical platforms. A scheme using superconducting
qubits (three flux-biased qubits) driven by current noise was
discussed in Ref. [23], while an electronic setup based on
quantum dots was presented in Ref. [24] (see also Ref. [25]).
Finally, Ref. [26] discussed the cooling of an optomechanical
systems.

From a more fundamental point of view, an important
question is whether quantum effects play any significant role in
small self-contained thermal machines. Indeed, although these
machines are described within the quantum formalism, it is not
immediately clear to what extent their working is inherently
quantum. One can give a heuristic account of the functioning
of the machine in classical terms.

Here our aim is to establish the role of quantum effects
in self-contained quantum thermal machines. Our main focus
will be on the concept of entanglement, the paradigmatical
quantum effect. Hence, if entanglement turns out to play a role
in self-contained quantum thermal machines, this would make
it clear that the working of such machines is truly quantum
mechanical. Moreover, it would then raise the question of
whether entanglement can enhance the performance of such
machines.

Below, we address these questions focusing on the model
of the smallest possible self-contained quantum refrigera-
tor [18,19]. We first show that in the regime of high efficiency,
that is, machines operating with efficiency close to Carnot
limit, the machine does not feature any entanglement. Hence,
entanglement appears to be detrimental as far as efficiency
is concerned since an entangled state cannot get close to
Carnot efficiency. Next, moving away from the high-efficiency
regime, we show that there exist regimes featuring entan-
glement. In fact, a wide variety of types of entanglement
can be found in our system—including genuine multipartite
entanglement—depending upon the external conditions. Fi-
nally, we show that this entanglement is useful, as it enhances
cooling and energy transport. Specifically, given an object to
cool and a set of resources (for instance, fixing the temperatures
of the heat baths), we show that a refrigerator featuring
entanglement can outperform a “classical” refrigerator (i.e.,
featuring no entanglement), as it allows us to cool the
object to lower temperatures. Moreover, we demonstrate that
the improvement grows monotonically with entanglement
measures, strongly suggesting a functional relationship.

We emphasize that the above results are not general but
refer to the specific fridge model discussed in Refs. [18,19].
However, as this model represents the simplest possible
refrigerator, it is in some sense the most fundamental one.
Results obtained here are therefore bound to reflect some basic
facts about quantum thermal machines; in one way or another,
they are likely to have implications for all machines.

II. QUANTUM FRIDGE MODEL

We start by briefly reviewing the model of the smallest
quantum refrigerator of Refs. [18,19] (see Fig. 1), which we
will focus on in this work. Let us consider three qubits, which
in the absence of interaction have vanishing ground-state
energies and excited-state energies Ej (j = 1,2,3). The free
Hamiltonian of the refrigerator is thus given by

H0 = E1�1 + E2�2 + E3�3, (1)
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FIG. 1. (Color online) Schematic diagram of the quantum re-
frigerator. The fridge consists of three qubits (inside the yellow
circle), each in weak thermal contact (wiggly lines) with a bath at
a different temperature. The qubits interact via the weak interaction
Hamiltonian Hint, which couples the two degenerate levels |010〉 and
|101〉, depicted by the arrows. The lower qubit [purple (dark gray)]
is the object to be cooled. At equilibrium, it reaches a temperature
TS < TC . The other two qubits [red and blue (medium gray)] are the
machine qubits, connected to heat baths at temperatures TR and TH .

where |1〉j is the exited state of qubit j (i.e., energy eigenstate
at energy Ej ) and �j = |1〉j 〈1| the corresponding projector.
We choose the energy levels such that E2 = E1 + E3 and
E1 �= E3. Given this condition the Hamiltonian contains
only two states degenerate in energy, |010〉 and |101〉.
Next we consider weakly coupling the qubits by placing
an interaction between them. In the weak-coupling regime,
the main effect of a generic three-qubit Hamiltonian is to
couple only states degenerate in energy—in this case |010〉
and |101〉 [27]; couplings between other states are suppressed
by a factor inversely proportional to their energy difference.
Thus, we focus here on this main effect, i.e., the interaction
Hamiltonian,

Hint = g (|010〉〈101| + |101〉〈010|) . (2)

We impose g � Ej , which signifies the weak-coupling regime
and also ensures that the eigenvalues and eigenstates of the
fridge remain governed by H0.

Finally, each qubit is taken to be in contact with a
separate thermal reservoir. The temperatures of the reservoirs
are denoted by TC (cold), TR (room), and TH (hot) for
qubits 1, 2, and 3, respectively. The thermal contact between
each qubit and bath is governed by Linbladian dissipative
dynamics, which we model here using a simple reset model,
the justification of which we shall comment on briefly. In this
model, with probability piδt per time δt , qubit i is reset to
the thermal state τi , at the temperature of its bath, while for
all other times it evolves unitarily according to the combined
Hamiltonian H0 + Hint. That is, in this model thermalization
events are taken to be rare but strong events. The equation of
motion for the refrigerator using this model of dissipation [18]

is given by the master equation

∂ρ

∂t
= −i[H0 + Hint,ρ] +

∑
i

pi(τi ⊗ T ri(ρ) − ρ), (3)

where τi = ri |0〉i〈0| + (1 − ri)|1〉i〈1| with ri = 1/(1 +
e−Ei/Ti ). In general, one would expect there to be additional
terms in Eq. (3), corresponding to dissipative dynamics on
qubit j originating from the combination of the interaction
Hamiltonian and the dissipative dynamics on qubit i �= j .
In other words, one may expect each qubit to be effectively
in contact with all three baths due to the interaction Hamilto-
nian [22,28]. However, in the regime where pi ≈ g � Ei ,
these additional effects, whose strength is approximately
gpi � g, can be safely neglected.

Here our focus is on the stationary state (i.e., long-term
behavior) of the refrigerator, ρS , which satisfies ρ̇S = 0, i.e.,

i[H0 + Hint,ρS] =
∑

i

pi(τi ⊗ T ri(ρS) − ρS). (4)

As shown in Ref. [19], this equation can be solved
analytically for all values of the parameters. The solution takes
the form

ρS = τ1τ2τ3 + γ σ (5)

where γ is a dimensionless parameter depending upon all
parameters of the model (namely pi , g, Ei , and temperatures
TC,R,H ), and σ is a traceless matrix with a single off-diagonal
term (see Ref. [19] for details). The important property of
the solution is that it can be shown that the refrigerator
cools qubit 1 whenever γ > 0. In this case, one finds
that qubit 1 is in a stationary state that is diagonal, with
corresponding temperature T S < TC . Moreover, the efficiency
of the refrigerator tends to the Carnot limit in the limit γ → 0.

III. AROUND THE CARNOT POINT

Let us first discuss the properties of ρS for those refrigera-
tors which are operating close to the Carnot efficiency, which
we hereafter refer to as refrigerators around the Carnot point.
From inspection of Eq. (5), it is clear that for γ = 0, ρS is a fully
separable state, as it is nothing other than the direct product of
thermal state for each qubit. Hence, no entanglement is present
at the Carnot point. More interestingly, this statement remains
true for a small region within the set of all ρS in the vicinity
of the Carnot point. Thus all refrigerators which are highly
efficient function without entanglement. To see this let us first
rewrite ρS in the following form:

ρS = w|GHZ〉〈GHZ| + (1 − w)σdiag, (6)

where |GHZ〉 = (|010〉 + i|101〉)/√2 is tripartite entangled
state (of the Greenberger-Horne-Zeilinger form) and σdiag

is a diagonal density matrix, hence, corresponding to a
fully separable state. While there is no unique notion of
entanglement in multipartite systems, it turns out that the
entanglement of states of the form (6) can be conveniently
characterized.

In the vicinity of any Carnot point, the state ρS has full rank
and off-diagonal terms which are small compared to diagonal
ones. Hence, in this regime, the state can be decomposed as
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TABLE I. Regimes of the quantum refrigerator featuring entanglement. Here we give the full list of parameters required to exhibit the
different entanglement regimes present in the quantum refrigerator. The first row gives a point where there is genuine multipartite entanglement
between all three qubits, while the second and third rows are points where there is only bipartite entanglement along a single bipartition. The
last row shows a regime with bipartite entanglement across every bipartition but without genuine tripartite entanglement.

CC|RH CR|CH CH |CR CCRH TC TR TH E1 E3 g p1 p2 p3

0.003 0.004 0.004 0.003 1.0 1.1 1.0 × 104 2.0 300 1.0 × 10−4 1.0 × 10−5 1.0 × 10−3 1.0 × 10−5

0 0 0.00002 0 1.0 2.0 1.0 × 104 4.4 379 3.4 × 10−4 1.3 × 10−5 1.6 × 10−4 1.3 × 10−5

0 0.00005 0 0 1.0 42.6 1.0 × 104 4.4 421 2.8 × 10−4 1.3 × 10−5 8.3 × 10−4 1.0 × 10−5

0.0008 0.005 0.004 0 1.0 1.1 1.0 × 104 2.0 300 1.0 × 10−4 1.0 × 10−5 2.0 × 10−4 1.0 × 10−5

ρS = (1 − ε)σ ′
diag + ερ(p), where σ ′

diag is a diagonal separable

state and ρ(p) = p|GHZ)〉〈GHZ| + (1 − p) 1
81. Since ρ(p) is

fully separable for p � 3
11 [29], it follows that ρS is fully

separable in the vicinity of any Carnot point. In fact, it can
even be shown that any ρS at the Carnot point has a small ball
of fully separable state in the full Hilbert space around it—see
Appendix for more details.

IV. ENTANGLED REGIMES

Next we ask whether there exist regimes in which entan-
glement is present in ρS . At this point it is useful to recall
that entanglement can appear under several forms in a state of
3 qubits. Indeed, there can be bipartite entanglement along a
given bipartition (e.g., qubit 1 versus qubits 2 and 3) or genuine
tripartite entanglement. Here our main tool will be a class
of entanglement witnesses developed in Refs. [30,31] which
allow one to fully characterize the entanglement of states of the
form ρS . Moreover, these witnesses also provide a meaningful
entropy based measure of multipartite entanglement [32]
and necessary and sufficient conditions for biseparability
for our system [33]. Formally, these witnesses are given by
inequalities of the form

WS (ρ) = 2

(
|ρ3,6| −

∑
k∈S

√
ρk,kρ9−k,9−k

)
� 0, (7)

where ρi,j denotes elements of the density matrix and the set
S depends on the partition and type of entanglement one is
interested in. When inequality (7) is violated, its left-hand side
gives the concurrence [34] of C|RH (S = {2}), R|CH (S =
{1}), CR|H (S = {3}) or the genuine multipartite concurrence
(see Refs. [32,35]) forS = {1,2,3}. When inequality (7) holds,
no entanglement is present on the given bipartition.

Moving away from the Carnot point we find, by sweeping
through the parameter space numerically, that there exist
regimes where entanglement is present. In fact, most types
of entanglement can be found. We find regimes where there
is entanglement (i) along only a single bipartition of the
system, (ii) on all three bipartitions at the same time, and
(iii) genuine tripartite entanglement, the strongest form of
multipartite entanglement. In Table I we characterize various
entanglement regimes, giving the corresponding parameters of
the refrigerator. Note that the only type of entanglement we
did not observe is the following: entanglement on the C|RH

partition but no entanglement across the other two bipartitions.

V. ENTANGLEMENT ENHANCES COOLING

In the remainder of the paper, we investigate the usefulness
of this entanglement that we have just uncovered in the
fridge. We will see that entanglement can in fact enhance
the performance of the refrigerator. For this we consider the
task of cooling a qubit with given energy E1, immersed in
a bath at a given temperature TC with fixed coupling p1.
As a source of free energy, we have at our disposal two
heat baths, at temperatures TR and TH (again assuming that
TC < TR < TH ). The challenge is then to adjust the remaining
parameters in order to minimize the temperature of the qubit
in its stationary state. The free parameters are the energy of the
hot qubit E3, the thermalization coefficients for the machine
qubits p2 and p3, and the interaction strength g. Indeed, some
of these parameters are constrained by the weak-coupling
assumption. We require that g � Ei , pj � Ei , pjg � g,
and pjg � pj , which can be enforced by choosing a cutoff
for pj and g. We observe that all of our conclusions below
remain valid independent of the precise choice of this cutoff.
The only change is that the strength of the effect becomes
weaker as we make the constraints stronger, as is intuitively
expected. We comment further on this at the end of this
section.

First, considering all possible fridges, we look for the one
achieving the best cooling, i.e., the smallest value of TS . Next,
we repeat this optimization but now adding the constraint
that no entanglement is present in the fridge. More precisely,
we find the optimal cooling (now denoted T ∗

S ), imposing
that the stationary state ρS satisfies all the entanglement
witness inequalities (7) (and their relevant symmetries), hence,
ensuring separability across every bipartition. The results are
presented in Fig. 2. We observe that the cold qubit can be
cooled to lower temperatures when no restrictions are placed,
compared to the case when the system is constrained to
be separable. In the regime where TR � TH , entanglement
provides an enhancement in cooling, which is quantified by
the ratio

ζ = TC − TS

TC − T ∗
S

. (8)

When restricting to optimal machines, we find that the
entanglement is almost always preferentially between the room
qubit and the other two. Only if TR ≈ TC and TR � TH does
entanglement between the other two bipartitions also appear.
An intriguing aspect of this behavior is that the entanglement
thus appears to be preferentially between the partitions energy
in vs energy out, since in the stationary state it is the room
qubit which is heated up and the cold and hot qubits which
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FIG. 2. (Color online) Entanglement can enhance cooling. (a) Density plot depicting the relative advantage ζ in cooling a qubit at TC = 1K ,
as a function of the available bath temperatures (TR and TH ) for optimal refrigerators. Entanglement provides an advantage (ζ > 1) for all
points above the red dashed line. In the dark blue region, below the red dashed line, the optimal fridge is separable on all bipartitions (ζ = 1).
For TR close to TC and sufficiently high TH , entanglement is a widely present feature of the optimal quantum refrigerator. (b) Slices through the
density plot for three different values of TH , showing in more detail the relative advantage in cooling. The parameters used here are pC = 10−5,
E1 = 1J , and parameter bounds pR ,pH ,g � 10−4.

are cooled down. Hence, it seems that quantum coherence
(here entanglement) enhances energy transport, a phenomenon
that has received considerable attention in the context of
photosynthetic complexes [36].

It is important to note that, although the cooling enhance-
ment observed here is relatively small, it is nevertheless much
larger than the uncertainty in the result [which is O(gp)] and,
hence, represents a genuine effect and not a mere consequence

FIG. 3. (Color online) Cooling advantage is determined by the
amount of entanglement. Plot of relative cooling enhancement ζ

against amount of entanglement on the bipartition R|CH (measured
by the concurrence C), as evaluated from Fig. 2(a). Since all points lie
on a single curve, it follows that ζ is determined solely by C and does
not depend on the temperatures of the baths TR and TH . The fact that
the behavior is monotonic strongly suggests a functional relationship.
For convenience the data plotted correspond to the three horizontal
slices of Fig. 2(a). Taking random sample points from Fig. 2(a) leads
to a similar result.

of our approximate dynamics. Not unexpectedly, the optimal
cooling is obtained by maximizing the interaction coupling
as well as the thermalization rates. Here these parameters
must be constrained in the optimization in order to remain
within the regime of validity of the master equation (3). It
would be interesting to consider more general master equations
(see, e.g., Ref. [22]), accounting for more sophisticated
thermalization processes. In this case, one could describe
machines working at much higher rates, in which entanglement
may become even more beneficial. We leave it for future
research to explore this direction.

Finally, we investigate the link between the amount of
entanglement on the bipartition R|CH (as measured by
the concurrence C) and the relative cooling enhancement
ζ . Remarkably, ζ appears to be solely determined by the
concurrence (see Fig. 3) and, hence, does not depend on
the temperatures of the heat baths TR and TH . This result
strongly suggests a functional relationship between the relative
cooling enhancement and concurrence. Indeed, the monotonic
relationship observed shows that the more entanglement that
is present, the larger the advantage one gains for cooling a
system.

VI. CONCLUSIONS

We have discussed the role of entanglement in the smallest
self-contained quantum refrigerator. Entanglement turns out
to be a feature of a wide range of operation regimes, with the
notable exception of the Carnot point and its vicinity. Crucially,
this entanglement is not a mere by-product, but its presence
is beneficial: The fridge is able to cool to lower temperatures
when it becomes entangled. Moreover, our results show that
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the extra quantum performance is directly related to measures
of entanglement.

One important question is to what extent the results
obtained here tell us about entanglement and its usefulness
in general thermal machines. In Ref. [21] it was argued that
any thermal machine which is operating close to the Carnot
efficiency is necessarily functioning in the same manner as
the machines studied here. This is precisely the regime where
no entanglement is present, hence, we can conclude that close
to the Carnot efficiency no thermal machine is entangled (at
least regarding those degrees of freedom directly relevant
to the cooling process). What would be more interesting,
however, is to go in the other direction and make statements
about the regime where entanglement is beneficial. At present
such general results appear to be beyond reach, but any
such statements in this direction would represent significant
progress.

Another question is whether entanglement can enhance
the performance of machines producing work. The model
discussed here, when analyzed appropriately (in particular,
by replacing the cooled qubit by a “weight” which can store
work), can also function as a small work-producing heat
engine [21]. Hence, an analysis of the presence and role of
entanglement in this system will also be of particular interest,
especially given the recent results [37–40] where the role of
entanglement in work extraction from quantum systems is
explored.

To conclude, we believe that the present results provide
evidence that entanglement plays a significant role in thermo-
dynamic processes. Clearly, turning these preliminary results
into a general and quantitative understanding of the exact
role played by entanglement in thermodynamics is highly
desirable.

Note added in proof. We recently became aware of the work
of Correa and colleagues [22] discussing the effect of quantum
discord in a small self-contained quantum refrigerator.
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APPENDIX

In this Appendix we show that around any Carnot point (i.e.,
any machine which is operating at the Carnot efficiency) there
is a ball of states which are fully biseparable (i.e., separable on
any bipartition). It is also shown that, in some circumstances,
there is a ball of fully separable states.

More precisely, the first statement that we would like to
prove is that there exists an ε > 0, such that for all states σ

which satisfy ‖ρS − σ‖1 � ε are biseparable, where ρS is a
stationary state of the refrigerator corresponding to a machine
at Carnot efficiency.

The first important point is that all Carnot points have the
form ρS = τC ⊗ τR ⊗ τH , where each τi is a thermal state at
a strictly positive temperature Ti > 0 (since if we consider

the cold bath to be at absolute zero there is no cooling to be
achieved). As such, it is immediately clear that ρS is a full rank
fully separable state (in fact it is a direct product state). The
fact that ρS is full rank guarantees that there is a ball of states
around it (i.e., it is strictly in the interior of the set of quantum
states). This ball, however, may contain entangled states, and
so we must show that this ball contains within it a small ball
of separable states.

Any states σ which are diagonal in the same basis as ρS

are clearly also fully separable, and therefore we shall focus
on states which are not diagonal. Let us consider first states σ

which are still within the interior of the set of quantum states
but contain only a single pair of off-diagonal elements, i.e.,
states of the form

σ = ρD + σxy|x〉〈y| + σ ∗
xy|y〉〈x|, (A1)

where ρD is diagonal in the same basis as ρS and x =
(xC,xR,xH ) collectively specifies the state for the three qubits
in the energy eigenbasis (and analogously for y). States of this
form are in the class of so-called X states. For such states, the
three nonlinear witnesses Wi , for i = 1,2,3, given by

Wi(ρ) = 2(|ρ3,6| − √
ρi,iρ9−i,9−i) � 0, (A2)

provide necessary and sufficient criteria for biseparability. This
follows from the results of Refs. [33] and [35], using which one
can show, respectively, that the Wi provide upper and lower
bounds on the concurrence.

Since the witnesses Wi are convex and ρS is full rank, it
is the case that the Wi(ρS) < 0, i.e., the witness is strictly
negative on the Carnot point. It follows therefore that there is
an η such that for all |σxy| < η, the state σ is still separable. In
other words, if we restrict to the set of states with only a single
off diagonal element, then there exists an ε such that for all
‖σ − ρS‖1 � ε the state is biseparable.

To finish the proof note that we can simply take mixtures
of the above states with only a single off-diagonal element to
define a set of states with an arbitrary number of off-diagonal
elements. That is, we write

σ =
∑

i

pi

(
ρD + σ i

xiyi
|xi〉〈yi | + σ i∗

xiyi
|yi〉〈xi |

)
, (A3)

where again ρD is full rank and all σ i
xiyi

are sufficiently small
relative to elements of ρD . From the above it follows that there
is an ε > 0 such that each state in the decomposition is both
biseparable and positive semidefinite. This thus demonstrates
that there is a ball of fully biseparable states in the full Hilbert
space around every Carnot point.

Moving on, the second claim we wish to prove is that around
any Carnot point such that Tr(ρ2

S) < 19
24 , there is a ball of fully

separable states. To do so we shall use the fact that there is
a ball of fully separable states around the maximally mixed
state [41]. In particular, in our case the size of this ball is

εsep =
√

2
3 [42]. Hence, full separability of ρS is ensured when

∥∥∥∥ρS − 1

8

∥∥∥∥
2

<

√
2

3
, (A4)

which implies the existence of a ball of separable states around
ρS when Trρ2

S < 19
24 .
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