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Abstract—Geographic routing is an appealing routing strategy
that uses the location information of the nodes to route the data.
This technique uses only local information of the communication
graph topology and does not require computational effort to
build routing table or equivalent data structures. A particularly
efficient implementation of this paradigm is greedy routing,
where along the data path the nodes forward the data to a
neighboring node that is closer to the destination. The decreasing
distance to the destination implies the success of the routing
scheme. A related problem is to consider an abstract graph
and decide whether there exists an embedding of the graph in
a metric space, called a greedy embedding, such that greedy
routing guarantees the delivery of the data. A common approach
to assign geographic coordinates is to measure distances (for
instance the distances between neighboring nodes) and compute
(virtual) coordinates.

The rationale of the Virtual raw Anchor Coordinate System
(VRAC) is to use the (raw) measured distances as coordinates in
order to avoid further computations. More precisely, each node
needs to measure three distances. In this paper, we investigate
the existence of greedy routing in the VRAC coordinate system
using a metric free characterization of greedy paths that is more
general than in previous works. We show that if the graph is
saturated (see definition in the text) then the greedy algorithm
guarantees delivery. Interestingly, the approach of greediness
here applies to Schnyder drawings of planar triangulations. In-
deed, by choosing the measured distances appropriately Schnyder
drawings of planar triangulations are always saturated and hence
our greedy routing algorithm succeeds.

The VRAC coordinates have conditions to satisfy to make
greedy routing successful. These conditions can be inferred from
geometric considerations. However, we formulate these conditions
in an abstract way in order to avoid geometric considerations
and in order to make possible further derivation of virtual
VRAC coordinate systems, i.e. using only the abstract graph
description. In particular using only local information would lead
to distributed algorithm.

I. INTRODUCTION

Geometric routing is an appealing routing technique that uses
geographic positions of nodes for routing data in commu-
nication networks. Its most attractive form, greedy routing
forwards messages along a distance decreasing path towards
the destination. Greedy routing decision is completely based
on the local neighborhood information (positions of the neigh-
boring nodes) and the position of the destination node, hence
considered a local routing algorithm. Nevertheless, greedy
routing does not always guarantee the delivery of messages,

hence alternative mechanisms are required to guarantee the
delivery.

Geometric routing requires an underlying location ser-
vice for assigning coordinates to nodes. Such a service can
be expensive, especially considering the wireless networks
with power constrained wireless devices. As an alternative,
in [1] geometric routing based on virtual coordinates instead
of physical coordinates has proposed. In the same spirit,
the more important problem of virtual coordinate assign-
ments such that greedy routing guaranteeing delivery, namely
greedy embedding has introduced [2]. In subsequent re-
search, algorithms for greedy embedding on different geomet-
ric spaces [3] for different classes of graphs were proposed.
Although, computation of greedy embeddings in a distributed
environment is expensive in terms of the message complexity.

Virtual Raw Anchor Coordinate System (VRAC) uses raw
distances (Euclidean distance) from a set of anchor nodes as
the coordinate of a node [4], [5] (see Figure 1). In this paper,
we consider the problem of greedy routing on Virtual Raw
Anchor Coordinate (VRAC) system. We propose a greedy
routing algorithm, which does not rely on an underlying
metric, rather based on a metric free definition of a greedy
path. When compared to [4], [5], [6], [7], [8], we provide a
more general definition of greedy paths. This new approach
of greediness can also be used as a building block of geo-
graphical routing algorithms of the type Greedy-Face-Greedy
as we propose for VRAC in [8]. Alternatively, we develop
here on the new connexion of VRAC with the problem of
greedy embedding that makes possible the new approach of
greediness. Actually, our greedy routing algorithm guarantees
delivery on all Schnyder drawings of a planar triangulation
(see the discussion at the end of Section IV) and this extents
previous results of existential flavor1.

1We refer to [12] for description of Schnyder drawings. What is relevant
here is that given a planar triangulation and a set of weights of the triangular
faces we obtain a Schnyder drawing (embedding) on the plane of the graph.
Existential result says that there exists a set of weights such that the Schnyder
drawing is greedy. Application of the greedy routing algorithm shows that
every set of weights leads to successful greedy routing. We emphasize that
in this second case there is no embedding of the graph. The result is useless
for graph drawing but relevant to routing.



II. BACKGROUND

A greedy embedding is an embedding of a graph on a metric
geometric space such that, greedy routing always succeeds.
In other words, between every node pair u, v there is another
node w adjacent to u, such that d(u, v) > d(w, v), where d(.)
is the underlying metric on the geometric space. Papadimitrou
& Ratajczak [2] were the first to study the existence of
greedy embeddings. In particular, they constructively proved
the existence of a greedy embedding of a 3-connected graph
in R3. Moreover, it is conjectured that any 3-connected planar
graph admits a greedy embedding in R2.

The conjecture was proved affirmatively for different classes
of graphs. In [9] it is proved for 3-connected graphs, in [10]
for Delaunay triangulations, in [11] for graphs that satisfy
conditions with respect to the power diagram. In [3], a greedy
embedding in the hyperbolic plane of a connected finite graphs
is constructed. More related to our approach, in [12] the
conjecture is proven for planar triangulations (maximal planar
graphs), see also [13], [14], [15]. Another direction of greedy
embedding research considers the efficient representation of
coordinates. In [16] authors proposed a greedy embedding on
a hyperbolic space with O

(
log(n)

)
bit complexity. Such a

coordinate representation is called succinct, which is important
for the design of scalable routing schemes. In subsequent
research, succinct greedy routing schemes are proposed in
[17], [14].

Common approach in above proposals is to compute an
embedding given a graph and to use the underlying metric
of the respective space to perform greedy routing. However,
our approach is to avoid the definition of a metric and the
computation of the planar embedding, see for instance [13]
for an algorithm to compute the greedy embedding of planar
triangulations. We rely on the metric-free definition of greedy
paths in [18] - without embedding the graph. Moreover, the
computation of coordinate systems used in [12], [14], [15]
requires global topology knowledge, as opposed to the local
approach in our work. In [19], a local routing algorithm is
proposed for half − θ6 graphs, which is a special case of a
Delaunay triangulation. It utilizes the geometric properties of
a half−θ6 graph and proves a strict upper bound on the path
stretch. This approach does not compute a greedy embedding,
yet based on the underlying geometry on the plane.

In Schnyder’s work [20], planar graphs are characterized
by the existence of three total order relations on the vertex
set of the graph (and extra conditions). Using these order
relations Schnyder builds three spanning2 directed trees called
the realizer and the coordinates are computed using these
trees. This coordinate system has relevant properties, for graph
drawing, see for instance [21], that we do not need for
routing3. In [12], [14], [15], Schnyder’s characterization of
(maximal) planar graphs [20] is used. This characterization is
discussed in section III and is also used in this work.

2Actually, spanning internal nodes of the triangulation
3Although it is relevant to ask if these properties are necessary for

constructing a greedy embedding

In this article, we propose a greedy routing algorithm
based on virtual raw anchor coordinate (VRAC) localization
paradigm [4], [5], see Figure 1. In VRAC, nodes use the
distance from three distinguished nodes as the coordinate, see
Figure 1, i.e. the usual scheme for localizing the nodes is 1)
measure distances and, 2) compute the coordinates. In this
work our goal is to avoid using geometry. Our algorithm uses
three order conditions <∗i to perform routing. Note that the
order relations come in an abstract way, although they can be
derived from geometric properties as well.
Our contribution In this paper we;

• Provide a metric-free definition of greedy paths.
• Design a greedy routing algorithm that guarantees deliv-

ery if the communication graph is saturated, see definition
5.

• Provide a greedy routing algorithm for all schnyder
drawings of a planar triangulations.

The rationale that motivate this work is to extend the ca-
pabilities of the VRAC coordinate system by proposing a
definition of greediness as general as possible. We hope that
further investigations will lead to the design of distributed
algorithm that compute the VRAC coordinates using only
the abstract form of the communication graph, i.e. the graph
G = (V,E). In a sense, by avoiding the computation of the
greedy embedding, our approach decouples the problems of
greedy graph embedding and the design of successful greedy
algorithms.

The algorithm is numerically validated with a simple Java
simulator. Results are not reported here since the simulations
bring nothing more than confirmation that the algorithm is
successful. The simulator can be obtained under request to
the authors.
In sections IV and III, we present Schnyder’s characterization
of planar maximal graphs. In section V we prove the properties
that we need to build a greedy path between any two nodes.
Finally, in section VII we state the main result of the paper
about the existence of greedy paths.

III. VIRTUAL RAW ANCHOR COORDINATES (VRAC)

Virtual Raw Anchor Coordinate System (VRAC), is a cost
effective localization scheme, which uses raw distances (Eu-
clidean distance) from a set of anchor nodes as the coordinate
of a node [4], [5]. The motivation for using VRAC is to
avoid the expensive computations required to compute the
geographic coordinates. Indeed, most localization schemes
measure the distances from a set of anchors and embed the
communication graph in a metric space. In VRAC coordinate
system such an embedding is avoided and raw distances are
maintained as coordinates.

Despite being computationally efficient, VRAC does not
have any underlying geometric properties to perform geomet-
ric routing. Although, we can define three order relations on
the set of nodes V .

Definition 1. The three order relations <i, i = 1, 2, 3 on
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Fig. 1: Two realistic ways of constructing the VRAC.
Coordinate assignment with raw distances from anchors
on the left and perpendicular distances from heights of
the triangles on the right. The coordinates of u are
(d(u,A1), d(u,A2), d(u,A3)) on the left and (x1, x2, x3) on
the right.

V × V are defined by

∀u, v ∈ V u <i v ⇐⇒ d(u,Ai) > d(v,Ai)⇐⇒ u1 > vi.

It is important to note that these order relations are to-
tal4(see [5] for details). Due to the totality of orders, a
minimum element with respect to each total order can be
defined, which is denoted as mini for i = 1, 2, 3. Furthermore,
based on the total orders, we define sectors associated with a
node u as follows.

Definition 2. (Sectors) We define the following sectors asso-
ciated to a node u ∈ V , see Figure 1. Note that the reference
node u does not belong to the sectors.

su1 = {v | u <1 v, u >2 v, u >3 v}.
su2 = {v | u <1 v, u <2 v, u >3 v}.
su3 = {v | u >1 v, u <2 v, u >3 v}.
su4 = {v | u >1 v, u <2 v, u <3 v}.
su5 = {v | u >1 v, u >2 v, u <3 v}.
su6 = {v | u <1 v, u >2 v, u <3 v}.

The sector sui is also referred to as the sector i of u5.

Definition 3. Given a node D, we also use the convenient
notation suD to denote the sector j of u such that D ∈ suj , i.e.
D ∈ suD.

We use the definition of partial orders <∗1, <
∗
2, <

∗
3 below (see

Lemma 3.1 in [20]) to further distinguish the edges.

Definition 4. For each i ∈ {1, 2, 3} we define

(u, v) ∈<∗i ⇐⇒ (u, v) ∈<i, (v, u) ∈<i+1, (v, u) ∈<i−1

⇐⇒ v ∈ su2i−1,

4A total order is a binary relation which is valid for all the pairs in a set
5We use the notation i+1 ≡ i mod 6+1 if i is the index of a sector, i.e.

sui .

According to the definition, <∗1, <
∗
2, <

∗
3 partial orders corre-

spond to sectors s1, s3 and s5 respectively. Based on these
partial orders, a node can distinguish its neighboring nodes.

IV. SCHNYDER CHARACTERIZATION AND SATURATED
COMMUNICATION GRAPH

We consider an ad-hoc network with VRAC localization
infrastructure. Let G = (V,E) represent the communication
graph, where V,E are the vertex and edge sets respectively.
We assume that three anchor nodes Ai, i = 1, 2, 3 are placed
such that the network lies entirely in the interior of the
triangle A1A2A3. This ensures that the property a) of (1)
is satisfied. Each node u is able to measure the distances
d(u,Ai), i = 1, 2, 3, and uses (d(u(A1), d(u,A2), d(u,A3))
as coordinate and the order relation <i, i = 1, 2, 3 are naturally
defined using these coordinates.

We concentrate on the special class of graphs, which satis-
fies certain connectivity conditions. These conditions are due
to the schnyder characterization of planar graphs based on
order relations. Given a planar graph G = (V,E), it is proven
in [20] that there exist three total order relations on V × V ,
denoted <1, <2, <3 such that

a)
⋂

i=1,2,3 <i= ∅, and
b) ∀(x, y) ∈ E,∀z 6∈ {x, y} ∃i ∈ {1, 2, 3}
s.t. (x, z) ∈<i and (y, z) ∈<i .

(1)

This is called a (3-dimensional) representation of a planar
graph. Such representation of a planar graph does not use a
(planar) embedding and applies to an abstract graph. Using this
representation we get a characterization of a greedy path that
applies to abstract graphs as well and ignore the embedding.
We also use the notation x <i z for (x, z) ∈<i and we say v is
a neighboring node of u to say that (u, v) ∈ E. It is important
to note that <∗i partial orders defined in definition 4 follow
the conditions stated in equation 1, hence these orders can be
used in the construction of planar graphs on VRAC (see [4]
for details). We observe following properties of these orders,
which are useful in the greedy path construction in Section V.

Property 1. The empty intersection property a) in (1) implies
that for each u, v ∈ V there exists exactly one i ∈ 1, 2, 3 such
that (u, v) ∈<∗i or (v, u) ∈<∗i (equivalently v ∈ su2i−1 or
u ∈ sv2i−1). It is convenient to remember that if (u, v) <∗i
then v ∈ su2i−1, i.e. su1 or su3 or su5 , the indexes are odd and
even otherwise.

Property 2. A node u has at most one edge (u, v) ∈ E such
that v ∈ su2i−1. Moreover, such a node v satisfies that v <i

z ∀z ∈ su2i−1, i = 1, 2, 3, i.e. v = mini{z | z ∈ su2i−1}, see
Lemma 3.1 of [20], this follow from condition b) in (1). These
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properties can be written

If v ∈ su1 , z 6= v we have
z <2 u
z <3 u

}
⇒ z >1 v. (2)

If v ∈ su3 , z 6= v we have
z <1 u
z <3 u

}
⇒ z >2 v. (3)

If v ∈ su5 , z 6= v we have
z <1 u
z <2 u

}
⇒ z >3 v. (4)

Property 2 is from [20] and the proof uses part b) of the graph
representation (1). There is a nice geometric void condition
associated to this property (see Figure 2). Indeed, if we assume
that the edge (u, v) belongs to su1 then the existence of a
node u <1 w <1 v violates the second condition of (1), see
Figure 2 and Figure 3c of [12]. It is interesting to compare this
void region with the corresponding ones of the planar Relative
Neighborhood Graphs (RNG) or Gabriel Graphs (GG) [22].

In order to construct a planarized subgraph of a given
graph, each node u decides to keep or remove the edges
shared with neighboring nodes in the following way. For
a neighboring node v, i.e. (u, v) ∈ E, u keeps the edge
if ∃i ∈ {1, 2, 3} such that (u, v) <∗i . Equivalently, only the
shortest edges in su2i−1 is kept. Notice that there must be
at most one edge in sectors su2i−1. When the given graph
complies with the geometric conditions, that can be checked
locally as described in [5] are met the resulting graph is planar.
An immediate saturation condition leads to the following
definition.

Definition 5. A planar graph is saturated if there exists exactly
one edge in each sector su2i−1, i = 1, 2, 3 for each node u.

The definition holds for planar graphs given in an abstract way.
Indeed, such a planar graph admits a Schnyder representation
and the definition refers to this representation. Our greedy
routing algorithm is performed on this planar saturated graph
and in the rest of the text all references to the graph are implic-
itly to this graph. We propose a metric free characterization of
a greedy path6 and show that it guarantees delivery when the
graph is saturated, see Definition 5. We use the combinatorial

6Given two nodes u and v we don’t assume that we can compute the
distance d(u, v).

properties (partial orders) to reason on the delivery guarantees
of our algorithm. These combinatorial properties are derived
from geometric properties of a saturated graph, yet the greedy
path construction is also valid if we assume that the order
relation <i are given in another (abstract) way. This is why
in the rest of the paper we avoid direct reference to VRAC
coordinate system and make only use of the order relations.

An important relationship can be drawn between saturated
graphs and classical schnyder drawings of planar triangula-
tions. A Schnyder drawing embeds a planar triangulation on
the plane. Given a Schynder drawing VRAC coordinates can
be derived as in the right of Figure 1. Resulting coordinates
satisfy the saturation conditions due to Lemma 4 in [12]7.
Hence our greedy algorithm is successful in any Schnyder
drawings. Comparatively, in [12] authors show the existence
of a (greedy) Schnyder drawing if the graph is a planar triangu-
lation. In [14] authors show a routing algorithm successful on
any Schnyder drawing as well. However, their algorithm needs
the computation of Schnyder drawing coordinates, where as
our algorithm is not restricted to this setting.

V. GREEDY ROUTING

A. Overview of Routing Strategy

If the (planarized) graph is saturated then each internal node
u, has exactly one edge in each sector su1 , s

u
3 , s

u
5 and an

indeterminate (0, 1, 2, . . .) number in the remaining sectors
su2 , s

u
4 , s

u
6 . It is helpful to look at the geometric visualization

in the right of Figure 2.
For routing from a node u to a destination D ∈ su1 (or su3 or

su5 ) the natural option is to follow the existing edge (u, v) such
that v ∈ suD (= su1 or su3 or su5 respectively). Next, from v, if
D ∈ sv1 (or sv3 or sv5) we repeat the same strategy. However,
it may happen that D 6∈ sv1 (or 6∈ sv3 or 6∈ sv5). In this case
D ∈ sv2 ∪ su6 (or sv2 ∪ sv4 or sv4 ∪ su6 , see Proposition 3) and the
existence of an edge in the sector svD is not provided by the
Schnyder’s characterization (1). Nevertheless, in Proposition
2 we that saturation implies the existence of an edge in the
sector Sv

D.

B. Characterization of Greedy Paths

Our greedy routing technique differs from the classical ones
as we do not assume that an underlying metric exists. Instead,
we use metric-free axioms, which characterize greedy paths
provided in [18], i.e. given a destination D we have 1.
(transitivity) if node v is greedy for u and w is greedy for
v then w is greedy for u as well and 2. (odd symmetry)
if v is greedy for u then u is not greedy for v. Moreover,
the coordinate system that we use differs from previous work,
that are based on Schnyder’s characterization of planar graphs,
for example in [23], [12]. They use Schnyder drawing as the
coordinate system in [20] that is more complex to compute
than VRAC. This difference is possible here because initially

7It is an open question, whether the saturation conditions are satisfied if
the VRAC coordinates are obtained as on the left of Figure 1, i.e using the
raw distance to the anchors.



the coordinate system was designed to draw the planar graph,
while we limit our purpose to route the data.

Definition 6. For destination node D, a path {uk} is a greedy
path if there exists i ∈ {1, 2, 3} such that

∀k uk+1 <i u
k, or ∀k uk+1 >i u

k. (5)
For a greedy path there is a coordinate that changes

monotonically.

In the following, we build greedy paths from u to D such
that u <i u

k <i D the fact that D is an upper bound and the
construction continues while uk <i D implies the convergence
of the sequence to D. In the proofs of Propositions 2 and 3
we use the assumption that the graph is saturated, to say that
given a node u there exists neighboring nodes in the sectors
su1 , s

u
3 , s

u
5 . We must rule out the case where the node u is

one of the distinguished nodes A1, A2, A3 since these nodes
may not have any neighboring nodes in these sectors. Actually,
these nodes do not cause any trouble because there is a path
from any internal nodes to them with increasing coordinate
<i respectively [20]. Hence, in order to make our best to
simplify the exposition we no longer make any reference to
these particular nodes in the proofs.

Proposition 1. If D′ ∈ sDi and D′′ ∈ sD′

i then D′′ ∈ sDi
Proof. This property follows directly from the transitivity of
the inequalities in the definition of the sectors (2).

Proposition 2. We assume that the graph G is saturated. Then
provided that the destination D belongs to su2 (or su4 , or su6 )
then there is a path {ui} in G with u0 = u such that ui+1 ∈
su

i

2 (ui+1 ∈ su
i

4 or ui+1 ∈ su
i

6 respectively), and the path
converges to D.

Along the path, the order <3 (<1, <2) decreases monoton-
ically if D ∈ su2 (D ∈ su4 , D ∈ su6 respectively).

Proof. For concreteness we consider D ∈ su4 . If u is connected
to D we define u1 = D and the proposition is true. Otherwise,
we prove below that there exists a neighboring node of u, u1

such that D ∈ su1

4 and D <1 u
1 <1 u. Hence, by applying

the construction iteratively we construct the sequence of points
that satisfy ui+1 ∈ su

i

4 , lower bounded by D and decreases
with respect to <1, i.e. D <1 u

i+1 <1 u
i. Such a sequence

converges to D.
Let us prove that given u such that D ∈ su4 there exists
x such that (u, x) ∈ E, D ∈ sx4 and D <1 x <1 u. u
is internal, by the assumption on saturation, there exists two
neighboring nodes of u such that v ∈ su3 and w ∈ su5 . we then
have

D <1 u, D >2 u, D >3 u ⇔ D ∈ su4 (6)
v <1 u, v >2 u, v <3 u ⇔ v ∈ su3 (7)
w <1 u, w <2 u, w >3 u ⇔ w ∈ su5 (8)

If v (or w) is such that D ∈ sv4 (or D ∈ sw4 ) the next
point on the path is u1 = v (or u1 = w) and (7) shows that
v = u1 <1 u, and D ∈ sv4 ⇒ v >1 D (or (8) shows that
w = u1 <1 u , and D ∈ sw4 ⇒ w >1 D).

(a) Destination D ∈ su2i and (D ∈
sv2i or s

w
2i)

(b) Destination D ∈ su2i and
¬(D ∈ sv2i or sw2i)

Fig. 3: Two cases to consider in greedy path construction

Otherwise, we have to prove that there exists a neighboring
node of u in the sector su4 that satisfies the conditions. We
have that D >2 u >2 w, and D >3 u >3 v (using (6, 7, 8))
and D 6∈ sv4 and D 6∈ sw4 imply

D 6∈ sv4 ⇒
D >1 v D <2 v D >3 v or
D <1 v D <2 v D >3 v

}
⇒ D <2 v

(9)

D 6∈ sw4 ⇒
D >1 w D >2 w D <3 w or
D <1 w D >2 w D <3 w

}
⇒ D <3 w

(10)

Next, because D ∈ su4 ⇒ u ∈ sD1 and the assumption of
saturation, there exists an edge (D,D′) with D′ ∈ sD1 . If
D′ = u we are done.
Otherwise, by the property (2) and u ∈ sD1 we have that
D′ <1 u .

By gathering the inequalities corresponding to u ∈ sD1 with
the ones deduced from (9),(10) we obtain D <1 D′, v >2

D >2 D′, w >3 D >3 D′. Using D′ <1 u, D′ <2 v with
property (3) we obtain D′ >3 u .

Last from D′ <1 u, D′ <3 w and property (4) (with
edge (u,w) instead of (u, v)) we obtain D′ >2 u . Finally,
we have proved that D′ ∈ su4 with the boxes equations and
D <1 D′ <1 u. The node D′ plays the same role as D in
the statement of the proposition but with an increasing <1

order position. Because of the bound D′ <1 u we see that
by applying iteratively the construction we obtain a sequence
D′, D′′, . . . that converges to u and such that all the points
belong to su4 . Moreover, along the sequence we have D′ ∈ sD1 ,
D′′ ∈ sD′1 ,... and Proposition 1 implies that all the points in
the sequence belong to sD1 . In particular, for the point x that
is connected to u x ∈ sD1 ⇔ D ∈ sx4 . We have then proved
the existence of a point x ∈ su4 that satisfies D ∈ sx4 and such
that D <1 x <1 u.

Remark 1. Construction of the greedy path if D ∈ su2i
In order to route from u to D ∈ su2i the node u must first check
whether for v ∈ su2i+1 and w ∈ su2i−1 one of the condition
D ∈ sv2i or D ∈ sw2i is satisfied and if yes sends the message
accordingly, see the left of Figure 3. Otherwise, the message is
forwarded to (the existing by Proposition 2) neighboring node



in x ∈ su2i such that D ∈ sx2i, see the right of Figure 3. This
routing scheme converges because the coordinate i decreases
along the path and the path doesn’t step over D, as all the
points in the path are >i D.

Proposition 3. Let us assume that (u, v) ∈ E and D, v ∈ su1
(or su3 or su5 ). Then, D 6∈ sv3 ∪ sv4 ∪ sv5 (or sv1 ∪ sv5 ∪ sv6 or
sv1 ∪ sv2 ∪ sv3).

Proof. Let us consider v,D ∈u1 the other cases are proved
similarly by a permutation of the indices. We have

v ∈ su1 ⇔ u <1 v u >2 v u >3 v
D ∈ su1 ⇔ u <1 D u >2 D u >3 D

Part b) of the Schnyder’s conditions (1) implies that D must
be larger than u and v for one order and we see on the two
inequalities above that it can only be <1. The condition D ∈
sv3 ∪ sv4 ∪ sv5 implies that v >1 D and hence there is no i ∈
1, 2, 3 such that u, v <i D and the result in proved.

Remark 2. Construction of the greedy path if D ∈ su2i−1
The practical implication of Proposition 3 for routing is to
prove the existence of a greedy path from u to D ∈ su2i−1. We
decompose the construction in two parts and for concreteness
we consider D ∈ su1 .
Part 1. The maximality assumption implies the existence of a
node v ∈ su1 such that (u, v) ∈ E. If v = D we are done. Else,
u sends the message to v and the first coordinate <1 increases,
the second <2 and third ones <3 decrease. If D ∈ sv1 then
v repeats the same procedure and the coordinates continue to
be updated monotonically and D >1 v because D ∈ sv1 and
this implies that the first part of the construction converges to
D or switches to the second part.
Part 2. If the path reaches a node v such that D 6∈ sv1 the
construction of the path continues with this second part. In
this case D ∈ sv2 or D ∈ sv6 must be satisfied because of
Proposition 3. In both cases we have D >1 v and we can apply
Proposition 2 that shows the existence of a sequence of nodes
v′ with D ∈ sv

′

2 or D ∈ sv
′

6 respectively and this sequence
eventually reaches D. If D ∈ sv

′

2 then by Proposition 2 the
coordinate <3 continues to decrease along the second part
of the construction. If D ∈ sv′

6 the coordinate <2 continues
to decrease. In both cases we have shown that along the two
parts of the construction one coordinate (<2 or <3) decreases
monotonically and the resulting path is then greedy. We point
out that this second part is similar to Remark 1. However,
in the present case we have to prove that one coordinate
is decreasing monotonically although the path construction
follows Part 1.

VI. DESCRIPTION OF ALGORITHM 1

The Pseudo-code of the routing algorithm is provided in
Figure 1. We provide here a complete description. The algo-
rithm is executed at node u to destination node D.
• D is a neighbouring node of u (Line 3), the routing

terminates.

• D belongs to an ’odd’ sector of u (Line 5), by the
saturation assumption, Definition 5, there exists a unique
neighboring node of u, called v in the same sector of u
than D. v is the next hop. This corresponds to Part 1 of
the construction of greedy paths in Remark 2.

• D belongs to an ’even’ sector of u (Line 7), in this
case saturation alone does not ensures the existence of
a neighboring node of u in this sector. The algorithm
considers both neighboring nodes of v and w of u
that belong to the ’odd’ sector of u by saturation. If
destination D belongs to the same sector of v or w than
D the node is the next hop (Line 8 and 11). If not (Line
14) Proposition 2 proves the existence of a neighboring
node of u in th same sector as D. This corresponds to
Remark 1 and Part 2 of Remark 2.

VII. ROUTING IN MAXIMAL PLANAR GRAPH

In [12], it is proven using Schnyder’s characterization of planar
graphs (1) that there exists an embedding of the graph in
the plane8 such that greedy routing is successful (using the
natural metric). The embedding is a particular instance of a
familly of Schnyder drawings. In [23], [14] the authors use a
similar coordinate system and design a routing algorithm. In
our approach we avoid the computation of the embedding. In
the setting of unit Disk Graph (UDG) it is shown in [24]
that Schnyder’s characterization is proved to be useful for
planarizing and routing on the communication graph.
Our results are summarized in the Theorem 1, where the proofs
of the two forms are apparent from the previous sections. The
pseudo-code of the algorithm is provided in Algorithm 1 and
the correctness of the algorithm is proved in the remarks 1
and 2 of the construction of the path if D ∈ su2i or D ∈ su2i+1

that follow the Propositions 2 and 3.

Theorem 1. The first formulation of the Theorem refers to an
abstract graph and the second one to an embedded graph.

1) There is a greedy routing algorithm on every saturated
planar graph.

2) Every Schnyder drawing of a planar triangulation is a
greedy embedding.

VIII. CONCLUSION

In this article we propose a definition of greedy routing
that is independent of a graph embedding in a metric space.
We use a new localization paradigm (VRAC) which main-
tains raw distances from distinguished nodes as coordinates.
The goal is to avoid complex computations of coordinates,
hence appealing in real network settings. The proposed greedy
routing strategy is based on VRAC and the respective greedy
path characterization. We emphasize that our greedy routing
strategy does not require to embed the graph in a metric space.
The next step towards the development of a general practical
routing algorithm is to formulate a distributed algorithm that
extract virtual VRAC coordinates of the communication graph
(or a subgraph) using only the abstract graph, i.e. without

8Actually in the plane in R3 such that x+ y + z = 1.



Algorithm 1 Pseudo-code of the greedy routing

1: INPUT Source u, Destination D
2: repeat
3: if D ∈ Nu then u = D . Nu is the set of neighbors

of u
4: else
5: if D ∈ su2i−1 then
6: u = v ∈ su2i−1 s.t. (u, v) ∈ E . v is unique
7: else . D ∈ su2i consider v ∈ su2i−1 and w ∈ su2i+1

s.t. (u, v), (u,w) ∈ E
8: if D ∈ sv2i then
9: u = v

10: else
11: if D ∈ sw2i then
12: u = w
13: else
14: u = x ∈ su2i s.t. D ∈ sx2i . must exist

by Proposition 2
15: end if
16: end if
17: end if
18: end if
19: until u=D

measuring distances nor using geometry. Such an algorithm
would generalize the approach in [6], [4], [5], [24] where
the coordinates are measured and the techniques could be
merged to overcome the situation where the graph is not
maximal. With our approach here we decouple the problems of
greedy graph embedding and the design of a successful greedy
algorithm. An interesting question is whether there exists a
graph that does not admit a greedy embedding but on the top
of which there exists a successful greedy algorithm.
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