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Guidelines for investigating causality of
sequence variants in human disease
D. G. MacArthur1,2, T. A. Manolio3, D. P. Dimmock4, H. L. Rehm5,6, J. Shendure7, G. R. Abecasis8, D. R. Adams9,10, R. B. Altman11,
S. E. Antonarakis12,13, E. A. Ashley14, J. C. Barrett15, L. G. Biesecker16, D. F. Conrad17, G. M. Cooper18, N. J. Cox19, M. J. Daly1,2,
M. B. Gerstein20,21, D. B. Goldstein22, J. N. Hirschhorn2,23, S. M. Leal24, L. A. Pennacchio25,26, J. A. Stamatoyannopoulos27,
S. R. Sunyaev28,29, D. Valle30, B. F. Voight31, W. Winckler2{ & C. Gunter18{

The discovery of rare genetic variants is accelerating, and clear guidelines for distinguishing disease-causing sequence
variants from the many potentially functional variants present in any human genome are urgently needed. Without
rigorous standards we risk an acceleration of false-positive reports of causality, which would impede the translation of
genomic research findings into the clinical diagnostic setting and hinder biological understanding of disease. Here we
discuss the key challenges of assessing sequence variants in human disease, integrating both gene-level and variant-
level support for causality. We propose guidelines for summarizing confidence in variant pathogenicity and highlight
several areas that require further resource development.

H igh-throughput sequencing approaches can generate detailed
catalogues of genetic variation in both disease patients and the
general population. However, for these technologies to have the

greatest medical impact we must be able to separate genuine disease-
causing or disease-associated genetic variants reliably from the broader
background of variants present in all human genomes that are rare, po-
tentially functional, but not actually pathogenic (Box 1) for the disease
or phenotype under investigation.

Many, but unfortunately not all, variants that have been causally
associated with rare and common genetic disorders represent robust and
correct conclusions. False assignments of pathogenicity can have severe
consequences for patients, resulting in incorrect prognostic, therapeutic
or reproductive advice, and for the research enterprise, resulting in mis-
allocation of resources for basic and therapeutic research. Unfortunately,
although the vast majority of genes reported as causally linked to mono-
genic diseases are true positives, false assignments of causality at the variant
level are a substantial issue. One recent analysis of 406 published severe
disease mutations observed in 104 newly sequenced individuals reported
that 122 (27%) of these were either common polymorphisms or lacked
direct evidence for pathogenicity1. Other studies have identified numer-
ous alleged severe-disease-causing variants in the genomes of population
controls2,3. In other cases, well-powered follow-up studies of high-profile
reported mutations have cast serious doubts on initial reports assigning

disease causality to sequence variants4,5, but the vast majority of false-
positive findings probably remain undetected. As the volume of patient
sequencing data increases it is critical that candidate variants are sub-
jected to rigorous evaluation to prevent further misannotation of the path-
ogenicity of variants in public databases.

This paper describes the challenges in reliably investigating the role
of sequence variants in human disease, and approaches to evaluate the
evidence supporting variant causality. It represents the conclusions of a
working group of experts in genomic research, analysis and clinical diag-
nostic sequencing convened by the US National Human Genome Research
Institute.

We focus on the application of genome-scale approaches to investi-
gating rare germline variants, defined here as variants with a minor allele
frequency of ,1%. Our recommendations are most relevant for variants
with relatively large effects on disease risk. Our intended scope encom-
passes the vast majority of variants implicated in severe monogenic dis-
eases as well as rare, large-effect risk variants in complex disease6, but
excludes the common, small-effect variants typically identified by gen-
ome-wide association studies of complex traits7.

Unambiguous assignment of disease causality for sequence variants is
often impossible, particularly for the very low-frequency variants under-
lying many cases of rare, severe diseases. Consequently, we refer in this
manuscript to the concept of implicating a gene or sequence variant: that
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is, the process of integrating and assessing the evidence supporting a role
for that gene or variant in pathogenesis. We emphasize the primacy of
strong genetic support for causation for any new gene, which may then
be supplemented and extended with ancillary support from functional
and informatic studies.

Our recommendations centre on five key areas: study design; gene-
level implication; variant-level implication; publication and databases;
and implications for clinical diagnosis. Core guidelines for researchers
are summarized in Box 2. We also provide a list of factors to consider in
the analyses of candidate variants in presumed monogenic diseases (Sup-
plementary Information) and a list of resources for assessing pathogeni-
city (Supplementary Table 1).

Study design
Investigators seeking to identify pathogenic variants should select tech-
nological and analytical approaches based on the most likely genetic archi-
tecture of the disease of interest. Rare, high-penetrance protein-coding
variants can be cost-effectively captured by exome sequencing, which is
rapidly becoming the first-line approach for presumed monogenic disorders8.
Cytogenomic arrays and genotyping of linkage panels remain useful ap-
proaches for the identification of copy number variation and for identify-
ing co-segregating haplotypes within large Mendelian (especially dominant)
disease families, respectively. Optimal approaches to discovering rare path-
ogenic variants in complex diseases remain unclear: exome sequencing9,
deep and low-coverage whole-genome sequencing10 and/or next-generation
genotyping arrays with enhanced coverage of protein-coding variants are
all being applied in research settings. As the cost of sequencing declines,
we expect that deep whole-genome sequencing will soon become the
technology of choice for investigating all genetic architectures.

In selecting technological and analytical approaches for a new study,
investigators should consider formal power calculations11 incorporating
predicted distributions of allele frequencies and effect sizes for patho-
genic variants, genetic and phenotypic heterogeneity of available cohorts,
population frequency of the disease, and available sample sizes. Although
parameter values may be uncertain, current knowledge of the genetics of
the disease and similar traits can be used to constrain likely ranges. In
particular, for many diseases there is overwhelming evidence that both
locus and allelic heterogeneity is high, such as in autism, epilepsy and schizo-
phrenia. A study design that assumes low locus and allelic heterogeneity
would be certain to fail for these conditions, and this fact would be re-
vealed by even casual evaluations of power for reasonable genetic models.
Gene discovery for conditions with low locus heterogeneity and suffi-
ciently high-penetrance mutations is occasionally possible by sequencing
a single family12; however, most gene-discovery applications will require sub-
stantially larger sample sizes: multiple unrelated families for rare monogenic

conditions, and thousands to tens of thousands of patients and controls
for complex disorders9,13.

To assemble large sample sizes will typically require pooling of pa-
tient cohorts by multiple investigators. Although such consortium ap-
proaches are desirable, investigators should be mindful of systematic
differences among cohorts stemming from technical biases, population
stratification, and genetic and phenotype heterogeneity. For studies of
complex traits, many quality-control methods developed for genome-
wide association studies of common variants will also apply to rare variant
studies14, but DNA sequencing data face a different and typically more
challenging set of quality considerations, particularly when data sets are
combined for meta-analysis. In addition, new methods may need to be
developed to address population stratification of rare variants15, which
show stronger geographic clustering than common variants16; to min-
imize the impact of stratification, controls should be matched closely to
the ancestry of patient samples.

For presumed monogenic diseases, the availability of multiple fam-
ilies with very similar clinical phenotypes substantially increases power
for gene discovery. For cases in which there is a single affected proband
and no family history, investigators should consider sequencing the unaf-
fected parents of the probands, permitting efficient discovery of de novo
mutations and compound heterozygous genotypes. Investigators should
begin by examining sequence variation in genes known to be associated
with that phenotype, and assessing sequence coverage of the coding se-
quences and splice junctions for these genes before exploring the pos-
sibility of new candidate genes in the affected individuals.

Gene-level implication
To implicate a variant as pathogenic requires that the DNA sequence
affected by that variant has a role in the disease process. For genes not
previously reported as causal, investigators must simultaneously dem-
onstrate evidence for a role of a candidate gene and one or more variants
disrupting it. Even if the candidate gene has been previously implicated
in the same or a similar disease phenotype, the overall support from
published sources should be carefully assessed and reported. Multiple
classes of evidence may potentially contribute to pathogenic inferences
at the level of both gene and variant, and include genetic, informatic and
experimental data (Table 1 and Supplementary Information). However,
in keeping with the history of the field of human genetics, we emphasize
the critical primacy of robust statistical genetic support for the implica-
tion of new genes, which may then be supplemented with ancillary
experimental or informatic evidence supporting a mechanistic role for
the gene in the disease in question.

Historically, gene-level implication in monogenic diseases has relied
first on identifying a narrow set of candidate genes through genetic data
such as linkage analyses or experimental data on biochemical function,
and then identifying rare, probably damaging variants (altering the nor-
mal levels or biochemical function of a gene or gene product) in one of the
candidate genes in multiple affected patients. The increasing availability
of large-scale sequencing data now allows genome-scale approaches to
gene discovery, in which the distribution of rare, predicted gene-disrupting
variants in patients is systematically compared to population controls or
well-validated null models to identify genes with an excess of potentially
pathogenic variants for clinical and functional follow-up.

It is worth emphasizing that the whole-genome sequence data sets
are in some ways more prone to misinterpretation than earlier analyses
because of the sheer wealth of candidate causal mutations in any human
genome, many of which may provide a compelling story about how the
variant may influence the trait; a problem that has been referred to as the
‘narrative potential’ of human genomes17. To avoid such biases the evi-
dence supporting any candidate gene should be contrasted wherever pos-
sible with the evidence observed at other presumably non-disease-related
genes (for example, by ranking the gene among all others and reporting
the probability of a similar or greater contrast being observed by chance).
Formal genome-wide statistical approaches to monogenic-disease gene
discovery will require considerable methods development, but general

BOX 1

Terms used to describe sequence
variants
Lack of clarity in the terms used to describe sequence variants is a
major source of confusion in human genetics. We have adopted the
following definitions for terms used throughout this manuscript.

Pathogenic: contributes mechanistically to disease, but is not
necessarily fully penetrant (i.e., may not be sufficient in isolation to
cause disease).

Implicated: possesses evidence consistent with a pathogenic role,
with a defined level of confidence.

Associated: significantly enriched in disease cases compared to
matched controls.

Damaging: alters the normal levels or biochemical function of a
gene or gene product.

Deleterious: reduces the reproductive fitness of carriers, and would
thus be targeted by purifying natural selection.

RESEARCH PERSPECTIVE

4 7 0 | N A T U R E | V O L 5 0 8 | 2 4 A P R I L 2 0 1 4

Macmillan Publishers Limited. All rights reserved©2014



guidelines for establishing the significance of variation can be considered
here. As we discuss below, these considerations apply equally to assessing
the significance of rare variation in common disease studies.

Our paramount recommendation is that for genome-wide analyses of
rare variants for both Mendelian and complex disorders, formal calcula-
tion of statistical significance should be used to evaluate the strength of
evidence of a set of findings, following the well-established standard of
maintaining overall type I (false discovery) error rates below 5%. For
example, investigators should not simply assume that the presence of two
or more independently occurring de novo mutations in the same gene
within a sequenced cohort is definitive evidence of a causal role for that
gene18,19; such a threshold results in ever increasing numbers of false
positives as the number of sequenced cases increases. To illustrate this,
consider the recent situation of four exome sequencing studies, involving
a total of 945 families with a child affected by autism20–23, which together
observed four independent de novo missense mutations in TTN. Never-
theless, the investigators did not consider TTN to have a causal role in
autism, and appropriately so: using a statistical model similar to prev-
iously published approaches6,22,24 that accounts for gene size (TTN has
the largest coding sequence of any gene in the genome), mutation rate,
number of trios and distribution of exome coverage, 1.96 de novo TTN
missense or loss-of-function mutations are predicted by chance, which is
not significantly different (P 5 0.14) from the four observed.

We consider a single gene as the fundamental unit for monogenic
disease gene testing, for all disease models; a disease caused by de novo

mutations or a disease caused by inherited dominant or recessive var-
iants. An appropriate framework for detecting pathogenic variants will
evaluate all of the variation in a gene compared to a well-calibrated null
model specific for the hypothesis being considered (for example, de novo,
dominant, recessive).

Although the field has well-established guidelines for declaring signi-
ficance using linkage data25, it is now important to consider a conserva-
tive baseline threshold for declaring significance purely from sequencing
data of cases, in the absence of other genealogical information. In this
scenario, as the gene is the fundamental unit of analysis, and there is no
additional data to constrain the search space for genes, a typical study
might perform tests on 21,000 protein-coding genes and 9,000 long non-
coding RNA genes26,27. A conservative genome-wide significance thresh-
old corresponding to this testing strategy is a Bonferroni-corrected P value
of 1.7 3 1026 (that is, 0.05 out of 30,000). Importantly, if several different
schemes are used to define ‘qualifying mutations’ in such analyses, it is
necessary to make further statistical adjustments for each of the different
sets of rules that are used.

Formal null models can be specified based on the disease model of
interest. As mentioned above, the null model for the case of the de novo
mutation analysis should consider confounding variables such as sam-
ple size, gene size and mutation rate (which may vary by orders of mag-
nitude among genes). We note that such null models have power even
for extremely rare conditions and small sample sizes: the first exome
sequencing study of Kabuki syndrome28 initially identified 7 de novo

BOX 2

Guidelines for implicating sequence variants in human disease
General guidelines

$ Provide complete positive and negative evidence associated with the gene or variant implication, not just the results that are consistent with
pathogenicity.

$ In all cases in which it is possible, place genetic, informatic and experimental results within a quantitative framework: determine theprobability
of observing this result by chance with a randomly selected variant or gene.

$ Take advantage of public data sets of genomic variation, functional genomic data and model-organism phenotypes.
$ Do not regard prior reports of gene or variant implication as definitive: to the degree that supporting data are available, reassess them as

rigorously as your own data.
$ Describe and assess clearly the available evidence supporting prior reports of gene or variant implication.

Assessment of evidence for candidate disease genes
$ In presumed monogenic-disease cases, evaluate genes previously implicated in similar phenotypes before exploring potential new genes.
$ Report a new gene as confidently implicated only when variants in the same gene and similar clinical presentations have been confidently

implicated in multiple unrelated individuals.
$ Inall cases inwhich it ispossible, apply statisticalmethods tocompare thedistributionof variants inpatientswith largematchedcontrol cohorts

or well-calibrated null models.

Assessment of evidence for candidate pathogenic variants
$ Determineandreport the formal statistical evidence for segregationorassociationof eachvariant, and its frequency in largecontrolpopulations

matched as closely as possible to patients in terms of ancestry.
$ Recognize that strong evidence that a variant is deleterious (in an evolutionary sense) and/or damaging (to gene function) is not sufficient to

implicate a variant as playing a causal role in disease.
$ Predict variant deleteriousness with comparative genomic approaches, but avoid considering any single method as definitive or multiple

methods as independent lines of evidence for implication.
$ Validate experimentally the predicted damaging impact of candidate variants using assays of patient-derived tissue or well-established cell or

animal models of gene function.
$ Avoid assuming that implicated variants are fully penetrant, or completely explanatory in any specific disease case.

Publications and reporting
$ Assessandreportobjectively theoverall strengthandcohesivenessof theevidencesupportingpathogenicity forall variants listed inapublication.
$ In all cases in which it is possible, ensure that the level of confidence of pathogenicity and supporting evidence are propagated in variant

databases.
$ Deposit genotypeandphenotypedata forbothcontrols anddiseasepatients, and for resultantanalysesdemonstratingassociations, inpublicly

accessible databases, to the maximum degree permissible under study-specific participant consent and ethical approval.
$ If returning results for clinical use, highlight strong, actionable findings but also ensure that uncertain or ambiguous findings are clearly

conveyed as such, along with appropriate supporting evidence.
$ Provide clear cautions regarding decision-making based on variants with limited evidence when the potential for use in medical interventions

is high.
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loss-of-function variants in the MLL2 gene in just 10 sequenced patients,
a finding that is extremely unlikely by chance under the background
mutation model described above (P 5 1.9 3 10228) and that provided
compelling evidence implicating this gene as causal.

Formal methods for assessing the significance of observations in rare
disease cohorts can also be used to assess, for example, the aggregate evi-
dence for segregation of rare variants in a particular gene when consider-
ing inherited variation, building on previously published examples29. In
this case, the null model should be a population genetic model, for in-
stance, the site frequency spectrum (SFS) of variation constructed from a
well-matched control cohort. The null model of the SFS for a given gene
should consider both the mutation rate and selective constraint acting on
that gene. When evaluating data from a single case, the probability that
the variation in a gene is from the null model can by estimated by first
identifying the most pathogenic class of variant present in that gene in
that case, and then by calculating the probability of sampling a variant of
the same class of pathogenicity from the null SFS. Similarly, when the
recessive disease model applies, the most pathogenic class of variant on
the paternal and maternal haplotypes is identified, and then the prob-
ability of sampling both variants from the null SFS is calculated. This
testing framework for inherited variants is easily scaled to include mul-
tiple disease cases. Ideally, to avoid false positives, the control cohort upon
which the SFS is based would be sequenced and analysed in a manner
identical to the disease cases.

Such methods may not yet be applicable to every rare disease scenario,
and will require work to extend to more exotic inheritance modes such
as parental imprinting or obligate compound heterozygosity30. Although
formal methods are established to perform these tests rigorously, research-
ers should at the very least evaluate and report the level of background
variation in an implicated gene in population cohorts, taking advantage of
public resources such as the Exome Variant Server (http://evs.gs.washington.
edu/EVS/) when implicating a new gene in pathogenesis. Furthermore,
the analysis of at least some number of controls, sequenced and analysed
in a manner identical to cases, can be critical for avoiding the systematic
false positives that remain commonplace in exome and genome sequencing.

Just as for genome-wide association studies of common variants14,
replication of newly implicated disease genes in independent families

or population cohorts is critical supporting evidence, and in most cases
essential for a novel gene to be regarded as convincingly implicated in
disease. For the rarest disorders additional cases for independent rep-
lication may be unavailable and it may be impossible to make a com-
pelling statistical case for implication from human genetic data alone. In
these cases, gene implication must be based on an integrated analysis of
genetic, informatic and experimental evidence.

Provided that it is carried out in a statistically rigorous fashion, ancil-
lary information can be used to boost power for gene discovery. For example,
many genome-wide sequencing-based studies treat all protein-altering
variants equally while ignoring all other classes of variants. More elegant
schemes aimed at prioritizing based on predicted pathogenicity may boost
power for such studies. Another approach is to stratify gene candidates by
their expression in a tissue appropriate to the disease under analysis. For
example, a recent study combined variant- and gene-level stratification
to show that the de novo mutation rate in congenital heart disease was
similar in cases versus controls, but the odds ratio rose to 7.5 when focus-
ing on de novo mutations predicted to be damaging and to occur in genes
expressed in the developing heart31.

Experimental evidence that can contribute to support for gene impli-
cation falls into three broad categories, listed here in order of increasing
strength. First, experimental data can be used to demonstrate that the
normal function of the gene is consistent with the known biology of the
disease process, for example by showing that the gene is expressed in
tissues relevant to the disease32, or that its protein product co-localizes
with, or physically interacts with, the products of other genes previously
implicated in the disease33. Second, investigators can demonstrate that a
gene product is functionally disrupted by mutations in patients with the
disease of interest, as discussed in the variant-level evidence section below.
Lastly, disruption of the candidate gene in a model organism can be shown
to result in a phenotype that recapitulates the relevant pathology in humans
and is unlikely to occur with disruption of genes selected at random34,35.

A complete description of the experimental methods relevant to gene
implication falls outside the scope of this manuscript. However, we note
that the value of experimental approaches depends critically on the appro-
priateness of the model system to the human disorder that is being inves-
tigated. Whether cell line or animal models will be most appropriate will

Table 1 | Classes of evidence relevant to the implication of sequence variants in disease
Evidence level Evidence class Examples

Gene level Genetic Gene burden: the affected gene shows statistical excess of rare (or de novo) probably damaging variants segregating
in cases compared to control cohorts or null models.

Experimental Protein interactions: the gene product interacts with proteins previously implicated (genetically or biochemically)
in the disease of interest.
Biochemical function: the gene product performs a biochemical function shared with other known genes in the
disease of interest, or consistent with the phenotype.
Expression: the gene is expressed in tissues relevant to the disease of interest and/or is altered in expression in
patients who have the disease.
Gene disruption: the gene and/or gene product function is demonstrably altered in patients carrying candidate
mutations.
Model systems: non-human animal or cell-culture models with a similarly disrupted copy of the affected gene show
a phenotype consistent with human disease state.
Rescue: the cellular phenotype in patient-derived cells or engineered equivalents can be rescued by addition of the
wild-type gene product.

Variant level Genetic Association: the variant is significantly enriched in cases compared to controls.
Segregation: the variant is co-inherited with disease status within affected families and additional co-segregating
pathogenic variants are unlikely or have been excluded.
Population frequency: the variant is found at a low frequency, consistent with the proposed inheritance model and
disease prevalence, in large population cohorts with similar ancestry to patients.

Informatic Conservation: the site of the variant displays evolutionary conservation consistent with deleterious effects of
sequence changes at that location.
Predicted effect on function: variant is found at the location within the protein predicted to cause functional
disruption (for example, enzyme active site, protein-binding region).

Experimental Gene disruption: the variant significantly alters levels, splicing or normal biochemical function of the product of the
affected gene. This is shown either in patient cells or a well-validated in vitro model system.
Phenotype recapitulation: introduction of the variant, or an engineered gene product carrying the variant, into a cell
line or animal model results in a phenotype that is consistent with the disease and that is unlikely to arise from
disruption of genes selected at random.
Rescue: the cellular phenotype in patient-derived cells, model organisms, or engineered equivalents can be rescued
by addition of wild-type gene product or specific knockdown of the variant allele.
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depend on context: simple cultured cell models may be inappropriate for
developmental disorders affecting complex organ systems. For similar
reasons, animal models are not well suited for analysis of human-specific
aspects of biology.

As noted above, it is also important to consider the specificity of gene-
level support; that is, the probability of observing a similar result if the
experiment or analysis was performed with a randomly selected gene.
For example, if a new candidate gene is implicated in non-syndromic
short stature in humans, observing that its orthologue is associated with
small body size in knockout mice is relatively uninformative given that a
similar phenotype occurs in over 30% of all knockout mouse strains36.
Similarly, reports that the product of a gene potentially implicated in a
metabolic disorder is localized to mitochondria should also consider that
these are complex organelles with many highly expressed genes. Wherever
possible, investigators should use informatics approaches to assess such
metrics in publicly available high-throughput data sets of functional geno-
mic and model organism phenotype data37. Although it remains challen-
ging to quantify the statistical confidence of functional observations, those
that can be convincingly demonstrated to represent very low-probability
events under an appropriate null hypothesis provide more compelling sup-
port for implicating a given variant. Even in situations in which a formal
statistical framework is not possible we emphasize that researchers must
assess functional data rigorously and clearly report their limitations.

Variant-level implication
Genetic evidence implicating a variant must be assessed within the con-
text of the considerable background of rare genetic variants in humans.
Even healthy individuals carry many rare protein-disrupting variants38,
and about half carry at least one de novo protein-altering mutation39.
Such variants are therefore not typically sufficient proof of causality when
observed in a disease case, even if present in well-established disease genes:
genes differ markedly in their tolerance to variation40 and rare variants
predicted to be damaging in disease-associated genes are often observed
even in population controls41.

In both established and newly implicated disease genes, investigators
should formally assess and report the statistical support for association.
Family-based studies should also assess co-segregation of candidate var-
iants with disease status. Given that a separate, unobserved pathogenic
mutation may lie on the same haplotype as the candidate variant, segrega-
tion analysis alone cannot definitively implicate a specific variant as path-
ogenic, but (at least under an assumption of complete penetrance) lack of
segregation can exclude non-pathogenic variants from consideration.

Informatic and/or experimental evidence for variant implication can
be used to assess whether a variant is likely to be deleterious in an evo-
lutionary sense (Box 1), which primarily comes from in silico annotation
and comparative genomics42, and predict that a variant is damaging in
terms of biological function, arising both from computational predic-
tions and experimental assays. Both categories of evidence can support
implication, but they do not necessarily demonstrate a causal role for the
variant with respect to the trait under study. Again, we stress that hun-
dreds to thousands of coding variants in an individual will typically be
labelled as potentially deleterious or damaging, or both; the strength of
the resulting evidence for pathogenicity must be considered in the con-
text of this background level of variation.

Measures of evolutionary sequence conservation are widely used indica-
tors of deleteriousness for both protein-coding and non-coding variation42.
Such approaches have demonstrated value in prioritizing candidate
variants43,44; however, their predictive power is limited by both statistical
and biological factors. Many deleterious variants do not show a strong
conservation signature, particularly if the gene has been subject to rapid
evolution in the human or primate lineage, or if there have been compen-
satory substitutions in other regions of the protein in ancestral species45.
Conversely, strong conservation can be maintained at sites subject to
even relatively weak selective pressure, at which variants may have only
small effects on disease risk. The power of these methods also depends on
the accuracy and phylogenetic scope of the underlying sequence alignments.

These limitations should be taken into account when using predictions of
deleteriousness as evidence for implication. Even though it is worthwhile
to use multiple prediction algorithms, investigators should avoid treat-
ing these as though they represent strong or independent lines of evidence
for pathogenicity.

Although some classes of variation, such as truncating or splice-site-
disrupting variants in the middle of a protein-coding gene, are more likely
to be damaging than others, such variants are also enriched for sequen-
cing and annotation errors and may be rescued by alternative RNA splic-
ing, other variants, or local sequence context41. These possibilities should
be assessed, and if possible the predicted damaging effect should be con-
firmed experimentally.

Experimental approaches to investigating the impact of a sequence
variant on gene function, or cell or organism phenotype, can also have a
role in demonstrating that a variant is damaging to gene function and in
identifying the molecular mechanisms underlying a variant’s effect on
disease risk. However, great care must be taken to select appropriate ex-
perimental methods, which will depend on the class of variant, biolog-
ical context (for example, tissue type), access to samples and reagents,
desired throughput, time and cost. When a gene has already been con-
fidently implicated in disease, and it is known what class of variant is
causal (for instance, loss or gain of function as represented by a specific
assay), then an experiment that places a variant of unknown significance
into such a functional class can be particularly informative.

Evidence derived directly from patient tissue or cells can often be
stronger than that from model systems, particularly (for loss-of-function
variants) if the molecular defect can be rescued by complementation in a
cellular assay. Replicating disease-relevant phenotypes in a heterologous
cell line engineered to carry the proposed causal variant can help to rule
out effects of a patient’s genetic background on disease outcome. Weaker
but still valuable support can be provided by assays performed in model
organisms, more artificial cell culture systems, and non-cellular models
such as construct-based assays of altered protein–protein interactions or
transcript splicing. Models are most valuable if they directly mimic the
predicted functional impact of the candidate variants: for example, knock-
out mice are better models of recessive loss of function than of dominant
missense mutations in a candidate gene. In the case of compound het-
erozygous recessive inheritance—particularly if the proposed mode of
action depends on an interaction between allelic variants, such as in TAR
(thrombocytopenia with absent radius) syndrome30—it will be necessary
to develop cellular assays that incorporate and assess multiple variants
simultaneously.

The impact of variation in non-protein-coding regions of the genome—
such as splicing and transcriptional enhancers—remains particularly chal-
lenging to interpret, but we note that systematic experimental approaches
have begun to both highlight the regions of the human genome most likely
to have a role in gene regulation46, and to dissect the potential impact
of variation within them47. However, given the challenges of predicting
impact for non-coding variants, it remains critical to determine whether
the purported pathogenic variant does in fact produce the expected effect
on expression or splicing of the affected gene, either by demonstrating an
unusual expression level in the patient or by in vitro experimentation (such
as minigene constructs).

We caution against the assumption that convincingly implicated
variants, even in presumed monogenic disorders, are necessarily fully
penetrant (that is, sufficient in isolation to cause disease). In fact the
penetrance of most reported disease-associated mutations has not been
accurately assessed with current data owing to the biases associated with
sample ascertainment. Indeed, the prevalence of reported severe-disease-
causing mutations in population controls2,3 suggests that incomplete pene-
trance, false assignment of pathogenicity, or wider-than-appreciated ranges
of expressivity are a substantially more common feature of reported Men-
delian disease mutations than generally appreciated. Accurate estimates
of penetrance require characterization of reported mutations in large,
well-phenotyped population cohorts48–50. Further large-scale studies of
this kind should be a priority for the field.
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We also note the underappreciated importance of calibrating the accu-
racy of functional assays by large-scale testing of variants confidently estab-
lished to be non-pathogenic (for example, common missense polymorphisms
in the gene of interest). Such experiments establish a baseline estimate for
the impact of well-tolerated variants on the assay in question.

Publication and data sharing
As noted above, there are many false positives in disease-mutation data-
bases, stemming largely from erroneous assignment of pathogenicity
both in clinical diagnostic laboratories and in the primary literature1,2,51.
To reduce this burden will require robust, centralized repositories of
mutation data, incorporating explicit, structured evidence for variant
pathogenicity and systems for rapid correction of entries. To incentivize
both research and clinical laboratories to deposit variation data into open
repositories, and to update evidence for or against implication, is a key
challenge to be addressed by funding bodies, journals, research consortia,
clinical organizations and others52. We are hopeful that such activities can
be coordinated around the US National Center for Biotechnology Infor-
mation (NCBI)’s newly launched ClinVar database (https://www.ncbi.
nlm.nih.gov/clinvar/), which will also interface with existing efforts in
this space including the LOVD (Leiden Open (source) Variation Database)53

and other locus-specific databases, OMIM (Online Mendelian Inheritance
in Man; http://omim.org/) and DECIPHER (Database of Chromosomal
Imbalance and Phenotype in Humans Using Ensembl Resources)54.

In some cases—such as diseases that are extremely rare or have high
degrees of locus heterogeneity—it may be impossible to obtain definitive
evidence implicating a specific gene or variant with available sample sizes.
In such cases we acknowledge that the suggestive evidence pointing to a
gene’s potential implication can nevertheless be valuable in future clinical
and research investigations, and should not be excluded from publica-
tions or the public domain. However, it is incumbent on investigators,
reviewers and journals to be explicit in describing the supporting evid-
ence and the degree of confidence in causality for each proposed gene
association and reported variant.

Finally, we emphasize the value of sharing sequence and phenotype
data from clinical and research samples to the fullest possible extent. Many
investigators and research funders consider responsible data sharing to
be a moral and professional imperative55. In many cases, particularly for
extremely rare phenotypes, individual laboratories that are not actively
recruiting subjects will evaluate only a handful of samples. Sharing of se-
quence data among testing laboratories has often been restricted, so that
many potentially pathogenic mutations and associated phenotypes are
known only to individual laboratories. The availability of genome-wide
variant calls and detailed clinical phenotype descriptions from such patients
in centralized repositories—which will require substantial investment both
in informatic infrastructure and new ethical frameworks—would permit
more rapid accumulation of evidence for novel genes, and continuous
reanalysis to refine the classification of potentially implicated variants
and the genotype–phenotype map of human disease. Models for success-
ful data sharing efforts in rare disease already exist in the field of copy
number variation with the DECIPHER database54 and the International
Standards for Cytogenomic Arrays Consortium (https://www.iscacon
sortium.org/), aided by an increasing number of rare-disease resource
consortia, and several ambitious efforts to establish clear global standards
for genomic data sharing are now underway56.

Added challenges in clinical settings
Although this summary is focused on research, research findings pro-
vide the foundation for clinical interpretation. Questionable attributions
of causality based on weak research evidence can be readily propagated
through research databases and can be misinterpreted clinically as stron-
ger than they truly are. Thus, even researchers who do not explicitly pro-
vide diagnosis to patients should be aware that their published findings
may be used as support for decisions made in clinical settings.

Clinical laboratories face similar challenges in assessing variant path-
ogenicity as do researchers, but with the added pressures of diagnostic

urgency and the potentially severe consequences of misdiagnosis. Al-
though guidelines are available for variant interpretation in a diagnostic
setting57, analytical frameworks for next-generation sequencing data are
only beginning to emerge58,59. Responsible application of these technolo-
gies will require standards for test validation, variant interpretation and
return of results.

The results of genetic and genomic testing are increasingly being used
in medical decision-making, including recommendations for prophy-
lactic mastectomy, cardiac defibrillator implantation, tumour therapy
and prenatal diagnosis. These actions are neither generally inappropri-
ate nor uniformly incorrect; however, the potential for harm due to mis-
interpretation of variants is substantial. Although physicians must often
make medical decisions using imperfect or ambiguous data, it is critical
that healthcare providers be made aware of the varying levels of certainty
in the evidence for implicating a variant in disease, both through the
consistent use of variant classification terminologies and descriptions of
the supporting evidence or lack thereof.

Conclusions
High-throughput DNA sequencing technologies provide unprecedent-
ed opportunities to discover new genes and variants underlying human
disease, but these discoveries must be rigorously performed and repli-
cated to prevent the proliferation of false-positive findings.

Assessment of evidence for variant implication is a two-step process.
First, the overall evidence for implication of a gene should be considered,
focusing primarily on the statistical support for implication from genetic
analyses, potentially supplemented by ancillary data from informatic
sources and functional studies. Second, a combined assessment of the
genetic, experimental and informatic support for individual candidate
variants should be performed. Such assessments should be performed
even if the genes or variants have been previously reported as confi-
dently implicated; prior evidence should be continuously re-evaluated
with newly available information.

We urge that, whenever possible, investigators assess the results of ge-
netic, informatic and functional analyses within a quantitative statistical
framework, such as determining the probability of the observed distri-
bution of genetic variants in cases and controls under the null hypoth-
esis, and the a priori power to detect variants of a specified frequency and
effect size. The specificity of experimental or informatic results provided
in support of implication should also be assessed whenever possible by
asking how often a similar result would be obtained by chance among a
set of random variants or genes. In such analyses investigators should

BOX 3

Priorities for research and
infrastructure development

$ Improved public databases of human genetic variants
incorporating explicit, up-to-date supporting evidence for variant
implication in disease and audit trails recording changes in
interpretation.

$ Improved incentives, and ethical and logistical solutions, for
sharing of genetic and phenotypic data from both research and
clinical diagnostic laboratories.

$ Public databases of variant andallele frequencydata from large
sets of population reference samples from a wide range of ancestries.

$ Large-scale genotyping of reported human disease-causing
variants in large,well-phenotyped population cohorts, reducing biases
in the assessment of the associated penetrance and phenotypic
heterogeneity.

$ Development and benchmarking of standardized, quantitative
statistical approaches for objectively assigning probability of
causation to new candidate disease genes and variants.
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take advantage of the increasing availability of genome-scale sequencing
and functional data, and help to build these resources by contributing
their findings to public databases.

The community should also focus on the ongoing development of re-
sources in several key areas (Box 3). In particular, major improvements
in databases of reported pathogenic mutations, including details of the
evidence supporting pathogenicity, are urgently needed. Large-scale
experiments to assay previously reported disease-associated mutations
in additional large, well-phenotyped populations will also be required to
confirm pathogenicity and provide robust evidence of penetrance and
expressivity. Finally, extensive work is needed to develop formal statistical
frameworks for quantifying the strength of the evidence for implication.

Objective, systematic and quantitative evaluation of the evidence for
pathogenicity and sharing of these evaluations and data amongst re-
search and clinical laboratories will maximize the chances that disease-
causing genetic variants are correctly differentiated from the many rare
non-pathogenic variants seen in all human genomes.
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