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Résumé

Cette thèse traite des triangulations topologiques, i.e., des décompositions en simplexes des
sphères S 2 et S 3 de dimension 2 et 3. En particulier, nous nous intéressons à deux aspects
de ces triangulations: leur nombre, qui est le sujet du deuxième et troisième chapitre, ainsi
que la dynamique de verre qu’on peut avoir sur ces triangulations, traitée dans le premier et
le dernier chapitre.

En mécanique statistique hors équilibre, un verre est défini comme étant un solide amor-
phe qui ne possède pas la périodicité des cristaux. Certains verres ont même une structure
similaire à celle des liquides telle qu’on peut leur associer un coefficient de viscosité. Dans
cette thèse, nous nous intéressons à un type de modèles de verre très particulier que nous
appellons les verres topologiques. Ils sont définis de la façon suivante:

L’espace de phase est l’ensemble de toutes les triangulations de la sphère S d de dimension
d = 2, 3. Le cas d = 2 est résolu dans le premier chapitre tandis que le cas d = 3 est le
sujet du dernier chapitre. Les mouvements élémentaires de la dynamique sont donnés par les
mouvements de Pachner qui conservent le nombre de noeuds, à savoir le mouvement T1 en
2 dimensions et les mouvement 2-3 et 3-2 en 3 dimensions. Etant donné une triangulation
A, son énergie est locale, donc une somme des contributions de chaque noeud v:

E =
∑

v∈V(A)

f (I(v)) ,

où v ∈ V(A) est un noeud de A, I(v) est le voisinage de v, i.e., la sous-triangulation de
A contenant uniquement les voisins de v et f (·) est une fonction positive qui donne la
contribution en énergie de v. Finalement, la dynamique est donnée par un algorithme de
Metropolis dont le seul paramètre libre est la tempérture T .

Ces systèmes se comportent comme des verres; en particulier, leur dynamique ralentit
énormément quand la tempérture T s’approche de zéro. Par exemple, nous observons que
l’énergie s’approche de sa valeur stationnaire à T ≪ 1 de façon polynomiale et non pas expo-
nentielle. De plus, la fonction de corrélation du temps décroît avec un temps de relaxation
τr, qu’on peut interpréter comme un coefficient de viscosité, qui croît exponentiellement en
fonction de l’inverse de la température.

Dans le deuxième et troisième chapitre, nous étudions en détail une propriété de l’espace
de phase 3d, à savoir sa taille: quelle est le nombre de triangulations de S 3 avec t tétrahèdres?
La question équivalente en 2d a été résolue par W. Tutte en 1962; sa téchnique est basée sur
une variation de la méthode permettant de compter les arbres binaires. Une généralisation
simple de cette méthode au cas 3d n’aboutit pas, à cause de la richesse de la topology de S 3.
En particulier, il est possible de trianguler la sphère S 3 de telle façon à ce qu’elle contienne
une arête nouée.
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Etant donné une triangulation arbitraire A de S 3, notre méthode consiste à la décomposer
en un arbre de triangulations élémentaires que nous appelons noyaux. Un noyau est une
triangulation 3d d’un polytope (donc avec bord), sans noeud interne, tel que chaque face
interne possède au plus une arête externe (sur le bord). Un tétrahèdre (le simplexe 3d) est un
noyau, mais contrairement au cas 2d, il existe des noyaux plus complexes. Nous montrons
que si le nombre de noyaux avec t tétrahèdres admet une borne exponentielle en t, alors le
nombre de triangulations de S 3 admet une borne exponentielle similaire.

Dans le troisième chapitre, nous réduisons ces noyaux à des triangulations encore plus
petites, en identifiant certains noeuds adjacents sur le bord. Nous obtenons ce que nous
appelons des atomes. Nous montrons que si leur nombre admet une borne exponentielle,
alors le nombre de noyaux et par suite, celui de toutes les triangulations de S 3 admet une
borne similaire.

L’intérêt de cette décomposition en atomes est le suivant: le nombre de triangulations
contenenant une arête nouée d’une façon particulière, comme par exemple en un noeud de
trèfle, est très grand. Par contre, un atome contient l’essentiel de l’information topologique.
Nous postulons que le nombre d’atomes contenant une arête avec un noeud particulier est
très petit, peut-être même égal à un. Démontrer un tel résultat permtettra de résoudre le
problème consistant à compter les triangulations de S 3.
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Chapter 1

Introduction

Glasses are among the oldest materials known to man: according to the ancient-Roman
historian Pliny (AD 23-79), Phoenician merchants transporting stone discovered glass in the
region of Syria around 5000 BC, when the soda they were carrying melted with the sand
due to the heat of the fire and formed glass. Interestingly enough, the concept behind glass-
making is still unchanged millennia later: the most common way of obtaining a glass is by
supercooling a viscous liquid. Nowadays, we define a glass as an amorphous solid that lacks
the periodicity of crystals (due to the supercooling). The scientific community has shown
an increasing interest in glassy materials these past two decades; the main issues are to
understand the enormous slowing down of the dynamics of the liquid as it is cooled, or
what is commonly called the liquid-glass transition (see for instance the review article [1] by
Stillinger et al.), and the mechanical properties of glasses (see for instance the review article
[2] by Rodney et al.). The most common approach, whether by simulating the system or
actually experimenting on it, is to apply some force or stress on the material and study its
strain and how it reacts.

We want to look at glassy systems from a purely topological point of view. We show that
imposing some topological constraints is enough to slow the dynamics at low temperatures
so that the system behaves as a glass. In our model, there are no privileged directions so
the notion of force does no exist. There is no geometry or coordinates either, so the notions
of displacement and velocity cannot be defined. What we mean by topological constraints is
the following : we know that the ground state of the system is a crystal. Given a particle, we
simply say that its local neighborhood or the set of particles around it should be topologically
identical to the local neighborhood of the particle in the crystalline ground state. We use the
term flower to denote the local neighborhood of a particle (the term star is more common in
the literature) and we define a positive measure called the local energy that, given a flower,
measures how different it is from that of the ground state.

Let us first consider a geometric example in two dimensions, where the particles have
coordinates: the hexagonal tiling is a regular tiling of the euclidean space and as such is
a good candidate for the ground state of a system with identical particles. The flower of a
particle is simply the set of its nearest neighbors. In two dimensions, the flowers are closed
polygons and, considering the hexagonal tiling as a ground state, the topological constraint
we impose is simply saying that the flower of each particle should be a hexagon or in other

1



2 CHAPTER 1. INTRODUCTION

terms, each particle must have six neighbors.
The flower of a particle is defined using the Voronoi decomposition: given a configuration,

we define around each particle the box of points in space that are closer to this particle than
to any other particle (the metric used to define closeness is not important; the most natural
one is of course is the Euclidean distance). This box is called the Voronoi cell. We say
that two particles are nearest neighbors if and only if their Voronoi cells share a common
boundary.

Considering still the example of two dimensions, we see that the Voronoi cell of a
particle is a polygon and that there are some points in space where three Voronoi cells meet.
Points where four or more Voronoi cells meet are most likely non-existent. We connect
two particles if and only if they are nearest neighbors and we get a triangulation called
the Delaunay triangulation. This result can be easily generalized to three (or even higher)
dimensions.

Given a configuration of particles in space, once we obtain its Delaunay triangulation,
we can forget the particles’ coordinates. We get what we call a topological triangulation.
It is simply a list of triangles (or tetrahedra in three dimensions) satisfying certain proper-
ties. From our point of view, a topological triangulation is the ideal way of representing a
configuration of particles since it has all the topological information we need pertaining to
the flowers. The phase space we consider is then the set of all simplicial piecewise-linear
decompositions of the d-dimensional sphere. We will only consider the cases d = 2, 3.

The elementary moves of the dynamics we consider are given by the Pachner transfor-
mations in d = 2, 3 that conserve the number of particles. More generally, Pachner defined a
set of transformations on the triangulations of the d-dimensional sphere S d (for any d ≥ 2)
called the Pachner moves and he showed that any two triangulations of S d can be trans-
formed into one another by using only these moves. In two dimensions, there is only one
Pachner transformation that does not change the number of particles; it is called the T1 flip.
In three dimensions, there are two such transformations called the 2-3 flip and the 3-2 flip

respectively. We will see that each of these three moves can be interpreted in a very natural
way in terms of moving particles closer or further away from one another.

The first chapter of this thesis deals with a two-dimensional (2d) topological glass. The
inspiration for the model comes from [3]. They simulate a mixture of two types of particles,
big and small, with the same concentration and a fixed radii ratio. Each particle is coupled
to a heat bath and the particles interact with a Lennard-Jones potential, which is highly
repulsive at close range (but not infinite so the particles are not hard spheres) and very
slightly attractive at long range. They enclose the system in a square box with periodic
boundary conditions and they integrate the equations of motion. At high temperature, the
system behaves as a liquid but when they start going to low temperatures, the viscosity of
the liquid rises super-exponentially and the system behaves as a glass. They observed that
at low temperatures, the lowest energy per particle is achieved if small particles have five
neighbors and big particles have seven neighbors. Fig. 1.1 shows the Voronoi decomposition
of a typical glassy state they find.

As a consequence, the phase space we consider is the set of colored triangulations of S 2:
each node can have one of two colors, red or blue. The elementary move is the T1 flip: given
two triangles sharing an edge, we remove this edge and replace it with one connecting the
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Figure 1.1: This figure is taken from [3]. It shows the Voronoi decomposition of a typical
glassy state at low temperature. Each cell is colored according to the type and degree of its
particle: green for small particles in pentagons, pink for big particles in heptagons and cyan
for small and big particles in hexagons.

two other nodes. The local energy E(m) per node m is E(m) = |deg(m) − cm|
2, where deg(m)

is the number of edges incident on the node m, called the degree of node m, and cm = 5, 7
if the node m is red or blue respectively. The dynamics is given by a simple Metropolis
algorithm with one free parameter T we call the temperature. This model was first proposed
by Eckmann in [4]. A similar study was initiated earlier by Aste and Sherrington [5].

We observe that, at low temperature T , this system behaves as a glass. In particular, we
observe the two following indicators:

• We define a measure on our phase space: simply put, the distance between two tri-
angulations d(T1, T2) is the fraction of nodes whose flower is not the same in both
triangulations T1, T2. Using this distance, we define an autocorrelation function c(ϑ)

as the distance between a triangulation T1 in the stationary state at temperature T

and the triangulation T2 obtained from T after ϑ elementary moves. We observe that
c(ϑ) relaxes exponentially with ϑ with a coefficient τ that grows exponentially with the
inverse temperature. This coefficient τ can be viewed as a viscosity coefficient.

• We also observe that the total energy relaxes polynomially in time and not exponen-
tially, as t−α. This phenomenon is called the aging process.

We find explicit formulas for τ and α. First, we define a defect as a node with the incorrect
degree; for instance, a −1 defect can be a red node with four neighbors or a blue node with
six neighbors. In the stationary state at low temperatures T , the only defects present in the
system are ±1.

On a small scale, we see that an isolated defect is stuck; any elementary flip in its
neighborhood increases the energy. This is typical of glassy systems. We show that the
easiest way, i.e., the way with the smallest increase in the energy of moving defects is
through a collective movement of many T1 flips. More precisely, we show that defects move
by sending some sort of signal. Furthermore, this signal is one-dimensional with a predefined
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trajectory along the nodes of the triangulation. This resembles to some extent the flipping
of quadrupolar events observed in many Lennard-Jones glasses (see for instance the works
of Lemaitre[6], Tanguy [7] and many others) with a fundamental difference, namely that, in
these glasses, the signal travels through elasticity whereas in our model, it is stochastic, i.e.,
it is simply a Brownian motion.

On a larger scale, we see that the stationary states at low temperatures of our model are
actually saddle points in the graph of all configurations: a random T1 flip in a stationary
state will most likely increase the energy and the probability of finding a T1 flip that does not
decays exponentially with the inverse temperature. In the stationary state at low temperature,
the system is stuck in very narrow and steep canyons. This behavior is also typical of glassy
systems (see for instance the works of Eckmann [4], Mezard [8] and Stratt [9]) . Moving
a defect is equivalent to going from one such canyon to another and it takes a very long
time for the system to navigate its way. Furthermore, the number of these canyons becomes
exponentially small the further we decrease the temperature.

The relaxation of the autocorrelation function c(ϑ) is caused by the moving defects. Us-
ing the above observations, we derive an explicit formula for this relaxation. The energy
relaxation on the other hand is caused by defects meeting one another: if a +1 defect and a
−1 defect collide, they annihilate and the energy decreases by two. Studying the problem on
a larger time scale than that of the emission of the above signals, we show that the move-
ment of isolated defects can be viewed as a 2d random walk with a diffusion constant that
decreases with time; this is a direct result of the stochastic nature of the signals’ movement.
Our model can then be viewed as a dilute gas of two types of particles A, B undergoing
the chemical annihilation reaction A + B → ∅. This problem was studied in detail by many
authors. Using their results, we derive an explicit formula for the relaxation coefficient of
the energy.

The next step is to generalize these results to the three-dimensional (3d) case and construct
a model of a 3d topological glass. This proved to be a difficult challenge. One of the main
reasons is that, contrary to S 2, the topological properties of the triangulations of the 3d
sphere S 3 are far from being understood. In the second and third chapters of this thesis, we
study one of these important properties, and a long standing problem: What is the number
of triangulations of S 3?

In two dimensions, the problem was solved by Tutte in [10]. Using a generalization of the
method for counting binary trees, he showed that the number of triangulations of S 2 with
n nodes grows exponentially as (44 · 3−3)n. The main reason his method works is that any
2d triangulation can be constructed in the following manner: starting from a single triangle,
we add a new one and we glue them along an edge. We continue adding triangles, one at a
time, and gluing each to the already existing triangulation along one or two of its edges.

The problem in three dimensions is to prove the existence of an exponential bound on the
number of triangulations of S 3 with t tetrahedra. Such a result could have many applications
ranging from models of glassy dynamics such as ours, to other models of statistical mechanics
(see for instance the works of Ambjørn, Durhuus and Jónsson [20] on modeling 3d quantum
gravity). There have been many attempts over the past three decades to prove this result
(see for instance the works of Danaraj and Klee [21], Lickorish [22], Hachimori and Ziegler
[23]) but to date, this remains an open problem. Although we do not solve it, we make some
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interesting contributions and we strongly believe that our approach is a step in the good
direction towards finding a solution.

People tried to generalize Tutte’s approach by adding tetrahedra and gluing them along
faces. This is called shelling. Using the same ideas as in the 2d case, one can easily show that
the number of such triangulations with t tetrahedra grows exponentially in t. The problem
is that not all 3d triangulations are shellable. So people defined larger and larger classes of
triangulations (shellable ⊂ constructible ⊂ collapsible ⊂ locally constructible) by loosening the
restrictions on gluing faces and showed that each of these classes admits exponential bounds
in t. The main reason why an exponential bound holds for each of these classes is that they
are constructed locally; what this means is that we are not allowed to glue faces that are not
adjacent. The last of these attempts was done by Durhuus and Jonsson [24]: they introduced
the new move of identifying two external adjacent faces. Starting from what is called a tree

of tetrahedra (similar to binary trees), they showed that the number of triangulations of S 3

that are obtained by identifying external adjacent faces is exponentially bounded in t and
they asked if all triangulations of S 3 can be obtained in this fashion.

This question was answered negatively by Benedetti and Ziegler [25]. They called the
triangulations that can be obtained in the fashion described above locally constructible (LC)
and they showed that a triangulation with a knotted triangle is not LC if the knot is
complicated enough. Note that the existence of 3d triangulations with knotted edges was
known since at least 1924 (see for instance the construction of Furch [26] known as Furch’s
ball, also shown in Fig. 1.2).

A triangulation of S 3 is called a 3-sphere. Removing a node and all tetrahedra having it
as a corner, we obtain what is called a 3-ball. We work with balls. Clearly, if an exponential
bound holds for spheres, it also holds for balls. The converse is also true and can be shown
by adding a new node and a new tetrahedron for every face of the boundary of the ball; this
operation is called adding a cone over the boundary of the ball.

Our approach is top down in the sense that we consider balls and we decompose them
into their elements we call nuclei using some moves. The first one is the inverse of Durhuus
and Jonsson’s move of identifying external adjacent faces. Then we introduce a new move of
splitting an external node m along a path γ in its flower I(m). Note that in three dimensions,
the flower of a node is by definition a 2d triangulation and the path γ ⊂ I(m) is simple and
splits I(m) into two separate 2d triangulations. Using these two moves, we show that we can
decompose any ball into a tree of nuclei: a nucleus is a triangulation with no internal1 nodes
where every internal face has at most one external edge. Note that a tetrahedron is the most
basic nucleus and that any LC ball is decomposed into a tree of tetrahedra. Non-LC balls
on the other hand lead to more complex nuclei.

The main result of the second chapter of this thesis is to reduce the question of the
existence of an exponential bound on all balls to nuclei. The difficulty of the proof lies in the
move of splitting a node along a path γ: although it is a local move, it adds a lot of tetra-
hedra; more precisely, one new tetrahedron is added for every edge of γ. We show that the
number of added tetrahedra can be controlled by carefully choosing the paths along which
we split. This allows us to show that if the number of nuclei with t tetrahedra is bounded by
Ct, then the number of all balls with t tetrahedra admits a similar exponential bound. Note

1A node, edge or face is called external if it is on the boundary; otherwise, it is called internal
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Figure 1.2: This figure is taken from [27]. A "knotted spanning arc" is an arc such as

described in the right panel. The left panel indicates how to embed such a knotted arc by

one edge. First we prepare a big pile of small cubes and dig a hole from the bottom face,

making a knot as in the figure. We stop digging one step before the tunnel goes through the

upper face, so that the constructions remains a 3-ball. Finally, we triangulate each cube into

six tetrahedra without introducing new vertices.

that our approach always transforms a ball into a ball and as such can be implemented on

a computer. This allows for an extensive numeric investigation of these nuclei resulting in

several interesting observations.

We summarize the approach to the problem of counting 3d balls we introduced in the

second chapter: the balls we do not know how to count yet, i.e. the non-LC balls, all have

some sort of non-trivial topological properties that cannot be found in two dimensions,

mainly knotted edges. Let T be such a non-LC ball; we decompose it into a tree of nuclei

T ′ having the exact same topological properties: if T has a knotted edge with a given knot,

say for example the trefoil knot, then T ′ has exactly one non-trivial nucleus having a trefoil-

knotted edge. We show that if the nuclei are exponentially bounded, then so are all the

non-LC balls. In the third chapter, we continue this approach of reducing non-LC balls

having non-trivial topology into smaller, even simpler balls with the exact same topology.

We are motivated by the following observation: given a nucleus with non-trivial topology,

say a trefoil-knotted edge, we can split any of its nodes along any path and we obtain a

bigger2 nucleus with the same topology.

We introduce a new move of collapsing an external edge: this is the inverse move of

splitting a node along a path. An external edge e = (a, b) is collapsible if the intersection

of the flowers of its ends is minimal: I(a) ∩ I(b) = I(e), where I(e) is the flower of the

edge e defined as the set of nodes m′ and edges e′ such that (m′, e) is a face and (e′, e)

is a tetrahedron respectively. Let T ′ be a non-trivial nucleus. Collapsing any edge of T ′

yields a smaller nucleus T with the exact same topology as T ′. Furthermore, we show that

the operations of collapsing edges commute. We define a new class of nuclei called atoms:

2Bigger refers to the fact that it has more nodes and tetrahedra.
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an atom is a nucleus such that no external edge is collapsible. The commutativity of the

collapses imply that exactly one atom A can be obtained from a given nucleus T ′ by collapsing

external edges. Moreover, A has the same non-trivial topology as T ′.

The main result of the third chapter of this thesis is to show that if the atoms are

exponentially bounded, then so are the nuclei and therefore all the 3d balls. This is done by

counting the number of nuclei with t tetrahedra that can be obtained from a given atom A

with t′ tetrahedra by splitting nodes along paths.

The first main idea of the proof is to study the commutativity of splitting moves. We show

that two splitting moves commute in all but one case. This allows us to group splittings of

nodes into subsequences of commuting moves. The second main trick of the proof is to draw

all the paths before performing any splitting. We count the number of ways these initial paths

can be drawn. Then, we modify these paths after each subsequence of commuting splitting

moves and we count the number of ways these modifications can be made. Combining these

results, we show that, given an atom A with t′ tetrahedra, the number of nuclei with t > t′

tetrahedra that can be obtained from A by splitting nodes along paths is bounded by Ct,

where C is some constant.

The number of nuclei with a given topological property, say a trefoil-knotted edge, can

be very large. On the other hand, we believe that an atom is the smallest possible ball with

a given knot. If such a result were true, it would imply that the number of atoms with

a given topological property is very small, maybe even equal to one. Such a result would

allow us to bound the number of atoms with t tetrahedra, and consequently the number of

all triangulations of S 3 with t tetrahedra, with the number of knots with a given complexity

(the crossing number for instance can be considered as a good measure of the complexity

of a knot). It was shown by Sundberg [36] that the number of knots with t crossings is

exponentially bounded. This would solve the problem of counting triangulations of S 3.

In the final chapter, we construct a model of a 3d topological glass. The phase space is the

set of all simplicial piecewise-linear decompositions of S 3 and the elementary moves of the

dynamics is given by the 2-3 move and its inverse the 3-2 move. The 2-3 move, also called

flipping a face, transforms two tetrahedra into three as follows: we consider two tetrahedra

sharing a common face; we remove this face and we connect the two nodes opposite to it by

an edge; we obtain three tetrahedra sharing this newly added common edge. The 3-2 move,

also called flipping an edge, is simply the inverse move; it transforms three tetrahedra into

two.

Contrary to the 2d case, it was shown by Dougherty et al. [38] that the phase space is

not irreducible if we only consider the Pachner moves that conserve the number of nodes:

they constructed a (LC) triangulation of S 3 with 16 nodes such that no 2-3 and 3-2 moves

are possible. Note that a face is flippable, i.e., a 2-3 move is possible, if and only if the

target edge is not an edge of the triangulation and an edge is flippable if and only if

its degree is three, i.e., it is shared by three faces, and the target face is not a face of the

triangulation. Furthermore, they showed that their construct cannot be geometrically realized.

This raises another important topological difficulty that was not present in two dimensions:

some of the topological triangulations of S 3 cannot be drawn and as a consequence do

not represent real configurations of particles, i.e., they cannot be geometrically realized as

Delaunay triangulations.
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Using some ideas by Santos [39], we show that any two topological triangulations of n

nodes that can be geometrically realized as Delaunay are connected by 2-3 and 3-2 flips.

Moreover, we show that the set of all these physical triangulations has the small world

property, i.e., that it contains (at least) exponentially many configurations such that any two

configurations can be connected by a polynomially growing number of flips.

The next step is to define the energy. Contrary to the 2d case where the flower of a node is

characterized by one integer, the flower of a node in three dimensions is a 2d triangulation of

S 2. The first model we consider is identical to the 2d case: the contribution to the energy of a

node is a simple function of its degree, or in other terms, we characterize the flower of a node

by the number of its vertices. Clearly this constitutes a huge simplification. Nonetheless, the

system exhibits glassy behavior; in particular, we observe that the energy relaxes polynomially

to its stationary value at some temperature T . Note that in two dimensions, the average

degree of a node is fixed by the topology and is equal to 6 whereas in three dimension, it

is a free parameter d̄ of the model (we only consider mono-colored triangulations). Looking

once more at the elementary defects, we see that they are almost identical to the 2d case: a

defect is a single node with the incorrect number of neighbors. At low temperature, the only

defects present are those whose degree differ from d̄ by one. The defects are isolated and

their movement can be seen as a 3d random walk with a fixed diffusion constant. When two

defects collide, they annihilate. As a consequence, this model has little more to offer than

its 2d counterpart.

We want to construct a model that makes full use of the additional degrees of freedom

of the 3d flowers. We start by fixing the ground state of the system as a crystal, i.e., as a

regular filling of space. Note that this filling must be a triangulation; the cubic lattice for

instance is not accepted. The filling cell we choose is the tetrakis hexahedron: it has 14

vertices, 6 of which have a degree of 4 and the remaining 8 have a degree of 6. We show

that it is possible to fill space with particles such that the Voronoi cell of each particle is a

tetrakis hexahedron. Considering any triangulation, the local energy of each particle is then

a measure of how different its Voronoi cell is from a tetrakis hexahedron. Such a definition

of the energy is very difficult to implement on a computer, so we simplify it by characterizing

a flower I(n) of a node n, which is a 2d triangulation of S 2, by a vector e(n) = (e3, e4, . . . ),

where ek is the number of vertices in I with degree k. The tetrakis hexahedron’s vector is

e⋆ = (0, 6, 0, 8, 0) and the energy contribution of a node n is simply the euclidean distance

||e(n) − e⋆||.

The dynamics is given by a simple Metropolis algorithm with the temperature being the

only free parameter. We observe that the system behaves as a glass; more precisely, we

observe that the energy relaxation as a function of time has several polynomial regimes.

Unfortunately, the dynamics is very slow at low temperature. Using some additional tricks

(improving the algorithm, considering less restrictive energy forms etc...), we can speed things

up considerably (by several tens of times) but to little effect and the system never reaches its

stationary state in a reasonable amount of time.

One interesting notion we would like to understand is that of a defect: in the 2d model,

a defect is a single isolated node with an incorrect flower. In the 3d model, it is easy enough

to see that having a single node with an incorrect flower surrounded by nodes with tetrakis

hexahedra as flowers is impossible. So one would expect that defects in 3d are strongly

connected complexes of several nodes with an incorrect flower each. The simulations on the
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other hand seem to show something completely different: even with more than 90% of the

nodes having the correct flower, the ”bad” nodes do not cluster; instead they seem to form

lines of defects. This shows that the behavior of this type of 3d models of topological glasses

is much more complex than we originally thought.

Terminology

Throughout this thesis, we reserve the term theorem for mathematical statements which are

true under the assumptions and hypotheses formulated therein.
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Chapter 2

2D Topological Glass

2.1 Introduction, the model

This chapter deals with a species of a class of models on topological studies of triangulations.

Such models have been studied in several contexts 2-d gravitation, froth, [11, and references

therein]. The variant we use here was introduced in [4], but it turned out that a very similar

study was initiated earlier by Aste and Sherrington [5].

We reconsider here the model which was inspired by [3] and introduced in [4]. For

completeness we repeat the definition of the model: We fix a (large) number N of nodes,

half of which are red, and the other half blue. These nodes are the nodes of a topological

triangulation T of the sphere S 2. The set of all possible such labeled triangulations will

be denoted TN . We define a dynamics on TN by the following Metropolis algorithm whose

elementary steps are flips (T1 moves): A link is chosen uniformly at random (among the

3N − 6 links). In Fig. 2.2, if the link AB was chosen then the flip consists in replacing it

by the link CD. This move is not admissible if the link CD already exists before the move.

Otherwise it is admissible. Note that the number of nodes, N, does not change in this model.

However, we will be interested in the behavior for N → ∞.

The Metropolis algorithm is based on the energy function E on TN which, for any trian-

gulation T ∈ TN, is defined as

E(T ) =
∑

i∈blue

(di − 7)2 +
∑

i∈red
(di − 5)2 ,

where di is the degree (number of links) of the node i. Thus, this energy favors 7 links for

the blue nodes and 5 for the red ones. Mutatis mutandis, the detailed definition of the energy

is not important for the discussion of the model, and we will stick to this particular form

of the energy. Given an admissible flip, compute the energy of the triangulation before and

after the flip; this defines

dE = Eafter − Ebefore .

An admissible flip is performed if either dE ≤ 0 or, when dE > 0, with probability exp(−βdE),

where β is the inverse temperature of the system.

Several properties of this model were discussed in [4], but here we study in more detail

the dynamical properties of the model. In particular, we introduce a “charge” defined as

follows:

11
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Definition 2.1.1. The charge of a red node is defined by di − 5 and the charge of a blue node

is defined by di − 7. We will say the charge is a defect + if it is +1 and - if it is −1. In general,

the color of the charge will not matter and will not be mentioned.

In principle, all charges between −4 and O(N) can occur, since di ≥ 3, but, obviously, at
low temperatures mostly the charges +, 0, and - will come into play.

2.2 Equilibrium and the approximation of the dynamics

The dynamics of the model is given by the Metropolis algorithm. In it, a link is chosen

uniformly at random among all possible links. The change of energy induced by the flipping

of this link is called dE. If dE ≤ 0 the flip is performed, if dE > 0 the flip is performed

with probability p(dE) = exp(−βdE). This process satisfies detailed balance, and most of the

chapter is dealing with the equilibrium properties of this process at low temperatures. Because

of the detailed balance, the equilibrium measure µ has the property that the probability to

see a given state whose energy is E is proportional to exp(−βE). We use this elementary

observation to argue that at low temperature there are only few defects, by which we mean

that there are few red nodes whose degree is not 5 and also few blue ones whose degree is

not 7. Given that there are few of these “defects”, we further assume that the “positions” of

these defects are random in the sense that there are no strong conditional expectations: For

example, having a defect +1 does not say that there is a defect -1 close-by. The upshot of this

way of reasoning, which we corroborate by numerical studies, is that one can approximate

the dynamics by just looking at defects.

Indeed, the full dynamics must be described by the evolution of correlation functions. It

would have to take into account correlation functions between the charges (and the colors)

of, say, the 4 nodes on a pair of triangles sharing an edge. Then, flipping that edge,

the correlations of many neighboring triangles would be changed simultaneously, and this

would necessitate considering a full hierarchy of correlations (like BBGKY). What we will

see is that in this model, these higher order correlation functions do not influence our basic

understanding of what is going on.

In contrast, the Euler relations play a small but not totally negligible role for the sizes of

the systems we consider.

2.3 Description of the stationary state

It will be useful to define throughout this chapter the natural parameter

ε ≡ e−β .

We are interested in a regime where the density c of charges (which equals E/N) is low

but also, where the number c · N of charges is large, so that good statistics and a certain

independence of the Euler relations is attained. More precisely, we fix ̺ ≪ 1 and D0 ≫ 1,
and require ε ≤ ̺ and Nε > D0. We furthermore consider the limit of large N.

The main result of this section is summarized in the following proposition:
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Proposition 2.3.1. Consider an equilibrium state at temperature T ≪ 1 satisfying the above

conditions on N and ε.

1. At first order in ε, the only charges present in the system are simple defects ±1. Their

density is 2ε + O(ε2).

2. The distribution of the colors (red or blue) is independent in the limit ε→ 0.

3. The distribution of the charges is independent in the limit ε→ 0.

Remark 2.3.2. The meaning of ε → 0 above is that the quantities become more and more

decorrelated as ε→ 0 while still maintaining the inequalities ε ≤ ̺ and Nε > D0.

2.3.1 Energy of the stationary state

In this paragraph, we will calculate the energy of the stationary state in the limit specified

above, as a function of the temperature.

Estimate 2.3.1. Consider the region εN > D0 and ε < ̺. For sufficiently large D0 and

sufficiently small ̺ the density of charges c is

c ≡ E/N = 2ε + O(ε2) .

Proof. Assuming equilibrium, by detailed balance, the probability to see a defect of charge

±1 is O(e−1·β) = O(ε), while the probability to see higher charges is O(e−2
2β) = O(ε4), by the

assumption of equilibrium and the form of the Hamiltonian, since, if (di − 5)2 > 1 then it is

at least 4.

So it remains to estimate the coefficient in front of the factor ε. There are 4 cases to

consider: The number of red nodes with degree 4 or 6, resp. the number of blue nodes with

degree 6 or 8. All these cases cost energy 1 per instance, and thus these 4 numbers are equal

by the virial theorem.

We also need to estimate the cases with 0 charge, i.e., blue nodes with 7 neighbors and

red nodes with 5 neighbors, which appear again equally often, by the virial theorem. Since

there are N/2 nodes of each color, and each of the colors has 2 states of defect 1 (namely

±1), we conclude that the expected total number of defects is

2 · 2 · ε · (N/2) = 2εN + O(ε2) . (2.1)

�

2.3.2 Distribution of the colors

We next calculate the probabilities that a randomly chosen link connects 2 red (blue) nodes.

We denote these probabilities by prr for red-red, prb for red-blue and so on. If there are no

defects, i.e., at order ε0, all red nodes have 5 neighbors and all blue nodes have 7. This leads

to the following relations:

2prr + prb = 5/6 ,
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Figure 2.1: Numerical check of relation prb = 70/144 by plotting prb/(70/144). The error bars

are 3 σ and the data for N = 3283 are slightly shifted (in the x-direction) for better visibility.

2pbb + prb = 7/6 .

Assuming that the positions of the colors are uncorrelated, we find that the relative proba-

bilities to find a red-red, resp. blue-blue pair are

prr/pbb = 25/49 .

This leads to prr = 25/144, pbb = 49/144, and prb = 70/144. In Fig. 2.1 we show that numerical

simulations confirm this simple approximation to a very high degree of fidelity.

2.3.3 Energy cost of flips

We adopt an approach similar to Sect. 2.3.2. We use the hypothesis that the charges are

randomly distributed over the nodes to calculate the probability of finding a link with a given

neighborhood of charges and compare it to simulation results. In this case however, given a

link ℓ, the neighborhood we consider is the ordered set of all 4 nodes involved in its flipping.

For example in Fig. 2.2, this set would be (c(A), c(B), c(C), c(D)) where c(A) is the charge

of the node A. This choice will be very useful for to study the dynamics later on since it

determines the energy cost of flipping a given link:

dE(ℓ) =
∑

n∈{A,B}

(c(n) − 1)2 − (c(n))2 +
∑

n∈{C,D}

(c(n) + 1)2 − (c(n))2

= 4 + 2 (c(C) + c(D) − c(A) − c(B)) .

(2.2)

It is easy to enumerate all the various cases and the energy cost associated with each

of them. We restrict the discussion to those situations where the charges take values in
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A

B

DC

Figure 2.2: Labeling of the corners of 2 adjacent triangles

{+1, 0,−1}. In principle, there are 34 configurations, which are reduced to 36, by symmetry.

They are summarized in Table 2.1 (symmetrical cases omitted).

Note that if the defects of the original configuration are bounded by ±1, then dE varies

between −4 and 12.

defects initial state dE

0 0 0 0 0 4

1 + 0 0 0 2

1 0 0 0 - 2

1 0 - 0 0 6

1 0 0 + 0 6

2 + + 0 0 0

2 + 0 0 - 0

2 0 0 - - 0

2 + - 0 0 4

2 + 0 + 0 4

2 0 - 0 - 4

2 0 0 + - 4

2 - - 0 0 8

2 0 - + 0 8

2 0 0 + + 8

defects initial state dE

3 - - + 0 10

3 0 - + + 10

3 + - 0 - 2

3 + + + 0 2

3 + + 0 - -2

3 + 0 - - -2

3 + 0 + - 2

3 0 - - - 2

3 - - 0 - 6

3 + - + 0 6

3 + 0 + + 6

3 0 - + - 6

defects initial state dE

4 + - - - 0

4 + + + - 0

4 - - + + 12

4 - - - - 4

4 + - + - 4

4 + + - - -4

4 + + + + 4

4 - - + - 8

4 + - + + 8

Table 2.1: The energy differences obtained by flipping the link between the first 2 values to a

link between the second 2 values, as a function of the number of defects.

2.3.4 The number of local defect configurations

We assume throughout that the number of red (blue) nodes is nr (nb) and that ∆ ≡ nr − nb ∈

{0, 1}. We denote by p± the probabilities to find charges ±1, respectively. Assuming that there

are no other charges (except 0), we can write

N · (p− + p+) = E ,

N · (p− − p+) = 12 − ∆ ,

where the second equation follows from the Euler formula. In equilibrium, E = 2Nε, by

Eq. (2.1), and therefore we get

p± = ε ∓ 6/N ± ∆/(2N) + O
(

ε2
)

. (2.3)
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We will assume that Nε ≫ 6 so that the second term in Eq. (2.3) can be neglected. In a

similar way, one can show that

p±2 = ε
4
+ O(ε5) ,

and combining these we find that the probability of nodes with charge 0 is

p0 = 1 − 2ε + O(ε2) .

We next consider in more detail what happens in those pairs of triangles where a flip leads

to dE = 0. Looking again at Eq. (2.2) we see that the case dE = 0 appears in 3 cases:

Case q+− : One of A or B has charge + and C or D has charge - (and the others, charge 0).

Case q++: A and B charge +, C and D charge 0.

Case q−− : A and B charge 0, C and D charge - .

Continuing with the independence assumption, we now look at the probability to find a

configuration of type q++, q+− , and q− − . Note that there are 6N − 12 half-links emanating

from the nodes, and we are to pair them up randomly. Note that if a site is red, it has 4,
5, 6 outgoing links, depending on whether its charge is −, 0, +, respectively. Similarly, the

numbers for a blue node are 6, 7, 8. Therefore, given that there are on average εN/2 defects

of type red-4, red-6, blue-6, blue-8, there will be 4εN/2 links from the red-4, 6εN/2 from

red-6 and blue-6, and 8εN/2 from blue-8. The blue-7 and red-5 occur with probability almost

1 and have therefore respectively 7N/2 and 5N/2 dangling edges (with a correction factor

1 − O(ε)) which we omit throughout. The probabilities to see such dangling edges are the

quantities above, divided by 6N − 12, the total number of dangling edges. We get, omitting

higher order terms:

q++ = (7p+/6)2 · p2
0 = 49ε2/36 ,

q−− = (5p−/6)2 · p2
0 = 25ε2/36 ,

q+− =4 (5p−/6) (7p+/6) · p2
0 = 140ε2/36 .

(2.4)

We also get, by looking at Table 2.1:

pdE=0 = q++ + q−− + q+− = 214ε2/36 ,

pdE=2 = 2 (7p+/6 + 5p−/6) · p3
0 = 4ε ,

pdE=4 = p4
0 = 1 − O(ε) ,

(2.5)

The discussion of the other values of dE shows the limitations due to our closing as-

sumptions: by the virial theorem, in total independence, we would simply have

pdE=0 = pdE=8 and pdE=2 = pdE=6 . (2.6)

But we could also have computed the probabilities as above, with the result:

pdE=−2 = 2 (7p+/6)2 · (5p−/6) · p0 + 2 (5p−/6)2 · (7p+/6) · p0 (2.7)

≈ 3.89ε3
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Figure 2.3: Numerical test of the mean energy per node (Estimate 2.3.1) for 950 realizations.

The data for N = 9844 are slightly shifted for better visibility. Note the excellent fit with the

theoretical curve, although the fluctuations are huge, getting better with larger system size (1

standard deviation shown).

instead of 4ε3 = pdE=2 · ε
2 given by the stationarity assumption, which proves that the

distribution of defects is not completely uncorrelated. We will say that the correlation is

bounded by 0.1ε3, and can thus be neglected in the limit ε→ 0.
In Figs. 2.3 and 2.4 we show with 2 examples that the numerical simulations confirm

these simple approximations to a very high degree of fidelity. Note that in [12], the uniform

measure on TN was considered, and even this leads to correlations of degrees of neighboring

nodes.

2.4 Dynamics of the system (at equilibrium)

We can use the results of the previous section to estimate the dynamics of the system under

the Metropolis algorithm.

If a flip leads to an energy change dE then it is accepted in the Metropolis algorithm

with probability

pacceptance = ε
max(0,dE) . (2.8)

On the other hand, the probabilities to pick a link with fixed dE are given by Eq. (2.5) and

Eq. (2.6). Multiplying these numbers with the probabilities of Eq. (2.8) leads to an estimate

of the probability that the flip in question actually happens. The results are summarized in

Table 2.2 (calculated this time with the method of Eq. (2.7)).

Discussion: Inspection of Table 2.2 shows that the events with the highest transition rate

are those which cost no energy, followed by those which have an energy cost of ±2. Also
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Figure 2.4: Numerical test of pdE=0 (Eq. (2.5)) from 950 realizations. The data for N = 9844
are slightly shifted for better visibility. Note the excellent fit with the theoretical curve,

although the fluctuations are huge, getting better with larger system size (1 standard deviation

shown).

note that the probability to find a link which will lead to a given dE is equal to the quantity

in the table times ε−max(0, dE) since then we neglect the Metropolis factor. This leads to a table

with the same prefactors, but with a power ε|dE−4|/2. In particular, in the steady state, the

local landscape is given by the 3rd column of Table 2.2: It is symmetric around dE = 4.

Henceforth, we will only consider the 3 most frequent types of flips (the others are an

order ε less probable):

1. Flips which change from 1 defect to 3 of them and which raise the energy by 2. These

flips will be called creation events.

2. Flips which start from 3 defects and end with 1 defect and which decrease the energy

by 2. These flips will be called annihilation events. Creation and annihilation events

are obviously dual to each other and equiprobable in the stationary state.

3. Flips which do not change the energy, and in which a pair ++, +-, or � is involved.

These flips are by far the most probable. We will discuss below in more details the 3

configurations which lead to dE = 0.

2.4.1 The most probable flips

As stated above, if ε = 1%, then over 99% of the flips (which are accepted by the Metropolis

algorithm) do not change the energy. It is clear that, in order to understand the dynamics
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dE transition rate local landscape

-4 1225/1296 · ε4 1225/1296 · ε4

-2 35/9 · ε3 35/9 · ε3

0 107/18 · ε2 107/18 · ε2

2 4 · ε3 4 · ε1

4 1 · ε4 1 · ε0

6 4 · ε7 4 · ε1

8 107/18 · ε10 107/18 · ε2

10 35/9 · ε13 35/9 · ε3

12 1225/1296 · ε16 1225/1296 · ε4

Table 2.2: The probabilities of transitions from the initial state. Data only shown to order

ε4. The second column shows the probabilities to pick a link leading to a given dE. Higher

order corrections are omitted.

++

+

+

+

Figure 2.5: A flip from ++00 (on the left) and the resulting triangulation on the right. The

affected nodes are supposed to be red, in this example. Note that the result is again of

the type ++00. Furthermore, again with dE = 0 one can flip back. This is reminiscent of

“blinkers” in the game of life [13, Chap25].

of the system, one should start by studying these flips.

Looking at Table 2.1 we see that there are 3 candidates for dE = 0 and they all involve

only 2 defects. We will now show that the cases of ++00 and 00� are quite different from

that of +00- (and its 3 other variants +0-0, . . . ). In the first case, ++00, which is similar to

the case 00�, the local neighborhood looks like in Fig. 2.5. In this case, what happens is a

flipping back and forth between the 2 states, with probability p = (3N − 6)−1 (the probability

to choose the colored link).

The case +00- is illustrated in Fig. 2.6. Here a new, and important phenomenon appears:

The pattern, +00- which we will call a pair, is recreated, but at a new position a distance 1

away from the old one. We will also say that the pair +- walks one step.

The more important observation is that the pairs of defects must walk along a predefined,

1-dimensional path as shown in Fig. 2.7. This means that the dE = 0 motion of +- pairs is a

one-dimensional random walk in the current triangulation T . This random walk (flipping back

and forth on the predefined path) will continue until some other type of event happens.
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Figure 2.6: Change of pattern in the case +00-. In the sample only the relevant colors are

as shown. Note that the effect of the flip is that the 2 defects move (in the picture) down.

The reverse flip costs nothing dE = 0. The second flip (dashed line) moves the defects one

step further. Note that this motion must take place one a predefined, 1-dimensional path.

−

+

Figure 2.7: The same configuration as in Fig. 2.6 with the 1-dimensional path of the pair of

defects superimposed.
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+

+ +

−

Figure 2.8: A creation event: a +- pair is created from a + defect, which is pushed one step.

2.4.2 Lifetime of pairs

As we have seen, a pair of opposite charges +- can move through the system without energy

cost. Its motion is a 1d random walk along a fixed 1-dimensional path. Edges are still chosen

randomly and will be flipped if possible and if the Metropolis condition is met in case dE > 0.
Here we ask about the relative probabilities that a pair disappears, and we will show that

predominantly a pair will die when it collides with a defect.

We need to compare 3 possibilities of which the first will be seen to be the most probable:

1. The random walk reaches another defect.

2. The pair is destroyed because a creation event involving 1 or 2 of its 2 defects occurs.

3. Two independent random walks meet.

Our earlier discussion says that the concentration of pairs
(

70ε2/36
)

is much smaller

than the concentration of defects (2ε), implying that the probability of 2 pairs meeting is

insignificant when compared to the probability of a pair meeting a defect.

We next estimate the probability of destroying a pair as in case (2). On average, there

are 7 links in the neighborhood of a given pair which increase E, and flipping such a link

has an energy cost of 2. The probability of this to happen is 7ε2/(3N). Since the pair moves

every O(N) attempted flips, we conclude that, on average, a pair will do O
(

ε−2
)

steps before

it is destroyed as in case (2).

The number of steps needed for case (1) to happen depends obviously on the density of

defects. We let ξ denote the average distance between defects (counted in number of links).

Since the number of defects is 2εN and the system is 2-dimensional, we conclude that

ξ = O(ε−1/2) .

As long as the pair is not destroyed by the mechanism leading to case (2) it can thus do

O(ε−2) steps by which time it can visit O(ε−1) defects.

This terminates the comparison of the 3 cases, and shows that a pair has the time to

visit a very large number of defects before it is destroyed by the 2 other mechanisms.

2.5 The Geometry of pair-defect collisions

In this section we consider the collisions between a pair and a defect. The discussion is

really in two parts: On one hand, we must consider the probability that a collision between



22 CHAPTER 2. 2D TOPOLOGICAL GLASS

a pair and a defect is initiated. This depends on the density of the defects, and hence on ε.

But, once a collision is initiated, we can ask what the effect of the collision is going to be.

The next proposition shows that this effect is purely geometrical and independent of ε.

Proposition 2.5.1. There are 9 topologically different possibilities Qi, i = 1, . . . , 9 for a collision

to be initiated. For each of them, there are 2 purely geometrical constants Pm,i > 0 and Pd,i > 0
(depending on i) which tell us the probability that a collision leads to a move (Pm,i) of a defect

(by 1 or 2 links) resp. the deletion of the pair (Pd,i).

The remainder of the section deals with the proof of Proposition 2.5.1.

2.5.1 Definition

We will study in detail how collisions move defects. First of all, we will define what we

mean by a collision. Assuming that the density of defects is very small, the only collisions

we will consider are those involving 3 defects, namely, the pair +- which will collide with a

defect + or -.

Definition 2.5.2. Consider some configuration T . Three defects Di, i = 1, 2, 3 of T are said to

be in a collision if there are k ≥ 2 flips (k links of T ) that do not increase the energy such that

1. The only defects involved in these k flips are Di, i = 1, 2, 3.

2. All 3 defects are involved in these k flips.

3. At least one of these k flips will move a pair (the others might be any of the 4 cases which

do not increase the energy).

2.5.2 Collision types

In this section, we will describe all possible configurations of a collision and we will show

that the probability of any such configuration depends solely on the topology (and not on the

temperature).

The third condition of the definition of a collision states that we can always identify a

pair; as a result, the set of all possible configurations of a collision can be obtained by taking

a pair and placing either a - defect or a + defect in any position where it can interact with

one of the pair’s 2 defects. As seen in the previous section, a + defect can interact with

any defect if and only if both defects are at distance one. Two - defects can interact if and

only if they are on opposite corners of 2 adjacent triangles. The last ingredient is that +

defects can have a degree of 6 or 8 whereas - defects have a degree of 4 or 6. This yields a

systematic method of constructing all possible configurations of a collision: consider a pair

and let U1 be the set of all empty sites (charge 0) which are at distance 1 of any of the pair’s

2 defects and U2 be the set of all empty sites which are opposite to the - defect of the pair.

The set of all possible configurations of a collision is obtained by placing a + defect in any

of U1’s sites or a - defect in any of U2’s sites, as shown in Fig. 2.9 in the case where the +

defect is red and the - defect is blue. All in all, we get 9 different configurations of a pair

and a defect (symmetrical case omitted).
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Figure 2.9: A figure showing all possible relative positions of a pair and a defect in collision.

The pair is shown as a solid black line.

Assuming that the defects are randomly distributed, it is clear from Fig. 2.9 that the

probability of a collision to be of some type Qi ∈ {1, . . . , 9} is a temperature independent

constant that can be calculated. To prove Proposition 2.5.1 one must study in detail each of

the 9 cases. We will study in particular:

• What are the possible outcomes of each collision type and what is the (conditional on

having initiated the collision Qi) probability of each outcome?

• What is the probability (conditional on having initiated the collision Qi) that a pair

pushes a defect?

We can summarize the answers as follows:

• There will always be a defect left over at the end of the collision.

• Finding a pair and a defect at the end of the collision is possible in all 9 cases.

• An annihilation of the pair is possible in 2 of the 9 cases.

• It is possible that the defect is pushed in 8 cases. A defect can be pushed by more than

1 step.

• It is possible that the defect remains in its initial position in all 9 cases.

The relative probabilities of any of the above outcomes only depend on the local geometry.

While all the cases have been worked out in detail, we illustrate the discussion for just 2 of

them, and this will complete the proof of Proposition 2.5.1.
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−

+

−

Figure 2.10: A collision where a an annihilation is possible. The green links show the way

the pair enters (or exits) the collision. Flipping the red link will cause an annihilation event.

Example 1: A possible annihilation

There are 2 cases where an annihilation might occur. We consider here the case of Fig. 2.10.

A +- pair collides with a - defect. For simplicity, assume that the +- pair came from the left.

Once the pair and the defect are in collision, there are 3 links whose flipping leads to dE ≤ 0.
Two of these links (the green ones) allow the pair to walk away from (or enter) the collision.

Flipping the red link on the other hand causes an annihilation: the pair is destroyed and the

defect is pushed by one step. We clearly see that there are 3 possible outcomes:

• The pair exits the collision through the same way it entered (in our case, on the left).

The defect remains in its initial position.

• The pair exits the collision through the other green link. The defect moves 2 steps.

• An annihilation event occurs. The pair disappears and the defect moves 1 step.

The (conditional) probability of each outcome is 1/3 and the (conditional) probability that the

defect will have moved at the end of the collision is 2/3.

Example 2: A bifurcation

Here, we look at the collision case of Fig. 2.11. No annihilation is possible here and the

outcome of the collision is always one pair and one defect. The only relevant question is

what is the probability that the defect will have moved at the end of the collision. But the

combinatorics is more involved.

The pair enters and may exit the collision through a green link. Flipping a red link on

the other hand will not end the collision. Notice that the fifth diagram contains 4 red links
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Figure 2.11: The central figure (with only red links) is symmetric along the axis -+-. If we

flip the long vertical line, we arrive at the figure top-right. If we flip in it the red link which

does not lead back to the center, we arrive at top-left. Flipping the red link which does not

lead back to top-right, we arrive at bottom-left, then at bottom-right, and then back to the

center. Since the same happens for the two lower links of the center, we see that the local

state space is a figure “8” with 9 nodes of which 8 have two exits each. The state space can

be symbolized as in Fig. 2.12.
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Figure 2.12: Each vertex represents one possible configuration during the collision of Fig. 2.11.

Two vertices are linked if one can go from one configuration to the other by flipping a (red)

link of Fig. 2.11. The pair enters and exits the collision through one of the 16 dangling links.

If these 2 dangling links are the same or if they are of the same color, then the pair does

not push the defect, otherwise, it is pushed by 1 step.

and no green ones. Moving a red link will visit the 6 figures sequentially. But moving the

two lower red links in the lowest left figure will lead to another circle of five configurations,

which is not shown in the figure. This collision case can be represented by a “state diagram”

as in Fig. 2.12, where each node represents a state and each link represents the effect of

flipping one of the colored links in Fig. 2.11. The pair enters the collision through a dangling

link ℓ1. It can wander around the vertices of the state diagram before exiting through a

dangling link ℓ2.

If ℓ1 = ℓ2, then it is as if the collision never occurred. In particular, the defect does not

move. Furthermore, if ℓ1 and ℓ2 are of the same color, then the defect will remain in its

initial position at the end of the collision. Using this remark and the diagrams of Fig. 2.11,

one can explicitly compute the (conditional) probability that a pair pushes a defect if the

collision is of the above type. This probability will be temperature independent.

The other 7 cases are treated similarly, and this completes the proof of Proposition 2.5.1.

Note that the proof means that collisions lead, on average to a positive probability of

moving a defect. This mechanism is the basic reason for the diffusive wandering of the defects

in the triangulations. It is mediated by the collision of pairs with the defects. Clearly, if there

are no pairs, the defects can not move by this mechanism, but only through much less probable

events.

2.6 Relevant and irrelevant pairs

In Sect. 2.4.2, we have seen that a pair lives long enough to explore its 1D path, before being

destroyed by other mechanisms. We now analyze in detail what can happen during this

exploration phase.

When a pair is created, it is one step away from its birthplace. It will then perform a
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random walk on its predefined 1-dimensional path. Each time it comes back to its birthplace,

it can die with probability pdeath = 1/3 as shown in Fig. 2.10. If this happens, the triangulation

will not have changed. We will call this an ineffective pair. The probability PI = PI(ξ) can be

estimated as follows:

Assume that a defect X is at a distance ξ from the birthplace of the pair. Then, by

extending slightly the gambler’s ruin principle [14], the probability PR = PR(ξ) that the pair

actually can reach X is (1+ (ξ − 1) · pdeath)−1 = O(1/ξ). This implies that the probability for any

event implying X when starting from the birthplace depends on ξ, and in the case of many

defects, on their average distance (which we call again ξ). Thus,

PI = 1 − O(1/ξ) , PR = O(1/ξ) . (2.9)

2.7 Time correlations at equilibrium

Here, we estimate the rate of change of triangulations (as a function of time). Since our

triangulations are purely topological, we need to define what we mean by the distance between

2 triangulations T1 and T2 in TN (the space of triangulations of the sphere with N labeled

nodes). There are many possible choices, see e.g., [15] many of which lead to equivalent

metrics. The one defined below is convenient for our purpose.

Let {T1, T2} ⊂ TN . Consider a node n of T1. The flower f (n, T1) of n is defined as the

ordered cyclic set of all neighbors of n in T1. Two flowers are then said to be equal if one

can be obtained from the other by a cyclic rotation. We can now define the following metric

on TN :

d (T1, T2) =

N
∑

n=1

dn (T1, T2) and

dn (T1, T2) =

{

0 if f (n, T1) = f (n, T2) ,

1 otherwise .

Using this metric, we define the following time correlation function:

C(ϑ) = 1 −
d (T (t), T (t + ϑ))

N
,

where T (t) is the system state at time t. Our result for the decay of this function at

equilibrium, i.e., when t → ∞, is as follows:

Proposition 2.7.1. The correlation function C decays like

C(ϑ) = e−ϑ/τr , (2.10)

with a relaxation time τr of the form

τr = O(e3β) = O(ε−3) . (2.11)
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Figure 2.13: Decay rate of correlations at equilibrium. Numerical verification of Eqs. (2.10)

and (2.11). The data are averages over 10 runs with N = 15′000. The error bars represent 1

standard deviation. The variable β is equal to − log(ε). The fits are for C between 0.5 and

0.001.

Proof. The correlation function C(ϑ) is nothing but the fraction of nodes whose flower is

unchanged after ϑ time units. At equilibrium, the number of pairs p was established in

Eq. (2.4) to be p = 70/36 · ε2. On the other hand, the density of defects in equilibrium is O(ε)

and hence, their average distance ξ equals ξ = O(ε−1/2). By the estimates of Sect. 2.6 this

means that the effective number of pairs which change the configuration in a permanent way

is O(p · ε−1/2). We further saw in Sect. 2.5 that the number of collisions a relevant pair will

undergo is a temperature independent constant ν = O(1). If ξ is the average distance between

2 defects, then, on average, this pair will change, on its way, the flowers of 2νξ nodes. At

time ϑ, each of these flowers is still unchanged with probability C(ϑ).

Since the pair makes a 1D random walk, all this happens within an average time interval

δϑ = 1
2ν

2ξ2. This in turn leads to

C(ϑ + δϑ) = C(ϑ) − 2pPRνξC(ϑ) .

In the limit ϑ ≫ δϑ, we find

Ċ(ϑ) = −4
pPR

νξ
C(ϑ) ,

and this leads to Eq. (2.10) with

τr =
νξ(ε)

4p(ε)PR(ξ)
. (2.12)

Finally, using

PR(ξ) = O(1/ξ) = O
(

ε1/2
)

, (2.13)

Eq. (2.11) follows from Equations (2.12) and (2.13). �
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Figure 2.14: The decay rates of several simulations with N = 15000 and ε = 0.002 to 0.005.

2.8 The aging process

By the aging process, we mean the approach of the energy to its equilibrium value. Since the

energy is by and large just the density d(t) of defects we can formulate the result as

Estimate 2.8.1. Under the assumptions εN > D0 and ε < ̺ one has for the density d of

defects:

d(t) = O(
(

ε2t
)−2/5

) . (2.14)

Note that this result differs from that proposed in [16], where the decay rate was given

as (ε2t)−1/2. This difference is caused by our observation that the diffusion constant of the

defects actually depends on their density, because, if they are rarer, the pairs, which are the

only ones able to move them around, need longer to find them.

Power decay rates are extremely hard to distinguish, but we have performed some tests

which are illustrated in Fig. 2.14. They give a slight advantage to a decay of −0.4 as compared

to −0.5.

Proof. We study the aging process by assuming that, in approach to equilibrium, the system

is in a quasistationary state, with charge density c = E/N. Here, and in the sequel, time will

be in units of τ = (3N−6)/2. Let d(t) and p(t) be the density of defects and pairs respectively.

Then, up to terms of order O(ε3) one has c = d + 2p.

As we will see in this section, the quasistationarity assumption simply means that the

relaxation of the energy is a consequence of the annihilation of colliding defects. The number

of pairs is, up to fluctuations, essentially unchanged during the process we consider.
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2.8.1 Three timescales

We saw that a fraction 1 − O (ε) of all occurring flips in the system do not change the

energy, and are either motions of pairs or blinkers. Of those, the only relevant ones are the

wandering pairs, which induce diffusion of the defects as we have seen in Sect. 2.7. The

discussion of the equilibrium probabilities apply also to states close to equilibrium, which is

the regime we want to consider now.

The pair dynamics happens on the time scale τpair = τ and it conserves both the number

of pairs p(t) and the number of defects d(t).

The next slower time scale concerns creation and annihilation of pairs. Even though this

changes p(t), it conserves d(t). Whenever one of these events happens, defects are pushed

around by the pairs with some geometrically defined probability, and this leads to a diffusion,

whose constant D(t) measures this second time scale τdiffusion = D−1(t).

The third time scale τmeeting is related to collision rate γ(t) of defects; τmeeting = γ
−1(t).

They undergo a 2D random walk. Sooner or later, 2 defects of opposite charges will meet

and will form a new pair which will run on timescale τ until it annihilates. In the regime we

consider, only this sequence of events (collision and running pair) of the dynamics destroys

2 defects and, as a consequence, is responsible for the relaxation of the energy. Given the 3

time scales, the derivation of the decay rate is now rather straightforward.

2.8.2 The quasistationarity assumption and the density of pairs

By the previous discussion,

τmeeting(t) ≫ τdiffusion(t)≫ τpair(t) = τ = 1 .

The orders of magnitude of these quantities near equilibrium are

τmeeting(t) = O(ε−2d−7/2) , τdiffusion(t) = O(ε−2d−1/2), τpair(t) = 1 .

Consider a system for which, at time 0, d(0)≫ 1 and p(0) ≫ 1. It is clear that the relaxation

of pairs is much faster than that of defects. We will assume that pairs are always at

equilibrium density, i.e., that creation and destruction rates of pairs are equal and p(t) is

independent of t.

Remark 2.8.1. The above discussion implies that p(t) is constant over time intervals of order

τmeeting(t). In fact, both creation and annihilation events necessitate the presence of defects so

that the creation and destruction rates of pairs will be linear in d(t) at low density. This implies

that p depends on t only through the value of d(t). By abuse of notation, we will write p(d)

instead of p
(

d(t)
)

.

The creation rate of pairs is 12dε2 and the destruction rate is simply p(d)/τlifetime. There-

fore, by balancing the rates, we find:

p(d) = 12d τlifetime ε
2 . (2.15)

Since a pair needs to diffuse from one defect to the other in order to annihilate, we estimate

that τlifetime = O
(

ξ2
)

= O(d−1). This implies that the density of pairs is p(d) = O(ε2).
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2.8.3 The diffusion constant of single defects

Repeating the arguments of Sect. 2.7 the average number of collisions ν and the average

number of moved defects η are temperature independent constants. The diffusion constant

of a defect is simply the probability that a given defect moves by one space unit during one

time unit and it is given by

D · d =
2p(d) PR(ξ)η

ν2ξ2
,

D(d) = O
(

p(d) · PR(O(d1/2))
)

.

Using Equations (2.15) and (2.13), this leads to

D(d) = O(ε2 · d1/2) .

2.8.4 Collision rate of single defects and relaxation coefficient

The annihilation of 2 diffusive particles A + B → ∅ has been studied in depth in [17, 18, 19].

Here, we use the mean field argument of [17], to deduce the collision rates. However, there

will also be particle creation. On the other hand, e.g., in [19] creation is indeed considered,

but the study is for a fixed substrate, namely the lattice Z2, while our study is on a more

floppy domain.

Given a 2D gas of 2 particles A and B of equal densities d/2 such that the diffusion

constants DA = DB = D, it can be deduced from [17] that the collision rate γ is

γ(d) = O(Dd3) .

Extending this identity to a varying diffusion constant, we end up with

ḋ = −2γ(d) = −O(ε2 · d7/2) ,

where we assumed that we are far enough from equilibrium to neglect the creation rate of

defects. �

Note that this result differs from that proposed in [16], where the decay rate was given

as (ε2t)−1/2. This difference is caused by our observation that the diffusion constant of the

defects actually depends on their density, because, if they are rarer, the pairs, which are the

only ones able to move them around need longer to find them.
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Chapter 3

Nuclei and Bounding the Number of

3-Balls

3.1 Introduction

In this chapter, we study the question of the number of triangulations of the 3-ball by tetra-

hedra. The case of the 2-ball was exactly solved by Tutte in [10]. He showed in particular that

the number of rooted triangulations of the 2-sphere with N vertices is O(1) N−5/2(256/27)N . It

is natural to ask if analogous bounds are true in higher dimension. Such results could have

applications in models of Statistical Mechanics (foams [34], quantum gravity [20], or glassy

dynamics [3, 5, 4] and the first chapter of this thesis) where the exponential rate of growth

can be interpreted as an entropy. The problem of the existence of an exponential bound in

3-dimensions was formulated by Ambjørn, Durhuus and Jónsson in [28] and emphasized by

Gromov in [33]: they asked whether the number of triangulations of the 3-sphere is bounded

by CN for some constant C when there are N tetrahedra (facets) in the triangulation. To date,

this question remains open. However Pfeifle and Ziegler proved in [35] a super exponential

lower bound for the number of triangulations of the 3-ball as a function of the number

of vertices. This does not answer negatively Gromov’s question (which is in terms of the

number of tetrahedra) but makes the problem of proving an exponential bound in terms of

the number of tetrahedra even more challenging.

There are several studies in the direction of answering the question, which we summarize

now. In [24], Durhuus and Jónsson gave the construction of a class of triangulations for

which they could show a bound of the form CN . These triangulations are obtained by

building a tree of tetrahedra, which is obtained by starting from a root tetrahedron and

attaching tetrahedra to its faces, and then attaching further tetrahedra to the new open

faces. Each tetrahedron is attached to the tree with just one face. It is a common feature

of tree-like constructions that they lead to bounds of the form CN : The prime example in

our context is of course the celebrated work of Tutte [10] mentioned above. Coming back to

Durhuus and Jónsson, once the tree is constructed, they now collapse adjacent faces of the

tree in such a way that at the end of the procedure a triangulation of the 3-sphere is obtained.

Their main result says that the number of ways in which to do this is again exponentially

bounded. In this way, they construct a set of triangulations of the 3-sphere with tetrahedra

which is exponentially bounded. They ask whether these are all possible triangulations.

33
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In a later development, Benedetti and Ziegler [25], show that the Durhuus and Jónsson

construction, which they call locally constructible (LC), does not capture all triangulations of

the 3-sphere. Namely, they show that a 3-sphere with a 3-complicated knotted edge (made

by tetrahedra) is not LC. They also carefully discuss relations between LC and other classes

of constructibility.

In the present chapter, we define a larger class of triangulations, with a construction

similar to that of Durhuus and Jónsson, but which uses more general basic elements than

the simple tetrahedron, which we call nuclei. We prefer to work with 3-balls, and bounds on

3-spheres can be obtained from a bound on triangulations of a tetrahedron. This is usually

done by removing a tetrahedron from the 3-sphere (see for example [25, Section 3] ).

Nuclei are defined as triangulations of the 3-ball with the following special properties:

1. They have no internal nodes.

2. Internal faces have at most one external edge.

Obviously, the tetrahedron is a nucleus. The Furch-Bing ball [26], [29] and [27] and the Bing

2-room house [29] and [27], which are not nuclei, can be reduced by our procedure to one

non-trivial nucleus, each. The smallest non-trivial nucleus we know of, given in Table 3.1,

has 12 nodes, and 37 tetrahedra, of which 17 have no external face. Nodes are numbered

from 1 to 12, and Table 3.1 gives a list of the 37 tetrahedra.

1 3 4 10 1 3 5 10 1 3 5 11 1 4 6 10 1 5 7 8

1 5 7 10 1 5 8 11 1 6 7 8 1 6 7 10 2 3 5 9

2 3 5 11 2 3 8 9 2 3 8 11 2 5 6 11 2 6 11 12

2 7 10 11 2 7 11 12 2 8 9 10 2 8 10 11 3 4 9 10

3 4 9 12 3 5 9 10 3 8 9 12 4 5 6 11 4 5 7 8

4 5 8 11 4 6 10 11 4 7 8 9 4 7 9 12 4 8 9 10

4 8 10 11 6 7 8 9 6 7 9 11 6 7 10 11 6 8 9 12

6 9 11 12 7 9 11 12

Table 3.1: A nucleus with 12 nodes, and 37 tetrahedra, of which 17 have no external face. If

a tetrahedron has an external face, its 3 nodes are shown in boldface.

Our approach is two-fold: Top-down, and bottom-up. In the top-down approach, we

define a set of elementary moves which reduce an arbitrary triangulation of the 3-ball into

a tree of nuclei, which are glued together by pairs of faces, each such face with 3 external

edges. The tree can then be cut into a disjoint union of nuclei by cutting along these faces.

The construction always transforms 3-balls to unions of 3-balls, and is thus implementable

on a computer.

In the bottom-up approach, we start with any tree whose nodes are arbitrary nuclei, and

we construct 3-balls from it by gluing adequate faces together. Not all possible gluings lead

to 3-balls, but including also some inadequate gluings still leads to good bounds. Again, the

procedure can be programmed on a computer.

Our main result is Theorem 3.5.17. It says that if the number ̺(t, fs) of face-rooted nuclei

with t tetrahedra and fs external faces has a bound of the form ̺(t, fs) ≤ Ct then the number

of rooted triangulations of the 3-ball with t tetrahedra, f external faces and n internal nodes is

bounded by C
t+ f+n
∗ .
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In particular, since obviously, f ≤ 4t and n ≤ 4t, we would get a bound Ct
∗∗.

In summary, our work bounds the number of triangulations in terms of the number of

nuclei. Thus, we remain with a new, but hopefully simpler, open question about the problem

of exponential growth, namely does the number of face-rooted nuclei with t tetrahedra have

an exponential bound in t ? While we do not have any mathematical statements about this

problem, the methodology of the proof of Theorem 3.5.17 allows for quite extensive numerical

experimentation. The most important insight from this experimentation is as follows: It

seems that if T is a nucleus with a k-complicated knot (or even braid), then the addition of

(at most) k cones and decomposition with our algorithm leads to a tree of tetrahedra. Note

that the trefoil knot is 1-complicated. Furthermore, Goodrick [32] showed that the connected

sum of k trefoil knots is at least k-complicated.

We have analyzed a certain number of classical examples, with the findings summarized

in Table 3.2.

Example knot complication # of cones added ref.

Bing 2 room no knot 1 cone [29]

1 trefoil 1-complicated 1 cone [26]

2 trefoils 2-complicated 1 cones

3 trefoils 3-complicated 2 cones [25, Figure 3]

4 trefoils 4-complicated 3 cones

5 trefoils 5-complicated 3 cones

figure 8 1-complicated 1 cones

cinquefoil knot 1-complicated 1 cones

Table 3.2: Experimental upper bound on the number of cones needed to decompose a trian-

gulation into tetrahedra (For the definition of m-complicated, see [25]).

3.1.1 The method

The bounds on the number of triangulations are obtained by studying a set of elementary

moves, detailed in Sect. 3.4.1. These moves either decompose the triangulation in two disjoint

pieces (by cutting along an interior face with 3 edges on the boundary), or by taking away

a tetrahedron with an external face and one internal node. Clearly, this leaves again two

3-balls on which we continue the decomposition. The other operations are “open” a ball along

a carefully chosen edge (which we call “split-a-node-along-a-path”) or opening one face with

2 external edges. These operations increase the number of tetrahedra in the triangulation,

but they prepare the moves in which the 3-ball can be cut, and the internal nodes can be

eliminated. One of the main novelties of this construction is the observation that this can

be done with few additional tetrahedra: This follows from a careful analysis of cuts of the

2-dimensional hemisphere attached to any external node. Since this is an important bound,

we devote Sect. 3.3 to its proof. In Sect. 3.2, we introduce the (standard) terminology for

the pieces of any triangulation. In Sect. 3.4 we combine the 4 moves described above to

show how a general triangulation can be decomposed into a set of nuclei. In Sect. 3.5, we

perform the bottom-up procedure and show how one bounds the number of triangulations of
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the 3-ball in terms of trees whose nodes are (rooted) nuclei, extending in this way the earlier

work of [24] and [25].

3.1.2 Comparison with 2d

It is useful to compare our method to what can be done in 2d. In 2d we have a set of

triangles. Any triangulation can be obtained in the following way: First, construct a tree of

triangles, adding each triangle with only one face to the existing tree. This object has no

internal nodes. Now, glue together adjacent faces of the tree, recursively. In this way one

can obtain all triangulations of any polygon.

The inverse operation, while intuitively clear, is a little harder to describe, and we just

sketch the procedure. Given any internal node x at distance 1 from the polygon, say, con-

nected to node n of the polygon, we can split the edge (n, x) by doubling the node n into a

pair n′, n′′, so that the edges (n′, x) and (x, n′′) are now external edges and x is promoted to

an external node. All internal nodes can recursively be brought to the surface in this way.

We then have a tree, and the tree can be decomposed into triangles by cutting all internal

edges with 2 external nodes. At the end, the basic objects are triangles.

Clearly, therefore, the basic objects in 2d are

2a) internal edges with 2 external nodes

2b) internal nodes (at distance 1) from the polygonal boundary

In 3d, there are many more possibilities, and our procedure will eliminate all those which

can be eliminated. The ones which we can deal with are

3a) internal faces with 3 external edges: this corresponds to case 2a) above and will be

cut by cut-a-3-face

3b) internal faces with 2 external edges, and therefore one internal edge with 2 external

nodes. This resembles 2b) and is dealt with by open-a-2-face.

3c) an internal node x which is the tip of a tetrahedron t whose opposite face is external.

One can just eliminate t and x becomes external. This is the second case which

corresponds to 2b). We call this C0 later.

3d) an internal node x which is the corner of a face f whose opposite edge is external

(but not C0). Again, a sub-case of 2b). This is dealt with split-a-node-along-a-path,

and will be called C1.

3e) an internal node x which is the end of an edge e whose opposite end is external (but

not C1). Again, a sub-case of 2b). This will be called C2 and reduced to C1 with

split-a-node-along-a-path.

The elementary objects are those left over after all these decompositions are performed.

In 2d, those objects are just triangles, which makes the counting possible. In 3d these are

nuclei. Non-trivial nuclei exist, and they must carry the information about the complications

of 3 dimensional topology, since all the other problems have been eliminated. In particular,

internal faces of nuclei have 0 or 1 external edges.
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3.2 General definitions and notations

3.2.1 Internal and external objects, flowers

We introduce some notation which we apply to triangulations and tetrahedrizations (which

we also call triangulations when no confusion is possible):

We start with triangulations of S 2. These will have fs faces, ns nodes and es edges, where

the subscript s stands for “surface”.

We also consider tetrahedrizations of a ball, which are collections of tetrahedra, whose

faces, edges and nodes satisfy the usual topological conditions of piecewise linear triangula-

tions. The boundary of such a tetrahedrization is a triangulation of S 2. We say that t is the

number of tetrahedra, ftot the number of faces, etot the number of edges, and ntot the number

of nodes. Faces, edges, and nodes which are not among those of the triangulation of S 2 are

called internal; the others are called external. It will be useful to observe that tetrahedra can

have up to 4 external faces, internal faces can have up to 3 external edges, internal edges up

to 2 external nodes. We will use the subscript i for internal objects.

Obviously,

ftot = fs + fi , etot = es + ei , ntot = ns + ni .

From the Euler relations and trivial geometry, we have the relations

t − ftot + etot − ntot = −1 ,

fs − es + ns = 2 ,

3 fs = 2es ,

4t = 2( ftot − fs) + fs .

(3.1)

This leaves us with 3 free variables, which we choose as

t, fs, and ni .

Note that fs is always even.

Definition 3.2.1. We use the term f-vector for the three variables 〈t, fs, ni〉 where fs ≥ 4.

3.2.2 Notation and flowers

• If n1 and n2 are 2 distinct nodes, then we denote by (n1, n2) the edge connecting the

two (if it exists).

• Similarly, if ni : i = 1, 2, 3 are 3 distinct nodes, then (n1, n2, n3) is the face (triangle) with

these 3 corners (if it exists).

• If e is an edge and n is a node not in e then (n, e) denotes the face (triangle) with the

edge e and the node n (if it exists).

This notation is easily generalized to the case where we consider simplices of dimension 3:

• If n is a node and f is a face not containing n, then (n, f ) is the tetrahedron with f

as a face and n as the opposite corner (if it exists).
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• Similarly, if e is an edge and n1, n2 < e are 2 distinct nodes then (n1, n2, e) is the unique

tetrahedron containing all of them (if it exists).

• Finally, if e1 and e2 are two edges without common nodes, then (e1, e2) is the tetrahedron

containing both edges (if it exists).

Paths of nodes connected by edges will be denoted as γ = [n1, n2, . . . , nk] and the union of 2

disjoint paths γ1, γ2 (connected by one or both endpoints) will be denoted by γ1 ∪ γ2.

We next define what we mean by flowers. Here, we adapt the conventions to the tetra-

hedrization of a triangulated sphere S 2. Nodes, edges, and faces are called external if they

lie entirely in S 2. All others are called internal. Consider an external node n∗
1. We define

its 2 flowers:

• The external flower E(n∗) of n∗ is the set of all edges e not containing n∗ for which

(n∗, e) is an external face. Clearly, E(n∗) is a polygon.

• The internal hemisphere I(n∗) of n∗ is the set of all faces f not containing n∗ for

which (n∗, f ) is a tetrahedron. It is easy to see that I(n∗) is a 2d triangulation whose

boundary is the polygon E(n∗).

We will say that the external flower of an internal node x∗ is empty. We define the

internal (hemi-)sphere I(x∗) (or simply flower) of x∗ as the set of all faces f not containing

x∗ for which (x∗, f ) is a tetrahedron. This is a triangulation of S 2.

We also define the external flower E(e) of an external edge e as the 2 nodes n1, n2 for

which (ni, e) are 2 external faces. Similarly, the internal hemisphere I(e) of the external edge

e is defined as the set of all edges e′ such that (e, e′) is a tetrahedron. By hypothesis, I(e)

is a 1-d triangulation whose boundary is E(e). Note that there might be internal nodes at

distance 1 from e which are not in I(e).

3.3 Some geometrical considerations: Two-colored paths

in a triangulation

Throughout this section all triangulations are 2d triangulations. We describe here properties

of paths in a 2d triangulation of a polygon. These properties will play a crucial role when

we will bound the effects of moving internal nodes of a 3d triangulation to the surface.

However, they are totally independent of the remainder of the chapter.

Lemma 3.3.1. Let K be a 2d triangulation with p boundary edges and n internal nodes. Then

the number of interior edges in K is 3n + p − 3.

Proof. The proof follows from the Euler relations and is left to the reader. �

Lemma 3.3.2. Consider a polygon P and let K be any triangulation whose boundary is P,

with n > 0 internal nodes. For each node x ∈ K \ P, there are at least 3 simple disjoint paths

in the interior of K connecting it to 3 different points of P.

1We use n∗,m∗ and the like for external nodes, and x∗, y∗, . . . for internal ones.



3.3. SOME GEOMETRICAL CONSIDERATIONS: TWO-COLORED PATHS IN A TRIANGULATION39

Proof. Any triangulation of S 2 is 3-connected. Complete K into a triangulation of S 2 by

adding a cone over its boundary. Let m be the apex of the cone. Then there are at least 3

disjoint simple paths connecting x to m, [31]. Any such path must intersect P, and we take

the first intersection point. �

We assume now that the nodes of P are labeled.

Definition 3.3.3. A triangulation K with P = ∂K is called an admissible triangulation if the

following conditions are met:

K1: The boundary P = ∂K has at least 2 different labels.

K2: The nodes in ∂K with a given label form one connected arc of ∂K .

K3: The ends of any internal edge connecting 2 nodes of ∂K have different labels.

The Fig. 3.1 illustrates the definition.
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Figure 3.1: An illustration of the conditions K1)–K3). Left: since there is only one label, K1)

is violated. Center: The region with label 1 is not connected; K2) is violated. Right: There is

an internal edge (red) connecting two nodes with the same label; K3) is violated.

Definition 3.3.4. An admissible triangulation of a polygon is called a non-trivial triangulation

if it has at least one internal edge. (The only admissible trivial triangulation is an admissible

triangle.)

We begin with an auxiliary lemma.

Lemma 3.3.5. Let K be an admissible triangulation whose boundary is the polygon P. Given

two non-adjacent boundary nodes a and b with different labels at least one of the two alterna-

tives below holds:

1) There is a simple path γ joining a and b without any other node in P,

2) There is an edge (x, y) joining the two pieces of P \ {a, b}.

Postponing the proof of Lemma 3.3.5 we have
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aa

bb

xx

yy

Figure 3.2: The 2 alternatives of finding a path connecting two different labels. Left: There is

an interior path between a and b. Right: There is no such path, but then, one can always find

an edge connecting two different labels (by K3), (not necessarily the same as a and b). The

left panel also illustrates the necessity of choosing a shortest path. For example, choosing

the magenta path, the dashed edge will violate K3) in the next step of the procedure.

Proposition 3.3.6. Assume K is a non-trivial admissible triangulation with ∂K = P. Then,

there exists a simple path γ along internal edges of K which connects two points in P = ∂K

with different labels. It cuts K in two pieces KL and KR. The path γ can be chosen in such a

way that labeling the new boundary piece (namely the interior nodes of γ) in KL and KR with

a label different from the ones used so far, both KL and KR are again admissible.

Proof. By admissibility, we know that not all nodes on P have the same label. We distinguish

two cases:

• P has more than 3 nodes. In this case, take 2 non-adjacent nodes a and b with different

labels and apply Lemma 3.3.5. If 2) holds, then we take γ as the edge connecting x and

y. By K3) they have different labels. Otherwise, there is an internal path connecting a

and b. We take a shortest path, γ.

• P is a triangle. In this case, K can be seen as a triangulation of the sphere S 2. In

particular, it is 3-connected. We take 2 (adjacent) nodes a and b of P with different

labels. Since K is non-trivial and 3-connected, there are (at least) 3 disjoint simple

paths connecting a and b. At most 2 of these paths are on the boundary P, which

leaves at least 1 path in the interior of the triangulation K . We take a shortest internal

path γ connecting a and b.

In all cases, we find 2 boundary nodes with different labels and a shortest internal path

γ connecting them. Cutting along the path γ, we obtain 2 pieces KL and KR. If γ is just

one edge then inspection shows that K1)–K3) hold. If not, K1) and K2) are obviously true by

construction; we have to show that K3) is also true. Giving a new label, say L, to the interior

nodes of γ, we have to show that there are no edges connecting any two non-consecutive

nodes with label L. But if there were, the path would not be minimal. �
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Proof of Lemma 3.3.5. The reader may want to look at Fig. 3.2. Assume 1) does not hold.

This means that one cannot draw 3 disjoint paths between a and b, as the middle one would

satisfy 1). We can take the two disjoint paths to go along the two boundary segments between

a and b. By Menger’s theorem [31], and since a and b are not adjacent, there must then be 2

nodes x and y (other than a or b) such that all paths from a to b must pass through at least

one of them. Since the boundary paths are candidates, we see that x and y are in P, one per

arc connecting a and b. Consider now the path from a to b along P which goes through x.

Modify it so that instead of going through x it goes through the flower of x. We get a new

path from a to b which does not go through x. This means that the new path goes through

y implying that y is in the flower of x. Thus, x and y are connected by an edge.

This completes the proof. �

3.4 Part I: Reducing any triangulation into a set of nuclei

3.4.1 The elementary moves

In this section we define the elementary moves which transform any triangulation into a (set

of) nuclei. The first two moves, which we call open-a-2-face and cut-a-3-face, are used to

transform any triangulation with no internal nodes into a set of nuclei, and the third and

fourth move, which we call remove-1-tetra and split-a-node-along-a-path, are used to remove

all internal nodes of a triangulation.

Henceforth, T will denote a triangulated 3-ball with f-vector 〈t, fs, ni〉.

Cut-a-3-face

Let (n1, n2, n3) be an internal face with its 3 edges on the surface ∂T of T . Then, it cuts

the 3-ball T into 2 distinct parts. We simply separate these 2 parts and we get 2 “smaller”

3-balls, as shown in Fig. 3.3.

If 〈t, fs, ni〉, 〈t1, f1,s, n1,i〉 and 〈t2, f2,s, n2,i〉 are the f-vectors of the initial ball and the 2 new

ones, then we have

t = t1 + t2 , fs = f1,s + f2,s − 2 , ni = n1,i + n2,i .

Open-a-2-face

Consider 3 external nodes n∗, n1, n2 of T which form a triangle (n∗, n1, n2). We assume that

(n∗, n1, n2) is an internal face, with (n1, n2) an internal edge, and the two other edges external.

Let I and E be the internal and external flower of the external node n∗. As we have already

stated, I is a triangulation with ∂I = E. By hypothesis, the edge (n1, n2) divides I into 2

distinct sets of faces. The operation open-a-2-face consists in removing n∗ and all tetrahedra

attached to it, replacing it by n∗,1 and n∗,2 and attaching each of these 2 new nodes to all

faces of one of the two parts of I, see Fig. 3.4. This operation transforms a triangulation of

the 3-ball into a triangulation of the 3-ball. If 〈t, fs, ni〉 and 〈t
′, f ′s , n

′
i〉 are the f-vectors of the

initial ball and the resulting ball, then we have

t′ = t , f ′s = fs + 2 , n′i = ni .
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Figure 3.3: Sketch of cut-a-3-face.

Figure 3.4: Sketch of open-a-2-face.
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We will say that the f-vector changes by 〈0,+2, 0〉.

Remove-1-tetra

Definition 3.4.1. A removable tetrahedron is any tetrahedron t with one internal node and

one external face.

The operation remove-1-tetra is as follows: let t∗ = (x∗, n1, n2, n3) be a removable tetra-

hedron with internal node x∗ and external face (n1, n2, n3). We simply remove t∗ and its

external face; the internal node x∗, the 3 internal edges and the 3 internal faces of t∗ all

become external. The f-vector 〈t, fs, ni〉 changes to 〈t − 1, fs + 2, ni − 1〉; the change of f-vector

is 〈−1, 2,−1〉.

Split-a-node-along-a-path, hemispheres and pieces

Consider an external node n∗ of T and its internal hemisphere I = I(n∗), see Fig. 3.5 for an

illustration. By definition of a triangulation, I is a 2d triangulation of a polygon.

Definition 3.4.2. A splitting path γ is any simple path in I which connects two different

vertices on ∂I and contains no edge of ∂I.

Let γ be a splitting path. Clearly it divides I into 2 pieces KL and KR with I = KL ∪KR

and KL ∩ KR = γ.

The move split-a-node-along-a-path γ is defined as follows:

1. Remove the node n∗ and all tetrahedra having n∗ as a corner

2. Add 2 new nodes n∗,L and n∗,R

3. For each face f∗ ∈ KL add the tetrahedron (n∗,L, f∗)

4. For each face f∗ ∈ KR add the tetrahedron (n∗,R, f∗)

5. For each edge e ∈ γ add the tetrahedron (n∗,L, n∗,R, e)

Note that by construction, one of the nodes on ∂KL is n∗,R, and the edges in KL originating

from n∗,R reach (the image of) γ. Analogous statements hold for KR.

Definition 3.4.3. In the construction above, we refer to K(n∗,L) = KL as the left piece. It

is simply the subtriangulation obtained from the hemisphere I(n∗,L) after removing the cone

connecting n∗,R to every node of γ. Similarly, we define the right piece K(n∗,R) = KR.

Remark 3.4.4. Hemispheres I and pieces K will play an important role in our construction.

Some statements will be given for hemispheres, others for pieces and so it is important to be

able to distinguish between the two definitions.

Remark 3.4.5. A splitting path γ is always associated with a hemisphere I and not with a

piece K . We will see that, under some conditions, a simple path γ̃ connecting two nodes of the

boundary of a piece K can be extended into a splitting path γ.
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n∗,R

n∗,L
K(n∗,L)

K(n∗,R)

Figure 3.5: The left panel shows the internal hemisphere I(n∗) of n∗. The node n∗ is not

shown, but is connected to every node of I(n∗). We split n∗ into n∗,L and n∗,R along the green

path γ. The other 2 panels show the internal hemispheres I(n∗,L) and I(n∗,R) of the 2 new

nodes (n∗,L in the center panel, n∗,R in the right one (again, they are not shown but connected

to every node we draw)). Notice that each internal node of the green path γ is at distance 1

from n∗,R resp. n∗,L Also, the edges originating in n∗,s, s ∈ {L,R} have been added during the

split.

Definition 3.4.6. The new nodes n∗,R and n∗,L are called the children of n∗.

Lemma 3.4.7. The move split-a-node-along-a-path transforms a 3-ball into a 3-ball. The

f-vector 〈t, fs, ni〉 is mapped to 〈t + |γ|, fs + 2, ni〉, where |γ| is the number of edges in γ.

The f-vector changes by 〈|γ|,+2, 0〉. In particular, the number of tetrahedra increases. But

we will show that this increase can be controlled.

Proof. The count of the f-vector is as follows: Removing and adding the tetrahedra in steps

1,3,4 above does not change their number. The number of external faces increases by two,

namely the two external faces sharing the new edge (n∗,L, n∗,R). And each internal face (n∗, e)

which connected n∗ to an edge e in γ gives rise to a new tetrahedron (n∗,R, n∗,L, e). There are

|γ| such faces and so the f-vector is seen to change by 〈|γ|,+2, 0〉, as asserted.

�

3.4.2 Summary

In the sequel, we want to bound the effect of removing internal nodes, since our building

blocks are the nuclei, which do not have any internal nodes. Eliminating the internal nodes

will cost the addition of tetrahedra, and the issue here is how many are needed to obtain

a ball without internal nodes. Internal nodes disappear when we perform the remove-1-tetra

operation, and only then.

Before starting the bounds proper, we explain here the point of our construction, based

on the evolution of the f-vectors 〈t, fs, ni〉. Open-a-2-face costs a change 〈0, 2, 0〉, and split-

a-node-along-a-path costs 〈|γ|, 2, 0〉, where |γ| is the length of the path along which we cut.

In principle, each path γ might have a length proportional to the number of nodes, which in

turn would imply that the sum of the lengths of all paths exceeds O(n2
tot). So one needs a

strategy which improves this naive bound.
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While we cut, new external edges appear, and also, new external edges appear when we

remove a tetrahedron which costs 〈−1, 2,−1〉. But it is only this operation which reduces the

number of internal nodes. So, there are two opposing tendencies. One is the preparation of

promoting an internal node into an external one, and it adds many tetrahedra, and the other

is remove-1-tetra, which reduces the number of internal nodes by 1.

The real issue is thus to bound the number of added tetrahedra per removed internal node.

We will perform this bound in terms of the number ei of internal edges. Our main result

is Corollary 3.4.14 which says that the number of internal edges grows by no more than

C∆(t + ni). The Euler relations Eq. (3.1) allow to express t as a function of es, fs, and ni,

t = ei − ni + fs/2 − 1 . (3.2)

Therefore, and since ni < 4t, fs = 2ns − 4 < 4ei and ei < 6t, Corollary 3.4.14 implies that the

elimination of all ni internal nodes leads to an f-vector of the form

〈t, fs, ni〉 → 〈t
′, f ′s , 0〉 ,

with

e′i < ei + 5C∆ · t < (6 + 5C∆) · t = C/4 · t ,

and therefore

f ′s < C · t , t′ < C · t ,

with a finite constant C which is independent of the triangulation.

3.4.3 Removing internal nodes

This is the most difficult, and novel, part of our construction.

Definitions and strategy

Given any triangulation, the depth Dx of a node x is the minimal number of connected

edges needed to reach the boundary, starting from x. We also say that the triangulation has

maximal depth dmax = maxn∈T Dn. Our strategy consists in reducing the depth of all internal

nodes by 1. The depth will be reduced by working on all internal nodes of depth 1 and

moving them to the surface. If the maximal depth of a triangulation was dmax it will end up

being of depth dmax − 1. We repeat this procedure until no internal nodes remain.

So, consider now an internal node x∗ of depth 1. It comes in 3 flavors which we call C0,

C1 and C2:

C0: x∗ is the internal node of a removable tetrahedron.

C1: x∗ is not of type C0 but is in a face (x∗, n∗,m∗) where (n∗,m∗) is an external edge.

C2: x∗ is neither of type C0 nor C1.
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Obviously, in case C0, we would just remove the tetrahedron, promoting x∗ to the surface.

The other cases are more complicated and need a careful estimate in terms of edges and faces

which appear when the nodes are brought to the surface. No node will ever disappear in

these constructions, but some will be doubled (split) and edges will be added.

So we begin with a triangulation T0 of maximal depth dmax > 0. We define Lℓ = {n :

Dn = ℓ}, the set of nodes at depth ℓ in the triangulation T0. These original depths should be

viewed as labels assigned to each node. If a node is split, its children inherit the label. If a

node comes closer to the surface in the procedure below, its actual depth decreases, but its

label (the original depth) does not change.

We then iterate the following 4 steps until no internal nodes remain, for ℓ = 0, . . . dmax−1.
Each iteration transforms the ball Tℓ into a new ball Tℓ+1, such that the nodes of Lℓ+1 are

external.

Assume iteration ℓ− 1 is completed: Then we say that in Tℓ the nodes of Lℓ have become

external. Given such a node n∗ ∈ Lℓ, we consider its hemisphere I(n∗) (in Tℓ).

An internal node x∗ ∈ I(n∗) of type C2 can be promoted to an internal node of type C1

by drawing a path γ ⊂ I(n∗) that goes through it and splitting n∗ into n∗,L and n∗,R along γ.

Then, n∗,R is among the edges E(n∗,L) and therefore (n∗,L, n∗,R, x∗) is a face with the external

edge (n∗,L, n∗,R), so that x∗ is now of type C1.

In a similar manner, a node x∗ ∈ I(n∗) of type C1 can be promoted into an internal

node of type C0 by drawing a path γ ⊂ I(n∗) which contains the edge (x∗, y). Here, y is the

external node of the face (x∗, n∗, y) which defined x∗ as a node of type C1. Splitting n∗ along

γ, the tetrahedron (n∗,L, n∗,R, y, x∗) becomes removable.

Finally, any internal node of type C0 can be made external by simply removing one

tetrahedron.

Thus, to move all nodes of depth 1 to the surface we proceed in 4 steps (3 sweeps).

• Step 1 (Sweep C2→C1) : We promote all the x∗ of type C2 in the following order:

For each n∗ ∈ Lℓ, we promote all internal nodes of I(n∗) of type C2 into internal nodes

of type C1. We will show that this can be done in such a way that every internal

edge of the triangulation I(n∗) belongs to at most 1 of the splitting paths (as defined in

Sect. 3.4.1).

When this first step is complete, all internal nodes initially at depth 1 will be of type

C1 or C0. There appears a new set Mℓ of external nodes containing the nodes of Lℓ
which were not split and new external nodes obtained by the splitting.

• Step 2 (Sweep C1→C0) : We promote all the x∗ of type C1 in the following order:

For each n∗ ∈ Mℓ, we promote all promotable internal nodes of I(n∗) of type C1 into

internal nodes of type C0.2 We will show that this can be done in such a way that

every internal edge of the triangulation I(n∗) belongs to at most 1 of the splitting paths

(as defined in Sect. 3.4.1).

• Step 3 (Sweep C0→external) : Finally, we make each node of type C0 external by

removing one tetrahedron.

2A node x∗ of type C1 can be promoted to C0 only if it is connected to a node of E(n∗). This might not be
true for all n∗ for which x∗ ∈ I(n∗) but for every x∗ there are at least two n∗ for which it is promotable.
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I(n∗) = K

K(n∗,L) K(n∗,R)

K(n∗,LL) K(n∗,LR) K(n∗,RL) K(n∗,RR)

K(n∗,LRL) K(n∗,LRR)

K(n∗,LRLL) K(n∗,LRLR)

Figure 3.6: An example of a binary tree of pieces associated with the hemisphere of an

external node n∗ containing 6 triangles.

• Step 4 : At this point every internal node has been moved up one level of depth.

We have now a new triangulation Tℓ+1 of the ball, of maximal depth dmax − ℓ − 1.

Remark 3.4.8. The reader should be aware that the 4 steps are repeated until no internal

nodes remain. However, these steps are not independent, and the proof of our bound does

depend on the precise definition of Lℓ.

Since dmax < ∞, the procedure will end after a finite number of iterations of C2→C1→C0.

We number these steps from ℓ = 0 to ℓ = dmax − 1.

Reducing C2-nodes to C1-nodes

Given an external node n∗ ∈ Lℓ, we now describe in detail the algorithm which promotes

the internal nodes of type C2 in I = I(n∗) to type C1. This is achieved by a succession of

carefully chosen moves of type split-a-node-along-a-path.

Each of these cuts produces a “left” and a “right” piece, which are then cut again into left

and right pieces, until only triangles remain. The pieces will be called KS = K(n∗,S), where

S is a sequence of letters L and R which designate the successive choices of left and right.

They are all admissible.

Thus, we construct a binary tree of pieces (see Fig. 3.6). In detail:

1. Label the nodes of ∂I from −1 to −|∂I|.
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n∗,Ln∗,L

n∗,RL

−7

−1

−2

−3

−4

−5

−6

L

L

L

RL

Figure 3.7: The left panel shows the internal flower I(n∗) of n∗. We split it in succession

along the green, red and blue paths. We first split n∗ into n∗,R and n∗,L along the green path.

The middle panel shows I(n∗,R) and the green node is n∗,L. The shaded region is KR and the

new labels are L. One end of the red path has a label which is a negative integer. while

the other has the label L and must therefore be connected to n∗,L. We obtain the cutting

path γR, and after the cut, we obtain two pieces KRR and KRL. In the third panel we show

the hemisphere of n∗,RR. The blue path has labels L and RL at its extremities, which must

therefore be connected to n∗,L and n∗,RL. This defines the cutting path γRR. Note that it always

suffices to add at most 2 dashed segments.

2. The hemisphere I is an admissible triangulation in the sense of Definition 3.3.3. Propo-

sition 3.3.6 implies the existence of a shortest path γ which connects two nodes of ∂I

(with different labels). We choose this path γ.

3. After splitting along this path, I is divided in two pieces, as shown in Fig. 3.5. The

two pieces are called KL and KR. The splitting has replaced n∗ by n∗,L and n∗,R and

I(n∗,L) is actually just KL with the cone between n∗,R and γ added. This also means

that n∗,R is in the external flower E(n∗,L) of n∗,L. Analogous terminology is used for the

other half. At this point, S is equal to L or R, and we continue with S = L (and do

later S = R).

4. If KS is a triangle, we are done (for this branch of the tree).

5. Label all nodes on ∂KS which had no label with the label Ŝ, where Ŝ is obtained from

S by exchanging the last letter, cf. Fig. 3.7. In this way, the newly labeled nodes are

connected to n∗,Ŝ in I(n∗,S).

6. Considering KS, Proposition 3.3.6 implies the existence of a new shortest path γ̃S which

connects two nodes of ∂KS with different labels.

7. We extend the path γ̃S as follows:

• If the end of γ̃S has a negative label, we do nothing.

• If the label of the end of γ̃S is some sequence S′ and if the node n∗,S′ still exists,

i.e., has not been split yet, we connect the end to n∗,S′ by one edge.
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• If the label of the end of γ̃S is some sequence S′ and if the node n∗,S′ was

previously split, then at least 1 of its children has replaced it in the flower of n∗,S
(see Fig. 3.8). In this case, we connect the end to any one of the corresponding

children.

Doing this for both ends we obtain a path γS.

8. Perform a split-a-node-along-a-path on γS and continue with step 4 for the pieces KSL

and KSR.

n∗,L

L

L

L

n∗,RR

R

R

R

R

R

n∗,RR

n∗,RL

Figure 3.8: The first 2 panels show the hemispheres of n∗,L and n∗,R obtained by splitting the

node n∗ of Fig. 3.7 along the green path. Note that n∗,R is in E(n∗,L) and n∗,L is in E(n∗,R). The

third panel shows what happens to I(n∗,L) if we split n∗,R along the red path of the second

panel into n∗,RR and n∗,RL. Note that at least 1 child of n∗,R (in this case both of them) is still

in E(n∗,L).

Remark 3.4.9. The boundary of a hemisphere IS = I(n∗,S) is composed of 2 types of nodes:

1. Nodes with a negative label which are part of the original boundary E.

2. The children n∗,S′ of the original node n∗, where S′ is a sequence of R’s and L’s.

The boundary of a piece KS, which is a sub-triangulation of IS, is also composed of 2 types

of nodes:

1. Nodes with a negative label which are part of the original boundary E, and therefore they

are part of the boundary of the hemisphere IS as well.

2. The other nodes whose label is some sequence S ′. These nodes satisfy the following two

conditions:

(a) All nodes of ∂KS with the same label form a connected arc of ∂KS.

(b) If a node y ∈ ∂KS has the label S′, then y is an internal node of the hemisphere IS

seen as a 2d triangulation. Furthermore, the node n∗,S′ (or at least 1 of its children

if n∗,S′ was previously split, (see Fig. 3.8)) is in ∂IS and the edge connecting y and

n∗,S′ (or its corresponding child) is an internal edge of the triangulation IS.
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Theorem 3.4.10. The algorithm promotes all of the internal nodes of I of type C2 (and depth

1) into nodes of type C1. Furthermore, every edge in I \ ∂I is in at most one path. No new

nodes of type C2 at depth 1 are created.

Proof. We first check that the different steps of the algorithm can be performed. The steps 1–3

follow from the definition of split-a-node-along-a-path. Steps 4 and 5 need no verification.

Step 6 relies on Proposition 3.3.6, which implies the existence of a (shortest) path γ̃S, cutting

the admissible piece KS into two admissible pieces KSL and KSR.

In step 7, we need to make sure that the path γS connects two different nodes of E(n∗,S)

which is also ∂I(n∗,S), to be distinguished from ∂K(n∗,S). The whole construction of labels

has been done with this aim in mind. Note that if a node u has a negative label, we do

nothing because any node u with a negative label is part of the original boundary E(n∗),

implying that if u ∈ I(n∗,S), then u ∈ E(n∗,S) for any child n∗,S of n∗. On the other hand, if

the label is the sequence S′, then by construction (step 5), u is connected to n∗,S′ (or to one

of its children) with one edge. Since the labels are different by construction, the path γ is

a splitting path, and therefore a cut along it is possible. In step 8, we need to verify that

the cut can indeed be done, and that the algorithm can be applied to the children of the K

which was just cut. But this is the content of Proposition 3.3.6, which shows that the cut

can be done in such a way that the children are admissible in the sense of Definition 3.3.3.

Since new paths are always constructed in the interior of K , and the K ’s are cut along

them, it is obvious that no edge (of the original hemisphere I(n∗) ) is covered by more than

one path.

Finally, to finish the proof, we note that every node of I \ ∂I belongs to at least 1 path

γ̃S, since the only pieces remaining at the end of the algorithm are triangles. In particular,

this implies that every internal node of type C2 in I is promoted to a node of type C1. �

Reducing C1-nodes to C0-nodes

Let T be a triangulation of a ball. Consider an external node n∗ of T and let I = I(n∗) be

its internal hemisphere. Furthermore, assume that all nodes of I are either external (with

regard to T ) or internal of type C0 or C1 but not C2. We now describe the algorithm which

promotes all the internal nodes of type C1 of I to internal nodes of type C0. The approach is

somewhat different from that of the previous section. Indeed promoting an internal node x

of type C2 to an internal node of type C1 is done by splitting some external node n∗ along a

path going through x. However, let x ∈ I(n∗) be an internal node of type C1 and let (x, y, n∗)

be an internal face which defines x as C1; by hypothesis, y ∈ ∂I. Promoting x to an internal

node of type C0 is done by splitting n∗ along a path which contains the edge (y, x). So we

have to make sure such a path exists.

For every internal node x of type C1 in I(n∗) we choose one of the y ∈ ∂I for which

(x, y, n∗) is an internal face and call it y(x). We define

Y = {(x, y(x)) | x is C1 } .

We will eliminate elements in the list Y by iterating an algorithm similar to the one in the

previous section, until none are left. A binary tree of left and right pieces will be formed in

the process (see Fig. 3.6).
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At the first step of this algorithm, this tree only contains one element, namely the hemi-

sphere I. We will form a tree of K ’s as before, starting at K = I.

The algorithm starts with steps 1 and 2 below, and then repeats the other steps until it

stops.

1. Pick an edge (x, y) = (x, y(x)) ∈ Y.

2. By hypothesis, y ∈ ∂I(n∗). By Lemma 3.3.2 there is a second, disjoint, simple path

connecting x to a node z ∈ ∂I(n∗), z , y. This defines a splitting path γ connecting 2

distinct nodes y and z of ∂I(n∗). Similarly to the previous section, we split n∗ along

γ into n∗,R and n∗,L. We add the 2 new pieces K(n∗,R) and K(n∗,L) as two leaves of

K in the tree. We remove the edge (x, y) from the list Y. Note that the path γ might

promote a second internal node x′ of type C1 into a node of type C0, if the edge (x′, z)

is in the list Y and in the path γ. In that case, both edges (x, y) and (x′, z) are removed

from Y.

3. If the list Y is empty, we are done.

4. Pick an edge (x, y) ∈ Y.

5. Find the piece K(n∗,s1,...,sk
), where si ∈ {L,R}, among the leaves of the binary tree which

contains the edge (x, y). We use the abbreviations S = s1, . . . , sk and n∗,S. The edge

(x, y) belongs to exactly one piece.3

6. Observe that the node y is in ∂I(n∗,S)∩∂I(n∗).
4 The edge (x, y) gives us the first simple

path connecting x to ∂I(n∗,S) since by construction, it is an internal edge of K(n∗,s1,...,sk
).

We still need to find the other part of the splitting path γS:

• If x is in the interior of K(n∗,S), by Lemma 3.3.2 there is a second independent path

connecting x to a node z ∈ ∂K(n∗,S), z , y.

If z is also in ∂I(n∗,S) we have found a γS along which we can cut. Note that in this

case, the path γS might promote a second node x′ of type C1; this happens if z ∈ ∂I(n∗)

and (x′, z) is an edge of γS.

If z < ∂I(n∗,S), the path γS is obtained by adding the edge which connects z to the

tip of the cone.5

• If x is not in the interior of K(n∗,S), γS is found by connecting x to a tip of one of

the cones attached to K(n∗,S)6 (see Footnote 5).

7. We split n∗,S along the path γS and add the 2 new pieces K(n∗,SR) and K(n∗,SL) to the

tree as leaves of K(n∗,S). Note that K(n∗,S) is no longer a leaf of the tree and will never

3Note that the only edges which are common to more than one piece are the edges of the paths along which
we already cut. Since (x, y) is still in the list Y, it cannot be such an edge.

4By hypothesis, y ∈ ∂I(n∗) and therefore also y ∈ ∂I(n∗,S) ∩ ∂I(n∗).
5The distance between ∂I(n∗,S) and any node in ∂K(n∗,S) is at most 1, see Fig. 3.7. The node z belongs to

a path γS′ along which we already cut. This implies that z is connected to n∗,S′L or n∗,S′R, called the tip of the

cone associated with z.
6Note that the node y is not on a tip of a cone but is on the original boundary ∂I(n∗), guaranteeing that γS

is not a closed loop.
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be encountered in the remaining steps of the algorithm. Finally, we remove the edge

(x, y) (and eventually (x′, z) if x′ is also promoted by γS) from the list Y.

8. We continue with step 3.

The algorithm stops when all internal nodes of type C1 of I(n∗) have been promoted to

C0. Since each branch of the tree is used at most once and since we never cut along the

boundary of any KS we have shown:

Theorem 3.4.11. The algorithm promotes all of the internal nodes of I of type C1 (and depth

1) into nodes of type C0. Furthermore, every edge in I \ ∂I is in at most one path, and no

new nodes of type C1 or C2 are created.

Change of the f-vector by removing all internal nodes

We now bound the change of the f-vector which results from transforming a triangulation

of maximal depth dmax to one with maximal depth dmax − 1, until no internal nodes remain.

Unfortunately, the f-vector alone is not good enough for efficient bounds, since new edges

will appear in the construction, and we need to keep track not only on the total number of

internal edges as the procedure continues, but also how many there are on each (current)

depth. By definition an edge is either on one depth or connects two adjacent depths, and a

face also connects at most 2 depths.

Given the original triangulation T , the bookkeeping will be done by associating with each

node x∗ its original depth d(x∗).

As we are going to split nodes, we also define d(x∗,R) = d(x∗,L) = d(x∗), and similarly for

all further splittings.

Definition 3.4.12. For each d : 0 ≤ d ≤ dmax we set:

• ad as the number internal edges (x, y) with d(x) = d and d(y) = D(y) = d + 1.

• bd as the number of internal edges (x, y) with d(x) = d and d(y) = d.

• f ′
d
is the number of internal faces (x, y, z) with d(x) = d and d(y) = d + 1 (this implies

d(z) ∈ {d, d + 1}).

We also say that a−1 = admax
= 0 and f ′−1 = f ′

dmax
= 0. Note that all these constants will not

change during the iterations since they are counters of the initial triangulation.

As every node is connected to nodes of the same depth or to depths differing by at most

1, the following obvious relations hold:

∑

d

(ad + bd) = e ,
∑

d

f ′d ≤ fi , (3.3)

where e is the number of internal edges, and fi is the number of internal faces.

Moving nodes to the surface causes the creation of new edges and faces. Our study is

based on a careful bound of this growth in terms of the counters of the initial triangulation

introduced in Definition 3.4.12. Let ∆ℓ denote the increase of the number of internal edges

obtained by performing the steps C2→C1→C0→external at iteration ℓ.
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Proposition 3.4.13. There is a constant C′ such that

∆ℓ ≤ C′ (aℓ + aℓ−1 + bℓ + f ′ℓ ) , for ℓ > 0 ,

∆0 ≤ C′ (a0 + b0 + ns) .
(3.4)

Corollary 3.4.14. Eliminating all internal nodes of a triangulation T with f-vector 〈t, fs, ni〉

leads to a total increase ∆ of internal edges which is bounded by

∆ ≤ C (t + ni) .

Proof of the corollary. From Eq. (3.1) we deduce fi = 2t − fs/2 and e = t + ni − fs/2 + 1. Also,

ns = fs/2 + 2. Using Eq. (3.3) and the proposition, we get

∆ =

∑

ℓ≥0

∆ℓ ≤ C′ (2e + fi + ns) ,

from which the assertion follows (the coefficient of fs is negative and the additive constants

can be bounded since 1 ≤ t). �

The proof of Proposition 3.4.13 will take up most of this subsection. We proceed as

follows:

• Bound ∆ℓ in terms of the number of edges in the hemispheres of nodes which are split

(Lemma 3.4.15).

• Two terms appear: the first for the internal edges in the hemispheres, the other for the

external edges (Lemma 3.4.17).

• Bound the first term with the counters aℓ, bℓ, f ′
ℓ
(Lemma 3.4.17 and Lemma 3.4.18).

• Bound the second term with the first term and the number of external nodes ns

(Lemma 3.4.19).

We decompose ∆ℓ = ∆ℓ,0+∆ℓ,1+∆ℓ,2, where the first term comes from the sweep C2→C1 at

iteration ℓ, and the second from C1→C0. The third term coming from the sweep C0→external

only decreases internal nodes and edges, so ∆ℓ,2 ≤ 0 and we do not take that into account.

We define Lℓ = {n : d(n) = ℓ}, and, after having performed C2→C1 we define Mℓ as the

set of those nodes of Lℓ which have not been split, as well as the children of those which

have been split.

Lemma 3.4.15. We have the bounds

∆ℓ,0 ≤ 2
∑

n∗∈Lℓ

# (internal edges in I(n∗)) ,

∆ℓ,1 ≤ 2
∑

n∗∈Mℓ

# (internal edges in I(n∗)) .
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Proof. Cutting along a path γ adds |γ|−1 internal edges to the triangulation (see Lemma 3.4.7).

The extension of the path γ̃S to a splitting path γS adds at most 2 to its length (see step

7 for the case C2→ C1, and step 6 for the case C1→C0). Therefore, |γS| − 1 ≤ 2|γ̃S|, since
|γ̃S| ≥ 1.

For a given node n∗, all the paths γ̃S are drawn in its hemisphere I(n∗) and each edge

of this hemisphere is used in at most 1 path γ̃S (see Theorem 3.4.10 and 3.4.11) so that for a

given n∗, we have
∑

S

|γ̃S| ≤ #
(

internal edges in I(n∗)
)

.

Summing over all splittable nodes yields the claim. (This is the crucial bound, which has

become possible through our careful cutting procedures.) �

We next bound the number of internal edges in the I(n∗).

Definition 3.4.16. We define the numbers aℓ,i depending on whether we are before the C2→C1

sweep (i = 0) or after it but before the C1→C0 sweep (i = 1), and after that sweep (i = 2), all
at iteration ℓ. The numbers aℓ,i are defined as the number of edges (x, y) with d(x) = ℓ and

d(y) = ℓ + 1, at iteration ℓ and before the sweep determined by i. Analogously, we define bℓ,i
and f ′

ℓ,i
.

We also let âℓ,0 be the number of edges at the beginning of iteration ℓ with d(x) = ℓ − 1 and
d(y) = ℓ. (This is not the same as aℓ−1,0, which is defined for iteration ℓ− 1.) Also, âℓ,1 is defined

after sweep C2→C1.

Note that these numbers change with i, and depend on ℓ, since new edges are being

added.

Lemma 3.4.17.

∆ℓ,0 ≤ 6aℓ,0 + 12bℓ,0 + 6âℓ,0 + 2
∑

n∗∈Lℓ

(|E(n∗)| − 3) , (3.5a)

∆ℓ,1 ≤ 6aℓ,1 + 12bℓ,1 + 6âℓ,1 + 2
∑

n∗∈Mℓ

(|E(n∗)| − 3) . (3.5b)

Proof. Starting from the relations of Lemma 3.4.15, we use Lemma 3.3.1 for the hemisphere

of n∗ which is a polygon with p = |E(n∗)| sides. Summing over Lℓ or Mℓ, and since the

only nodes x present in the hemisphere I(n∗) of a node n∗ with d(n∗) = ℓ are such that

d(x) ∈ {ℓ − 1, ℓ, ℓ + 1}, the assertion follows. The factor 12 = 2 · 6 takes into account that the

edge (n∗,m∗) can appear both in I(n∗) and in I(m∗) (if n∗ and m∗ are in Lℓ or Mℓ. �

So there remains to bound the terms on the r.h.s. of Eq. (3.5) in terms of the counters of

the initial triangulation. This is done in the next lemmas.

The effect of the sweeps C2→C1 →C0 at iteration ℓ is summarized by

Lemma 3.4.18. One has, for each ℓ ≥ 0:

aℓ,0 = aℓ , bℓ,0 = bℓ , f ′ℓ,0 = f ′ℓ , (3.6a)

aℓ,1 ≤ aℓ,0 + 2 f ′ℓ,0 , aℓ,2 ≤ aℓ,1 + 2 f ′ℓ,1 , (3.6b)
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f ′ℓ,1 ≤ 7 f ′ℓ,0 , (3.6c)

âℓ,0 ≤ aℓ−1 + 16 f ′ℓ−1 . (3.6d)

Proof of Lemma 3.4.18. Proof of Eq. (3.6a): Let ℓ′ < ℓ. During the iteration ℓ′ < ℓ, we split

nodes n∗ of Lℓ′ and Mℓ′ into n∗,S with d(n∗,S) = ℓ′. This implies that every internal edge

added during the iteration ℓ′ has an end n∗,S at d(n∗,S) = ℓ′ < ℓ. But aℓ,0 and bℓ,0 count

internal edges with both ends at depth d(x) ≥ ℓ > ℓ′. The same argument also holds for f ′
ℓ,0.

This means that at the beginning of the iteration ℓ, the values of the counters aℓ,0, bℓ,0 and

f ′
ℓ,0 are still identical to the constants of the original triangulation.

Proof of Eq. (3.6b): We need to bound the added number of internal edges (n∗,S, y) in the

sweep C2→C1 with n∗ ∈ Lℓ, y ∈ I(n∗), and d(y) = ℓ + 1. By construction, this number is

bounded by the number of paths γS which go through such a node y in the 2d triangulation

I(n∗). Furthermore, by Theorem 3.4.10, each edge of I(n∗) is used in at most one path γS.

We deduce that, for two such nodes n∗ and y, the number of added internal edges of type

(n∗,S, y) is bounded by the degree of the edge (n∗, y) (the number of faces containing the edge).

Summing these degrees for all such edges (n∗, y) is bounded by 2 f ′
ℓ,0. The same argument

proves the second relation.

Proof of Eq. (3.6c): To prove this relation, we need to bound the added number of internal

faces (n∗,S, y, z) in the sweep C2→C1 at iteration ℓ when n∗,S is obtained from splitting some

n∗ ∈ Lℓ and y is such that d(y) = ℓ + 1. But each added internal face (n∗,S, y, z) requires the

addition of the internal edge (n∗,S, y). Furthermore, by definition of the move split-a-node-

along-a-path, each new internal edge is added along with three internal faces. We deduce

from Eq. (3.6b) that f ′
ℓ,1 − f ′

ℓ,0 ≤ 3(aℓ,1 − aℓ,0) ≤ 6 f ′
ℓ,0.

Proof of Eq. (3.6d): The reason this proof is tricky is that during the previous iteration

ℓ − 1, new internal edges satisfying d(x) = ℓ − 1 and d(y) = ℓ have been added: the proof of

this relation at iteration ℓ therefore involves the other relations of Lemma 3.4.18 at iteration

ℓ − 1.
When ℓ = 0, Eq. (3.6d) obviously holds since both sides are 0. So we now assume

ℓ > 0 and that the conclusion of Lemma 3.4.18 holds for ℓ − 1. We know that the sweep

C0→external does not add any internal edge. From this we deduce that âℓ,0 ≤ aℓ−1,2. The

inequality Eq. (3.6d) then follows from the relations of Lemma 3.4.18 at iteration ℓ − 1 we

have already proved:

âℓ,0 ≤ aℓ−1,2 ≤ aℓ−1,1 + 2 f ′ℓ−1,1

≤ aℓ−1,0 + 2 f ′ℓ−1,0 + 14 f ′ℓ−1,0

≤ aℓ−1 + 16 f ′ℓ−1 ,

which is the bound we seek.

�

We finally need to discuss the terms |E(n∗)| − 3 of Lemma 3.4.17.

Lemma 3.4.19. One has for each ℓ ≥ 0:
∑

n∗∈Lℓ

(|E(n∗)| − 3) ≤ δℓ,0 · 3ns ,
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∑

n∗∈Mℓ

(|E(n∗)| − 3) ≤ δℓ,0 · 3ns + ∆ℓ,0 .

Proof. The external degree of n∗ is always 3 for those nodes which have been promoted to

the surface by removing a tetrahedron (those which were at the surface at level ℓ = 0 can of

course have higher degree). Since the only way to lower the depth of a node is by removing

a tetrahedron, we get

∑

n∗∈Lℓ

(|E(n∗)| − 3) = δℓ,0

∑

n∗∈L0

(|E(n∗)| − 3)

= δℓ,0 · (2es − 3ns)

≤ δℓ,0 · 3ns ,

since the set L0 is the set of all external nodes.

The sum over Mℓ is more delicate, since the external degree of a node n∗ ∈ Mℓ can be

larger than 3. However, if we split a node n∗,S into n∗,SR and n∗,SL, then the external degrees

satisfy

(|E(n∗,SL)| − 3) + (|E(n∗,SR)| − 3) = (|E(n∗,S)| − 3) + 1 . (3.7)

We know that nodes of Mℓ are the children of nodes in Lℓ. Each node n∗ of Lℓ is split

along a binary tree into a set {n∗,S}S (some nodes of Mℓ are nodes of Lℓ which were not

split; in this case the binary tree has no vertices). What Eq. (3.7) means is that each vertex

of this binary tree adds 1 to the sum
∑

n∗∈Mℓ
(|E(n∗)| − 3). Therefore,

∑

n∗∈Mℓ

(|E(n∗)| − 3) ≤
∑

n∗∈Lℓ

(|E(n∗)| − 3) + # (splits in C2→C1) .

Since each split adds at least one internal edge, we have a bound

∑

n∗∈Mℓ

(|E(n∗)| − 3) ≤
∑

n∗∈Lℓ

(|E(n∗)| − 3) + ∆ℓ,0 .

�

Proof of Proposition 3.4.13. We start from Lemma 3.4.17. The internal edges at the current

point of the construction are all the edges with a node with d(·) = ℓ. These come in three

types: Those connecting (ℓ, ℓ+ 1) (the aℓ,0) those connecting (ℓ, ℓ) (the bℓ,0), and those between

(ℓ, ℓ−1) (the âℓ). Note that the last of these quantities is not equal to aℓ−1 because the number

of edges (ℓ, ℓ− 1) might have changed in iteration ℓ− 1. Lemma 3.4.18 provides, however, the

necessary bounds.

Using Eq. (3.6a), Eq. (3.6d), and Lemma 3.4.19, we immediately get the bound on ∆ℓ,0 we

seek:

∆ℓ,0 ≤ 6aℓ + 12bℓ + 6(aℓ−1 + 16 f ′ℓ−1) + 6ns · δℓ,0

≤ 96(aℓ + bℓ + aℓ−1 + f ′ℓ−1 + ns · δℓ,0) .
(3.8)
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All internal edges added during the sweep C2→C1 at iteration ℓ have by construction an

end x with d(x) = ℓ. Therefore, the total number of internal edges added during the sweep

C2→C1 at iteration ℓ, ∆ℓ,0, is also given by

(

aℓ,1 + bℓ,1 + âℓ,1
)

−
(

aℓ,0 + bℓ,0 + âℓ,0
)

= ∆ℓ,0 .

Using this relation and Lemma 3.4.19, starting from Lemma 3.4.17, we have:

∆ℓ,1 ≤ 12(aℓ,1 + bℓ,1 + âℓ,1) + δℓ,0 · 6ns + 2∆ℓ,0
≤ 12(aℓ,0 + bℓ,0 + âℓ,0 + ∆ℓ,0) + δℓ,0 · 6ns + 2∆ℓ,0 .

Using Lemma 3.4.18, we get:

∆ℓ = ∆ℓ,0 + ∆ℓ,1 ≤ 12(aℓ + bℓ + aℓ−1 + 16 f ′ℓ−1) + 15∆ℓ,0 + 6ns · δℓ,0 .

Replacing ∆ℓ,0 by Eq. (3.8) yields the result we seek. �

3.4.4 Reducing a triangulation with no internal nodes into a set of

nuclei

Let T be any triangulation. In the previous section, we described an algorithm which

transforms T into a new triangulation T ′ with no internal nodes. We now systematically

apply the moves cut-a-3-face and open-a-2-face on every internal face of T ′ with less than

2 internal edges. We end up with a collection of triangulations {Ni} satisfying the following

properties:

• All nodes of any such Ni are external.

• All internal faces of any such Ni have at least 2 internal edges.

Any triangulation satisfying these two conditions is called a nucleus.

3.5 Part II: Bounding the number of triangulations

We showed that any triangulation can be reduced into a collection of nuclei using four

moves. For the moment, we proceed without using the move cut-a-3-face. This implies that

any triangulation can be transformed into a “tree of nuclei” (the formal definition of a tree

of nuclei will be given later on) using the three remaining moves. Equivalently, this shows

that any triangulation can be constructed from a tree of nuclei, using the inverse of these

three moves. Bounding the number of trees of nuclei, and then bounding the number of

ways one can perform the inverse moves on such a tree yields a bound on the total number

of triangulations.
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3.5.1 Rooted triangulations

We define what we mean by a rooted triangulation T and we show that one can label all

external nodes of T . In the sequel, we use a particular labeling described below.

Definition 3.5.1. A rooted triangulation (T, F) of the 3-ball is a triangulation T with one

labeled external face F. This labeled face is called the root. The three nodes of the root are

always labeled 0, 1, and 2.

Figure 3.9: The Christmas tree with m = 3 internal nodes. This triangulation can be rooted

in more than one way.

Remark 3.5.2. We will only consider rooted triangulations. This means for instance that

talking about the Christmas tree Tm,m > 1 makes no sense, since there is more than one such

rooted triangulation. The exceptions are of course symmetric triangulations T such as the

tetrahedron.

Definition 3.5.3. Consider the boundary of a rooted triangulation (T, F) and let Ns be the set

of all external nodes. We define a particular labeling h(·) : Ns 7→ N ∪ {0} of all external nodes.

The labeling is defined as follows: the root is labeled as (0, 1, 2). Any labeled edge can be

seen as an element (a, b) ∈ Z2
+
with a < b.7 We consider the lexical order on Z2

+
. We start

with the node 0. Its external flower is a 1d triangulation of the circle S 1 and it contains the

edge (1, 2) by definition. This edge determines the direction in which we label all unlabeled

nodes of the external flower of node 0.

Next, we consider the external flower of node 1 and we look for the smallest labeled

edge in the sense of the above ordering. In this case, this edge is (0, 2). This edge fixes the

direction in which we label all the yet unlabeled nodes of the external flower of node number

1. Notice that every labeled node is part of a face along with 2 already labeled nodes. This

implies that the external flower of any labeled node contains a smallest labeled edge and as

such can be directed.

We continue with all the nodes in their natural order until all external nodes of T are

labeled.

7We use the notation Z+ = {0, 1, 2, . . . }.
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3.5.2 Trees of nuclei

Since we work with rooted triangulations, from now on, we will only use rooted nuclei,

namely:

Definition 3.5.4. A nucleus is a rooted triangulation with no internal nodes such that every

internal face has at most one external edge.

Rooted trees of nuclei and planar rooted trees

Let N be the set of all nuclei and Nt, f be the subset of all nuclei with t tetrahedra and f

external faces.

Definition 3.5.5. A rooted triangulation T is called a rooted tree of nuclei if all nodes of T

are external and all internal faces of T have 0, 2, or 3 internal edges. (In other words, no

internal face has 2 external edges.)

In other words, a rooted tree of nuclei is simply a rooted triangulation which is obtained

by gluing sequentially nuclei along pairs of their external faces. This is done in such a

way that each nucleus is glued to an external face (a, b, c) of its parent through its root; 0

is identified with a, 1 with b and 2 with c. Once the tree is built, the external nodes are

renumbered in the sense of Definition 3.5.3.

Since all external faces of a rooted triangulation are ordered, this defines a bijection

between rooted trees of nuclei (T, F) and rooted planar trees with colored vertices in the

following manner:

• Each nucleus of the triangulation (T, F) is represented by a colored vertex.

• The root-vertex of the planar tree represents the nucleus with the root F, i.e., with the

face (0, 1, 2).

• Each internal face of the triangulation with three external edges is shared by two nuclei

and hence it is represented in the tree by an edge connecting the corresponding two

colored vertices.

• Since the internal faces with three external edges are ordered, this induces an order of

the edges of the planar tree, say from left to right.

Hypothesis on the number of rooted nuclei

We next show how the question of exponential growth can be reformulated. We show that if

there are not “too many” different types of nuclei, then there is indeed an exponential bound

on the number of triangulations, when expressed in terms of the number of tetrahedra.

Hypothesis 3.5.6. There is a finite constant K1 > 1 such that the number ̺(t, fs) of face-rooted

nuclei with f-vector 〈t, fs, 0〉 is bounded by Kt
1.

In order to alleviate the notation, from now on, we will denote fs by f .

Lemma 3.5.7. For any nucleus N ∈ Nt, f one has f ≤ t + 3.
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Proof. If N is a tetrahedron, the assertion is obvious. If N is non-trivial each tetrahedron

of N can have at most 1 external face, since otherwise it would have an internal face with

more than one external edge. �

The number of rooted trees of nuclei

We use the classical method for counting planar ordered trees, generalized to the case of a

multitude of different nodes, which are the face-rooted nuclei.

Definition 3.5.8. Let Av,t, f be the number of rooted trees of nuclei with v > 0 nuclei, t

tetrahedra and f external faces. We define A0,t, f = δt,0 δ f ,0.

Our main bound is:

Proposition 3.5.9. Under the Hypothesis 3.5.6 there is a K2, with 2 < K2 < ∞ such that for

all t, f , one has
∑

v

Av,t, f ≤ Kt
2 .

Proof. Consider a tree of nuclei, and let N be the nucleus containing the root F and assume

that N ∈ Nt0, f0 . Removing N from the tree leads to f0 − 1 rooted trees of nuclei, some of

which may be empty. We let vi, ti, and fi denote the counters for the branch i. Note that if

a branch i has 0 nuclei, i.e., if vi = 0, then, obviously, ti = fi = 0. Thus, we get the relations:

f0−1
∑

i=1

vi = v − 1 ,
f0−1
∑

i=1

ti = t − t0 ,

f0−1
∑

i=1

(

δ fi>0( fi − 1) + δ fi=0

)

= f − 1 . (3.9)

In the sequel, we denote by
∑′

v,t, f ,t0, f0
the sum over the set

{

vi, ti, fi

∣

∣

∣ i = 1, . . . , f0 − 1 , vi ≥ 0, ti ≥ 0, fi ≥ 0 and satisfying Eq. (3.9)
}

.

This observation allows us to write a recursive relation

Av,t, f = δv,0 δt,0 δ f ,0 +

∑

t0>0, f0≥4

̺(t0, f0)
∑′

v,t, f ,t0 , f0

f0−1
∏

i=1

Avi ,ti, fi . (3.10)

Fix M ∈ Z+, and assume that v, t, f satisfy 3v + 3t + f ≤ M. By Eq. (3.9), we deduce

3vi + 3ti + fi ≤ 3v − 3 + 3t − 3t0 + f ≤ M − 1 .

We define

AM(s) =
∑

3v+3t+ f≤M

Av,t, f s3v+3t+ f .

Clearly, A0(s) = 1 for all s, AM(0) = 1 for all M ≥ 0, and for a fixed s, AM(s) is an

increasing sequence in M.
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Multiplying Eq. (3.10) by s3v+3t+ f and summing, we get, using Eq. (3.9):

AM(s) = 1 +
∑

3v+3t+ f≤M

t
∑

t0=1

f
∑

f0=4

̺(t0, f0) s3+3t0+1−
∑ f0−1

i=1
(δ fi>0

−δ fi=0
)

×
∑′

v,t, f ,t0 , f0

ℓ
∏

i=1

Avi ,ti, fi s
3vi+3ti+ fi .

(3.11)

Using Lemma 3.5.7, we have

3 + 3t0 + 1 −
f0−1
∑

i=1

(δ fi>0 − δ fi=0) ≥ 3 + 3t0 + 1 − ( f0 − 1) · 1 + 0

≥ 5 + 3t0 − f0 = 2(t0 + 3 − f0) + t0 + f0 − 1

≥ t0 + f0 − 1 .

Restricting to 0 ≤ s ≤ 1, this implies

s3+3t0+1−
∑ f0−1

i=1
(δ fi>0

−δ fi=0
) ≤ st0+ f0−1 . (3.12)

Using now the Hypothesis 3.5.6, i.e., ̺(t, f ) ≤ Kt
1, we get from Eq. (3.11) and Eq. (3.12):

AM(s) − AM(0) ≤

M
∑

t0=0

(sK1)
t0

M
∑

f0−1=0

f0−1
∏

i=1

sAM−1(s) ≤
1 − (sK1)

M+1

1 − sK1

1 − (sAM−1(s))M+1

1 − (sAM−1(s))
.

Restricting s further to s ≤ 1/(2K1) this leads to

AM(s) − AM(0) ≤ 2
1 − (sAM−1(s))M+1

1 − (sAM−1(s))
.

Fix s∗ = min(0.1, 1/(2K1)) and consider the map F : x 7→ 1 + 2/(1 − s∗ · x). One easily checks

that F maps the interval [1, 5] to itself. Furthermore, we have s∗ · x ≤ 1 for x ∈ [1, 5]. Starting

with x = A0(s∗) = 1 we conclude that for all M one has AM(s∗) ≤ 5. This implies that the

monotone sequence AM(s∗) converges as M → ∞ and thus

Av,t, f ≤ 5 · (s∗)−3v−3t− f .

Summing over v and using v ≤ t and f ≤ 4t we complete the proof. �

3.5.3 Bound on triangulations

Having discussed the number of trees, we now study the number of ways these trees can be

made into triangulations by identifying faces and nodes. This process is patterned after the

work of [24] and [25].

Our bounds are based on using the inverses of the moves open-a-2-face, remove-1-tetra,

and split-a-node-along-a-path. Since we are only interested in the bound, we will allow for

inverse moves which do not necessarily lead to 3-balls.



62 CHAPTER 3. NUCLEI AND BOUNDING THE NUMBER OF 3-BALLS

Remark 3.5.10. While we over-count the number of triangulations, by allowing for moves

which may not lead to 3-balls, we can in fact formulate precise conditions which guarantee

that after each move, a 3-ball is obtained. These conditions are spelled out in Lemmas 3.5.11

and 3.5.14. This actually allows for efficient programming of the inverse operations.

Bounding the number of rooted triangulations with no internal nodes

Let Rt, f be the set of all rooted trees of nuclei with t tetrahedra and f external faces and

let Tt, f ,0 be the set of all rooted triangulations with t tetrahedra, f external faces and no

internal nodes. In this section, we will define the inverse move of open-a-2-face and we will

use it to count the number of rooted triangulations with no internal nodes.

The inverse operation of open-a-face, which we will call identification of 2 adjacent

external faces or simply identification when there is no ambiguity, is to identify two adjacent

external faces, satisfying some conditions. Indeed, identifying any two adjacent external

faces might lead to a complex which is not a triangulation. For instance, assume that

(n1, n2,m1) and (n1, n2,m2) are two adjacent external faces such that there exists a node x

adjacent to both m1 and m2. After identifying the two faces, we obtain a complex with a

double edge (x,m1) = (x,m2).

Lemma 3.5.11. Consider a triangulation T . Let (a, b) be an external edge and let x, y be its

two opposite external nodes (so that (x, a, b) and (y, a, b) are external faces). Assume that the

following conditions are satisfied:

• The nodes x and y are not connected by an edge.

• The only nodes m such that (m, x) and (m, y) are edges are the two nodes a and b.

Then, one can identify the two external nodes x and y as well as the two external faces sharing

(a, b). This operation transforms a 3-ball to a 3-ball, and will be called identification (of two

adjacent external faces).

Proof. The proof is left to the reader. �

Proposition 3.5.12. Under Hypothesis 3.5.6, there is a constant K3 such that for all t and f

one has

|Tt, f ,0| ≤ Kt
3 .

Proof. Let T ∈ Tt, f ,0 be any rooted triangulation with no internal nodes. Using repetitively

the move open-a-2-face on T transforms it into a rooted triangulation T ′ with no internal

nodes such that each internal face has 0, 1 or 3 external edges. In other words, T ′ is a

rooted tree of nuclei. Equivalently, given a rooted tree of nuclei T ′ with t′ tetrahedra and

f ′ external faces, one can count the number of ways one can identify two adjacent external

faces, without any conditions guaranteeing ballness. Summing this number over all rooted

trees of nuclei gives us an upper bound on the number of rooted triangulations with no

internal nodes.

We count the number of T ∈ Tt, f ,0 obtained by identification from a rooted tree of nuclei

T ′ with t′ tetrahedra and f ′ external faces. This means that we identify D = ( f ′ − f )/2 pairs

of adjacent external faces.
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We first observe that choosing a pair of adjacent external faces is equivalent to choosing

an external edge. We then note that some faces which are not adjacent in T ′ might become

adjacent after some identifications are done. This means that we have a sequence e1, e2, . . . , eℓ
with ei ≥ 1 and

∑

i ei = D which is defined as follows:

• e1 is the number of external edges (or equivalently of pairs of adjacent external faces)

of T ′ which are identified.

• e2 is the number of pairs of faces which were not adjacent in T ′ but became so after the

first series of e1 identifications. However, each identification of two adjacent external

faces creates exactly two new pairs of adjacent external faces, implying that e2 ≤ 2e1.

• ei is defined by analogy from the ei−1 identifications, implying that ei ≤ 2ei−1.

This leads to the following bound (recall that the number of external faces f ′ is bounded by

4t):

|Tt, f ,0| ≤
∑

f ′> f

|Rt, f ′ |

D≡( f ′− f )/2
∑

ℓ=1

∑

∑ℓ
i=1 ei=D,ei≥1

(

3 f ′/2
e1

)(

2e1

e2

)

. . .

(

2eℓ−1

eℓ

)

.

Since
(

a

b

)

≤ 2a, we find, using Proposition 3.5.9 to bound |Rt, f ′ |,

|Tt, f ,0| ≤
∑

f ′> f

|Rt, f ′ |2
(5 f ′/2− f )

D≡( f ′− f )/2
∑

ℓ=1

∑

∑ℓ
i=1 ei=D,ei≥1

1

≤
∑

f ′> f

|Rt, f ′ |2
(5 f ′/2− f )

D≡( f ′− f )/2
∑

ℓ=1

(

D − 1
ℓ − 1

)

≤
∑

f ′> f

|Rt, f ′ |2
(3 f ′−3 f /2)

≤

4t
∑

f ′= f+2

Kt
2K

3 f ′

2

≤ K13t
2 = Kt

3 ,

where K3 = K13
2 .

The proof is complete. �

Bounding the number of rooted triangulations (internal nodes included)

In this section, we define the inverse moves of remove-1-tetra and split-a-node-along-a-path

and we use them to count the number of rooted triangulations.

Definition 3.5.13. We define the inverse move of remove-1-tetra, which we call adding a

tetrahedron: Consider a triangulation T . Let x be an external node with external degree equal

to 3 and let a1, a2 and a3 be its external neighbors, i.e., (x, ai) is an external edge. Adding a

tetrahedron then consists in adding the face (a1, a2, a3) and the tetrahedron (x, a1, a2, a3).
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We define the inverse move of split-a-node-along-a-path.

Lemma 3.5.14. Consider a triangulation T . Let e = (a, b) be an external edge. Assume that

the following conditions are satisfied:

• For each node m such that (m, a) and (m, b) are edges, (m, e) is a face.

• For each edge e′ such that (e′, a) and (e′, b) are faces, (e′, e) is a tetrahedron.

• There are no faces f such that ( f , a) and ( f , b) are both tetrahedra.

Then, one can collapse the two nodes a and b, and the result is again a 3-ball. This move is

called collapse of an external edge or simply collapse.

Proof. The proof is left to the reader. �

Notation 3.5.15. The above three conditions of a collapse are written in a concise way as

I(a) ∩ I(b) = I(e) .

In Sect. 3.4.3, we described an algorithm which transforms any triangulation with f-vector

〈t, f , n〉 into a triangulation with f-vector 〈t′, f ′, 0〉. We have the following lemma:

Lemma 3.5.16. There is a constant K4 > 0 such that the f-vectors 〈t, fs, ni〉 and 〈t
′, f ′s , 0〉

satisfy the following linear relation:

t′ ≤ K4t , f ′s ≤ K4t , (3.13)

Proof. Let e, e′ be the number of internal edges of both triangulations. By Corollary 3.4.14,

we have e′ − e ≤ C∆(t + ni). Using Eq. (3.2) and the obvious relations ni ≤ 4t, fs < 2ns < 4ei
and ei < 6t, (and analogous ones with primes) the result follows. �

This proves that any triangulation in Tt, f ,n can be obtained from a triangulation with

no internal nodes in Tt′, f ′,0 with a series of carefully chosen collapses and additions of

tetrahedra, with t, f , n, t′, f ′ satisfying Eq. (3.13).

We can now use a similar approach to that of the previous section. It is clear that

choosing a triplet of external faces for the move add-1-tetrahedron is equivalent to choosing

an external node x, and that choosing a couple of external nodes for collapse is equivalent

to choosing an external edge.

3.5.4 Combining the bounds

Before we state our main result, we recall the

Hypothesis 3.5.6 1. There is a finite constant K1 > 1 such that the number ̺(t, f ) of face-

rooted nuclei with f-vector 〈t, f 〉 is bounded by Kt
1.

Theorem 3.5.17. Under Hypothesis 3.5.6 one has the bound: There is a finite constant C

such that the number of rooted triangulations with f-vector 〈t, f , n〉 is bounded by

|Tt, f ,n| ≤ Ct . (3.14)



3.5. PART II: BOUNDING THE NUMBER OF TRIANGULATIONS 65

Proof. Consider a rooted triangulation T ∈ Tt, f ,n with t tetrahedra, f external faces and n

internal nodes. We showed that T can be obtained from a rooted triangulation T ′ ∈ Tt′, f ′,0

by a series of carefully chosen collapses and additions of tetrahedra.

Note that the algorithm of Sect. 3.4.3 which transforms T into T ′ can always be stopped

when the last internal node of T is removed. This implies that, in the inverse construction

we are doing now, we must start by adding tetrahedra to T ′, and not by collapsing external

edges. So the first step is to choose n1 external nodes (of external degree 3) out of the f ′/2+2
external nodes of T ′, and to insert a tetrahedron on each of them with one tip at the node.

We call this “covering the node.”

This reduces the number of external edges from 3 f ′/2 to 3( f ′/2 − n1). Then, we choose

m1 external edges and we collapse them. The possibility to simultaneously collapse m1 > 1
edges is justified as follows:

Any labeled triangulation can be viewed as a list of tetrahedra Lt satisfying certain

conditions (a face is shared by no more than 2 tetrahedra etc. . . ). From this point of view,

collapsing an external edge e is simply the operation where we remove from Lt all the

tetrahedra of E(e) (Lemma 3.5.14 guarantees that these conditions remain true, i.e., that the

resulting list of tetrahedra is indeed a triangulation). Let e1 and e2 be two collapsible edges.

The construction implies that the order in which we collapse them is irrelevant and so, the

idea that we simultaneously collapse m1 edges makes sense. One should pay attention to the

case where we collapse two edges e1 = (a, b1) and e2 = (a, b2) when (b1, b2) = e3 is also an

edge. In this case, all tetrahedra sharing one of the three edges are removed simultaneously.

Clearly, this yields the same result regardless of the order in which we collapse e1 and e2.

The next step is to choose n2 external nodes among the new possibilities which appear

after performing the first series of coverings and collapses, and cover them. For each external

edge e, we can associate four nodes: the two endpoints of e and the two nodes x1, x2 such

that (xi, e) is an external face. Assume that x is one of the n2 chosen external nodes. The

fact that x appeared after the first series implies that x is either one of the four nodes

associated with one of the m1 collapsed edges (note that these four nodes become three after

the collapse), or that there is a node y among the first n1 nodes such that (x, y) was an

external edge (before covering y with a tetrahedron). But each such y has exactly 3 external

neighbors. This implies that n2 ≤ 3m1 + 3n1 and the number of ways to choose these nodes is

bounded by

(

3(m1 + n1)

n2

)

.

Continuing in this way, we choose m2 external edges and we collapse them. Let e be such

an edge. Again, e was not among the first m1 edges. This implies that there must be a node

x of the series of n2 covered external nodes such that (e, x) formed an external face before

covering x with a tetrahedron. But for each such x there are exactly three external edges

satisfying this condition. We deduce that m2 ≤ 3n2.

We continue adding tetrahedra and collapsing edges. This leads to two sequences
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ni,mi, i = 1, . . . , ℓ, with ℓ ≤ n, satisfying:

1 ≤ ni , 0 ≤ mi ≤ 3ni ,

ℓ
∑

i=1

ni = n ,

1 ≤ ni ≤ 3ni−1 + 3mi−1 , i > 1 ,
ℓ

∑

i=1

(2ni + 2mi) + f = f ′ .

(3.15)

The last identity follows because each collapse of an external edge and each covering of an

external node (by a tetrahedron) reduces the number of external faces by 2. Note that some,

or all, of the mi’s might be equal to zero. Using Eq. (3.15) we get a bound

|Tt, f ,n| ≤
∑

t′, f ′

|Tt′, f ′,0|

n
∑

ℓ=1

∑

∑ℓ
i=1 ni=n,ni≥1

∑

∑ℓ
i=1 mi=( f ′− f )/2−n,mi≥0

×

(

f ′/2 + 2
n1

)(

3(n1 + m1)

n2

)

· · ·

(

3(nℓ−1 + mℓ−1)

nℓ

)

×

(

3 f ′/2
m1

)(

3n1

m2

)

· · ·

(

3nℓ−1

mℓ

)

,

where the sum over t′, f ′ is restricted by Eq. (3.13). Bounding each binomial by a power of 2

and using Proposition 3.5.12, Eq. (3.15), Eq. (3.13), and ns = fs/2 + 2, we get, as in the proof

of Proposition 3.5.12,

|Tt, f ,n| ≤
∑

t′ , f ′≤K4t

Kt′

3 ≤ Ct .

This shows Eq. (3.14) and completes the proof. �



Chapter 4

From Nuclei to Atoms

4.1 Introduction

Atoms, defined below, are a subset of nuclei. We define A(t) as the set of atoms with t

tetrahedra.

Hypothesis 4.1.1. Throughout this chapter, we assume that the number A(t) = |A(t)| of atoms

with t tetrahedra is bounded by A(t) ≤ Ct
1, where C1 > 1 is some constant.

Let N(t) be the number of nuclei with t tetrahedra. The purpose of this chapter is to

prove the following result:

Theorem 4.1.2. Under Hypothesis 4.1.1, there is a constant C > 1 such that N(t) ≤ Ct.

In the previous chapter, we introduced the move of splitting a node n into an external

edge e = (nR, nL) along a path γ (we will simply call it a splitting). We also introduced the

inverse move of collapsing the external edge e (the identification of the nodes a and b of e)

into a single node n (in this case, the path γ is simply the flower of e).

Atoms are defined as follows:

Definition 4.1.3. Given a nucleus T ′, we start collapsing its external edges until no more

collapsible edges remain. The resulting triangulation is called atom.

Any triangulation can be seen as a list of tetrahedra verifying certain conditions. From

this point of view, we showed that collapsing an edge e of the triangulation is equivalent

to removing from the corresponding list all tetrahedra having e as an edge. From this we

showed that the order in which we collapse the edges is irrelevant, hence the following

lemma:

Lemma 4.1.4. Starting with a given nucleus, we always end up with the same atom regardless

of the order in which we collapse the edges.

To put this result in a more general context, recall that Benedetti and Ziegler [25] showed

that the main reason why an exponential bound has not been established for all triangulations

of S 3 is the existence of triangulations with knotted edges. Several methods have been

proposed to construct such triangulations (Bing [29], Lutz [30], etc...). From our point of

67
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view, each such triangulation leads to what we call a nucleus. Consider for instance a

knot, say the trefoil knot. One can construct a triangulated ball with a trefoil-knotted edge

in several ways. Each such construction leads to a distinct nucleus. Furthermore, given

any nucleus, splitting a node along a path leads to a nucleus having the same topological

properties. The number of nuclei with a trefoil-knotted edge is large (and the number of balls

with such an edge is even larger). On the other hand, and because of Lemma 4.1.4, it seems

that the number of atoms with a trefoil-knotted edge is small, maybe even equal to one. If

one can prove such a result for all knots, then one can bound the number of atoms with

t tetrahedra with the number of knots with certain complexity (the crossing number can be

considered as a measure of the complexity of a knot, or maybe the number of generators of

the fundamental group of the complement). It was shown by Sundberg [36] that the number

of knots with t crossings is exponentially bounded. Using such results and Theorem 4.1.2,

one can hope to obtain an exponential bound for all triangulations of S 3.

4.1.1 Notation

Nuclei are obtained from atoms by splitting external nodes along paths.

Definition 4.1.5. Let A be an atom and let NA(n, t) be the set of all nuclei with n nodes and t

tetrahedra obtained from A by splittings.

NA(n, t) is simply the set of nuclei with n nodes and t tetrahedra such that collapsing all

possible edges gives A. By the above, we deduce that if A , A′ are 2 distinct atoms, then

NA(n, t) ∩NA′(n, t) = ∅. We can then write:

N(t) =
∑

t′≤t

∑

A∈A(t′)

∑

n≤4t

|NA(n, t)| .

Define NA(t) as the number of nuclei with t tetrahedra obtained from the atom A by

splittings, i.e., NA(t) =
∑

n≤4t |NA(n, t)|. From this, we deduce that proving Theorem 4.1.2 is

equivalent to proving the following theorem:

Theorem 4.1.6. Let A be an atom. Then there is a constant C > 1 such that NA(t) ≤ Ct.

Notation 4.1.7. Let T be a nucleus (or an atom). The splitting of a node n ∈ T along a path γ

is denoted by S (n, γ) and the result is the nucleus S (n, γ)T .

Consider an atom A with t′ tetrahedra and n′ nodes. We can then write:

NA(n, t) =
∑

n,γ

S (nk, γk)S (nk−1, γk−1) · · · S (n1, γ1)A ,

where
∑

n,γ is the sum over all possible sequences of k ≡ n − n′ nodes n = (n1, . . . , nk) and

paths γ1, . . . , γk such that
∑k

i=1 |γi| = t − t′, where |γi| is the number of edges in the path |γi|.

In other terms, we need to count the number of such ordered sequences of splittings

S (nk, γk)S (nk−1, γk−1) . . . S (n1, γ1) under the condition that if 2 sequences applied to A give the

same result, then they are counted once. In particular, we need to look at the commutativity

of the splittings; for example, if all splittings commute, then any 2 sequences that differ only

by a permutation should be counted as one.
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4.1.2 Structure of the proof

In Sect. 4.3, we show that 2 arbitrary splittings commute in all but one case; the non-

commuting case is illustrated in Sect. 4.3.1. The main idea of the proof is to draw all the

paths before performing any splitting. The number of ways this can be done is counted in

Lemma 4.2.3 and Remark ⋆ of Sect. 4.4.3. Then we start splitting. The number of ways of

choosing which nodes to split, taking into account the non-commutativity of the splittings,

is counted in Sect. 4.4.2 and Sect. 4.4.3. Of course, once we start splitting nodes, some of

the paths we drew need to be modified. The number of ways this can be done is counted

in Sect. 4.4.3, Sect. 4.4.3 and Sect. 4.4.3. Finally in Sect. 4.4.4, putting everything together,

using some general well known results (Sect. 4.2), we prove Theorem 4.1.6 and therefore

Theorem 4.1.2.

4.2 Some general results

In this section we recall some classical results we will be using.

4.2.1 Combinatorics

Lemma 4.2.1. Let N be an integer. The number of ordered sequences (a1, . . . , aM) of M

integers ai ∈ {0, 1, . . . } such that
∑M

i=1 ai = N is given by
(

N+M−1
N

)

< 2N+M .

We now consider a 2d triangulation I with d nodes and e internal1 edges. We want to

divide it into k parts along the e internal edges; we say that a division into parts is admissible

if it satisfies the following restrictions:

R1 Each part is connected in the sense that any two nodes of a part are connected by a

path of edges in the same part.

R2 No part has a hole in it, i.e., the boundary of any part is homeomorphic to a circle.

R3 The division is planar. In particular, two parts cannot intersect one another.

R4 The intersection of two parts is by definition their shared boundary. These boundaries

must be connected paths, not necessarily simple.

In Fig. 4.1, we illustrate these restrictions. Note that internal edges of I can belong to

more than two parts while still verifying the planarity condition, as seen in the second panel

of Fig. 4.1. We define the multiplicity of an internal edge as the number of times it appears in

the boundaries. For example, the green edge of the second panel of Fig. 4.1 has multiplicity

2.

We would like to count the number of such divisions.

Remark 4.2.2. The purpose of splitting, and as a consequence the strategy used in this

chapter differs completely from those of the previous chapter. There, the purpose of splitting

is to promote every internal node into an external one without adding too many tetrahedra;

1internal and external nodes, edges and faces in the 3d case as defined in the same manner as in the
previous chapter
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Figure 4.1: This figure illustrates the restrictions on the division of Sect. 4.2.1 of a 2d

triangulation. The first panel shows a valid division into two parts such that the path

forming the boundary between them is not simple. In the second panel, we divide the

triangulation into three parts colored red, green and blue. Note that the bold green vertical

edge in the middle of the panel belongs to the green part, making it connected. This division

should be interpreted as the third panel: the blue and red parts do not share a boundary;

they are separated by the green part. The bold green edge belongs to both red-green and

green-blue boundaries. We say that such an edge has multiplicity 2. The last panel shows

a invalid division: since the bold red edge belongs to the red part, the red and blue parts

intersect one another.

thus, the strategy is to carefully choose the paths along which we split in such a way that

every internal edge of every hemisphere belongs to at most 1 path (in each of the sweeps

C2→C1→C0). In this chapter, given an integer t and an atom A with t′ < t tetrahedra, the

purpose is to count all possible ways of splitting nodes of A such that the end triangulation has

t tetrahedra.

Lemma 4.2.3. Consider a 2d triangulation I with n nodes and e internal edges and let ℓ be

an integer. We divide I into k parts verifying the above conditions R1-R4, such that the total

length of the boundaries of the parts is ℓ (each edge is counted according to its multiplicity).

The number of these divisions is bounded by Cℓ+n where C is some constant.

Proof. We start by choosing the boundaries among the e internal edges of I, then we

count the number of ways the parts can be chosen. By 2d Euler, one can show that e =

3n − 2p − 3 < 3n, where p is the number of external edges of I. To each such edge e′, we

assign a multiplicity m(e′) ≥ 0 which counts the number of boundaries this edge is part of.

By definition of ℓ, we have
∑

e′ m(e′) = ℓ. By Lemma 4.2.1, the number of ways of choosing

these multiplicities and therefore the number of ways of choosing the boundaries is bounded

by 2ℓ+3n. Note that the boundaries chosen in this manner have no restrictions so we are

clearly over-counting.

Consider such a collection of boundaries. It divides I into k′ parts satisfying R1-R4

(if not, then it is a bad collection and we just ignore it and pick another one, i.e., such a

bad collection of boundaries is among the ones we overcount). For example, looking at the

second panel of Fig. 4.1, one would get four parts up to this point, and three parts for the

first panel.

We draw I and we remove all edges e′ of multiplicity 0. Let e′ = (a, b) be an internal

edge with multiplicity m(e′) > 0. Assume that m(e′) = 2. We draw it as two separate edges

joining the nodes a and b. In other terms, e′ in itself forms one additional part (see Fig. 4.2).
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Figure 4.2: The first panel reproduces the division of the second panel of Fig. 4.1. The

dashed edges are not used in the division and hence their multiplicity is null. The straight

edges have multiplicity 1 and the bold edge has multiplicity 2. The second panel shows the

5 parts induced by the choice of the edges and their multiplicities. Note that the bold edge

of multiplicity 2 forms in itself the yellow part.

More generally, each edge e′ with multiplicity m(e′) ≥ 2 forms m(e′) − 1 additional part(s)

that we add to the already existing k′ parts. We get a total of k′′ parts verifying R1-R4. For

example, k′′ is 3 for the first panel of Fig. 4.1 and 5 for the second one, as seen in Fig. 4.2. If

k′′ < k, then we ignore the current collection of boundaries and we pick another one. Finally,

we need to count the number of ways of identifying k′′ − k parts. This is done as follows:

• We consider all ℓ edges of the boundaries (each edge according to its multiplicity). We

consider every internal node where four or more of these ℓ edges meet. Let n′ be such

a node and let u = u(n′) ≥ 4 be the number of these edges having n′ as corner. We

have
∑

n′ u(n′) ≤ 2ℓ.
• By planarity, these u(n′) edges can be ordered, say clockwise. Two consecutive edges

form the corner of a part. To each such corner, we associate a distinct vertex. We get

u vertices. Two vertices are connected if and only if the corresponding corners belong

to the same part. In other terms, to each such node n′, we draw some sort of dual

graph depicting the parts around it. We identify two parts as one if the corresponding

vertices are connected. The planarity condition R3 of the division implies that these

”local dual graphs” must be planar. For example, considering once more Fig. 4.1, we

see that in the first panel, there is only one node with u(n′) ≥ 4 and there are two such

nodes in the second panel (the ends of the bold green edge); the diagrams associated

with these nodes are respectively:

The number of planar graphs with u vertices is bounded by Cu [37]. Multiplying all these

bounds for every internal node n′, we get a bound of the form

C
∑

n′ u(n′) ≤ C2ℓ .

Since the identifications are done locally around each node, some of them might lead, once

the entire triangulation is considered, to a division that violates the conditions R1-R4, which

in turn leads to over-counting. However, it is clear from the construction that any valid

division can be obtained in the manner described above.

�
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4.2.2 Rearranging sequences of operators

Let S = S1 = An · · ·A1 be an ordered sequence of operators. We define the following subse-

quences {Ki}i≤I of operators:

The first subsequence is defined by

K1 = {Ai ∈ S1 : ∀ j < i such that A j ∈ S1, [Ai, A j] = 0} .

It is simply the set of all operators of S1 that commute with every operator to their right

in S1. By definition, we have A1 ∈ K1. Furthermore, all operators of K1 commute with one

another.

The other subsequences ℓ ≥ 2 are defined recursively:

• We consider the ordered subsequence Sℓ = Sℓ−1 \Kℓ−1, ℓ ≥ 2. For instance, to get S2, we

simply remove from the original sequence S1 all the operators of K1 while maintaining

the original order of the operators.

• Kℓ is then given by all the operators of Sℓ that commute with every operator to their

right in of Sℓ:

Kℓ = {Ai ∈ Sℓ : ∀ j < i such that A j ∈ Sℓ, [Ai, A j] = 0} .

The maximal index I is of course defined as the largest integer i such that Ki , ∅. Since

each subsequence Kℓ, ℓ ≤ I contains at least one operator, namely the first operator of Sℓ,

we have I ≤ n. By construction, every operator of the original sequence S1 belongs to exactly

one subsequence Ki, i = 1, . . . , I.

We now consider the new sequence S′ of operators given by

S′ = KI · · · K1 .

Lemma 4.2.4. We have S′ = S. Furthermore, S′ has the following properties:

P1 S′ is obtained from S by changing the order of pairs of commuting operators.

P2 The operators within each subsequence Ki, i = 1, . . . , I commute with one another.

P3 For every ℓ > 1 and for every operator X ∈ Kℓ, there is an operator Y ∈ Kℓ−1 such that

[X, Y] , 0.

Proof. We prove each point of the lemma.

• P2 is immediate from the construction of the blocks Ki.

• P1 is proved recursively. We start by moving all the operators of K1 to the right of

S = S1. Note that moving operators to the right is done by commuting pairs. By

construction, every operator X ∈ K1 commutes with all the operators to its right. We

get a new sequence S′2 = S2 ·K1. Recall that S2 = S1 \K1 and the order of the operators

in S2 is the same as that in S1. By construction we have S′2 = S since we only changed

the order of commuting pairs.

Then we move all operators of K2 to the right of S2. We obtain S′3 = S3 · K2 · K1 and

by construction, since all operators of K2 commute with all the operators to their right

in S2, we have S′3 = S. We do this for all ℓ ≤ I and we get S′
I
= KI · · · K1 = S.
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• Let ℓ > 1 and consider X ∈ Kℓ ⊂ Sℓ such that X < Kℓ−1. The sequence {Sℓ}ℓ≤I is

decreasing in the sense that every operator of Sℓ is an operator of Sℓ−1. Since X < Kℓ−1,

by definition of Kℓ−1, there is an operator Y to the right of X in Sℓ−1 such that [X, Y] , 0.
Since X ∈ Kℓ, it commutes with every operator to its right in Sℓ, implying that Y < Sℓ.

We conclude that Y ∈ Sℓ−1 \ Sℓ = Kℓ−1, which proves P3.

�

4.3 Commutativity of the splittings

We saw that external edges can be collapsed in any order we want, i.e., let C(e1) and C(e2)

be the operations of collapsing edges e1 and e2 respectively and let T be a triangulation, then

C(e2)C(e1)T = C(e1)C(e2)T for all collapsible edges e1, e2 of T .

Remark 4.3.1. There is one special case where e2 becomes collapsible only after e1 is collapsed,

i.e., that C(e2)T is not a ball (it contains a double edge). Even in this case, C(e1)C(e2)T is once

again a ball and furthermore it is the same ball as C(e2)C(e1)T .

Splitting a node along a path is the inverse operation of collapsing external edges. From

the above relation, one expects that the splittings should also commute, and indeed such a

result is true in all but one case (which is closely related to Remark 4.3.1) but less obvious

for the simple reason that the operation of collapsing an edge requires only one parameter,

namely the edge in question, but the operation of splitting a node requires an additional

parameter, namely the path along which we split.

In what follows, we examine all cases of 2 successive splittings and show that they

commute in all but one case. The notation is the following: we first split the node n in some

triangulation, say T1, along the path γn; we obtain another triangulation, say T2. Then we

split m in T2 along the path γm. The splitting is denoted by S (n, γn) and similarly for m. Note

that m can be a child of n (in which case we will say that n = m) and that γm is drawn in T2.

Definition 4.3.2. We say that 2 splittings commute if there are 2 paths γ′n and γ′m such that

S (m, γm)S (n, γn) = S (n, γ′n)S (m, γ′m) ,

i.e., splitting n along γn then m along γm yields the same result as splitting m along γ′m then n

along γ′n.

Before we start examining the cases, we recall the following fact

Remark 4.3.3. An external edge e = (a, b) is collapsible if I(a) ∩ I(b) = I(e).

The only case where the splittings do not commute is the following:

Lemma 4.3.4. Let n , m be 2 nodes such that (n,m) is an internal edge. We split n into nR

and nL along a path γn such that m ∈ γn. Then we split m along a path γm such that:

• Both nodes nR and nL are in γm.
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• The nodes nR and nL are not consecutive in γm, i.e., (nR, nL) is not an edge of γm.

These 2 splittings do not commute and there are no other cases of non-commutativity.

Proof. Let e = (a, b) be an external edge. We recall that the condition I(a) ∩ I(b) = I(e) of

Remark 4.3.3 actually means the following 2 things:

• For every node c such that (c, a) and (c, b) are edges, (c, e) is a face, and

• For every edge e′ such that (e′, a) and (e′, b) are faces, (e′, e) is a tetrahedron.

We also recall that splitting a node n into nR and nL along a path γn results in the

following:

• Let c be a node. Then

c is a node of γn ⇔ (nR, nL, c) is a face .

• Let e′ be an edge. Then

e′ is an edge of γn ⇔ (nR, nL, e
′) is a tetrahedron .

The general approach to proving commutativity is as follows:

• We consider a triangulation T .

• We split n into nR and nL along γn. By construction, the external edge (nR, nL) satisfies

Remark 4.3.3.

• We split m into mR and mL along γm. By construction, the external edge (mR,mL)

satisfies Remark 4.3.3.

• We check that the edge (nR, nL) still satisfies Remark 4.3.3. Let γ′n be its flower. We

collapse it into a node we call n.

• We check that the edge (mR,mL) still satisfies Remark 4.3.3. Let γ′m be its flower. We

collapse it into a node we call m.

• We check that the final triangulation we obtain is the same as the original one T .

The non-commutativity arises when one of the 3 checks fails. We show that this can

happen in only one case.

We assume that the first check fails, i.e., that after splitting m along γm, the external edge

(nR, nL) becomes non-collapsible. This means that there is a node c such that (c, nL) is an

edge, (c, nR) is an edge and (c, nR, nL) is not a face, or that there is an edge e′ such that

(e′, nR) is a face, (e′, nL) is a face and (e′, nR, nL) is not a tetrahedron. However, before the

splitting of m, (nR, nL) was collapsible. This means that the node c or the edge e′ we are

looking for are respectively the new nodes c = mi, i = R,L or the new edge e′ = (mR,mL). We

will see that these 2 conditions are always satisfied simultaneously, i.e., such a node c exists

if and only if such an edge e′ exists. Furthermore, this happens in only one case which is

none other than the case we are looking for.

We first assume that the first condition is true, i.e., that such a node exists, say c = mR.

Recall that the path γm splits the flower I(m) into 2 parts associated with mR and mL

respectively. Since both (mR, nL) and (mR, nR) are edges, we deduce that m ∈ γn implying that
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(nR, nL) is an edge of I(m). We also conclude that both nodes nR and nL belong to the part

of I(m) associated with mR. But since (mR, nR, nL) is not a face, we deduce that the edge

(nR, nL) belongs to the other part of I(m) which is associated with with mL. This proves that

the nodes nR, nL belong to the intersection of the two parts of I(m), i.e., nR, nL ∈ γm, but are

not consecutive in γm (otherwise (nR, nL) would also be in γm).

We now assume that e′ = (mR,mL) exists. Since (mR,mL, nR) and (mR,mL, nL) are faces,

we deduce that m ∈ γn and that both nodes nR and nL are in γm. Since (mR,mL, nR, nL) is

not a tetrahedron, we deduce that (nR, nL) is not an edge of γm and therefore nR and nL are

non-consecutive in γm.

From the above, we deduce that the first of the 3 commutativity checks fails if and only

if m ∈ γn and nR and nL are non-consecutive nodes of γm. Next, we assume that the first

check passes. We show that the next 2 checks always pass as well.

We begin with the second check and we assume it fails. This means that when we

collapse (nR, nL) into n, the edge (mR,mL) which was collapsible becomes non-collapsible.

Since there are no new edges and the only new node in the triangulation is n, we deduce

that (n,mR) and (n,mL) are both edges but (n,mR,mL) is not a face. But we know that the

first check passed; in particular, this implies that (nR, nL,mR,mL) was a tetrahedron and thus,

after the collapse of (nR, nL) into n, (n,mR,mL) is a face. We deduce that if the first check

passes, then so does the second.

Finally we come to the third check. Since a triangulation is a list of tetrahedra (satisfying

certain conditions) and from this point of view, collapsing an edge e is simply the operation

of removing all tetrahedra having e as an edge. It is then obvious that if we start from a

triangulation T and we split n and m into (nR, nL) and (mR,mL) respectively, then we collapse

these 2 edges, we get the original triangulation T regardless of the order of the collapses.

In summary, we showed that if the first check passes, then so do the other 2 and the

splittings do commute. Non-commutativity arises only if the first check fails. This only

happens in the case described in Lemma 4.3.4. �

We now illustrate the non-commuting case with an explicit example:

4.3.1 A non-commuting example

We split n along a path γn into nR and nL. Then we split m along γm. The paths are such

that m ∈ γn and the nodes nR, nL are non-consecutive node of γm. The case is illustrated in

Fig. 4.3.

There are 4 sets of panels. The first set contains 2 hemispheres: the upper one is the

hemisphere of the red node n and the lower one that of the blue node m. The path γn is the

red path. We split the red node along the red path into a red node and a hollow-red node.

Since the red path goes through the blue node, both new red nodes are in the hemisphere

of the blue node, as shown in the second set of 3 panels (red top-left, hollow-red top-right

and blue bottom). Then we split the blue node along the blue path. Notice that both new red

nodes are non-consecutive in the blue path. We obtain the third set of 4 panels. It is clear

that the edge e = (red , hollow-red) does not satisfy Remark 4.3.3, since the hollow-blue

node is in the intersection of the hemispheres of both nodes but not in the flower of e. If

we try to collapse e, we get the fourth set of 3 panels, belonging to a configuration which is
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Figure 4.3: Illustration of Sect. 4.3.1. See the discussion there for an explanation of the

different panels.

a not a valid triangulation, since, in particular, it contains the double-edge (hollow-blue,red)

(looking at the hemisphere of the red node shown in the upper panel of the fourth set, we

see that the same hollow-blue node appears twice, meaning that there are 2 distinct edges

linking it to the red node).

In other terms, we showed that the triangulation of the third set of panels cannot be

obtained from that of the first set of panels by splitting first the blue node and then the red

node.

The 3-dimensional flowers are illustrated in Fig. 4.4.

We now illustrate 2 interesting commuting cases with an example each; the purpose of

these examples is to show the relation between the new paths γ′i , i = L,R and the old ones

γi. The trivial cases are not illustrated. It is left to the reader to check that in the trivial

cases, we have γ′
i
= γi, i = R,L.
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Figure 4.4: 3-dimensional illustration of the first set of 2 panels of Fig. 4.3.

4.3.2 The case n , m, m ∈ γn and nR, nL are consecutive in γ(m)

We split n along γn into nR and nL. Then we split m along γm. We assume that m ∈ γn and

that the nodes nR and nL are consecutive nodes of γm. See Fig. 4.5 for an illustration of the

following discussion.

Figure 4.5: Illustration of Sect. 4.3.2. See the discussion there for an explanation of the

different panels.

We proceed in the same manner as before. We split the red node n along the red path

γn then the blue node m along the blue path γm.

Remark 4.3.5. The blue path γm must be drawn after the splitting of n. However it can be

drawn in the original hemisphere, i.e., before this first splitting, and that, by definition since the

blue path must go through both new red nodes consecutively, there is only one way to extend

it once we split the red node.
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We first split the red node (upper-left panel) along the red path into a red (left upper-

middle panel) and a hollow-red (right upper-middle panel) node. The hemisphere of the blue

node changes as shown in the lower-middle panel. Notice that the blue path goes through

both red nodes consecutively. Remark 4.3.5 simply means that the blue path can be drawn

in the original flower (lower left panel) and that there is a unique way of extending it into

the blue path of the lower-middle panel. Next, we split the blue node along the blue path to

get the flowers of the right panels.

In Fig. 4.6, we first collapse the edge (red,hollow-red). Note that its flower, drawn in

magenta, satisfies the conditions of Remark 4.3.3. Then we collapse the edge (blue,hollow-

blue); its flower is drawn in cyan and it also satisfies Remark 4.3.3. The final triangulation

is identical to the original one of Fig. 4.5. Note that the blue and cyan paths are identical;

the same is true for the red and magenta paths. In other terms, in this case, taking into

account Remark 4.3.5, we have γ′i = γi, i = R,L.

Figure 4.6: Illustration of Sect. 4.3.2. See the discussion there for an explanation of the

different panels.

4.3.3 The case n = m and the paths intersect

The case is illustrated in Fig. 4.7 and Fig. 4.8. The first panel shows the hemisphere of the

red node. We split it along the red path into a red and a blue node, then we split the blue

node along the blue path into a blue and a hollow-blue node.

In Fig. 4.8, we collapse the edge (red,blue) into a single node we call again red; notice

that the edge satisfies Remark 4.3.3 and its flower is drawn in magenta. Then we collapse

the edge (red,hollow-blue), which again satisfies Remark 4.3.3; its flower is drawn in cyan.

We get the same triangulation as the starting one, i.e., splitting first along the red path then

along the blue path is equivalent to splitting first along the cyan path then the magenta path.

Clearly, in this case, changing the order of splittings changes the paths: γ′i , γi. It is left

to the reader to check that this is the only case where such a thing happens (one still needs

to check that the trivial cases where the paths are disjoint have this property).
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Figure 4.7: Illustration of Sect. 4.3.3. See the discussion there for an explanation of the

different panels.

4.4 The strategy

4.4.1 Introduction

Starting from an atom A, we split nodes repeatedly to get a nucleus T . Throughout this

process, we keep track of the parent of each node. This naturally leads to the following

definition:

Definition 4.4.1. We say that two nodes x and y of a triangulation T are related if they both

descend from the same node.

This notion is actually an equivalence relation; we use it to divide the set of all nodes

of the nucleus T into disjoint subsets or equivalence classes. All related nodes of each

equivalence class are children of one node in the atom A.

Definition 4.4.2. Let x be a node of the nuclei T . We denote by x̃ the parent of x in the atom

A. We define the original hemisphere (or original flower) of x as the hemisphere of x̃ in the

atom A. It is denoted by I(x̃).

From this point on, we will use the tilde to denote nodes and paths in the atom A.

Let x be a node. Assume that we split it into x1 and x2. Then we split x1 into x3 and x4
and so on. We get a collection {xi}i=1...r of nodes. By definition, all these nodes are related

since they are all children of x. We have the following corollary of Lemma 4.3.4:

Corollary 4.4.3. The splittings of related nodes commute.

Proof. We split x into x1 and x2. By definition of the splitting move, (x1, x2) is an external

edge of the triangulation. Recursively, one can show that if xi, x j are two related nodes, then

(xi, x j) is an external edge of the triangulation. But Lemma 4.3.4 shows that (xi, x j) must be

internal if the splittings are to be non-commuting. �
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Figure 4.8: Illustration of Sect. 4.3.3. See the discussion there for an explanation of the

different panels.

We consider an atom A with t′ tetrahedra and n′ nodes. Our purpose is to count the

number of different sequences of splittings S (nk, γk) · · · S (n1, γ1) such that
∑k

i=1 |γi| = t − t′ and

k = n − n′ with n, t two given constants (representing the number of nodes and tetrahedra

of the target nuclei obtained from the atom A). Two sequences are equivalent, i.e., they are

the same and therefore should be counted once, if one can be obtained from the other by

changing the order of splittings that commute, leading to the same nuclei.

We consider such a sequence S (nk, γk) · · · S (n1, γ1). Using Lemma 4.2.4, we rearrange the

order of the splittings. We obtain an equivalent sequence S k · · · S 1. This sequence is divided

into m subsequences of lengths k1, k2, . . . , km where
∑

i ki = k. We consider one of these

subsequences with a given index r. Its contains kr splittings resulting in a total of ℓr added

tetrahedra. By construction, we have

m
∑

r=1

kr = n − n′ and

m
∑

r=1

ℓr = t − t′ . (4.1)

Some of these kr splittings might be of related nodes. Without loss of generality (since all

splittings within any such subsequence commute), we assume that within each subsequence

r = 1, . . . ,m, splittings of related nodes are successive. Let Xr be the set of unrelated

nodes of the subsequence r, i.e., Xr is the set of equivalence classes in the subsequence r, the

equivalence relation being of course the one of Definition 4.4.1. Let qr = |Xr | be its cardinality.

We represent each class of Xr by the parent node in the atom A. Let x̃ represent such a

parent. We define kr(x̃) as the number of splittings of the children of x̃ in the subsequence

r, and ℓr(x̃) as the corresponding number of added tetrahedra. We immediately get
∑

x̃∈Xr

kr(x̃) = kr and
∑

x̃∈Xr

ℓr(x̃) = ℓr . (4.2)

Remark 4.4.4. The children of a node x̃ ∈ A can appear in more than one subsequence of

splittings. For each node x̃ of the atom A, we define k(x̃) =
∑

r kr(x̃) as the total number of
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splittings of all children of x̃ in every subsequence r, and ℓ(x̃) =
∑

r ℓr(x̃) as the corresponding

number of added tetrahedra.

To count the number of distinct sequences S k · · · S 1, we first need to count the number of

ways the sets Xr can be chosen (Sect. 4.4.2). Then, given a node x in the subsequence r, we

need to count the number of ways x and its related nodes in the subsequence r can be split

(Sect. 4.4.3).

Remark 4.4.5. In what follows, several bounds of the form Cℓ will appear, where C is some

constant. I will not use a different notation for every new constant. Instead, all of them will be

called C.

4.4.2 Choice of the sets Xr

Recall that Xr is defined as the set of unrelated nodes split in the subsequence r and qr is its

cardinality. The first subsequence of q1 unrelated nodes can be chosen randomly among all

the nodes of A, thus we get the first binomial
(

n′

q1

)

≤ 2n′ . We split these nodes (the number of

ways these splittings can be done is counted in the following section). Recall that for every

node x̃ ∈ Xr, r ≥ 1, ℓr(x̃) is defined as the total number of added tetrahedra in all splittings of

x̃ and its children in the subsequence r.

We come now to X2. By P3 of Lemma 4.2.4, every one of the second subsequence of

splittings does not commute with at least one of the previous subsequence. And we saw that

the only case where two splittings do not commute is when each node belongs to the path

along which we split the other. This implies that the second subsequence of q2 unrelated

nodes are chosen among the nodes of the paths of the first subsequence. But by construction

of the splitting move, the length of a path along which we split is bounded by the number of

added tetrahedra, which in our case is given by the sequence {ℓ1(x̃)}x̃∈X1
. Thus, the number

of choices of the second set X2 is bounded by

(∑

x̃∈X1
ℓ1(x̃)

q2

)

≤ 2
∑

x̃∈X1
ℓ1(x̃) .

Doing the same for every set Xr, using Eq. (4.1) and Eq. (4.2), we see that the number of

ways the sets Xr can be chosen is bounded by

2n′ · 2
∑

r,x̃ ℓr(x̃) ≤ 2n′+t−t′ .

Remark 4.4.6. Choosing Xr does not fix the choice of the nodes we split in the subsequence

r. Saying that x̃ ∈ Xr means that in the subsequence r, we need to split some of the children of

x̃ kr(x̃) times.

4.4.3 Choice of the splittings

Fix an index r ≤ m, consider a node x̃ ∈ A and let {xi} denote its children in the subsequence

indexed r. We want to count the number of ways these children {xi} can be chosen as well as

the number of ways of splitting them a total of kr(x̃) times in such a way that ℓr(x̃) tetrahedra

are added.
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We first need to choose which of the children we split; then, for each chosen xi, we need

to choose a splitting path in its flower. The following problems appear:

P1 Assume that some node x is a child of x̃ in the subsequence r. We split x into xR, xL.

Both these nodes are also children of x̃ and their splitting commutes with that of x,

as seen in Sect. 4.3.3. This means that both nodes xR and xL can belong to the same

subsequence r, in which case we need to choose among them. Each time we split, the

total number of these children increases by one. This means that, if we naively count

the number of ways the children {xi} can be chosen, we get a bound of the form kr(x̃)!.

P2 Assume that we split some node x into xR, xL. By definition of the splitting move, the

degree of one of the two children, say xR, might be larger than the degree of x (by at

most one). This implies that the number of ways of splitting xR is larger than that of

splitting x (since its flower is larger). Each time we split, the size of the flower might

increase. A naive estimate would not work here either.

P3 Similarly to P2, when a node x is split along a path γ, the degree of every node of γ

increases by one. A naive estimate would not work here either.

We start with P2. We discuss P3 in Sect. 4.4.3 and P1 in Sect. 4.4.3. Finally, we prove

Theorem 4.1.6 in Sect. 4.4.4.

Solving P2

Consider a node x̃ ∈ Xr and let u = kr(x̃) be its multiplicity and ℓr(x̃) the corresponding

number of added tetrahedra. We denote by S (xu, γu) · · · S (x1, γ1) the successive splittings of

its children {xi, 1 = 2 . . . u}. We saw in Sect. 4.3.3 that these splittings commute and that the

paths are not the same depending on the order in which the splittings are done. We fix an

order for the splittings, i.e., we first split x1 along γ1, then x2 along γ2 and so on and so forth.

The reason P2 arises is that the path γi is drawn in the hemisphere of xi which might

be bigger than the original hemisphere of x̃ if it was split in a way that increases its degree.

The idea is then to draw all the paths γi in the original hemisphere I(x̃). But by doing

so, some paths might need an extension to become splitting paths; what we mean by this

is the following: looking at Fig. 4.7, one can draw the blue path in the original hemisphere

(the upper-left panel) but one needs to extend it as shown in the lower-middle panel before

splitting.

Our strategy is then to draw all paths in the original hemisphere. By Lemma 4.2.3 and

what follows (Remark ⋆), this can be done in at most Cd(x̃)+ℓr(x̃) ways, where d(x̃) is the degree

of x̃ in the atom A. We clearly have

∑

x̃∈A

d(x̃) = 2#(edges of A) ≤ 12t′ . (4.3)

Remark ⋆. Lemma 4.2.3 counts the number of ways I(x̃) can be divided into parts but

what we want is to bound the number of ways the paths can be chosen. The purpose of

this remark is to show that both bounds are the same. More precisely, we show that if 2

(ordered) collections of paths come from the same division into parts, then splitting along the
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first collection gives the same result as splitting along the second and hence, both collections

should be counted once.

We consider a valid division of I(x̃) into k′ = kr(x̃)+ 1 parts such that the total length of

the boundaries of the parts is l ≤ ℓr(x̃). By C2, the boundary of each part is a closed polygon.

Each edge of this boundary can be shared by other parts or it can be an external edge in

I(x̃). We consider a part such that the set of edges on its boundary that are external in I(x̃)

form a connected path (the green part of the second panel of Fig. 4.1 is not such a part, the

red one is). Since each part is connected (R1) and since the division is planar (R3), there

is always at least one such part. We define γ1 as the subset of its boundary that is shared

by other parts, i.e., that is not on the exterior of I(x̃). By R4 and the choice of the part

in question, γ1 is connected. We remove this first part from I(x̃) and we repeat the same

discussion to get γ2. All in all, we obtain an ordered collection of kr(x̃) connected paths with

a total length of l.

However, given a valid division, its is clear that different choices of the parts we remove

lead to different paths and that for a given division into parts, the number of choices of the

paths can be large. A naive count easily leads to superexponential bounds.

Let {γi} and {γ
′
i
} be two such choices of paths obtained from the same division into parts.

We consider the explicit example given in Fig. 4.7 and Fig. 4.8: we can see that the first

panel of Fig. 4.7 and the last panel of Fig. 4.8 are of the same division of a triangulation but

the choice of the paths is different. However, we saw in Sect. 4.3.3 that both choices lead

to the same result; more precisely, we saw that each choice of paths corresponds to a choice

of the order of the splittings and since the splittings of related nodes commute, both choices

lead to the same result.

Applying this result recursively for pairs of splittings of related nodes, one sees that

splitting along {γi} or {γ
′
i
} leads to the same result, since both choices come from the same

division. Another way of seeing this is as follows: recall the move of splitting a node y into

yR, yL along a path γ is defined by splitting I(y) into two parts along γ and assigning each

part with one of two new nodes. If the division of I(x̃) into parts is given, then the end

result will always be the same regardless of the order and choice of the paths.

All in all, the number of distinct choices of paths is indeed given by Lemma 4.2.3.

We draw all paths in the original hemisphere of x̃. These paths are simple but not

splitting. We need to count the number of ways we can extend them into splitting paths. In

the case of Fig. 4.7 where we only have two paths, there is only one way to extend the blue

path, namely to connect it the new red node. In the following lemma, we count the number

of ways the extensions can be done.

Lemma 4.4.7. Consider a subsequence of splittings denoted by r. Let x̃ ∈ Xr and let {γ̃i}

denote all the paths, drawn in its original hemisphere, along which we want to split x̃ in the

subsequence r. The number of ways these paths can be extended on their ends into splitting

paths is bounded by Ckr(x̃)+ℓr(x̃), where kr(x̃) is the number of paths and ℓr(x̃) is the total length

of the extended paths.

Proof. Assume that all paths γ̃i are drawn in the original hemisphere I(x̃) of x (the tilde is

used to denote paths in the original hemisphere which might need an extension to become

splitting paths). If any of the two ends of a path γ̃ j is not in ∂I(x̃), then that path needs to
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be extended before splitting along it. We denote the extended path by γ j. Of course, γ j can

no longer be drawn in the original hemisphere of x. The purpose of this proof is to count

the number of ways all these extensions can be done.

Consider a node z ∈ intI(x̃) ⊂ A; assume that z is the end of at least one of the paths

{γ̃i}; let J = J(z) denote the set of indices j such that z ∈ γ̃ j (γ̃ j contains z) and K the subset

of J such that z is an end of γ̃k for every k ∈ K (γ̃k ends at z). All the paths γ̃k, k ∈ K

need an extension at their end z. We look at the problem from the point of view of the

hemisphere of z (in the atom A). Before any splitting, since z ∈ intI(x̃), then x̃ ∈ intI(z).

Let j ∈ J and let x jR, x jL denote the two new nodes obtained from splitting x j along γ j. By

definition of the move split-a-node-along-a-path, both new nodes as well the edge connecting

them are in intI(z) (since (z, x jR) and (z, x jL) are both internal edges and (z, x jR, x jL) is an

internal face). Furthermore, after all splittings are done, I(z) remains a 2d triangulation.

This means that the node x̃, which before any splitting was in the interior of the hemisphere

of z, is replaced in this hemisphere I(z), after all splittings are done, by a triangulation of

the nodes {x jR, x jL, j ∈ J}. Deciding on a set of extensions for all γ̃k, k ∈ K is then equivalent

to picking a triangulation of the nodes {x jR, x jL, j ∈ J}: γ̃k is extended to x jR on its z end if

and only if (x jR, xkR, xkL) is a triangle in the flower of z. The easiest non-trivial example is

shown in Fig. 4.9 and Fig. 4.10. The possible number of these triangulations is bounded by

C|J| . Multiplying all these bounds for every such node z leads to a bound of the form C
∑

z |J(z)|.

We can then write
∑

z

|J(z)| =
∑

z

∑

γ̃i

χγ̃i
(z) ,

where χγ̃i
(z) = 1 if and only if the path γ̃i contains the node z. Changing the order of the

two sums, and since the total number of nodes in all (extended) paths (also counting the

multiplicities of the edges) is ℓr(x̃) + kr(x̃), we get a bound of the form Ckr(x̃)+ℓr(x̃) for the total

number of possible extensions of all paths. �

Remark 4.4.8. Note that in Lemma 4.4.7, given a subsequence of splittings r and a node

x̃ ∈ Xr, we count the number of ways of extending on their ends all paths γ̃i of I(x̃) along

which we split in the subsequence r. But we saw that a node x̃ can belong to more than 1

subsequence of splittings. Let γ̃ j be a path in in I(x̃) along which we split x̃ (actually, we split

one of its children) in another subsequence r′ > r. Such paths might also need an extension

on their ends. The number of ways this can be done for all such paths and for all later

subsequences r′ > r is counted in Sect. 4.4.3.

Solving P3

The above gives a solution to the problem P2. We now look at P3. We consider two nodes

x, y. We first split x into xR, xL along γx and we assume y ∈ γx. This increases the degree

of y by one. Looking at the flower I(y), we see that the splitting replaces x by the edge

(xR, xL). Next, we want to split y along γy, which is drawn in I(y) after the splitting of x.

We will denote by I(ỹ) the original hemisphere of y before x is split and by γ̃y ⊂ I(ỹ) the

path obtained by identifying xR with xL in I(y), i.e., γ̃y is the path drawn in the original

hemisphere of y before splitting x. There are 4 cases to consider:
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Figure 4.9: Illustration of the proof of Lemma 4.4.7. The upper-left panel shows the hemi-

sphere of the red node. We split along the red path into a new node we also call red

(upper-middle) and a blue node (upper-right). Next we want to split the blue node along the

blue path. Notice that the blue path of the upper-left panel needs an extension on the black

node end and that there is only one way to extend it by connecting the black node to the red

one. We split the blue node along the extended blue path into a blue node (lower middle)

and a green one (lower right). Next, we want to split the green node along the green path

into a green and a brown node. However, there are now two possible ways of extending the

green path: the first towards the blue node, shown in magenta; the second towards the red

node, shown in black.

1. The path γy avoids both new nodes xR, xL. In this case, it is clear that γy = γ̃y can be

drawn in the original hemisphere of y. Splitting x along γx does not change γ̃y.

2. The path γy contains only one of the the two new nodes, say xR. In this case, γy is

obtained from γ̃y by simply renaming x into xR. And so we have γy = γ̃y.

3. The path γy contains the edge (xR, xL). This is the case of Sect. 4.3.2. The two paths γy

and γ̃y are not the same. But γ̃y is still simple and γy is obtained from it by removing

x and inserting the edge (xR, xL) in its stead.

4. The path γy contains both nodes xR, xL but not the edge (xR, xL). This is the only case

where splittings do not commute. γ̃y can be drawn in the original hemisphere of y

before splitting x, but it is no longer simple. It can contain a loop or the same edge

twice (see the blue path of the lower right panel of Fig. 4.3). In this case, splitting x

unfolds the double edge or the loop.

We see that in all four cases, the path γ̃y can be drawn in the original hemisphere I(ỹ)

before splitting x; it can be non-simple (the fourth case) and it might need an extension (the

third case). Splitting x adds a new edge to the flower I(ỹ), namely (xR, xL). Using this new

edge, we can extend and unfold γ̃y into γy. We need to count the number of ways this can

be done. The simplest example is illustrated in Fig. 4.11.

Fig. 4.11 shows that in the case where we only have two splittings (one for x, one for

y), the number of ways of choosing the paths γx in I(x) and γy in I(y) is bounded by four
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Figure 4.10: Illustration of the proof of Lemma 4.4.7. In this figure, we show the effect

of the splits of Fig. 4.9 from the point of view of the hemisphere of the black node. The

upper-left panel is before any splitting. It simply shows the red node in the hemisphere

of the black node. Splitting the red node into a red node and a blue node along the red

path gives the upper-middle panel (the paths colored red blue and green are those shown in

Fig. 4.9). Splitting the blue node into a blue and a green node along the blue path gives the

upper-right panel: there is only one way of extending the blue path, by connecting the black

and red nodes. By definition of the splitting move, this means that (red,black,blue,green) is a

tetrahedron, hence the triangle (red,blue,green) in the upper-right panel. Finally, we split the

green node along the green path. But before doing so, one needs to extend the green path

and there are two possible ways: connecting to the blue node (the magenta edge) gives the

lower-left panel, since (black,blue,green,brown) is a tetrahedron; connecting to the red node

on the other hand (the black edge) gives the lower-right panel. Each possibility corresponds

to a triangulation of the 4 nodes black,blue,green,brown.

times the number of ways of choosing γx in I(x) and γ̃y in I(ỹ). More importantly, we can

see how the extension of γ̃y into γy is done:

• The path γx contains y and it is simple (since we split along it). Let a, b be the two

nodes adjacent to y in γx (the green and brown nodes of Fig. 4.11). By definition, both

nodes are present in I(ỹ).

• Splitting x along γx replaces the edges (x, a), (x, b) with a triangulation of four nodes

xR, xL, a, b. The choice of the triangulation is fixed by the choice of γx.

• If any (or both) of the two edges (x, a), (x, b) is part of γ̃y, then it must be replaced

in γy by a path in this new triangulation. This is true for only these two edges. For

instance, looking at the second and third panels, we see that we have no choice but to

replace the edge (black,red) of γ̃y with the edge (black,hollow-red) of γy, since it is not

one of the two aforementioned edges.

We generalize this result to the case where we have u simple paths {γx,i} in I(x) con-

taining y and v paths (not necessarily simple) {γ̃y, j} in I(ỹ) containing x. Let {ai} denote all

nodes adjacent to y in all the paths {γx,i}. Since these paths are simple, there are at most

2u such nodes ai. By definition of the splitting move, the flower I(y) is obtained from I(ỹ)

by replacing all edges {(x, ai)} with a triangulation of the nodes {xi}, {ai}. The number of

these nodes is at most 3u. The triangulation in itself is determined by the choice of the u
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Figure 4.11: We illustrate a simple case of Sect. 4.4.3. The first panel shows the flower of the

red node x; the red path is γx and the blue node is y. The second panel shows the original

flower of y before x is split along the red path. The blue path is γ̃y. Note that the green

(brown) disc in both flowers represents the same node. Also note that the blue path γ̃y goes

through the green node (it can also go though both green and brown nodes). We split x

along the red path γx into a red and a hollow-red node. The last two panels show how γy,

represented by the magenta path, is obtained: it can be the same as γ̃y (Case 2 of Sect. 4.4.3)

or it can contain an additional edge. If the blue path γ̃y contains both the green and brown

nodes, then γy can be obtained from it in four different ways.

paths {γx,i} and the extensions on their ends (see Lemma 4.4.7). We now look at the v paths

{γ̃y, j}. They divide I(ỹ) into v + 1 parts. It is possible that the paths {γ̃y, j} no longer form a

division of I(y) into parts. We extend and unfold them by dividing the new triangulation

into parts. By Lemma 4.2.3, and since the new triangulation has at most 3u nodes, this can

be done in at most Cℓ
′
+u ways, where ℓ′ is the total number of added edges to the paths, i.e.,

ℓ′ =
∑

j |γy, j| − |γ̃y, j|.

We summarize this section. We denote by P3 the following problem: we want to count

the number of ways of choosing γx in I(x) and γy in I(y). This number clearly depends

on the size of each hemisphere. But if y ∈ γx, then splitting x increases the size of I(y).

If we consider n − n′ successive splittings, naively counting the choice of the paths leads to

superexponential bounds.

We solve P3 by saying that all paths are drawn in the original hemispheres in the atom

A but the paths are no longer simple; they may contain loops and double edges (however,

there is at least one simple path). Each splitting of a node leads to some extensions and

unfolding of these paths. We need to count the number of ways these paths are chosen and

the number of ways they are extended and unfolded.

Let x be a node and let {γx,i} be the set of paths (not necessarily simple) dividing I(x)

into parts. We denote by ℓ(x) =
∑

i |γx,i| the total length of these paths (each edge is counted

according to its multiplicity). By Lemma 4.2.3 and Remark ⋆, these paths can be chosen

in Cℓ(x)+d(x) ways, where d(x) is the degree of x. Note that Lemma 4.2.3 is still valid for

non-simple paths and the choice of the paths still has the correct bound.

We consider all the simple paths of {γx,i} and we split x along them (the other non-simple

paths are left for later subsequences of splittings. By the time we want to split along them,

they will have become simple). Let ℓr(x) denote the total length of these simple paths (the

index r refers to the current subsequence of splittings). Let y be an internal node of I(x)
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and let ur(x, y) be the number of simple paths γx,i containing y. Clearly, we have

∑

y∈I(x)

ur(x, y) ≤ 2ℓr(x) .

The flower I(ỹ) of y (before splitting x) is also divided into parts by paths. Let {γ̃y, j} denote

these paths. They can be chosen in Cℓ(y)+d(ỹ) ways, where d(ỹ) is the degree of y before

splitting x. We saw that once the splittings of x along all the simple paths of {γx,i} are done,

then the paths {γ̃y, j} need to be extended by ℓ′r(x, y). The number of ways these extensions

can be done is bounded by Cℓ
′
r(x,y)+ur(x,y). This holds true for every internal node y of I(x).

Multiplying this bound for every y ∈ I(x), defining ℓ′r(x) =
∑

y ℓ
′
r(x, y), we get the following

result:

Lemma 4.4.9. We assume that the (original) hemisphere of every node of the atom A is divided

into parts by paths. Consider a node x̃ of Xr. We split it along all simple paths in its (original)

hemisphere and let ℓr(x̃) be their total length. These splittings of x̃ extend all paths of every

hemisphere of A containing x̃ by a total of ℓ′r(x̃) edges. The number of ways these extensions

can be chosen is bounded by Cℓ
′
r(x̃)+ℓr(x̃).

Furthermore, we have
∑

r,x̃

ℓ′r(x̃) ≤ t − t′ , (4.4)

since the total length of all extended path cannot exceed t − t′ .

P2 again

This section deals with the second part of the problem P2 raised in Remark 4.4.8. As in

the previous sections, we start by illustrating the problem with an explicit example, shown in

Fig. 4.12.

Figure 4.12: Illustration of Sect. 4.4.3. See the discussion there for an explanation of the

different panels.

We consider a node x̃ and we assume there are 4 paths in its hemisphere: the blue

and red paths are simple whereas the green and brown are not. This is shown in the first

panel of Fig. 4.12. We split x̃ into three nodes, say red blue and yellow, along the blue and

red paths (after extending the blue path as seen in Lemma 4.4.7). Assume that the part of

I(x̃) containing the brown and green paths is associated with the yellow node. The second

panel of Fig. 4.12 shows the hemisphere of this yellow node. The red and blue nodes are the

children of x̃ obtained after the splittings along the red and blue paths. It is clear that at
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least one of the 2 paths of the second panel (or even both of them) needs an extension on

its end.

More generally, consider a node x̃ ∈ Xr, assume that all subsequences of splittings r′′ < r

are done and let {γx,i} denote all remaining2 paths of I(x̃). These paths {γx,i} are of 2 types:

the simple ones are the paths along which we split x̃ and its children in the subsequence r.

The non-simple ones are those reserved for later subsequences r′′ > r. Let ℓr(x̃) denote the

total length of the simple ones. Lemma 4.4.7 shows that the number of ways of extending

these simple paths on their ends is bounded by Cℓr(x̃) ways (since kr(x̃) ≤ ℓr(x̃)). We split

along these extended simple paths. After these splittings are done, some of the non-simple

paths will need an extension on their ends, as seen in Fig. 4.12. We need to bound the

number of ways these extensions can be done.

This discussion is very similar to that of the previous section. Using the same arguments

of Sect. 4.4.3, one can show that the number of ways these extensions can be done is bounded

by Cℓ
′′
r (x̃)+ℓr(x̃), where ℓ′′r (x̃) is the total length of the extensions. Thus, we have the following

result:

Lemma 4.4.10. We assume that the (original) hemisphere of every node of the atom A is

divided into parts by paths. Consider a node x̃ of Xr. We split it along all simple paths in

its (original) hemisphere and let ℓr(x̃) be their total length. These splittings of x̃ extend all

remaining non-simple paths of I(x̃) by a total of ℓ′′r (x̃) edges. The number of ways these

extensions can be chosen is bounded by Cℓ
′′
r (x̃)+ℓr(x̃).

Clearly, the total lengths of all extensions is bounded by t − t′ and we have

∑

r,x̃

ℓ′′r (x̃) ≤ t − t′ . (4.5)

This bound can also be obtained in a simpler way: let z be an internal node of I(x̃)

such that z is the end of at least one of the non-simple paths (associated with the sequences

r′′ > r); for example, z is the black node of Fig. 4.12. Let ur(x, z) denote the number of simple

paths going through z in I(x̃); by definition, we have
∑

z ur(x, z) ≤ 2ℓr(x). Splitting along

these ur(x, z) paths creates 2ur(x, z) new children of x̃, denoted by {xi}. It is easy to see that

the extensions should be done exclusively along the edges (z, xi) and that it is sufficient to

assign a multiplicity m for each of these edges: the edge (z, xi) is present m(z, xi) times in the

extensions. Doing this for every z, since all these multiplicities sum up to the total length of

the extensions ℓ′′r (x), and since their numbers 2ur(x, z) sum up to 4ℓr(x), using Lemma 4.2.1,

we get the bound Cℓ
′′
r (x̃)+ℓr(x̃).

Solving P1

We consider a node x̃ ∈ Xr. We split its hemisphere I(x̃) into kr(x̃)+ 1 parts by drawing kr(x̃)

paths, not necessarily simple, of total length smaller than ℓr(x̃). We still need to address the

first problem P1, namely that knowing the paths γi along which we split does not always tell

us which of x̃’s children we actually split. Recall that an edge might belong to more than

one path and in particular, two paths might be identical.

2If x̃ belongs to some Xr′′ , r
′′ < r, then it was split along some paths of I(x̃) in the subsequence r′′ < r.
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The first scenario here is when all paths are distinct, i.e., any two paths differ by at least

one edge. The discussion can be reduced to the case where we have one pair of paths, since

the splittings are successive; we consider a node x and two paths γ1 , γ2 in its hemisphere

I(x). We split x into xR and xL along γ1 and we ask the question: knowing that the next

splitting is along γ2, which of the two new nodes should be split? By construction, the paths

cannot cross one another and γ1 splits I(x) in two parts. The only common edges of these

two parts are those of γ1. Since γ2 , γ1, only one of these two parts of I(x) contains γ2 and

the answer to the above question is known: we split the child which is associated with the

part of I(x) containing γ2. In other terms, if all paths are distinct, then it is sufficient to list

only the paths along which we split.

Consider now a node x and two identical paths γ1 = γ2 in its hemisphere. We first split

x into xR and xL along γ1. But now γ2 can be drawn in both new hemispheres. Fig. 4.13

shows that, in this case, splitting xR along γ2 yields the same result as splitting xL along γ2
and as a consequence, the choice of which child is split is irrelevant.

Figure 4.13: The first panel shows the hemisphere of x. We split x along the red path into

xR and xL. The hemispheres are shown in the second set of panels. Splitting xR or xL along

the red paths leads to the same result shown in the third set of panels.

4.4.4 Putting everything together

We summarize the results of the previous sections to prove Theorem 4.1.6:

1. We consider every node x̃ in the atom A. For each such node, we pick two integers

k(x̃) and ℓ(x̃). These integers must verify

∑

x̃

k(x̃) = n − n′ and
∑

x̃

ℓ(x̃) = t − t′ .

By Lemma 4.2.1, each of the two sequences can be chosen in Ct ways, since n ≤ 4t.

2. For every node x̃ of A, We divide its flower into k(x̃)+ 1 parts such that the total length

of the boundaries is bounded by ℓ(x̃). The number of ways this can be done is given

by Lemma 4.2.3 and is bounded by Cd(x̃)+ℓ(x̃), where d(x̃) is the degree of x̃, verifying

Eq. (4.3).

3. Each division into parts gives us several equivalent ordered collection of paths (not

necessarily simple). We pick one such ordered collection (this is equivalent to fixing

an order for the splittings of x̃’s children, see Remark ⋆ of Sect. 4.4.3).

4. We choose the sets Xr. In Sect. 4.4.2, we saw that this can be done in Ct ways, since

n′ < n′ < 4t.
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5. Let q =
∑

r |Xr | ≤ n − n′. We choose 2 sequence of q integers ℓ′r(x̃), ℓ′′r (x̃) verifying

Eq. (4.4) and Eq. (4.5) respectively. By Lemma 4.2.1, they can be chosen in Ct ways.

6. We start with the first subsequence of splittings r = 1. We consider the nodes x̃ as

prescribed by the choice of X1.

• For every x̃, we only consider the paths in its flower I(x̃) that are simple (the other

non-simple paths are left for later subsequences of splittings r > 1). Let k1(x̃) and

ℓ1(x̃) denote the number of these simple paths and their total length respectively.

• The number of ways of extending these paths into splitting paths is given by

Lemma 4.4.7 and is bounded by Ck1(x̃)+ℓ1(x̃).

• In Sect. 4.4.3, we saw that once the choice of the paths is done, then the choice

of which of x̃’s children are split is fixed. We split along these extended paths.

• These splittings of x̃ and its children extend and unfold the paths of every hemi-

sphere of A by a total of ℓ′1(x̃) + ℓ′′1 (x̃). The number of ways this can be done is

given by Lemma 4.4.9 and Lemma 4.4.10 and is bounded by Cℓ1(x̃)+ℓ′
1
(x̃)+ℓ′′

1
(x̃, where

ℓ′1(x̃), ℓ′′1 (x̃) are the integers chosen in the fifth point.

Doing this for every x̃ ∈ X1 ends the first subsequence r = 1 of splittings.

7. We start the next subsequence r ≥ 2 of splittings . We consider the nodes x̃ of Xr. Some

of the non-simple paths we ignored in the previous subsequences r′ < r were unfolded

and extended into simple paths by the previous splittings. We consider all simple paths

(including the new ones). Note that their order is still fixed by the above choice of the

third point. At this point, there is no freedom on the choice of these paths. They were

unfolded and extended in the previous splittings. Let kr(x̃) and ℓr(x̃) denote the number

of these simple paths and their total length respectively. We extend these paths at their

ends (Lemma 4.4.7) and we split along them. The number of ways this can be done is

again bounded by Ckr(x̃)+ℓr(x̃). The splittings of each x̃ ∈ Xr and its children extend and

unfold all remaining paths of every hemisphere by a total of ℓ′r(x̃) + ℓ′′r (x̃). The number

of ways this can be done is given by Lemma 4.4.9 and Lemma 4.4.10 and is bounded

by Cℓr(x̃)+ℓ′r(x̃)+ℓ′′r (x̃), where ℓ′r(x̃), ℓ′′r (x̃) are the 2 sequences of integers of the fifth point.

8. We repeat the last step until no more paths are left.

Putting everything together, using Eq. (4.1), Eq. (4.2), Eq. (4.3), Eq. (4.4), Eq. (4.5), and

since n′ < n < 4t and t′ < t, Theorem 4.1.6 and hence Theorem 4.1.2 follow.
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Chapter 5

3D Topological Glass

5.1 Introduction

In this last chapter, we return to the problem of constructing a model of a three-dimensional

(3d) topological glass. Similarly to the 2d model (see [5], [4] and the first chapter of this

thesis), the phase space we consider is the set of all simplicial piecewise-linear decompositions

of the sphere S 3, simply known as triangulations or 3-spheres. The elementary moves are

given by the two Pachner moves in three dimensions that conserve the number of particles;

they are called the 2-3 flip and 3-2 flip. The energy is local, and the contribution f (v) of each

node v is a function of its local neighborhood I(v) we call flower: f (v) = f (I(v)). Finally,

the dynamics is given by a simple Metropolis algorithm with one free parameter we call the

temperature.

Contrary to 2-spheres, the topological properties of triangulations of S 3 are far from

being well understood. In the previous two chapters, we discussed in detail one of these

properties, namely the number of 3-spheres with t tetrahedra. We defined a subset of small,

elementary triangulations we called atoms and we showed that if the number of these atoms

is exponentially bounded, then so is the number of all 3-spheres. Furthermore, we expressed

our belief that the number of these atoms can be bounded by the number of knots and links

with a given complexity, which is known to be exponential.

Another interesting question concerns the reducibility of the phase space under the 2-3

and 3-2 flips: Pachner’s result [40] applied to S 3 states that any two 3-spheres can be trans-

formed into one another by a series of four types of flips called Pachner moves. However, we

only consider two of these moves, namely the 2-3 and 3-2 flips which conserve the number of

particles. Dougherty, Faber and Murphy [38] showed that the set of all 3-spheres is reducible

under these two flips, by constructing a triangulation such that no 2-3 or 3-2 flip is possi-

ble. Furthermore, they showed that their construct cannot be realized geometrically in S 3,

which points up another interesting property of 3-spheres: the vast majority of (topological)

triangulations of S 3 are not geometric, i.e., cannot be drawn in S 3 (or R3) (see [42, 35] and

[43, 44]).

Using some ideas by Santos [39], we show any two Delaunay triangulations with n nodes,

i.e., any two topological triangulations of S 3 that can be realized geometrically as the dual

of a Voronoi decomposition of point sets of n particles (with coordinates), are connected by

at most O(n5) 2-3 and 3-2 flips.

93
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We then proceed to constructing two different models of 3d topological glasses. The first

example is motivated by [45] and is the simplest possible generalization of the 2d model

introduced in [5, 4] and discussed in the first chapter of this thesis: we say that the energy

contribution of a node v is a function of its degree, which is the number of nodes of the

flower I(v). Since the 2-3 and 3-2 flips change the degree of only two nodes (contrary to the

T1 flip in two dimensions which changes the degree of four nodes), this model turns out to

be even simpler, in a way, than its 2d counterpart.

The second model we introduce makes full use of the additional degrees of freedom of

3d flowers, which are, by definition, triangulations of S 2. We start by fixing the ground state

of the system as a crystal, i.e., a regular filling of space, which is also a triangulation. The

crystal we choose is the one such that the flower of every node is a tetrakis hexahedron:

it has 14 vertices, 6 of which have a degree of 4 and the remaining 8 have a degree of 6.

We show that it is possible to fill space with particles such that the Voronoi cell of each

particle is a tetrakis hexahedron. Note that such a crystalline structure is known to appear

in fluorite systems [46] and rarely in diamonds [47]. Considering any triangulation, the

energy contribution of a node is then a measure of how different its flower is from a tetrakis

hexahedron. Such a definition of the energy is very difficult to implement on a computer, so

we simplify it by characterizing a flower I(v) of a node v by a sequence of integers {ek, k ≥ 3},
where ek is the number of vertices in I with degree k. The ground state sequence is e⋆4 = 6,
e⋆6 = 8, e⋆

k
= 0 ∀k < {6, 8} and the energy contribution of a node n is simply the euclidean

distance ||e(n) − e⋆||.

The dynamics is given by a simple Metropolis algorithm with the temperature being

the only free parameter. We observe that the system’s dynamics goes through a tremendous

slowing down as it approaches its stationary state at low temperature. Using some additional

ideas (improving the algorithm, considering less restrictive energy forms and defining a new

equivalent set of elementary moves), we can speed things up considerably (by several tens of

times) but to little effect and the system never reaches its stationary state in a reasonable

amount of time.

As a consequence, our results are only numerical. We observe that the energy relaxation

undergoes several polynomial regimes as it approaches its stationary state value. One inter-

esting notion we would like to understand is that of an elementary defect: in the 2d model,

we showed that the appropriate definition of an elementary defect is as a single isolated

node with an incorrect flower. In the 3d model, it is easy enough to see that having a single

node with an incorrect flower surrounded by nodes with tetrakis hexahedra as flowers is

topologically impossible. So one would expect that elementary defects in 3d are clusters of

several nodes with an incorrect flower each. But the simulations seem to indicate something

completely different: even with less than 10% of the nodes having an incorrect flower, they

do not cluster; instead they seem to form lines of defects, which shows that the behavior

of this type of 3d models of topological glasses is much more complex than we originally

thought.

5.1.1 Notations and definitions

We recall some notations and definitions we introduced in the previous chapters. We start

with the notion of f-vector:
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Any triangulation of S 3 can be characterized by four integers called the f-vector: it has

n nodes, E edges, F faces and t tetrahedra. They must satisfy the following two relations:

• Euler’s theorem for decompositions of S 3 reads: n − E + F − t = 0.
• By definition of a triangulation, each face is shared by exactly two tetrahedra and each

tetrahedron has exactly four faces, thus 4t = 2F.

Combining these two relations, we get:

F = 2t and E = n + t , (5.1)

leaving only two free parameters, n the number of nodes and t the number of tetrahedra.

Next, we recall some notations:

• Let n1, n2 be two adjacent nodes. We denote by (n1, n2) the edge connecting them.

Similarly, (n1, n2, n3) denotes the face having the nodes ni, i = 1, 2, 3 as corners.

• Let n be a node and e an edge not having n as an end. Then (n, e) denotes the face

containing both e and n. If such a face exists, then we say that the node n is opposite

to the edge e and reciprocally, the edge e is opposite to the node n.

• More generally, let s, s′ be two simplices of dimension d + d′ ≤ 3 (nodes are simplices

of dimension 0, edges and faces have dimension 1 and 2 respectively). Assume that

s ∩ s′ = ∅, i.e., that both simplices do not share a corner. Then (s, s′) denotes the

simplex of dimension d + d′ having both s and s′. If such a simplex exists, then s and

s′ are called opposite one to the other.

We now recall the previously introduced notions of flowers and degrees:

Definition 5.1.1. We consider a triangulation T of S 3. Let s be a simplex of T of dimension

d = 0, 1, 2. We define its flower I(s) as the set of all simplices s′ of T of dimension d′ = 2 − d

such that (s, s′) is a simplex of T . By definition of a triangulation, I(s) is a triangulation of the

d′-dimensional sphere S d′ .

In detail, we have:

• Let f be a face. Its flower is the set of all nodes n′ opposite to it. It is a triangulation

of S 0, i.e., it consists of exactly two nodes. This simply means that a face is shared by

exactly two tetrahedra.

• Let e be an edge. Its flower I(e) is the set of all edges e′ opposite to it. It is a

triangulation of S 1, i.e., it is a closed polygon. The degree of e, denoted by deg(e), is

simply the number of edges of this polygon or equivalently, the number of faces having

e as an edge.

• Let m be a node. Its flower I(m) is the set of all faces f ′ opposite to it. It is a

triangulation of S 2 with n f faces, ne edges and nv nodes. The degree deg(m) of the node

m is defined as nv or equivalently, the number of edges having m as an end. Note that

using Euler’s theorem on S 2 and a simple geometric relation, we have n f = 2 deg(m)−4
and ne = 3 deg(m) − 6.

Note that in the literature, flowers are more commonly referred to as stars.
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Remark 5.1.2. In this chapter, and contrary to the previous two, we only consider 3-spheres.

In other terms, the triangulations we consider do not have a boundary and all nodes, edges

and faces are internal.

Remark 5.1.3. It is easy enough to see that the minimal degree for an edge is 3 and for a

node is 4.

5.2 The phase space, the elementary moves and the dy-

namics

The phase space is the set of all simplicial piecewise-linear decompositions of S 3, simply

called triangulations. In the previous two chapters, we discussed in detail the question of its

size. In this section we introduce the elementary moves of our models as well as the general

form of the energy and we discuss some additional properties of triangulations of S 3.

5.2.1 Topological, geometric and Delaunay triangulations

It is known that, contrary to the 2d case, not all topological triangulations can be geometri-

cally realized. Consider a (topological) triangulation of S 3. We say that it is geometric if it

can be realized as the boundary of a convex four-dimensional polytope. In two dimensions,

Steinitz’s theorem [41] implies that any triangulation of S 2 can be realized as the boundary

of a convex 3d polyhedron. In 3d, it is known that the number of triangulations of S 3 with

n nodes grows at least as 2n1.25 [42, 35] and the number of 4-polytopes is at most 220n log n

[43, 44]. This means that the majority of triangulations of S 3 (for large n) cannot be drawn,

i.e., cannot be geometrically realized in S 3 or R3. As a consequence, recalling that only De-

launay triangulations can be used to represent positions of particles, almost all triangulations

of S 3 do not have a physical interpretation.

5.2.2 The elementary moves and reducibility of the phase space

Definition of the elementary moves

The elementary moves we use in our model are called the 2-3 and 3-2 flips. They are shown

in Fig. 5.1.

The 2-3 flip transforms two tetrahedra sharing a common face f into three tetrahedra

sharing a common edge e as follows: assume that (a, b, c) = f are the three corners of f

and d, e are its two opposite nodes. If (d, e) is already an edge of the triangulation, then we

say that the face f is not topologically flippable. If not, the the 2-3 flip is done by removing

f and both tetrahedra sharing it, adding the edge (d, e) and the three tetrahedra (d, e, a, b),

(d, e, b, c) and (d, e, c, a).

The 3-2 flip is simply the inverse move of the 2-3 flip. We say that an edge e is not

topologically flippable if its degree is not minimal or if the target face f , whose three edges

are those of the flower I(e), already exists.



5.2. THE PHASE SPACE, THE ELEMENTARY MOVES AND THE DYNAMICS 97

Figure 5.1: The left panel shows two tetrahedra sharing a common shaded face. The right

panel shows three tetrahedra sharing a common edge such that each pair of tetrahedra shares

a common shaded face. The 2-3 flip transforms the tetrahedra of the left panel into those

of the right panel. The 3-2 flip is the inverse move; it transforms the tetrahedra of the right

panel into those of the left one.

Reducibility of the phase space

Pachner showed [40] that any two triangulations of S 3 can be connected, i.e., can be trans-

formed into one another, by a series of four types of moves called Pachner moves in three

dimensions. Two of these moves, the 2-3 and 3-2 flips shown above, do not change the

number of nodes. The other two, called the 1-4 and its inverse the 4-1 flip do. The 1-4 flip

divides a tetrahedron t into four by adding one node and a new tetrahedron for every face

of t.

In our model, we only allow Pachner moves that do not change the number of nodes; so

the question we ask is: can any two triangulations of S 3 with n nodes be connected by 2-3

and 3-2 flips? The answer to the equivalent question in two dimensions is yes: it is known

that any two triangulations of S 2 with n nodes can be connected using only T1 flips (see for

instance [4]).

The question in three dimensions was answered by Dougherty, Faber and Murphy in [38].

They constructed a triangulation of S 3 such that any two nodes are connected by an edge

,i.e., the 1-skeleton of the triangulation is the complete graph, and every edge has its degree

larger than three. Since all pairs of nodes are adjacent, no 2-3 flip is possible. Since no edge

has minimal degree, no 3-2 flip is possible and this construct forms an isolated component

of our phase space.

The phase space of our model is then reducible and to date, the number of connected

components it has is unknown. We show that all Delaunay triangulations are in one com-

ponent. Furthermore, any two Delaunay triangulations with n nodes can be connected by at

most O(n5) 2-3 and 3-2 flips.

5.2.3 All Delaunay triangulations are connected

We show that all Delaunay triangulations with n nodes of the 3-sphere S 3 are connected

by at most O(n5) 2-3 and 3-2 Pachner moves. This proof is based on ideas by Santos [39].
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Note that the result is wrong in the euclidean flat space R3 because of the boundary of the

triangulations (one needs two additional moves to deal with tetrahedra on the boundary.

We will not develop this point further although we will point out the part of the proof that

does not work in R3). Aside from this, the proof is identical in both spaces, with the usual

definitions of straight line, ball, circle and plane in S 3. As such, and for simplicity, the proof

is done in R3.

Remark 5.2.1. We show that any two Delaunay triangulations of S 3 can be connected by 2-3

and 3-2 flips, i.e., that all Delaunay triangulations of S 3 are in one connected component of

the phase space. We do not say that this component only contains Delaunay triangulations.

Actually, using the algorithms of the previous two chapters of this thesis, we can show that

this component contains non-LC spheres.

We start with some definitions:

Notation 5.2.2. The boundary operator is denoted by ∂.

Definition 5.2.3. Let Xn ⊂ R
3 be a set of n > 3 points in R3. We say that the points of Xn are

coplanar if they belong to one plane in R3.

Definition 5.2.4. Let Xn ⊂ R
3 be a set of n > 4 points in R3. We say that the points of Xn are

cospherical if there exists a point o ∈ R3 such that all points of Xn are equidistant to o.

Definition 5.2.5. Let Xn ⊂ R
3 be a set of n > 3 points in R3. We say that the points of Xn are

cocircular if they are coplanar and cospherical.

Definition 5.2.6. Let t ⊂ R3 be a tetrahedron. The unique sphere S (a, b, c, d) passing through

all four corners a, b, c, d of t is called the circumsphere of t. The circumball of t is the closed

set containing t and whose boundary is the circumsphere of t.

Definition 5.2.7. Let X ⊂ R3 be a finite set of points in R3. We say that the points of X are

in general position if no four points are coplanar and no five points are cospherical.

Definition 5.2.8. Let X ⊂ R3 be a finite set of points in R3 and let T be a triangulation whose

nodes are the points of X. We say that T has the empty sphere property if the circumball of

each tetrahedron contains no points of X other than the four corners of the tetrahedron.

Let X ⊂ R3 be a finite set of points in general position in R3. The Delaunay triangulation

of X can be defined in two equivalent ways (see for instance [48] or any standard book of

your choice on Delaunay triangulations):

Proposition 5.2.9. Let X ⊂ R3 be a finite set of points in general position in R3. Then, there is

a unique triangulation T of X satisfying the empty sphere property. This triangulation is called

the Delaunay triangulation of X and it is the dual of the Voronoi decomposition of X.

Remark 5.2.10. The Delaunay triangulation of a point set X whose nodes are not in general

position might not be well defined.

We now define the 2-3 and 3-2 geometrical Pachner moves. Note that, contrary to the

previous topological definitions, the geometry now plays an important role, hence the need

for new slightly more restrictive definitions:
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Definition 5.2.11. Let T be a triangulation and let t1 = (a, b, c, d), t2 = (a, b, c, e) be two

tetrahedra sharing a common face (a, b, c) such that the six other faces of t1, t2 form a convex

polytope. The geometric 2-3 flip is the operation where t1, t2 are replaced by three tetrahedra

(a, b, d, e), (b, c, d, e), (c, a, d, e).

Definition 5.2.12. Let T be a triangulation and let t1 = (a, b, d, e), t2 = (b, c, d, e), t3 = (c, a, d, e)

be three tetrahedra sharing a common edge (d, e) such that each of the three pairs of tetrahedra

shares a common face and the six remaining faces form a convex polytope. The geometric 3-2

flip is the operation where t1, t2, t3 are replaced by two tetrahedra (a, b, c, d), (a, b, c, e).

Remark 5.2.13. From a topological point of view, the moves are still the same. However,

not all topologically possible flips are geometrically possible, hence the need for the convexity

of the ”outer polytope” in the two previous definitions. Two counter-examples are shown in

Fig. 5.2 and Fig. 5.3.

Figure 5.2: This figure shows three tetrahedra sharing a common red edge. The outer polytope

formed of the six shaded faces is not convex. Clearly, the red edge is not geometrically

flippable.

We now prove the main result of this section:

Theorem 5.2.14. Let X = {x1, . . . , xn}, X
′
= {x′1, . . . , x

′
n} be two point sets in general position in

S 3 such x1 , x′1 and xℓ = x′
ℓ
∀ℓ > 1. Let T, T ′ be the Delaunay triangulations of X, X′. Then,

there is a path γ(s), s ∈ [0, 1] connecting x1 to x′1 such that T can be transformed into T ′ by

moving the first node m (and all incident edges, triangles and tetrahedra) along γ and doing at

most O(n4) Pachner moves. Furthermore, let T (s) denote the triangulation when the first node

is at γ(s), then, one of the two following statements holds:

P1 Either T (s) satisfies the empty sphere property,

P2 Or there is one circumsphere containing m and exactly four other nodes.

Remark 5.2.15. Saying that P1 or P2 holds implies that for every s ∈ [0, 1], the interior of

any circumball of T (s) is empty, i.e., it has no nodes. The only way the empty sphere property

is violated is if there is exactly one circumsphere with exactly five nodes instead of four.
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Figure 5.3: This figure shows two tetrahedra sharing a common shaded face. The outer

polytope is not convex and the 2-3 flip of the shaded face is not geometrically doable.

We will need the following three lemmata:

Lemma 5.2.16. Let B1 , B2 be two balls such that ∂B1 ∩ ∂B2 is the circle C. The plane P

supporting C cuts the the two balls into two parts each. Let B ⊂ B1, B
′ ⊂ B2 be two of these

four parts lying on the same side of the plane P. Then either B ⊂ B′ or B′ ⊂ B.

Proof. This lemma is a simple geometrical observation and the proof is left to the reader. �

Lemma 5.2.17. Let T be a triangulation of a given point set Y of S 3 such that P1 or P2 holds.

Let a, b, c, d, e be five cospherical nodes of T such that t = (a, b, c, d) is a tetrahedron of T . If

the two nodes d, e are on either side of the plane supporting the face (a, b, c), then (a, b, c, e) is

a tetrahedron of T .

Proof. Since the triangulation is in S 3, every face is internal, i.e., every face is shared by two

tetrahedra. Let e′ be the second node opposite to the face (a, b, c), the first being of course

the node d. Assume that e′ , e; let B1 be the ball whose boundary contains the five nodes

a, b, c, d, e (and whose interior contains the tetrahedron t) and let B2 be the circumball of

the tetrahedron (a, b, c, e′). Since no circumsphere contains more than five nodes, the node

e′ < ∂B1 therefore B1 , B2. Since there is at most one sphere with five nodes, the node

e < ∂B2. The nodes e′ and d are on either side of the plane supporting the face (a, b, c)

implying that the nodes e′ and e are on the same side of this plane. Applying Lemma 5.2.16

to B1 and B2, we deduce that either e′ ∈ intB1 or e ∈ intB2, contradicting P1 and P2. We

deduce that e′ = e. �

Remark 5.2.18. The above lemma is the only part of the proof that does not work in R3. Note

that the result becomes true in R3 if we assume that the face (a, b, c) is internal in T .

Lemma 5.2.19. Let C be a finite collection of circles and let x, x′ be any two points in R3 \ C.

Then, there is a point y ∈ R3 \ C such that the straight segments [x, y] and [x′, y] are both in

R
3 \ C.
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Proof. Consider a plane P ∈ R3 such that x, x′ < P. For each point z ∈ R3, we define its

projection π(z) as the intersection of the straight lines (x, z) and (x′, z) with P. For any given

point z, π(z) is a finite set of points. This implies that the projection π(C) of C cannot cover

P. Let y be any point of P \ π(C), then the straight segments [x, y] and [x′, y] are both in

R
3 \ C. �

Proof of Theorem 5.2.14. The proof is done in R3 under the assumption that every face is

internal. Let m denote the node of T at position x1 and let A, B be the sets of all subsets of

X \ {x1} with three and four nodes respectively. We define the following sets:

• The set

C1 =

⋃

t∈A

C(t) ,

where C(t) is the circumcircle associated with the triplet t.

• The set

C2 =

⋃

t,t′∈B

S (t) ∩ S (t′) ,

where S (t) ∩ S (t′) is the intersection of the circumspheres associated with the quadru-

plets t, t′.

• The set

C = C1 ∪ C2 .

The set C is a finite collection of circles. Lemma 5.2.19 gives us a continuous path γ(s), s ∈

[0, 1] connecting x1 = γ(0) and x′1 = γ(1) such that γ is the concatenation of two straight

segments and γ ∩ C = ∅.

We start moving m along γ. All other nodes are fixed, and the only circumspheres moving

are those corresponding to the tetrahedra having m as a corner. At some point, the empty

sphere property gets violated and one or more of the moving spheres will have m and more

than three other nodes.

Let S be such a sphere. We first show that S cannot have more than five nodes. This

is obvious because all nodes but m are fixed, and at s = 0, the general position property is

satisfied so that no more than four nodes xℓ, ℓ > 1 are cospherical. With m moving, this

implies that no more than five nodes are cospherical.

Next, we show that for any s ∈ [0, 1], there is at most one such sphere S . Assume that

for some value s ∈ [0, 1], there are two spheres S , S ′ with five nodes each. Since at s = 0,
the general position property is satisfied and since all nodes but m are fixed, we deduce that

m ∈ S ∩ S ′, contradicting the fact that γ ∩ C = ∅.

Let s∗ be the smallest value of the parameter s such that:

• For s ≤ s∗, either P1 or P2 holds.

• For any (small enough) ε > 0, placing m at γ(s∗ + ε) violates both P1 and P2. This

means that moving m beyond γ(s∗) with even an infinitesimal value ε will lead one of

the nodes at position xℓ, ℓ > 1 into the interior of one of the moving balls.

This definition makes sense because a ball is a closed set. It implies that for every s ≤ s∗,

the triangulation T (s) is well defined and it satisfies either P1 or P2.
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For a point to cross into the interior of a ball, it must be at its boundary. This implies

that at s = s∗, we have exactly one sphere S with m and four other nodes. We will show

that the five nodes of S form two or three tetrahedra and that a Pachner move is always

(geometrically) possible. By construction, we know that m and three of the four other nodes of

S form a tetrahedron t (because the only moving balls are those associated with a tetrahedron

having m as a corner). Let (a, b, c) be a face of t = (a, b, c, d) such that the other two nodes

d, e of S are on either side of the plane supporting it. It is easy enough to see that such

a face always exists. More precisely, one can see that, since all five nodes are cospherical,

there are only two options: either there is one such face of t, or there are two such faces of

t. Applying Lemma 5.2.17, we deduce that (a, b, c, e) is a tetrahedron. But S has only five

nodes, hence the two following possible outcomes:

• The five nodes of S form two tetrahedra sharing a common face (which is none other

than (a, b, c)).

• The five nodes of S form three tetrahedra sharing a common edge such that each of

the three pairs of tetrahedra shares a common face (satisfying the same property of the

face (a, b, c) we described above).

The next step is to show that in both cases, the ”outer polytope” formed by these five

nodes is convex, i.e., we need to show that the cases of Fig. 5.2 and Fig. 5.3 cannot happen.

• Assume that the five nodes of S form three tetrahedra (a, b, d, e),(b, c, d, e),(c, a, d, e)

sharing a common edge (d, e). In this case, the outer polytope p is formed by the faces

(a, b, d), (a, b, e), (a, c, d), (a, c, e), (b, c, d), (b, c, e). Since all five nodes are cospherical,

we deduce that the outer polytope is convex.

• Assume that the five nodes of S form two tetrahedra (a, b, c, d),(a, b, c, e) sharing a

common face (a, b, c). The outer polytope p is formed by the faces (a, b, d), (a, b, e),

(a, c, d), (a, c, e), (b, c, d), (b, c, e). Assume that p is not convex. This implies that two of

p’s six faces, say (a, b, d) and (a, b, e) form an angle α ≥ π. If α = π, then the four nodes

a, b, d, e are cocircular, which contradicts γ ∩ C = ∅. We deduce that α > π and that

c, d are on either side of the plane supporting the face (a, b, e). Assuming that (a, b, e)

is internal and applying Lemma 5.2.17, we deduce that (a, b, d, e) is a tetrahedron,

contradicting the fact that a, b, c, d, e form only two tetrahedra.

All in all, at s = s∗, the outer polytope p is convex. For any small enough ε, and by

continuity of γ, p remains convex if m is placed at γ(s∗ + ε)
1. This implies that, when m

is placed at position γ(s∗ + ε), a Pachner move is possible in both situations. One easily

checks that this flip restores P1. Therefore, for ε small enough, the triangulation T (s∗ + ε) is

obtained from T (s∗) by moving m to γ(s∗ + ε) and either doing a 2-3 or a 3-2 Pachner move

so that P1 is restored.

Next, we define s∗∗ as the smallest value of s > s∗ such that

• For s∗ < s ≤ s∗∗, either P1 or P2 holds.

• For any (small enough) ε > 0, placing m at γ(s∗∗ + ε) violates both P1 and P2.

1This result is certainly true for the only polytope with six faces.
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The same arguments hold. We repeat the same discussion until m reaches x′1 at s = 1. By

construction, T (1) satisfies either P1 or P2. But the nodes of T (1) are in general position,

implying that T (1) = T ′ is the Delaunay triangulation of X′.

We still need to show that the number of flips is at most O(n4). Recall that a flip only

occurs if there is a sphere with five nodes, and that there is only one node moving. This

means that a flip only occurs when the path γ intersects the circumsphere of a quadruplet

t ∈ B. Since B contains
(

n−1
4

)

= O(n4) elements, and since the path γ is the concatenation of

two straight lines, and since a straight line intersects a sphere at most twice, we deduce that

the number of flips is bounded by 2 · 2 ·
(

n−1
4

)

= O(n4). �

Corollary 5.2.20. Let X = {x1, . . . , xn}, X
′
= {x′1, . . . , x

′
n} be two point sets in general position in

S 3. Let T, T ′ be the Delaunay triangulations of X, X′. Then, there are n paths γi(s), s ∈ [0, 1]
connecting xi to x′i for every i = 1, . . . , n such that T can be transformed into T ′ by moving

each node along the corresponding path and doing at most O(n4) Pachner moves (per path).

Furthermore, let T (i+ s), i ≤ n, s ∈ [0, 1] denote the triangulation when the first i− 1 nodes have
already been moved and the i-th node is at γi(s), then, one of the two following statements

holds:

P1 Either T (i + s) satisfies the empty sphere property,

P2 Or there is at least one circumsphere containing the i-th node and four others.

Proof. Apply Theorem 5.2.14 n times. Each application gives a path γi and moves one

node. �

Remark 5.2.21. From the proof of Theorem 5.2.14, we deduce that the number of flips needed

is bounded by O(n5).

5.2.4 Local energy and the dynamics

Similarly to the 2d model, the energy is local: E(A) =
∑

v∈V(A) f (I(v)), where V(A) is the set

of all nodes of the triangulation A, I(v) is the flower of node v and f (·) is a positive (integer)

function on the set of all triangulations of S 2.

Since the number of triangulations of S 2 is quite large, such an energy form is difficult

to implement. We will use the following simplification: let I(v) be the triangulation of S 2

representing the flower of a node v; we define the sequence of integers ek(v), k ≥ 3 as the

number of nodes of I(v) with degree k and we assume that f (I) is a function of these

integers:

E(A) =
∑

v∈V(A)

f ({ek(v), k ≥ 3}) .

Note that this is simplification since many triangulations of S 2 can share the same set of

integers {ek}.

Finally, the dynamics are given by a simple Metropolis algorithm with one free parameter

we call the temperature.
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5.3 The 3d model

In the first part of this section, we consider a simple example of a 3d topological glass, where

we say that the energy contribution of a node v is a function of its degree deg(v). Then, we

construct a model of a 3d glass that makes use of the additional degrees of freedom of the

flowers I(v), which are triangulations of S 2.

5.3.1 A first simple example of a 3d topological glass

Let v be a node. Its energy contribution f (v) is a function of the flower I(v), which is a

triangulation of S 2. The simplest possible form for f (v) is by characterizing I(v) with a

single integer, namely the number of its nodes, also known as the degree deg(v) of v; the

energy of a triangulation A is then

E(A) =
∑

v∈V(A)

| deg(v) − d̄|2 ,

where d̄ is a constant of the model. Contrary to the 2d case, the number of edges and thus

the average degree of a node is not fixed by the topology and the total number of nodes; as a

consequence, this model has two free parameters: the (exponential of the inverse) temperature

ε and the average degree at equilibrium d̄.

Remark 5.3.1. In [45], the authors consider a 3d binary mixture of large and small particles

with equal concentration and a fixed radii ratio, each coupled to a heat bath, interacting via

a Lennard-Jones potential and they perform a molecular dynamics simulation, as in [3] which

served as the motivation for the 2d model. Once again, they define a quasi-species as a

particle of a given size (big or small) having a certain number of neighbors, and they find that,

on average at low temperature, the lowest energy per quasi-species is achieved when small

particles have 10 neighbors and big particles have 14 neighbors. That corresponds, in our

model, to taking d̄ = 12 or alternatively, to defining f (v) = deg(v) − d̄v, where d̄v = 10, 14 for red

and blue (or small and big) nodes respectively.

As in the 2d model, we once again define a defect as a node with an incorrect degree. In

the stationary state, only defects of charge ±1 can be found and the system can be modeled

as a 3d dilute gas of two types of particles.

Looking at the elementary moves around isolated defects, we see that, contrary to the

2d case, and since the 2-3 and 3-2 flips only change the degree of two nodes, an isolated

defect can move without increasing the energy: let v be an isolated −1 defect, that is a node

with d̄ − 1 neighbors surrounded by nodes with degree d̄, let f be a flippable face opposite

to v and let v′ be the other node (of degree d̄) opposite to f . Performing a 2-3 flip on f ,

we see that the degree of v becomes d̄ and that of v′ becomes d̄ + 1. In other terms, the −1
charge ”jumps” from a node v to another node v′ such that v, v′ are opposites to some face f ,

without increasing the energy, but with a change of the defect’s sign. If the node v′ happens

to have a −1 charge before the flip, then both charges disappear and the energy decreases by

2.
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Similarly, using the 3-2 flip, we can see that a +1 defect jumps from a node v to an

adjacent node v′ while changing sign, without increasing the energy. If a flippable edge e

connects two +1 charges, flipping it annihilates both charges and the energy decreases by 2.

As a consequence, and from the dynamics’ point of view, such a system is simpler than

the 2d model, since defects can freely jump between neighboring nodes with no energy cost

(albeit with a change of sign). When two defects (of the same sign) collide, they annihilate

and the energy decreases by 2.

5.3.2 Construction of the 3d model

We start by fixing the ground state of the system as a space filling crystal. We require that

the crystal satisfies the following condition: its Delaunay triangulation is well defined. For

instance, simply placing nodes on a cubic lattice is not acceptable since the flower of every

node is not a triangulation. For simplicity, we also require that the Delaunay flowers of all

nodes are identical, i.e., we have one type of particles. The following is a well known fact

in crystallography:

Theorem 5.3.2. It is possible to fill the space R3 with particles such that the flower of every

node of the Delaunay triangulation is a tetrakis hexahedron.

A tetrakis hexahedron is the dual of the truncated octahedron, an Archemidean solid. It

can be seen as a cube with square pyramids on each of its six faces. It has 14 vertices, 6 of

which has a degree of 4 and the remaining 8 have a degree of 6. It is shown in Fig. 5.4.

Figure 5.4: This figure shows the tetrakis hexahedron. It is taken from Wikipedia [49].

Illustration of Theorem 5.3.2. Consider the hexagonal close packing (hcp) lattice; its formed

using two layers or planes, say in the directions x and y of a Cartesian set of coordinates,

each tessellated with an hexagonal lattice, such that each vertex of a layer is placed above

(or below, in the direction z) the center of gravity of three vertices of the other layer, in

such a way that the four vertices form a regular tetrahedron. The two layers are repeatedly

translated in the direction z to fill the entire space. The Delaunay triangulation of the hcp

lattice is not well defined (since the vertices are not in general position): the first panel

of Fig. 5.5 and Fig. 5.6 shows the flower of a vertex of the hcp lattice; it is a polyhedron

with 12 vertices called a triangular orthobicupoly [50]. Notice that it contains four pairs of

triangles sharing an edge and three pairs of squares sharing an edge. The idea is to move
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one layer, say the layer containing the blue vertices, in such a way that the 6 squares get

divided into triangles. The reader can check that this can be accomplished by moving the

blue layer, by any small enough distance, in the direction orthogonal to one of the three

pairs of squares, as shown in the second panel of Fig. 5.5 and Fig. 5.6: the two squares of

the pair in question get divided into four triangles each by the addition of two red nodes,

the other four squares of the hcp flower get divided into two triangles each and the flower

becomes a tetrakis hexahedron. By symmetry of the hcp lattice, the same thing happens to

the flower of every vertex. �

Figure 5.5: The first panel shows the flower of the blue central vertex in an hcp lattice.

Vertices are colored according to their layer. Notice that the flower contains three pairs of

adjacent squares and as a consequence, the Delaunay triangulation of the hcp lattice is not

well defined. The second panel shows how the flower transforms if we move the blue layer to

the right. The green edges are the new edges created by the translation. The two squares to

the right get divided into four triangles each by the addition of two red nodes, the other four

squares get divided into two triangles each and the flower becomes a tetrakis hexahedron.

Figure 5.6: The first panel shows the flower a blue node in the hcp lattice (the colors are

the same as in Fig. 5.5). It is not a triangulation. The second panel shows the flower of the

same node after shifting the blue layer.

The integers {ek, k ≥ 3} associated with a tetrakis hexahedron are e∗4 = 6, e∗6 = 8 and

e∗
k
= 0 ∀k < {4, 6}. We define the energy contribution of a node v as the euclidean distance
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of its flower to the tetrakis hexahedron:

f (I(v)) =
∑

k≥3

‖ek(v) − e∗k‖
2 .

Remark 5.3.3. There are several triangulations of S 2 with the same sequence of integers {ek}

as the tetrakis hexahedron. A numerical investigation using all three 2d Pachner moves leads

us to believe that there are only four such triangulations. In what follows, we always check

that the stationary state of our system is indeed formed by tetrakis hexahedra.

Such a model behaves as glass; its dynamics slow down tremendously when we lower the

temperature. In the following section, we show a few ideas we used to speed things up.

New energy form

The first idea is to redefine the energy in a less restrictive way to give the system more

room to perform flips. We consider several energy forms f ({ek}) under the condition that

f ({ek}) = 0 if and only if ek = e∗
k
∀k ≥ 3. The one observed with the fastest dynamics is the

following:

f ({ek(v)}) = ‖ deg(v) − 14‖2 + h(k̄(v)) + ϕ(e4(v) − e6(v)) ,

where deg(v) =
∑

k ek(v) is the degree of node v, ϕ(e4(v) − e6(v)) is the jump function and is

equal to 1 if e4(v) ≥ e6(v) and is null otherwise, k̄(v) is the maximal value of k < {4, 6} such
that ek(v) > 0 and h(k̄(v)) = 1 if k̄(v) = 3 and ‖k̄(v) − 6‖2 otherwise.

The reader can easily check, using Euler’s theorem on triangulations of S 2, that this

energy form satisfies the above condition f (v) = 0⇔ ek(v) = e∗
k
∀k ≥ 3.

New flips

This idea is motivated by the following observation: in the stationary state of the system

at low temperatures, one expects that almost all flowers are tetrakis hexahedra. As a con-

sequence, the degree of any edge is almost surely 4 or 6 and the degree of any node is

almost surely 14 implying that the total number of edges is E ≈ 7N. This means that, at

low temperatures, the number of topologically flippable edges is exponentially small and the

system will most likely flip faces. But flipping a face increases the total number of edges,

leading the system away from the stationary value of E ≈ 7N. As a consequence, the system’s

dynamics slow tremendously. We can speed things up by defining new elementary moves as

a combination of 2-3 and 3-2 flips.

We start with edges of degree 4, as seen in Fig. 5.7: let (a, b) be an edge of degree 4 and

let (ni, ni+1), i = 1 . . .4 be its flower (define n5 = n1). If n1, n3 are not adjacent, we can perform

a 2-3 flip on the face (a, b, n2) (or equivalently on (a, b, n4)) and add the edge (n1, n3). The

degree of (a, b) becomes 3 and it becomes topologically flippable. We can then perform a 3-2

flip and remove (a, b). The degree of (n1, n3) becomes 4.

Alternatively, if n2, n4 are not adjacent, we first perform a 2-3 flip of the face (a, b, n1) (or

equivalently on (a, b, n3)) followed by a 3-2 flip of the edge (a, b).

If n1, n3 are not adjacent, we define the (a, b) → (n1, n3) 4-4 flip as the operation of

removing the edge (a, b) of degree 4 and flower (ni, ni+1), i = 1 . . .4 and adding the edge
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Figure 5.7: This figure shows all three related 4-4 flips (a, b)↔ (n1, n3)↔ (n2, n4). The nodes

a, b are green, the nodes n1, n3 are red and the node n2, n4 are blue.

(n1, n3) of degree 4 and flower (a, n2), (n2, b), (b, n4) and (n4, a). If n2, n4 are not adjacent,

we define the (a, b) → (n2, n4) 4-4 flip as the operation of removing the edge (a, b) of degree

4 and flower (ni, ni+1), i = 1 . . .4 and adding the edge (n2, n4) of degree 4 and flower (a, n1),

(n1, b), (b, n3) and (n3, a). Note that an edge of degree 4 can be flipped in up to two different

ways; contrary to the 3-2 move, we now need to specify the edge we flip as well as the target

edge in order to define the flip. Also note that the 4-4 flip does not change the number of

edges. Furthermore, all three 4-4 flips (a, b) ↔ (n1, n3) ↔ (n2, n4) are related in way very

similar to the 2d T1 flip (a, b) ↔ (c, d). Finally, since this new move is a combination of

2-3 and 3-2 flips, adding it to the allowed elementary moves does not change the connected

component of the phase the system evolves in.

We can define flips of edges of higher degree in the same manner: an edge (a, b) of degree

5 and flower (ni, ni+1), i = 1 . . .5 can be flipped in up to 5 ways; for instance, if n1, n3 and

n1, n4 are not adjacent, we define the (a, b)→ (n1, n3), (n1, n4) 5-6 flip by first performing a 2-3

flip on the face (a, b, n2) (which adds the edge (n1, n3) and lowers the degree of (a, b) from 5

to 4) followed by 2-3 flip on the face (a, b, n5) (which adds the edge (n1, n4) and lowers the

degree of (a, b) to 3) followed by a 3-2 flip on the edge (a, b).

Edges of degree 6 can be flipped in up to twelve ways. In our simulations, we restrict the

elementary moves to the 2-3, 3-2, 4-4 and 5-6 flips only.

New algorithm

The variation on the Metropolis algorithm we discuss in this section is a classic one. It

becomes much faster than the usual Metropolis algorithm when the probability of performing

a flip is very small, which is precisely our case (due to the high energy cost of the flips and

the low temperature).

Consider a triangulation A and let E be the set of all possible flips of A: faces and edges

of degree 3 are counted once each; edges of degree 4 and 5 are counted twice and five times

respectively: |E| = F + E3 + 2E4 + 5E5, where F is the total number of faces and Ei is the

total number of edges of degree i.

For every flip e ∈ E, we define ∆(e) as the energy difference ∆(e) = E(A′) − E(A), where

A′ is the triangulation obtained from A by performing the flip e. Note E as defined above

contains topologically unflippable faces and edges; by definition, the energy cost associated

with a topologically impossible flip is infinity.

Remark 5.3.4. The new algorithm we define here is an example of an absorbing Markov chain
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with the transient states being the flips e with ∆e = ∞ and the absorbing states or the exits

being the topologically possible flips e with ∆e finite.

We define the following partition of E:

• The set C0 is the set of all flips e ∈ E such that ∆(e) ≤ 0. Its cardinality is n0.

• The set C∆,∆ ∈ N \ {0} is the set of all edges e ∈ E such that ∆(e) = ∆. Its cardinality

is n∆.

• The set C∞ is the set of all flips e ∈ E that are not topologically possible.

The old algorithm is the following:

• Define α∆ = ε
∆,∆ ∈ N ∪ {0}, where ε = e−β, β being the inverse temperature is a fixed

parameter of the algorithm. We also define α∞ = 0.
• Pick a flip e ∈ E with uniform probability |E|−1. If e ∈ C∆, flip it with probability α∆,

otherwise do nothing.

• Repeat the previous step.

The problem with the classic Metropolis algorithm is that almost all flips have a high

energy cost (for the choice of local energy we make); more precisely, when the system is

close to its stationary state at low temperature, the smallest ∆ such that n∆ , 0 is always 2

in the 2d model and at least five times bigger in the 3d model so that the simulation spends

a lot of time (ε−∆ ≫ 1 on average) trying unsuccessfully to perform a flip.

The idea is then to compute the probability distribution p(e,∆) of performing a flip e of

energy cost ∆ as well as the probability distribution q(t) of the waiting time before performing

the flip. We then pick a flip e with probability p(e,∆), we flip it, we pick a time t with

probability q(t) and we add it to the current time.

Clearly, this new algorithm leads to the same result as the old Metropolis one without

the waiting time at each flip. Note that the set of flips E as well as the probabilities p(e,∆)

and q(t) change with the triangulation A and as a consequence need to be updated after

every flip. Fortunately, the elementary moves we use are local so that the flips e′ that need

updating after performing a flip e are those ”around” it. Since at low temperatures the degree

of every node is close to 14, the number of flips e′ that need updating after every flip e is

relatively small which makes this new algorithm much faster than the old one.

We now compute the probabilities q(t) and p(e,∆):

Lemma 5.3.5. With the above definitions, the probability p(e,∆) that the next performed flip

is e with energy cost ∆ and the probability q(t) of waiting t Metropolis time units before actually

flipping e are given by:

p(e,∆) = |E|−1 · α∆ · δ∆,∆(e) and

q(t) = (1 − α(E))t−1 · p(e,∆) ,

where 1 − α(E) is probability of not performing a flip during one Metropolis time step:

α(E) =
∑

∆,e

p(e,∆) = |E|−1
∑

∆≥0

α∆n∆(E) .
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The proof is elementary and is left for the reader. Note that {α∆}∆ are constants and

the only dependence on the system state is in |E| the total number of flips and the sequence

n∆(E) = |C∆|, the total number of flips with energy cost ∆.

Finally, we deduce that replacing the classic Metropolis algorithm with the following one

will not change the probability distributions of the evolution of the system:

1. Compute the constants α∆ for every ∆ ≥ 0.
2. Let A0 be the initial triangulation and t0 = 0 be the initial time.

3. Compute (simultaneously) the partition {C∆} of E(A) as well as α(E).

4. Pick a set C∆ with probability α∆ · |C∆| · E
−1. Note that the set C∞ as well as all empty

sets C∆′ will never get picked.

5. Randomly pick a flip e ∈ C∆. This insures that every flip e is chosen with probability

given by Lemma 5.3.5.

6. Pick an integer t with probability q(t) given by Lemma 5.3.5. Add t + 1 to the current

time (1 time step for the flip, t steps waiting).

7. Transform A into A’ by flipping e; locally update the partition {C∆} and α(E).

8. Go to step 3.

5.3.3 Results

The system as defined above shows a tremendous slowing down of its dynamics as it ap-

proaches its stationary state at low values of ε. We can say with certainty that it behaves as

a glass. Unfortunately, the simulations at low values of ε do not converge in a reasonable

amount of time.

The initial state is prepared as follows: we construct an hcp lattice with n = 8000 nodes,

we shift one of its two layers as in Sect. 5.3.2 and we impose periodic boundary conditions;

we obtain a Delaunay triangulation of the 3d torus such that the flower of every node is

a tetrakis hexahedron. Then we heat it up (we use the ground state as a starting point

of a simulation with a very high value of ε). This guarantees that the initial state of our

simulations is in the same connected component as the Delaunay ground state. Note that

we use the torus and not the sphere S 3 to guarantee that the ground state has energy 0.
Fig. 5.8 shows a typical behavior of the energy: the number of nodes is n = 8000 and the

temperature is given by ε = 0.036. It is clear that the system has not reached its stationary

state by the end of the simulation. We use a log− log scale where a polynomial curve is

represented by a straight line; we can see that the energy relaxation as a function of time

exhibits three polynomial regimes during the above simulation.

An interesting question is about the notion of elementary defects: the system arranges

the nodes such that their flowers are tetrakis hexahedra; at low temperature, large defect-free

regions start to appear, where every node has the correct flower. When two such regions

meet, mistakes, i.e., nodes such that their flower is not a tetrakis hexahedron, will appear.

In both the 2d model and the first 3d model of Sect. 5.3.1, we saw that these mistakes can

be easily corrected and we defined the elementary defect as a single isolated node with an

incorrect flower.

In the 3d model of Sect. 5.3.2, one can easily see that having a single node with an

incorrect flower surrounded by a defect-free region is topologically impossible. One would
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Figure 5.8: This graph shows a typical behavior of the energy of our 3d model as a function

of time. The number of nodes is 8000 and the temperature is T = 0.3⇔ ε = 3.6%. We use

a log− log scale. Notice that the energy relaxation exhibits several polynomial regimes.

then expect that an elementary defect is an isolated cluster of nodes with an incorrect flower

each.

However, the simulations seem to show something completely different: Fig. 5.9 shows

the graph of nodes with an incorrect flower of a triangulation A with N=8000 near the

stationary state at ε = 0.1.
The triangulation A has the following properties:

• Out of a total of 8000 nodes, 7205 nodes (90.1%) have a tetrakis hexahedron as their

flower.

• Out of a total of 56477 edges, 47169 edges (83.5%) connect two nodes with a correct

flower and 2776 edges (5%) connect two nodes with an incorrect flower.

We see that there are no isolated clusters of defects; on the contrary, nodes with an incorrect

flower seem to form lines of defects, which would indicate that the behavior such models of

3d topological glasses is much more complicated than we originally thought.
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Figure 5.9: We show the ”graph of defects” of a triangulation A with 8000 nodes near

the stationary state at ε = 0.1. Each vertex of the graph represents a node of A with an

incorrect flower; there are 795 such nodes (9.9%). A vertex is colored according to the energy

contribution of the corresponding node: magenta for f (v) = 1, green, yellow, cyan and blue

for f (v) = 2, 3, 4 and ≥ 5 respectively. Two vertices are connected if the corresponding nodes

are connected by an edge in A; the above graph contains 2776 edges (5% of the total edges

of A). The graph is drawn using a spring-embedder. Note that there are no isolated clusters

of defects. On the contrary, the vertices seem to form lines of defects.
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