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Background & Aims: PTEN is a dual lipid/protein phosphatase,
downregulated in steatotic livers with obesity or HCV infection.
Liver-specific PTEN knockout (LPTEN KO) mice develop steatosis,
inflammation/fibrosis and hepatocellular carcinoma with aging,
but surprisingly also enhanced glucose tolerance. This study
aimed at understanding the mechanisms by which hepatic PTEN
deficiency improves glucose tolerance, while promoting fatty
liver diseases.
Methods: Control and LPTEN KO mice underwent glucose/pyru-
vate tolerance tests and euglycemic-hyperinsulinemic clamps.
Body fat distribution was assessed by EchoMRI, CT-scan and dis-
section analyses. Primary/cultured hepatocytes and insulin-sen-
sitive tissues were analysed ex vivo.
Results: PTEN deficiency in hepatocytes led to steatosis through
increased fatty acid (FA) uptake and de novo lipogenesis.
Although LPTEN KO mice exhibited hepatic steatosis, they dis-
played increased skeletal muscle insulin sensitivity and glucose
uptake, as assessed by euglycemic-hyperinsulinemic clamps. Sur-
prisingly, white adipose tissue (WAT) depots were also drastically
reduced. Analyses of key enzymes involved in lipid metabolism
further indicated that FA synthesis/esterification was decreased
in WAT. In addition, Ucp1 expression and multilocular lipid drop-
let structures were observed in this tissue, indicating the pres-
ence of beige adipocytes. Consistent with a liver to muscle/
adipocyte crosstalk, the expression of liver-derived circulating
factors, known to impact on muscle insulin sensitivity and WAT
homeostasis (e.g. FGF21), was modulated in LPTEN KO mice.

Conclusions: Although steatosis develops in LPTEN KO mice,
PTEN deficiency in hepatocytes promotes a crosstalk between
liver and muscle, as well as adipose tissue, resulting in enhanced
insulin sensitivity, improved glucose tolerance and decreased
adiposity.
� 2014 European Association for the Study of the Liver. Published
by Elsevier B.V. All rights reserved.

Introduction

Non-alcoholic fatty liver disease (NAFLD) encompasses a spec-
trum of liver metabolic disorders, starting with an excessive
accumulation of neutral lipids in cytoplasmic droplets of hepato-
cytes (steatosis), which can then progress towards inflammation,
fibrosis and cirrhosis. Obesity and viral infections are common
causes of these chronic liver diseases, which are often accompa-
nied by insulin resistance (IR). Indeed, lipotoxicity, resulting from
excessive overloading of hepatocytes with lipids, was reported to
affect insulin-stimulated signalling pathways that control glucose
and lipid metabolism [1]. Hepatic IR is likely to represent a pre-
cursor event, leading to systemic and long-standing IR [2].
Uncontrolled hepatic glucose output may indeed induce hyper-
glycemia and compensatory hyperinsulinemia, favouring IR
development in other organs. In turn, insulin-resistant muscle
and adipose tissue exacerbate hepatic metabolic disorders, thus
nourishing a vicious circle of peripheral IR. Lipotoxicity, inflam-
mation and systemic IR contribute with time to the alteration
of pancreatic b-cell function and survival, resulting in their inabil-
ity to secrete enough insulin to counteract peripheral tissues IR,
therefore leading to the development of type 2 diabetes [2,3].
In turn, diabetes favours steatosis evolution towards steatohepa-
titis, fibrosis/cirrhosis and hepatocellular carcinoma, again creat-
ing a vicious circle [4].

Insulin signalling is highly regulated at different levels by
multiple mechanisms. Among them, the phosphatase and tensin
homolog (PTEN) is a dual specificity protein and phosphoinosi-
tide phosphatase that dephosphorylates PdtIns(3,4,5)P3, the
product of PI3K [5]. By metabolizing PdtIns(3,4,5)P3, PTEN
interrupts insulin signalling downstream of PI3K. This PTEN
antagonistic effect on PI3K signalling [6] and its nuclear function
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on chromosomal stability [7] position PTEN as an important
tumour suppressor, which is often deleted/mutated or downreg-
ulated in human cancers [6].

Alterations of PTEN expression/activity are also expected to
deeply affect lipid and glucose homeostasis. Indeed, PTEN hetero-
zygosity and PTEN tissue-specific deletions in muscle or adipose
tissue all lead to improved glucose tolerance in healthy or
obese/diabetic mice [8–10]. However, adding to the complexity
of PTEN function, transgenic mice, overexpressing PTEN, display
increased energy expenditure and insulin sensitivity [11,12].
Regarding the liver, we previously reported that PTEN is downreg-
ulated in steatotic livers of obese patients, as well as in rat models
of genetic or diet-induced obesity [13]. Likewise, PTEN is down-
regulated in the liver of patients infected with hepatitis C virus
(HCV) [14]. Interestingly, both obesity and HCV infection are asso-
ciated with the development of steatosis and IR. However, liver-
specific PTEN knockout mice (LPTEN KO) exhibit an ambiguous
phenotype. Indeed, LPTEN KO mice develop sequentially hepatic
steatosis, inflammation/fibrosis and hepatocellular carcinoma
with aging, indicating that PTEN plays a crucial role in the devel-
opment of these pathologies [15,16]. Yet, LPTEN KO mice also
exhibit an improved glucose tolerance, which is unexpected with
NAFLD [15,16]. This study aimed at understanding the mecha-
nisms through which liver-specific PTEN deficiency improves glu-
cose tolerance, while promoting NAFLD.

Materials and methods

Reagents, antibodies, and cell cultures

All reagents, antibodies, commercial kits, cell isolation and cell culture are
described in the Supplementary Materials and methods section.

Animals

Ptenflox/flox (CTL) and AlbCre-Ptenflox/flox (LPTEN KO) mice generated as previously
described [15], were housed at 23 �C; light cycle: 07.00 am–07.00 pm and had
free access to water and standard diet. All experiments were conducted in accor-
dance with the Swiss guidelines for animal experimentation and were ethically
approved by the Geneva Health head office. 4-month old mice were sacrificed
using isoflurane anaesthesia followed by rapid decapitation and blood/tissues
were collected and stored at �80 �C.

Metabolic phenotyping, EchoMRI, and CT-scan

Energy expenditure and the respiratory exchange ratio were determined by indi-
rect calorimetry: locomotor activity was recorded by an infrared frame, and food
and fluid intake were measured by highly sensitive feeding and drinking sensors.
These parameters were measured in mice housed individually in Labmaster met-
abolic cages (TSE, Bad Homburg, Germany) after 5 days of adaptation prior to
recording. Fuel (carbohydrate plus protein vs. fat) oxidation was calculated as
described by Bruss et al. [17]. An EchoMRI-700 quantitative nuclear magnetic res-
onance analyzer (Echo Medical Systems, Houston, TX) was used to measure total
fat and lean mass. Distribution, volume and weight of fat depots were analysed by
a multidetector CT-scan (Discovery 750 HD, GE Healthcare, Milwaukee, USA) and
dissection after sacrifice. For cold exposure, mice were housed in a 6 �C cold room
up to 24 h and body temperature was measured at the indicated time points.

Glucose, pyruvate tolerance tests (GTT, PTT) and insulin injections

After overnight starvation, mice were administered intraperitoneally with glu-
cose (1.5 g.kg�1) or pyruvate (2 g.kg�1) and glycaemia was measured from tail
blood during 2 h. To investigate insulin signalling in organs, mice were injected
intraperitoneally with 150 mU/g of insulin (or PBS) 40 min before sacrifice, as
previously validated [18].

Euglycemic-hyperinsulinemic clamps

4 h fasted mice were anesthetized with intraperitoneal pentobarbital
(80 mg.kg�1). As previously described [19], euglycemic-hyperinsulinemic clamps
were performed, using insulin infusion at a dose suppressing hepatic glucose pro-
duction (18 mU.kg�1.min�1), and the glucose infusion rate was measured. At
steady state, a bolus of 2-deoxy-D-(1-3H)glucose (30 lCi) was injected to deter-
mine the in vivo glucose utilization index of insulin-sensitive tissues. 2-deoxy-
D-(1-3H)glucose-6-phosphate in peripheral tissues was measured using a liquid
scintillation analyzer (Tri-Carb 2900TR, Perkinelmer, MA, USA).

Histological analyses

Tissues were fixed in 4% paraformaldehyde and 6 lm thin sections were stained
with haematoxylin/eosin for morphological investigations. Quantifications were
performed using the Metamorph software.

Plasma and tissue analyses

Plasma triglycerides (TGs) were determined by an automated Abott Architect
analyzer (Abott Architect, Paris, France). Plasma glucose, insulin, non-esterified
fatty acids (NEFA), lactate, ketone bodies and FGF21 levels, as well as liver content
of TGs, glycogen and ketone bodies were measured with commercial kits.

Real-time PCR

RNA was extracted using Trizol according to the manufacturer’s instructions. 1 ug
of RNA was reverse transcribed using a VILO kit. Quantitative RT-PCRs were per-
formed using a SYBR green detector on a StepOne PCR system (Life Technologies,
Carlsbad, USA). Primer sequences are listed in Supplementary Table 1.

Western blot analyses

Homogenized cells/tissues were lysed in ice-cold RIPA buffer. Proteins were
resolved by 5–20% gradient SDS-PAGE and blotted onto nitrocellulose mem-
branes. Proteins were detected with specific primary antibodies and HRP-conju-
gated secondary antibodies using chemoluminescence. Quantifications were
performed using the ChemiDoc™ XRS from Biorad (Cressier, Switzerland) and
the Quantity One™ Software.

Statistical analysis

Results are expressed as means ± SEM of at least 3 independent experiments or at
least 4 different animals per group. Results were analysed by Student’s t test or
two-way ANOVA followed by a Sidak’s multiple comparisons test when more
than 2 groups or multiple time points were analysed. Values were considered sig-
nificant when ⁄p <0.05, ⁄⁄p <0.01 or ⁄⁄⁄p <0.001.

Results

Hepatic steatosis in LPTEN KO mice is associated with increased
glycolysis but decreased gluconeogenesis and glucose output

As previously reported, LPTEN KO mice have an increased liver
weight related to triglyceride (TG) accumulation in hepatocytes
(Supplementary Fig. 1 and [16]). We found two mechanisms con-
tributing to excessive TG accumulation in the liver of LPTEN KO
mice. First, mRNA expression levels of FA transporters, in partic-
ular Cd36, Fatp3, and Fabp1, were significantly upregulated, sug-
gesting increased FA uptake from the bloodstream by PTEN-
deficient hepatocytes (Supplementary Fig. 2). Secondly, critical
effectors promoting de novo lipogenesis were strongly overex-
pressed in the liver of LPTEN KO mice. In particular, the mRNA
expression of Fas, Acc1, Acc2, Scd1, Pparc, and Srebp1c was upreg-
ulated. In addition, protein expression of key enzymes involved in
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FA biosynthesis, i.e. FA synthase (FAS) and acetyl-CoA carboxyl-
ase (ACC), was also strongly increased in PTEN-depleted hepatic
tissue. On the contrary, the general expression pattern of rate-
limiting key enzymes controlling hepatic FA oxidation, lipolysis
and export, as well as cholesterol metabolism, mainly remained
unchanged with the exception of a few enzymes weakly up- or
downregulated (Supplementary Fig. 2).

Hepatic steatosis is usually tightly associated with IR [20].
However, glucose tolerance tests (GTT) indicated that LPTEN KO
mice paradoxically exhibited an improved glucose tolerance
associated with hypoinsulinemia (Supplementary Fig. 1C and
D). The liver appeared to contribute in two ways to this improved
glucose tolerance of LPTEN KO mice. Consistent with a boosted de
novo lipogenesis (Supplementary Fig. 2), glucose utilization was
strongly promoted, as indicated by an increased mRNA expres-
sion of enzymes regulating glycolysis (Fig. 1A). Secondly, the
mRNA expression of key factors promoting gluconeogenesis, i.e.
Pepck and Pgc1-a, was downregulated in LPTEN KO mice, suggest-
ing an impairment of de novo glucose synthesis (Fig. 1B). This was
further confirmed by pyruvate tolerance tests (PTTs), showing
that the pyruvate-dependent hepatic glucose output was strongly
abrogated in LPTEN KO mice (Fig. 1C). Although de novo glucose
production was inhibited in LPTEN KO mice, we did not observe
any changes, neither in the liver glycogen content, nor in ketone
bodies, which can arise from increased pyruvate production
through the glycolytic oxidative pathway. Plasma lactate levels
remained unchanged as well (Fig. 1D and E).

These results indicate that FA synthesis is fostered by an
increase in glucose utilization, whereas inhibition of gluconeo-
genesis and glucose output contributes to the improved glucose
tolerance in LPTEN KO mice.

LPTEN KO mice display enhanced systemic insulin sensitivity and
insulin-stimulated glucose uptake in skeletal muscle

Although impaired hepatic gluconeogenesis and glucose output
likely contribute to the improved glucose tolerance of LPTEN KO
mice, insulin sensitivity and glucose uptake by peripheral organs,
i.e. skeletal muscle and adipose tissues, are also important poten-
tial mechanisms to be considered. To address this issue, we first
examined the phosphorylation/activation of AKT, a major insulin
signalling effector, in peripheral organs of LPTEN KO vs. CTL mice
injected with insulin. As shown in Fig. 2A, LPTEN KO mice, stim-
ulated with insulin, displayed lower activation of the insulin
receptor (INSR) in the liver, but higher basal and insulin-stimu-
lated AKT phosphorylation, due to a lack of the PTEN antagonistic
effect on PI3K signalling. Surprisingly, although PTEN expression
was not altered in non-hepatic and metabolically active tissues of
LPTEN KO mice (Supplementary Fig. 1E and F) and despite the
presence of higher TG levels in muscle (Supplementary Fig. 5),
phosphorylation of the INSR and its downstream effector, AKT,
was significantly increased in muscles of LPTEN KO mice, indicat-
ing muscle insulin hypersensitivity (Fig. 2B). Contrasting with
skeletal muscle, AKT phosphorylation in white adipose tissue
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(WAT) of LPTEN KO mice was reduced, although INSR phosphor-
ylation was unaffected (Fig. 2C).

To further evaluate the influence of skeletal muscle on
the glucose tolerance of LPTEN KO mice, we performed

euglycemic-hyperinsulinemic clamps under conditions of com-
plete suppression of hepatic glucose production. We observed
that the glucose infusion rate (GIR) measured at the end of the
clamps was highly increased in LPTEN KO mice, confirming
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enhanced peripheral insulin sensitivity (Fig. 2D). Consistent with
this observation, insulin-induced glucose uptake was increased in
almost all skeletal muscle types examined, while it remained
unaffected in WAT (Fig. 2E).

These results indicate that hepatic PTEN-deficiency induces
muscle insulin hypersensitivity, which importantly contributes
to the improved glucose tolerance observed in LPTEN KO mice.

Hepatic PTEN deletion decreases lipid storage in fat depots

Analysis of the overall phenotypic characteristics of LPTEN KO
mice showed that their body weight and food intake were unal-
tered compared to CTL mice (Fig. 3A and B). The same was also
the case for locomotor activity, energy expenditure and the respi-
ratory exchange ratio (RER) measured by indirect calorimetry, as
well as thermal regulation upon cold exposure (Supplementary
Fig. 3). Furthermore, when body composition was assessed by

EchoMRI analysis, the total lean and fat mass remained similar
in both groups (Fig. 3C). However, LPTEN KO mice exhibited
marked hepatic steatosis, as previously reported (Supplementary
Fig. 1 and [16]). In view of these results, the normal overall fat
content of LPTEN KO mice suggested a decrease in adipose tissue
depots. We therefore used quantitative CT-scan imaging to mea-
sure fat depot volumes. Data obtained indicated that the volumes
of interscapular, subcutaneous and intraperitoneal WAT depots
were drastically reduced in LPTEN KO mice (Fig. 3D). This was fur-
ther confirmed by accurate dissection and weighing of all visible
fat depots in CTL and LPTEN KO mice (Fig. 3E). On the contrary,
the volume and weight of major brown adipose tissue depots
(e.g. interscapular) were unchanged in LPTEN KO as compared
to CTL mice.

We then analysed the mRNA expression of major effectors
involved in lipid metabolism of mesenteric WAT (a representa-
tive WAT in the context of metabolic diseases) and did not detect
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any important and significant change in the expression of key
enzymes regulating FA uptake or lipolysis (Supplementary
Fig. 4A and C), consistent with the absence of significant changes
in plasma TG and non-esterified fatty acid (NEFA) levels (Supple-
mentary Fig. 5A). Although the RER (ratio of VCO2/VO2) tended to
decrease and fat oxidation to increase (Supplementary Fig. 3C
and D) during the diurnal period, the expression of critical rate-
limiting enzymes, controlling fatty acid b-oxidation, was not sig-
nificantly altered (Supplementary Fig. 4C). However, Western
blot analyses of FAS and ACC, two major enzymes required for
FA biosynthesis, revealed a decrease in the expression of these
proteins in WAT of LPTEN KO mice with no change in their
respective mRNAs (Supplementary Fig. 4B). Reduction in FA
esterification was also suggested by a decreased mRNA expres-
sion of Gpat1 (Supplementary Fig. 4A).

Together, these data indicate that PTEN-deficiency in the liver
decreases adiposity through crosstalk mechanisms between the
liver and WAT, preventing FA synthesis and esterification in WAT.

Browning of mesenteric WAT occurs in LPTEN KO mice and correlates
with increased FGF21 production and release by the liver

Recent evidence indicates that browning of WAT (appearance of
brown-like adipocytes called ‘‘beige cells’’ in WAT) may also
importantly contribute to a decreased adiposity and improved
metabolic status in mice [21]. Beige cells with high FA oxidation
capacity in WAT are differentiated from classical white adipo-
cytes by mainly two specific characteristics: (i) the expression
of the uncoupling protein Ucp1 and (ii) multilocular lipid droplet
structures, instead of a single large lipid droplet [21]. As shown in
Fig. 4A, Ucp1 expression was increased in specific WAT depots of
LPTEN KO mice, such as the mesenteric depot, indicating the pres-
ence of beige cells. Further histological analyses of this fat depot
confirmed the presence of beige adipocytes foci, characterized by
the presence of multilocular lipid droplets in LPTEN KO (Fig. 4B).

The effect of hepatic PTEN-deficiency on muscle insulin sensi-
tivity and fat storage in adipocytes highly suggests the presence
of a crosstalk between the liver and peripheral organs. Liver-
derived circulating factors, such as hepatokines and cytokines,
play critical roles in these processes. We therefore assessed the
expression of various factors secreted by the liver, and as shown
in Fig. 4C, the expression of several hepatokines and cytokines,
previously reported to modulate muscle insulin sensitivity and/
or WAT homeostasis, was significantly affected in the liver of
LPTEN KO mice. Of particular interest, was the fibroblast growth
factor 21 (FGF21), which has a positive effect on muscle insulin
sensitivity and browning of adipose tissue [22–25]. Expression
of Fgf21 was also strongly upregulated in isolated primary hepa-
tocytes of LPTEN KO mice and plasma FGF21 levels mirrored the
liver mRNA expression, altogether supporting a major hepatic
origin of circulating FGF21 levels (Fig. 4D and E). However, deple-
tion or overexpression of PTEN per se was not sufficient to affect
Fgf21 expression in primary hepatocytes isolated from CTL mice,
while PTEN deletion in cultured human hepatoma cells (HuH-7)
strongly stimulated Fgf21 expression (Fig. 4F).

Altogether, these data indicate that hepatic PTEN-deficiency
promotes a browning of specific WAT depots. The concerted
action of several dysregulated liver-derived factors, including a
significant upregulation of FGF21 production and secretion, is
probably contributing to the crosstalk between metabolically
stressed PTEN-deficient livers and skeletal muscle/adipose tissue,

triggering improved muscle insulin sensitivity and decreased
adiposity.

Discussion

Alterations of inter-organ communications can lead to drastic
phenotypical changes in the metabolic status of organisms.
Herein, we demonstrate that impaired PTEN signalling in the liver
leads to the development of NAFLD, while positively impacting
on muscle and adipose tissue homeostasis, thereby improving
systemic insulin sensitivity, glucose tolerance, and decreasing
adiposity.

As previously reported, LPTEN KO mice develop a marked
hepatic steatosis [16]. Based on our results, steatosis develop-
ment arises not only from an increased de novo lipogenesis and
decreased VLDL export as shown by Qiu et al. [26], but also from
an increased FA uptake, as suggested by the significant upregula-
tion of several FA transporters. This is linked with substantial
changes in hepatic glucose metabolism, including enhanced gly-
colysis (whose products are essentially used for de novo lipogen-
esis), as well as decreased gluconeogenesis.

Given the increased liver glycolysis and inhibition of gluco-
neogenesis, hepatic-dependent sources of energy during starva-
tion are likely restricted. Although kidneys and the gut may
take over to maintain normoglycemia [27], other sources of
energy might be provided by an increase in adipose tissue lipol-
ysis, releasing FAs in the circulation. Such mechanisms might be
responsible for the drastic reduction in adipose tissue depots of
LPTEN KO mice. However, we do not favour this hypothesis since
no significant difference in circulating NEFA levels was observed
in LPTEN KO mice as compared to CTL mice and because the
expression of key enzymes controlling adipocyte lipolysis was
not significantly changed. Instead, inhibition of lipogenesis and
FA esterification in WAT could partly explain the fat mass loss
in LPTEN KO mice. Another mechanism may lie in the browning
of white adipocytes (presence of beige cells), as detected by a sig-
nificant upregulation of Ucp1 and the presence of multilocular
lipid droplets in the mesenteric WAT depot. Interestingly, the
presence of beige adipocytes in WAT has been linked with
improved glucose tolerance [28], which is precisely observed in
LPTEN KO vs. CTL mice. This might be related to decreased gluco-
neogenesis, mentioned above, and/or to an increase in peripheral
insulin sensitivity. With regard to the latter parameter, one of the
key findings, arising from our analyses of insulin signalling in
skeletal muscle and euglycemic-hyperinsulinemic clamps, was
a marked enhancement of insulin sensitivity and resulting glu-
cose uptake in skeletal muscles from LPTEN KO. This effect on
muscles, together with the decreased adiposity, highly suggests
the existence of a crosstalk between liver and muscle/adipose tis-
sue. Supporting this hypothesis, we found an altered pattern of
cytokines/hepatokines expression and/or secretion (e.g., IL-8,
FGF21 and fetuin A) that were previously reported to mediate
the crosstalk between liver and peripheral tissues and to have
an action on muscle insulin sensitivity and adiposity [29]. Among
them, FGF21 was overexpressed in the liver of LPTEN KO mice,
resulting in elevated plasma FGF21 levels. This insulin-sensitizing
hepatokine is of particular interest since it is known to enhance
glucose uptake in muscle [22,23] and to increase energy expendi-
ture in WAT [30]. Interestingly, FGF21 was also reported to stim-
ulate UCP1 expression and browning of WAT [24,25], in
accordance with our data. How PTEN controls FGF21 expression
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in hepatocytes remains currently unclear. AKT activation was
previously reported to stimulate FGF21 expression in muscle
[31], raising the possibility that FGF21 overexpression in the liver
of LPTEN KO mice is a direct consequence of PTEN-dependent AKT
over-activation. However, our data with primary hepatocytes, in
which PTEN expression is either up- or downregulated, argue
against this hypothesis, and suggest that other hepatic metabolic
stress and/or injuries are the main trigger of FGF21 overexpres-
sion, as previously described in various conditions and tissues
[32]. Future studies should also evaluate whether the beneficial

effects of hepatic PTEN deletion on muscles and WAT are related
to the mere overproduction of FGF21 by the liver, or to a con-
certed action of several hepatic circulating factors, modulated
by PTEN-deficient signalling in hepatocytes.

In addition to our study, PTEN overexpression in transgenic
mice was recently shown to induce increased energy expendi-
ture, hyperactive brown adipose tissues and reduced body fat
accumulation [11,12]. It is therefore clear that chronic alterations
of PTEN signalling in peripheral organs are correlated with adi-
pose tissue plasticity. However, it is likely that alterations of
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Fig. 4. Browning of WAT and increased hepatic FGF21 production in LPTEN KO mice. (A) Ucp1 mRNA expression in white adipose tissue: iWAT, inguinal; eWAT,
epididymal; mWAT, mesenteric, and in brown adipose tissue (BAT) depots. (B) mWAT sections stained with Haematoxylin/Eosin (magnification 10�). Quantification
represents the number and area of lipid droplets per mm2 of mWAT tissue section. (C) Relative mRNA expression of circulating liver-derived hepatokines and cytokines. (D)
Plasma FGF21 levels. (E) PTEN protein expression and Fgf21 mRNA expression in primary hepatocytes isolated from CTL and LPTEN KO mice. (F) PTEN protein expression and
Fgf21 mRNA expression in wild type primary hepatocytes transduced with lentiviral vectors expressing shPTEN, PTEN and respective control vectors (left panel) and HuH-7
hepatoma cells transduced with lentiviral vectors expressing shPTEN or a control vector (right panel). Values are mean ± SEM of at least 4 animals per group or 3
independent experiments for cultured cells.
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PTEN signalling in specific organs exert distinct effects on adipose
tissue biology, through either direct or indirect mechanisms that
are currently not fully understood. A deep understanding of the
role of PTEN in metabolically active tissues and of PTEN-depen-
dent molecular mechanisms, mediating crosstalks between
peripheral organs, would not only improve our general under-
standing of inter-organ communications, but would also allow
envisaging new therapeutic options to treat IR and obesity.
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