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a b s t r a c t

The problem-size effect in simple additions, that is the increase in response times (RTs) and
error rates with the size of the operands, is one of the most robust effects in cognitive arith-
metic. Current accounts focus on factors that could affect speed of retrieval of the answers
from long-term memory such as the occurrence of interference in a memory network or
the strength of memory traces that would differ from problem to problem. The present
study analyses chronometric data from a sample of 91 adults solving very small additions
(operands from 1 to 4) that are generally considered as being solved by retrieval. The
results reveal a monotonic linear increase in RTs with the magnitude of both operands. This
pattern is at odds with the retrieval-based accounts of the problem-size effect and chal-
lenges the well-established view that small additions are solved through retrieval of the
answer from long-term memory. Our results are more compatible with the hypothesis that
even very small additions are solved using compacted fast procedures that scroll an
ordered representation such as a number line or a verbal number sequence. This interpre-
tation is corroborated by the analysis of individual differences.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The problem-size effect, that is the increase in response
times (RTs) and error rates with the size of the operands of
additions and multiplications, is a benchmark of mental
arithmetic (Zbrodoff & Logan, 2005). Concerning additions,
on which this article focuses, four decades of investigation
have not permitted to reach a consensus on the sources of
this effect. Though the selection of nonretrieval and slower
procedures on larger problems (i.e., additions with a sum
larger than 10) has been advocated to account for longer
solution times with larger problems (LeFevre, Sadesky, &
Bisanz, 1996), a problem size effect is also observed for
additions with a sum up to 10 (hereafter, small additions)
or when analyses are restricted to those trials in which
participants report to have solved additions by directly

retrieving the answer from memory. In these latter cases,
the leading hypotheses focus on factors that could affect
speed of retrieval such as the occurrence of interference
in a memory network (Zbrodoff & Logan, 2005) or the
strength of memory traces that would differ from problem
to problem (Ashcraft & Guillaume, 2009). In the present
study, we concentrate on very small additions (augends
and addends, i.e., the first and second operands respec-
tively, from 1 to 4) for which there is a consensus on the
idea that they are solved through retrieval. Contrasting
with this received view, the analysis of RTs from a large
sample of adult participants reveals a clear problem-size
effect that does not fit very well with any of the retrie-
val-based accounts.

In a seminal study, Groen and Parkman (1972) pre-
sented first graders with simple addition problems (the
largest problem was 5 + 4) and asked them to select an an-
swer from 0 to 9 by pressing labeled buttons. The results
are well known. The best predictor of RTs proved to be
the smaller of the two addends. This phenomenon pointed
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towards a Min model assuming that a counting procedure
starts from the larger addend and then counts on by ones
for the value of the smaller addend (e.g., for 2 + 4, counting
4, 5, 6). Regression analyses revealed a slope of 410 ms in
RTs, suggesting that each increment in the counting proce-
dure took more than 400 ms in young children, hence pro-
ducing a large problem-size effect. An exception to this
trend was noted for tie problems (e.g., 3 + 3) that were
solved faster and seemed to not exhibit any size effect.
Consequently, Groen and Parkman suggested that the an-
swers of tie problems were retrieved from long-term
memory, an idea that is now universally admitted. Investi-
gations in adults led to a different picture with a slope for
the min of only 20 ms that was judged an implausibly fast
rate for a counting procedure. Groen and Parkman sug-
gested that instead of counting, adult directly retrieve the
answer of small additions from memory. The small prob-
lem-size effect would result from the sporadic use of
counting strategies in the rare trials (about 5%) on which
direct access failed.

The idea that the problem-size effect in adults is due to
the sporadic use of counting strategies was subsequently
criticized by Ashcraft (Ashcraft & Battaglia, 1978; Ashcraft
& Stazyk, 1981) who noted that, when tie problems are ex-
cluded, the best predictor of RTs in regression analyzes was
the square of the sum of the operands, whereas any count-
ing model would predict linear and not exponential in-
creases in RTs with operands size. Consequently, the idea
was put forward that simple additions were solved
through the search of a tabular representation of the 100
basic addition facts. Beginning at 0,0 and progressing out-
ward along the rows and columns until the intersection is
reached, this search process would slow down as the
search progresses, explaining the non-linear problem-size
effect and that the best predictor is the square of the
sum rather than the sum itself.

Subsequently, other characteristics of the memory net-
work were advocated to account for the problem-size ef-
fect. Siegler and Shrager (1984) suggested that the direct
retrieval of the answer cued by the operands can also acti-
vate competing associations resulting from the obligatory
encoding of errors occurring earlier in development when
additions are mainly solved through counting procedures.
Because large problems involve more processing steps
when solved through counting and are consequently more
error prone, their operands would be associated with more
competing responses. This increased number of competi-
tors would result in slower retrievals. The learning history
of number facts could also have another influence on the
memory network. Hamann and Ashcraft (1986) observed
that the frequency with which addition problems appear
in elementary school textbooks decreases as the size of
the operands increases. More often practiced problems
would lead to stronger associations with their answer.
Both the associations of large problems with more errors
and their lower frequency led Ashcraft and Guillaume
(2009) to assume that they are less strongly represented
in memory, hence their slower retrieval.

Akin to this memory strength model is the network
interference model proposed by Zbrodoff and Logan
(2005) who emphasize how the memory network is

susceptible to interference with 100 pair-wise associations
between only 10 digits. Using alphabetic arithmetic (e.g.,
A + 3 = ?), Zbrodoff (1995) was able to independently
manipulate level of practice of a given problem and simi-
larity among studied problems by contrasting overlapping
items prone to interference (e.g., M + 2, M + 3, M + 4) and
non-overlapping items (A + 2, D + 3, H + 4). The results re-
vealed that it is the combination of differential practice
and interference that makes the problem-size effect ap-
pear, and that this effect is not due to counting but to re-
trieval. From these results and studies on error priming,
Zbrodoff and Logan claimed that the interference model
‘‘remains the best explanation of memory-based arithme-
tic performance’’ (p. 338).

Standing in opposition to these conceptions, LeFevre
et al. (1996) proposed that, like children, adults use both
retrieval and nonretrieval procedures to solve additions.
Using self-report of procedures for solving simple addi-
tions (operands from 0 to 9), they observed that retrieval
was frequent for small additions (more than 80%) but far
rarer for large additions when ties are excluded (only
47%). Thus, they established that the problem-size effect
is mainly due to the use of slower nonretrieval strategies
on problems with a sum larger than 10. Interestingly, the
authors observed that latencies on retrieval trials still in-
creased with problem size, but this effect was substantially
reduced when compared with the effect on all the trials
and it was not particularly systematic. In accounting for
this problem-size effect in retrieval trials, LeFevre et al. fa-
vored the idea that retrieval latencies could reflect acquisi-
tion history. Problems that were more often solved
through nonretrieval procedures in the course of develop-
ment would lead to flatter distribution of associations be-
tween problems and answers resulting from counting
errors, as suggested by Siegler and Shrager (1984), and to
relatively strengthened nonretrieval procedures. These
two factors would concur to produce longer retrieval laten-
cies when the answer is retrieved. Importantly, LeFevre
et al. noted that ‘‘according to this view, the relation be-
tween indices of problem size and latency is likely to be
epiphenomenal’’ (p. 227).

In summary, modern accounts of the problem-size ef-
fect on small additions converge on two ideas. The first is
that the effect results from some structural or functional
characteristics of a process of retrieval from a memory net-
work that stores associations. The second is that, as
emphasized by Ashcraft (1992, p. 80), ‘‘the term problem-
size effect is now generally considered as a misnomer’’
because the effect would not be due to the size of the prob-
lem per se. Indeed, for both the memory strength and the
network interference models, as well as for LeFevre
et al.’s (1996) account of the problem-size effect on retrie-
val trials, the structural characteristics of the problem (i.e.,
magnitude of the min, the sum, or its square) are only coin-
cidentally predictive of RTs in virtue of their relationship to
a more central variable that is problem difficulty, which
determines both the variability in memory strength and
the amount of interference within an organized long-term
memory representation of fact knowledge.

Despite a large consensus on the fact that the problem-
size effect in small additions results from variations in a
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retrieval process and not from a counting procedure, some
uncertainty remains about the real nature of the processes
underpinning addition problem solving. First, the main
argument on which the rejection of any counting model
was initially based is the non-linear (exponential) increase
in RTs with operand size observed by Ashcraft and Batta-
glia (1978). However, these results were based on a very
small sample of 12 participants who verified each of the
100 one-digit additions only once with a correct sum and
once with an incorrect sum. The square of the sum was
the best predictor of the true problems, but when the
200 problems were considered (including false problems),
their RTs correlated at .512 with the correct sum and at
.498 with its square. The fact that the two predictors were
almost collinear (r = .966) renders their comparison in lin-
ear regressions poorly informative. Ashcraft and Stazyk
(1981, Experiment 1) also studied a small sample (20 par-
ticipants) using the same procedure. The correlation ma-
trix for RTs on true non-tie problems and different
predictors revealed that min, sum, and sum2 provided
approximately the same fit (r values of .777, .737, and
.775 respectively). In the same way, LeFevre et al. (1996)
reported a not particularly systematic problem-size effect
on retrieval trials, but their analyses were based on the re-
sponses of 16 adults who solved each of the 100 simple
additions only once. Thus, empirical evidence of a non-lin-
ear or nonsystematic relationship between RTs and magni-
tude of the operands is less compelling than usually
assumed.

Second, some recent studies have called into doubt the
idea that small additions are necessarily solved through di-
rect retrieval. Fayol and Thevenot (2012) observed that
when the sign of the operation appears 150 ms before
the operands, additions and subtractions are solved faster
than when the sign and the operands are displayed simul-
taneously on screen (see also Roussel, Fayol, & Barrouillet,
2002). This priming effect, which was not observed for
multiplication problems, was interpreted by the authors
as evidence that additions and subtractions are solved
using compacted counting procedure that can be activated
by the presentation of the sign. The fact that something
was activated whereas the operands are not yet presented
suggests that the activated knowledge concerns a class of
problems rather than a given problem. Such general
knowledge cannot correspond to a declarative chunk stor-
ing a specific operand-answer association, but rather to a
procedure that can be implemented by a variety of oper-
ands. Interestingly, this priming effect was observed for
small, and even very small, additions (e.g., 2 + 3), but not
for ties. If it turned out, as Fayol and Thevenot claim, that
small additions are solved through reconstructive
strategies such as compacted counting procedures, retrie-
val-based models of the problem-size effect should be
revisited. As the small samples used in some studies on
the problem-size effect suggest, and contrary to Ashcraft
and Guillaume (2009) who stated that a poor way to re-
solve the question is to continue to pursue the research
using current methodologies such as chronometric mea-
sures, we think that reliable sets of data from large samples
are needed to precisely analyze the relationship between
RTs and the magnitude of operands.

In the following, we present chronometric data from a
large pool of 91 participants who were asked to solve very
small additions involving operands from 1 to 4, each par-
ticipant performing 6 trials on each of the 16 additions.
This restricted set of additions was initially chosen for a
purpose totally different from that which guides the pres-
ent analysis. It was used to study the impact of individual
differences in working memory capacity on elementary
processes including also subitizing and reading digits as
well as on more complex processes such as counting large
arrays of dots (Barrouillet, Lépine, & Camos, 2008). Analy-
ses in this previous publication did not go beyond the mere
observation that there was a problem-size effect for addi-
tions that was stronger in low- than in high-span partici-
pants. No systematic comparison of the different additive
problems was run but, as we will see, the data are of high
interest for the question of the problem-size effect. More-
over, these data are analyzed as a function of working
memory capacities. It has been argued that high working
memory capacities would facilitate both the association
between operands and answers in long term memory
and their fast and reliable retrieval (Geary, Bow-Thomas,
Liu, & Siegler, 1996; Thevenot, Barrouillet, & Fayol, 2001).
Indeed, associations between operands and answers in
memory are assumed to result from the repeated practice
of algorithmic procedures during childhood (Siegler & Shr-
ager, 1984). However, lower working memory capacities
could involve slower counting procedures resulting in
longer delays between problem encoding and production
of the answer and more frequent errors. Increased delays
and frequent errors would reduce the probability of encod-
ing associations between problems and answers and com-
promise their subsequent retrieval (Thevenot et al., 2001).
Moreover, several models conceive working memory
capacity as the available amount of resource needed for
activating and retrieving items of knowledge from long-
term memory (Barrouillet, Bernardin, & Camos, 2004;
Cowan, 1999; Lovett, Reder, & Lebière, 1999). Thus, lower
working memory capacities should be associated with
rarer retrievals, something that has already been observed
in children (Barrouillet & Lépine, 2005; Barrouillet,
Mignon, & Thevenot, 2008).

2. Method

2.1. Participants

Ninety-two undergraduate French-speaking students
from the Université de Bourgogne (76 females, Mean age:
20 years, SD = 3.35 years) received course credit to
participate.

2.2. Material and procedure

The addition task analyzed here was performed along
with other numerical and two working memory tasks, a
reading span task and an alphabet recoding task (see Barr-
ouillet, Lépine, et al., 2008, for details). For the reading span
task, three blocks of 20 sentences each were printed in a
booklet with one sentence per page. Each block contained
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5 series from 2 to 6 sentences each presented in ascending
order. Participants were asked to successively read out
loud the sentences and to remember their final word.
When the participant failed to correctly recall a given ser-
ies, the presentation of the block was interrupted and the
next block was presented with the same procedure. The
span was the total number of words in the experimental
series correctly recalled (from 0 to 60). The alphabet recod-
ing is a task in which participants perform additions and
subtractions in the alphabet considered as a numeric chain
(e.g., D � 2 = B; Woltz, 1988). Twenty-four random three-
letter sets were created and randomly allocated to six
operations (+1, +2, +3, �1, �2, �3), each operation receiv-
ing four sets. The three letters appeared successively on
screen for 1 s, followed by the operation for 2 s. When a
question mark appeared, the participants had to perform
the mental operations and to calculate the entire response
before writing it down in a notebook. The score was the
number of sets correctly converted (from 0 to 24). The
scores of the two working memory tasks significantly cor-
related (r = .43, p < .001). Thus we calculated a compound
score by averaging the two z scores.

As far as the addition task was concerned, participants
were asked to add two digits presented simultaneously
on screen. Each trial was preceded by a ready signal (a star)
for 1 s in the center of the screen that was replaced by two
digits displayed in two squares of 5.5 cm disposed side by
side, with a space of 3.5 cm between them. A voice-key
stopped the timer when participants gave their response,
the array disappeared from the screen, and the experi-
menter keyed the response to record accuracy. Participants
pressed the mouse button to display the next problem. Six
experimental trials for each of the 16 possible pairs of dig-
its from 1 to 4 (resulting in 96 experimental trials) were
presented in a random order. The experimental trials were
preceded by 16 practice trials in which all the possible
pairs were presented once.

3. Results

Error rate on the addition task was very low and varied
from 0% to 0.7% across problems (mean = 0.4%) but was
poorly related with problem size (r = .203 between error
rate and the sum). Among the response times (RTs) of
the correctly responded trials, those that differed from
the mean of the overall sample of participants by more
than three standard deviations were considered as outliers
and discarded from the analyses. This procedure resulted
in discarding 3% of the reaction times on the correct re-
sponses. Two additional percents were lost following
voice-key failures. One participant was discarded from
the RT analyses because he did not have any RT on the
addition 4 + 2 after removing errors, outliers, and voice-
key failures. Mean RTs for each of the 91 remaining partic-
ipants on each of the 16 problems were then calculated
and used for further analyses (Table 1). We first present
the results concerning the entire sample of participants be-
fore addressing working memory-related individual differ-
ences. In each case, we first investigated the problem-size
effect by analyzing through ANOVAs how the size of the

two operands affected RTs. The determinants of this size
effect were then explored by regression analyses.

3.1. Overall analyses

First, we performed an ANOVA on the mean RTs for cor-
rect responses with the size of the first and second oper-
ands as within-subject factors. This analysis revealed a
strong problem-size effect with RTs increasing with the
size of both the first, F (3, 270) = 42.27, p < .001, g2 = .32,
and the second operand, F (3, 270) = 80.85, p < .001,
g2 = .47, the two factors significantly interacting, F (9,
810) = 69.25, p < .001, g2 = .44. This interaction was mainly
due to shorter responses on tie than non-tie problems
(643 ms and 716 ms respectively), F (1, 90) = 211.94,
p < .001, g2 = .70, shorter responses that occurred necessar-
ily at different values of the second operand for different
values of the first operand (e.g., the tie problem when the
first operant is 1 corresponds to a second operand of 1,
but the second operand is 2 when the first operand is 2,
and so on). Another source of this interaction was an effect
of asymmetry with shorter responses on problems with
the largest operand as augend than addend (710 ms and
723 ms respectively), F (1, 90) = 34.08, p < .001, g2 = .27.

Second, we investigated the predictive power of struc-
tural predictors of the problems on the observed mean
RTs (Table 2). Along with the traditional structural predic-
tors (i.e., sizes of the first and second operands, of the min-
imum addend, of their sum and its square, as well as their

Table 1
Mean responses times (SDs) for the 16 problems studied in the entire
sample.

Augend Addend

1 2 3 4

1 590 (71) 676 (78) 695 (104) 731 (125)
2 673 (96) 643 (80) 713 (116) 768 (145)
3 687 (110) 709 (115) 699 (101) 752 (140)
4 709 (110) 748 (141) 731 (132) 642 (81)

Table 2
Predictors of response times for different sets of problems in the entire
sample with correlation coefficients and mean slopes (standard deviations).

Predictor Problems

Alla Nontiesb Tiesc

r Slope r Slope r Slope

First .30 12 (14) .32 8 (17) .62 21 (16)
Second .48* 19 (15) .70** 18 (19) .62 21 (16)
Minimum .15 7 (16) .67* 26 (39) .62 21 (16)
Sum .54* 15 (14) .89** 20 (24) .62 11 (8)
Sum2 .43 1 (1) .86** 2 (2) .49 1 (1)
Product .39 4 (4) .62* 7 (9) .49 3 (3)
% Retrieval .14 .51 �.45
Overlap .54* .10 .71

% Retrieval: percentage of retrieval use reported by the participants in
LeFevre et al. (1996). Overlap: see text.

a Number of problems was 16.
b Number of problems was 12.
c Number of problems was 4.

* p < .05.
** p < .01.
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product), we also entered in the equation the percentage of
retrieval use reported by the participants in LeFevre et al.
(1996) for the 16 problems studied here, as well as the
number of problems sharing the same sum as the problem
at hand (e.g., there is only one problem with a sum of 2
which is 1 + 1, but four problems with a sum of 5 that
are 4 + 1, 2 + 3, 3 + 2, and 4 + 1). Problems overlapping by
their sum could suffer interference resulting in slower re-
sponses due to a fan effect by which retrieval times in-
crease with the number of items of knowledge connected
to the same node in the network (Anderson, 1974).

Beginning by non-tie problems, stepwise regression
analysis revealed that the sum was the best predictor of
RTs, t = 6.01, p < .01, with no other factor accounting for
additional variance. Of course, because linear (i.e., sum)
and exponential (i.e., sum2) predictors were almost collin-
ear here (r = .99 for non-tie problems), this analysis cannot
be taken as strong evidence against Ashcraft and Batta-
glia’s (1978) hypothesis of a non-linear increase in RTs
with operand size. However, at the very least, the present
results did not confirm this hypothesis and suggest a linear
increase, which is illustrated in Fig. 1. Quite remarkably for
a so restricted range of problems, the correlation between
RTs and the sum was high (r = .89 for nontie problems)
with a slope of 20 ms per increment. Excluding tie prob-
lems revealed that, as shown in Fig. 1, RTs monotonically
increased with both the first and the second operands
(with the exception of 4 + 3 that took unexpectedly shorter
than 4 + 2). The slopes related with the increase in size of
the second operand were of 28 ms, 30 ms, 22 ms, and
11 ms when the first operand was 1, 2, 3, and 4 respec-
tively for a mean of 23 ms, whereas the slopes related with
the increase in size of the first operand were of 18 ms,
24 ms, 12 ms and 11 ms when the second operand was 1,
2, 3, and 4 respectively, for a mean of 16 ms. As we will
see below, analyses of individual differences will shed light
on the small difference between the two mean slopes (i.e.,
16 ms for the first operand and 23 ms for the second).

Tie problems also exhibited a size effect, with a slope
associated with the sum of 11 ms. However, the best pre-
dictor of RTs in tie problems was not the sum of the oper-
ands or any other structural descriptor, but the amount of
overlap between problems, a factor that has no significant
effect on RTs for non-tie problems. It can be seen in Table 1
that the problems 1 + 1 and 4 + 4 that had unique sums
(i.e., 2 and 8 respectively) involved faster responses than
the other tie problems (and the other problems involving
these operands). Though the number of tie problems stud-
ied did not allow for deeper analyzes, the present results
point toward different processes underpinning tie and
non-tie problem solving.

Overall, apart from the tie problems, RTs were strongly
related with structural characteristics of the problems, and
more precisely with the magnitude of the operands, with
an increase of about 20 ms in RTs when either the first or
the second operand was incremented by one1. This is not
to say that the problem-size effect affected all the partici-
pants. Among the 91 participants, important individual dif-
ferences were observed in the susceptibility to the size
effect that are analyzed in the next section.

3.2. Individual differences in problem-size effect

As we noted above (see Footnote 1), contrary to what
was observed with additions, reading digit times in Barr-
ouillet, Lépine, et al. (2008) were immune to size effect
with a negligible slope of 2 ms from 2 to 8. On this basis,
we decided that a size-related slope that did not exceed
5 ms would correspond to a nil or at least negligible size ef-
fect, and we accordingly classified our participants
depending on whether they exhibited a size-effect (i.e., a

Fig. 1. Mean RTs as a function of the magnitude of the first and second
operands for non-tie problems.

1 As suggested by an anonymous reviewer, it could be argued that this
problem-size effect resulted from a differential sensitivity of the vocal key
to the utterance of the different answers. Though such a factor could have
played a role, it does not seem that it was the source of the problem size
effect observed. Our data are issued from a larger study in which
participants were asked to perform a series of tasks including a reading
digit task in which participants were asked to read Arabic digits aloud. If
the problem-size effect we observed was due to a differential sensitivity of
the voice key, the same size effect would also occur in this reading task.
This was not the case. Though reading times varied from one digit to
another, the size effect from 2 to 8 (the range of the answers uttered on our
study) was negligible (slope of 2 ms) in the entire sample of participants
whereas the problem size effect on the same range of additive answers was
15 ms. When considering the subgroup of 44 participants who exhibited a
size effect for both operands (see the ‘‘individual differences in size effect’’
section), they exhibited a size-related slope of 24 ms for additions, but of
3 ms for reading digits. In order to go further in discarding the interpre-
tation of our results in terms of differential sensitivity of the voice key, the
ANOVA performed on the mean RTs for correct responses with the size of
the first and second operands as within-subject factors was replicated on
transformed RTs obtained by subtracting from the mean RTs the mean time
taken by the entire sample for reading the digit corresponding to the
answer. This analysis revealed the same effects as previously observed with
a strong problem-size effect with transformed RTs increasing with the size
of both the first, F (3, 270) = 10.59, p < .001, g2 = .11, and the second
operand, F (3, 270) = 46.28, p < .001, g2 = .34, the two factors still signifi-
cantly interacting, F (9, 810) = 18.34, p < .001, g2 = .17. Transformed RTs still
increased with the size of both operands, as testified by the significant
linear trends for the first and second operands, F (1, 90) = 20.15, p < .001,
and F (1, 90) = 78.11, p < .001, respectively. Thus, the sum of the operands
was still the best predictor of these transformed RTs with r values of .637
for all the problems and .774 for non-tie problems.
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slope higher than 5 ms) on either the first, the second, or
both operands. It turned out that 15 participants out of
91 did not exhibit any size-effect of either the first or sec-
ond operand, suggesting that they mainly solved additions
by a retrieval procedure, whereas 44 participants exhibited
size-related slopes of more than 5 ms on both operands.
The remaining participants exhibited a size-related slope
on either the first or the second operand only (9 and 23
participants respectively). Interestingly, those participants
who did not exhibit any size effect were faster in solving
additions than those who had a slope for only one of the
two operands (mean response times of 629 ms and
694 ms respectively), who were in turn faster than those
who exhibited a size-effect for both operands (761 ms), F
(2, 88) = 11.87, p < .001. The three groups differed also in
their working memory capacities, with participants that
did not exhibit size-effect having higher compound scores
than those who had a size effect for at least one operand
(mean compound z score of 0.55 and 0.07 respectively),
who in turn had higher working memory capacities than
participants with addition times affected by the size of
both operands (mean z score of �0.21), F (2, 88) = 5.18,
p < .01.

These findings suggest that only a minority of less than
20% of our participants relied on retrieval for solving small
additions, resulting in fast responses that were not affected
by the size of the operands. All the other participants had
solution times that increased with the size of one or both
operands, with about 50% of undergraduate students who
exhibited a strong size effect for both operands, a group
in which the sum accounted for 87% of the variance on
solution times that varied from 677 ms for 2 + 1 to
826 ms for 4 + 3. It should be noted that these findings
strongly depart from what is usually assumed concerning
the predominance of retrieval strategies in solving small
additions, and even from the studies that moderated this
received conception. For example, LeFevre et al. (1996) re-
ported some use of non-retrieval strategies in small addi-
tions, but the rate of retrieval reported by these authors
for the non-tie problems studied here was still higher than
.80, suggesting a massive use of retrieval that contrasts
with our results. Moreover, we have seen that the percent-
age of retrieval reported by these authors was not a reli-
able predictor of solution times.

3.3. Individual differences related with working memory
capacities

As we previously noted, there are theoretical reasons
for assuming that working memory capacity should have
an impact on the use of retrieval for solving additions
and consequently on the existence and magnitude of a
problem-size effect. Interestingly, the compound z score
of working memory for the entire group of 91 participants
correlated with the mean response times on non-tie
(r = �.36, p < .01) and tie problems (r = �.33, p < .01). It also
correlated with the slopes of the regression of RTs on the
sum of the operands for non-tie (r = �.30, p < .01) and tie
problems (r = �.31, p < .01). The lower the working mem-
ory capacities, the slower the responses and the stronger
the problem-size effect. To illustrate the differences related

to working memory capacities, two extreme groups were
contrasted. Participants who obtained positive z scores
on both working memory tasks and a mean z greater than
0.67 constituted the high-working memory span group (18
participants: mean alphabet recoding = 19.39, SD = 2.38;
mean reading span = 20.78, SD = 4.98), whereas those
who obtained two negative z scores and a mean z lower
than �0.67 constituted the low-span group (17 partici-
pants: mean alphabet recoding = 5.94, SD = 3.13; mean
reading span = 7.71, SD = 2.54).

First, we performed an ANOVA on the mean RTs with
the size of the first and second operands as within-subject
factors and the group (high vs. low working memory span)
as between-subject factor. High-span were faster than
low-span individuals (649 ms and 718 ms respectively), F
(1, 33) = 5.93, p < .05, g2 = .15. As already observed in the
entire sample, RTs increased with the size of both the first
and the second operands with a significant interaction, but
more interestingly, the size effect was stronger for low
than high span individuals concerning the first operand, F
(3, 99) = 5.12, p < .01, g2 = .13, whereas the effect of the
second operand did not significantly differ between
groups, F (3, 99) = 2.38, p > .05, g2 = .07. Nonetheless, the
three factors did not significantly interact, F (9,
297) = 1.55, p > .10, g2 = .04. Moreover, both groups exhib-
ited a strong tie effect (737 ms and 661 ms for non-tie and
tie problems respectively in the low-span group, 663 ms
and 608 ms respectively for the high-span group), but
interestingly this tie effect did not interact with groups, F
(1, 35) = 2.18, p > .10. In the same way, working memory
capacity did not interact with the asymmetry effect de-
scribed above, F < 1.

Regression analyses shed light on these phenomena.
Beginning with non-tie problems, both groups exhibited
a size effect with RTs increasing with the sum of the oper-
ands, but this effect was stronger in the low span individ-
uals (mean slope of 26 ms, SD = 24 ms) than in the high
span individuals (mean slope of 8 ms, SD = 16 ms), t
(35) = 2.42, p < .05. As Fig. 2 makes clear, the size of both
the first and the second operands affected RTs in the
low-span group, whereas RTs in high-span individuals re-
mained unaffected by the size of the first operand and only
increased with the second operand. This can be explained
by the fact that among the 17 low span individuals, 9 were
affected by both operands, 5 by the second operand only
and 2 by the first, whereas only one of these participants
could be considered as a retriever with no problem-size ef-
fect. By contrast, 7 out of the 18 high span individuals did
not exhibit any problem-size effect, whereas 7 others were
affected by the second operand only, and there were only 4
high span participants who were affected by the magni-
tude of both operands.

Accordingly, while the sum was the best and a very
good predictor of RTs in the low-span group (r = .94), the
best predictor of RTs in the high-span group was not the
sum (r = .65), but the size of the second operand (r = .84).
In the low span group, the mean slope associated with
the second operand was 26 ms (more precisely, 27 ms,
29 ms, 35 ms, and 11 ms when the first operand was 1, 2,
3, and 4 respectively), very close to the mean slope associ-
ated with the first operand, which was 25 ms (28 ms,
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22 ms, 15 ms, and 34 ms when the second operand was 1,
2, 3, and 4 respectively). By contrast, RTs in high-span indi-
viduals were still affected by the magnitude of the second
operand (mean slope of 12 ms, with slopes of 14 ms, 17 ms,
14 ms, and 3 ms when the first operand was 1, 2, 3, and 4
respectively) whereas the slope associated with the in-
crease in size of the first operand was practically nil (mean
slope of 3 ms). Accordingly, the mean slope associated with
the first operand was significantly steeper in low- than in
high-span individuals (25 ms compared with 3 ms), t
(35) = 2.94, p < .01, whereas the difference in slopes associ-
ated with the second operand did not reach significance
(26 ms compared with 12 ms), t (35) = 1.78, p > .05. In
other words, incrementing either the first or the second
operand by one resulted in an increase in RT of about
25 ms in the low span group, whereas high-span individu-
als remained unaffected by the size of the first operand,
their RTs increasing by 12 ms when the second operand
was incremented by one.

Concerning tie problems, both groups exhibited the
same pattern with 1 + 1 and 4 + 4 eliciting the fastest re-
sponses (Table 3). Nonetheless, low-span were more af-
fected than high-span individuals by problem size. The

sum-related slope was of 11 ms in low-span individuals
but only 6 ms in high-span individuals a difference that
was highly significant, t (35) = 3.58, p < .01.

4. Discussion

This study explored the problem-size effect in very
small additions that are universally considered as solved
through direct retrieval of the answer from memory. We
used a large sample of participants who solved each prob-
lem in six different trials. The results revealed a problem-
size effect in non-tie problems that can be unambiguously
related with the structural characteristics of the problems,
namely the magnitude of the operands. Response times
monotonically increased by about 20 ms each time either
the augend or the addend was incremented by one. Inter-
estingly, we observed individual differences related to
working memory capacities, with higher capacities associ-
ated with faster responding and a different pattern of RTs.
Whereas individuals with lower working memory capaci-
ties exhibited RTs that increased monotonically and in
the same extent with both the first and the second oper-
ands, individuals with the higher spans remained unaf-
fected by the magnitude of the first operand, but their
RTs increased with the size of the second operand. As ob-
served in all studies, tie problems were responded faster.
However, their RTs seemed affected by different factors
than the non-tie problems. While RTs on these latter prob-
lems systematically varied with structural factors, tie prob-
lems were primarily affected by interference-related
factors such as the degree of overlap between problems.
What are the processes underpinning addition problem
solving that could produce such a pattern of results? In
the following, the capacity of the current models to ac-
count for these results is assessed.

One of the main facts arising from this study is that
there was no hint in our results for a nonlinear increase
in RTs. It should be remembered that Groen and Parkman’s

Fig. 2. Mean RTs as a function of the magnitude of the first and second operands for non-tie problems in low-span and high-span individuals.

Table 3
Mean responses times (SDs) for the 16 problems studied in the high-span
and low-span groups.

Augend Addend

1 2 3 4

High span individuals
1 574 (57) 654 (62) 658 (71) 681 (110)
2 638 (64) 610 (55) 658 (84) 694 (93)
3 641 (71) 661 (101) 646 (81) 685 (108)
4 651 (72) 674 (93) 657 (84) 600 (52)

Low span individuals
1 602 (59) 687 (80) 718 (119) 742 (109)
2 685 (105) 664 (78) 731 (118) 774 (133)
3 709 (121) 725 (125) 716 (90) 811 (145)
4 740 (110) 755 (113) 763 (120) 661 (66)
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seminal (1972) model was rejected on the basis that ‘‘no
simple counting-based model could account for a nonlin-
ear increase in RT’’ (Ashcraft & Guillaume, 2009, p. 127).
However, as we noted above, linear and nonlinear predic-
tors are almost collinear when considering simple addi-
tions, and it is very difficult to assert from regression
analyses that a set of data speaks unequivocally for a non-
linear increase. At the very least, our results indicate that,
in the restricted range of the problems studied here, a
counting-based model cannot a priori be excluded. In the
same way, it has been argued that retrieval interference ac-
counts should be preferred to counting and memory search
models because these latter models predict monotonic in-
creases in RTs with digit magnitude whereas this increase
is actually not strictly monotonic (Zbrodoff & Logan, 2005).
Though being not absolutely perfect, the increase in RTs
observed here can be considered as reasonably monotonic.
A model assuming extra-times of 16 ms and 23 ms for
increments by one of the first and second operand respec-
tively provides a very good fit of the mean RTs on the 12
non-tie problems with 84% of variance accounted for. In
the subgroup of low-span individuals, this fit increases
up to 89%. Thus, assuming that RTs increase with the mag-
nitude of the operands seems to be the simplest account of
our results.

Considering that we studied very small additions, such
an increase seems difficult to accommodate with either a
strength memory model or a network interference model.
According to Ashcraft and Guillaume (2009), memory
strength would vary depending on acquisition history.
Those problems that are difficult when solved through
algorithmic strategies during childhood would result in
weaker memory traces that take longer to retrieve. Though
this hypothesis could account for differences between
small and large problems (i.e., with sums larger than 10),
it is far less convincing for the very small problems we
used. These problems are the easiest that can be found
with a minimum addend that does not exceed three, and
a gradient of difficulty does not fit very well with the in-
crease in RTs that we have observed. For example, 4 + 1
took longer than 3 + 1, and 4 + 2 longer than 3 + 2 while
the difference in difficulty between these problems is far
from being evident. In the same way, a network interfer-
ence model would have difficulties in accounting for these
results. According to Zbrodoff and Logan (2005), interfer-
ence would result from a mix of differential practice and
overlap between items. However, the small range of prob-
lems we studied probably did not allow for great differ-
ences in frequency, and the potential effect of differences
in frequency has probably been overestimated in account-
ing for retrieval times in the domain of mental arithmetic.
For example, in the linguistic domain, it has been shown
that dramatic differences in word frequency actually result
in rather small differences in RTs (e.g., decreasing mean
frequency from about 3000 to 60 per million results in
an increase in RTs of about 15 ms in a lexical decision task,
Ferrand et al., 2011). Moreover, it remains unclear that our
problems greatly differed from each other in their amount
of overlap when considering operands (all the operands
from 1 to 4 were involved in the same number of problems
as augend or addend, i.e., 4), and the degree of sum overlap

did not correlate significantly with RTs on non-tie prob-
lems (see Table 2). Rather, the monotonic and linear in-
crease in RTs that we observed points towards a counting
model, or a retrieval model in which some table organized
by magnitude would be searched.

Among the possible counting models, it could be imag-
ined, as LeFevre et al. (1996) suggested, that our larger
problems (e.g., 3 + 4 or 4 + 2) were more often solved
through algorithmic procedures whereas smaller problems
would be retrieved. It could also be argued that differences
related to working memory capacity would result from the
more frequent use of retrieval in high-span individuals.
However, two findings contradict this proposal. First, the
frequency of reported retrieval use for our problems in
LeFevre et al.’s study correlated positively with the size of
the non-tie problems (r = .59) and, consequently, with the
RTs we observed (see Table 2), something at odds with
the hypothesis of longer RTs resulting from a more fre-
quent use of counting strategies. Second, high-span indi-
viduals were not only faster and less affected by the
problem-size effect than low-span individuals, but more
importantly they did not exhibit the same pattern of solu-
tion times, remaining unaffected by the variations in mag-
nitude of the first, but not the second, operand. This cannot
be accounted by the mere hypothesis of a higher rate of re-
trieval strategy in high-span individuals. Another possibil-
ity would correspond to the ‘‘direct access plus counting’’
model proposed by Groen and Parkman (1972) who ob-
served in adults a slope of 20 ms very close to our estimate.
According to this model, direct access would fail in a small
proportion of trials for which a min counting process
would be used. However, the min model does not provide
a very good fit of our data (Table 2).

Thus, it seems that we are left with an hypothesis akin
to Ashcraft and Battaglia (1978) who suggested that RTs
reflect the search in a network representation for additions
that would resemble a square table with entry nodes for
the digits 0–9 on two adjacent sides. Response times
would correspond to the time required to search the point
of intersection corresponding to the operands. Ashcraft
and Battaglia made additional assumptions such as a
stretching of this table on the region of large sums to ac-
count for the exponential relationship they observed be-
tween RTs and the correct sum, but this additional
assumption could be jettisoned if the relationship is linear.
However, the psychological plausibility of such a table is
questionable. Theoretical accounts favoring direct retrieval
from memory as the source of the problem-size effect usu-
ally assume that the storage in long-term memory of prob-
lem-answer associations is a byproduct of the repeated
solving of additive problems through counting strategies.
This incidental learning does not follow any particular or-
der, occurring according to the unpredictable encounters
with problems, and the process by which the resulting
memories would organize themselves as a function of the
magnitude of the operands remains unclear.

It is probably premature to propose a final explanation
from a single study, but it seems that none of the previous
models of the problem-size effect can account for the ob-
served pattern of RT increase with non-tie problems. Thus,
the present study permits at least to discard several
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hypotheses. As we have seen, retrieval-based models advo-
cating either differential memory strength or susceptibility
to interference have difficulties in accounting for the
monotonic increase in RTs. Moreover, the hypothesis of in-
creased RTs with larger problems due to the more frequent
use of counting procedures sporadically used among retri-
evals is not corroborated by verbal reports of retrieval from
LeFevre et al. (1996) study that correlate positively with the
size of the problems. Finally, the hypothesis of a search in a
square table lacks psychological plausibility and is under-
mined, at least in its received version (Ashcraft & Battaglia,
1978), by the linear trend between sum and RTs. It should
be remembered that Ashcraft and Battaglia’s proposal was
mainly motivated by two findings. First, any counting
hypothesis was rejected on the basis of the non-linear in-
crease in RTs and the fact that 20 ms were judged too short
an increment for counting, pointing towards a retrieval
process. Second, this retrieval was assumed to take the
form of a search on a table because RTs were related with
the magnitude of the operands through the sum2 predictor.
However, we did not found an exponential but a linear in-
crease in RTs.

If retrieval-based models including the hypothesis of
the search through an additive mental table have difficul-
ties in accounting for our results, a simpler and more plau-
sible account becomes possible, which is that additions
could be solved by a process of rapid scrolling through an
easily accessible and overlearned representation stored in
long-term memory. This representation could take the
form of a mental number line or a verbal number sequence
of the first numbers. Entering this line or sequence by its
origin, the procedure would search for the position corre-
sponding to the first operand, and then move forward by
a number of steps corresponding to the second operand.
Response times would reflect the distance from the origin
to the value corresponding to the correct sum, accounting
for the observed linear relationship between sum and RTs.
This mechanism could be constructed by compiling basic
activities rooted in counting and solving additions through
a counting-all strategy, and could correspond to the com-
pacted procedures or schemas evoked by Baroody (1994).
Of course, we are aware of the fact that an increment of
20 ms per step has always been considered as ruling out
any counting-based account of addition solving. Groen
and Parkman (1972) themselves considered 20 ms as an
unreasonable incrementing rate for adult’s mental count-
ing, arguing that the rate of silent counting in adults is
about one number every 150 ms (Landauer, 1962). How-
ever, the compacted procedure would not necessarily rely
on silent counting, but rather on the mental scanning of
a portion of an ordered spatial or verbal representation. In-
deed, empirical findings indicate that processing lists of
items in this way can be surprisingly fast. For example,
when studying the processes by which word lists are main-
tained in an active state for immediate serial recall in
memory span tasks, Cowan, Saults, and Elliott (2002) esti-
mated to about 40 ms the time needed to reactivate one
item through a covert retrieval process. If ad hoc word lists
constructed for the purpose of memory experiments and
learned through a single exposure are accessed at a rate
of 40 ms per item, it can be imagined that deeply rooted

and automated lists such as the number line or the verbal
number sequence can be accessed at a rate of 20 ms per
item. Moreover, accessing up to three or four numbers in
immediate succession, which was the maximum magni-
tude of the operands we used, would not exceed the capac-
ities of the focus of attention as estimated by Cowan
(2001). This renders possible the simultaneous representa-
tion in a single attentional focusing of a small portion of
the number line (or the verbal number sequence) and the
control of a small number of steps corresponding to the
second operand when moving forward from the value cor-
responding to the first operand. The control of this small
number of steps could rely on a process akin to subitizing,
the limitations of which have already been accounted for
by the limitation of the focus of attention (Cowan, 2001).
In the same way as subitizing presents a small but reliable
slope, this scrolling of the number line or the verbal
numerical sequence could take longer as the number of
steps increases, engendering the problem-size effect that
we observed. Occurring in a single attentional focusing
and relying on the mental scrolling of an overlearned se-
quence, this compacted procedure could be especially fast.
If our hypothesis of a compacted procedure operating on
the items held within a single focus of attention is correct,
this means that adding operands larger than 4 would re-
quire a different type of procedure requiring several suc-
cessive attentional focusing. This kind of procedure
would probably be far slower than the compacted proce-
dure, in the same way as, in enumerating collections,
counting is slower and involves steeper slopes than subi-
tizing (Mandler & Shebo, 1982). This latter hypothesis de-
serves empirical confirmation and further studies.

Our results suggest that, even with small operands, this
compacted and highly automated procedure would be
superseded by retrieval when solving tie problems for
which the best predictor was not the sum but an interfer-
ence-related index. However, we do not think that the fas-
ter responses observed on tie problems were due to the
fact that retrievals are necessarily faster than algorithmic
procedures, because tie problems benefit also from an
encoding advantage for repeated operands that could
underpin the observed difference. The preferential use of
retrieval over the compacted procedure for tie problems
could be due to the salience of the unique association be-
tween each small integer and the answer of its associated
tie addition (i.e., 1–2, 2–4, 3–6) from which declarative
knowledge such as ‘‘eight is two times four’’ or ‘‘two is half
of four’’ could be derived.

Such a compacted procedure could correspond to the
reconstructive strategy primed by the anticipated presen-
tation of the additive sign in Fayol and Thevenot’s (2012)
study. It is worth to note that the hypothesis of a com-
pacted procedure could also account for the individual dif-
ferences observed. Barrouillet, Lépine, et al. (2008)
suggested that the influence of working memory capacity
on cognition is mediated by the impact of a basic gen-
eral-purpose resource that affects each atomic step of cog-
nition. The faster responses and flatter slopes observed
with higher working memory capacities could result from
a capacity to perform more quickly each step of the proce-
dure. We also observed that individuals with the highest
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working memory capacity were no longer affected by the
size of the first operand, whereas the size of the second
operand had still an effect. This finding suggests some
capacity to directly access the position corresponding to
the first operand. This could result from a capacity to ac-
cess simultaneously different locations or to a higher mas-
tery in the manipulation of the number line. Finally, we
observed that high and low working memory capacity
individuals do not differ on their sensitivity to tie vs.
non-tie problems. This suggests that the faster responses
on tie problems do not depend on a cognitive process
highly dependent on working memory capacity, corrobo-
rating the idea that these faster responses probably result
from some peripheral process such as encoding rather than
from deeper processes involving central activities.

A last question is in what extent such a compacted and
automated procedure would differ from a search through a
table, as suggested by Ashcraft and Battaglia (1978). It
could be argued that the two hypotheses are akin because
the search through a table would involve the same scroll-
ing of a ‘‘number line-like’’ representation to access the
target intersection between line and column. However, a
main difference is that the procedure we describe does
not require the storage and retrieval of problem-answer
associations, but only uses the number line or the verbal
numerical sequence and their numerical properties that
are discovered early in development (Fuson, Richards, &
Briars, 1982). This is not to say that such associations do
not exist and that they are never used. As we have seen,
there were participants who exhibited flat RT patterns cor-
responding to what a retrieval hypothesis would predict,
and they were faster than the others. In the same way, re-
trieval remains the most plausible hypothesis for tie prob-
lem solving. However, it is also possible that the
compacted procedure is sufficiently fast to efficiently com-
pete with retrieval and to be used by a large majority of
individuals to solve even the smallest additive problems.

To conclude, precise measures on a large sample of par-
ticipants solving a restricted range of very small additive
problems revealed a pattern of RTs that does not fit very
well with current accounts of the problem-size effect. In-
deed, increase in RTs seems strongly related to the magni-
tude of the operands. Considering the restricted range of
problems we studied, our hypothesis of a compacted and
automated procedure should be seen as a speculative at-
tempt. Nonetheless, our results echo and reinforce previ-
ous proposals by Baroody (1994) and meshes with recent
findings from Fayol and Thevenot (2012) that are difficult
to reconcile with the received view that small additions
are solved by direct retrieval.
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