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Abstract
We develop the use of mutual information (MI), a well-established metric in information theory,
to interpret the inner workings of deep learning (DL) models. To accurately estimate MI from a
finite number of samples, we present GMM-MI (pronounced ‘Jimmie’), an algorithm based on
Gaussian mixture models that can be applied to both discrete and continuous settings. GMM-MI is
computationally efficient, robust to the choice of hyperparameters and provides the uncertainty on
the MI estimate due to the finite sample size. We extensively validate GMM-MI on toy data for
which the ground truth MI is known, comparing its performance against established MI
estimators. We then demonstrate the use of our MI estimator in the context of representation
learning, working with synthetic data and physical datasets describing highly non-linear processes.
We train DL models to encode high-dimensional data within a meaningful compressed (latent)
representation, and use GMM-MI to quantify both the level of disentanglement between the latent
variables, and their association with relevant physical quantities, thus unlocking the interpretability
of the latent representation. We make GMM-MI publicly available in this GitHub repository.

1. Introduction

The flexibility and expressiveness of deep learning (DL) models are attractive features, which have led to their
application to a variety of scientific problems (see e.g. Raghu and Schmidt [1] for a recent review). Despite
this recent progress, deep neural networks remain opaque models, and their power as universal
approximators [2–4] comes at the expense of interpretability [5]. Many techniques have been developed to
gain insight into such black-box models [6–13]. These solutions vary in their computational efficiency and in
the range of tasks to which they can be applied; however, there is no consensus as to which method provides
the most trustworthy interpretations, and a general framework to interpret deep neural networks is still an
avenue of active investigation (see e.g. Li et al [14], Linardatos et al [15] for recent reviews).

DL models are also widely used in representation learning, where a high-dimensional dataset is
compressed to a smaller set of variables; this latent representation should contain all the relevant information
for downstream tasks such as reconstruction, classification or regression [16, 17]. Disentanglement of these
compressed variables is also often imposed, in order to associate each latent to a physical quantity of domain
interest [17–24]. However, how best to access the information captured by these latent vectors and connect it
to the relevant factors remain open questions.
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https://doi.org/10.1088/2632-2153/acc444
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/acc444&domain=pdf&date_stamp=2023-4-11
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-9836-2661
mailto:d.piras@ucl.ac.uk
https://github.com/dpiras/GMM-MI


Mach. Learn.: Sci. Technol. 4 (2023) 025006 D Piras et al

In this work, we focus on representation learning and link the latent variables to relevant physical
quantities by estimating their mutual information (MI), a well-established information-theoretic measure of
the relationship between two random variables. MI allows us to interpret what the DL model has learned
about the domain-specific parameters relevant to the problem: by interrogating the model through MI, we
aim to discover what information is used by the model in making predictions, thus achieving the
interpretation of its inner workings. We also use MI to quantify the level of disentanglement of the latent
variables.

MI has found applications in a variety of scientific fields, including astrophysics [25–33], biophysics
[34–40], and dynamical complex systems [41–48], to name a few. However, estimating the MI I(X,Y)
between two random variables X and Y, given samples from their joint distribution p(X,Y), remains a
long-standing challenge, since it requires p(X,Y) to be known or estimated accurately [49, 50]. When X and Y
are continuous variables with values over X ×Y , I(X,Y) is defined as:

I(X,Y)≡
ˆ
X×Y

p(X,Y)(x,y) ln
p(X,Y)(x,y)

pX(x)pY(y)
dxdy , (1)

where pX and pY are the marginal distributions of X and Y, respectively, and ln refers to the natural logarithm,
so that MI is measured in natural units (nat). I(X,Y) represents the amount of information one gains about
Y by observing X (or vice versa): it captures the full dependence between two variables going beyond the
Pearson correlation coefficient, since I(X,Y) = 0 if and only if X and Y are statistically independent [51]. A
comprehensive summary of MI and its properties can be found in Vergara and Estévez [50].

The most straightforward estimator of I(X,Y) given samples of p(X,Y) consists of binning the data and
approximating equation (1) with a finite sum over the bins. This approach is heavily dependent on the
binning scheme, and is prone to systematic errors [39, 52–59]. Kraskov et al [56] proposed an estimator
(hereafter referred to as KSG), based on k-nearest neighbors, which rewrites I(X,Y) in terms of the Shannon
entropy, and then applies the Kozachenko–Leonenko entropy estimator [60] to calculate each term (see
section 2.2 for more details). However, the KSG estimator only returns a point estimate, is strongly
dependent on the number of chosen neighbors, and does not scale well with sample size [61]. Bayesian
approaches to obtain the full distribution of MI have also been discussed [62–64], but they are not easily
applicable to continuous data, and have been shown to be strongly dependent on the chosen prior [64].

More recently, MI estimators based on bounds approximated by neural networks have gained interest
[19, 65–76]. In particular, Belghazi et al [69] proposed a neural estimator of I(X,Y) (hereafter referred to as
MINE) rewriting it as a Kullback–Leibler (KL) divergence [77], and considering its Donsker–Varadhan
representation [78] (see section 2.2 for more details). While yielding differentiable MI estimates (essential
e.g. for backpropagation when training DL models), such neural-network-based estimators do not
necessarily return an accurate estimate of equation (1), are heavily dependent on the training
hyperparameters, and have been shown to suffer from a poor variance-bias tradeoff [75]. The use of MI
estimates for interpreting deep representation learning has recently been investigated as well [19, 32, 79, 80];
however, exploiting MI to interpret deep representation learning requires a robust density estimate of the
joint probability distribution between latent variables and relevant physical parameters, and the
uncertainties on the MI estimate to be quantified, ensuring that any trends in MI are statistically significant.

To address these requirements, we present Gaussian mixture model (GMM)-MI (pronounced ‘Jimmie’),
an algorithm to estimate the full distribution of I(X,Y) based on fitting samples drawn from the distribution
with GMMs. While the use of GMMs to estimate MI is not new [81–86], these previous works only
considered MI in the context of feature selection, and did not carry out uncertainty quantification on the
relevant MI estimates, which is critical when using MI to interpret DL models. GMM-MI has been designed
to be a robust and flexible tool that can be applied to multiple settings where MI estimation is required.
Crucially, it also returns error estimates which we verified to be statistically correct on test datasets including
bivariate distributions of various shapes and non-linear transformations of Gaussian samples. We first
extensively validate GMM-MI on these toy data for which the ground truth MI is known, including
comparisons to the KSG and MINE estimators in terms of both efficiency and accuracy, additionally showing
that GMM-MI is unbiased and the MI uncertainty scales as expected with the sample size. We then train
representation-learning models on high-dimensional datasets including simulations of dark matter halos
formed through non-linear physical processes, real astrophysical spectra and synthetic shape images with
known labels. We demonstrate the use of GMM-MI to achieve the interpretability of such models.

The paper is structured as follows. In section 2.1 we describe GMM-MI, and recall the essential details of
the KSG and MINE estimators in section 2.2. In section 3, we present extensive experiments where we
validate our MI estimator on toy data, and then in section 4 we use MI to interpret the latent space of DL
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models trained on synthetic and real data. We conclude in section 5, including an outlook over planned
extensions of our algorithm.

2. Method

2.1. Estimation procedure (GMM-MI)
Our algorithm uses a GMM with c components to obtain a fit of the joint distribution p(X,Y):

p(X,Y)(x,y|θ) =
c∑

i=1

wiN (x,y|µi,Σi) , (2)

where θ is the set of weights w1:c, means µ1:c and covariance matrices Σ1:c. With this choice, the marginals
p(x) and p(y) are also GMMs, with parameters determined by θ. Our procedure for estimating MI and its
associated uncertainty is as follows.

1. For a given number of GMM components c, we randomly initialize ninit different GMMmodels. Each set of
initial GMMparameters is obtained by first randomly assigning the responsibilities, namely the probabilities
that each point belongs to a component i, sampling from a uniform distribution. The starting values of
each µi and Σi are calculated as the sample mean and covariance matrix of all points, weighted by the
responsibilities, while each wi is initialized as the average responsibility across all points. Having multiple
initializations is crucial to reduce the risk of stopping at local optima during the optimization procedure
[87–91].

2. We fit the data using k-fold cross-validation: this means that we train a GMM on k− 1 subsets of the data
(or ‘folds’), and evaluate the trained model on the remaining validation fold. Each fit is performed with the
expectation-maximization algorithm [92], and terminates when the change in log-likelihood on the training
data is smaller than a chosen threshold.We also add a small regularization constantω to the diagonal of each
covariance matrix, as described e.g. in Melchior and Goulding [91], to avoid singular covariance matrices.

3. We select the model with the highest mean validation log-likelihood across folds ℓ̂c, since it has the best gen-
eralization performance. Among the kmodels corresponding to ℓ̂c, we also store the final GMM parameters
with the highest validation log-likelihood on a single fold: these will be used to initialize each bootstrap fit
in step 5, thus reducing the risk of stopping at local optima and significantly accelerating convergence.

4. We repeat steps 1–3 iteratively increasing the number of GMM components from c= 1. We stop when
ℓ̂c − ℓ̂c−1 is smaller than a user-specified positive threshold, and select the value of c− 1 as the optimal
number of GMM components to fit. In this way, we avoid overfitting the training data and adding too
many components, which would considerably slow down the procedure while not significantly improving
the density estimation.

5. We bootstrap the data nb times, and fit a GMM to each bootstrapped realization. Each fit is initialized
with the set of parameters selected in step 3, and with the number of components found in step 4. We use
bootstrap to capture not just a point estimate of MI, but its full distribution.

6. For each fitted model, we calculate MI by solving the integral in equation (1) using Monte Carlo (MC)
integration overM samples.

7. We return the sample mean and standard deviation of the distribution of MI values.

A flowchart summarizing the GMM-MI procedure is shown in figure 1. We choose the initialization
procedure described in step 1 for its speed, but in our implementation of GMM-MI other initialization
procedures are also available and could be alternatively used. For instance, it is possible that the random
initialization we set as default returns overlapping components which inhibit the optimization procedure; in
those cases, we recommend switching to an initialization based on k-means [93]. On the other hand,
k-means itself is known to only guarantee convergence to local optima [94]; for this reason, we also provide
the possibility to perturb the means by a user-specified scale after an initial call to k-means. We call this
approach ‘randomized k-means’, and offer full flexibility to select the most appropriate initialization type
based on the data being analyzed.

Our implementation also allows the user to set a higher patience, i.e. consider more than one additional
component in step 4 after the validation loss has started to decrease; alternatively, it is possible to select the
number of components yielding the lowest Akaike information criterion (AIC, [95]) or Bayesian
information criterion (BIC, [96]), with details in appendix A. All three methods implemented are
computationally efficient, and aim to prevent the model from overfitting the available samples; in figure 8 we
further show that even in a case where the three metrics disagree on the number of GMM components to
use, the final MI estimates agree with each other within the uncertainties, thus demonstrating that GMM-MI
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Figure 1. Flowchart describing GMM-MI, our algorithm for estimating the distribution of mutual information (MI) using
Gaussian mixture models (GMMs). All implementation details can be found in section 2.1.

is robust to the metric being used. The number of folds (k) should be set based on the number of available
samples, so that each fold is representative of the data. The number of initializations (ninit), bootstrap
realizations (nb), and MC samples (M) should be chosen based on the available computational budget.

In many instances, the factors of variation that are used to generate the data are discrete variables [97]; in
these cases, we will need to estimate MI between a continuous variable X and a categorical variable F which
can take v different values f1:v. In this case, assuming the v values have equal probability (as will be the case
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when considering the 3D shapes dataset in section 4.1), the MI I(X,F) can be expressed as:

I(X,F) =
1

v

v∑
i=1

ˆ
X
dx p(X|F)(x|fi)

lnp(X|F)(x|fi)− ln
1

v

v∑
j=1

p(X|F)(x|fj)

 , (3)

where we use a GMM to fit each conditional probability p(X|F)(x|fi). The full derivation of equation (3) can
be found in appendix B.

2.2. Alternative estimators
In order to validate our algorithm, we compare it with two established estimators of MI. The KSG estimator,
first proposed in Kraskov et al [56], rewrites MI as:

I(X,Y) =H(X)+H(Y)−H(X,Y) , (4)

where H(·) refers to the Shannon entropy, defined for a single variable as:

H(X)≡−
ˆ
X
pX(x) lnpX(x) . (5)

The Kozachenko–Leonenko estimator [60] is then used to evaluate the entropy in equation (5):

Ĥ(X) =−ψ(k)+ψ(N)+ ln cd +
d

N

N∑
i=1

lnϵ(k)(i) , (6)

where ψ(·) is the digamma function, k is the chosen number of nearest neighbors, N is the number of
available samples, d is the dimensionality of X, cd is the volume of the unit ball in d dimensions, and ϵ(k) is
twice the distance between the ith data point and its kth neighbor. Applying equation (6) to each term in
equation (4) would lead to biased estimates of MI [39, 56]; for this reason, the KSG estimator actually
considers a ball containing the k-nearest neighbors around each sample, and counts the number of points
within it in both the x and y direction. The resulting estimator of MI then becomes [39, 56]:

Î(X,Y) = ψ(k)+ψ(N)− 1

k
−⟨ψ(n(k)x )+ψ(n(k)y )⟩ , (7)

where n(k)x (n(k)y ) represents the number of points in the x (y) direction, and ⟨·⟩ indicates the mean over the
available samples. In our experiments, we consider the implementation of the KSG estimator available from
SKLEARN in this https link.

We also compare our algorithm against the MINE estimator proposed in Belghazi et al [69]. MI as
defined in equation (1) can be interpreted as the KL divergence DKL between the joint distribution and the
product of the marginals:

I(X,Y) = DKL

[
p(X,Y)||pXpY

]
, (8)

where the KL divergence between two generic probability distributions pX and qX defined over X is
defined as:

DKL [pX||qX]≡
ˆ
X
dx pX(x) ln

pX(x)

qX(x)
. (9)

The MINE estimator then considers the Donsker–Varadhan representation [78] of the KL divergence:

DKL [pX||qX] = sup
T

EpX [T]− lnEqX

[
eT
]
, (10)

where the supremum is taken over all the functions T such that the expectations E [·] are finite, and
parameterizes T with a neural network. In our experiments, we consider the implementation available in this
https link, which includes the mitigation of the gradient bias through the use of an exponential moving
average, as suggested in Belghazi et al [69].
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2.3. Representation learning
We apply our MI estimator GMM-MI to interpret the latent space of representation-learning models.
Specifically, we consider β-variational autoencoders (β-VAEs, [21, 98]), where one neural network is trained
to encode high-dimensional data D into a distribution over disentangled latent variables z, and a second
network decodes samples of the latent distribution back into data points D̃. The two networks are trained
together to minimize the following loss function:

L=MSE(D, D̃)+βDKL [pϕ(z|D)||p(z)] , (11)

where MSE indicates the mean squared error, pϕ(z|D) represents the encoder parameterized by a set of
weights ϕ, p(z) is the prior over the latent variables z, and β is a regularization constant which controls the
level of disentanglement of z.

We will also reproduce the results of Lucie-Smith et al [32] in section 4.2, for which the architecture is
slightly different: the latent samples are combined with a given query (the radius r) and fed through the
decoder to predict dark matter halo density profiles at each given r. This model is referred to as the
interpretable variational encoder (IVE), with an analogous loss function to equation (11).

3. Validation

In this section, we validate GMM-MI on toy data for which the MI can be computed analytically: we show
that GMM-MI is in good agreement with the ground truth, as well as other MI estimators, while returning
the full distribution of MI including its uncertainty. We run all the MI estimations on a single CPU node
with 40 2.40 GHz Intel Xeon Gold 6148 cores using no more than 300 MB of RAM, reporting the speed
performance in each case.

We first consider a bivariate Gaussian distribution with unit variance of each marginal and varying level
of correlation ρ ∈ [−1,1], following Belghazi et al [69]. In this case, the true value of I(X,Y) can be obtained
analytically by solving the integral in equation (1), yielding:

I(X,Y)true =−1

2
ln
(
1− ρ2

)
. (12)

We consider two additional bivariate distributions, the gamma-exponential distribution [54, 56, 99, 100],
with density (α> 0 is a free parameter):

p(X,Y)(x,y|α) =

{
1

Γ(α)x
αe−x−xy x> 0,y> 0

0 otherwise
, (13)

where Γ is the gamma function, and the ordered Weinman exponential distribution [54, 56, 99, 100], with
density:

p(X,Y)(x,y|α) =

{
2
αe

−2x− y−x
α y> x> 0

0 otherwise
. (14)

The true value of I(X,Y) for these distributions can be obtained analytically, and is reported in appendix C.
Since I(X,Y) is invariant under invertible transformations of each random variable [56], we consider ln(X)
and ln(Y) when estimating MI in the case of the last two distributions [56]. To demonstrate the power of our
estimator, we restrict ourselves to the case with only N = 200 samples. To estimate MI, we consider the KSG
estimator with 1 neighbor (to minimize the bias, and following Kraskov et al [56]), the MINE estimator
trained for 50 epochs with a learning rate of 10−3 and a batch size of 32, and our estimator GMM-MI with
k= 2 folds, ninit = 3 different initializations, a log-likelihood threshold on each individual fit of 10−5, a
threshold on the mean validation log-likelihood to select the number of GMM components of 10−5,
nb = 100 bootstrap realizations,M= 104 MC samples, and a regularization scale of ω = 10−12.

The results are reported in figure 2. The KSG estimator is the fastest, and yields MI values closely
matching the ground truth, but returns biased estimates around e.g. |ρ|= 0.4 in the bivariate Gaussian case,
and α≃ 1 in the ordered Weinman case. The MINE estimator is more computationally expensive and shows
a relatively high variance, which is expected since MINE has been shown to be prone to variance
overestimation due to the use of batches [72]. GMM-MI, on the other hand, returns a distribution of MI in
good agreement with the ground truth inO(1) s, and provides an uncertainty estimate due to the finite
sample size. We also found the results of GMM-MI to be robust to the choice of hyperparameters: changing
the values of the likelihood threshold, MC samples, bootstrap realizations or regularization scale by one
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Figure 2. Estimates of mutual information (MI) for: (a) a bivariate Gaussian distribution with varying correlation coefficient ρ;
(b) a gamma-exponential distribution with varying α, as in equation (13); (c) an ordered Weinman exponential distribution with
varying α, as in equation (14). The dashed black line indicates the ground truth MI. We compare the KSG estimator ([56], solid
red line), the MINE estimator ([69], dotted-dash green line), and our estimator GMM-MI, indicated with the gray shaded area
(mean± two standard deviations). The numbers in parentheses indicate the time to obtain a single estimate with KSG and
MINE, and the full distribution of MI in the case of GMM-MI, for each ρ or α. These estimates are obtained from N= 200
samples, and with hyperparameters reported in section 3.

order of magnitude, or doubling the number of folds and initializations, did not significantly change the
results obtained with GMM-MI.

We further validate GMM-MI by testing that it is unbiased, and that the estimated MI variance scales as
N−1, when the number of available samples N increases. We additionally show that GMM-MI satisfies the
MI property of invariance under invertible non-linear transformations [56]. We consider a bivariate
Gaussian distribution with ρ= 0.6, and three different functions applied to one marginal variable Y : f(y) = y
(identity), f(y) = y+ 0.5y3 (cubic) and f(y) = ln(y+ 5.5) (logarithmic). To deal with these datasets, we
change the GMM-MI hyperparameters to k= 3, ninit = 5, andM= 105; however, we find no significant
variations in the results even with different sets of hyperparameters. We repeat the estimation procedure of
MI 500 times, drawing N samples with a different seed every time, and considering N = 200, N = 2000 and
N= 20000. For each estimate, we calculate the bias, i.e. the difference between the estimated value of MI and
the ground truth.

We report violin plots of the bias and of the MI standard deviation as returned by GMM-MI across the
500 trials in figure 3. The mean bias, indicated as a black cross, converges to 0 asN grows, and it is always well
below the typical value of the standard deviation, thus demonstrating that GMM-MI is unbiased. This is true
even when considering the cubic and the logarithmic transformations, further confirming that GMM-MI
correctly captures the invariance property of MI. Moreover, in all cases the standard deviations returned by
GMM-MI follow a power law∝ 1√

N
as expected, represented as a gray line in the bottom plots. Remarkably,

we found that even with very low numbers of samples (N = 50), GMM-MI returns MI values consistent with
the ground truth, even when applying the non-linear transformations considered in this section.

3.1. A note on bootstrap
As reported in Holmes and Nemenman [39], using bootstrap to associate an error bar to MI estimates can
lead to catastrophic failures: duplicate points can be interpreted as fine-scale features, introducing spurious
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Figure 3. Left panel: violin plots of the bias and standard deviation returned by GMM-MI, when applied to samples from a
bivariate Gaussian distribution with ρ= 0.6, with varying number of samples N. The bias is defined as the difference between the
MI estimate returned by GMM-MI and the ground truth MI. The black crosses represent the mean of each distribution, while the
gray line in the bottom plots indicates the expected power law∝ 1√

N
passing through the estimated mean MI value atN= 20000.

Middle panel: same as in the left panel, but all marginal y samples are mapped through a cubic function, to demonstrate the
invariance of MI under invertible transformations. Right panel: same as in the middle panel, but with a logarithmic function.

Figure 4.Mutual information distributions (means± one standard deviation) when bootstrapping N= 200 samples from a
bivariate Gaussian distribution using three different estimators. As reported in Holmes and Nemenman [39], the KSG estimator
(purple line) returns a biased estimate of MI. On the other hand, the MINE estimator (green line) and our algorithm based on
Gaussian mixture models (red line) all agree with the ground truth (dashed black line). However, MINE takes two orders of
magnitude more time than our estimator, and returns a higher-variance estimate since it includes the variability due to the neural
network initialization.

extra MI. In this section, we address this concern and empirically show that, despite including a bootstrap
step, our procedure does not lead to biased estimates of MI.

We consider the same experiment described in Holmes and Nemenman [39], where a single data set of
N = 200 bivariate Gaussian samples with ρ= 0.6 is bootstrapped 20 times. We apply the KSG (with three
neighbors, following Holmes and Nemenman [39]) and MINE estimators to each bootstrapped realization,
and compare it against our estimator with nb = 20. The results are reported in figure 4. The KSG estimator
returns a mean MI biased by a factor of 4, while both MINE and our procedure return an accurate estimate.
However, MINE is two orders of magnitude more computationally demanding, and returns an error bar
which is larger than with our procedure, since it tends to overestimate the variance, as discussed in section 3.

4. Results

In this section, we apply our estimator to interpret the latent space of representation-learning models trained
on three different datasets, ranging from synthetic images to cosmological simulations. We use our MI
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Figure 5.Mutual information (MI) between each ground truth factor and each latent variable of the β-VAE model trained on the
3D Shapes dataset. The values are obtained using GMM-MI, and the associated error estimates (not shown) are typically
O(10−3)–O(10−4) nat. All zeros indicate values of MI below 0.01 nat. Each latent is dependent upon only a single factor, except
for z2 and z4, which appear entangled with scale and shape, as also found in Kim and Mnih [101].

estimator to quantify the level of disentanglement of latent variables, and link them to relevant physical
parameters. In the following experiments, we consider k= 3 folds, ninit = 5 different initializations, a
log-likelihood threshold on each individual fit of 10−5, nb = 100 bootstrap realizations,M= 105 MC
samples, and a regularization scale of ω = 10−15; as in the experiments described in section 3, we found
GMM-MI to be robust to the hyperparameter choices. Obtaining the full distribution of MI with our
algorithm typically takesO(10) s on the datasets we analyze, using the same hardware described in section 3.

4.1. 3D Shapes
We consider the 3D Shapes dataset [101, 102], which consists of images of various shapes that were generated
by the following factors: shape (4 values), scale (8 values), orientation (15 values), floor color (10 values),
wall color (10 values), and object color (10 values). Each combination of factors is included in the dataset
exactly once, for a total of 480 000 images. We train a β-VAE, as described in section 2.3, on this dataset,
using a six-dimensional latent space and setting the value of β using cross-validation.

After training, we encode 10% of the data, which were not used for training or validation, and sample
one point from each latent distribution. To interpret what each latent variable zi has learned about each
generative factor of variation f j, we measure the MI I(zi, fj) using equation (3). In figure 5 we report the MI
values for all latents and factors using GMM-MI: except for scale and shape, each latent variable carries
information about a single factor of variation. The difficulty in disentangling scale and shape was also
reported in Kim and Mnih [101]. To assess the level of dependence between latent variables, we calculate
I(zi,zj): these values are below 10−4 nat for all pairs, except for the one carrying information about both scale
and shape, i.e. I(z2,z4) = 0.04± 0.01 nat.

4.2. Dark matter halo density profiles
In the standard model of cosmology, only 5% of our Universe consists of baryonic matter, while the
remainder consists of dark matter (25%) and dark energy (70%) [103]. In particular, dark matter only
interacts via the gravitational force, and gathers into stable large-scale structures, called ‘halos’, where galaxy
formation typically occurs. Given the highly non-linear physical processes taking place during the formation
of such structures, a common tool to analyze dark matter halos are cosmological N-body simulations, where
particles representing the dark matter are evolved in a box under the influence of gravity [104–106].

Dark matter halos forming within such simulations exhibit a universal spherically-averaged density
profile as a function of their radius [107–109]; this universality encompasses a huge range of halo masses and
persists within different cosmological models. While the universality of the density profile is still not fully
understood, Lucie-Smith et al [32, LS22 hereafter] showed that it is possible to train a deep representation
learning model to compress raw dark matter halo data into a compact disentangled representation that
contains all the information needed to predict dark matter density profiles. Following LS22, we consider
4332 dark matter halos from a single N-body simulation, and encode them using their IVEinfall model with
three latent variables. The latent representation is used to predict the dark matter halo density profile in 13
different radial bins.
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Figure 6.Mutual information (MI) between each latent variable and dark matter halo density ρtruth in each radial bin for the
IVEinfall model [32]. The points with darker error bars correspond to the sample mean and standard deviation obtained with our
algorithm (GMM-MI). The striped areas indicate the kernel density estimate (KDE) values shown in Lucie-Smith et al [32], with
bandwidths of 0.3 (lower limit) and 0.1 (upper limit). There is good agreement between the two approaches; in particular, the
GMM-MI estimates overlap with the KDE estimates at lower (higher) bandwidth when the MI estimates are higher (lower), due
to the different KDE bandwidths sometimes underfitting and sometimes overfitting the data. GMM-MI is designed to avoid such
cases, as we explain in section 4.2.

We calculate the MI between the ground-truth halo density in each radial bin and each latent variable,
aiming to reproduce the middle panel of figure 4 in LS22, where further details can be found. We show the
trend of MI for all radial bins and latent variables in figure 6. We compare the estimates from GMM-MI with
those obtained using kernel density estimation (KDE) with different bandwidths, as done in LS22. A major
difference between the two approaches is that our bands indicate the error coming from the limited sample
size, while their bands represent the sensitivity of the KDE to different bandwidths. The results are in good
agreement: in particular, GMM-MI returns estimates closer to the KDE approach with smaller bandwidth
when MI is high; in this case, the higher KDE bandwidth value underfits the data. On the other hand, for
lower values of MI, GMM-MI yields estimates consistent with the KDE ones at higher bandwidth, since the
lower bandwidth overfits the data. This confirms that GMM-MI avoids underfitting and overfitting of the
data by design. We also checked that the latent variables of the IVEinfall model are independent: as in LS22,
the MI between each pair of latents isO(10−2) nat.

4.3. Stellar spectra
We consider the model presented in Sedaghat et al [80, S21 hereafter], where a β-VAE is trained on about
7000 real unique spectra with a 128-dimensional latent space. These spectra were collected by the
High-Accuracy Radial-velocity Planet Searcher instrument ([110, 111]) in the spectral range 378–691 nm,
and include mainly stellar spectra, even though Jupiter and asteroid contaminants are present in the dataset.
All details about the data, the preprocessing steps and the training procedure can be found in S21.

To select the most informative latent variables, the median absolute deviation (MAD) is calculated for
each of them; the rest of the analysis is carried out on the six most informative latents only. We calculate MI
between each of these six variables and six known physical factors, all treated as continuous variables. These
are the star radial velocity, its effective temperature Teff, its mass, its metallicity [M/H], the atmospheric air
mass and the signal-to-noise ratio.

The MI estimates obtained with GMM-MI are shown in the top panel of figure 7: the 124th latent
variable shows high dependence on the radial velocity, while the 85th latent appears entangled with both the
effective temperature and the mass. The other physical parameters do not show a dependence on a particular
latent amongst the ones with the highest MAD, even though in S21 a more complete analysis exploring latent
traversals and investigating subsets of data is presented. The bottom panel of the same figure shows the
results obtained with the procedure outlined in S21, which uses histograms with a certain number of bins (40
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Figure 7. Left panel: mutual information (MI) between the six most-informative latent variables (based on the median absolute
deviation) and six astrophysical parameters related to the stellar spectra described in section 4.3, calculated using our algorithm
GMM-MI; the corresponding error bars (not shown) are typicallyO(10−2) nat. Right panel: same as the top panel, using the MI
estimator of Sedaghat et al [80] based on histograms. The results agree overall: the 124th variable is highly correlated with the
radial velocity, while the effective temperature Teff and mass seem mostly correlated with the 85th latent. The metallicity [M/H],
the atmospheric air mass and the signal-to-noise ratio (SNR) do not display strong dependence on any of the selected latent
variables.

in this case) as density estimators. The trend agrees with our results, even though the particularly high
number of bins chosen might overfit the data and overestimate MI (compare e.g. the [M/H]MI estimates),
analogously to the KDE results in figure 6. On the other hand, our algorithm provides a robust way to select
the hyperparameters, thus avoiding underfitting or overfitting the samples.

5. Conclusions

We presented GMM-MI (pronounced ‘Jimmie’), an efficient and robust algorithm to estimate the MI
between two random variables given samples of their joint distribution. Our algorithm uses GMMs to fit the
available samples, and returns the full distribution of MI through bootstrapping, thus including the
uncertainty on MI due to the finite sample size. GMM-MI is demonstrably accurate, and benefits from the
flexibility and computational efficiency of GMMs. Moreover, it can be applied to both discrete and
continuous settings, and is robust to the choice of hyperparameters.

We extensively validated GMM-MI on toy datasets for which the ground truth MI is known, showing
equal or better performance with respect to established estimators like KSG [56] and MINE [69]; we also
tested that GMM-MI respects MI invariance under invertible transformations, is unbiased and returns MI
errors that scale as expected with sample size. We demonstrated the application of our estimator to interpret
the latent space of three different deep representation-learning models trained on synthetic shape images,
large-scale structure in cosmological simulations and real spectra of stars. We calculated both the MI
between latent variables and physical factors, and the MI between the latent variables themselves, to
investigate their degree of disentanglement, reproducing MI estimates obtained with various techniques,
including histograms and kernel density estimators. These results further validate the accuracy of GMM-MI
and confirm the power of MI for gaining interpretability of DL models.

We plan to extend our work by improving the density estimation with more flexible tools such as
normalizing flows (NFs, [112, 113]), which can be seamlessly integrated into neural network-based settings
and can benefit from graphics processing unit acceleration. Moreover, combining NFs with a differentiable
numerical integrator would make our estimator amenable to backpropagation, thus allowing its use in the
context of MI optimization. We will explore this avenue in future work.

Data availability statement

GMM-MI is publicly available in this GitHub repository (https://github.com/dpiras/GMM-MI, also
accessible by clicking the icon ), together with all data and results from the paper.
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The data that support the findings of this study are openly available at the following URL/DOI: https://
github.com/dpiras/GMM-MI.

Acknowledgments

We thank Nima Sedaghat, Martino Romaniello and Vojtech Cvrcek for sharing the stellar spectra model and
data. We are also grateful to Justin Alsing for useful discussions about initialization procedures for GMM
fitting. DP was supported by the UCL Provost’s Strategic Development Fund, and by a Swiss National Science
Foundation (SNSF) Professorship Grant (No. 202671). The work of HVP was supported by the Göran
Gustafsson Foundation for Research in Natural Sciences and Medicine and the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement
No. 101018897 CosmicExplorer). HVP and LLS acknowledge the hospitality of the Aspen Center for Physics,
which is supported by National Science Foundation Grant PHY-1607611. The participation of HVP and LLS
at the Aspen Center for Physics was supported by the Simons Foundation. This study was supported by the
European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 818085
GMGalaxies. AP is additionally supported by the Royal Society. NG was funded by the UCL Graduate
Research Scholarship (GRS) and UCL Overseas Research Scholarship (ORS). This manuscript has been
authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S.
Department of Energy, Office of Science, Office of High Energy Physics. This work used computing
equipment funded by the Research Capital Investment Fund (RCIF) provided by UKRI, and partially funded
by the UCL Cosmoparticle Initiative. This work used facilities provided by the UCL Cosmoparticle Initiative.

Author contributions

D P: formal analysis; investigation; validation; software; writing—original draft preparation, review &
editing; visualization.HV P: conceptualization; methodology; validation; writing—review & editing;
funding acquisition. A P: conceptualization; methodology; validation; writing—review & editing; funding
acquisition. L L-S: methodology; validation; resources; writing—review & editing. NG: software; validation;
writing—review & editing. BN: writing—review & editing.

Appendix A. Comparison of convergence criteria for GMMs

By default, our proposed procedure considers the validation log-likelihood to select the best number of
components of the GMMmodel. Alternatively, one can use the Akaike or the Bayesian information criteria
(AIC or BIC, respectively), which are defined as:

AIC= 2p− 2ℓ , (A1)

BIC= p lnN− 2ℓ , (A2)

where ℓ is the log-likelihood on the training data (the entire dataset in this case), and p= 6c− 1 is the total
number of GMM parameters, with c the number of GMM components. These criteria include a term for the
goodness of fit (ℓ), plus a penalization term to avoid overfitted models. The model with the lowest AIC or
BIC should be chosen, and ample discussions are available as to which criterion works best [88, 114, 115].

As an example, we compare the trend of the validation log-likelihood, AIC and BIC in the context of the
dark matter halo density profiles (section 4.2) when considering the second latent variable (latent ‘B’) and
the density in the first radial bin. We increase the number of GMM components from 1 to 15, and report the
results in figure 8. The validation log-likelihood reaches its maximum at seven components, and then starts
to slowly decrease. The AIC also prefers seven components, while the BIC is in favor of fewer components
(four). This is not surprising, since the penalization term is stronger in the BIC case, given the high number
of samples. All three metrics considered are efficient to compute, and since the MI estimates returned by
GMM-MI with seven and eight components are 0.026± 0.003 nat and 0.025± 0.003, respectively, we
conclude that our approach is robust to the choice of the metric used to select the number of GMM
components.
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Figure 8. Top panel: validation log-likelihood per sample as a function of the number of Gaussian mixture model (GMM)
components, when fitting joint samples from the ground-truth density for the first radial bin and the second latent variable of the
IVEinfall model [32]. The GMM reaches the highest log-likelihood at seven components (dashed black line), which is the value used
to then estimate mutual information according to the procedure described in section 2.1, since the change in the log-likelihood is
always bigger than the specified threshold of 10−5.Middle and bottom panels: trend of the Akaike information criterion (AIC) and
Bayesian information criterion (BIC), defined in equation (A1) and equation (A2), as a function of the number of components.
The lowest values of these quantities (marked by dashed black lines) indicate the models that best fit the data. The MI values
returned by GMM-MI are 0.026± 0.003 nat and 0.025± 0.003 nat with seven and four components respectively, showing that
the different number of GMM components found does not significantly impact the final estimates of MI.

Appendix B. Derivation of the MI between a continuous and a categorical variable

While equation (3) is not novel, in this appendix we detail the assumptions made in its derivation. We first
rewrite equation (1) as:

I(X,Y) =

ˆ
X×Y

p(X|Y)(x|y)pY(y) ln
p(X|Y)(x|y)

pX(x)
dxdy . (B1)

Then, we assume a generalized probability density function for the categorical variable F over F :

pF( f) =
v∑

i=1

pF( f= fi)δ( f− fi) =
1

v

v∑
i=1

δ( f− fi) , (B2)

where δ is the Dirac delta function, and in the last step we assumed that F can take the values f1:v with equal
probability. Combining the last two equations, we obtain:

I(X,F) =

ˆ
X×F

dxdf p(X|F)(x| f)pF( f) ln
p(X|F)(x| f)

pX(x)

=
1

v

v∑
i=1

ˆ
X
dx p(X|F)(x|fi)

lnp(X|F)(x|fi)− ln
1

v

v∑
j=1

p(X|F)(x|fj)

 , (B3)

as reported in equation (3).

13



Mach. Learn.: Sci. Technol. 4 (2023) 025006 D Piras et al

Appendix C. Ground truth values of MI

We report the true values of MI for the bivariate distributions considered in section 3. These values can be
obtained via direct integration of equation (1), and depend on a real-valued parameter α> 0. For the
gamma-exponential distribution [54, 56, 99, 100] as defined in equation (13):

I(X,Y) = ψ(α+ 1)− lnα , (C1)

where ψ is the digamma function, defined as:

ψ(x) =
Γ′(x)

Γ(x)
.

For the ordered Weinman exponential distribution [54, 56, 99, 100] as defined in equation (14):

I(X,Y) =


ln
(
1−2α
2α

)
+ψ

(
1

1−2α

)
−ψ(1) α < 1

2

−ψ(1) α= 1
2

ln
(
2α−1
2α

)
+ψ

(
2α

2α−1

)
−ψ(1) α > 1

2

. (C3)
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