
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Chapitre de livre 1996 Published version Open Access

This is the published version of the publication, made available in accordance with the publisher’s policy.

Higher-Order Functional Composition in Visual Form

Dami, Laurent; Vallet, Didier

How to cite

DAMI, Laurent, VALLET, Didier. Higher-Order Functional Composition in Visual Form. In: Object

applications = Applications des objets. Tsichritzis, Dionysios (Ed.). Genève : Centre Universitaire

d’Informatique, 1996. p. 139–154.

This publication URL: https://archive-ouverte.unige.ch/unige:156427

© The author(s). This work is licensed under a Creative Commons Attribution (CC BY)

https://creativecommons.org/licenses/by/4.0

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:156427
https://creativecommons.org/licenses/by/4.0

Higher-Order Functional Composition in
Visual Form

Laurent Dami and Didier Vallet

Abstract
A visual fonnalism for functional composition is presented, which dcpans from m:iny other vi-
sual systems in that it is not merely dat3flow: 1.he fonno lism also suppons the notion of lliglif!l·-
onl~r composition, i.e. 1tf!ating functions ns data. This is done through a simple notion of graph
re1Vriting. wlliclt can be explained in a very inruitive fashion by moving software components
along data flow paths. The intended goal of this formalism is mainly dldactieol: some non-triYial
aspects of the lambda calculus or other higher-order rewriting systems can be demonstrated with·
out any mathematical background.

1. Introduction

It is common folklore to say that functions can be seen as black boxes, t:ransfonning some inputs
i.nto some outpul. This view makes it easy to explain functional composition as an assembly of
connected boxes, where the output of a box is used as input to the next box. Furthennore, it is
clear that such an assembly can be put in a bigger box, under a new black cover; in other words,
encapsulation of functional composition bas a direc t graphical counterpart. Examples of such
statements can be found in textbooks on functional programming, a.ad a number of visual pro-
gramming languages have implemented tJie "functions as boxes" approach [1][2](3)[5][6];
therefore Lhe visual representation of functions is widely acknowled~ed as an adequate 1001 for
teaching functional programming and functional composition. ln Figure 1 we provide an exam-

r---i -
Figure 1 Example of a functional graph

pie of a graphical notation to support this common view. Functions are pictured, not as black
boxes, but as white boxes (this is more convenient for complex graphs, as will be seen later);
they get input and produce output across ports, which are pictured as small rectangles; finally,
connections between functions are represented by arrows. The picture displays a function which
takes three inputs. On the left, we see the function as an encapsulated box. On the right, we see
in a white big box the "inside" of the function, which is a configuration of three other functions .
The inputs of the encapsulated configuration are distributed across the internal components, and
the final result is exported through the output port at the bottom.

139

140 Higher-Order Functional Composition in Visual Form

The notation is convenient for functional composition, but nevertheless is fairly limited.
The reason is that it does not capture the full story about functions: we can show how data flows
from one function to the next, but we cannot show a fundamental aspect of functional program-
ming, namely the fact that functions themselves are data, and can be used as input to other func-
tions. Such higher-order programming features are essential for example for modelling recur-
sion. Since the boxes and arrows of Figure 1 can only represent a static dataflow configuration,
there are many black boxes which cannot be "opened up" graphically: to explain what they do,
we have to go to other formalisms. As a matter of fact, functional visual programming systems
often escape the dataflow limitation by adding name references to a global environment (this can
bring support for recursion), or by adding the notion of primitive boxes written in some external
language.

In order to capture higher-order programming in a visual formalism, what is needed is some
notation for functional application. Instead of using only functions which are known statically,
we should be able to get a function at some input port, and then apply it to some data available
in the current configuration. This corresponds to a functiona.1 expression ofthe form (x a), where
x is a variable, while a is any expression. To do so, we introduce the notion of grey box. A grey

Figure 2 Example of a grey box

box is a template for a function which will be filled up later. It can be seen as a printed circuit,
prepared to receive a chip, but in which the chip has not been plugged yet. The question, then,
is: how and when will the chip be supplied? This is answered by a set of rewrite rules associated
with lhe graphical notation. The chip (the function) travels in the system across usual data paths,
until it reaches its grey box, at which point it can slart to operate. Allhough it would obviously
not make sense in terms of real hardware, the notion of a "chip travelling in the circuit" is ex-
tremely simple to explain and understand. The example in Figure 2 displays a configuration in
which a function is expected to arrive at the leftmost input port, for filling the grey box on the
bottom. All the circuitry to feed arguments to that function and to collect the result is already
prepared.

The resulting graphical system has the full power oftbe lambda calculus. It is primarily in-
tended as a teaching tool, maybe not only for functional programming, but also for more general
purposes like principles of formal systems. However, it may a.Isa provide interescing insights
into topics such as graph reduction, parallel reduction, or out-of-order parameter binding. Such
possibilities are briefly discussed in the last section.

L. Dami and D. Val/et 141

For the rest of this paper, we try to introduce all concepts at a purely graphical level, i.e.
without requiring any background in functional programming and the lambda calculus; the ob-
jective is to show that these principles can effectively be taught in a graphical environment. The
syntax is specified in section 2.; section 3. presents the rewrite rules; and section 4. illustrates
the system with some simple examples. For specialists of functional programming, section 5.
relates our work to known results.

The system presented here has been implemented in a tool Visua/Lambda, which supports
interactive edition of box graphs, and translates them into lambda expressions. These expres-
sions are then fed to a usual functional interpreter. The tool is described in section 6.

2. Box graph formation

This section presents the syntax of box graphs. Since. our objective is pedagogical, the presenta-
tion is in textual fonn, rather than using some graph grammar fonnalism; however, it is hope-
fully precise enough to rule out most ambiguities.

A box graph consists of boxes, ports, and connections. Boxes are non-overlapping white or
grey rectangles; ports are small black rectangles located on the border of a box; connections are
directed arrows between ports and/or boxes. Box graphs must obey lo some fonnation rules
which are detailed below.

Boxes are ctivided into wlzite and grey boxes. To slay wilh the metaphor introduced in the
previous section, white boxes can be though of as chips, while grey boxes are holes in a printed
circuiL, prepared to receive chips. White boxes are furthermore divided into two kinds:

• primitive boxes. Primitive boxes (also called constants) may be entities such as numbers,
truth values, strings, or primitive functions on these entities; they are pictured as white
boxes, with a name inside the box identifying the entity. They may or may not have some
ports on the border of the box, according to the rules for ports specified below. We do
not bother to give a full specification of constants, since they operate at a distinct level
from the rest of the system, and therefore can be chosen according to particular needs of
the context. This is like what happens in the lambda calculus, which is often used in an
applied form (with added constants and corresponding so-called o-rules), without any in-
terference with the mechanics of functional abstraction and application. In the following,
we will mainly use integer constants, together with integer operators, such

as:[:J~~~
• composite boxes. Composite boxes are big white boxes which contain other boxes (either

while or grey), with their associated connections. The inclusion is strict, i.e. boxes cannot
intersect with each other. Composite boxes have their own ports. Grey boxes cannot con-
tain other boxes.

Pons are small black rectangles located on the border ofa box, either towards the inside or
towards the outside of the box. Ports on the inside are called il1p11t por1s, ports on the outside are
called 011tp111 ports. A box may have any number of input pons, but has exactly one output pore.

142 Higher-Order Functional Composition in Visual Form

Input ports are ordered; this can be indicated explicitly through integer labels, but most usually
the orclerine will he implicit, accorcline to the followine c:nnvention; ports on the left border of
the box are numbered first, starting from the top; then ports on the top border are numbered,
starting from the left; no input ports will appear on the other borders ofa box. To make this clear,

3 4 5

r------~1
w -Figure 3 Port ordering

Figure 3 displays the port ordering for a box with five inputs.

For a given port, the side of the black rectangle which is shared with the adjacent box is
called the input side of the port. The opposite side of the port is the output side. The notions of
input/output sides are not to be confused with input/output ports; the difference is pictured in
Figure 4, containing both input and output ports, with letters i and o indicating the input/output
sides of ports.

input sides
box boundary
output sides

input ports

~~

c--, ~ .-~ ---..~rl
'------------t~-.-·.--1output port ~

0

Figure 4 Input/output ports and sides

Connections arc represented by directed arrows; they obey to the following rules:

• the source of an arrow is output side of a port (either input or output port), or the outside
border of a white box (either primitive or composite)

• the destination of an arrow is the input side of a port, or the border of a grey box

• two arrows cannot share the same destination (but can share the same source)

• arrows cannot cross box boundaries.

A path is a non-empty collection of arrows a1 ... an such that the destination of ai and the
source of ai+I are the same port. The source of a1 is the source of the path, and the destination
of a0 is the destination ofthe path. An arrow is shared if i.t belongs to several disjoint paths. By
this definition, every path has at least one arrow which is not shared. Removing a path a 1 .. • an
in a graph consists of removing its arrows wich are not shared, and the corresponding ports: if
both ai and ai+ 1 are not shared, then both arrows should be removed together with the port p whis
is the destination of ai and the source of ai+ 1.

L. Dami and D. Val/et 143

A box is fully connected iff all its input ports have incoming arrows; it is free iff all its input
ports have no incoming arrow. By Lhis definition, boxes like f"""ll without any input ports
are both free and fully connected. Conversely, boxes with seve~t ports cru1 be neither free
nor fully connected, if just some of their input ports have incoming arrows.

A graph is well-connected iff

• every grey box is fully connected, and furthermore has an incoming arrow on its border

• if a white box is fully connected, then there is no outgoing arrow from its border; con-
versely, it is not fully connected, then there is no outgoing arrow from its output port

• the output port of every composite box has an incoming arrow

• there is no cycle, i.e. no path for which the source and the destination are the same port.

It may seem that there are many rules, and that building a well-connected box graph is a
complex process. In fact, with just a little practice, most of these rules are obvious to the eye;
the only rule which requires more complex, non-local analysis is the last rule about cycles.

An example ofa correct graph is given in Figure 5. It corresponds to the lambda expression

Figure 5 A simple box graph

(A.f.A.x. f(f x}} (Ax. x+1) 23

This displays many features which are typical of box graphs. The composite box on the left is
an incrementation function, using the constants' l' and'+'. The composite box on the right takes
a function as first argument, and applies it twice to its second argument. What may seem some-
what unusual to a functional programmer is that functional application is not always pictured the
same way. If the operator is statically known, then application is simply an arrow from the actual
argument to the corresponding input port of the function. If the operator a variable, grey boxes
must be used.

Figure 6 displays an incorrect graph, in which we tried to represent as many kinds of mis-
takes as possible. These are identified by small italic letters. The problems are the following:

a) a white box cannot be the destination of an arrow

b) the box has two output ports

144 Higher-Order Functional Composition in Visual Form

Figure 6 An incorrect graph

c) the arrow crosses a box boundary

d) the output port of the composite box has no incoming arrow

e) the grey box has no incoming arrow on its border

f) two arrows share the same destination

g) the destination is not the input side of the port

h) the grey box is not fully connected (input port without incoming arrow)

i) the arrow creates a cycle

3. Rewrite rules

Intuitively, the correct example of Figure 5 should yield the result 25. [n order to specify how
the system can produce this result, we need to introduce some rewrite rules. These are delta
rules, for reducing graphs of constants, beta rules, for reducing usual abstractions, and garbage
col/action ruleG, for oimplif)'ing box gruph3. The tcnnino.logy is borrow.::d from the h1111uJ<1 cal-
culus.

All rules are presented both with a textual explanation and with a more formal description
using graph grammars [4]. A graph grammar rule has the shape of a 'Y'. lnluilivdy, the left-
hand side represents the subgraph to be rewritten, lhe right-hand side represenlS the subgraph
which replaces it, and the upper side represents the "context'', i.e. nodes in the surrounding graph
which have connections to either the original subgraph or the new subgraph. We will used small
black circles • to denote abstract nodes in the context, i.e. these may represent either ports or
boxes.

3.1 Delta reduction rules

Delta reduction rules are external to the system; they are supplied together with constants, to be
able to reduce constant expressions. For example if we are using constants for integer numbers
and integer operators, we will assume the existence of delta reduction rules such as the one pic-
tured in Figure 7; typically there will be an infinity of such rules, for all combinations ofnumbers
to be added.

L. Dami and D. Val/et 145

Figure 7 A delta reduction rule

3.2 Beta reduction rules

As explained above, delta reduoLion rules operate on constants at a distinct level. So the core of
the dynamics of system comes from the beta reduction rules, which replace grey boxes by white
boxes. This corresponds to the idea exposed in the introduction 10 have software chips which
"travel in the system".

A beta-redex is a path from the border of a free white box to the border of a grey box, such
that the white box has at least as many input ports as tl1e grey box. The redex is co111racted by

• replacing the grey box by a copy of the white box, joining the corresponding input and
output ports

• removing the path

In the case of a grey box with n=3 input ports and a white box with n+k=5 input ports, this is
expressed by the following Y-rule:

Figure 8 Beta reduction

146 Higher-Order Functional Composition in Visual Form

The star'*' associated to the arrow from the white box to the grey box denotes that this connec-
tion can be any path, instead of just a single arrow. After the reduction step, a copy of the white
box .bas been created, and is embedded in the graph by preserving all previous port connections
of the grey box: the grey box itself has disappeared, together with its incoming path. The original
white box remains, together with its other connections (if any).

3.3 Curry reduction rules

In case there is a path from a free white box with n input ports to a grey box with n+k input ports,
the beta reduction rule above cannot be applied. The following rule can solve such situations.

• a grey box with n+k input ports (n, k > 0) can be split into two separate grey boxes with
n and k input ports respectively, and with an arrow from the output port of the first box
to the border of the second box.

Figure 9 pictures a curry reduction in the case where n=3 and k=2.

Figure 9 Curry reduction

3.4 Garbage collection

• a box without any outgoing arrow can be deleted

• leta 1 . . • an bea path with sources and destination d. lfit is possible to draw a legal single
arrow from s 10 d, i.e. without crossing any box boundary, then remove the path a 1 ... an
and add the arrow (s, d).

4. Examples

A simple example to illustrate our approach is to encode boolean values and boolean operations.
Figure I 0 displays such encodings. Values Tn1e and False are wh.ite boxes with two input ports,
which co1U1ec1 either the first or the second input to the output. The conditional if a then b else
c is a box with three inputs; we decorated them with corresponding labels to make the discussion
easier. Input port a is fed into a grey box which receives connections from band c. It is easy to

L. Dami and D. Va/let 147

True False

~ L:J:]
Cond b c Not

·~~
And Or

Figure 10 Encoding the Booleans

see that, depending of which boolean value is given at a, the circuitry will connect either b or c
to the output port. Therefore this indeed corresponds to a conditional statement which selects
either its left branch or its right branch. Similarly, one understands immediately how the Not
box, which is very similar to Cond except that the connections are reversed, transforms True into
False and vice-versa.

The encoding of And and Or operations is a little more complex. To help understanding it,
and to illustrate the reduction rules in action, we will follow the reduction steps for the expres-
sion False Or (Not False). The corresponding initial graph is pictured in Figure 11.

False

Figure 11 False or (not False)

In this initial graph there are to Beta-redexes: two paths starting from the False box, with
grey boxes as destinations. Note that the path from the Not box to a grey box within Or is not a
redex, because the Not box is not free (it has an incoming arrow on its first input port). After
contracting both redexes, and performing appropriate garbage collection (for example deleting
the False box, since no other path starts from it), the situation is the one of Figure 12: Now the
Not box is free, and we have a new Beta-redex from Notto a grey box. Contraction of this redex
yields a final graph in Figure 13: and at this point it is clear that the result is a box which behaves
exactly like True, i.e. it is a box with two inputs, which connects its first input to the output. As
a matter of fact, the garbage collection rules allow us to rewrite this result exactly as True

148 Higher-Order Functional Composition in Visual Form

Figure 12 False or (not False), second step

Figure 13 Final result of (False or (Not False))

5. Translation to Lambda Calculus

To anybody with some knowledge of the lambda calculus, the examples above are not surpris-
ing, since they are a direct translation of the usual Church encoding of boolean values:

True = A.xy.x
False = 'J...xy.x
Cond = 'J...xyz. x y z
Not = 'J...xyz. x z y
And = A.lrxy. r (I x y) y
Or = /...lrxy. r x (I x y)

In general , any box graph has one corresponding lambda tenn. In the reverse direction, ev-
ery closed lambda term bas several corresponding box graphs; however these a.re all equivalent
modulo garbage collection rules. To make this correspondance explicit, we give in this sec1ion
two translation algorithms.

5.1 From box graphs to lambda terms

We translate box graphs into an applied lambda calculus with constants. By assumption, every
kind of primitive box of the graph language has an associated constant in the target lambda cal-
culus.

L. Dami and D. Va/let 149

A box graph is closed iff its outermost box is a composite box without any input port. Ini-
tially the output port of that box will be the current port for the algorithm; by the well-formed-
ness rules, this port must have exactly one incoming arrow. The algorithm proceeds in two steps :

• step 1: label every input port of every composite white box with a distinct name

• step 2: the current port must have exactly one incoming arrow. Follow backwards that arrow,
and, depending on its source, do the following:

• ifthe source is a primitive box, print the constant corresponding to that box.

• if the source is the output port of a composite box, then select that port as new current
port, and go back to step 2. Note that the well-formedness rules ensure that the new cur-
rent port indeed has exactly one incoming arrow.

• if the source is the border side of a composite box, then this box must have input ports
without incoming arrows. Letx1 ... Xn be the corresponding labels. Write the string "(A.x1
... Xn . "; recursively go to step 2 with the output port of that box as new current port; and
finally close the expression with ")".

• ifthe source is an input port, either print the label of that port ifthe port has no incoming
arrow, or select that port as new current port and recursively go to step 2.

• ifthe source is the output port ofa grey box, then successively apply the algorithm to the
incoming arrow on the border of the grey box, and then to incoming arrows on each input
port.

5.2 From lambda terms to box graphs

Let a be a closed lambda term. Case a of

• A.x 1 ... Xn· a' write a new composite box with n input ports; take the output port
of that box as new target; recursively apply the algorithm to a'.

• Xi draw an arrow from the the nth input port to the current target

• (ao ... ~) : write a new grey box with n input ports; connect its output port to
the current target; take the border of the grey box as new target and recursively apply the
algorithm to a0; then, for each i between 1 and n, take the ith input port of the grey box
as new target and recursively apply the algorithm to ai.

6. VisualLambda: implementation

In this section we describe the design and implementation of an interactive tool for editing box
graphs. The tool supports hierarchical construction of graphs of arbitrary complexity, through a
dual view of composite boxes: such boxes can be represented either as closed, encapsulated en·
iities. which can be embedded in other graphs, or they can be opened up, in order to edit 1heir
internal definition . The tool allows users to work with multiple views, so it Is possible to simul-
taneously edit a complex graph at different levels of detail.

150 Higher-Order Functional Composition in Visual Form

6.1 Starting choices

Box graphs are graphs in the usual graph-theoretic sense. Formally, they could be described as
graphs with several sorts of nodes (box nodes, input port nodes, output port nodes), and with sev-
eral sorts of edges (arrow edges, port bordership edges, box inclusion edges). In consequence, it
would seem that existing generic tools for graph edition could be adapted for box graph edition.
However, after ex:am.ining several of such tools, like Robochart (7], daVinci[8], XGrab or
Graphed[9], it appeared that the adaptation task would not be easy. The reason is that the specific
structure of box graphs involves some constraints and some visual presentation aspects which
are quite different from generic graphs. For example. it is quite clear that the box inclusion re-
lationship should not be represented visually as a collection of arrows, but rather as a true inclu-
sion relationship between graphical shapes. Adding such graphical capabilities to the tools men-
tioned above would have been quite difficult.

The solution for avoiding to entirely write a new program was to adapt a generic drawing
tool, already equipped for manipulating hierarchies of graphical shapes. The programming task,
then, was to add the box graph structure, and to constrain the drawing primitives in order to en-
sure conformance with box graph formation rules . The selected drawing tool was Draw, a dem-
onstration application supplied with the NeXTSTEP platform, which has the advantage of being
written in an object-oriented environment, thereby making it easier to customize its general
framework to a new functionality.

The core framework of VisualLambda consists of about 20 classes; most of them inherit
from classes defined in the original Draw program. The class hierarchy is shown in Figure 14

Graphic

Port Compute Box

CBlnputPort CBOutputPort White Box Grey Box CompositeBox

Side Port

Figure 14 Partial Graphic class hierarchy.

and a class diagram in Figure 15. pictures the relationships between classes, using Booch nota-
tion. The most important of them are considered in more detail in the rest of this section.

L. Dami and D. Va/let

Figure 15 Booch Class Diagram of Visuallambda.

6.2 LambdaApp and LambdaDocument classes

151

As VisualLambda is a multi-document software, LambdaApp and LambdaDocument classes have
the primary functions of creating and managing documents. Each document represents a piece
of paper. LambdaApp manages and dispatches events from the application menu. LambdaDocu-
ment manages the representation of the view in which we create objects. This includes saving
the view to disk.

6.3 Graphic class

Graphic is an abstract class for manipulating objects ihat appear on screen. All objects that can
appear in GraphicView arc subclasses of Graphic. By definition the main purpose of an abstract
class is to define a common interface for its subclasses. This is why Lhe vast majority of the
graphics functionaliries are contained in this class, e.g. object position, line width. We subclass
Graphic for all the objects we need to have in our data-flow application, i.e. WhiteBox, GreyBox,
CompositeBox, ResullBox and different kinds of Port. These objects have two basic responsibili-
ties. They know (1) how to draw themselves, and (2) where they are. By using an objecc for each
graphical element in the document, we promote flexibility. All objects are treated in the same
way and we can extend VisualLarnbda without disturbing oiher functionalities.

6.4 GraphitView class

GraphicView is the heart of the program functionalities. It manages a display list in. which are
stored all the objects we draw. Such objects are subclasses from the abstract class Graphic. New
kinds of graphic are simply created by subclassing and adding specific code.

152 Higher-Order Functional Composition in Visual Form

The user is allowed to create objects, select them, move them around, group and ungroup
them, change their font, cut and paste them to the pasteboard. One of our main preoccupation
was to have good responsiveness from VisualLambda, because users do not want to wait when
they draw or drag boxes. This is why we take care in our implementation to optimize the display
in minimizing Postscript code sent to the display server. All the drawing is done in an off-screen
window which is displayed back to the screen. This supports very fast redraw of areas obscured
either by the moving object or the user's scrolling. Moving is accomplished by using a selection
cache. The objects in the selection cache are drawn using opaque ink on a transparent back-
ground, so that when they are moved around, the user can see through them the objects that are
not being moved.

6.5 Port class and its subclasses

Ports are small black rectangles bounds to boxes. Their mission is to keep the connections be-
tween boxes. Each box has one OutputPort from which it start its connection and one or many
lnputPort for receiving connections. Accordingly to section 2, Ports can have only one incoming,
that is the reason why they can refuse a link if they are already connected.

During the connection between a source and a sink, users have graphical feed back about
the validity ofa connection. The drawing link transforms itself in an arrow ifthe pointer in on
one of the valid destination zones described in section 2.

Others subclasses of Port are specializations. For example Side Ports are transparent and are
on both sides ofWhiteBoxes and CompositeBoxes.

6.6 ComputeBox class

ComputeBox is also a subclass of Graphic, but it has special properties. Its main job is to display
the result of the graphical representation. Instances ofComputeBox have one lnputPort and no Out-
putPort because they end the data-flow. The evaluation of the graphical pro~am starts when the
lnputPort is connected. The box will launch a recursive parse of the structure and generates a
Lambda expression (see section 7.7). Next the string is sent for interpretation through a pipe to
a Gofer process who will send back the result. Another way to start the evaluation is to double-
click on a already connected ComputeBox.

One of the most interesting features is that if a box is modified, the ComputeBox at the bot-
tom of the data-flow is notified. It reparses automatically the new structure and evaluate the new
expression according to the change. With this functionality VisualLambda works like an inter-
preter offering direct "What-If' feature. This is ideal for beginners and people wanting to exper-
iment and see instantaneously their results.

As said previously, graphic programs are translated into Lambda expressions.

We think that it is important to allow the user to see the textual counterpart of bis visual pro-
grams. That is why the translation result can be monitoring in a separate window, called the Ex-
pression Viewer. It is also possible to type directly an expression and evaluate its result. This
service allows comparison of 2 expressions and offers another way to detect errors.

L. Dami and D. Va/let 153

6. 7 Implementation of Connections

In our implementation, connections between ports are not subclasses of Graphic, i.e. there is no
corresponding graphical objects. Instead ports hold pointers to their destination(s) allowing
them 10 request informations tl1ey need. For example, after a move, a box follows his connec-
tions, takes the screen locations of its destination ports and updates the connections. If the box
is connected it will ask its source to adjust the link according to its new location. At the begin-
ning this design choice was made i.n a simplicity concern. But now, that the prototype is finished
we though that representing connections by objects could offer more flexibility though adding
complexity. Adopting this option should also use more memory and introduce small slowness,
especially in the drawing, due to an augmentation of message send.

7. Conclusions

Extensions may be required in the following areas:

• support more complex programs in WhiteBoxes,

• the creation of a container working as a library of the most often used basic elements.
Archived components should be easily inserted in other program e.g. by dragging.

• implement rewrite rules in the tool.

The links between boxes must be improved with the goal of increasing the visualization of
sources and destinations. One way of doing that should be to name more explicitly the ports. The
actual design is open enough to allow such modifications without to big efforts. Finally, a way
of simplify.ing the graphical representation of the CompositeBoxes encapsulation should be
thought. Sometimes, and especially when the program is constituted ofa lot ofimbricate boxes,
it could become quite difficult to represent the whole program slnlcture due to the fact that a lot
of windows are simultaneously open.

References

[I] Jorg Poswig, Guido Vrnnkar und Claudio Morara, Visa Vis: a High-order Functionnal Visual Programming
Language, Academic Press Limited, t 994.

[2] P. T. Cox, F. R. Giles & T. Pietrzykowski, Progrop/1: A step forward /ibero1ing programming from textual
conditionni!ig, Workshop on Visual Language, 1989, Rome, Italy, pp. 150-156.

[3] J. R. R.assurc & C.S. Williams, An imegruted data flow vis1ia/ Jm1g11agc and software development environ-
ment, Joumal of Visual Longuagcs and Computing 2. 199 I, p. 217-246.

[4] Herbert Goettler, Graphgrammatiken in der Softwaretechnik, Informatik-Fachberichte 178, Springer-Verlag,
1987.

[5] C. M. Hoh, viz: A Vi.ma/ Language Based on Functions, 1990 IEEE.
[6] Marc A. Najork and Erio Golin, Enhancing Show-and-Tell a polymorphic type system and higher-order func-

tions, 1990 IEEE.
[7] Robochart from Digital Insight.
[8] da Vinci from University of Bremen, Deutschland.
[9] M. lflmsolt, Grap/red, University of Passau, Dcutschland.
[10] Victorin de Mey, Visual Composition ofSofiwareApp/ications, PhD Thesis,University Of Geneva, 1994.

154 Higher-Order Functional Composition in Visual Form

(11] Greg Michealson, An introduction to functional programming through Lambda Calculus. International Com-
pmcr Series.

(12] ACM Sigplan Notices, Haskell Special Issue, Volume 27 Number 5 May 1992.
[13] E. Gammn. R. Helm, R. Johnson, J. Vlissides. Design Patterns : Elements of Reusable Object-Oriented Soft-

ware, Addison-Wesley Prof~ionol Computing Series.
[14] Laurent Dami, Software Composition: Towards an Integration of Functional and Object-Oriented Ap-

proaches, PhD Thesis, University of Geneva, 1994.

