Archive ouverte UNIGE

https://archive-ouverte.unige.ch

This version of the publication is provided by the author(s) and made available in accordance with the
copyright holder(s).

Syntactic error diagnosis in the context of computer assisted language
learning

Vandeventer Faltin, Anne

How to cite

VANDEVENTER FALTIN, Anne. Syntactic error diagnosis in the context of computer assisted language
learning. Doctoral Thesis, 2003. doi: 10.13097/archive-ouverte/unige:562

This publication URL: https://archive-ouverte.unige.ch/unige:562
Publication DOI: 10.13097/archive-ouverte/unige:562

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:562
https://doi.org/10.13097/archive-ouverte/unige:562

UNIVERSITE DE GENEVE FACULTE DES LETTRES

Syntactic Error Diagnosis
in the context of
Computer Assisted Language Learning

THESE

présentée a la Faculté des lettres
de I'Université de Geneve
pour obtenir le grade de docteur es lettres
par

Anne VANDEVENTER FALTIN

2003

ii

Contents

Acknowledgments ix
1 Introduction 1
1.1 Theproblem. 2
1.1.1 Treatment of ill-formed input 3

1.1.2 The CALL context 4

1.2 Objectives 8
1.2.1 Levels of checking 8

1.2.2 Theoretical objectives 10

1.2.3 Practical objectives 10

1.3 Methodological approach 12
1.3.1 Selection of errors L. 12

1.3.2 Reuse and adaptation of a parser 14

1.3.3 Combining diagnosis techniques 16

1.4 The FreeText project 18
1.5 Structure Lo 19

2 State of the Art 21
2.1 A short history of NLP in CALL 21
2.1.1 Theearly 1980°s 22

2.1.2 Thelate 1980°s 24

2.1.3 Theearly 1990°s 25

2.1.4 The late 1990’s and beyond 26

2.2 Spell checkers 27
2.3 Pattern matching L. 29
2.3.1 Description L 29

2.3.2 Systems using pattern matching 31

2.4 Finite State Automata 36
2.4.1 Description oo 36

2.4.2 The ARCTA prototype 36

2.5 FError grammars Lo 38
2.5.1 Description oL 38

iii

v

CONTENTS

2.5.2 Systems using error grammars 39
2.6 Constraint relaxation 43
2.6.1 Description 44
2.6.2 Systems using constraint relaxation 45
2.7 Other techniques seen in literature 55
2.7.1 Delayed checking %)
2.7.2 Predication-driven parsing 56
2.7.3 Link Grammars o7
2.74 Unclassified 58
2.8 Commercialized checkers 58
2.8.1 Techniquesused 59
2.8.2 Published and evaluated performances 59
2.9 Summary and conclusion 61
Theory 65
3.1 Constraint relaxation 65
3.1.1 Constraint definition 65
3.1.2 Constraint typology 66
3.1.3 Constraint violation 68
3.1.4 Prerequisites for constraint relaxation 68
3.1.5 Error diagnosis by constraint relaxation 69
3.1.6 Algorithm 70
3.1.7 Deciding which constraints to relax 71
3.1.8 Advantages 71
3.1.9 Problematicissues 72
3.1.10 Variants 75
3.1.11 Remarks 78
3.2 Phonological reinterpretation 78
3.2.1 Definition, 79
3.2.2 FErrors treated 79
3.2.3 Prerequisites. 81
3.2.4 Algorithm 82
3.2.5 Advantages 84
3.2.6 Problematic issues 85
3.2.7 Variant 87
3.2.8 Systems using elements of phonological reinter-
pretation. L. 89
329 Remarks 90
3.3 Chunk Reinterpretation 90
3.3.1 Definition of ‘chunk” 91
3.3.2 Chunk reinterpretation 92

3.3.3 Errors to be treated 92

CONTENTS

3.3.4 Prerequisites
3.3.5 Algorithm
336 Ruleset
3.3.7 Advantages
3.3.8 Problematic issues
3.3.9 Variant L
3.3.10 Remarks
3.4 Scoring
3.4.1 Syntactic likelihood
3.4.2 Detected error frequencies
3.4.3 Word frequencies
3.4.4 Combining the scores
3.5 Combining techniques
3.5.1 Independent approach
3.5.2 Cascade approach
3.5.3 Heuristic approach
3.5.4 Remarks,
3.6 Conclusion.

4 Implementation phase
4.1 Description of the Fips parser
4.1.1 Linguistic theory
4.1.2 Parsing algorithm
4.1.3 Implementation language
4.1.4 Advantages and disadvantages
4.2 Errors to be diagnosed
4.2.1 The FRIDA corpus
4.2.2 Selecting error categories
4.2.3 Error categories and examples
4.2.4 Error coding data structure
4.3 Implementation
4.3.1 Constraint relaxation
4.3.2 Phonological reinterpretation
4.3.3 Chunk reinterpretation
4.3.4 Analyses selection mechanism
4.3.5 Choice of technique combination.
4.4 Conclusiono

5 Results
5.1 Description of the test corpora
5.1.1 ‘Linguist’ sentences
5.1.2 Simplified sentences
5.1.3 Authentic sentences

vi

5.1.4 Use of the different corpora
5.2 Evaluation
5.2.1 Quantitative results

5.2.2 Qualitative results

5.2.3 Efficiency
5.3 Comparison with another grammar checker . .
5.3.1 Comparison
5.3.2 Specifics of each grammar checker . . .
5.3.3 Overflagging
534 Remarks
54 Conclusion 0oL

6 Conclusion
6.1 Contributions to the research domains
6.1.1 Usable and competitive system

6.1.2 Use of innovative techniques

6.1.3 Adapting an existing syntactic parser

6.2 Combination of several techniques
6.3 Limitations of the work accomplished
6.4 Further research

6.5 Final remark
A List of Abbreviations

B Sample test corpora

B.1 ‘Linguist’ sentences
B.2 Simplified sentences
B.3 Authentic sentences
B.3.1 FRIDAdata.
B.3.2 FreeTextdata

Bibliography

CONTENTS

List of Tables

2.1
2.2

3.1
3.2

4.1
4.2

5.1
0.2
5.3
5.4
2.9
5.6
2.7
5.8
2.9
5.10
5.11
5.12
5.13
5.14
0.15
5.16
5.17
0.18
5.19
5.20
5.21

Comparison between Le Correcteur and Antidote . . . 60
Comparison of three grammar checkers 61
Combining techniques 107
Comparison of the error diagnosis techniques 110
Selected error categories 122
Error categories and examples 125
Linguist sentences with auxiliary errors 161
Simplified sentences with auxiliary errors 161
Linguist sentences with class errors 162
Simplified sentences with adjective complementation errors163
Linguist sentences with verb complementation errors . 165
Simplified sentences with verb complementation errors 165
CPV error breakdown on simplified sentences 167
Authentic sentences with euphony errors 167
Simplified sentences with gender errors 168
Simplified sentences with homonymy errors 170
Linguist sentences with number errors 171
Simplified sentences with number errors 172
Simplified sentences with negation errors 173
Simplified sentences with adjective order errors. 174
Linguist sentences with adverb order errors 175
Authentic sentences with adverb order errors 175
Simplified sentences with person errors 176
Linguist sentences with voice errors 179
Simplified sentences with voice errors 179
Recapitulation of recall ratesin % 180
Comparison of correct flags 188

vii

viii LIST OF TABLES

Acknowledgments

My first thanks naturally go to Professor Eric Wehrli whom I have
greatly appreciated as thesis supervisor. He allowed me to develop
my work in whichever direction I chose, but he was always present
when T wanted to discuss specific problems with him. Reading the
first version of this dissertation by installments, he waited patiently,
sometimes for several months, in between chapters. His comments
were always valuable and allowed me to strengthen several aspects of
my research.

I also want to thank Professor Eddy Roulet, president of the jury.
His presence and his questions about the progress of my dissertation
encouraged me at times when the end still seemed very far away.

[am thankful to Professor Thierry Chanier and to Professor John
Nerbonne who kindly accepted to become members of my jury.

Many thanks go to all the members of the FreeText project, as most
of the development of the grammar checker discussed in this disserta-
tion occurred during the project’s life time. Special thanks are due to
Keith Potter who did most of the implementation work for the con-
straint relaxation technique, to the CECL team for the gathering, the
keying-in, the error tagging, and the analyses of learner corpora, and
to Marie-Josée Hamel with whom I wrote my first academic paper five
years ago.

Current and past members of the LATL and of the Department of
Linguistics must also be thanked for the quality of the working envi-
ronment they helped provide. Eva Capitao merits special thanks for
the numerous tea breaks and discussions held in her office, as well as
her availability, her capacity to smooth all administrative hurdles, her
permanent smile, and her excellent baking.

My current office mates, Catherine Walther Green and Sébastien
L’haire, deserve a special mention. I learned a great deal from Cather-
ine’s numerous revisions and proof-reading of documents and papers
I wrote over the past five years. Always ready to help, Sébastien was
there whenever something did not work on my computer or when a new
piece of software needed to be installed. Despite my moods, foul lan-

ix

X ACKNOWLEDGMENTS

guage, and legendary bad temper, they have both managed, through
good humor and mutual teasing, to keep an overall cheerful and con-
vivial atmosphere in what could have become a smelly hell.

Készonom szépen to my parents-in-law who, in March and April
2003, have taken took care of their grandson many afternoons in order
to give me the necessary time and peace of mind to finish writing
this dissertation. Without their help, I would not have been able to
complete my work in this timeframe.

My deepest gratitude goes to my parents, Christiane and Thierry
Vandeventer, who encouraged me to pursue my studies each time I con-
templated taking another path. Their support brought me to where
I am now. They must also be thanked for their share of child-caring
during the last writing stages of this dissertation. I am sure that they
enjoyed it more than the hours they devoted to proof-reading this dis-
sertation, noticing many typos, errors, and strange sentence structures.
For this unrewarding task, I thank them profusely. Their work was
much more valuable than that of any grammar checker! Any errors
that remain in this dissertation are my sole responsibility, but I can
assure you that there are far fewer now than there used to be.

I cannot find appropriate words to thank my husband, Alexandre
Faltin. Along with everything else, I am grateful for his constant sup-
port. When I was rushing to put the final touches to my dissertation,
he transferred our son from day-mom to grandparents during his lunch
breaks, and fetched him in the evenings, more often than his share. He
did everything he could to make sure I had the time I needed to finish
my work. T only hope to be able to do the same for him someday soon.

Last, but certainly not least, I want to thank my son, Raphaél, for
being such a good baby and for reminding me that there is life after,
and during, dissertation writing.

Chapter 1

Introduction

Spoken or written, language surrounds us and is our most common
means of communication with other people. Nevertheless, language
is at the same time a barrier to communication because of the great
diversity of languages and because each individual speaks only a few of
them. In order to overcome this barrier and be able to communicate
with speakers of other languages, many people learn one or several
languages besides their native language.

Second language acquisition is a difficult task, especially for adults.
There are numerous methods to acquire a new language and all of them
require some form of feedback, which can be described as a reaction
to what has been said or written!. This feedback most often comes
from other human beings with whom the language learner is interact-
ing. There are, however, other means to receive feedback. One is the
use of computer assisted language learning (CALL) software. Typi-
cally CALL software contains exercises for language learners. Their
responses to the exercises are analyzed by the system which provides
some form of feedback.

Some types of exercises are very easy to correct because the num-
ber of possible answers is very limited, such as with multiple choice
questions and gap filling exercises. Simple methods can then be used
to provide a simple feedback to the users. Whenever the range of pos-
sible answers is large, or even infinite, specialized tools are needed. In
the case of exercises requiring users to produce sentences in the lan-
guage they are learning, natural language processing (NLP) tools are
necessary to analyze the answer and produce intelligent feedback.

Definitions of natural language processing (NLP) or computational
linguistics are numerous in literature devoted to the domain. To cite

1See (Ellis 1997, p. 43-50) on the importance of both input and output for language
acquisition.

2 CHAPTER 1. INTRODUCTION

only two, Tennant states that “research in natural language process-
ing is concerned with making computers capable of using natural lan-
guages” (Tennant 1981, p. 2), while Grishman writes that “computa-
tional linguistics is the study of computer systems for understanding
and generating natural language” (Grishman 1986, p. 4). NLP is a
large field in which every practitioner sees something slightly different.
Domains of NLP include natural language interface, machine transla-
tion, text analysis, information extraction, speech understanding and
synthesizing, and some areas of CALL, to name only a few.

The work presented in this dissertation concentrates on NLP tools
designed for the diagnosis of grammar errors produced by language
learners in the context of a CALL system.

The remainder of this chapter is structured as follows. Section 1.1
sets down the main problem discussed in this work. Section 1.2 states
the theoretical as well as practical objectives of the work. Section 1.3
explains the methodological approach chosen. Section 1.4 gives a brief
overview of the research project in which the work giving rise to this
dissertation has been carried out.

1.1 The problem

Errors can be detected only because there is a norm of what is con-
sidered “correct” language. It is relatively easy for native speakers to
notice errors in language productions because they know what the norm
is, even if unconsciously. This gives them the possibility to discover dis-
crepancies between the norm and actual productions. Chomsky (1965)
distinguishes between the competence of speakers, their unconscious
linguistic knowledge of the language, and their performance, their ac-
tual use of the language. Because of performance issues, actual lan-
guage productions do not all respect the norm. “A record of natural
speech will show numerous false starts, deviations from rules, change
of plan in mid-course, and so on” (Chomsky 1965, p. 4). It is difficult
to ensure that all of one’s own productions respect the norm, and er-
rors abound in the language that surrounds us. Spoken and written
productions give rise to different types of mistakes, but written sen-
tences are less prone to mistakes because the writing process usually
includes some revision time when many mistakes can be detected and
corrected.? Mistakes of all kinds still do appear in written texts, “such

’Discussion will be limited to written language in this dissertation for reasons described
in section 1.2.3. We will not, therefore, go further into the differences between spoken and
written language from here on.

1.1. THE PROBLEM 3

as misspelled words, missing words, poor syntactic constructions, un-
clear or ambiguous interpretation, missing crucial punctuation, etc.”
(Granger 1983, p. 188). Typed text introduces another layer of pos-
sible mistakes, linked to the typing process, commonly referred to as
typos. Even published texts, in newspapers, journals, and books, con-
tain mistakes now and then.

1.1.1 Treatment of ill-formed input

The human mind is very flexible and can adapt quite easily to the errors
it encounters, sometimes not even noticing them consciously. Noticing
mistakes does not necessarily prevent us from interpreting sentences,
giving them one or several grammatical structures and interpretations,
and forming hypotheses as to the source of those mistakes. These
hypotheses may then be used to provide feedback to language learners.
Unfortunately, computer programs are much less flexible and run into
difficulties when their input differs from the norm they are expecting.
NLP applications generally assume that the input they will receive is
error-free. Although this is a practical assumption which helps to find
solutions and to limit the complexity of an already hard problem, it is
not realistic. An important criterion in the evaluation of NLP systems
is their robustness. “Robustness refers to the quality and capability of
a program. When a program is said to be robust, it works well and
doesn’t fall apart when some unusual condition occurs” (Freedman
1989, p. 597, emphasis in original). The minimum requirement for a
robust system is to not crash when encountering an unexpected input
and not terminate instantaneously. Systems that fold down at the first
discrepancy from the norm do not answer this criterion. To reach a
certain level of robustness, NLP systems must find ways to handle ill-
formedness, whether it be skipping it or providing some form of output
for this unexpected input.

The treatment of ill-formed input varies widely among systems de-
pending partly on their end usage. Let us take the case of the appear-
ance in the input text of an NLP system of a word which does not
belong to the lexicon of this system, an unknown word.?> A text inter-
pretation system, such as NOMAD (Granger 1983), will try to derive
the meaning of the unknown word from its context. A speech synthe-
sizer will rather include heuristics to pronounce unknown words based
on their orthographic representation, and possibly on their expected
lexical category (Gaudinat and Goldman 1998). A translation system

3For the sake of the example, let us assume that this word does not start with a capital
letter and will not be considered to be a proper noun.

4 CHAPTER 1. INTRODUCTION

might render the erroneous word “as is” in the translated text, while
a syntactic analyzer will try to guess the lexical category of the word
based on its morphological features and its syntactic context (Erbach
1990).

A spell checking system, on the other hand, is specifically designed
to handle such a case. The unknown word is considered to be the result
of an error on the part of the writer. The checker usually highlights
the word and tries to give possible, correctly spelled, alternative words.
Spell checkers are part of the group of writing help tools, whose role, far
from ignoring erroneous input, is to detect ill-formedness in their input.
Commercially available writing help tools include most commonly spell,
grammar, and style checkers for native speakers and are often included
in text processing software.

1.1.2 The CALL context

Within the CALL context, ill-formed input takes another dimension.
Apart for spelling errors which are often due to a lack of competence
in this specific area, mistakes made by adult native speakers are due in
a very large part to performance issues. Language learners, however,
make mistakes for both performance and competence reasons. Thus,
input provided by language learners contains on average more errors
than input produced by native speakers. Moreover, the types of er-
rors committed by these two groups are not similar (see (Granger and
Meunier 1984, p. 80)).

Types of errors

The types of errors made by language learners include the types made
by native speakers and add to them all the errors due to competence is-
sues. For example, as can be seen in (1) below, language learners create
words which do not exist in the language because they use erroneous
derivation paths (1a). They mistake homophones for one another more
often (1b). They do not necessarily respect word order constraints (1c).
They do not always know the gender of nouns (1d) or the auxiliary to
be used with a given verb (1e). They do not respect the rules of eu-
phony (1f). And they misuse punctuation (1g), to name only a few
types of mistakes seen in language learners’ texts.

(1)a. ** nonpossible
notpossible

“The star * indicates an erroneous word or phrase.

1.1. THE PROBLEM)

b. reine instead of regne
queen instead of reign

c. * Il jamais n’a vu.
He never negation has seen.

d. * la soleil

the-feminine sun-masculine

e. * Jai né.
I have born.

f. * ce endroit
this place

g. * Il mange, et il boit.
He eats, and he drinks.

NLP for language learners

In this work, we will make a distinction between non-native speakers
and language learners. However, let us start with the definition of a
native speaker given by Akmajian, Demers, and Harnish (1984). A
native speaker is “a person who speaks a language fluently, typically
because that person has been brought up speaking that language as a
child” (Akmajian, Demers, and Harnish 1984, p. 525). A non-native
speaker, then, is someone who does not speak with the fluency of a
native speaker. We will define language learners as non-native speakers
who actively seek to improve their competence of the language.
Although one cannot exclude language learners using any type of
NLP tool, such as a natural language interface to question a database,
the NLP systems they are most likely to use, and provide their own
input to, are writing help tools, such as spell, grammar, and style check-
ers, and obviously language learning softwares. Very often, language
learners use writing help tools designed for native speakers because
there is none designed for language learners easily available. Check-
ers designed for native speakers are often not sufficient, as we have
just seen that language learners make more and different kinds of mis-
takes than native speakers. This is confirmed by Jacobs and Rodgers
(1999) who write that “it should be noted that since French gram-
mar checkers are aimed at native French speakers, their usefulness as
learning and teaching tools may conceivably differ with native speak-
ers of other languages” (Jacobs and Rodgers 1999, p. 522). Moreover,
language learners want informative feedback on their productions. A

6 CHAPTER 1. INTRODUCTION

‘eood/bad’ answer is not sufficient in the context of exercises. “In ad-
dition, they demand a greater flexibility of the programs which would
make it possible for CALLware to accept more than one answer in a
given situation and context” (Buchholz 1992, p. 135-136). There is
therefore a need to create and make available checker tools designed
specifically for language learners.

Diagnosis vs. correction

Diagnosis and correction are two distinct notions. The Concise Oxford
Dictionary states that diagnosis is “the identification of the cause of a
mechanical fault etc.” (Allen 1990, p. 321) while correction is “a thing
substituted for what is wrong” (Allen 1990, p. 258). To propose a di-
agnosis, one must state whether there are mistakes in a given sentence,
give their locations, and indicate the error types to which they belong.
Establishing a diagnosis does not involve giving correct alternatives
for the errors detected. Providing correct alternatives is part of the
correction process. Naturally, the correction process must start with
a diagnosis phase, otherwise it would be unable to know what needs
correction. Therefore, correction includes diagnosis and completes it
with possible solutions for the errors.

Example (1e) is given again below as (2a). (2b) is a possible diag-
nosis for it and (2c) a correction.

(2)a. * Jai né.
I have born.

b. Auxiliary avoir (have) cannot be employed with verb naitre (to
be born).

c. The correct sentence is Je suis né. (I am born.)

The distinction between diagnosis and correction is important both
for checker tools and for the CALL context. Very often, commercial
checkers propose not only an error diagnosis, but also a correction.
Spell checkers, in particular, offer a short list of possible alternative
words to replace the unknown, and supposedly erroneous, one. By
providing not one, but several possible solutions, and finally letting
the users choose whether or not to correct their sentence, the check-
ers are less likely to replace an error by another one. All commercial
spelling checkers, to our knowledge, not only establish a diagnosis on
the input, but also propose a correction. Calling them ‘checker’ is
therefore slightly misleading as they do much more than check. The

1.1. THE PROBLEM 7

terms ‘check’ and ‘checker’ will be used in the rest of this work to refer
to the diagnosing act and to the diagnosis, unless stated otherwise.

While native speakers appreciate having corrections proposed to
them, allowing them to correct their texts faster than if they had
only diagnosis results available, the case is slightly different for lan-
guage learners. Second language learners not only want to correct their
mistakes on the short term, but they also want to improve their lan-
guage skills in order not to do the same mistakes over and over again.
Language learners produce both performance and competence errors.
When faced with performance errors, they are essentially in the same
position as native speakers: an indication of the location of an error and
of its type is largely enough for them to correct the error. Naturally, a
proposed correction for that error would facilitate the correction work.
It is however difficult to always distinguish between performance and
competence errors with language learners, as attested by Ellis (Ellis
1997, p. 17-18), especially as two learners can make the same mistakes
for two very different reasons. Moreover, “some research shows that
direct correction is not particularly effective” (Krashen 1984, p. 118)
and “the ‘self-correction” method is found to be more desirable for
learning” (Yang and Akahori 1999, p. 73). Therefore, only a diagno-
sis will be provided, letting the learners find out the correct solution
for themselves. “In a CALL program, error messages should point the
learner in the right direction for correction rather than supplying the
correct version directly” (Tschichold 1999, p. 215-216). One should
keep in mind that CALL caters to language learners rather than sim-
ply to non-native speakers. If one were to design tools for this latter
kind of users, then having correction available would certainly be a
necessary feature for marketability.

Overflagging

A good diagnosis system “must not only accurately identify the nature
of an error but must also avoid falsely identifying mistakes in correct
words” (Burston 1998). Overflagging, which occurs when the system
indicates an error although the input is correct, is a recurrent problem
of all diagnosis and correction tools (see (Tschichold 1999, p.213)). An
occurrence of overflagging is also called an overdetection, a false pos-
itive, or an erroneously detected error. Overflagging is damaging to
all systems. Users do not like it as it takes their time unnecessarily
in order to verify each overflagging occurrence to see whether there is
indeed an error or not. Overflagging also shows some of the limits of
the systems. A system that overflags often is not as reliable as one
which does not. “More worrisome, from a pedagogical point of view, is

8 CHAPTER 1. INTRODUCTION

the fact that calling attention to forms that are correct as possibly in-
correct may confuse the learner unnecessarily” (Hull, Ball, Fox, Levin,
and McCutchen 1987, p. 106). Native speakers, and proficient non-
native speakers, can deal with overflagging because their competence
of the language is good enough to decide for themselves whether the
sequence that has been erroneously flagged is in need of repair or not.
On the other hand, language learners do not possess this knowledge
and overflagging can be highly detrimental to them. In the best case,
they will eventually figure out that their text was correct, contrary to
what the system showed. It might take them some time to reach this
conclusion, however. In the worst case, they will amend their sentence
to try to better it. In this case, not only will they risk introducing
mistakes into a sentence which was correct in the first place, but they
might also believe that the correct sentence structure they used is not
part of the language they are learning. They might, in fact, be mis-
lead by the diagnosis system into mislearning, or integrating into their
grammar of the target language rules that do not belong to it. Obvi-
ously, misleading the learners into learning wrongly is to be avoided. It
is therefore of the utmost importance to have a rate of overflagging as
low as possible. A low rate of overflagging reduces the risk of mislearn-
ing, increases the usability of the system, and gives a better impression
of the system to the users.

1.2 Objectives

The objectives of the work undertaken contain a theoretical component
as well as a practical one. Both revolve around NLP tools for CALL
purposes and more precisely around checker tools for written input. We
will start this section by describing in more details what these checker
tools are and by specifying the range of tools we will be concerned with.
We will then discuss the theoretical and practical objectives that gave
rise to the present work.

1.2.1 Levels of checking

To build a comprehensive checking system, several levels of diagnosis
are necessary. To be complete, one should probably consider four di-
agnosis levels: spelling, grammar, semantics, and possibly style. These
levels interconnect to some extent but, for simplification’s sake and
for the time being, we will consider that they are independent. To
our knowledge, there is not, to this day, a single checking tool that
encompasses all these levels.

1.2. OBJECTIVES 9

The role of a spell checker is to verify that the words appearing in
a document all belong to the lexicon of the system. This is the sim-
plest level of checking and was included quite early in text processing
software (see (Peterson 1980)). Moreover, spell checkers do more than
just check the entry: they also propose alternatives for the words they
cannot find in their lexicons and are therefore correctors rather than
true checkers.

The second level of diagnosis is grammar. It appeared later in text
processing software. The goal of this tool is to inform its users as to
the grammaticality of the sentences they are writing. Most commercial
tools include some type of correction as well. They do not, however,
treat all sentence constructions and are not able to detect some of the
errors committed by the users.

The next diagnosis level is semantics. Semantic checking should be
concerned with the coherence of meaning of the words and sentences
used within a text. It should ensure that the text does not contra-
dict itself, that tense concord is respected, that pronouns correspond
to their referents, among other things. Full semantic checking requires
the system to possess a knowledge of the world, which is difficult or
even impossible to implement on unrestrained domains. Understand-
ably, semantic diagnosis is not, to our knowledge, available in any large
coverage system. Nevertheless, one can adopt a more modest approach
than full semantic checking and provide some kind of coherence check-
ing. Although not covering all the points noted above, coherence check-
ing with limited means remains interesting as long as it provides new
information on the input under scrutiny. In the CALL context, coher-
ence diagnosis can indicate whether the learners’ input is in relation
with what was asked of them.

Finally, many commercial checking systems nowadays combine a
style checker with their grammar checker (see Cordial 7 (Synapse) and
the grammar checker included with the French version of Microsoft(®
Word 2000). A style checker is not supposed to inform the users of sentences
that are not grammatically correct, but simply of a style that is not adequate
for the kind of text they are writing. Style checkers, for instance, inform
the users of the presence of too many passive sentences in a text, which is
deemed to be poor writing. Style is by nature subjective and poor style
does not prevent a sentence from being acceptable on a grammatical basis.
Thus, style stands somewhat apart form the other domains of diagnosis and
will not be considered further in this work.

The main purpose of this work is to build a grammar checker, that is, a
tool capable of indicating whether any given input sentence is grammatical
or not according to the norm of the language. Although it is obvious that
the spelling and semantic levels of checking are important, we will focus

10 CHAPTER 1. INTRODUCTION

here on the grammatical level of checking only. Error types that should be
diagnosed by a grammar checker include agreement, word order, the choice
of auxiliary, and euphony, to mention only errors in example (1). A more
complete list is given in chapter 4, section 4.2.

1.2.2 Theoretical objectives

On the theoretical side of the work, the objectives include an investigation of
existing grammar checkers, both prototypes and commercial systems, both
for native speakers and for language learners. Through this study, we hope
to learn what has been done in the past and what is currently done concern-
ing grammar checking. We will, whenever possible, examine the diagnosis
algorithms of grammar diagnosis systems and their implementation. We
will then evaluate the different diagnosis techniques that have been used
and their potential.

Starting from the knowledge acquired through this study, we will concen-
trate our efforts on three different techniques: constraint relaxation, phono-
logical reinterpretation and reinterpretation of a sequence of partial analyses
(chunks) resulting from an incomplete parse. We will propose algorithms
to use these three techniques individually, trying to figure out their limits
and their advantages. We will then investigate how these three techniques,
and any technique by extension, can be combined in order to increase their
individual effectiveness.

1.2.3 Practical objectives

On the practical side of the problem, we want to create an effective grammar
checker for the CALL context, resulting from the theoretical considerations
mentioned above. This diagnosis tool should be able to diagnose grammar
errors in authentic texts produced by language learners.

Let us pause a moment and limit somewhat the extent of the grammar
checker that we want to ceate in order to exemplify the theoretical part of
the work. First of all, it should be mentioned that we are concerned with
written language exclusively. The rationale behind this restriction of the
production medium is threefold. Firstly, voice recognizers do not have a
good enough performance to recognize accurately oral productions spoken
by native speakers, let alone language learners, without extensive training.
Secondly, spoken language is much less formal than written language and is
also more open to regional variations in what is acceptable or not. Thirdly,
and most importantly, spoken language is usually unprepared and sponta-
neous, and thus open to interruptions, false starts, restarts, and hesitations.
Written language, especially in French thanks to the Académie francaise, is
more highly homogeneous and it is, therefore, easier to determine what is
part of the language and what is not, what is grammatical and what is not.

1.2. OBJECTIVES 11

Using a grammar checker within a CALL context also implies some fur-
ther restrictions. For didactic reasons, as mentioned above, a checker needs
not, and should not, be a corrector. Indeed, learning is more efficient when
it is an active process rather than a passive one. Having to find for oneself
the correction of one’s errors leads to better learning than finding the cor-
rection without any effort. Therefore, the grammar checker that we propose
here is not coupled with a correction device, as already mentioned. It must,
however, provide sufficient information for the CALL software to indicate
to the users the types and locations of the errors detected. The CALL sys-
tem is then able to direct the users towards relevant parts of the tutorials
or of a reference grammar in order to provide the users all the necessary
clues to facilitate their search for the correct formulation. The exact form
the feedback should take is not of primary concern in a grammar checker to
be inserted within a CALL environment. Questions of form and of display
belong to the didactic approach of the CALL system. We are, however,
concerned with the kind of information which has to be transmitted from
the diagnosis tool to the CALL software.

An advantage brought about by working in a CALL environment is that
we are able to make use of the context to help the diagnosis process. Indeed,
in a CALL software, what can be written as part of exercises is much more
restricted than when using a text processor. The format of the exercises
limits the type of answers that can be given. Moreover, the questions can
guide the diagnosis system with indications of what to expect in the answer.

Finally, there are some characteristics of the targeted users of this gram-
mar error diagnosis system which need to be taken into account. The envis-
aged users are intermediate to advanced learners of French. They already
have a good command of the language that they can have acquired within
or outside formal classroom settings. For this reason, it is nearly impossible
to determine precisely the range of constructions that they master or will
attempt to use and the coverage of their target language lexicon. This forces
the diagnosis system to have a large coverage itself, in order to recognize
all instances of what the learners are trying to express. One cannot rely on
a given language method and assume that the users will know all and only
the structures and vocabulary taught in that method up to a given chapter.
The diagnosis system must thus be as general as possible.

Another reason for a general approach to the system is that we have no
prior knowledge of the mother tongues of the users. Transfer errors from
the first to the second language are well attested in literature (see (Tschumi
1994), among others, for interference errors in verb tenses in English writing
of French speakers). When designing a diagnosis system for learners of a
given first language, one can incorporate the information on typical transfer
errors for that type of users (see for example (Weischedel and Black 1980,
p. 99) and the works the Laboratoire de traitement du langage et de la parole,
Université de Neuchdtel (Cornu 1994, Tschumi, Bodmer, Cornu, Grosjean,

12 CHAPTER 1. INTRODUCTION

Grosjean, Kiibler, and Tschichold 1994)). This option is not available in the
present case, as our target users speak a variety of mother tongues. This
forces us to keep a distance, not to base our work on transfer errors, and to
realize a more general diagnosis.

To sum up, the objectives contain a theoretical part which is the study of
existing grammar checkers, both at the prototype and the commercial stage,
as well as the discussion of selected algorithms that can be used for gram-
mar checking, either in isolation or in combination with one another. The
practical part of this work involves actually implementing these algorithms
in order to create a grammar error diagnosis tool for the CALL context.

1.3 Methodological approach

Work that has led to this dissertation is anchored within a practical project.”?
The needs and scope of this project had to be taken into account in the
realization of the grammar error diagnosis tool, which had a number of
implications concerning the methodological approach. The duration of the
project was set in advance and the diagnosis system had to be completed
within that time frame. For this reason, it was very important to make use of
all possible resources available, such as the Fips parser (see (Laenzlinger and
Wehrli 1991, Wehrli 1997) for a description of the parser), and not to try
to build everything from scratch again. Requirements for the completion
of the project were also taken into account, in particular concerning the
errors to be treated. As it is realistically impossible to diagnose all kinds of
errors, a selection of errors was made conforming primarily to the needs of
the project. Finally, what we were building had to work at the end of the
project, however we managed to achieve this. This fact helped us stretch
the theory, invent new diagnosis techniques and combine them in order to
have a working system at the completion of the project.

1.3.1 Selection of errors

Thinking utopic that a single error diagnosis system could be able to diag-
nose all the kinds of errors appearing in a text, even limited to grammar
errors, a selection of the types of errors to be treated by the diagnosis system
is an important point that shapes the whole system.

Three questions can be asked and we will try to answer them in order.

1. Which error types can be diagnosed?

2. Which error types should be diagnosed from a didactic standpoint?

"The FreeText project aims at creating a complete CALL software for intermediate to
advanced learners of French, including a diagnosis system. For a general description of
the project, see section 1.4.

1.3. METHODOLOGICAL APPROACH 13

3. What are the error types actually found in learners’ texts?

To know what error types can be diagnosed, we can study the literature,
see what other systems are able to do and try to do at least as much. We
can also draw on our knowledge of the tools available and infer what can be
transformed and how it can be transformed, and thus what can be diagnosed.
But this latter solution has the disadvantage of probably presenting us with
only the error types that are easy to diagnose, because they are those that
first come to mind. Some complex but more important errors may be missed
that way.

Didactic specialists will be able to provide a list of error types or points
that they desire to see covered by the diagnosis system. This list is usually
drawn from their experience of the error types found in learners’ productions,
from their own views on teaching, and from the content of their didactic
materials. Language teachers want to be able to consider whole texts in
their materials and therefore have a need for diagnosis tools that go beyond
the sentence level to reach into semantics and pragmatics, without forgetting
to have as large a coverage as possible.

It is also important to know what errors are actually made by learners
and teachers’ intuitions are not necessarily enough in that matter. The best
way to know this is to collect learner corpora and to analyze them. This
includes tagging corpora by hand for as many types of errors as possible. It
is then possible to analyze the errors statistically. Error frequency is one of
the simplest analyses available, but there are countless more complex ones,
such as knowing that in 95.5 % of the data in the corpus, when a number
agreement error occurs between a subject noun phrase and a verb, it is the
verb which is not pluralized properly.5

The didactic needs and the knowledge of errors actually found in learn-
ers’ texts stretch the demands on the diagnosis system and forces NLP re-
searchers to enlarge the number of errors that they had thought interesting
to diagnose, as well as pushing them to find ways to diagnose these errors
and therefore to expand the theoretical limits of error diagnosis.

The selection process for the errors to be diagnosed by the system de-
scribed in this dissertation tries to put in balance what can be detected, what
is desired didactically and what is actually found in learner corpora. The
final selection, which is described in more detail later (chapter 4, section 4.2)
depends partly on the grammatical points stressed within the tutorials of
the whole CALL software and on the error types and frequencies found in
learner corpora.

5Data from Sylviane Granger, personal communication, Manchester, October 2000.

14 CHAPTER 1. INTRODUCTION

1.3.2 Reuse and adaptation of a parser

One of the key idea of the chosen methodological approach is to use, reuse,
and adapt whatever tool is available rather than to recreate it anew from
scratch. Very often, project designers must make a choice between, on the
one hand, creating a prototype from nothing, knowing that they will not be
able to construct a complete working system but hoping that their proto-
type will be large enough to demonstrate that their hypotheses are working;
or, on the other hand, reusing, modifying and adapting existing tools in
order to create a usable system, at the price of adapting their hypotheses to
the available materials. We now look at the rationale underlying the reuse
of a syntactic parser in the present case, then quickly sketch the kinds of
adaptations needed, and finally evoke some of the problems or disadvantages
associated with the reuse of particular NLP tools.

Rationale

By reusing tools, and in particular a syntactic parser, one saves time and
money. The creation of a syntactic parser is a very time consuming task
which therefore also requires some amount of funding to employ the neces-
sary people. “It can take years to develop an NLP tool that provides accu-
rate grammaticality judgments and it therefore seems more efficient not to
write a parser from scratch but rather to use an existing one” (Schulze and
Hamel 2000, p. 86). In a project like the one linked to this dissertation, the
time and resources needed to create a whole parser from nothing were not
available. If we had not had a parser already available, the project would
not have been born.

Apart from the gain in time and money, reuse of a syntactic parser brings
us robustness, reliability and coverage. Each of those necessary features is
not easy to achieve but are the elements that differentiate a complete system
from its prototype. In the present case, the three elements are of particular
importance. Robustness is crucial because language learners tend to pro-
duce ungrammatical sentences that the parser will be given as input. If
the parser were to crash at any deviation from the norm of grammatical
language, the system would be useless for this application. Reliability is
important because, while native speakers can have a critical view on the
output of the NLP tool thanks to their knowledge of the language, this is
much more difficult for language learners: their knowledge of the target lan-
guage leaves them no other possibility than to trust the feedback they receive
from the NLP tool. Finally, coverage, including coverage of the lexicon, is
absolutely necessary if one wants to cater to the needs of intermediate to
advanced learners. This type of learners may have acquired their knowledge
of the language in very diverse situations, they might use sentence structures
and vocabulary that are perfectly correct but not often found in language

1.3. METHODOLOGICAL APPROACH 15

courses. It would be damaging to force those learners to conform to what is
taught in a given textbook, hence the importance of a large coverage.

Finally, another advantage of reusing a syntactic parser is that it can
serve first as a recognizer, thus indicating whether a given sentence is gram-
matical, or not. This is a great help in the case at hand. We are trying
to detect ungrammaticalities in the input produced by language learners.
Ideally, a first pass through the parser, serving as a recognizer, will already
tell us whether the sentence is grammatical and needs no other treatment
or if it is ungrammatical and must undergo a diagnosis procedure.

Adaptations

The first type of adaptation the parser has to undergo concerns the partic-
ular context of use. The Fips parser is a generic parser in the sense that
it provides syntactic analyses of its input which can then be employed in
a rather wide range of situations such as in a speech synthesizer, and an
automated translation system. Although the Fips parser was not planned
for any particular end application, it was assumed that its input would be
grammatical. This is a way to slightly reduce the difficulty and the com-
plexity of the parsing problem. This is not to say that Fips is not robust,
quite the contrary: Fips provides partial analyses for its input when it can-
not find a syntactic structure covering it completely. Fips was nevertheless
implemented with the view that its input would be texts written with care
by native speakers, containing almost no mistakes. A consequence of this is
that it was never really tested before with ungrammatical input. Unfortu-
nately, this exercise revealed that the Fips parser provides full analyses for
many ungrammatical sentences and thus considers them to be part of the
language. A first necessary adaptation is therefore to tighten the parser to
prevent it from recognizing ungrammatical sentences as grammatical.

At the same time, it is also important to improve the coverage of the
parser. As a general rule, coverage can always be extended as there is no
single tool, to our knowledge, that covers a natural language completely. In
the present case, one has to ensure that the parser is able to parse correctly
the different text types and sentence structures found in the authentic doc-
uments of the tutorials, as well as in the exercises, the reference grammar
and all other kinds of materials included in the CALL software developed
for the FreeText project.

The second type of adaptation of the parser is its transformation into
a syntactic error diagnosis system able to diagnose a set of error types de-
fined in conjunction with the needs of the CALL software of which it will
be part. For the diagnosis of each error type, there should be a phase de-
voted to the study of the parser in order to understand how the particular
problematic area is analyzed. A good knowledge of how the parser works
is absolutely fundamental before anyone can make suggestions of modifica-

16 CHAPTER 1. INTRODUCTION

tions to diagnose a particular error type. Once a proposal of modification
is made, especially if it concerns many structures and/or areas of the code
of the parser, there should be a test on a sample, in order to see whether
the preliminary results look encouraging. If so, the modification can then
be implemented full scale. Otherwise, one should revise the proposal and
start again.

Disadvantages

Obviously, reusing and adapting existing NLP tools has also its share of dis-
advantages and problems. Because one is not starting from scratch, it may
be necessary to adapt one’s hypotheses in some ways to the tools available
and to take into consideration their architecture to see where modifications
can take place without side effects. Thus, there are some constraints on the
kinds of diagnosis techniques that one is able to use with the Fips parser.
These constraints depend on the architecture of the parser and its working
algorithms. Techniques that can be implemented in the Fips parser are used
for that very reason, while others, also very interesting on a theoretical basis,
are rejected because they are not compatible with the parser we are reusing.
A diagnosis technique that fits the Fips parser well is constraint relaxation
(which is used in numerous diagnosis systems, even if under somewhat differ-
ent names, see (Weischedel and Black 1980) and (Heinecke, Kunze, Menzel,
and Schroder 1998)). One can also benefit from Fips’s work as a recognizer
providing partial analyses to reinterpret those partial analysis to diagnose
why structures where not able to combine. One gain of reusing a parser is
to be able to provide a syntactic structure of the input besides a diagnosis.
This already dismisses diagnosis techniques which do not rely on parsing
such as pattern matching and the use of automata to look for specific errors
(see (Tschumi et al. 1994) and (Kiibler and Cornu 1994)). Although error
grammars and error rules diagnosis techniques are in fact able to parse their
input (see (Murphy, Kriiger, and Grieszl 1998) and (Schneider and McCoy
1998)), such techniques are not usable with Fips because they require a rule
set completely separated from the parsing algorithm and this is not the case
with Fips.

Finally, as the combination of techniques that are used in the end is
very dependent from the parser we are adapting, the whole combination is
not easily transferable “as is” on another parser. Nevertheless, individual
techniques should be transferable, and the theoretical hypotheses advanced
in this dissertation should be generic enough for reuse elsewhere.

1.3.3 Combining diagnosis techniques

Within the error diagnosis system, several techniques are used concurrently.
This can increase the number of error types which are diagnosed, decrease

1.3. METHODOLOGICAL APPROACH 17

the number of overflagging, but also create a new challenge.

Increasing the number of error types diagnosed

Each diagnosis technique is able to diagnose a specific range of error types.
Inversely, each technique also has a number of error types that it is not able
to treat because the technique is not adapted for this purpose or because it
would be too costly to implement it for a particular error type. By using
several techniques, one can try to counterbalance the fact that some error
types are not treated by a given technique. If several diagnosis techniques
work side by side, we can hope that their respective set of treated errors
are not identical, that they are even nearly disjoint, and that one can thus
correct many more error types by using several techniques, each technique
targeting a particular set of error types.

Decreasing the rate of overflagging

Because the sets of errors targeted by particular diagnosis techniques are
not completely disjoint, using several diagnosis techniques should also help
us to decrease the rate of overflagging. Let us consider the case where
only one technique gives a diagnosis on an error type. If this technique
indicates that an error is present, one must consider it so and warn the
user, running the risk that this was an occurrence of overflagging. Now,
if two techniques target the same error type, and if both independently
indicate that a particular error is present, it is far less likely that they are
both wrong. Thus, by having two, or more, techniques providing the same
results, we reach a higher level of certitude that the error can actually be
found in the text and that we are not overflagging the user.

The challenge

The results of two or more techniques do not necessarily coincide, however.
This raises the problem of how to interpret divergent results and, in general,
of how to combine in the most efficient way several techniques and their
results. Several ideas come to mind. One could use all the techniques, one
after the other or simultaneously, and compare their results, perhaps using
a weighing system depending on the technique and the error type, as not all
diagnosis techniques are as good with a specific error type. One could use
only one technique at a time, but decide which one to use depending on the
results of a first pass through the parser. Or one could start with a technique
and, depending on intermediary results, change techniques midstream if one
considers that another technique would be more appropriate for the task at
hand. Solutions to these questions will be discussed, and hopefully answered,
at the end of chapter 3, in section 3.5.

18 CHAPTER 1. INTRODUCTION

1.4 The FreeText project

A large amount of the work described in this dissertation and most of the
implementation of the diagnosis system were made in the context of the
FreeText project which is described briefly in this section.

The FreeText project is a collaboration between four partners located
in Europe: the Department of Language Engineering of the University of
Manchester Institute of Science and Technology (UMIST), United Kingdom,;
the Centre for English Corpus Linguistics (CECL), Université Catholique de
Louvain, Belgium; Softissimo SA, France; and the Department of Linguis-
tics, Université de Geneéve, Switzerland. It is funded under the auspices of
the Fifth Framework Programme of the European Commission.” The aim
of this three-year project, started in April 2000, is to create a computer
assisted language learning software for French as a foreign language. The
software targets users at the intermediate to advanced levels. It is inno-
vating in that it uses authentic documents and a communicative approach
to second language acquisition (SLA) as a basis for meaningful task-based
activities. The content of the tutorials takes into account learner corpus
analyses to tailor the exercises to the needs of the target users. NLP tools
are used for error diagnosis in exercise answers and are moreover available
to the users at all times for testing and illustration purposes. The error
diagnosis system, which is made of a spell checker, a grammar checker and a
‘semantic’ checker, relies also on the error typologies and analyses extracted
from the learner corpus.

Each partner in the FreeText project has its specific set of tasks. UMIST
is responsible for the didactic content of the software. The CECL is in
charge of everything relating to corpora and is also responsible for the val-
idation stages of the project. Softissimo works on the interface and on the
integration of all the parts into a coherent software. The Department of
Linguistics of the Université de Geneve develops the NLP tools necessary
for the project.

This dissertation is concerned mainly with the conception and realization
of the component of the diagnosis system treating grammar errors.

For a more detailed description of the FreeText project, see the project
website:® http://www.latl.unige.ch/freetext/

"The FreeText project receives financial support from the European Commission in the
IST programme of the 5th framework-programme, contract IST-1999-13093. The Swiss
participation is funded by the Swiss Federal Office for Education and Science, contract
99.0049. The content of this document is the sole responsibility of its author and does
not represent the opinion of the Community. The Community is not responsible for any
use that might be made of the data appearing in this document. The information in this
document is provided as is and no guarantee or warranty is given that the information is
fit for any particular purpose. The users thereof uses the information at their sole risk
and liability.

8Last accessed on April 7, 2003.

1.5. STRUCTURE 19

1.5 Structure

This dissertation is structured as described in the following paragraphs.

Chapter 2 describes the state of the art in the domain of grammar error
diagnosis. It starts with a brief history of the treatment of ill-formedness
in NLP and CALL. An indication of what is done nowadays concerning
spell and semantic checking follows. We then describe several techniques
used for error diagnosis. These techniques include pattern matching, finite
state automata, error grammars and constraint relaxation. Each technique
is described in turn and examples of systems using them are given. A study
of a few commercial tools is included, specifying the mother tongue of its
target users, the techniques they use when known, and available performance
results.

Chapter 3 contains the theoretical hypotheses of this dissertation. Three
techniques are described, constraint relaxation, phonological reinterpreta-
tion, and chunk reinterpretation, including for each technique possible vari-
ants to the main theory and indicating how each technique differentiates
itself from the others. Finally, we investigate four different hypotheses to
use the above mentioned diagnosis techniques in combination and to manage
the results coming from different sources. These hypotheses are a sequential
ordering of the techniques, a parallel activation of them with competition
of the results, a cascade hypothesis where one could switch technique mid-
stream and finally a heuristic hypothesis where the choice of technique would
be determined by the results of a first pass of the input through the parser.

Chapter 4 relates the actual implementation of the hypotheses described
in the preceding chapter. It starts with a description of the syntactic parser
which has been transformed into a diagnosis tool and continues by explain-
ing the range of errors that were selected to be diagnosed by the system and
their representation in the system. A report is then given of the implemen-
tation of the diagnosis techniques, indicating the variant used, the problems
encountered and the limits of the present implementation. Finally, the type
of combination of techniques implemented is detailed.

Results are given in chapter 5. It contains a description of the corpora
which were used to test the system. We give quantitative results in the form
of statistics, qualitative results based on human observation of the data, and
comments on those two kinds of results. This is followed by a comparison
of our system with a commercial grammar checker.

Chapter 6, the conclusion, highlights the contributions to the research
domains in terms of the emergence of a competitive diagnosis system and
of the use of some rarely employed diagnosis techniques, without forgetting
the cooperation between several techniques. Some limitations to the work
accomplished are detailed and, finally, some leads for further research are
given.

20

CHAPTER 1. INTRODUCTION

Chapter 2

State of the Art

This chapter gives an overview of the state of the art in the treatment of
ungrammatical sentences in natural language processing systems, covering
roughly the 1980’s and 1990’s, extended by a couple of years in both direc-
tions. The first section reviews a short history of NLP for error diagnosis
in CALL systems. Section 2 briefly discusses spell checkers today. As one
considers that “the degree of intelligence that grammar checkers display
varies depending on the techniques used for language analysis” (Chapelle
1989, p. 63), it seems important to discuss existing techniques. Thus, the
following five sections explore diverse techniques for treating ungrammati-
cal sentences. Each technique is described in detail and examples of actual
systems using the technique are given. The described techniques include
pattern matching, finite state automata, error grammars, constraint relax-
ation, and other techniques less well represented. Section 2.8 relates the
information known about some commercialized grammar checkers. Finally,
section 2.9 concludes this chapter.

2.1 A short history of NLP in CALL

This section presents a short history of NLP for the treatment of ill-formed
input in CALL. The aim is not necessarily to be exhaustive, but to present a
summary of what has been done and of the focus of attention in the 1980’s
and 1990’s, extended by a couple of years in both directions. For a his-
tory of CALL itself, starting from the very beginning, the reader is referred
to Chapelle (2001) and to the following web site,! http://www.history-of-
call.org/ from which some of the information in this section was gathered.
A interesting survey of intelligent CALL (ICALL), including NLP applica-
tions and covering the 1990’s up to 2002, is given in (Gamper and Knapp
2002). For a very well documented review of NLP in CALL, for all kinds of

'The site was last accessed on April 14, 2003.

21

22 CHAPTER 2. STATE OF THE ART
applications besides error diagnosis and correction, see (Nerbonne 2003).

2.1.1 The early 1980’s

NLP practitioners very often assume, as a simplification, that their sys-
tem’s input is grammatical. Thus, early systems were less than informative
when they encountered unparsable input, either lying outside the bounds
of the parser’s grammar or being actually ungrammatical. However, when
dealing with natural language interfaces, or in short with human beings,
ill-formedness will occur and has to be dealt with. “While considerable
advances have been made in recent years in applied natural language pro-
cessing, few of the systems that have been constructed have paid sufficient
attention to the kinds of deviation that will inevitably occur in their input
if they are used in a natural environment” (Hayes and Mouradian 1981,
p. 232).

In the early days of CALL, the only sophisticated error treatment avail-
able came from NLP practitioners who saw CALL as a possible end appli-
cation for the error tolerant parsers they were building as part of human-
computer interfaces. Thus, the early error diagnosis systems for CALL were
often constructed as a secondary output of other NLP applications (such as
the system described in (Weischedel and Black 1980)), with the exception
of the German Tutor of Weischedel, Voge, and James (1978).

Nevertheless, the approach followed in general NLP systems and in
CALL systems towards the treatment of ill-formedness is naturally quite
different. For most natural language interfaces, the goal when encountering
ill-formedness is to overcome it in order to provide an appropriate reponse
and not to block at the ill-formedness site. Therefore, some parsers are
underconstrained and are able to give a representation for many ungram-
matical sentences as well as grammatical ones. These systems must figure
out a way to make some sort of sense of their users’ query in order to respond
meaningfully. They are not overly concerned with indicating the source of
the ill-formedness, unless it is overwhelming and prevents the system from
going further. In such case, it might be interesting for the system to indicate
the cause of the failure to the users in order for them to rephrase their query.

In the early 1980’s, the range of ill-formedness that NLP systems, both
in CALL and elsewhere, were able to treat was rather limited. The first
acknowledged limitation sprang from the systems themselves, which were
often small-scaled and within constrained domains. Weischedel and Black
(1980)’s CALL system worked on single texts for each of which “a module
of world knowledge specific to the particular text” (Weischedel and Black
1980, p. 98) had to be created. Hayes and Mouradian take pain to emphasize
“that FlexP is designed to be used in the interface to a restricted-domain
system. As such, it is intended to work from a domain-specific semantic
grammar, rather than one suitable for broader classes of input” (Hayes and

2.1. A SHORT HISTORY OF NLP IN CALL 23

Mouradian 1981, p. 236).

The range of ill-formedness coverage attempted by these early systems
included co-occurrence violations, ellipsis and extraneous terms, and con-
junction for Kwasny and Sondheimer (1981), misspellings, novel words,
erroneous segmentation, restarted utterances, elliptical input, interjected
phrases, omission and substitutions, agreement failures, idioms and user sup-
plied changes for Hayes and Mouradian (1981). Most of these are also the
basics treated by other systems of that period. One can notice that this list
includes many relative ill-formedness following the definition of Weischedel
and Sondheimer (1983, p. 161). Ellipsis, conjunction, novel words, inter-
jected sentences and idioms are not an indication of ungrammaticality. They
are, rather, the mark of the proper use of the language within a communi-
cation act. These structures are, however, difficult to treat from an NLP
standpoint, and one can understand that they would lie outside the nor-
mal bounds of the early 1980’s systems. For the CALL domain, however,
one should restrict correction (and/or diagnosis) to absolute ill-formedness,
whose treatment at the time covered misspellings, co-occurrence violations
(agreement failure, verb selection), erroneous segmentation, omissions and
substitutions. None of those seem really directed specifically at language
learners, as they are also common errors of native speakers, apart from ex-
ample (3) from Kwasny and Sondheimer (1981, p. 100), classified by them
as a ‘co-occurrence violation’ and which is akin to the erroneous use of a
fixed phrase or idiom.

(3) * I will stay from now under midnight.

It is often assumed that, as Weischedel and Black state it, “in the envi-
ronment of foreign language instruction, the system is in the unique position
of having more vocabulary and syntactic forms that the user and, therefore
has more knowledge than the user can express” (Weischedel and Black 1980,
p. 98-99), which implies that relative ill-formedness is unlikely to occur.
Although this might be true for CALL systems catering to beginner level
learners, this is not necessarily the case for advanced level learners, whose
knowledge of the language can have multiple sources and differ from a given
text book or foreign language method.

However, let us not forget that NLP-based CALL was rather a rarity in
the early 1980’s. Pusack (1984) cites five different ways of answer processing
in CALL:

e Non-evaluation;
e Right/wrong evaluation;

e Pattern markup;

24 CHAPTER 2. STATE OF THE ART

e Error anticipation;
e Parsing.

Pusack devotes most of his efforts to the description of pattern markup,
more commonly known under the term ‘pattern matching’. This technique
was indeed widely used during that period. While requiring a lot of effort to
build a complete set of exercises with adequate feedback, this method was
rather reliable. It has been used by many systems, such as CLEF (Holmes
and Kidd 1980, Paramskas 1993) described in section 2.3.2. Parsing, on the
other hand, was often considered not to be advanced enough or requiring
too much resources to be used apart from toy software. “Even a simple
system capable of doing this [detecting errors of syntax and morphology],
however, may use all the resources of a moderate-size computer” (Pusack
1984, p. 63). With the advance of microcomputers, this barrier fell naturally
away in the following years.

2.1.2 The late 1980’s

In the second half of the 1980’s, CALL seems to be emerging as a disci-
pline in its own right. In his introductory address to ‘The First Conference
on Canadian Computer-Assisted Language Learning’, held in 1989, Holmes
(1990) reports on the development of CALL, not only in Canada but in the
United States and in Great Britain. As a pioneer of CALL, he has seen the
emergence of a CALL community which did not exist in the early 1980’s.
He also talks of the number of CALL research programs which have been
funded and launched in the recent past as indicator of the increasing inter-
est in CALL. He notes the variety of CALL activities: “authoring systems,
drill-and-practice, simulations, gaming, translation, databases as learning
aids, multilingual word processors, writing and composition” (Holmes 1990,
p. 5). This diversity, present from the start, is still very much the norm in
CALL today. Finally, Holmes mentions the appearance of artificial intelli-
gence techniques including parsing.

In 1992, Hubbard recalls that “in the past few years, CALL has clearly
established itself as a separated discipline within language learning: It has
its own professional organizations, such as CALICO and the CALL Interest
Section of TESOL, journals and newsletters, and a growing number of con-
ferences, monographs and anthologies (including the present one) devoted
to it” (Hubbard 1992, p. 40). Indeed, with the creation of CALICO in the
mid-1980’s, the first EuroCALL constitution in 1988, soon followed by the
first issue of the RECALL journal, and the first Canadian conference on
CALL held in 1989, one can sense the increasing interest that CALL, in all
its varieties, attracts from the mid-1980’s onwards.

Parsing remains an exception during this period. “Even in the area
of drill-and-practice there are only a handful of programs which use NLP

2.1. A SHORT HISTORY OF NLP IN CALL 25

techniques in order to give students informative feedback, even in a relatively
mundane area like the correct use of verb forms” (Bailin 1990, p. 174).
Intelligent computer assisted language learning (or instruction, respectively
ICALL and ICALI), which includes for some parser-based CALL, is still
considered to be very young. “First of all, ICALI is in no way a large field:
there are, in fact, relatively few projects devoted to the development of
ICALI software. Second, it has not created a substantial body of theory: the
work is still in its infancy. Finally, it has not yet produced much significant
software: what software there is often hints at far more than it can deliver”
(Bailin and Levin 1989, p. 3).

This might be explained by two factors. First of all, the second half of the
1980’s saw the emergence of CALL software taking into account communica-
tive approaches to language learning. Guberman talks about “open-minded
software” (Guberman 1990, p. 33) where the focus is not on grammar and
form but on meaning and content. She describes several such products for
English, French, and ITtalian. These are ‘enjoyable’ software which do not
seem to be teaching and thus might be better accepted by language learners,
and which, moreover, do not necessarily require a diagnosis or a correction
of the users’ input. The growing interest in communicative approaches to
language learning and its arrival in the CALL domain implied a shift of focus
away from grammar and the treatment of ill-formed input by the software.
Learners must not be hindered in their practice of the language by warnings
about the ungrammaticality of their productions.

Secondly, this period saw the emergence of the personal microcomputer.
The microcomputer brought affordable machines to language teachers, who
might not have had access to the mainframes guarded by computer scien-
tists. At the same time, language learners became more used to computers
and thus less afraid to work with them. CALL software users were not
necessarily learning to use a computer at the same time they were trying
to use the software and learn the language. The increasing availability of
microcomputers is having an impact on CALL designers and authors. Lan-
guage teachers have now the means to devise their own CALL material, as
it is well attested in Craven, Sinyor, and Paramskas (1990). However, most
language teachers lack the computer science competencies to create NLP
tools for error diagnosis.

2.1.3 The early 1990’s

CALL continues to affirm its position as a scientific domain in the early
1990’s with the EuroCALL annual conferences, the first one being held in
1993. EuroCALL has always served the whole of the CALL discipline and
many areas are represented, including NLP in CALL.

The early 1990’s also saw several important publications in the domain
of CALL, including NLP-based CALL, under numerous different acronyms.

26 CHAPTER 2. STATE OF THE ART

Bailin edited a special issue of the CALICO Journal on ICALI in the Fall
of 1991 (Bailin 1991). Swartz and Yazdani (1992) published a collection
of papers in book format in 1992, and Holland, Kapland, and Sams (1995)
another a few years later. This latest collection of CALL papers covers a
wide range of CALL domains, in which NLP-based CALL is particularly
well represented.

NLP-based CALL systems were still far from the norm in the early
1990’s. Some CALL practitioners advocated it. “A sophisticated foreign
language training system must be able to evaluate free text inputs from the
student, markedly distinguishing it from systems that can only handle true-
false, multiple choice, or canned fill-ins. Sole reliance on simple exercises will
not support acquisition and maintenance of real communication in the for-
eign language” (Criswell, Byrnes, and Pfister 1992, p. 312). Others did not
believe in the rapid use of NLP tools in CALL. “In education, sophisticated
interactive grammar-checkers built on instructional parsing systems might
eventually be used for direct students instruction, but we do not expect such
use will soon be widespread” (Loritz 1992, p. 17).

During that period, Holland, Maisano, Alderks, and Martin (1993) also
deem fit to write an apology of NLP for CALL. NLP is seen as “relatively
new to CALL” (Holland et al. 1993, p. 28) and the authors’ aim is to
tell their readers what NLP is, how parsers can be used in CALL, what
limitations there are to this technology, and how to overcome them. Still
quite unknown to many CALL practitioners of the early 1990’s, parsers in
CALL already exist, however, and Holland et al. (1993) are able to cite no
less than five such systems or family of systems.

Progress of NLP-based CALL in the CALL community is rather slow,
due in part to a lack of maturity of the tools then available. Nevertheless,
the advance of NLP-based CALL is also partly a problem of publicity. The
teacher population who would supposedly introduce their students to NLP-
based CALL is not necessarily aware of the existence of such tools.

2.1.4 The late 1990’s and beyond

The field continued to expand in the late 1990’s with the appearance of two
web-based scientific journals for the CALL community in 1997 (ALSIC?
and Language Learning Technology®) and the first World CALL conference
in Australia in 1998.

The shift to Internet does not appear only with web-based journals. The
topic of many papers and conference presentations is on the use of Internet,
in all its forms (email, world wide web, chats, ...) to improve language
learning. “Web-based CALL systems are increasing day by day” (Yang and

http://www.alsic.org/ (last accessed on April 24th, 2003)
http://llt.msu.edu/ (last accessed on April 24th, 2003)

2.2. SPELL CHECKERS 27

Akahori 1999, p. 61). A cursory look at the presentation summaries of the
1999 EuroCALL conference held in Besangon, France (Chanier 1999), is
enough to be convinced.

Despite the growing importance of the CALL community, NLP is still
not widely used. “Although CALL employs the computer to assist in lan-
guage teaching and in language self-study, most CALL programs make little
essential use of language technology, exploiting instead hypertext, digital au-
dio and video, (simple) database technology and network communications.”
(Nerbonne, Dokter, and Smit 1998, p. 544). “The fact remains that it is still
not possible to have a language learner type even a short composition into
a computer and to have the computer correct anything but the most basic
linguistic errors such as verb and adjective agreements and misspellings”
(Richmond 1999, p. 303). Thus, error detection, diagnosis and correction, if
any can be found, are most often still employing simple techniques such as
pattern matching.

In summary, although NLP-based CALL exists, it is still not widely used
in the CALL community at the time of writing. Whatever systems one finds
using this technology are still mostly research prototypes not commercialized
and thus not available to most foreign language teachers and learners.

2.2 Spell checkers

Although spell checkers are not really part of the topic of this dissertation,
we briefly describe them here for two reasons. Firstly, it is a domain where
language learners are also prone to make errors and which influences parsing.
Secondly, they were the first NLP tools to be widely available and used by
the general public in word processors. They treat words in isolation, but
they are satisfying to their users because they do what they are supposed
to, detect misspelled words, and they do it quite fast.

Peterson (1980) cites a number of different techniques for spell checking,
which were either currently used or seen as possible research leads. They in-
clude ordering the tokens of a text by frequency, detecting rare digrams and
trigrams as potential misspellings, dictionary lookup, grapheme to phoneme
to grapheme transcriptions, and affix analysis. Many of these techniques are
currently still used in spell checkers, that is more than 20 years later.

The importance to treat phonographic errors is stressed in Véronis (1988),
although the author writes about native speaker data. He proposes that “a
whole grapheme, which can be more than one letter long, can be replaced by
another grapheme having the same phonetic value” (Véronis 1988, p. 709,
emphasis in original).

The spell checker designed by Vosse (1992) uses trigram and triphone
analysis, with a ranking and scoring mechanism. Moreover, Vosse uses syn-
tactic filtering to eliminate some of the alternative spelling corrections. Once

28 CHAPTER 2. STATE OF THE ART

a set of possible corrections has been found for an unknown word, the sen-
tence is parsed with all the correction alternatives. Only the alternatives
resulting in a correct parse, recuperated by inspecting the parse trees, are
made available to the users.

Courtin, Dujardin, Kowarski, Genthial, and de Lima (1991) propose a
detection/correction system for lexical and morpho-syntactic errors. The
lexical level, the closest to a spell checker, uses three detection techniques:
skeleton key, phonetics and morphological parsing. Skeleton keys are de-
scribed in Pollock and Zamora (1984). The main idea of skeleton keys is
to “generate a similarity key for each word in the dictionary and then sort
the dictionary in key order. A misspelling is then corrected by locating
words whose keys collate most closely to the key of the misspelling and se-
lecting the plausible correction(s) from these” (Pollock and Zamora 1984,
p. 359). The exact form of the key varies from one implementation to the
other. “Modern correctors generally use the reference word to calculate a
key which is then used to search the lexicon” (Letellier and Fournier 1990,
p. 394). The second technique used by Courtin et al. (1991) computes, for
any given misspelled string, “all the possible phonetic transcriptions associ-
ated with this string. (...) From these phonetic transcriptions, we generate
written forms which give us proposals of corrections for the misspelled word”
(Courtin et al. 1991, p. 159-160). Finally, morphological parsing is used
to correct wrong inflectional endings, such as the use of the regular plural
morpheme on an irregular noun. These techniques are usually activated in
the order of presentation, but the authors indicate that other orders might
be more interesting depending on the user population. In particular, “for a
text written by a child or a foreigner, it may seem preferable to start with
phonetic correction” (Courtin et al. 1991, p. 169).

Spelling correction with error-tolerant finite-state recognizers is proposed
by Oflazer (1996). In an agglutinative language like Turkish, it is impossible
to base a spell checker on a word list, as it is often done for languages such as
English or French, given the highly combinatorial nature of possible suffixes.
Roots and affixes are encoded in a finite-state recognizer. “One needs to find
all paths from the start node to one of the final nodes, so that when the
labels on the links along a path are concatenated, the resulting string is
within a given edit distance threshold ¢, of the (erroneous) input string”
(Oflazer 1996, p. 75, emphasis in original). For efficiency reasons, a path is
pruned during the search as soon as it is over the threshold. “Insertions,
deletions, replacements, and transpositions” (Oflazer 1996, p. 84) can be
treated this way, which, once again, might not be sufficient for language
learners.

“Relevons qu’il n’existe pas, & notre connaissance, de correcteurs or-
thographiques commerciaux munis d’algorithmes d’identification et de tri
des solutions concus spécialement pour les utilisateur de langue seconde”
(Cornu 1997, p. 29). Some spell checkers are said to cater also to language

2.3. PATTERN MATCHING 29

learners (Courtin et al. 1991), but it is not their main public. Thus, lan-
guage learners have to do with tools designed for native speakers and not
adapted to their specific needs. Commercial tools are nevertheless usable by
language learners as they point out any word which is not part of their lex-
icon. What they are less well equipped to do is provide correction proposal
tailored to the spelling errors of language learners.

After this brief introduction to spell checkers, we now direct our atten-
tion in the next sections to several diagnosis techniques used for grammar
checking, starting with pattern matching.

2.3 Pattern matching

Pattern matching was not invented for error diagnosis, but it has been widely
used in CALL as it is a relatively easy way to provide some form of feedback
to the users. We give a description of pattern matching and then describe
several CALL systems using pattern matching to diagnose errors.

2.3.1 Description

In CALL, the author/teacher provides the system with a pattern, for ex-
ample the correct answer to a question, which must then be matched to a
search space, the learner’s input. In the simplest form of pattern matching,
the pattern to be found and the search space must be exactly identical. “The
pattern-matching problem can be characterized as a searching problem with
the pattern as the key” (Sedgewick 1988, p. 278). The matching algorithm
must then verify that the current element of the pattern (a character, a
word) matches that of the search space. One repeats this step until the end
of the pattern, the end of the search space or the mismatch of an element.
The match fails in case of a mismatched element, or of the end of the pat-
tern and the search space not being reached at the same time; otherwise, it
succeeds.

(4)a. Pattern: My tailor is rich.
b. Search space 1: My tailor is rich.

c. Search space 2: My taylor is rich.

Pattern (4a) can be found in search space (4b) as they are identical, but
not in (4c) because of the spelling error on ‘taylor’.

To complicate things somewhat, the pattern can be a subpart of the
search space, in which case the pattern could be matched more than once
within the same search space. The algorithm must be refined to start a new
search for every element of the search space. “The algorithm looks for the

30 CHAPTER 2. STATE OF THE ART

leftmost substring in the text string which matches the pattern description
by scanning the text string from left to right, testing at each position whether
there is a substring beginning at that position which matches the pattern
description” (Sedgewick 1988, p. 295).

Feedback is performed by a message, or message reference, attached
to each pattern entered by the author/teacher of a given question. With
pattern matching as described so far, if several correct answers are possible,
all must be entered in full. Likewise, if incorrect answers are provided, they
must all be entered in full with their appropriate associated feedbacks. This
is naturally quite time consuming, and typographical or other mistakes due
to a lack of attention are likely to crop up. Therefore, in order to reduce
the work of entering multiple full patterns, languages have been defined
to describe complex patterns. These languages allow for concatenation,
alternative and repetition. “Various additions are commonly made in actual
systems for convenience. For example, —A might mean ‘match any character
except A’. This not operation is the same as an or involving all the characters
except A but is much easier to use. Similarly, ‘?” might mean ‘match any
letter’” (Sedgewick 1988, p. 294, emphasis in original). Using such languages
allows authors/teachers to enter their correct and incorrect answers in less
time and with less risk. The pattern matching algorithm must be able to take
alternatives into consideration and non-deterministic finite state automata
are often used for this purpose. This pattern language remains quite simple
and can be used by any one without prior computer knowledge.

There are several ways to use pattern matching in CALL. One can either
look for correct complete sentences, or parts of sentences, or look for erro-
neous sentences or erroneous parts of sentences. This choice has interesting
implications for diagnosis and feedback. On the one hand, if the option to
check for correctness is taken, the system will not be able to provide appro-
priate feedback on specific errors to the learners. On the other hand, if one
looks for specific errors, there is the risk to miss flagging some unexpected
incorrect learner production and to accept it because it does not coincide
with any error pattern. Using patterns to detect both correct sentences and
incorrect parts of sentences seems necessary. The patterns detecting errors
can then be launched only if the pattern for the correct answer was not
found.

Pattern matching provides relatively good results in very constrained
domains and simple tasks. Even with these restrictions, it is very labor
intensive as both correct and incorrect answers must be provided. Moreover,
“pattern matching is not entirely adequate for natural-language processing
because natural-language syntactic generalizations depend on the grouping
of words into constituents, not just on their superficial linear order” (Levin,
Evans, and Gates 1991, p. 52).

2.3. PATTERN MATCHING 31

2.3.2 Systems using pattern matching

The information about systems described in this section was gathered through
articles in scientific papers. Only one system, CLEF, was available for test-
ing, which explains that it is the first system discussed and has the most
extensive description provided. CLEF’s description is followed by informa-
tion on three other systems ordered chronologically by date of publication.
This section ends by mentioning others systems using pattern matching for
which too little information was found to merit a separate entry.

CLEF

One system using pattern matching techniques is CLEF (Computer assisted
Learning Exercises for French). It was first developed in Canada in 1978 and
released by the CLEF group in 1986. Since 1996, it is distributed by Camsoft
in the United Kingdom. CLEF runs under MS-Dos and therefore looks quite
old-fashioned to people used to the multimedia era of the beginning of the
21st century.

“CLEF offre une révision de la grammaire frangaise depuis le niveau
débutant jusqu’au niveau intermédiaire: y sont compris dans ses 62 lecons,
62 explications grammaticales et pres de 250 exercices de types variés; la
rétroaction (commentaires pour guider I’étudiant vers la bonne réponse)
est encore aujourd’hui une des plus sophistiquées” (Paramskas 1993, p. 67).
“Kach lesson begins with a brief optional review of the grammar point. Then,
in an effort to minimize vocabulary problems, the major lexical materials
to be encountered in the exercises are presented” (Holmes and Kidd 1980,
p. 9). The exercises can be done in any order and redone as many times
as one wants. For most exercises, the software gives a second chance to the
users if they were wrong the first time round, providing some feedback. If
the second try is also incorrect, the solution is given.

CLEF was tested as a black box to try to see if pattern matching was
actually used in the system as was expected. Not all the lessons and exercises
were accessed, but hopefully enough of them to cover all the exercise types.
Exercise types include multiple choice questions; fill-in-the-blanks with or
without a list of words supplied, with or without having to transform them;
reordering of phrases to build a sentence; sentence transformation (usually,
part of the transformed sentence is already supplied which limits the amount
of typing the user needs to do); and finding the correct position in the
sentence for a specific element. The user has to type in either single letters
to indicate a choice, numbers to show positions, or a few words. It is doubtful
that the user ever has to type more than two or three words at a time.

Testing was conducted by a French native speaker making errors on pur-
pose to both see the kind of feedback provided and try to overpass the limits
of the system, which proved relatively difficult given the highly restricted

32 CHAPTER 2. STATE OF THE ART

environment. In no place is it absolutely necessary to use any technique
beyond pattern matching in order to provide the feedback displayed. Some
instances of feedback reinforce our opinion that pattern matching is indeed
the technique used, as illustrated below.

In the following examples, text displayed by CLEF will be in this font,
italic is used for what the user types in, bold for the expected answer
and an arrow (=) precedes feedback.

Lesson 10, exercise (a), asks the user to type in the provided adjective
with the correct agreement ending in order to complete the sentence. There
is only one correct solution and few possible incorrect ones if the user fol-
lows the guidelines. Using another adjective than the one provided has the
following effect.

(5) (joli) La chemise est rose.
(beautiful) The shirt is pink.
jolie
= Ce n’est pas correct.

It is not correct

This (rather) uninformative feedback was only to be expected. Indeed,
the answer is not correct as another adjective was used. The system does not
try to check if the sentence is still grammatical. In exercise (d) of the same
lesson where one must find antonym adjectives, one can see that punctuation
is not properly handled.

(6) Les enfants sont petits, mais les adultes sont grands!.
The children are small, but the adults are tall.
grands
= Le radical grand est correct mais aprés il y a une faute d’orthographe.
The radical tall is correct, but there is a spelling mistake afterwards.

The software finds grand (tall) but does not know how to treat the s!
sequence. It thus announces an error, even though the user’s answer was
adequate, because extra punctuation was added. Even more interesting are
perhaps the next two examples, taken from exercise (d) of Lesson 9. The
instructions require the user to choose the appropriate verb from a list and
to inflect it according to the given sentence. The user, however, has typed
in a word which does not belong to the list.

(7) Charlie Brown et Lucy proposent de la limonade devant la
maison.
Charlie Brown and Lucy offer of the lemonade in-front-of the house.
vendent
= La forme est correcte mais le sens est incorrect.
The form is correct but the meaning is not-correct.

2.3. PATTERN MATCHING 33

(8) Je rapporte ce livre a la bilioth&que, je prends un autre
livre.
I bring-back this book to the library, I take an other book.
rends
—> Le sens et la forme sont incorrects.
The meaning and the form are not-correct.

In example (7), one can hope that the user’s input has been recognized to
be in 3rd person plural and therefore in the correct form, although an incor-
rect verb was typed in. Example (8) wipes out this illusion. Indeed, the sen-
tence seems perfectly acceptable for both form and content. CLEF does not
recognize that rapporte (bring-back) is a 1st person singular. rapporter
(to bring-back) was not part of the list of supplied verbs. The exercise is on
verbs ending in -re (prendre, vendre, etc.) and their conjugation. CLEF
is obviously expecting the verb in (8) to end in -ds. Not finding this form,
it considers it as not correct. Moreover, as the verb is not the expected
one, the meaning is also considered erroneous. A true analysis of the sen-
tence would have permitted to detect that (at least) the form was correct.
Detecting that the meaning was also correct would have required either an
extended list of possible verbs or a strong semantic component.

Let us not, however, downplay the possibilities of pattern matching. If
the exercise instructions are followed and a verb is selected from the provided
list, the feedback is coherent. CLEF uses pattern matching intelligently
and to a high degree of refinement. Exercise (a) of lesson 31 is a text
transformation exercise on the passé composé of verbs conjugated with étre.
The whole text is at the first person singular. Before correcting the first
transformation from the present to the passé composé, the software reminds
the user that there must be agreement between the subject and the past
participle and asks whether the user is a man or a woman. Depending on
this answer, all the past participles in this exercise must be in the masculine
or the feminine form.

CLEF does what it is meant to do rather well. Regardless of the variety,
all the exercise types are set in a very restrained domain which does not
allow the users the degree of freedom and creativity that would enable them
to actually produce full sentences in the target language.

Liou’s English Grammar Checker

Liou’s English Grammar Checker (Liou 1991) is described as using error pat-
terns to detect errors and an augmented transition network (ATN) parser.
This made us wonder at first whether we were dealing with an actual pattern
matching diagnosis technique or if the system was using an ATN to detect
errors. However, “the program activates the error pattern matching process
before the parser” (Liou 1991, p. 65) and the error patterns include actual

34 CHAPTER 2. STATE OF THE ART

words such as ‘although’ and ‘but’. These combine to reinforce the inter-
pretation that an actual pattern matching procedure is invoked, although
there are not enough details in the paper to be actually certain of the fact.
The parser is activated only if no error pattern is found, simply in order to
confirm that the sentence under scrutiny is actually part of the set of lawful
and acceptable sentences as described by the grammar.

Parsing a sentence if no error pattern is found is an interesting, though
costly, option to prevent unexpected incorrect productions to be accepted.

CALLE

Rypa and Feurman (1995) describe a noteworthy use of pattern matching.
Their system contains detectors to look for particular linguistic construc-
tions, which are not necessarily errors. The most interesting part of these
detectors is their detector pattern. “The pattern is a template to be matched
against the parse solutions. (...) The pattern consists of an equation, a con-
straint, or a Boolean combination of equations and constraints involving
constituent variables” (Rypa and Feurman 1995, p. 70). The detector pat-
terns are matched to the result of the parse of a sentence. The parse itself
involves a full lexical-functional grammar. This pattern matching variation
is particular as far as the patterns to be matched are not raw text, but
the results of a complex NLP activity. If a pattern finds a match, then the
message part of the detector is presented to the user.

In the project presented, the detectors were used to provide explanations
on the sentence under scrutiny. This sentence was supposedly grammatical.
At the end of their article, Rypa and Feurman remind their readers that one
of the goals of the original CALLE project was to develop an error diagnosis
system (Feuerman, Marshall, Newman, and Rypa 1987). “At that time,
extensive LISP programming was required to determine the error present in
a parse of a student-composed sentence. The new feature detectors from the
CALLE90 project can be utilized to detect errors in the students’ language,
thereby eliminating the need for programming LISP code for this purpose”
(Rypa and Feurman 1995, p. 76). Whether this was actually done or not is
unfortunately not part of their article.

VINCI

Pattern matching did not disappear with the advancement of parsing. It is
still used nowadays, as it is proven by the description of the VINCI system
in the year 2000 (Levison, Lessard, and Walker 2000). VINCT uses a version
of pattern matching to compare a system generated correct response to the
actual response provided by the learner. The algorithm uses approximate
string matching and a two-level approach. “In our error-detection process,
the upper level uses an approximate string matching algorithm to match the

2.3. PATTERN MATCHING 35

string of words in the correct response to the string of words in the student
reply. (...) The lower level of our process arises when the approximate string
matching algorithm compares a word of the correct string with a word of
the actual response” (Levison et al. 2000, p. 316-317).

While the system is able to treat in this way a range of errors, including
word insertion or deletion errors, word order errors, typing errors, phonologi-
cal errors, synonyms, and morphological (both derivational and inflectional)
errors, on the syntactic front the authors are forced to admit that “if several
alternative syntactic forms are reasonable, these can be included as separate
correct responses” (Levison et al. 2000, p. 317). It is unclear whether these
additional correct responses are also generated by the system and automat-
ically included, or whether this work has to be done by hand, which would
tremendously lower the interest of the VINCI system.

Although diagnoses are given in the article for five possible errors on
the same sentence, no result on actual learner data is provided. There is
therefore no real evaluation of the system, as far as one can tell. Moreover,
the examples given tend to point out to very restrained contexts which do
not give the learners the opportunity to be creative in their productions, as
was to be expected from a pattern matching based system.

Other mentions

The Elementary Language Study Experiment (ELSE) was first designed by
Allen in 1970. It was abandoned for a number of years because of portability
difficulties between different mainframes computers, and reprogrammed in
1990 on IBM-compatbile microcomputers under a slightly different name but
keeping the same acronym: Elementary Language Study Exerciser (Allen
1997). Allen does not explain the answer checking mechanism that ELSE is
using, but, from the examples provided, it seems to be a pattern matching
technique.

Hull, Ball, Fox, Levin, and McCutchen (1987) propose a grammar checker
for college students native speakers enrolled in a remedial writing course
based on ‘augmented pattern-matching’ “a program which will search, not
only for literal strings of characters, such as individual words, but also for
part-of-speech patterns” (Hull et al. 1987, p. 108). Even with their aug-
mented version of pattern matching, they recognize that “there are several
clear limitations to pattern-matching as an approach to detecting errors in
natural language texts” (Hull et al. 1987, p. 115-116) and one of their
further research plans includes writing a natural language parser.

The DRIP system, briefly described in Giivenir (1992), although using
NLP techniques for sentence generation, is employing a very simple pattern
matching mechanism to detect errors. “The learner’s sentence is compared
to the sentence obtained at the end of each pass. Only the terminal symbols,
that is letters, are matched” (Giivenir 1992, p. 290). It is surprising to see

36 CHAPTER 2. STATE OF THE ART

that matching the learner’s translation to the computer generated sentence
is done character by character and that no specific linguistic knowledge is
required for the diagnosis process, while it is necessarily available in order
for the generation part of the system to work appropriately.

2.4 Finite State Automata

Many parsers are implemented using finite state automata (FSA) (such as
Weischedel and Black (1980)’s and Kwasny and Sondheimer (1981)’s). Our
purpose in this section is not to describe those parsers, but rather to describe
the error detection technique which makes use of FSA to locate errors within
texts, without necessarily parsing the whole input.

2.4.1 Description

To our knowledge, only one system uses this formalism, which is the ARCTA
prototype, of the Laboratoire de traitement du langage et de la parole, Uni-
versité of Neuchéatel, Switzerland. We can also note the lack of references to
other systems using automata to detect errors without parsing the sentence
in Kiibler and Cornu (1994) and Cornu (1997). This reinforces our idea that
this technique is not widely used.

Lacking a diversity of view points and of variants of the technique, it is
difficult to give a description of the technique as such by basing oneself on
only one system. Other systems, if they exist, might be using automata in a
completely different way. Therefore, we are not in a position to give a general
description of the diagnosis technique by automata in this section. A specific
description of the technique used in the ARCTA project is nevertheless
provided.

2.4.2 The ARCTA prototype

The ARCTA prototype grammar checker (see (Tschumi et al. 1994; Tschi-
chold et al. 1994; Cornu et al. 1996) for a complete description of the
ARCTA project) uses finite state automata to detect errors made by French-
speakers writing in English. ARCTA’s automata are a modified version
of FSA and of Winograd’s augmented transition networks (ATN) (Wino-
grad 1983). “Un automate peut étre décrit comme une série de conditions
et d’actions qui s’appliquent & des suites d’éléments du texte, comme des
mots, des signes de ponctuation ou des syntagmes nominaux” (Cornu 1997,
p. 207). First of all, these modified automata have an anchor arc. This arc
is the first one to be verified in the automata. If it succeeds, then the arcs to
the right are checked, followed by the arcs to the left. This anchoring allows
the authors to link automata to specific error types and to traverse the arcs

2.4. FINITE STATE AUTOMATA 37

in both directions. There is no backtracking and no recursion. Other adap-
tations of FSA are the access to lists of words grouped by common features
(e.g. temporal nouns: afternoon, Christmas); the use of registers to store
persistent information in case of success of the automata; the possibility
to create new features for words and phrases; and the possibility to make
reference to nominal phrases.

Moreover, the “automata operate on three levels. The first level is a pre-
processing one and is concerned only with extracting new data from existing
structures (Data Extraction Automata, DEA). The second level is optional
and contains filter automata (FA). These identify sentence patterns in order
to determine when to activate the third-level which contains detection au-
tomata (DA)” (Kiibler and Cornu 1994, p. 240). They propose the example
of a filter automaton checking for a verb such as ‘give’ which allows a shift
of the direct and indirect object, in which case the indirect object loses its
preposition. If such a verb is found by the filter automaton, detection au-
tomata are launched to check whether there was a shift and, if so, whether
the preposition is present. If it is, an error is flagged, as in (9) (Kiibler and
Cornu 1994, p. 243).

(9) * He gives to his friend a wonderful present.
Error message.

For every level of automata, there is a list of automata to be launched
in a specific order. “Cet ordre est d’une grande importance, car il permet
un classement rigoureux des automates: le plus complexe est exécuté en
premier, le plus simple en dernier” (Cornu 1997, p. 212). Thus, a simple
structure will not be recognized if it is part of a more complex one. To
prevent simpler automata to fire, the elements used by any successful au-
tomata of the same level are removed from the list of accessible elements
to the other automata. “Lorsqu’un automate ‘passe’, il empéche tous les
autres automates de la liste d’utiliser les mots qui correspondent & ses arcs”
(Cornu 1997, p. 213). However, and as nothing is said to the contrary, we
assume that it is the authors of the automata which must classify them by
order of complexity.

Extensive results, together with a discussion of these results, are pro-
vided in Cornu (1997, p. 268 ff.). Diagnosed error types are: subject-verb
agreement; passive construction; choice of prepositions in temporal comple-
ments; use of the continuous tenses; subject-verb order in indirect discourse;
verbal form in infinitival clauses; noun agreement; verb tenses with temporal
complements; and relative position of verbs and adverbs. The prototype,
tested on a corpus and on test sentences, is able to correct roughly 80%
of the errors, which seems a pretty good score. Overflagging is very rare:
22 occurrences for over 1’500 sentences. A comparison with commercialized

38 CHAPTER 2. STATE OF THE ART

checkers confirms the good results of the ARCTA prototype (Cornu et al.
1996).

Kiibler and Cornu recognize that their “approach is less efficient in de-
tecting errors linked with complex grammatical structures” (Kiibler and
Cornu 1994, p. 245). However, they emphasize that their approach with
three levels of automata reduces the risk of false positives (or overflagging).
“Limiting overflagging is particularly important in the context of L2 texts
as stopping on a non-error may mislead the user whose mother-tongue is
not English” (Tschumi et al. 1994, p. 224).

Moreover, Cornu indicates that the technique does not provide a full
syntactic analysis of the text under scrutiny. This is seen as an advantage
because “nous pensons pouvoir éviter les cas ou des données incomplétes
lors de I'analyse provoquent des malfonctionnements” (Cornu 1997, p. 199).
Although this point is very important, the lack of a full analysis also has
some disadvantages in the CALL context, as one would like to be able to
offer the users information on the syntactic structure of the sentence even if
it is ungrammatical. Having to parse the sentence once the error detection
phase is over would be a waste of time.

2.5 Error grammars

This section is divided into two parts. The first one describes what error
grammars are and the second details some systems using an error grammar.

2.5.1 Description

Use of an error grammar implies a rule-based system which has a set of
grammar rules to treat grammatical input and a parsing algorithm separate
from the grammar. “Parsing ill-formed input is problematic for a rule-based
system. (...) A standard solution to this problem is to introduce more rules
designed specifically to handle ill-formedness. This is a familiar approach
in ICALL” (Matthews 1993, p. 19). Sanders and Sanders (1989) define an
error grammar as “a grammar of sentence structures representing typical
errors. When the input fails the correct grammar, it will be passed to the
error grammar. If it matches one of the structures in this grammar, the
error message associated with that structure can be passed to the student”
(Sanders and Sanders 1989, p. 18). Thus, the rules of the correct grammar
must be activated before the rules contained in the error grammar, also
called error rules or mal-rules.

Only errors planned in advance can be detected with error grammars,
as a new (set of) error rule(s) must be included in the grammar for each
error type. “It is also a problematic exercise in writing enough rules to
handle all possible ill-formed input. Finally, there is also the problem in
that simply producing a rule to allow through an ill-formed example does

2.5. ERROR GRAMMARS 39

not provide an explanation for that failure” (Matthews 1993, p. 19). Indeed,
error messages must be attached to the error rules to be displayed (or stored
for later display) whenever an error rule succeeds.

Conditions for an error rule to apply can be more or less specific, defining
the range of constructions it applies to. “A high degree of granularity can
only be achieved by means of very special rules. This could result in overly
specific error rules which only cover very few examples. A central task in
designing error rules is consequently to find a level which is general enough to
have several instances covered by the same error rule, and is specific enough
to be able to give adequate feedback to the learner” (Murphy, Kriiger, and
Grieszl 1998, p. 65). Granularity is, of course, important: the more specific
one can be, the more adequate and relevant the feedback to the users. The
trade-off is in the time needed to conceive the multitude of very specific error
rules. Granularity depends partly on the level of representation used in the
rules. Including many specific words in an error rule rather than parts of
speech (POS) renders a rule more granular and specific but demands more
rules to treat errors where other words are used.

Thus, “an error grammar is potentially at least as large as the main
grammar. The more complete its coverage, the more likely it is to adversely
affect efficiency, i.e. parse times. Program designers would be well advised
to choose carefully which errors to pinpoint in order to maximize the rela-
tionship between completeness and efficiency” (Sanders 1991, p. 77). Indeed,
users rarely agree to wait for very long before they receive feedback from
a system. It might be better to have a less performing but more efficient
system, actually used by learners, that a very sophisticated but slow system,
which nobody uses because its reaction time is too long.

2.5.2 Systems using error grammars

Five systems using error grammars are described in this section. They are
ordered by the date of the earliest cited publication. The section ends by
mentioning several other systems using error grammars, but of which not
much is known.

German Tutor

Weischedel, Voge, and James (1978) were, to our knowledge, the first to
propose a CALL system relying on NLP with their German Tutor. Common
word order mistakes are anticipated by the adjunction of error rules, distinct
from the grammatical ones. “The syntactic analyzer is designed to find its
way through mistake-ridden student prose: in fact, it has rules for common
student mistakes, and when it can produce a correct parse only by invoking
one of its mistake-rules, it makes a note that a particular mistake has been
detected” (Mulford 1989, p. 35-36). These pioneers’ prototype had only a

40 CHAPTER 2. STATE OF THE ART

small grammar and a vocabulary of less than 200 words, but it demonstrated
the possibility of using an error grammar to detect some syntactic error
types. Some agreement and semantic errors were also treated.

Schwind’s error analysis and explanation system

Schwind’s error analysis and explanation system (EAES) (Schwind 1986,
Schwind 1988, Schwind 1995, see also section 2.6.2) uses error rules to detect
three types of errors: low-level and high-level syntactic errors, and semantic
errors. “Low level syntactic errors involve the omission or the addition of
functional words such as articles or prepositions. High level syntactic errors
involve the permutation of groups of words” (Schwind 1995, p. 315). Error
rules are added to the rule set for missing and additional prepositions and
articles as well as for several types of ungrammatical word order, such as the
misplacement of the verbs or of adjectives. As for semantic errors, “the only
type of semantic errors on which we have been working so far concerns the
violation of semantic restrictions on verbs and their complements” (Schwind
1988, p. 612). A specific rule for semantic mismatch is also part of the
grammar rules.

The FROG - FGA - LINGER - ISCA family

The FROG (French RObust Grammar checker) (Imlah and du Boulay 1985),
FGA (French Grammar Analyser) (Barchan, Woodmansee, and Yazdani
1986), LINGER (Language INdependent Grammatical Error Reporter (Yaz-
dani and Uren 1988, Yazdani 1991), and ISCA (Interactive Sentence Con-
structor and Analyser) (Bolt and Yazdani 1998) systems belong to the same
family of grammar checkers. Each new system is built, at least in part, on
its predecessor. “[FGA] began as an attempt at a rational reconstruction
of Imlah and du Boulay’s FROG” (Barchan et al. 1986, p. 30). “Attempts
at making FGA more general, and easier to use by people without pro-
gramming experience, led to a new system called LINGER” (Yazdani 1991,
p. 109-110). “The development of ISCA resulted from concerns about the
existing conception, architecture and performance of LINGER. and the dif-
ficulty of adapting or refining it to achieve better performance” (Bolt and
Yazdani 1998, p. 69).

In both FROG and FGA “expected incorrect structures can be antici-
pated and built into the grammar with an appropriate error message tag”
(Barchan et al. 1986, p. 32). This classifies them into the group of grammar
checkers using error grammars. Once the syntactic structure is built, errors,
stored on the tree, are reported. “The error reporter performs a traver-
sal of the sentence structure(s) and makes a check for each node, reporting
any errors found, possibly with a correction” (Imlah and du Boulay 1985,
p. 145).

2.5. ERROR GRAMMARS 41

In LINGER, “the shell enjoys the benefit of some language independent
heuristics, i.e. very basic mistakes that are likely to affect any language.
Current heuristics include: word is in wrong place; word is missing; word
should not be present; one word should not be present and another word
is missing” (Yazdani 1991, p. 110). These heuristics take care of many
structural errors, including the wrong positioning of adjectives and missing
prepositions, and thus will allow a syntactic tree to be built although all
the grammatical rules might not be respected. The syntactic tree then
undergoes a series of checks to verify morpho-syntactic properties “such as
appropriate numbers, gender and so on” (Yazdani 1991, p. 111). LINGER is
therefore shifting form the error grammar paradigm into the delayed feature
checking paradigm (see section 2.7.1).

Information on the error detection process in ISCA (Bolt and Yazdani
1998) is rather scarce. It seems, though, that like with LINGER, a syntactic
structure is built first and that error reporting is done on the basis of checks
on that structure.

Quantitative results are not given for this family of checkers, although
each one is said to be better than its predecessor. ISCA is compared to no
less than fourteen other systems on a few sample sentences and is performing
better than the competition on them (Bolt and Yazdani 1998). However,
these sentences are almost certainly not authentic learner productions and
might have been selected and/or created by the ISCA authors, thus possibly
biasing the results.

ALICE and ALICE-chan

ALICE is a generic environment for building CALL systems. Two prototype
applications have been implemented: one for Spanish and one for Japanese.
Parsing in the Spanish prototype uses two sets of rules, “including rules for
parsing erroneous sentences” (Levin, Evans, and Gates 1991, p. 41), thus
clearly identifying ALICE within the group of systems using error grammars.

ALICE-chan (Levin and Evans 1995) is the Japanese version of ALICE
for beginner-level. Its NLP component is composed of several modules, in-
cluding a segmenter and morphological analyzer, a parser, a mapper and
a matcher. Errors in users’ productions can be diagnosed in each of these
modules through different techniques. We will concentrate in this section
on the errors diagnosed during the parsing phase, which uses specific rules
to handle ill-formed input. “During parsing, special grammar rules are de-
signed to parse error-full structures and raise error flags” (Levin and Evans
1995, p. 86). Although the term of ‘error-grammar’ or ‘error-rule’ is not
mentioned, it is quite clear that this technique is indeed applied here. Er-
rors to be detected through this means are: wrong past tense of adjective
(acting as predicate), wrong use of adjective, wrong structure for ‘na nomi-
nal’ modifying noun, wrong negation of noun, and disagreement of noun and

42 CHAPTER 2. STATE OF THE ART

classifier (from figure 5.9 (Levin and Evans 1995, p. 88)). The set of errors
diagnosed seem rather small but, without knowing Japanese, it is impossi-
ble to determine whether they are actually crucial errors often produced by
beginner learners of Japanese. Moreover, other types of errors being treated
by other NLP modules, this set might be quite adequate for the intended
use. No experiment results on actual learner data was provided.

Two caveats are given about ALICE. “When the ALICE parser encoun-
ters an error that was not predicted and included in the grammar, the parse
will fail. (...) [The system] will only detect errors in sentences that it can
parse completely” (Levin et al. 1991, p. 42). This shows the limitations of
error grammars, as seen by its own practitioners. Indeed, in their extension
plans for the NLP module, Levin et al. (1991, p. 51) mention other diagnosis
techniques such as pattern matching (cautiously pointing out its additional
problemas) and constraint relaxation.

ICICLE

The Interactive Computer Identification and Correction of Language Er-
rors (ICICLE) is a CALL system focusing on the needs of American Sign
Language (ASL) native signers learning English. “The system recognizes
errors by using mal-rules (also called ‘error production rules’) which extend
the language accepted by the grammar to include sentences containing the
specified errors” (Schneider and McCoy 1998, p. 1198). The major prob-
lem faced is the omission of constituents as a result of negative transfer
from ASL. Determiners and the copula are often missing from the sentences
produced by this group of learners. Handling omissions with error rules is
difficult because the combination of several omission rules in the parse of a
single sentence could (almost) allow the system to recognize a blank space as
a grammatical sentence. The solution implemented in ICICLE involves spe-
cific procedures which check constituents for missing elements and deletes
those with too many or incompatible missing elements.

Although grammar coverage is not very extensive (coordination and
clause adjunction are not treated, for example) results are interesting. “If
we eliminate the nine sentences that are actually grammatical in isolation,
we are left with 70 sentences, of which 44 (63%) have parses with the ex-
pected error, three (4%) are wrongly accepted as grammatical, and 23 (33%)
do not parse” (Schneider and McCoy 1998, p. 1203). Moreover, the system
wrongly detected errors in only 3% of grammatical sentences. It seems that,
by improving the coverage of the grammar, more sentences will parse, thus
improving the detection rate which is rather low.

2.6. CONSTRAINT RELAXATION 43

Other mentions

Articles about several systems mention ‘in passing’ that they use an error
grammar as part of their diagnosis module. Felshin explains that “struc-
tural errors such as misorderings are anticipated by addition of extra rules”
(Felshin 1995, p. 257) in the Athena project. EPISTLE (see Miller, Heidorn,
and Jensen (1981), among others, and section 2.6.2 for a more detailed
description) also employs some error rules as part of its overall diagnosis
methodology.

Syncheck (Sanders and Sanders 1987, Sanders 1991) uses an error gram-
mar to detect morphological and syntactic errors. Details of the inner work-
ing and/or of the error rules contained in this error grammar are given in
neither article. However, Ruth Sanders is aware of the inherent problems
linked to the potential size of an error grammar and its influence on parsing
efficiency (Sanders 1991, p. 77).

Vosse also uses errors rules for some specific structural errors such as
“some rare constituent order problems and punctuation problems” (Vosse
1992, p. 114). However, Vosse’s system does not have the goal of treating
structural errors and this is seen only as a little plus in the detection of
orthographical and morpho-syntactic errors.

METAL (Thurmair 1990) employs specific grammar rules, ‘fallback rules’
to parse ungrammatical sentences. “In this approach, we do not want the
fallback rules to fire except if all other rules failed; i.e. we have to avoid that
rules which build grammatical structures are not selected, but rules which
are meant as fallback rules fire in ‘regular’ parses” (Thurmair 1990, p. 366).
Rules are therefore exploited in a specific order.

‘Repairing Errors in Computer Aided Language’ (RECALL) also “uses
error-grammar rules to handle errors on the syntactic level and idiomatic
errors that surface on this level” (Murphy, Kriiger, and Grieszl 1998, p. 65)
in addition to the grammar rules which define well-formed sentences.

Thus, one can see that error grammars are often used for syntactic check-
ing in CALL systems, either as the main technique or as a subsidiary one.

2.6 Constraint relaxation

Constraint relaxation is probably the most widely used technique for parsing
ungrammatical sentences. Thus, there seems to be nearly as many variants
to constraint relaxation as there are of systems using this technique. For
the time being, we define a constraint as a condition, or a set of conditions,
which must be fulfilled in order for some actions of the parsing algorithm
to be taken. A more complete definition is given in chapter 3, section 3.1.1.
We begin this section by giving a general description of constraint relax-
ation, explaining the main ideas and the core technique. Details on different
variations are given along with the descriptions of particular systems.

44 CHAPTER 2. STATE OF THE ART

2.6.1 Description

The term ‘constraint relaxation’ presupposes the existence of constraints.
These constraints must be part of a grammar which defines which input is
considered grammatical and which is not. “All of the techniques follow a
general paradigm of relaxation wherein a normative grammar is assumed
which describes the set of acceptable inputs to the system” (Kwasny and
Sondheimer 1981, p. 101). Linguistic rules form the basis of the normative
grammar that the parsing algorithm follows. “This approach rests on the
assumption that linguistic rules can be specified, at least in part, in terms
of constraints. For example, the rule for constructing a simple declarative
English sentence specifies that a subject noun phrase must be followed by
a verb phrase, with the constraint that the subject and verb must agree
in person and number.” (Catt and Hirst 1990, p. 19). The subject-verb
agreement condition has to be fulfilled in order for the rule to apply. If the
rule applies, then the actions associated with it are taken. If the condition
is not met, the actions are blocked and the parse stops.

When a condition is not met, several options are open. One can simply
stop the parse at that point, which would only indicate, at best, the location
of the error. One can completely ignore unmet conditions, thus allowing the
system to parse ungrammatical sentences without warnings, which is far
from what one hopes of a CALL system. One can relax the condition, that
is, allow the parse to continue, even though the condition is not met, not
ignoring the condition but transforming it slightly. This path was taken by
Weischedel and Black who “suggest that, instead of forcing all predicates to
be satisfied or ignoring the information inherent in them, that the designer
should designate that certain predicates can be relaxed, with a record being
kept of each predicate not satisfied during parsing” (Weischedel and Black
1980, p. 99, emphasis in original).

It is not necessary for all constraints to be relaxable. Indeed, one could
classify constraints or predicates in at least two categories. “Absolutely vi-
olable predicates can be permitted in cases where the test describes some
superficial consistency checking or where the test’s failure or success does
not have a direct effect on meaning, while conditionally violable predicates
apply to predicates which must be relaxed cautiously to avoid loss of mean-
ing” (Kwasny and Sondheimer 1981, p. 102). Loss of meaning is not the
only consequence faced by wild relaxation of constraints. Another problem
lies in the reduction of the search space through the constraints: once the
constraints are relaxed, the search space expands considerably. “Relaxing
constraints introduces additional potential for confusion” (Weischedel and
Sondheimer 1983, p. 174). “The need to relax the very rules that constrain
the search for an interpretation is like opening Pandora’s box.” (Weischedel
and Sondheimer 1983, p. 175).

In order to limit somewhat the extent of the expansion of the search

2.6. CONSTRAINT RELAXATION 45

space through constraint relaxation, “only the constraint that seems to
be violated is relaxed; all other well-formedness constraints are still ef-
fective. Furthermore, the deviance notes record the aspect that deviates
from well-formedness, thus allowing pragmatic inferences by later process-
ing” (Weischedel and Sondheimer 1983, p. 164). The record of the unsatis-
fied predicates is the means to diagnose the kinds of error committed by the
users. This is naturally very useful if the parser is working in the CALL area.
It is probably a learner module which formats the feedback for the language
learner, but this module needs all the information gathered through the
records of unsatisfied conditions. Without these records, the system could
only detect errors, without informing the users as to the reason behind the
ungrammaticality of their productions. While this might be sufficient in
some cases of human-machine interface, it is certainly not enough when one
is confronted with a computer assisted language learning system.

On a theoretical basis, constraint relaxation should be able to apply to
any type of grammar using constraints. Moreover, this technique should of-
fer the possibility to be implemented after the grammar itself. There should
also be possible generalizations between relaxations in different grammars.
This was the desire of Kwasny and Sondheimer who note that “one of our
original hopes for this work was that each of the relaxations would be ap-
plicable to a broad set of individual grammars. However, it quickly became
obvious that the relaxations and grammar work best if they are developed
together ” (Kwasny and Sondheimer 1981, p. 101). This is not to say that re-
laxing constraint after the grammar is in working conditions is not possible.
Nevertheless, the work is simplified when the grammar and the relaxable
constraints are designed together from the beginning.

2.6.2 Systems using constraint relaxation

No less that fourteen systems using constraint relaxation are mentioned in
this section. The amount of space devoted to each of them mostly depends
on the relative wealth of the information found about them.

The BKSW systems

BKSW stands for Black, Kwasny, Sondheimer and Weischedel. This ab-
breviation is used in the current section to describe the related systems
described in Weischedel and Black (1980), Kwasny and Sondheimer (1981)
and Weischedel and Sondheimer (1983), as no name could be found in the
above mentioned articles for this family of grammar checkers.

The BKSW systems were designed both for natural language under-
standing systems in English with native speaker users and for German with
the goal of inclusion into a CALL system. One of the aims of the authors
was to demonstrate the constraint relaxation technique which they were

46 CHAPTER 2. STATE OF THE ART

among the first to use. Their parser is implemented with augmented transi-
tion networks (ATN) with test-bearing arcs. “In ATN terms, the significant
blocks that keep inputs with co-occurrence violations from being parsed as
the user intended arise from a failure of a test on an arc, or the failure to
satisfy an arc type restriction, e.g., the failure of a word to be in the correct
category” (Kwasny and Sondheimer 1981, p. 100). In BKSW, a sentence
which can traverse the unmodified ATN is grammatical by definition, the
ATN encoding only normative grammar rules. These tests can be relaxed to
allow parsing of ungrammatical sentences. Original tests on arcs are always
tried first, thus ensuring that grammatical sentences are parsed correctly
and restraining the use of relaxed constraints only to the tests which would
fail otherwise.

BKSW can relax two different types of constraints: ‘test relaxation’ and
‘category relaxation’. The first one is further divided into absolutely or
conditionally violable constraints. Absolutely violable constraints can be
assimilated to feature coherence checking, while conditionally violable con-
straints have an effect on the syntactic structure being built. For absolutely
violable constraints, “the opposite value of the predicate is substituted for
the predicate during relaxation” while for conditionally violable constraints
“a substitute predicate is provided” (Kwasny and Sondheimer 1981, p. 101).
Subject-verb agreement is given as an example of an absolutely violable con-
straint, and the distinction transitive-intransitive as a conditionally violable
one.

Category relaxation implies the creation of a hierarchy of lexical cat-
egories. Whenever an arc fails because a specific category has not been
found in the next token of input, the arc predicate is relaxed by looking
for an input token of the parent class in the hierarchy. For example, if a
demonstrative pronoun is called for and none is found, then the relaxed
predicate checks whether the input token is a pronoun, independently of its
subcategory (Kwasny and Sondheimer 1981, p. 102).

As BKSW systems treat errors through several techniques beside con-
straint relaxation, it is not always obvious to sort which ones are treated by
which technique. It seems that errors of co-occurrence (including agreement
and preposition selection), and word subcategory are dealt with through con-
straint relaxation. A list of eleven treated phenomena is given in Weischedel
and Sondheimer (1983, p. 164) but it is not clear if all are the result of
constraint relaxation. The list is reproduced below.

e failed grammatical tests
e word confusions
e spelling errors

e unknown words

2.6. CONSTRAINT RELAXATION 47

e restarted sentences

e resumptive pronouns and noun phrases
e contextual ellipses

e selection restriction violation

e metonymy

e personification

e presupposition failure

Obviously, not all item of this list are actual errors. Some are rather struc-
tures which parsers are known to have difficulty with. Moreover, some do
not concern grammar at all. As often, success rates for the BKSW systems
are not given.

The EPISTLE/CRITIQUE system

The EPISTLE system, developed by IBM, is “intended to provide office
workers with intelligent applications for the processing of natural language
text, particularly business correspondence” (Miller, Heidorn, and Jensen
1981, p. 649). This system is therefore intended for native speakers and
not for language learners and even less for the language learning process.
The aims of this system are much broader than error detection but we will
narrow our description of the system to that aspect.

“The EPISTLE’s parser is written in the NLP programming language,
which works with augmented phrase structure rules and with attribute-value
records, which are manipulated by the rules. When NLP is used to parse nat-
ural language text, the records describe constituents, and the rules put these
constituents together to form even larger constituent (or record) structures”
(Jensen, Heidorn, Miller, and Ravin 1983, p. 148).# The parsing algorithm
is left-to right, bottom-up, with parallel processing. The authors divide the
parser into three components: the core grammar, containing about 300 syn-
tax rules; peripheral procedures resolving ambiguity by ranking alternatives;
and fitting procedures to handle parse failures.

“The EPISTLE system addresses only the tasks of grammar and style
checking of texts written in English. Grammar checking deals with such er-
rors as lack of number agreement between subject and verb; style checking
points out such problems are overly complex sentences” (Heidorn, Jensen,
Miller, Byrd, and Chodorow 1982, p. 305-306). In the domain of gram-
matical errors, five error categories are treated: subject-verb disagreement;

“The NLP language was later renamed PLNLP and complete references to that ap-
proach can be found in (Jensen, Heidorn, and Richardson 1993).

48 CHAPTER 2. STATE OF THE ART

wrong pronoun case; noun-modifier disagreement; non-standard verb forms;
and non parallel structures as in example (10) taken from Heidorn et al.
(1982, p. 320).

(10) We will accept the funds, send receipts to the payers, and crediting
their accounts at the same time (should be credit).

The EPISTLE system has a three step algorithm to detect grammatical
errors. The sentence is first parsed “using fully grammatical rules (where
‘fully grammatical’ includes conditions on, for example, number agreement
between subject and verb)” (Heidorn et al. 1982, p. 320). If the sentence
does not parse, then some constraints are relaxed, some additional rules are
included, and the sentence is parsed again. If the sentence parses the second
time, then a note is made of the conditions relaxed for the parse to succeed
and of the location of the problem in the sentence. Relaxed rules are similar
to unrelaxed ones, except that one part of the condition must be negated
in the relaxed version and error messages added to the action section of
the rule. Some of these rules are very specific, such as the one described
in Miller, Heidorn, and Jensen (1981, p. 654), distinguishing between ‘who’
and ‘whom’ in relative clauses.®

As mentioned above, the EPISTLE system uses other techniques beside
constraint relaxation. Error diagnosis and correction for about 15% of the
errors only, called ‘true errors’ in (Harriehausen-Miithlbauer 1991, p. 269),
are based on constraint relaxation in the CRITIQUE version of the EPIS-
TLE system. We will not detail them, but specific error rules are added to
the rule set to detect some grammatical and style errors. Moreover, a ‘fitting
procedure’ (Jensen et al. 1983) is used for the treatment of fragments and
difficult cases of ellipsis, among others.

Available results show 64% of successful parses for a sample of 411 busi-
ness letters covering 2254 sentences (Heidorn et al. 1982). Grammatical
and/or style error detection on a corpus of ten essays written by ESL
students produced 63 critiques and 54% of correct ones (Richardson and
Braden-Harder 1993). However, it is not explicitly said whether the correct
critique percentage refers to the number of errors in the essays or to the
number of critiques produced by the system, which does make a difference
for accuracy. The numbers provided are not complete enough for the reader
to form an good idea of the system’s performances.

®One should note that in Miller et al. (1981), relaxed rules were manually added to
the rule set. Plans were made for an automatization of the relaxation, which seems to be
accomplished in later versions of the project, as described in Heidorn et al. (1982) and
Jensen et al. (1983).

2.6. CONSTRAINT RELAXATION 49

The BRIDGE and MILT systems

The U.S. Army Research Institute (ARI) BRIDGE and MILT systems are of
the same family, MILT being developed as the successor of BRIDGE. Both
BRIDGE and MILT are full CALL systems of which the NLP component and
error detection tool is only a facet. Both have been described extensively
(Holland, Maisano, Alderks, and Martin 1993, Holland 1994, Sams 1995,
Weinberg, Garman, Martin, and Merlo 1995, Kreyer and Criswell 1995,
Kaplan and Holland 1995). We will set aside most of the CALL system to
concentrate on the parser and its error diagnosis technique, developed for
ARI at the University of Maryland, USA.

The parser used in the BRIDGE and MILT systems follows a principle-
based design relying on the government and binding theory developed by
Chomsky (1981). This framework “provides construction-independent for-
mulas grouped into interacting modules that can be parameterized” (Wein-
berg et al. 1995, p. 25). The setting of those parameters differentiates
languages. The parser is built with principles fixed for all languages and pa-
rameters that can be set individually for different languages. In the BRIDGE
system, the parser was developed for both German and Arabic, thus demon-
strating its portability to other languages and the usefulness of the principles
and parameters framework. For the MILT project, Spanish was added to
the set of languages. The parser uses a modified shift-reduce algorithm and
is implemented in Prolog.

Although the term is not explicitly mentioned, the BRIDGE/MILT par-
ser employs a form of constraint relaxation. “The use of conditions has
several advantages. (...) It is flexible because it separates those features that
guide the parser from the features that annotate the tree. (...) this property
of our system is crucial for error tolerance and error detection” (Weinberg
et al. 1995, p. 38). In fact, none of the conditions governing the features
for tree annotation seem to be required to be true. In a way, the parser
operates on a completely relaxed mode and only certain types of errors are
detected, the others being ignored. “Switches, called flags, determine how
restrictive the parser will be in detecting errors. If all the possible flags are
set, the parser runs in its most restrictive version; otherwise, it recovers from
mistakes whose flags are not set through a mechanism of producing default
values on failure of feature matching” (Weinberg et al. 1995, p. 42). None
of the tree annotating conditions being ever enforced, it is equivalent to
having all the constraints relaxed at the same time. This is feasible because
none of the conditions touches the fundamental structure of the sentence
representation being built.

The error types taken into account in the BRIDGE system for German
are “subject-verb agreement (person, number, gender); case of sentence sub-
ject; article-noun agreement (gender, number, case); preposition-noun agree-
ment; verb-preposition agreement; word order errors: position of finite verb

50 CHAPTER 2. STATE OF THE ART

in main clause (verb second), position of finite verb in subordinate clause
(verb final); auxiliary selection in compound tense (haben vs. sein)” (Wein-
berg et al. 1995, p. 39-40, emphasis in original). As one can see, the error
types cover mostly agreement features, which are very often treated with
constraint relaxation as their violation does not change the structure of the
parse tree.

Performances are given only for the parser used in the BRIDGE tutor.
Whether small or extensive changes were made to the parser between the
BRIDGE and the MILT tutors is unknown to us. The parser was tested on
200 made-up German sentences, including “likely constructions and errors of
early intermediate students. The parser appropriately parsed 135 out of 141
(96.4%) correct sentences and 61 out of 64 (95.3%) incorrect sentences (that
is, generated the appropriate error messages for these examples)” (Weinberg
et al. 1995, p. 43). These results seem excellent. One must note, however,
that the parser was not given real language learner input. Moreover, noth-
ing is known on the system’s performance when more than one error is
encountered in a sentence, as is often the case with real data. As Weinberg
et al. (1995) themselves recognize it, more testing would be needed. Unfor-
tunately, we have not encountered the results of later testing of the parser
in our readings.

Paragram

Paragram is not especially designed for language learners, although it “will
accept sentences which do not fit the grammar, while noting in which ways
the sentences are deviant” (Charniak 1983, p. 117). Paragram is a deter-
ministic parser based on Marcus’ parser Parsifal (Marcus 1980). In Parsifal,
rules were grouped into packets and ranked according to a priority score.
The rules of active packets were tried in their order of priority. “Rules in
Parsifal are of the typical situation/action type” (Charniak 1983, p. 120).
Paragram differs from Parsifal in being able to account for ungrammatical
sentences, which implies some modifications of the parser.

Instead of trying the rules by their order of priority and taking the first
possible one, Paragram tests all the rules of an active packet one after the
other, returning for each rule a ‘goodness rating’. “The goodness rating of
a rule is the sum of the values returned by the rule’s atomic tests. Fach
atomic test will add to the score if it succeeds, and subtract if not” (Char-
niak 1983, p. 123). Only the rule with the highest rate is then applied, thus
maintaining the deterministic nature of the parser. When encountering an
ungrammaticality, all the goodness rates are rather low as not all the atomic
tests succeed in any rule, but there is still a rule bearing the best rate. “Fur-
thermore, Pragram can tell the user where the sentence is ungrammatical,
since it is only with ungrammatical sentences that the values of the scores
go below zero. It is also possible that Paragram can tell ‘why’ the sentence

2.6. CONSTRAINT RELAXATION 51

is ungrammatical, if one makes the reasonable assumption that the sentence
is ungrammatical ‘because’ the rule which succeeded, but with a low score,
should have been matched exactly” (Charniak 1983, p. 124-125).

Charniak’s technique for robust parsing can be assimilated to constraint
relaxation. Indeed, constraint relaxation is allowing a rule to apply although
its conditions are not fulfilled. In Paragram, all the rules receive a score
depending on the conditions which are fulfilled and those which are not.
The rule with the best score is applied, but some of the atomic tests of this
rule might have failed. Thus, Charniak allows rules to apply even if the
rules’ conditions are not met. Moreover, the scoring system, adding a small
bonus when an atomic test succeeds and subtracting a heavy penalty when
it fails, ensures that only the rule which violates the fewest conditions will
be applied. Thus, constraints are bypassed only when absolutely necessary.

Full results of tests of Paragram are not given. We know, however, that
Paragram does not handle wh-questions and that there are some classes
of ungrammaticality which are not treated, such as the use of a modal
instead of an auxiliary, word repetition, and scrambling. Unfortunately,
we do not know Paragram’s success rate on ungrammatical sentences in
terms of completed parse and error detection/diagnosis.

Grammar-Debugger

Grammar-Debugger (Chen and Xu 1990) is a parser designed for Chinese
learners of English as a foreign language (EFL). Also derived from Parsifal
(Marcus 1980), it uses a different variation of constraint relaxation than
Charniak’s Paragram. Chen and Xu keep the priority system of Parsifal but
split the rule conditions into two parts. “Primary conditions are compulsory.
They determine the nature of the rule. Each grammar rule can be entered
only when its primary conditions are satisfied. Secondary conditions are
optional. They test the well-formedness of the entered input. If they are
satisfied, the input is grammatical. The grammar rule can be passed legally.
If they are not satisfied, the input is ungrammatical. The grammar rule
is passed illegally, and a specific error message along with the words which
cause the mistake and the expected correct form are printed” (Chen and Xu
1990, p. 67).

Primary conditions determine the shape of the syntactic tree obtained
from the parse, while secondary conditions operate on features. The choice
of a rule depends only on its priority and on the satisfaction of the pri-
mary condition. Once a rule is selected, it applies whether the secondary
conditions are met or not. Secondary or optional conditions are in fact
relaxed constraints. Their non-satisfaction directly triggers error messages
indicating the type and location of the mistakes.

Grammar-Debugger can handle errors of several types:

e subject-verb agreement, also in relative sentences;

52 CHAPTER 2. STATE OF THE ART
e determiner selection, including for mass nouns;
e and verb mode (past participle, continuous, etc.).

As often, there is no indication of the success rate of the parser on either
grammatical or ungrammatical sentences. Thus, it is impossible to assess
the actual performances of this system.

Menzel and Schroder’s system

Menzel and Schroder’s system (MS) is described in several articles, linked
to error diagnosis and CALL systems (Menzel and Schroder 1998a, Menzel
and Schroder 1998b) or not (Heinecke, Kunze, Menzel, and Schroder 1998).
They propose a robust parsing system using an eliminative parsing mecha-
nism and graded constraints. “An eliminative approach starts with a totally
ambiguous representation containing all possible dependency structures of
an utterance at the same time. The parser then tries to discard local inter-
pretations from this structure by applying unary or binary constraints on
dependency relations until, — hopefully — a single global reading survives”
(Menzel and Schroder 1998b, p. 47). This has been equated to a (partial)
constraint satisfaction problem.

The MS’s system makes “use of graded, hence defeasible constraint on all
levels” (Menzel and Schroder 1998a, p. 486). Thus, it is akin to constraint
relaxation. The choice of the final structure depends on a ranking based on
the scores (between 1 and 0) assigned to each constraint. The final score
is the multiplication of all the constraints that have been violated to reach
the particular structure. Not all constraints have to be satisfied in order
to obtain a complete structure for a given sentence. The score assigned to
each constraint is an indication of its importance. Hard constraints have
a score of 0 and are used to bar completely ungrammatical structures. A
low score, but above 0, indicates a well-formedness condition such as number
agreement. Scores close to 1 are used to indicate stylistic preferences instead
of actual errors.

Tests were conducted on a single sentence which “has been distorted by
introducing different kinds of syntactic errors” (Menzel and Schroder 1998a,
p. 490). The results are good when the input sentence contains zero or one
error, the sentence is then always analyzed correctly. With two errors in
the same sentence, the correct analysis is found in 90% of the cases. This
success rate drops to 60% for 3 errors and is at 0% for five or more errors in
the short sentence that served for the experiment. Unfortunately, it seems
that no test was conducted with actual data and in particular with learner
sentences.

2.6. CONSTRAINT RELAXATION 93

Miniprof

Miniprof’s name was appropriately chosen, as Miniprof’s purpose, grammar,
and lexicon are all actually rather limited. The lexicon contains roughly 100
words (Labrie and Singh 1991, p. 13) and the grammar, listed in figure 4 of
(Labrie and Singh 1991, p. 14), contains exactly 14 rules. Some of the rules
are augmented with conditions, for number, person and gender agreement,
and for elision of the negative particle ‘ne’.

The parser, following a top-down algorithm, “tries to parse as much
of the sentence as possible and identify errors” (Labrie and Singh 1991,
p. 15). If during the parsing process a rule matches but not its additional
condition on agreement or elision, the sentence is recognized but the error
is flagged. Skipping an element from the rule, such as the negative ‘pas’ is
also possible, which again triggers an error flag. Thus, Miniprof’s parsing is
akin to constraint relaxation. If what is needed is there, the parse proceeds
normally, otherwise it recovers by inserting an error flag for later use and
parsing resumes.

The parser is able to detect 12 error types under the authors’ typology
(see figure 5 in Labrie and Singh (1991, p. 19)). A ‘tutor’ component is
in charge of detecting errors of context or linked to the exercise questions.
Results are not given for this toy system. Plans for expansion, in particular
to treat spelling errors and word order errors are mentioned at the very
end of the paper, but it is not said if this would be achieved with the same
diagnosis technique.

Vosse’s Dutch Checker

Vosse’s parser uses a shift-reduce algorithm with an augmented context-
free grammar (ACFG). “Simply put, an ACFG is a Context-Free Grammar
where each non-terminal symbol has a (finite) sequence of attributes, each
of which can have a set of a finite number of symbols as its value” (Vosse
1992, p. 113). Without naming the technique, Vosse’s system uses constraint
relaxation by not failing when the added attributes do no match. The system
marks the non-matching attributes and the parse proceeds. Once parsing is
over, the marks are passed on to the correction part of the system.

Vosse uses this technique only to detect morpho-syntactic disagreement.
His system is designed for spelling and morpho-syntactic errors, not for other
types of errors, although some structural errors can also be detected by the
adjunction of error rules.

Numerous experiments were carried out to test the results of this system.
They are reported in Vosse (1992). To summarize them, it appears that the
system has no major difficulty in detecting the errors it is designed for on all
kinds of corpora. However, parsing time is problematic, especially on real
texts when the number of words per sentence increases. For this reason, the

54 CHAPTER 2. STATE OF THE ART

system is designed to work in batch mode rather than interactively, which
would not be ideal for language learners.

Schwind’s error analysis and explanation system

Schwind (1988) compares her error analysis and explanation system (EAES)
(Schwind 1986, Schwind 1988, Schwind 1995, see also 2.5.2) to Menzel’s
and Weischedel’s treatment of ill-formedness and states that “Weischedel’s
treatment of syntactic and agreement errors is very similar” (Schwind 1988,
p. 608) to what she does. EAES is built with a feature grammar where “the
result of unification is the unified elements and the set of the pairs of elements
for which the unification did not work out” (Schwind 1988, p. 609). The
structure of the sentence is still created through production or transforma-
tion rules to which operations on the features of the participating elements
are added. The modification of the unification procedure allows Schwind’s
system to continue building a syntactic tree although all the features do not
necessarily match. There is a dissociation of parsing and feature checking
processes. Apparently, the tree is build on the basis of the lexical category
of the elements. By analyzing the unification sites where unification did not
succeed and in looking at the sets of non-unified pairs of features, the system
derives the most plausible error explanations.

Other systems

Some other articles mention systems which use constraint relaxation for
grammar checking. However, the information gathered about these systems
is not worth separate descriptions and they are grouped here.

Scripsi is a full CALL system prototype described in Catt (1988). It
includes a student model which takes advantage of the knowledge of the L1
of the language learners. Part of the error diagnosis system uses constraint
relaxation: “Scripsi detects such overgeneralization by means of constraint
relazation; that is, by suspending constraints when they are not observed”
(Catt and Hirst 1990, p. 19, emphasis in original). Errors diagnosed by
constraint relaxation include mistakes of subject-verb agreement, subject
inversion, and use of do-auxiliary in questions. The particular variant of the
constraint relaxation technique is not described in the above cited article.

Kempen (1992) describes a system which uses constraint relaxation for
diagnosing agreement errors. The parser is an LR(1) of the shift-reduce
family with terminal symbols augmented by feature matrices. During the
reduce action, a unification procedure is applied to the feature matrices.
“Unification succeeds not only in case all features match, but also when
there are feature violations (‘constraint relaxation’). In the latter case, a
diagnostic flag is attached to the resulting subtree” (Kempen 1992, p. 196).
The technique is used only for agreement checking and no results are given

2.7. OTHER TECHNIQUES SEEN IN LITERATURE 95

in the above cited article.

The XTRA-TE system of Chen and Barry (1989) is described in Chanier,
Pengelly, Twindale, and Self (1992) as an intelligent tutor system (ITS)
build on top of a Chinese-English translation system and using constraint
relaxation to diagnose errors. The system has “a full coverage of subject verb
agreement and of pronominal errors. XTRA-TE is able to diagnose others
types of errors but leaves aside the problem of incorrect word order which
may imply an expansion of the grammar” (Chanier et al. 1992, p. 135).

Schulze (1998)’s Textana system is a German grammar checker for learn-
ers of English mother tongue. A grammar based on the Head-Driven Phrase
Structure Grammar (HPSG) formalism (Pollard and Sag 1994) and a parser
have been implemented in Prolog. It “covers a substantial fragment of Ger-
man. The dictionary prototype currently contains approximately 500 mor-
phemes (roots, lexical affixes, inflectional affixes, verbal prefixes)” (Schulze
1998, p. 218). The first step was to encode the grammar of standard Ger-
man with ‘hard’ constraints. These constraints are then relaxed to enable
the system to parse learners’ sentences. Whenever a condition on a rule is
not fulfilled and there is the possibility to record an error, the rule is still al-
lowed to apply. Selecting which constraints to relax will be decided after the
analysis of a set of texts produced by the target population. Unfortunately,
results are not given in the cited article.

The Athena Language Learning Project (ALLP) NLP system is de-
scribed by Felshin (1995). Although the information provided on the di-
agnosis component of the system is relatively succinct, we learn that “errors
in agreement are anticipated by relaxing constraints in the rules that com-
prise the system” (Felshin 1995, p. 257). Other types of errors are treated
with different means. Extensive use of scoring and of penalties for discov-
ered errors is made in the system in order to find the most likely parse for
the sentence, keeping strictly in mind the likelihood of a given sentence to
be typed in by a language learner of a specific level.

2.7 Other techniques seen in literature

This section features a few other techniques for error diagnosis which were
found in the literature. These techniques are not attributed a whole section
of their own because there is not enough information known about them.

2.7.1 Delayed checking

Delayed checking is, as a working definition, a technique where a syntactic
tree is built first, without feature checking. Once the tree is completed,
feature checking procedures apply to check the sentence coherence.
Cornu’s lexical functional grammar (LFG) (Bresnan 1982) parser-based
checker (Cornu 1994, Cornu 1997) proceeds in three steps. The text is

o6 CHAPTER 2. STATE OF THE ART

submitted to a syntactic parser which creates syntactic trees. Rules on
functional values build functional structures on top of the syntactic trees.
Functional analyses are ranked by type and number of found errors. Only the
structure with the least number of errors is retained as being the most likely.
In other words, uniqueness condition violations are recorded while building
c-structures, while “coherence and completeness conditions are only checked
after the f-structures have been built completely” (Cornu 1994, p. 186).
Feature checking is in fact delayed until the syntactic trees are completed.
Some modifications of the parsing algorithm have to be made in order for
the LFG parser to detect errors. Most importantly, the unification process
has been altered in order not to destroy the information pertinent to error
correction. Default values are then set for the values and these defaults are
used to decide which non-coherent value to retain. Secondly, Cornu intro-
duces what he call “régles d’environnement lexical” (Cornu 1997, p. 117)
to deal with some long distance agreement phenomena and specific errors
of non-native speakers, such as wrong case of the pronoun. The system
can correct errors of agreement, past participle, subjunctive and preposition
for infinitival clauses, adjective-noun word order, verb subcategorization,
and contracted determiners. The results show that 70% of the errors of a
small corpus are correctly diagnosed. However, Cornu (1997, p. 196-197)
concludes that the LFG formalism alone is not really appropriate for error
correction. Reasons are the exponential amount of data that the software
has to keep in memory; and that adding new rules and new lexical data
would create new false positives and non-detection as well as new correct
detection.

ReGra is a grammar checker for Brazilian Portuguese designed for na-
tive speakers. “The parser utilizes a Context-Free Grammar with relaxation
constraints-based techniques for permitting matching of non-grammatical
sentences” (Teixeira Martins, Hasegawa, Volpe Nunes, Montilha, and No-
vais De Oliveira 1998, p.288). It appears that syntactic configurations are
planned in advance, the constituents attach to match the input sentence
without constraint (such as agreement) checking. Agreement checking is
performed once the whole sentence has been parsed and triggers, if neces-
sary, the correction process. The technique used is therefore at the border
of constraint relaxation but should more reallistically be classified as a case
of delayed checking. A syntactic tree is built on which agreement checking is
then performed in order to locate potential errors. No constraint is actually
relaxed from a stricter form to allow a parsing process to continue.

2.7.2 Predication-driven parsing

Instead of the usual grammar and parser with its set of rules, using ei-
ther error-rules or constraint relaxation for diagnosis purposes, DeSmedt
(1995) proposes a case-grammar technique he calls ‘predication-driven pars-

2.7. OTHER TECHNIQUES SEEN IN LITERATURE o7

)

ing’. “This approach proceeds by first identifying the operative verb and
then attempting to interpret the remainder of the input in terms of its com-
plements. Given a transitive verb, for instance, the parser begins looking
for a noun phrase that could function as the predications’ direct object”
(DeSmedt 1995, p. 158). Error diagnosis is carried out by first assigning
all possible elements of a sentence to its correct function. If some elements
remain, such as noun phrases, as well as empty slots of the verb, it implies
that the sentence is not fully grammatical. The NLP system in DeSmedt’s
‘Herr Komissar’ then applies a least distance heuristic in order to determine
the best possible match. While in many other systems results are not given,
those provided here tend to show that this technique is really quite profi-
cient. “Her Kommissar was able to detect and correct 92.8% of all errors
committed by students, with a false correction rate (i.e., detecting an error
where none is present) of only 1.1%” (DeSmedt 1995, p. 159). These num-
bers are so good that one really would like to test the system and make sure
for oneself to the accuracy of those results. Perhaps the restrained domain
of application designed for the game is partially responsible for these good
figures by limiting the kind of sentence structures which were actually used
by the test students.

2.7.3 Link Grammars

After closer inspection, the Francophone Stylistic Grammar Checker (FSGC)
described by Brehony and Ryan (1994) does not seem to have much to do
with style at all. It seems to be purely a morpho-syntactic checker and it is
in this frame of mind that we describe it here.

Sentences are parsed using link grammars (Sleator and Temperley 1991),
which formalism is briefly described by Brehony and Ryan (1994, p. 258—
260). Error detection occurs during a post-processing phase on the links to
check some further conditions of grammaticality. “However, if a sentence
containing one of the stylistic errors that are to be detected is to survive to
post-processing, it must first pass the initial three criteria. This meant that
for each error, it was necessary to alter the dictionary definition formulas for
relevant words, to allow the sentence containing the error to be accepted as
grammatical” (Brehony and Ryan 1994, p. 262). This lead to the creation
of new links which could, to take the example given by Brehony and Ryan
(1994), link a singular subject to a plural tensed verb. Error detection then
proceeds by scanning the links generated by the parser for the added-on
links.

The authors give only one type of error as example. They do not men-
tion any type of evaluation of their system. However, they have the hon-
esty to mention some of the problems encountered by this software: the
large memory resources needed, the impossibility to choose among several
linkages for the same sentence otherwise than randomly for the linkage to

o8 CHAPTER 2. STATE OF THE ART

undergo post-processing and error-detection, and the fact that “only errors
pre-programmed are detected” (Brehony and Ryan 1994, p. 265).

2.7.4 Unclassified

One can find a number of articles on CALL systems in literature which
mention error detection but which do not give a precise enough description
of the inner workings of the system to allow us to classify it as using one
or another diagnosis technique. However, we do not see any reason not to
mention them in a chapter which is devoted to existing software.

BAP (Cook 1988) stands for Basic Parser as it is programmed in BASIC.
It caters to beginners only, working on the assumption that only a very
restrained vocabulary and small subpart of the grammar of English is needed
for that category of users. It “anticipate[s] the students’ possible mistakes”
(Cook 1988, p. 63) and stores error reports each time tests fail during during
parsing.

Courtin et al. (1991) agreement checker system works on a dependency
tree computed by a parser. The checker verifies the dependencies through a
number of rules, each containing a header, a condition, and an action. To be
applicable, the rule header must match the pair of nodes of the dependency
being processed. If the conditions are then met, the action is taken. Other-
wise, an error is detected and the information is passed on to the correction
module which will make suggestions to replace the erroneous word. Other
error detections beside agreement are planned but not described in the cited
article.

Schuster (1986) proposes a system called VP? which compares parse
trees from a prestored answer and the learner’s answer. Mismatch between
the two trees triggers error messages and explanations. The grammar used
for parsing is the grammar of the target language, of the first language, or
a mix of the two. VP? treats only errors of construction for phrasal verbs
and verbs requiring specific prepositions.

Nagata (2002) uses an error detector in the BANZAT CALL software
which checks the coherence of the learner input compared to a single target
answer. The error detector itself runs on parsed versions of both the target
answer and the learner input. Precise details as to how the comparison is
actually performed are lacking.

2.8 Commercialized checkers

Most grammar checkers developed as scientific research projects never reach
the commercialization stage. An exception is Vosse’s system which is de-
scribed in 1992 to be “in its final testing phase” (Vosse 1992, p. 111) and
planned for commercialization in the same year. Another difficulty regard-
ing commercial checkers issued from research is that their name might have

2.8. COMMERCIALIZED CHECKERS 99

been changed for advertising purposes which renders tracing research project
to off-the-shelf software a difficult task.

This section reports on the little information that was gathered on the
techniques used by commercial grammar checkers and on published and eval-
uated performance of a small number of commercialized grammar checker
for French.

2.8.1 Techniques used

Getting information on the diagnosis techniques used by commercial check-
ers is not an easy task as this information is not readily available. However,
pieces of information crop up from time to time. While describing the poten-
tiality of adapting a commercial checker for use with learners of English as
a second language, Brock presents Grammatik IV which uses two diagnosis
techniques, the first one being pattern matching. “The second programming
technique employed by Grammatik IV in analyzing text and providing the
writer advice is parsing rules” (Brock 1990, p. 54). This, unfortunately,
says nothing about the techniques used today as the just cited article was
published more than ten years ago and reports on a system by necessity a
little older.

The only recent information found on the inner workings of a grammar
checker is the following: “Like most commercial grammar checkers, Na-
tiveEnglish (like its parent CorrectText@®) Grammar Correction system)
identifies errors by matching patterns of known errors in its database” (Hu,
Hopkins, and Phinney 1998, p. 96, emphasis in original). We do not know,
however, on what authority or research Hu et al. base themselves when they
generalize to other systems.

2.8.2 Published and evaluated performances

The performances of monolingual grammar checkers are often disappoint-
ing when used with language learners’ texts. “Nous constatons que les
correcteurs monolingues commerciaux détectent au maximum une erreur
sur deux et produisent un nombre de fausses détections relativement élevé”
(Cornu 1997, p. 80). Considering the lack of bilingual grammar checkers,
monolingual systems are still often used in language learning circumstances.
Evaluations for some of the systems have been available at least for the
last ten years in scientific journals (Granger and Meunier 1984), conference
proceedings (Davies and Wei 1997), and the computer science press (Din-
nematin and Sanz 1990, Eglowstein 1991, Sanz 1992). We will restrict our
evaluation to recent versions of grammar checkers for French. In chapter 5,
section 5.3, we will compare a commercial checker to our own error diagnosis
system.

‘Le Correcteur 101°, of Machina Sapiens, was for a long time the leader in

60 CHAPTER 2. STATE OF THE ART

French grammar checking. This product is evaluated in (Mogilevski 1998).
Although “Le Correcteur attempts to provide a complete grammar analysis
of any given sentence” (Mogilevski 1998, p. 184), “some syntactic mistakes
In this case,
partial analysis is given, and users can obtain indications of how to modify
the segments of the sentence by double clicking on them” (Mogilevski 1998,
p. 185). The parsing technique used is unknown but it apparently contains
an impressive number of rules as “the new version of Le Correcteur contains
thousands of grammar rules that were not included in the previous version”
(Mogilevski 1998, p. 187). Although some kind of parsing must be done
in order to obtain a sentence analysis, error detection is possibly achieved
with a very large number of very specific error rules. If this is indeed the
case, then errors are not treated in a generic way and detecting new types
of errors will involve the design of numerous new rules. One must admit,
however, that, as can be seen in Tables 2.1 and 2.2, Le Correcteur’s results
are very good.

Burston (1998) evaluated ‘Antidote 98’, of Druide Informatique, and
compared it to ‘Le Correcteur 101°, its most direct competitor. This system
also offers a complete grammatical analysis of sentences and partial analysis
whenever it cannot analyze the whole structure. No information is provided
as to the inner workings of Antidote 98, so no suppositions can be made on its
error diagnosis technique. “Le Correcteur and Antidote were tested against
50 second-year advanced student essays containing 1,262 morphosyntactic
errors” (Burston 1998, 209). The results are reproduced in Table 2.1.

prevent the program from completely analyzing sentences.

Table 2.1: Comparison between Le Correcteur and Antidote

Program Number Errors Errors | Total | Misid- | Unde- | False
of Errors | Corrected | Flagged entified | tected

Correcteur | 1,262 74% 17% 91% ™% 2% 49

Antidote 1,262 % 5% 82% 11% ™% 28

The results on morpho-syntactic errors are very good. Up to 98% over-
all of detected errors with Le Correcteur 101, and 93% for Antidote. The
number of false detections, although not null, is also relatively low. How-
ever, only morpho-syntactic errors were included in this test, comprising
agreement errors, verbal conjugation and spelling. Nothing is said on the
capability of these two grammar checkers to detect errors of syntax such as
verb complementation or word ordering, difficult points for language learn-
ers.

Granger, Meunier, Verhulst, and Watrin (2001) compared three French
grammar checkers: Cordial 7 Pro (version 7.00, Synapse); Correcteur 101
Pro (version 4, Machina Sapiens); and Antidote (edition 2000, Druide Infor-
matique). The comparison was centered on the detection and correction of

2.9. SUMMARY AND CONCLUSION 61

number agreement errors on a corpus of thirty-five made-up sentences (cor-
pus A) and on a corpus of sixty authentic sentences produced by learners of
French (corpus B), of which nine contained a referential error. The results
for error detection are given in Table 2.2 (Granger et al. 2001, p. 18).

Table 2.2: Comparison of three grammar checkers
Cordial | Correcteur | Antidote

Corpus A 74% 85.5% 97.1%
Corpus B 47% 60% 67%
Corpus B without | 55% 70.5% 78.4%

referential errors

Unsurprisingly, none of the checkers was able to detect referential errors.
Results for made-up sentences are significantly better than on authentic
sentences. This is certainly due in part to the shorter length of made-
up sentences and to their simpler structure. One should also note that the
authentic sentences contained other errors besides number agreement errors,
which complexified the task. These results undoubtedly put Antidote in first
position. The authors have proposed no supposition as to why some errors
were detected and others were not or as to the inner workings of these
commercial checkers.

These recent comparisons prove that, in the space of a couple of years,
the ranking of grammar checkers can be inverted.

2.9 Summary and conclusion

There exist many CALL systems which include a grammar checker at the
prototype stage, as can be attested by the numerous literature cited in this
chapter. It is, however, not always easy to have relevant information on the
inner workings of the grammar checkers described. One can see at least three
reasons for this. The first one is that the focus of many articles is not on the
grammar checker per se, but on the whole system. It might also describe the
results obtained by the checker without necessarily describing it in depth,
but making references to unavailable literature. Secondly, the authors do
not always have the space to give as many details as they would like to.
Finally, some authors might prefer not to give too many implementation
details, especially if they intend to commercialize their product, so as to
keep the competition at bay.

Leaving aside pattern matching which does not involve parsing, two of
the techniques described in this chapter stand out of the lot as the ones
used most widely in the CALL community: constraint relaxation and error
grammars. The wealth of information gathered on these two techniques is
much larger than on the others and the shear number of systems using either

62 CHAPTER 2. STATE OF THE ART

of these techniques is impressive. However, most of the systems described
are only at the prototype stage. Some are even designed at so small a scale
that one cannot believe that they were ever destined to grow up to the size
needed for commercial use. This raises the problem of scalability: How
would the prototypes, and their diagnosis techniques, react to an increase in
coverage, in size of the rule set, and in size of the lexicon? Negative answers
to this question may be partly responsible for the apparent disappearance
of many systems for which one or two articles only seem to have ever been
written.

One must also note that many systems combine different techniques,
such as adding a few error rules for anticipated errors as well as relaxing
some constraints (Felshin 1995, p. 257). Cornu also concludes his disser-
tation by postulating that combining his LFG checker and the automata
technique should produce better results that either one alone (Cornu 1997,
p. 287). Vosse adds some error rules for the detection of specific structural
errors to his mechanism for morpho-syntactic error detection (Vosse 1992).
“Probably large ICALI systems will use a combination of techniques for re-
sponding to erroneous input. For example, a parser could combine an error
grammar for some typical errors with simple detection for errors not codified
in the system” (Sanders and Sanders 1989, p. 18). Combining techniques
also shows how some techniques are specialized to treat particular types
of error. Using the best possible technique for each particular error type,
for example constraint relaxation for agreement errors and error rules for
word order errors, should provide better results than using either one, at
the same time probably simplifying the implementation of each particular
technique. Combining techniques, thus, seems to be the way forward for im-
provement of grammar checkers. This creates new challenges which have not
been discussed before, as far as we now. They are (i) selecting appropriate
techniques for combined use and (ii) managing the results of the combined
techniques in a coherent manner.

Nothing much seems to have changed over the last two decades in the
realm of NLP-based CALL, in fact. CALL systems offering error diagnosis
functionalities are not frequent and the use of parsing techniques is even
rarer. Not much innovation seems to have been conducted with regards to
possible error diagnosis techniques. There seems to be as many systems
using constraint relaxation and error rules dating from the late 1990’s as
from the early 1980’s. On the other hand, commercialized grammar checkers
for native speakers have made their appearance and improved drastically
during the same period. The techniques they use may still be the same as
twenty years ago, but the number of person/year of work put into them
shows results. The huge amount of work it requires is not often available in
research and academic institutions.

Finally, all the error diagnosis systems which have been mentioned in
this chapter seem to have been built at the same time as the parser they

2.9. SUMMARY AND CONCLUSION 63

rely on. From a conceptual standpoint, it makes a lot of sense to do both
together. It is indeed easier to structure error rules at the same time as
the rules for the correct grammar, for example, than to do it afterwards.
However, having to work in two different directions explains perhaps partly
the lack of coverage found in many of the diagnosis systems described. Part
of the effort is diverted from the diagnosis to the parser itself, and thus each
of the two aspects cannot be pushed as far as if it were the only one.

As it is detailed in the next chapters, we take a different approach. In-
deed, our starting point is an existing syntactic parser for French with a
broad coverage of both the French language and the lexicon. The challenge
is thus of a different sort. Instead of creating something brand new, we
must adapt a parser which was built for the syntactic analysis of gram-
matical French sentences, into a syntactic error diagnosis tool for second
language learners of an advanced level. The parser and its lexicon bring us
the needed coverage in terms of grammar and lexicon. The difficulty then
resides in diagnosing as many error types as possible, with a great degree
of accuracy, without diminishing the capacities of the parser. From the ex-
perience learned in studying other diagnosis systems, we take the option
of combining different error diagnosis techniques. Additional challenges are
found in the diagnosis technique selection process, as well as in the manage-
ment their (possibly diverging) results.

64

CHAPTER 2. STATE OF THE ART

Chapter 3

Theory

This chapter is devoted to theoretical considerations concerning three dif-
ferent techniques for error diagnosis in the CALL context. These three
techniques are constraint relaxation (3.1), which has already been discussed
in chapter 2 in the light of existing systems using it; phonological reinter-
pretation (3.2); and chunk reinterpretation (3.3). Each of these techniques
is described in this chapter from a theoretical standpoint. Section 3.4 inves-
tigates distinct possibilities to retrieve the most likely analysis when several
analyses are proposed by the system, given the particular context of use.
Using several diagnosis techniques implies a way to combine the techniques
and the results they provide. Section 3.5 explores three different possibil-
ities for managing these results coming from different sources. Section 3.6
concludes this chapter.

3.1 Constraint relaxation

This section describes the constraint relaxation technique and provides some
information on the elements involved in constraint relaxation. A working
definition of constraints is proposed (3.1.1), followed by a short typology
of different types of constraints (3.1.2), and by an explanation of what is
understood by constraint violation (3.1.3). Prerequisites for constraint re-
laxation are stated (3.1.4), the constraint relaxation technique is explained
(3.1.5) and an algorithm is proposed (3.1.6). Deciding which constraints to
relax is next explored (3.1.7). Advantages (3.1.8), problematic issues (3.1.9),
and variants to the technique (3.1.10) are discussed. A few remarks (3.1.11)
conclude the section.

3.1.1 Constraint definition

Before we embark on a description of constraint relaxation, a definition
of what a constraint is should first be given. As a first approximation, a

65

66 CHAPTER 3. THEORY

constraint is a condition which must be fulfilled in order for the parsing
algorithm to take a certain action. This condition can be either simple
or complex, that is, made of several sub-conditions connected by logical
operators. However, if we take a complex condition, a constraint can either
be the whole condition or a fragment of it, and this fragment needs not be
reduced to the level of an atomic sub-condition. Let us take a simplified
example as an illustration:

(11)a. [DP The cat |

b. [p Sleeps]]

7 ly

C. p The cat | [T [vp sleeps |]]

[TP [D

(11a) can combine with (11b) to form the sentence (11c) only if the
complex condition (12) is true.!

(12) (11a) must be a DP & (11b) must be a T & (11a) and (11b) must
agree in number & (11a) and (11b) must agree in person.

Condition (12) can be divided into four atomic sub-conditions which
all need to be true to enable the formation of (1lc). Condition (12) is
however made up of only two or three constraints. The first two atomic
sub-conditions combine into the first constraint (13), which we could name
‘category constraint’.

(13) (11a) must be a DP & (11b) must be a T

The two remaining atomic sub-conditions can form a second constraint,
which we could call ‘subject-verb agreement constraint’, or each form a
constraint of its own, respectively ‘number agreement constraint’ and ‘person
agreement constraint’. Thus, a constraint depends on the exact level of
granularity one wants to achieve. Independently of granularity, one can
define a constraint as being a condition, or a coherent part of a complex
condition, on which actions of the parsing algorithm depend.

3.1.2 Constraint typology

Let us schematize a rewrite rule of a grammar as:

'Example (12) is a simplified version which does not include all the conditions which
would be present in a real system (the information that T, as a main clause, must be
tensed is missing, for example).

3.1. CONSTRAINT RELAXATION 67
(14) A = B C, constraint set

which can be read as B followed by C combine to form A, as long as
each constraint in the set of constraints is fulfilled. The values of A, B, and
C combine to form the category constraint. The constraint set contains
all the other constraints applying to that particular rule. Applying (14) to
example (11), one obtains the following:

(15) TP = DP T, {number agreement constraint, person agreement con-
straint }

Thus, DP and T can combine into a TP only if the number and person
agreement constraints are met. If it is not the case, the sentence is ungram-
matical. The number agreement constraint states that DP and T must share
the same number value (either singular or plural), while the person agree-
ment constraint states that DP and T must share the same person value
(either first, second, or third). Example (15) is very schematic and one can
think of many more constraints which should accompany this rule. Some
of them are linked to the nature of the inner elements of DP and T. For
example, some verbs, like ‘sleep’, require an animate or human subject. This
kind of constraint, at the border between syntax and semantics, demands
that the verb bears a particular feature. If it does not, the constraint does
not apply at all, which is different from failing or not succeeding.

(16)a. * [TP [Ava Very | [T [Vp sleeps |] |
b. * [TP [DPThecat] [T [vpsleep]]]

c. 7] PThedesk][T[vpsleepS]]]

TP [D

We can thus distinguish at least three types of constraints. First, there
are constraints which are embedded in the rule descriptions themselves,
such as the category constraint. We call them ‘hard’ constraints because
sentences are highly ungrammatical when a constraint of this type is not
respected (16a). The second type of constraints applies to all instances of
a given rule type. Agreement constraints belong to this type. We refer to
them as ‘soft’ constraints as sentences which do not obey these constraints
are ungrammatical to a lower degree, as in example (16b). Thirdly, some
constraints apply only when some prior condition is met. Typically they
make use of semantic information or of categorial sub-types (proper noun
vs. common noun). We name these ‘conditional’ constraints. (16¢) offers us
an example of an unsatisfied conditional constraint: the verb ‘sleep’ requires
an animate subject. (16¢) is thus not readily acceptable.

68 CHAPTER 3. THEORY

3.1.3 Constraint violation

While parsing a grammatical sentence with a non deterministic parser, many
constraints are checked time and time again and some constraints are bound
to be violated some time or other. A violated constraint then indicates that
the chosen path is not the right one and the algorithm proceeds by selecting
another possible route. If all alternatives are tried without success, then
the parse fails. With a deterministic parser, the first violated constraint
indicates a parse failure, as no backtracking or parallel processing is possi-
ble with “strictly deterministic” parsers (Marcus 1980, Marcus 1987). For
both types of parsers, a parse failure implies that the sentence is not gram-
matical.? A successful parse indicates a grammatical sentence for which a
syntactic structure can be provided.

There are, however, degrees in grammaticality (Chomsky 1964) for which
the constraint typology proposed in section 3.1.2 may account. This is what
Kwasny and Sondheimer (1981, p. 102) recognize in their differentiation
between absolutely and conditionally violable predicates, and Holan, Kubor,
and Platek (1997, p. 152) between soft and hard constraints. The category
constraint seems more important for grammaticality than the agreement
constraints, as shown by the dichotomy in example (16) where (16a) has
a much lower degree of grammaticality than (16b). (16¢) is odd without
context, but quite grammatical.

Thus a strong ungrammaticality comes from the violation of a hard con-
straint (in example (16a), the category constraint), while a minor one comes
from the violation of a soft(er) constraint (in example (16b), the person
agreement constraint). The violation of conditional constraints often re-
quires a specific context for sentence interpretation (in example (16¢), the
animate subject constraint).

Constraints are violated whenever an ungrammatical sentence is pro-
duced. Several constraints can be violated within the same ungrammatical
sentence. The degree of grammaticality of the produced sentence depends
on the type and number of violated constraints. To our knowledge, no ex-
act ordering of constraints has ever been done formally. Ranking sentences
by their degree of grammaticality could however provide us with precious
information about the ranking of constraints, as long as one is able to link
specific constraints to each ungrammatical sentence.

3.1.4 Prerequisites for constraint relaxation

As a prerequisite for constraint relaxation, one needs a constraint-based
syntactic parser. In ideal conditions, this parser should cover the grammar of

2Tt could also mean that the sentence lies outside the bounds of the parser’s grammar.
However, we assume in the remainder of this chapter that the parser covers the whole
grammar of the language under treatment.

3.1. CONSTRAINT RELAXATION 69

the language exhaustively and exclusively. This means that all grammatical
sentences should be able to parse completely and that no ungrammatical
sentence should result in a full parse. The unmodified parser should serve
the role of a recognizer.

By constraint-based parser, we understand a parser that relies on con-
straints and on their truth value in order to decide whether to continue
along a certain parsing path or not. Each action of the parsing algorithm is
linked to one or more constraints. An action is taken only if no constraint
is violated.

The grammar used by such a parser needs not be separate from the pars-
ing algorithm, but it must be designed with clearly identifiable constraints.
If the constraints cannot be identified one way or another, constraint relax-
ation cannot be implemented as a syntactic error diagnosis technique.

3.1.5 Error diagnosis by constraint relaxation

Error diagnosis consists in identifying the ungrammaticality of a sentence,
in locating this ungrammaticality, and in giving its type. As each site of
ungrammaticality is linked to a violated constraint, error diagnosis must
identify which constraints are not respected. One possible manner to achieve
this is by constraint relaxation.

Basically, constraint relaxation starts with the parser encountering a con-
straint which fails and blocks parsing. Instead of stopping there or finding
an alternative path, constraint relaxation allows the parsing process to over-
ride the constraint and to continue. Error diagnosis is achieved by noting
which constraint was relaxed and the context in which it was relaxed.

Constraint relaxation implies somehow changing the actions linked to
the constraint. The most obvious way these actions are modified is by
the insertion of instructions on how to store the location of the relaxed
constraint and the type of the constraint. These elements are essential for
the diagnosis process as there is, in ideal conditions, a direct link between
relaxed constraints and syntactic errors. ‘Diagnosis notes’ are computed
every time constraint relaxation is used for error diagnosis purposes. If the
actions controlled by a constraint are not linked to values checked within
the constraint, then this constraint can be relaxed by simply ignoring it
if it is not met. Other types of action modifications are often used. If
the actions resulting from a satisfied constraint involve calculations of new
(feature) values based on some values checked within the constraint, these
calculations might have to be changed or modified if the constraint remains
unsatisfied. Indeed, the planned calculation might not be possible if the
starting values are not within a certain range. One can then use default
values, or a modified calculation method.

A typical calculation which needs modification is the formation of a new
value set, which cannot be empty, through the intersection of two value sets

70 CHAPTER 3. THEORY

(17a). If the two value sets are not compatible, the resulting intersection
is empty (17b). As stated above, this is not legal and one cannot use this
result. One must therefore use a default value or indicate that, in the case of
the constraint being unsatisfied, the calculation must take the union of the
value sets instead of their intersection (17¢). This insures that the resulting
set is never empty.

(17)a. {singular, plural} (| {singular} = {singular}
b. {singular} N {plural} = { }

c. {singular} | {plural} = {singular, plural}

Once the parse is completed, one collects the diagnosis notes produced
by the relaxation of constraints. These notes are passed on to a student
module, or such like module, for display in an appropriate user-friendly
format.

3.1.6 Algorithm

The purpose of this section is not to write down a parsing algorithm, but
rather an algorithm for constraint relaxation independent of the kind of
parser used.

Let us assume that we have a set of constraints on which depends a set
of actions. We define C' as the set of constraints {C1,C5,Cs,...,C;} and A
as the set of actions {41, A, A3, ..., A;}.

If all the constraint in set C are satisfied, then all the actions in set
A proceed as planned. If one, or several, of the constraints in C' is not
satisfied, then a set of modified actions A’ is invoked. The set of modified
actions varies according to which constraint or constraints have not been
satisfied. An action can be suppressed, modified or added to set A in order
to form set A’. Thus A’ is potentially the set {A}, A3, ..., A;, Aj11, Anote}
where A} is a modified version of Ay; Ay has been removed; Ajiq is an added
action; and A, 18 the action pertaining to the creation of a diagnosis note.

e For each relaxable constraint

— If C then

* Apply A
— Else

* Apply A’

Thus, a constraint is relaxed only if it is not satisfied and the set of
alternative actions A’ is activated only in case A could not be used. We
will see later (section 3.1.9) that this has its importance for the efficiency of
parsers containing relaxable constraints.

3.1. CONSTRAINT RELAXATION 71

3.1.7 Deciding which constraints to relax

Deciding which constraints to relax is a complex matter. It obviously de-
pends on the errors one wants to be able to diagnose. Only the constraints
linked to those errors need to be relaxed. Thus, identifying a relation be-
tween errors and constraints is of the utmost importance.

Usually, hard constraints are not relaxed because relaxing them would
allow the parse to construct uninterpretable structures. In a general way,
constraints which are relaxed change only slightly or not at all the overall
shape of the syntactic structure of the sentence. Allowing hard constraints
to be relaxed would completely upset the sentence structure.

Each application using constraint relaxation must therefore conduct a
study to determine the errors it wants to be able to diagnose and use this
knowledge to define the range of relaxable constraints. “Depending on the
task, communication type, and many other factors certain constraints will
be singled out for possible relaxation” (Uszkoreit 1991, p. 239). Agreement
constraints are a typical example of constraints relaxed very often in systems
using constraint relaxation. The choice of constraints depends on the goals
of the application, as well as on other diagnosis techniques used in conjunc-
tion with constraint relaxation and which would treat some particular error

types.

3.1.8 Advantages

One of the important advantages of constraint relaxation for error diagno-
sis is that it also provides a full parse of the sentence under scrutiny. The
user can therefore benefit not only from the error diagnosis, but also from
all other results of a normal parse. In the CALL domain, this includes the
possibility to examine the sentence structure, and to receive disambiguated
lexical information on single words. Being able to reach a complete parse,
even if containing errors and having required the use of relaxed constraints,
is also an indication that the sentence grammaticality, although not perfect,
is not too far off the mark. In a parser with relaxed constraints, an unsuc-
cessful parse indicates the encounter of an unsatisfied unrelaxed constraint.
As constraints that are not relaxable are often hard constraints, such an
input sentence has probably a high degree of ungrammaticality. One is thus
also able to provide a diagnosis of ungrammaticality without being able to
indicate the precise nature or location of the error.

Moreover, reaching a complete parse with any parser, and even more so
with a parser with relaxed constraints, is an indication that most, if not
all, ambiguities have been cleared and that one is more likely to have found
a correct interpretation of the sentence, in terms of its syntactic structure,
than if the result of the parse consisted in partial analyses only. A diagnosis
technique which does not provide a complete parse is not in as good a

72 CHAPTER 3. THEORY

position to appreciate the quality of its own diagnosis.

Another advantage of constraint relaxation is that no new set of rules
needs to be added to the grammar. Adding new rules to a grammar is al-
ways problematic for several reasons. (i) For error diagnosis, new rules to be
added are often mal-rules. This is highly displeasing on a linguistic stand-
point because a grammar should only contain the means to construct gram-
matical sentences. Mal-rules allow the creation of ungrammatical structures
and thus should not be part of a grammar. (ii) Another problem resides
in adding these new rules into the rule set without upsetting the balance
between the existing rules. Rules are often tried by the parsing algorithm in
a very specific order and the new rules must be added at their proper place
regarding this order. They must be activated only after the corresponding
standard rules are rejected, but not necessarily after all the existing rule
set. This interweaving might prove a difficult task. Incorrect ordering of
the rules might change the analysis of the sentence and increase the number
of overflagging occurrences. (iii) Moreover, increasing the size of the rule
set often increases parsing time, as more rules need to be tried out at every
stage, and thus diminishes the efficiency of a system.

3.1.9 Problematic issues
Over-generation

Although constraint relaxation can be used with deterministic parsers (Char-
niak 1983, Chen and Xu 1990), it is most often seen with non deterministic
ones. When used with a non deterministic parser, the most problematic is-
sue of constraint relaxation is the increase of the search space generated by
constraint relaxation itself. Constraints are normally used to separate what
is grammatical and admissible from what is not. The constraints restrict
the number of paths to be followed by the analysis process. By relaxing con-
straints, one opens new paths that need to be explored, which in turn might
call on constraints which are possibly relaxed. “Furthermore, syntactic con-
straints, as well as morphological, semantic, and pragmatic constraints, are
sometimes crucial to determining what interpretation is intended, so that
ignoring syntactic constraints can lead to seeing ambiguity where there is
none” (Weischedel and Ramshaw 1987, p. 159). Depending on the number
of constraints that are relaxed, one can easily see how one quickly reaches
an explosion of the search space. Thus, while relaxing constraints, one must
also think about ways to restrict this over-generation of search paths and,
in the end, of structures.

One partial solution, which is already included in the way we have defined
constraint relaxation above (section 3.1.5), is to allow a constraint to be
relaxed only at times when the unrelaxed constraint would not be satisfied.
In this way, the search space is expanded only when the regular path cannot

3.1. CONSTRAINT RELAXATION 73

be followed.

One can also limit the number of constraints that are allowed to be
relaxed during a single parse and, if needed, parse a sentence several times
with different relaxed constraint combinations. This has the advantage of
restraining the search space as fewer paths are opened at the same time.
However, there are two drawbacks. The first one concerns the error diagnosis
process. If fewer constraints are relaxed, fewer errors can be detected in a
given pass. One could try to argue that, in this case, one would only need to
make several passes with different combinations of relaxed constraints each
time. Constraints are, however, linked to one another. There is no guarantee
that, even with thoughtful repartition of the constraints into packets, the
constraints which are not relaxed would not prevent detection of errors by
the constraints which are relaxed. We could be faced, for example, with
a word order error and a subject-verb person agreement error in the same
sentence (18a). Supposing that the word order constraint is in full force
but that the person agreement constraint is relaxed, it is still possible for
the system to not detect the error between the subject and the verb. The
word order error, for which the constraint is not relaxed, could prevent the
parser from reaching a complete analysis of the sentence, which thus returns
the chunks shown in (18b), (18c), and (18d); subject and verb could find
themselves in two different parts (18b) and (18d), and thus the agreement
error between them would not be detected.

(18)a. *The cat well sleep.

b. [DP The cat |
[gep Vel]
d. [vp Sleep]

A third possibility to contain overgeneration is to limit the size of the
search space during parsing by pruning off branches that are not likely to
bear any interesting solution. To know which branch to cut, one needs
some sort of evaluation method. This is often accomplished via a scoring
mechanism. Scores are updated during parsing and each time a path reaches
a certain threshold, which can be either a fixed value or a value relative to
the score of other branches, that particular branch is cut off and discarded,
or pruned, thus limiting the search space. Pruning is often used in search
techniques (Sedgewick 1988, p. 627).

Checking three elements

Typically, errors are due to a mismatch of two elements, as in example (16),
page 67, or of one element and the rest of the sentence (19), where the error

74 CHAPTER 3. THEORY

is due to the use of a (has) which is homophonous with ¢ (about).

(19) Je pense a Marie.
I think have Mary.

It sometimes happens that an error occurs because of a mismatch be-
tween three elements. This happens in German where noun phrases bear an
overt case and some prepositions take different cases depending on the verb
they attach to. One must thus know the verb and the preposition to decide
the proper case for the noun phrase.

(20)a. Das Buch liegt auf dem Tisch.
The book lies on the-dative table.

b. *Das Buch liegt auf den Tisch.
The book lies on the-accusative table.

The verb liegen (lie) takes a prepositional object headed by auf (on)
which takes a dative complement. In (20a), the sentence is correct, while in
(20b) the sentence in ungrammatical because the complement of the prepo-
sition is in the accusative case.

On a pedagogical standpoint, how should an error such as (20b) be di-
agnosed? Is it an error between the verb and the preposition or between
the preposition and the noun phrase? Should the three elements be marked
down? Apart from the pedagogical ideal, how does a diagnosis system work-
ing with constraint relaxation diagnose this type of mistake?

The answer to this question depends partly on parsing strategy. The
results are different if the parser is able to attach only complete elements to
the structure it is building, or if it can attach partial elements and complete
them later with the rest of the input.

(21)a. verb + (auf + DP)

b. (verb + auf) + DP

In the first case, illustrated by (21a), the whole prepositional phrase
is computed before attachment to the verb. When the accusative DP den
Tisch (the table) attaches to the preposition auf (on), no error is detected
as the preposition takes either the accusative or the dative case depending
on its context and the context is unknown at the time. Moreover, it is
most likely that the whole preposition phrase takes the accusative case by
unification/assimilation with the accusative DP. Thus, when the accusative
PP tries to attach to the verb, the case constraint is not satisfied because
the verb requires a dative PP. The constraint is then relaxed, the verb and

3.1. CONSTRAINT RELAXATION 75

the PP attach to one another, and a case agreement error is marked down
between the verb and the PP. If the location of errors is actually not written
in terms of projections, but in terms of heads, then the error appears between
the verb and the preposition itself, although the verb and the preposition
match perfectly by themselves.

In the second case, shown in (21b), the parsing algorithm attaches the
preposition to the verb and then completes the preposition phrase with the
DP. Attachment of the preposition to the verb does not raise any difficulty
as the verb liegen requires a dative preposition and as the preposition auf
bears both the accusative and the dative cases. Through the result of as-
similation/unification, the preposition retains only the dative case. When
the first element of the future determiner phrase (most often the determiner
itself) tries to attach to the preposition, the case agreement constraint is
activated. If, as in (20b), the determiner bears the accusative case, the
constraint cannot be satisfied and is then relaxed. A case error is marked
down between the preposition and the determiner. However, the error here
does not exist without the connection to the verb as the structure ‘auf +
accusative DP’ exists in German.

Thus, in the first case, we are marking the verb and the preposition, and
in the second the preposition and the determiner. We are never marking the
three elements because constraints are verified when one element attaches
to another, that is between two elements and not three. If we must mark
the error on two elements only, it would seem more interesting to mark the
case error between the verb and the DP, which is not one of the options
proposed by our two algorithms. Thus, some kind of gymnastics has to be
performed in the student module for the final output to indicate that the
error is located between the verb and the DP, or to show a link between
three elements.

3.1.10 Variants

There are several variants to constraint relaxation as it has been described
above. We review three of those variants below. The variants are all based
on the same constraint relaxation principles, but the mechanisms allowing
constraints to be relaxed are somewhat different in all three cases.

Continuum

The delimitation between hard, soft, and conditional constraints is some-
what arbitrary. There is in fact a continuum in the way these constraints
interact with grammaticality. Thus, instead of using such terminology and
preventing hard constraints to be violated, one can conceive of a more sub-
tle gradation of constraints. Constraints would then be associated with a
weight and the structure resulting from a parse would be assigned a score de-

76 CHAPTER 3. THEORY

pending on the combined weights of all the constraints which were violated
to build the structure.

This mechanism has the effect of ranking resulting analyses according
to a combination of the number of violated constraints and on their rela-
tive position on the constraint continuum. The sentence structure with the
lowest score is selected as the best choice because it either violates fewer
constraints or less important ones. Any constraint can thus be violated, but
if its weight is high, the resulting structure is not likely to be selected among
the competing alternatives. The difficulty of this variant lies in assigning
the weights to the constraints and in designing a scoring algorithm in a way
which reflects the link between constraints and grammaticality.

At least two systems using a similar scoring mechanism exist. The first
one is the deterministic parser Paragram (Charniak 1983). Paragram em-
ploys two weights per constraints: one in case of constraint satisfaction and
the other in case of constraint violation. A rule is selected for application
if it obtains the highest score computed from all the constraints attached
to that rule. The second system is described by Heinecke, Kunze, Men-
zel, and Schroder (1998), Menzel and Schroder (1998a), and Menzel and
Schroder (1998b) as using “graded, hence defeasible, constraints” (Menzel
and Schroder 1998b, p. 45). The computing algorithm making use of multi-
plication and the highest score being the best, a score of 0 indicates a hard,
unviolable constraint, a score close to 0 a well-formedness condition, and a
score close to 1 is “used for conditions that are merely preferences rather
than error conditions” (Menzel and Schroder 1998a, p. 489).

Enforced constraints

Instead of relaxing constraints, one can take the opposite view and enforce
constraints. The pedagogical idea is to enforce only the constraints linked
to the grammatical phenomena the learner is currently in the process of
mastering. Thus, if the focus of attention is on word order, agreement
constraints need not be enforced, and errors of this type are not flagged to
the users.

This variant of the constraint relaxation technique, implemented by
Weinberg, Garman, Martin, and Merlo (1995), requires a very good defi-
nition of the hard constraints which are never relaxed, in opposition to the
other constraints, which annotate the syntactic structure with feature in-
formation and which are enforced only on demand. The parser must be
able to provide a sentence structure for an input sentence when none of the
constraints are enforced. Relaxed constraints must therefore be limited to
constraints which do not change the shape of the syntactic structure. De-
fault values are used when constraints are not satisfied, in order for the parse
to proceed smoothly.

Such systems work the other way around from most common constraint

3.1. CONSTRAINT RELAXATION 7

relaxation based diagnosis systems. Instead of starting with a constrained
parser, from which one relaxes constraints to achieve a complete parse, they
start with a completely relaxed parser whose constraints are enforced only on
demand. It is more a question of philosophy than of actual performance of
the two types of systems, as both provide a certain (flexible) range of relaxed
constraints. However, with enforcement on demand, the system’s normal
working mode is when no constraint is enforced, in opposition to other types
of systems, and it is in this mode that one should test it for efficiency. One is
perhaps stricter in the evaluation of an ‘enforced on demand’ parser because
it is tested in its worse configuration.

Single and multiple pass diagnosis systems

Diagnosis systems based on constraint relaxation vary also with regards to
the number of times a given sentence is passed on to the parser. First of
all, there are systems which parse the sentence once with all the constraints
enforced to check its grammaticality. If the parse results in a complete anal-
ysis, the sentence is deemed grammatical and no further processing is needed
by the diagnosis system. This screening is useful to improve the efficiency of
the diagnosis system. Parsing a sentence with relaxed constraints is always
longer than when all the constraints are enforced. Thus, this first pass filters
out all the sentences which do not need diagnosis so that constraints can be
relaxed only when needed.

Leaving aside this screening pass, systems use one or several passes
through the parser to diagnose errors by constraint relaxation. Single pass
systems must have all the constraints linked to errors they are supposed to
diagnose relaxed at the same time. Only in this way can the system diag-
nose all the errors within a single pass. A single pass is usually quicker than
multiple passes with fewer constraints relaxed (Vandeventer 2001, p. 118).
However, the tradeoff is found in the number of analyses provided by this
single pass. Extracting the correct interpretation of the erroneous sentence
from several analyses might prove difficult and heuristics not always reliable.

The alternative to the single pass approach is naturally multiple passes.
One could contemplate parsing the sentence once for each error type one
wants to diagnose, that is for each relaxed constraint. This may not be an
optimal solution as seen in section 3.1.9. Relaxing constraints by packets is
already more viable as one can organize those packets so that constraints
linked to one another are relaxed together. Thus, all the agreement con-
straints (gender, number, person, case) would belong to the same packet.
Moreover, some constraints could be part of several packets if their relax-
ation proves useful to build more complete structures (and thus diagnose
more errors) and not too damaging in the number of spurious structures
created. This might be the most effective compromise between single and
multiple pass systems.

78 CHAPTER 3. THEORY

3.1.11 Remarks

Constraint relaxation is a well-known technique for error diagnosis and it
has been used in many prototype systems. Its main drawback, the prolifer-
ation of unwanted structures, is an inevitable by-product of the technique.
Only careful selection of relaxed constraints and limitation in the number
of constraints relaxed at the same time can provide some relief. However,
the advantages, in terms of complete parse and facility of extracting error
diagnoses, are not negligible. Thus, we consider constraint relaxation a very
interesting technique for syntactic error diagnosis, as long as the range of
errors it must treat is appropriate in kind and size.

3.2 Phonological reinterpretation

Language learners tend to confuse words which sound alike but have different
spellings. Although this type of confusion happens with native speakers
as well, it is much more frequent with language learners whose mastery
of spelling in their L2 is not as good. There are two phenomena, although
interrelated, that we need to distinguish. (i) Phonetic spelling can be defined
as stringing together letters which form the sounds of the word one wants to
write. Phonetic spelling is used by people who know the phonetic value of
letters, or combination of letters, in the language they are writing in but do
not know its spelling rules well enough. They are proficient in phoneme-to-
grapheme transcription. Words resulting from phonetic spelling can be non
words (22a) or they can be legal words (22b), that is, words belonging to the
lexicon of the particular language. (ii) The second phenomenon occurs when
someone mixes up two words which sound alike and writes one for the other.
The word which is written instead of the appropriate one is by necessity a
legal word (22c).?> Moreover, (22c) can also results from phonetic spelling.
This error is thus due either to performance or to competence issues.

(22)a. *The dog wich I saw was sick.
The dog which I saw was sick.

b. *The tap had a leek.
The tap had a leak.

c. *The dog witch I saw was sick.
The dog which I saw was sick.

(22a) is an error of a kind usually treated by any spell checker. Unknown
words are easily picked up, although interesting correction proposals are

3In some dialects of English, ‘which’ is pronounced /hw{f/ and is not homophonous
with ‘witch’, pronounced /witf/.

3.2. PHONOLOGICAL REINTERPRETATION 79

not always provided. (22b) and (22c¢) result in the same kind of difficulty,
irrespective of the reasons or the manners in which the words were produced.
In both cases, we are faced with a legal word which has no reason to be in
the position it occupies.

The problem with legal words can be further subdivided into two cases.
(i) In (22b), the word is of the same lexical category as the one it replaces.
“Unfortunately, a parser cannot detect substitutions by homophones which
have the same syntactic properties” (Vosse 1992, p. 112). Without a se-
mantic component, it is impossible for a syntactic parser to distinguish that
there was a confusion. (ii) In (22¢), the two words are of different syntactic
categories, which most often prevents the parser from assigning a complete
analysis to the input sentence. It is errors of this latter case that we intend to
diagnose with phonological reinterpretation. Phonological reinterpretation
is not limited to the word level, however. Phonetic spelling can span several
words and the technique can be theoretically applied to whole sentences, as
we will see.

This section is organized as follows. A definition of phonological rein-
terpretation is proposed in section 3.2.1. In section 3.2.2, the error types
which can be treated by phonological reinterpretation are exposed. In sec-
tion 3.2.3, prerequisites for phonological reinterpretation are stated. The
diagnosis algorithm comes next in section 3.2.4. Advantages (3.2.5) and
problematic issues (3.2.6) are then discussed. A variant to the main tech-
nique is proposed in section 3.2.7, related systems are briefly described in
section 3.2.8. Some remarks (3.2.9) then conclude the section.

3.2.1 Definition

Phonological reinterpretation is based on the principle that sequences that
sound alike do not necessarily share the same spelling, and that a misspelled
sequence might sound identical to its correct written form. The sequence in
question can range form a whole sentence to a single word.

There are two main steps in phonological reinterpretation. (i) The
sequence is first transformed into its phonological counterpart. (ii) This
phonological sequence is then reinterpreted into a written text. Phonologi-
cal reinterpretation is defined by the juxtaposition of these two steps.

Phonological reinterpretation can be activated on whole sentences, where
it implies heavy mechanisms but should provide exhaustive results, or on
very short sequences, with the word as the smallest unit, which require
much simpler tools but obviously cannot tackle as many error types.

3.2.2 Errors treated

At the word level, errors which can be treated by phonological reinterpreta-
tion include homophones of distinct lexical categories as in (22c). A homo-

80 CHAPTER 3. THEORY

phone is “a word having the same sound as another but of different meaning
or origin” (Allen 1990, p. 565).

Phonological reinterpretation can also be used for some agreement er-
rors in languages in which agreement is not always overtly realized, such as
French. This is a particular application of the technique which is very much
language dependent. Indeed, in standard French, many agreement markers,
such as feminine -e or plural -s, are not phonetically realized and the mark
can be seen only in writing. However, missing such a marker in a written
text is considered to be an agreement errors which requires correction.

(23)a. *Les chat dorment.
The-plural cat sleep.

b. Les chats dorment.
The-plural cats sleep.

c. /le f[a dorm/

(23a) and (23b) are both pronounced as in (23c).* There is no difference
at all. By reinterpreting the sentence in (23a), the plural chats (cats) can
be found.

A multi-word use of phonological reinterpretation concerns sequences of
words which should be written only as one (25), or words which should be
rewritten as several (26).5

(25)a. * an other
another

b. * more over
moreover

(26) * Tts a problem.
It’s a problem.

At the sentence level, depending on the sensitivity of the parser and of
the reinterpretation mechanism, punctuation errors, as in (27), might be
diagnosed.

(27) * There were apples, pears, bananas_ and oranges in the fruit salad.
There were apples, pears, bananas, and oranges in the fruit salad.

“Some of the phonetic transcriptions were composed with the help of the phonetic
dictionary compiled by Boé and Tubach (1992).

°If the agglutinated word is not part of the lexicon, it should be detected by the spell
checker.

(24) * theproblem

3.2. PHONOLOGICAL REINTERPRETATION 81

3.2.3 Prerequisites

The main idea of phonological reinterpretation is to find alternatives to the
written input which are pronounced in the same manner. If the parser is
unable to analyze some sentence, we try to figure out if some words were
spelled in a homophonous way and should be replaced by another sequence
of characters. If the new parse succeeds with the reinterpreted words, it
gives us interesting material for error diagnosis.

This technique can be implemented only if some prerequisites on the
parser and the lexicon are respected, and/or if some specific tools are avail-
able. We now discuss these prerequisites.

Parser

The parser should be able to serve as recognizer. That is, it should fail on
all ungrammatical sentences and provide a complete analysis for all gram-
matical sentences. Only in this way can we know that there was an error
in a sentence. When the parse fails because the sentence is ungrammatical,
partial analyses of the sentence must still be provided, as it is from these
partial analyses that words are selected for phonological reinterpretation.

As several alternatives can possibly result from the reinterpretation of a
single word, it is preferable for the parser to be non deterministic. One can
thus pass on to the parser all the alternatives and let it sort those which
are viable, that is, those which result in a (more) complete analysis, and the
others which must be discarded. In case the parser is deterministic, then the
sentence must be explicitly fed to the parser with each different combination
of word reinterpretation alternatives. This is of course possible, but much
work risks being repeated an unnecessary number of times.

Lexicon

The lexicon which is used by the parser must have two specific features
which are not required for normal parsing of written input. The first fea-
ture is to store the phonological form of each word in the lexicon. This is
the quickest way for the diagnosis system to obtain the phonological rep-
resentation of a given word. The second feature is that the lexicon must
be searchable through the phonological information, in order to enable the
system to retrieve homophonous forms.

Phonological reinterpretation at the word level implies retrieving the
phonological form of a word in the lexicon and searching this same lexicon
through the phonological forms. Words with an identical phonological form
are retrieved for reinterpretation.

82 CHAPTER 3. THEORY

Synthesizer and phonological recognizer

If a whole sentence must be reinterpreted, the system needs more powerful
tools than phonological entries in a lexicon. The system needs to be able
to provide the phonological string representing the whole sentence. This
string must contain not only the words themselves, but also all the infor-
mation linking the words together, such as liaison and elision phenomena.
This implies the use of the component of a speech synthesizer which trans-
forms a string of characters into a phonological representation, a ‘sentence
phonetizer’.

The reinterpretation step of the process requires another tool, namely
the component of a speech recognition system which would transform a sen-
tence represented phonologically into a string of characters. It would be the
reverse operation. Although to go from the input signal to its phonological
representation, before segmenting it into words and giving each word its
orthographical representation, seems a logical path for a speech recognition
systems, most speech recognition systems do not in fact use a phonological
representation of a sentence. They propose words directly from the input.®
Let us however assume, for the sake of discussion, that a tool capable of
transforming a phonological representation of a sentence into a segmented
orthographical representation exists or could be created.

Whole sentence phonological reinterpretation implies many elements of a
text-to-speech-to-text system. These are complex components which are not
easily found or created. Moreover, they are resource greedy. Thus, phono-
logical reinterpretation of whole sentences must be employed only when
absolutely required in order not to bear too heavy a load on the system
resources or to slow down the system noticeably.

3.2.4 Algorithm

One can consider that there is heavy and light phonological reinterpretation.
Heavy reinterpretation involves whole sentences while light reinterpretation
is concerned only with unconnected words. There is in fact a continuum
between those two extremes, ranging from a whole sentence, to a few words,
and to a single one. If several unconnected words belong to the same sen-
tence, they are reinterpreted at the same time.

A sentence is first parsed by the regular version of the parser. If the
sentence is analyzed completely, it is deemed to be error-free. If only partial
analyses result from the parse, a choice must be made between heavy and
light reinterpretation. The algorithm for heavy phonological reinterpretation

b “Either whole segments are directly recognised [by speech recognition systems](global
method), or an intermediate phonetic labelling is used before lexical search (analytic
method. ... Most commercial methods implement global techniques” (Chollet 1994,
p. 140).

3.2. PHONOLOGICAL REINTERPRETATION 83

is given below.

1. The whole sentence is phonetized. This requires the use of the com-
ponent of a speech synthesizer specialized in transforming a character
string into its phonological representation.”

2. The whole sentence is reinterpreted as if it were a phonological tran-
scription of speech. For this, one must make use of a component of a
speech recognizer able to transform a phonological representation into
a string of characters with word separations and punctuation marks.

3. Finally, one must compare the input string with the output string and
check them for differences. Places of modifications are the indication
of errors in the input string and a diagnosis can be formulated on their
basis.

Heavy phonological reinterpretation is difficult, not to say impossible, to
obtain because of the tools it requires. Moreover, the process of speech
recognition is full of ambiguity. Heavy reinterpretation is thus very likely to
prove cumbersome and lacking in efficiency.

When heavy phonological reinterpretation is not feasible, because com-
ponents are not available or resources are too scarce, lighter phonological
reinterpretation can still be performed. The algorithm for light phonological
reinterpretation is given below.

1. Words located at the borders of partial analyses (apart from the first
and the last words of the sentence, unless they form a partial analysis
of their own) are submitted for word phonological reinterpretation.
For each word:

(a) the phonological string of the word is looked up in the lexicon
and retrieved;

(b) the phonological string is used to search the lexicon, through the
phonological entries, for identical words;

(c) phonologically identical words with the input word, or homo-
phones, are retrieved with all their lexical information;

2. If no homophone was found, then no diagnosis is provided and the
parse fails;

3. If one or several homophones are found, then they are added as alter-
natives in the non deterministic parser, with an error mark, and the
sentence is parsed again;

"Describing the components of speech synthesizer or recognizer is beyond the scope of
this dissertation.

84 CHAPTER 3. THEORY

4. If the parser is now able to provide one (or several) complete analyses
of the sentence, the homophone(s) retrieved from the lexicon and used
in the complete analysis are set apart as correction proposals.

5. Correction proposals are compared to their corresponding input words
through their lexical information. Error diagnoses are extracted from
this comparison.

3.2.5 Advantages

As with constraint relaxation, phonological reinterpretation provides the
users with a complete analysis of the input.® The advantages implied by
complete analysis in the CALL context are outlined in section 3.1.8. There
is, however, a slight difference. While the input is not modified with con-
straint relaxation, phonological reinterpretation makes use of words which
were not part of the original input and are substituted to the erroneous
words. Thus, correction, or at least correction proposals, is an inherent
part of phonological reinterpretation. There is no phonological reinterpre-
tation if a word or series of words cannot be proposed for substitution in
the problematic area. The reinterpreted words, if they allow the sentence
to be completely analyzed, are the correction proposals to be submitted to
the users.

Phonological reinterpretation can also be used in spell checker applica-
tions. The checking part itself is uninteresting as it is sufficient to compare
each input word to those stored in a lexicon. Suggesting possible corrections
for unknown words requires more skills. Phonological reinterpretation can
be applied to single words in the process of finding correction proposals. In
this case, as the starting word is not part of the lexicon, by definition, a
phonetizer must be used to figure out the phonological form of the input
word. A phonetizer can be viewed as an expert system which contains the
grapheme-to-phoneme transcription rules of the language in use and can
thus assign a phonological string to an input word (Gaudinat and Goldman
1998, p. 140). Once the phonological transcription is achieved, the process is
the same as the one described in the light reinterpretation algorithm: there
is a dictionary look up through the phonetic entries and the corresponding
homophonous words are retrieved. Thus, an exact correction proposal can
be given for an unknown word which was spelled in a homophonous way to
the word desired. Moreover, if the dictionary lookup is capable of splitting
its input in several words, this technique also allows for good recuperation
of agglutinated words (see example (24) in footnote 5) which often receive
correction suggestions which have not much in common with the desired
string of letters in common spell checkers.

8The original input word must simply be replaced in the sentence analyzed with the
reinterpreted word.

3.2. PHONOLOGICAL REINTERPRETATION 85

3.2.6 Problematic issues
Latent consonants

One of the interesting problems linked to phonological reinterpretation is
the influence of words on one another within an utterance. Words do not
necessarily have the same phonological transcription taken in isolation or in
the context of a sentence. This is due in good part to liaison and elision
phenomena, and to latent consonants. Thus, language learners, for whom
word boundaries might not be as evident as it is for native speakers, might
spell a word as it is pronounced in context rather than in isolation. They
might also omit the last consonant of a word if it is latent. The dictionary
lookup procedure which retrieves words by their phonetic entries must thus
be able to account for these phenomena.

(28)a. * Cet un compromis.
This a compromise

b. C’est un compromis.
This is a compromise

The erroneous word in (28a), corrected in (28b), finds its phonetic tran-
scription in (29a). It can obviously be rewritten as the same word again. But
it can also be reinterpreted as other words, as demonstrated by examples
(29b) and (29c). Moreover, cet ending with a consonant, it is possible that
the word we are looking for ends with the same consonant, not pronounced
however when the word is taken outside of context. Thus, the standard
phonetic transcription of the corresponding word will not contain the final
consonant. It must however be entered in the lexicon as a latent consonant
used for liaison purposes (30a). Possible reinterpretations of this kind are
shown in examples (30b) and (30c).

(29)a. /set/

b. cette
this-feminine

c. sept
seven

(30)a. /se+t/

b. sait
knows

c. Clest
It is

86 CHAPTER 3. THEORY

Multi-words

There is also the question of run-on-words, or agglutination. In this case,
a single word must be transformed into several. This is also exemplified in
(28) where cet (this) is corrected by two words. The algorithm must thus
be able to find all the words and word combinations which correspond to a
given phonetic string.”

The reverse is also true. Sometimes a word is spelled in two words while
it should be only one.

(31)a. *Les avantages sont plus tét psychologiques.
The advantages are more early psychological.

b. Les avantages sont plutot psychologiques.
The advantages are rather psychological.

Being able to regroup words implies the application of the phonological
reinterpretation techniques to several words together, and most probably
in regrouping those words across partial analyses boundaries. Moreover, if
latent consonants exist as part of the words to reinterpret, the algorithm
must try liaison phenomena in addition to regrouping two words into one.
Thus, for the erroneous sequence plus tét in (31a), one must look up for
words with the phonetic transcriptions in (32a) to (32h).

(32)a. /ply/ + /to/
b. /ply/ + [tot/
c. /plyto/
d. /plytot/
e. /plys/ + [to/
f. /plys/ + /tot/
g- /plysto/

h. /plystot/

9Given that these compounded multi-words must be legal words (otherwise they would
have been detected by the spell checker), their actual number might be quite small. If
this proved to be the case, one could imagine setting up a list of those words and their
correspondence. Searching such a list might be more efficient that multi-word reinterpre-
tation.

3.2. PHONOLOGICAL REINTERPRETATION 87

With only two short phonetic sequences, which can form one or two
words, both sequences having a latent consonant, the number of possible
combinations of words to be retrieved reaches 23, that is 8 possibilities. Of
these, only some will find their equivalent in the lexicon. Moreover, some
phonetic sequences, such as (33a) can be transcribed into several possible
words (33b) and (33c):

(33)a. /to/

b. tot
early

c. tauz
rate

We can easily see that the level of ambiguity is high and that one should
limit the number of words that need to be reinterpreted together to prevent
a combinatorial explosion. In this example, only (32c) is the correct version
which can be retranscribed into plutét (rather).

High frequency errors

In French, there are also two pairs of especially problematic homophonous
words: a/a (has/to) and ou/ou (or/where). Only an accent, not phoneti-
caly realized, separates these couples of words which have different lexical
categories and meanings. Accents are often forgotten by language learners
and, in a lesser way, by native speakers as well. Moreover, because one
is drilled to think of these words as problematic, overcorrection sometimes
occurs, and accents are also present when they should not be. Thus, the
frequency in which these words are used erroneously is high. Mistakes with
these words can easily be caught by phonological reinterpretation. However,
the expense of phonological reinterpretation might be too high for such a
known and frequent mistake. Thus, for efficiency reasons, it might be more
interesting to treat these pairs of words in an ad hoc manner rather than
to use the technique specially designed to treat this kind of words. This
applies naturally to French for these two words, but similar groups of words
can certainly be found in most languages, like in example (34) for English.

(34) to — two — too

/tuz/

3.2.7 Variant

A possible variant to phonological reinterpretation as described so far is to
expand the search for homophones in the lexicon to near homophones or

88 CHAPTER 3. THEORY

close enough neighbors. By that, we understand words that sound much,
but not quite, like the original word. One must therefore introduce a dis-
tance measure between the phonological transcriptions of the words. Instead
of retrieving from the lexicon only the words with a distance of 0 (true ho-
mophones), one can retrieve all the words up to a certain threshold. This
enables close sounding words to be taken into account as well.

Obviously, using a distance metric allows many more words to be re-
trieved from the lexicon and thus increases the ambiguity level, giving rise
to more possible alternatives. Therefore, one might not want to be as per-
missive as that. A rough metric which computes the distance by counting
the number of changed phonemes might still be too strict, even if the al-
lowed distance is only of 1. There might be better, language dependent,
heuristics. In French, we might be able to isolate specific difficulties encoun-
tered by many language learners. For example, the difference between nasal
vowels is perceived with difficulty by many learners of French, which might
explain the authentic error in (35a), corrected in (35b).

(35)a. *Une langue histoire
/yn lag istwar/
A tongue story

b. Une longue histoire
/yn 16g istwar/
A long story

On the basis of example (35), one could consider all nasal vowels to have
the same value for phonological reinterpretation, or only /a/ and /6/, as well
as /1/ and /€/, to be interchangeable. Thus, we would not be using a distance
metric of 1, but tailor the extension of what is acceptable as homophonous
to specific cases we know raise problems with language learners. Similarly,
there are many ways to write the phonemes /e/ and /e/. They sound
quite close to one another to foreign ears, although they are minimal pairs
and differentiated by native speakers, depending on the specific dialect they
speak.

(36)a. *La langue et le moyen unificateur.
/la lag e loe mwajé ynifikatcer/
The language and the means unifying.

b. La langue est le moyen unificateur.
/la lag € loe mwajé ynifikatoer/
The language is the means unifying.

Both examples (35a) and (36a) have only minor phonological changes
compared to the correct sentences (35b) and (36b), respectively. The dis-
tance for the looked for word is only of 1, as only one phoneme was changed.

3.2. PHONOLOGICAL REINTERPRETATION 89

Thus, the correct word could be reinterpreted if we used a rough distance
of 1. However, we would also get many unwanted words, and it is probably
much better to limit the use of approximation for phonological reinterpre-
tation to a few specific cases, deciding which ones to treat for a particular
language based on corpora studies. For French, they should most probably
include differences in nasal vowels, in the openness of vowels, and of their
length.

3.2.8 Systems using elements of phonological reinterpreta-
tion

Elements of phonological reinterpretation have been expressed before and
used in spell and grammar checkers. However, to our knowledge, they have
not been gathered, or described, into a unified technique before.

Courtin, Dujardin, Kowarski, Genthial, and de Lima (1991) use phonet-
ics at the lexical level. For unknown words, they compute “all the possible
phonetic transcriptions associated with the string” (Courtin et al. 1991,
p. 159). From these, they generate all the corresponding written forms.
They filter the list by checking it with a lexicon and in retaining only le-
gal words. Thus, their system uses phonetics to retrieve correctly spelled
words. However, it does not make use of the phonetic information which can
be stored into a dictionary entry. They rely only on a complete grapheme-
to-phoneme bidirectional correspondence.

Vosse (1992), in his spell and morpho-syntactic corrector for Dutch, pro-
poses to parse sentences with all possible correct entries for a misspelled
word. Only the entries resulting in complete analyses are retained as possi-
ble corrections in the sentence context. “In order to handle errors caused by
homophones as well, this mechanism needs to be extended. When dealing
with legal words it should use their syntactic categories plus the syntactic
categories of all possible homophones, plus — to be on the safe side — ev-
ery alternative suggested by the spelling corrector” (Vosse 1992, p. 114).10
While this might be rather extreme given the number of alternative paths
that will crop up during parsing, it nonetheless brings to the forefront two
very important concepts. (i) One can retrieve the information contained in
words which are homophones to those of the sentence, and parse the sen-
tence with this new lexical information as well. (ii) The parser can act as
filter to the proposed correction alternatives.

The Microsoft® Word 97 English grammar checker uses these two con-
cepts as well. This system does not use phonology directly, but a list of
pairs of words which are frequently taken one for the other has been built
up. “When a word that is in this file appears in text, the analysis system

0Unfortunately, Vosse (1992) does not explain in the cited article how his system is
able to retrieve homophones and their lexical categories.

90 CHAPTER 3. THEORY

behaves as if the other word of the pair also appears at that same position
in the text. Because of the bottom-up, multipath nature of the parsing algo-
rithm, typically, just one or the other word of the pair will result in a parse.
If the word that results in a parse is not the word in the text, but rather the
other one, then that other word is suggested to the user as a substitute for
the word that was typed” (Heidorn 2000, p. 193). All the post-processing
devices needed after phonological reinterpretation are used in this system.
It is only lacking phonological reinterpretation itself, which would make it
more general.

Courtin et al. (1991) and Vosse (1992) thus laid the foundations for
phonological reinterpretation about ten years ago. They do not seem to
have had many followers, apart from (Heidorn 2000) nearly a decade later
who made use of the idea of parsing with substitute words and filtering the
alternatives with parsing. When phonology is used, it seems to be only for
the lexical level of checking. Using homophones or or a list of near words
as alternatives during parsing does not seem to be linked to phonological
reinterpretation at the syntactic level. Moreover, we do not know of other
literature which would indicate further progress towards a more complete
system working along the principles of phonological reinterpretation as we
described it in this section.

3.2.9 Remarks

Heavy phonological reinterpretation will prove most certainly too difficult to
implement, given the complex components it uses. Its implementation and
use is probably not worth the effort and the resources that it would require,
when considering the range of error types which would be diagnosed.

Although phonological reinterpretation covers only a relatively small
range of error types, its use is interesting in the CALL context because
it is able to diagnose error types made by language learners and which other
techniques, often more widely used, are not diagnosing properly.

Because phonological reinterpretation can, by definition, only diagnose
errors which do not produce a sound change (with the exception of the vari-
ant described in 3.2.7), it is incapable of diagnosing many other error types
that language learners are likely to commit. Thus, phonological reinterpre-
tation is better used in conjunction with other diagnosis techniques. It can
therefore specialize in what it is good for, that is, homophones and agglu-
tination phenomena, and let techniques better suited for other error types
deal with them.

3.3 Chunk Reinterpretation

When a parser is not able to reach a full analysis for a given sentence, it
can provide, depending on its parsing algorithm, partial analyses or chunks.

3.3. CHUNK REINTERPRETATION 91

Put side by side, these chunks cover the whole sentence. The basic idea
underlying chunk reinterpretation is to examine chunks in order to discover
why they could not combine into a full analysis. We assume that the reason
is directly linked to grammar errors.

This section is organized as follows. We start by defining chunks in
section 3.3.1. In section 3.3.2, we lay the foundations of chunk reinterpreta-
tion. We state the error types which can be diagnosed with this technique
in section 3.3.3. Section 3.3.4 exposes the prerequisites for the technique
and section 3.3.5 the algorithm. We then propose a schematic rule set in
section 3.3.6. Advantages (3.3.7) and problematic issues (3.3.8) of chunk
reinterpretation are then discussed. We continue by presenting a possible
variant to the technique in section 3.3.9, and conclude with some remarks
in section 3.3.10.

3.3.1 Definition of ‘chunk’

‘Chunks’ and ‘partial analyses’ are synonym words and are used interchange-
ably in this section. Although we can have a rather good intuition of what
they are, we must define them more formally.

One of the goals of syntactic parsing is to provide a syntactic analysis of
the input sentence. It is sometimes not possible to compute an analysis that
covers the whole sentence, either because the sentence is outside the bounds
of the parser or because it is ungrammatical. However, much analysis work
has been done over the sentence and pieces of it have been analyzed. Instead
of returning simply that the sentence has not been fully analyzed, a parser
can return the results of its work so far, that is, chunks of syntactic analysis
or partial analyses which do not cover the whole sentence.!!

Through non deterministic parsing,'> many partial analyses are cre-
ated. Not all are presented as the result of the unsuccessful parsing process.
Chunks are selected through several criteria. However, the only compulsory
one is that the chunks, put one after the other, must cover the whole sen-
tence. Other criteria are left to the parser’s implementation and are not
discussed here.

The size of these chunks may vary greatly. The smallest chunks must
cover at least one word. The longest can cover up to the whole sentence,
minus one word. Indeed, if the chunk covered the sentence entirely, it would
not be a chunk any more, but a full analysis. In the worst situation, the
parsing process provides as many chunks as there are words in the sentence.
In the best situation, only two chunks cover the whole sentence.

1A parse which does not lead to a full analysis creates many chunks of different sizes.
For efficiency reasons, they cannot all be examined. A selection of the best series of chunk
covering the whole sentence is made based on the chunks’ length.

'2Chunks may be provided by a deterministic parser as well.

92 CHAPTER 3. THEORY

3.3.2 Chunk reinterpretation

The principle behind chunk reinterpretation is that there must be a reason
why two chunks did not combine into a larger analysis. Assuming that
the parser coverage is large enough, the reason must be linked to some
ungrammaticality of the sentence. Break points between chunks are possible
error locations. By examining the chunks, two by two, one should be able
to provide a diagnosis for the detected errors.

One must be aware that not all chunk boundaries reveal syntactic errors.
Depending on the location and words bearing the error, a single error can
result in more than two chunks. In example (37), the number error between
the determiner and the noun prevents a complete analysis of the subject of
the sentence which therefore cannot attach to the tense phrase (TP). This
sentence composed of three words is thus analyzed as three chunks (37b),
while there is only one error in the sentence.

(37)a. *A cats slept.

b. [,al

[up €08]

(o [y] [aslept [1]

While there are some similarities between chunk reinterpretation and
parse fitting as described by Jensen, Heidorn, Miller, and Ravin (1983),'3
the two techniques are quite different. Instead of observing the chunks as we
propose to do in order to determine why they did not combine, Jensen et al.
(1983) “fit’ chunks into their most likely position into the parsed structure in
order to obtain a complete, if not fully grammatical, structure. Once all the
parts have been fitted, error detection rules are invoked to track syntactic
and stylistic errors.

3.3.3 Errors to be treated

Errors that can be treated by chunk reinterpretation are, a priori, all errors
which result in partial analyses or chunks. However, chunks by themselves
only detect potential error locations. They are not clear evidence of an error,
and they do not indicate the type of the error we are dealing with. This is
achieved through chunk reinterpretation rules. Thus, only error categories
for which rules have been devised receive a diagnosis. Moreover, chunk
reinterpretation tends to work better on local errors than on distant ones
because chunk boundaries are used as error locators.

13 A shorter version of this article can be found in (Jensen, Heidorn, Miller, and Ravin
1993).

3.3. CHUNK REINTERPRETATION 93

There are, nevertheless, some error categories which present themselves
as good candidates for chunk reinterpretation. These include agreement
in gender, number, and person, as well as verb complementation (38) and
‘auxiliary and past participle’ erroneous structures (39), as long as these
errors provoke partial analyses.

(38)a. *He gave a book at him.

b. He gave a book to him.

(39)a. *I1 & dormit longtemps.
He to slept-preterite a-long-time

b. 11 a dormi longtemps.
He has slept a-long-time.

Other error categories which can be treated by chunk reinterpretation
comprise errors which produce extra elements in the sentence, especially if
this extra element is isolated in a chunk of its own. By ‘extra elements’, one
means phrases which are not essential to the sentence and which are not in
their legitimate position. Thus, wrong ordering of adverbs (40a) is an ideal
candidate, as well as word doubling (40b).

(40)a. *I tomorrow will go.

b. *I have given it to to you

(41)a. T will go.

b. T have given it to you.

In each of the sentences in (40), one can omit the extraneous word to
render the sentence grammatical, as in (41).

Punctuation errors, the missing comma in (42a), which are frequent in
language learner productions, may also cause partial analyses (42b). Partial
analyses of specific syntactic categories, juxtaposed side by side, may be an
interesting indication.

(42)a. *II pleut allons au cinéma.
it is-raining let’s-go to-the movie-theater

b. [TP Il pleut |

allons au cinéma.
TP

94 CHAPTER 3. THEORY

3.3.4 Prerequisites

The essential prerequisite of the chunk reinterpretation technique is a parser
which outputs partial analyses when it does not find a complete analysis for
a given sentence. As chunk reinterpretation is based only on one set of
partial analyses covering the whole sentence, the parser does not need to be
non deterministic. In case of non determinism, however, the chunk selection
process should hopefully provide the most likely partial analyses, although
it might be very difficult to decide which set of partial analyses is more likely
than the others.

The parser must also behave as a recognizer in order to produce partial
analyses only when a sentence is not grammatical. We have seen in example
(38) that a single error can create more than one break in the analysis and,
thus, more that two chunks. Therefore, one cannot warrant in any case that
a particular break between two partial analyses is directly caused by an error.
However, every break between chunks must be treated as a possible error
location and chunk reinterpretation must be attempted. Breaks that are not
directly caused by an error require extra resources which could be better used
elsewhere. Therefore, the fewer breaks which are in fact false alarms, the
better for the reinterpretation process. The parser must provide analyses
which cover whole sentences and phrases as long as these are grammatical.

Moreover, a set of chunk reinterpretation rules is needed in order to try
the different reinterpretation possibilities. This is not really a prerequisite,
but rather an integral part of the technique.

3.3.5 Algorithm

When one looks for the reasons why two chunks ¢ and b did not combine
into a larger one, there are at least two possibilities which need to be taken
into account to locate the attachment point. a can be a specifier of b, or b
can be complement or adjunct of one of the elements of a. The first case
is relatively simple: the whole of a should have attached in the specifier
position of b. In the second case, the whole of b can attach to different non-
saturated elements of a, along the right edge of its tree structure. Depending
on the length of @, this might mean quite a long structure to examine with
many potential attachment points. However, most likely attachment points
are the right most node of a, the head of a, and the tensed verb (if there is
one) in a.

Error diagnosis is performed on potential attachment points through a
set of rules taking into account the attachment point category and features
as well as those of the attaching phrase.

Because there can be more than two chunks for a sentence, it is important
to repeat the process as many time as there are breaks between chunks in
order to diagnose all the errors of the sentence. However, even if some chunks

3.3. CHUNK REINTERPRETATION 95

remained isolated, if they cannot be attached to the main structure, and if
no error can be found to explain their isolation, it is still possible to provide
error diagnosis for the other chunks of the sentence.

Given a list [, containing the chunks (at least two) recuperated from
an unsuccessful parse covering the whole sentence, the algorithm for chunk
reinterpretation is the following.

1. Set the current element of [to the first element of the list.
2. If at least one other element follows the current element,
(a) retrieve the current element as a and the following one as b.
3. Else exit from procedure
4. For each possible attachment point between a and b do

(a) For each rule of the corresponding set

i. Activate the rule
ii. If the attachment is possible
A. Combine ¢ and b into new
B. Note the error according to the formalism in use
C. Replace a and b by new in the list [
D. Repeat from 1

5. The current element is moved one forward in the list [

6. Repeat from 2

Diagnosis is complete if the list [contains only one element at the end of
the process. If there are more than one element in /, then some errors could
not be diagnosed. Partial diagnosis can however be provided to the users.

This algorithm is very dependent on the rule set. It should permit to
reconstruct a full sentence structure while diagnosing syntactic errors, as
long as the structures of partial analyses do not need to be modified during
the combination process.

By reentering the algorithm from the start each time a combination has
succeeded and by replacing the elements by their combined version, it should
be possible to cover all the chunk boundaries after recombination, thus al-
lowing multiple attachments from right to left. The sentence in example
(38) could thus receive a full analysis in the end.

96 CHAPTER 3. THEORY

3.3.6 Rule set

The rule set must be ordered to reflect the hierarchical structure of language.
When one looks at a chunk, one can consider the phrase most local to the
break point, the whole chunk or intermediate phrases. Rules to apply to
these different parts are not the same and may contradict themselves. Thus
it is important to set an order in which the rules are activated.

To compile the rule set described in this section, we examined an extract
of the FRIDA learner corpus'* parsed with the Fips parser (see section 4.1
for a description of the Fips parser). The rules are therefore designed for
French. The schematic rule set can be divided into six groups which should
apply in the given order.

e Word doubling (40Db)

Agreement (37)

Auxiliary and past participle (39a)

Verb selection (38a)
Adverb order (40c)

Punctuation (42)

Word doubling

Rule 1 If the rightmost word of the left chunk and the leftmost word of the
right chunk are identical, then issue a word redundancy error message.

Agreement

Rule 2 If the rightmost word of the left chunk is a determiner and the left
chunk starts with a noun phrase, and if they do not agree, then issue
an agreement error message.

Rule 3 If the left chunk ends with an adjective phrase with the prenominal
feature and the right chunk starts with a noun phrase (or if the left
chunk ends with a noun phrase and the right chunk starts with an
adjective phrase with the postnominal feature) and if they do not
agree, then issue an agreement error message.

Rule 4 If there is a noun phrase at the end of the left chunk and the right
chunk is a subject-less sentence, and if the noun phrase and the tensed
verb do not agree, then issue an agreement error message.

"The FRIDA corpus is collected by the Centre for English Corpus Linguistics, Uni-
versité Catholiqgue de Louvain, Belgium. See section 4.2.1 for a description of the FRIDA
corpus and its web site (last accessed on April 8, 2003):
http://www.fltr.ucl.ac.be/fltr /germ/etan/cecl/Cecl-Projects/Frida/gateway.htm

3.3. CHUNK REINTERPRETATION 97

Auxiliary and past participle

Rule 5 If the rightmost word of the left chunk is an auxiliary and the head
of the right chunk is a past participle, and if the auxiliary is not the
right one for the given verb, then issue an auxiliary error message.

Rule 6 If the rightmost word of the left chunk is an auxiliary and the head
of the right chunk is a verb not in the past participle, then issue a
tense error message.

Rule 7 If the rightmost word of the left chunk is ‘4’ and the head of the
right chunk is a verb not in the infinitive, then issue a homophone
error message on ‘a’ and a tense error message on the verb.

Verb selection

Rule 8 If the left chunk is a subjectless sentence, the right chunk is noun
phrase, and the tensed verb in the left chunk and the noun phrase
agree, then issue an inversion warning message.

Rule 9 If the left chunk ends with a verb phrase whose verb is not satu-
rated (i.e. it does not have all its complements) and the right chunk
starts with a noun phrase or a preposition phrase, then issue a verb
complementation error message.

Adverb order

Rule 10 If the left chunk or the right chunk is an adverbial phrase and if
there are other chunks on both sides of it, then issue an adverb order
error message.

Punctuation

Rule 11 If the left chunk is a noun phrase or a preposition phrase and the
right chunk is a sentence with a subject, and if they are not separated
by a punctuation mark, then issue a punctuation warning message.

Rule 12 If the left and the right chunks are complete sentences, and they
are not separated by a punctuation mark, then issue a punctuation
warning message.

The rules sketched here need to be refined depending on the specific
parser they are used with. Warnings are used instead of error messages
in rules 8, 11, and 12 because subject-verb inversion and punctuation are
stylistic issues for which strict rules may not account for all cases and con-
texts. The size of the rule set should also be expanded in order to include
more error types, depending on which error types one wishes to diagnose
and, possibly, the other techniques involved in an overall diagnosis system.

98 CHAPTER 3. THEORY

3.3.7 Advantages

Chunk reinterpretation has the great advantage of not modifying the parser
itself, as it works on its output only. This tremendously simplifies the imple-
mentation work as everything which is added can be worked upon separately
from the parser itself. For this very reason, the chunk reinterpretation tech-
nique is particularly well suited for use with an existing parser that one does
not want to, or cannot, modify as one wishes.

Moreover, overgeneration of structures is kept completely at bay as the
parser does not provide, and does not try to provide, any more analyses due
to the error diagnosis technique. Thus, parsing time itself remains the same
and only reinterpretation time, which depends on the number of chunks,
needs to be added with chunk reinterpretation.

Finally, the parser does not need to be non deterministic, on the contrary
to what is preferred with constraint relaxation and phonological reinterpre-
tation. A deterministic parser would also be able to provide partial analyses
for an ungrammatical sentence and it is all that is needed for chunk rein-
terpretation. Of course, non determinism provides multiple series of partial
analyses to choose from and, in the end, a better set of chunks may be
provided with a non deterministic parser.

3.3.8 Problematic issues

Chunk reinterpretation is not ideal in many respects. It implies redoing
much of the parsing work. There is, first of all, the question of locating
possible chunk attachment points, which implies going through pieces of
syntactic structures. Once a possible attachment point is located, conditions
need to be checked to verify if there is a mismatch of features which prevents
attachment in the particular case. These conditions must first have been
checked and failed during the parsing process in order for the sentence to
have been rejected. If an error is located, then the two chunks are combined
in much the same way as the parser would have done it. As we can see,
there is much redundancy between work accomplished by the parser and by
the chunk reinterpretation technique.

Establishing a good set of chunk reinterpretation rules is far from ob-
vious. The rules themselves are by necessity very dependent on the parser
used and on the chunks it provides. It is thus difficult to generalize this set
of rules to make it usable with other parsers. Moreover, as with any rule
set, it is difficult to ensure that all possibilities have been taken into account
and that the errors detected match those described in the specifications.

Furthermore, because one does not need to modify the parser itself with
the chunk reinterpretation technique, it is even more important than with
the other techniques that the parser acts as a true recognizer. If it accepts
ungrammatical sentences and does not provide chunks for them, one is left

3.3. CHUNK REINTERPRETATION 99

without the essential raw material on which the whole technique is built.

3.3.9 Variant

A possible variant to chunk reinterpretation as presented in this section so
far would be to diagnose errors without necessarily rebuilding a complete
sentence structure. This would simplify the technique while still providing
error diagnosis. In particular, there might be occasions where chunk reinter-
pretation would force a modification of the syntactic structure of a chunk.
This seems particularly difficult to realize, but nevertheless necessary if one
wishes to combine the chunks. Moreover, one would not be able to perform
multiple diagnoses from right to left, as proposed in the algorithm (3.3.5),
because the chunks would not be modified.

This would raise the problem of not proposing a complete syntactic struc-
ture for ungrammatical sentences. We have said before (sections 3.1.8) that
full analyses were useful to the users for other NLP tools, such as a sen-
tence structure viewer, which could ideally combine with the output of the
diagnosis system to provide information on the sentence structure.

The algorithm proposed above (3.3.5) would have to be modified along
the following lines.

1. Set the current element of [to the first element of the list.

2. If there is at least one other element besides the current element,
(a) retrieve the current element as a and the following as b.

3. Else exit from procedure

4. For each possible attachment point between a and b, activate the cor-
responding set of rules

5. The current element is moved one forward in the list [

6. Repeat from 2

3.3.10 Remarks

Chunk reinterpretation is a technique very dependent on the parser which
provides the chunks. Thus, it is difficult to make generalizations and a
particular rule set must be defined for each application of the technique.
The rule set must be carefully designed to be precise enough and to cover
the relevant error types and chunk configurations with a minimum of rules
in order to restrain processing time.

Rebuilding the full syntactic analysis from its chunks is a complex mat-
ter as soon as one of the chunk internal structure needs to be modified. This
can happen for example with words which have potentially several lexical

100 CHAPTER 3. THEORY

categories, with verbs whether they are tensed or not, and with some homo-
phones. In all these configurations, chunk re-combination is not advisable as
changing one part of a chunk structure may imply changing the whole struc-
ture. Therefore, rebuilding the sentence structure, as proposed in the main
version, is perhaps not advisable and one should consider using the variant,
proposed in section 3.3.9, where the full analysis is not reconstructed.

As it is very difficult to make sure of the coverage of a technique using a
set of rules, chunk reinterpretation is better used in combination with other
techniques. It is easier to design rules for a specific, restrained set of error
types and let the other types, not covered by chunk reinterpretation, be
treated by more adequate techniques. As chunk reinterpretation does not
necessarily provide a full sentence analysis, it should be used after techniques
which do so because, if we reach a full analysis with them, there is no need
for chunk reinterpretation and one can use the complete analysis in other
applications.

3.4 Scoring

A non deterministic parser provides all possible analyses for a given input.
The use of constraint relaxation or of phonological reinterpretation has the
effect of increasing the number of possible analyses. “The need for a method
of ranking multiple parses in order to select the best one (...) is acutely
felt” (Heidorn 1993, p. 49). However, selecting the best analysis is not an
easy task. We must first define what we mean by a ‘best analysis’. In
the CALL context, and as Felshin states it, “the goal of recognition is to
produce the most likely interpretation(s) of the input, not the most correct
interpretation(s)” (Felshin 1995, p. 263).

One must find the right balance between promoting sentence analyses
in which no error has been detected, but which are unlikely given the lan-
guage learner profile and the complexity of the analysis, and promoting more
likely analyses containing some ungrammaticality. It is important to find
grammatical analyses for learners’ sentences so as not to discourage them by
presenting them with error messages when their input is correct. However,
learners often produce errors and so one should not bar out all structures
containing errors, either. One must thus find a selection metric taking into
account the likelihood of a specific sentence analysis, the errors detected in
the sentence, and the rarity of its lexical items.

We briefly discuss methods commonly used to assess syntactic likelihood
in regular syntactic parse in section 3.4.1. We then propose a method us-
ing detected error frequencies in section 3.4.2, and continue with a second
proposal employing word frequencies in section 3.4.3. We conclude by ex-
plaining how to combine multiple scores in section 3.4.4.

3.4. SCORING 101

3.4.1 Syntactic likelihood

Different syntactic analyses for a given sentence are not all as likely. More-
over, some structures can be found more frequently in specific text types.
Indeed, it seems logical that the kinds of structures to be found in a newspa-
per or in a children’s book are not the same. Likewise, sentence structures
produced by language learners do not necessarily correspond to other kinds
of data. Depending on their end application, non deterministic parsers, ca-
pable of providing several analyses for a single sentence, must often propose
only one analysis. Parsers must therefore select the most likely alternative
analysis. Mechanisms for ranking alternatives are thus often part of non
deterministic parsers. These mechanisms can be based on heuristics coming
from long practice or derived from corpus studies, or they can use statistical
methods.

The complexity of a sentence structure, from which a score is frequently
derived in order to rank alternatives, is composed of the complexity of its
subparts and of their number. Thus, each phrase can have its own score,
which is combined to the score of the phrase it attaches to. Specific kinds
of attachment can be rewarded over others, which would be penalized, in
order to promote specific, more likely structures over others.

Statistical methods require very large tagged corpora over which bigram
(or n-gram) frequencies are computed and stored for later use. Presented
with a sentence, one computes its likelihood by combining the bigram fre-
quencies for every bigram of the sentence. Multiplication is often used as a
combination method. The higher score represents the most likely sentence.
Results necessarily depend on the adequation of the training corpus to the
input sentences.!'®

Ranking alternative structures is a necessity in most non deterministic
parsers, independently of its status as an error diagnosis system. Techniques
to do so are thus not part of this dissertation. Moreover, ranking procedures
are very often designed in complete symbiosis with the parser and nothing
needs to be modified for CALL. In fact, the heuristics can be so imbedded in
the system that only a full rewriting of the system would permit to modify
them in a coherent manner. Obviously, using learner corpora to extract the
heuristics or the statistical data capable of selecting more likely structures
for the sentences produced by learners would be a plus. There are however
other means to do this, as attested by the next two subsections (3.4.2 and
3.4.3), without altering or modifying the already present sentence analysis

5More linguistically interesting statistical methods could make use not only of the
lexical categories of the words, but also of information on the syntactic structures proposed
by the parser. Statistical scoring methods are however outside the bounds of the present
work. For a reference on statistical parsing, see (Manning and Schiitze 1999) and more
particularly chapter 12 (p. 407 ff.) for methods for “probabilities for choosing between
parses” (Manning and Schiitze 1999, p. 409).

102 CHAPTER 3. THEORY
ranking procedures.

3.4.2 Detected error frequencies

While heuristics on the sentence structure and statistical means can be im-
plemented for all kinds of parsers, basing a metric on detected errors can
only be part of a diagnosis system. We want to promote grammatical sen-
tences over ungrammatical ones because, if language learners tend to make
more mistakes than native speakers, they still do produce many grammatical
sentences and it would be a pity not to find those. “The degree of grammat-
icalness is a measure of the remoteness of an utterance from the generated
set of perfectly well-formed sentences” (Chomsky 1964, p. 387). One could
consider that each detected error brings a penalty to the sentence analysis.
The sum of the errors of an analysis would be its score. The analysis with
the fewest errors would be selected. There are three main drawbacks to this
view point. (i) Language learners tend to make mistakes and sentence anal-
yses containing some errors may be more likely than error-free structures.
(ii) The size of the sentence is a factor that should not be forgotten as the
likelihood of errors increases with longer sentences. (iii) Not all error types
have the same frequency and this should also be taken into account.

Because it is likely that sentences contain errors in the CALL context,
one can wonder whether all errors should be penalized or whether a set num-
ber of errors should go unpenalized. However, this would stop promoting
completely grammatical sentences over slightly ungrammatical ones. More-
over, the more errors in the sentence analysis, the less likely it becomes.
Thus, instead of using the same penalty for the first or the tenth error in a
sentence analysis, there should be, at least, a non linear progression of the
penalty rate.

Taking the size of the sentence into account is perhaps the easiest aspect
of the metric. The size of a sentence can be assessed by the number of
words it contains. Thus, the number of errors detected can be normalized
by the size of the sentence, by simply dividing it by the number of words.
Therefore, a short sentence containing one error would have the same partial
score as a sentence twice as long containing two errors.

Error categories have different frequencies. Thus, errors in the choice of
the auxiliary are much less frequent than gender errors.'® We use this knowl-
edge to tailor our analysis selection metric based on errors by incorporating
the relative frequency of errors categories within our formula. This implies
the availability of an error tagged corpus to derive the correct frequencies, in
order not to use handmade heuristics based on assumptions which could re-
veal faulty. Because more frequent errors should be less penalized, we need
an inverted metric. One proposal would be to compute a kind of reverse

'5This knowledge is derived from analyses of the FRIDA corpus (4.2.1).

3.4. SCORING 103

percentage of the error. Typically, this would be (100 — n), where n is the
percentage of the particular error category. However, this would give scores
for all errors between 90 and 100 as an analysis of the FRIDA corpus (4.2.1)
gives all error category percentages between 0 and 10. Thus, the difference
between two error categories would be relatively small. In order to circum-
vent this problem, we propose to use 10 instead of 100 in the formula, which
would then become (10 — n). In this way, the scores would vary between 0
and 10, thus greatly favoring frequent errors over rare ones.

In order to combine the three elements of the metric mentioned above,
we propose the following formula where e corresponds to the errors in the
sentence, |e| being the number of errors. f is a function returning the
frequency in percent of a particular error category. |w| is the number of
words in the sentence.

lef?

“JFE)

2 (10 - f(e)

jw]

(1+ %) ensures that a great number of errors is less likely than a small
number. Squaring the number of errors ensures a non linear progression.
The square progression in tempered by the 1—10 factor, and the addition of
1 prevents a null result. Division by |w|, the number of words, ensures
normalization. Finally, (10— f(e;)) takes into account the frequency of error

categories. In this optic, the higher the score, the less likely the structure.

3.4.3 Word frequencies

To evaluate the likelihood of a given analysis, one can also take word fre-
quencies into account. When there are several possible analyses for a given
input, it often happens that some ambiguous words are used with different
meanings and/or lexical categories. Assessing the meaning of a polysemous
word in context is far beyond the scope of this dissertation. Each particular
analysis, however, must have selected only one lexical category per word.
It is thus much easier to use lexical categories to separate homographs. If
several lexical categories can fit within the syntactic structure, then different
analyses are provided by non deterministic parsers.

We can try to evaluate the likelihood of a specific analysis against another
one by looking at the relative frequency of the individual words used in
the sentence, discriminating them by their lexical category. In its simplest
version, the metric adds all the frequencies of the word-category pairs for
each sentence structure version. The syntactic structure with the highest
result is considered the most likely.

(43)a. J’ai vu le probléme.

b. [TP [Dpj’] [Tai [vpvu [Dple [Npprobléme] 111]
I have seen the problem.

104 CHAPTER 3. THEORY

vu [le [g probleme]]]]7]]

" Lpp [ppd'] [58d [yp [pgup Lpp ¥ [pp

I have in-view-of the problem.

In example (43), the parser provides two different analyses for the sen-
tence. The first analysis, given in (43b), is much more likely than the second,
presented in (43c). We can discriminate between the two and choose (43b)
by adding word frequencies according to lexical category for each word of
the sentence. As in this particular case only the word vu (see/in-view-of)
is ambiguous for lexical category, it will be the only discriminating element.
Corpora studies tell us, but it is also obvious for native speakers of French,
that vu as a verb is much more frequent than as a preposition. Thus, (43b)
receives a higher score than (43c) and is chosen as the best analysis.

Word frequencies depend on the corpus from which they were extracted.
It is important to use, as much as possible, a corpus representative of the
users of the system. Moreover, the larger the corpus, the better for the
reliability of the frequencies. At first sight, one could propose to use a
learner corpus for this task, as it would correspond to the users exactly.
However, one does not want to use an error-full corpus, in order to avoid
introducing non-word frequencies into the database. Moreover, the corpus
needs to be tagged for parts of speech (or lexical categories) which is a
very tedious work to do by hand. It can be done relatively reliably by a
parser/tagger, but only if the input is grammatically correct. As this is not
likely to be the case with learner corpora, it proves uninteresting to extract
word frequencies from learner corpora without manually correcting these
corpora. Thus, a corpus containing only grammatical sentences made of
words from a fundamental lexicon seems more appropriate. A POS tagger
will be able to establish the lexical categories of the words more easily. One
could argue that some words will not appear in a fundamental lexicon. But,
given the CALL context, this should not be too much of an issue, especially
if one considers that a word not included in the fundamental lexicon is, by
definition, rarer than any of the words included in it. Words not included
in the corpus, and thus in the frequency lexicon, could simply receive a
frequency value of 0, or even a negative number if one wanted to penalize
them more heavily.

We have written so far about word frequencies without differentiating
between inflected word forms and lexemes.!” Frequencies can be calculated
for both and thus both can be used in a metric for selecting the best analysis
produced by a parser. However, results using inflected word frequencies or
lexeme frequencies are not necessarily identical.

Let us note, first of all, that it is not always possible to discriminate
between two analyses using only inflected word frequencies.

17A lexeme regroups all inflected word forms of a given word. A lexeme is often repre-
sented by the canonic form of the word, i.e. the infinitive for a verb.

3.4. SCORING 105

(44)a. Le fils de la tisserande.

b. *[le [fils [_de [__la |
DP NP PP DP NP
the-singular threads of the weaver

Number error between /e and fils.

tisserande | |]]]

C. le | up I8 [op € [op 12 [yp Hisserande 11111

[DP
the son of the weaver

In example (44), the sentence has two readings, an ungrammatical one
(44b) and a grammatical one (44c). As in both analyses fils (threads/son)
bears the lexical category ‘noun’, looking up the frequency of the inflected
word form fils returns only one value and it is impossible to tell whether
we are dealing with a ‘thread’ in the plural, or a ‘son’. However, if we use
lexeme frequencies, we must consider the lexemes fil (thread) and fils (son)
which almost certainly do not have the same frequency. Thus, basing oneself
on lexeme frequencies alone, and fils being more frequent, we select example
(44c) as the best analysis. By chance, it corresponds, in this particular case,
to the error-free reading.

Using lexeme frequencies instead of inflected word frequencies is also a
manner to reduce difficulties linked to data not appearing in the corpus from
which the frequencies were extracted. Most lexemes regroup several inflected
words, so that inflected words which are not part of the initial corpus can
find themselves covered by the lexemes from the same corpus. Thus, the
problem of the unavoidable scarcity of the input data is somewhat reduced
by the use of lexeme frequencies.

There might be cases, however, where using lexeme frequencies over
inflected word frequencies is a disadvantage. Let us imagine the case of
an inflected word which can belong to two (or more) lexical categories, say
verb and noun. It is possible that the verb lexeme is much more frequent
than the noun lexeme, in which case the verb reading would be selected
over the noun reading when lexeme frequencies are used. It may happen,
nevertheless, that the frequency of the specific form of the inflected verb is
much less frequent than its lexeme. It might even be less frequent than the
noun reading which is subdivided into only two inflected forms. joues (play-
2nd-singular/cheeks) is a perfect example. Its verb lexeme, jouer (play),
has a frequency of 505,'® while the noun lexeme (cheek) has a frequency of
85. However, the second person singular form of the verb is much less used
(frequency of 0) and certainly less frequently than the noun joues (cheeks) in
its plural form (frequency of 26). We would thus favor the opposite reading
by using either lexeme or inflected word frequencies.

18The numbers come from the frequencies assigned to each word form and lexeme in
the Fips lexicon database.

106 CHAPTER 3. THEORY

Combining inflected forms and lexeme frequencies, by simply adding
both, for example, might be an interesting solution, especially if both fre-
quency tables are extracted from the same corpus.!? Moreover, using lexeme
frequencies can help selecting the appropriate lexeme when there are several
lexemes of the same lexical category, such as for verbs with different sub-
categorization frames. In practice, using both types of frequencies, or only
one, and which one, depends on the corpus available and on what can be
extracted from it given the tools one disposes of, or on whatever frequency
lexicons are available.

3.4.4 Combining the scores

To form a complete analysis selection metric, one must combine scores com-
ing from at least three origins. One must normalize the scores in order for
their values to be in the same range when they provide the same judgement.
One could compute the average score of each component of the metric on
the same set of sentences, and divide the individual results by this average.
Combining the normalized scores by adding them would not work because,
as we have described it above, low scores for error frequencies are good,
while high scores are preferred for word frequencies. Syntactic likelihood
scores depend on the parser used. We propose adding partial scores for
which high values are preferred (word frequencies and syntactic likelihood)
and subtracting those for which low values are needed (error frequencies).
Only experiments could tell whether some weights on individual scores are
needed, or if each component of the final metric has the same importance.

3.5 Combining techniques

Having several techniques for syntactic error diagnosis at disposal is an ad-
vantage only if the results from these different techniques can be employed
in a coherent manner. Results provided by different techniques can converge
or diverge on the diagnosis of particular errors. One must combine the re-
sults in order to reinforce converging diagnosis hypotheses and to be more
careful with diverging results to minimize overflagging.

Several ways to combine diagnosis techniques and to manage their results
are proposed below. We detail an approach in which each technique is
independent from the others in section 3.5.1. We then discuss a cascade
activation of the diagnosis techniques in section 3.5.2. We finally propose
to choose the most relevant technique to be applied through heuristics in
section 3.5.3. We conclude with some remarks (3.5.4).

190Otherwise, one must be careful to use only relative frequencies to account for a possible
difference in corpus length.

3.5. COMBINING TECHNIQUES 107

3.5.1 Independent approach

The independent approach makes reference to all technique combinations
in which diagnosis techniques do not depend on each other to be activated.
Thus, in this approach, the techniques can be activated in any order. More-
over, they can be activated in a sequential or a parallel manner. This should
have no influence on the final diagnosis result as one combines results from
all the techniques together.

For this approach, one must manage results coming from different sources.
These results can converge, that is, point all to the same error in the same
location, or diverge on the presence of an error or on its category. Converg-
ing results on all techniques reinforce the diagnosis. Diverging results must
be taken more carefully.

We use the location of an error as a basis to state the diverging possibil-
ities. We consider that we have four groups of diagnosis techniques. Group
1 diagnosis techniques have detected an error of a specific category at a
specific location. Group 2 techniques are concerned by the error category
but have not found any error at that location. Group 3 techniques, also
concerned by the error category, have found an error at the location, but it
is of a different type. Group 4 techniques cannot treat errors of the specific
category and are thus not taken into account for the particular error.

The possibilities, excluding group 4 techniques, are summarized in Ta-
ble 3.1.

Table 3.1: Combining techniques

Situation ‘ Group 1 ‘ Group 2 ‘ Group 3 ‘ Result
1 Error located | No error found | Other category | Warning
2 Error located | No error found | Group empty Warning
3 Error located | Group empty | Other category | Warning
4 Error located | Group empty Group empty Error

Situation 1, where an error of a given type was detected only by some
techniques, other techniques either not detecting any error or detecting er-
rors of other categories at that location, produces a warning message indi-
cating that there is a possible error at the location. The category of the
error is unsure and the list of categories detected by techniques in groups 1
and 3 are listed.

Situation 2, where an error of a given type was detected only by some
techniques, produces a warning as to whether there is indeed an error at the
location. The error category is the one indicated by group 1 techniques.

Situation 3, where an error of a given type was detected only by some
techniques, other techniques detecting errors of other categories at that lo-
cation, produces a warning explaining that the error at the location is of

108 CHAPTER 3. THEORY

different possible categories. The category list is provided by techniques
from groups 1 and 3.

Situation 4 is the clearest. All indications are in favor of the same error
category at the same location. The diagnosis is reinforced and an error
message is output.

If warnings are not a possible option of the diagnosis system, instead
of marking all possible errors which would risk increasing the rate of over-
flagging, one could indicate only errors for which group 1 represents the
majority of the concerned techniques. That is, the number of techniques in
group 1 must be at least as great as the number of techniques in groups 2
and 3. When dealing with only three techniques, as described in this dis-
sertation, it comes to flagging errors in situation 2 if group 2 contains only
one technique, in situation 3 if group 3 contains only one technique, in all
the cases in situation 4, and never in situation 1.

Another possibility to combine results from different techniques is to
decide that each technique is specialized for a specific set of error categories
and that these sets are mutually exclusive. Thus, combining results from
the different techniques simply means putting together all the diagnoses.

3.5.2 Cascade approach

The cascade approach is a sequential method in which techniques are acti-
vated one after the other depending on the results obtained by the previous
technique. We must define the kind of results which activates the following
technique and the order in which techniques must be activated.

A possible reason for a technique to be activated is if the preceding
technique was not able to detect any error. It is the cue to continue looking
for errors with other techniques, especially if one has the means to know
in advance that the sentence is not grammatical, for example if it was not
recognized by the parser in its strictest configuration.

One could also consider that the next technique should be activated
if the previous one has not provided a full analysis of the sentence under
treatment. This obviously presupposes that the previous technique can and
does provide a full analysis if it has been able to detect all the errors present
in a given sentence. If this option is selected, then combining different
results is also an issue and can be resolved in the manner described for the
independent approach in section 3.5.1.

Because it is possible that not all techniques are activated for each sen-
tence, the techniques must be ordered in a specific manner. To do this, and
because not all techniques detect all error categories, one should classify
the error categories by the priority in which they should be detected. This
priority may be derived from learner corpus analysis. Then, the techniques
can be ordered according to the number of priority error categories they are
built to detect. This would enable the full system to detect the most impor-

3.6. CONCLUSION 109

tant errors with the first technique, thus perhaps achieving a full analysis by
activating only one diagnosis technique and therefore minimizing processing
time.

3.5.3 Heuristic approach

The heuristic approach is based on the fact that all three techniques de-
scribed in this chapter can start by using a parser as a recognizer to filter
out grammatical sentences which do not need to undergo error detection.
Only if partial analyses are produced does one start the error detection
process. Information can be gathered from the partial analyses to enable
heuristics to point us to the most interesting diagnosis technique to be used.
Only one technique would be selected by these heuristics, thus avoiding the
difficulties of managing diverging results.

The advantage of the heuristic approach is that only one diagnosis tech-
nique is ever activated. This reduces diagnosis processing time. Moreover,
the technique selected should, a priori, be the best suited to detect error
categories present in the sentence, given the fact that the heuristics for
technique selection take into account the information extracted from partial
analyses of the sentence. Disadvantages of this approach include the com-
plexity of deciding which particular technique to use in a given situation and
the possibility that fewer errors will be detected because only one technique
is used.

3.5.4 Remarks

We favor the cascade approach over the other two. The cascade approach
seems much easier to implement than the heuristics approach for which
it is unclear exactly what is the pertinent information which needs to be
extracted from the partial analyses in order to select the relevant diagnosis
technique, or how to extract this information. Compared to the independent
approach, we hope for a decrease in diagnosis processing time with the
cascade approach, as not all techniques will be activated on all sentences.
Moreover, if one cascades to the next technique only when a full analysis has
not been reached, new diagnoses should reflect only errors undetected so far
(and located at the boundaries of partial analyses). Therefore, combining
results from different techniques should be limited to putting together all
the separate diagnoses obtained from the cascaded diagnosis techniques.

3.6 Conclusion

We have described three error diagnosis techniques in this chapter. They
have varying advantages and disadvantages, depending partly on the parser
they are implemented with. They do not cover the same ranges of error

110 CHAPTER 3. THEORY

types. It seems important to compare and contrast them to evaluate which
is the most adequate technique given a specific context and how to use them
in general configurations. Table 3.2 gives a general overview of the different
error types which can be detected by the three error diagnosis techniques. A
‘4’ indicates that the technique is appropriate, a ‘0’ shows a neutral position,
and a ‘-’ states that the techniques is not adequate for the particular error
type. The error types are essentially drawn from the typologies established
on the FRIDA corpus (4.2.1).

Table 3.2: Comparison of the error diagnosis techniques
Constraint | Phonological Chunk
relaxation | reinterpretation | reinterpretation

Gender + 0 +
Number + 0 +
Person + 0 +
Punctuation - 0 0
Word order 0 - 0
Choice of auxiliary 0 +
Homophones - + -
Class - - 0
Euphony + - 0
Verb complementation + - +
Voice 0 - -
Negation + - -
Redundancy - - 0
Agglutination - +

Auxiliary and 0 0 +
past participle

From Table 3.2, we can see at a glance that not all techniques are capable
of diagnosing the same error types. All of them can diagnose at least some
errors of agreement in gender, number or person, but only constraint relax-
ation treats negation errors. Homophones are only treated by phonological
reinterpretation. Wrong forms for the structure ‘auxiliary + past partici-
ple’ are best detected by chunk reinterpretation. Although there is some
overlap between the diagnosis techniques, we can see a certain complemen-
tarity between them. Thus, if one needs to detect only euphony errors for
a particular application, the choice of the technique will rest on constraint
relaxation.

For a general error diagnosis system, however, no technique is able to
treat all error types. It seems therefore necessary to combine the techniques
to propose the best overall diagnosis. Technique combination has been sug-
gested and employed before (see Cornu (1997), Sanders and Sanders (1989),

3.6. CONCLUSION 111

and Felshin (1995), among others), although most often the combination
was between error grammars and constraint relaxation and each technique
treated a different set of error types. Moreover, by combining several tech-
niques, we can decide in advance which technique will be used for a particular
error type and, in doing so, select error types with regards to their facility of
treatment within a particular technique. This would help us to avoid many
implementation difficulties which are encountered only when one starts to
treat specific error types. These specific error types would then be taken
care of by a more adequate technique.

In view of combining techniques together, we have proposed three ap-
proaches. As stated in section 3.5.4, we favor the cascade approach to
diagnosis technique combination. We propose to cascade from constraint
relaxation to phonological reinterpretation, and from then to chunk rein-
terpretation. This order is derived from the fact that constraint relaxation
does not require chunks from a prior analysis as input. This technique can
therefore be used first. Chunk reinterpretation does not necessarily attempt
to recombine chunks to reach a full analysis. Thus, we want to use this
technique only if the other ones were not able to provide a full analysis. Tt
is therefore placed in last position. Phonological reinterpretation strands
somewhere in between. It requires chunks as input and it provides, when-
ever possible, a full analysis. It is therefore sandwiched between constraint
relaxation and chunk reinterpretation. Because constraint relaxation and
phonological reinterpretation propose chunks only for errors they have not
been able to diagnose, and because phonological reinterpretation and chunk
reinterpretation can diagnose errors only around chunks, only new errors
will be diagnosed by each successive technique. There should therefore be
no competition between alternative diagnoses, even if several techniques are
tailored to detect the same error types.

Two of the techniques discussed above, constraint relaxation (3.1) and
phonological reinterpretation (3.2), strongly play with the non deterministic
nature of the parser to reach their diagnosis and provide full analyses of
their input. We have thus devised alternative ranking methods to supple-
ment those normally included within a non deterministic parser. Ranking
alternatives depending on the detected errors and of the word frequencies
taken from a fundamental dictionary are specifically designed for error diag-
nosis within a CALL context. They would not be applicable as such with a
more generic parser. Their effectiveness, however, still needs to be assessed.

This chapter exposed three error diagnosis techniques from a theoretical
standpoint. Because many more full analyses can be provided when parsing
with error diagnosis techniques, new methods for selecting the most likely
analysis were designed. Several approaches for combining the three tech-
niques were proposed and a preference was clearly indicated. Discussion
remained mostly at the theoretical level. The error diagnosis techniques,
scoring methods, and combination approaches must now be implemented

112 CHAPTER 3. THEORY

and evaluated. These two points are the topic of the next two chapters.
Chapter 4 proposes and discusses a specific implementation of the theoreti-
cal proposals of the present chapter, while chapter 5 evaluates the results of
the implementation.

Chapter 4

Implementation phase

This chapter describes an implementation of the diagnosis techniques ex-
posed in chapter 3. This implementation was realized by a team of re-
searchers in the Department of Linguistics of the Université de Genéve.
The available resources did not allow us to create our own parser, thus it
was clear from the beginning that we would have to reuse and transform an
existing parser into a grammar error diagnosis system. The choice naturally
rested on Fips, a large coverage parser for French, to which we had full ac-
cess. Implementation of the diagnosis techniques had to take into account
the specifics of the Fips parser.

This chapter is organized as follows. Section 4.1 describes Fips, the
parser which is being transformed into an error diagnosis system. Section 4.2
discusses the empirical data which were used to design specifications for
the system and to test it. Section 4.3 relates how each of the diagnosis
techniques has been actually implemented and how the techniques’ results
are combined. Section 4.4 concludes this chapter.

4.1 Description of the Fips parser

The Fips parser has been described in many other places, including (Laen-
zlinger and Wehrli 1991), (Wehrli 1997), and (Laenzlinger 1998b). The goal
of this section is not therefore to give a complete description of Fips, but
rather to underline aspects of it which are important for syntactic error di-
agnosis. In this section, we discuss the main features of the linguistic theory
Fips is based upon (4.1.1). We then provide information on the parsing
algorithm which is used (4.1.2). The way Fips takes advantage of the im-
plementation language is reviewed (4.1.3). Advantages and disadvantages
of using the Fips parser in particular to transform it into a diagnosis system
are exposed (4.1.4).

113

114 CHAPTER 4. IMPLEMENTATION PHASE

4.1.1 Linguistic theory

The government and binding (GB) theory has been first developed by Chom-
sky (1981) and subsequently elaborated and described by many, including
Haegeman (1991). It is modular in that it posits the existence of a univer-
sal grammar, common to all languages, and language specific parameters.
“For a variety of reasons, GB theory is not at this time the basis for many
parsers, either within the domain of CALI or outside. Most parsers which
use a linguistic theory are based on LFG or GPSG” (Bailin 1988, p. 30).
Arguments in favor of using a GB family framework for parsing, in partic-
ular in the case of CALL, have nevertheless been put forth by Matthews
(1993) and Weinberg et al. (1995). GB has been chosen as the underlying
linguistic theory for the Fips parser which uses an adapted and simplified
version of it.

In the implementation of the GB theory in the Fips parser, components
of the grammar are translated as processes. There are structure generating
processes, as well as filters which prevent the appearance of ungrammatical
structures. “Certains [processus| sont générateurs de structures, comme
le processus X qui traite de la construction des chaines A et des chaines
clitiques, ou encore le processus de traitement de la coordination ; d’autres
exercent une fonction de filtre, comme le filtrage des cas ou le module chargé
de l’assignation et de la validation des fonctions thématiques” (Wehrli 1997,
p. 214).

The main component of the system is the X module which generates
structures on the basis of the lexical elements. For each lexical element, a
projection of the same lexical category is created with the lexical element as
its head and two lists of projections, one for specifiers (Left list) and one for
complements and adjuncts (Right list), both empty at first, attached to it.
(45) gives a representation of a projection created on the basis of a lexical
element of type X.

(45)

XP

e

Left list X Right list

A maximal projection (level XP) can combine to another projection as
its specifier (left list in French and English) or its complement (right list
in French and English) if it fulfills the generic principles and the language
specific parameters associated to the particular attachment. These are trans-
lated as constraints in the Fips parser.

4.1. DESCRIPTION OF THE FIPS PARSER 115

4.1.2 Parsing algorithm

The syntactic parsing strategy chosen for Fips is that of the attachment to
the right corner. Here are the four main principles of this strategy, taken
from (Wehrli 1997, p. 220):

Ascending strategy, that is data driven.

Iteratively, from left to right, one reads a new element and one tries to
combine it to a maximally developed structure from the left context.

The left structure specifies a list of active nodes on which new elements
can attach.

All possible attachments are considered in parallel.

A lexical analysis is first performed to segment the input. For each lexical
element, a projection of the same category is created. They are stored in
a graph of well-formed (although possibly partial) constituents. The parser
tries to combine two adjacent projections, a and b. a can attach as the
specifier of b (left attachment), or b as a complement of an active node of a
(right attachment). An active node is a position on the right edge of a tree
structure which is available to receive new complements. The list of active
nodes is kept and updated at each new attachment in order to facilitate and
speed up the process of right attachment. Each new combination is stored
in the graph. Possible attachments are treated in parallel, with the help
of heuristics to restrain the size of the set of constituents to be considered
for attachment. The output of the parser is a tree-like syntactic structure
represented linearly by labeled brackets. In case no complete analysis is
found by the parser, it returns partial analyses which, put side by side,
cover the whole sentence.

4.1.3 Implementation language

Fips is currently implemented in Component Pascal, a dialect of Oberon-2
(Reiser and Wirth 1992, Mdéssenbock 1993). It is a mixed language, both
procedural and object-oriented, and a descendant of the Pascal family. The
implementation makes use of the object-oriented features of the language.
Fips is in fact the French component of a family of parsers. The core parser
contains the generic methods for all languages. It represents the universal
grammar of the GB theory. Language specific modules implement meth-
ods which are related to language specific parameters. Types are extended
from the language generic base types to take into account specific language
features, such as clitic pronouns for French. Likewise, methods encoding
constraints designed at the generic level can be redefined for every language
when language differences must be taken into account. New methods are

116 CHAPTER 4. IMPLEMENTATION PHASE

created for language specific constraints. A further step is taken in the di-
rection of object oriented design by considering that error diagnosis is an
extension of the types and methods defined for French.

4.1.4 Advantages and disadvantages

“Most parsers and other NLP programs are not typically designed to identify
and diagnose errors; they simply fail when they encounter ill-formed input
and do not identify the cause of the failure. For ICALI applications which
require exact diagnosis of errors, parsing programs must be augmented with
error detection procedures” (Bailin and Levin 1989, p. 6). This is naturally
the case for Fips and some parsers might lend themselves more easily than
others to the transformation into an error diagnosis system. We now describe
some of the advantages and disadvantages of the Fips parser for this task.

Fips uses a chart, or graph, to store well formed constituents in order
for them to be computed only once during analysis. This chart is also
very useful when no full analysis is reached for a given sentence. All the
constituents which were computed can be found in the chart. Therefore,
the chart already contains the partial analyses which are to be displayed to
the users. One must only retrieve from the chart what one considers the
best series of chunks covering the whole sentence. No other computation is
needed. As chunks are essential for both phonological reinterpretation and
chunk reinterpretation, it is necessary to be able to retrieve them easily.

Non determinism is also a distinct advantage. It greatly facilitates the
process of phonological reinterpretation. Reinterpreted words can simply be
added as new alternatives and the parser tries to analyze the sentence with
the reinterpreted words as well as with the original ones. Sentences which
receive a full analysis with a reinterpreted word provide both the diagnosis
and a correction proposal.

Constraints are an integral part of Fips and of the linguistic theory it is
based on. This facilitates the task for constraint relaxation as constraints
already exist. Nevertheless, the grammar is completely imbedded within
Fips, which makes it difficult to pinpoint the precise location of some of the
constraints, or of some of the conditions. Moreover, as Fips was not at first
intended for error diagnosis, it is underconstrained in many ways and part of
the transformation work consists in adding constraints appropriately, so that
ungrammatical sentences do not pass unnoticed anymore. This is somewhat
more of a challenge with a grammar which is not clearly separated from the
parsing algorithm.

Another disadvantage or difficulty linked with Fips is that the parser
is currently used for other applications. Thus, any modification which is
made to the parser for error diagnosis must be transparent to the other
applications. This implies that even restricting the parser for it to recognize
only grammatical sentences cannot be done in a straightforward manner.

4.2. ERRORS TO BE DIAGNOSED 117

Modifications of the code must have an effect only when in the specific
diagnosis mode; this complexifies the implementation of the modifications
but some of the burden is fortunately taken care of through object-oriented
programming.

Disadvantages of Fips thankfully do not preclude its great advantages:
its robustness, its wide coverage, and its rich lexicon. They are crucial in
building a real-life diagnosis system.

4.2 Errors to be diagnosed

An important step in the implementation of an error diagnosis system is to
decide which types of errors are to be diagnosed. Realistically, not every
imaginable error type can be diagnosed within a single system. First of all,
we must remember that the diagnosis system presented in this dissertation
concentrates on grammar errors, to the exclusion of spelling errors and errors
linked to the semantics, pragmatic, or discourse levels.

Two main criteria impose themselves on the selection of error types for
diagnosis. On the one hand, there is what is possible, and more or less easy,
to implement given the parser at our disposal and the diagnosis techniques
available. On the other hand, there are the needs of the end user population
which makes specific kinds of errors. “Thus, ‘easy to parse and still unstable’
became a negotiated criterion for error inclusion, as did ‘parser-amenable
and consistently difficult.” These criteria helped to define a set of target
errors that proved relevant to observed errors during user testing” (Holland
1994, p. 235).

In the remainder of this section, we describe a learner corpus, FRIDA,
which is used to ascertain the needs of the target user population, and we
make some observations on it (4.2.1). We then explain how error types were
selected, based on several factors including knowledge of the parser and of
the diagnosis techniques, the corpus, and pedagogical considerations (4.2.2).
Next, we display an error example for each of the selected categories (4.2.3).
Finally, we propose a data structure to encode the error diagnoses (4.2.4).

4.2.1 The FRIDA corpus

The French Interlanguage Database (FRIDA)! is a French learner corpus
which was collected by the CECL.? The texts come from essays of inter-
mediate learners of French from around the world, made available by cor-
responding teachers. These texts are often hand written and the first task

'For more information on the FRIDA corpus, please consult its web site (last accessed
on April 8, 2003):
http://www.fltr.ucl.ac.be/fltr /germ /etan/cecl/Cecl-Projects/Frida/gateway.htm

2Centre for English Corpus Linguistics, Université Catholique de Louvain.

118 CHAPTER 4. IMPLEMENTATION PHASE

of the CECL has been to key them in, a lengthy and tedious process. Once
in electronic format, the corpus has been manually tagged for errors. Error
tagging is a necessary step before reliable error analyses can be performed
on the corpus. The total size of the corpus approximates 450’000 words, of
which a little over 300’000 are error tagged.

Errors are tagged using a triplet of XML tags opening on the left and
closing on the right of an error. A correction proposal is also present. A
triplet of tags is used in order to indicate the domain of the error (such
as grammar), its more precise error category (number, for example), and
the grammatical category of the erroneous word (e.g. tensed verb), as in
example (46) taken from (Granger et al. 2001, p. 612).

(46)a. *Ils mange des pommes.
They eats indefinite-article apples.

b. Ils <G><NBR><VSC> #mangent$ mange </vSC></NBR></G> des
pommes.

A concordance tool is used to search the corpus along these tags. “On
peut chercher les erreurs par domaine d’erreurs, par catégorie d’erreurs
ou par catégorie grammaticale. Il est en outre possible de combiner ces
différents types de recherche” (Granger et al. 2001, p. 612). Analyses per-
formed by the CECL on FRIDA focus either on a particular grammatical
construction or on a specific error category. Analyses per error category
prove more interesting to error diagnosis because the correlation of the in-
ner workings of the parser is greater with error categories than with gram-
matical construction. A first type of information which is provided on the
FRIDA corpus, thanks to its tags, is the repartition of the errors by error
domain, error category, grammatical category, as well as by triplet of XML
tags. This repartition is given in percentages and it is thus easy to classify
errors according to their relative frequency. These statistics provide the first
information about where learners make more mistakes and thus about what
the diagnosis system should focus on.

The error typology established by the CECL on the learner corpus dis-
tinguishes no less than thirty-six error categories. They range from errors of
graphical form (e.g. missing accents), to errors of style (e.g. heaviness), via
grammar errors (e.g. gender) and lexical errors (e.g. meaning). Obviously,
not all of these errors should be treated by a grammar checker. Some are
in the realm of a spell checker, others should be detected by tools such as
semantic or style checkers. The limit between what belongs to grammar and
what belongs to other levels is not always as clear cut as it may seem at
first glance. For example, tense errors can be considered to be part of what
a grammar checker should diagnose when a given tense or mode is required
by the sentence structure, such as in example (47). It can also be a purely

4.2. ERRORS TO BE DIAGNOSED 119

stylistic decision as in (48). It is considered that “I'incorporation d’un anal-
yseur syntaxique [n’est] pas suffisante pour un phénomeéne aussi précis que
la concordance des temps” (Selva and Chanier 2000, p. 411). We thus chose
not to treat this phenomena within our grammar error checker.

(47)a. *Si j'aurais su, je serais resté.
If T had-conditional-present known, I would-be stayed.

b. Si j’avais su, je serais resté.
If I had-indicative-imperfect known, I would-be stayed.

(48)a. Soudain, l'orage a éclaté.
Suddenly, the storm has broken.

b. Soudain, ’orage éclata.
Suddenly, the storm broke-preterite.

It is possible that only some errors within a given error category might
be treated by the grammar checker component of a diagnosis tool. More-
over, error categories used in FRIDA are not necessarily homogeneous from
the point of view of a parser-based error diagnosis system. A single error
category may cover several phenomena that are treated in a distinct manner
by a grammar error diagnosis system. Obviously, there is no one-to-one cor-
respondence between error categories and constraints or the way Fips treats
these phenomena. Thus, some categories can be partially treated only and
detailed analyses of the error categories take all their importance as they
highlight possible subtypes of error categories.

4.2.2 Selecting error categories

There are three main points which need to be taken into account when one
makes a selection of error categories for syntactic diagnosis. They are the
following:

1. availability of diagnosis techniques;
2. knowledge of target users’ needs;

3. pedagogical considerations and context of use.

Diagnosis techniques

Each diagnosis technique has its own peculiarities which make it more ad-
equate to treat some error categories over others. Moreover, some error
categories cannot be diagnosed by any of the three techniques described

120 CHAPTER 4. IMPLEMENTATION PHASE

in chapter 3. Thus the techniques which are employed in a diagnosis sys-
tem should be considered at the time a decision is taken as to which error
categories should be focused on.

We have so far settled on three different diagnosis techniques, namely
constraint relaxation, phonological reinterpretation, and chunk reinterpre-
tation. Constraint relaxation is often cited as the champion of agreement
errors (Matthews 1993, Tschichold 1999). Other error categories which can
be diagnosed by constraint relaxation are the choice of the proper auxiliary,
some word order errors (when they are linked to lexical features), com-
plementation errors, euphony errors, errors in the subtype of some lexical
elements, and some negation errors.

Phonological reinterpretation is concerned with erroneous segments which
sound like correct ones. Its field of action is thus much reduced compared
to constraint relaxation. It is designed to diagnose the incorrect use of ho-
mophones, some agreement errors, and some punctuation difficulties. Used
at the lexical level, phonological reinterpretation can help in proposing al-
ternative correction proposals and in correctly splitting run-on words.

Chunk reinterpretation depends much on the set of rules associated with
the implementation of the technique. It should be able to diagnose errors of
agreement, euphony, and punctuation, as well as some errors of redundancy,
complementation, and word order.

The set of errors mentioned for each category is probably only a sample
of what can be diagnosed for each of them. It is thus not to be taken for
an exhaustive list. It is rather the direction in which we have been working
with these techniques.

Knowledge of the target users’ needs

The FRIDA corpus contains texts written by members of our target pop-
ulation. Studying FRIDA thus gives us insight as to the users’ needs. It
informs us on the errors which are actually made by language learners. Only
error categories actually found in the corpus need to be diagnosed as sup-
posedly only those will be found in the learners’ input. Moreover, some
error categories are more frequent than others, giving us an idea as to the
relative importance of some errors. We can logically assume that it is more
important to diagnose frequent error categories over rare ones which might
appear only once or twice in the whole corpus.

Pedagogical considerations and context of use

On pedagogical grounds, all errors should probably be detected, even if they
are not all reported to the learners. This would at least ensure a proper
knowledge of a learner’s level if it were to be included in a student model.
This is, however, not very realistic in an automatic diagnosis system and

4.2. ERRORS TO BE DIAGNOSED 121

thus some priorities must be set.

Experts in didactics distinguish between error categories which must be
treated absolutely, given the level of the target users, and other categories
which are deemed less important. They might be less important because
they are already well mastered by the users or because they are way beyond
their current possibilities.

The context of employment of the the diagnosis system must also be
taken into account. If it is designed for use with a general text processing
system, nothing specific can be said with regards to difficulties that par-
ticular users would encounter. On the other hand, if it is part of a CALL
software and used for the correction of exercises, it is important that the
difficulties of the specific exercises be taken into account and that errors on
these difficult areas be properly diagnosed. It would otherwise defeat the
purpose of an error diagnosis system integrated into a CALL software.

4.2.3 Error categories and examples

A number of error categories have been selected for grammatical error di-
agnosis. They take into consideration the three points mentioned in section
4.2.2. Besides, we also recognize that errors are not necessarily independent
from one another. “Because syntax is hierarchical, dependencies may arise
among errors that are flagged by the parser and reported to the students”
(Holland 1994, p. 246). This implies that related errors must all be detected
together.

(49) *Ils avantages leurs amis.
They advantage-2"%-singular their friends.
Number and person errors between the subject and the verb.

For example, when a person error occurs on a verb, it is sometimes linked
to a number error as well. In (49), the incorrect plural marker makes the
parser recognize the verb as a second person singular, thus both a person
error and a number error are diagnosed. If the system was set up to diagnose
only one of the two categories (number, for example), the error of the other
category (person) could prevent the diagnosis of the number error because
the subject could still not attach to the tense phrase.

Table 4.1, on page 122, gives the list of selected error categories together
with their abbreviation, a short description of the error category, the impor-
tance of the error category within the corpus and from a didactic viewpoint,
and an indication as to which diagnosis technique is used to detect the er-
ror category. Examples for those error categories are given in Table 4.2,
page 125. More explanations are given below for each category in a less
synthetic form.

122 CHAPTER 4. IMPLEMENTATION PHASE
Table 4.1: Selected error categories
Error Description Corpus | Didactics | Techniques
category

AUX Wrong choice of auxiliary 1 2 R

CLA Use of the wrong class of word 3 3 R
(lexical category or subtype)

CPA Incorrect adjective comple- 1 3 R C
mentation

CPV Incorrect verbal complemen- 2 3 R C
tation

EUF Euphony error 2 1 R C

GEN Gender agreement error 3 3 R P C

HOM | Use of an incorrect homo- 2 1 P
phone

MAN | Missing element in the sen- 3 2 R C
tence

NBR | Number agreement error 3 3 R P C

NEG Missing or superfluous nega- ? 2 R
tion element

ORD Wrong order of words 2 2 R C

OUB Missing punctuation 3 1 P C

PER Person agreement error 1 3 R P C

VOI Incorrect use of a pronominal 1 1 R
reading of a verb

Legend:

Corpus and didactics interests in the error category range from 1 (lowest)
to 3 (highest in importance).

R = Constraint relaxation

P = Phonological reinterpretation
C = Chunk reinterpretation

4.2. ERRORS TO BE DIAGNOSED 123

Auxiliary errors (AUX) concern the use of the wrong auxiliary with a
given verb. Use of avoir (have) instead of étre (be) is easily detected. The
reverse is harder because étre (be) is also used in passive constructions which
are perfectly grammatical. One should thus flag an erroneous use of the étre
auxiliary only if one is not dealing with a passive structure.

Errors of class (CLA) indicate that a word of a wrong lexical category
has been used (adjective instead of adverb, for example), or that the word
does not belong to the expected subtype (e.g. different types of pronouns).
A great number of the errors of the class category concerns the use of def-
inite vs. indefinite determiners. This relates more to semantics and is not
treated here. Although this error category is important for both corpus and
didactics, few errors of this category can be detected by a purely syntactic
diagnosis system.

Adjectival complementation errors (CPA) are supposedly errors in the
preposition introducing the complement of an adjective. In the FRIDA
corpus, though, many errors relating to the structure of adjectival predicates
are tagged as such.

Verb complementation errors (CPV) relate to errors in the complements
of verbs, their types, and the prepositions used. This is a difficult area for
language learners as attested by both the corpus studies and the importance
to this error category given by the didactic team.

Euphony errors (EUF) occur quite often but are not interesting from a
didactic point of view. They are errors of elision and contraction. These
phenomena are almost purely mechanical and do not hinder communication.

Gender errors (GEN) are frequent and important. They are sometimes
linked to a poor knowledge of the gender of nouns, always a difficult topic
in foreign languages. The error category is easily diagnosed by constraint
relaxation. Phonological reinterpretation can also detect it if there is no
sound change, and chunk reinterpretation might spot it if the two unmatched
elements are in a good configuration.

Homonymy errors (HOM) concerns the use of words which sound alike
and are wrongly interchanged. A diagnosis system based on a syntactic
parser without semantics can only hope to detect homophones of different
lexical categories. Our diagnosis is based on phonological reinterpretation.

Missing elements (MAN) are particularly hard to diagnose automatically
as the error is in fact not there. It is however a frequent error category in
the corpus and quite important didactically speaking.

Number errors (NBR) occur often and are important. Like gender errors,
they can easily be diagnosed by constraint relaxation and possibly by the
other two techniques.

Negation errors (NEG) are not coded as such in the corpus, which ex-
plains why we do not know its relative frequency. It concerns essentially the
omission of the negative particle ne or of pas (not). While missing elements
are involved, errors of negation are relatively easy to diagnose by constraint

124 CHAPTER 4. IMPLEMENTATION PHASE

relaxation because two negative elements must be used as a pair.

Word order errors (ORD) concern adverbs (ORDAV) and adjectives
(ORDAJ) as a priority, but also, to a lesser extent, verbs and pronouns.
While it is possible to detect these errors with constraint relaxation, it is a
known cause of overgeneration of structures. It is thus dangerous to relax
word order too freely.

Missing punctuation errors (OUB) and in particular commas, are among
the most frequent errors. However, punctuation is arguably a stylistic matter
and rules governing it are not always very precise. Thus, this is a difficult
category to diagnose. Full sentence reinterpretation is a theoretical option
and it is also possible that chunk reinterpretation will detect some errors.

Person agreement errors (PER) are few in number, but they are linked
to gender and number errors and should be detected at the same time.

Finally, voice errors (VOI) concern mainly the overuse, or lack of use, of
the pronominal variant of a verb. It is infrequent and difficult to diagnose,
apart from the flagrant cases in which an essentially pronominal verb is used
without its reflexive.

Table 4.2 (page 125) provides an example for each of the selected cate-
gories in order to have a clearer view of the error categories we are talking
about. Boldface type is used to highlight the erroneous parts for easy iden-
tification. A e indicates a missing element.

4.2.4 Error coding data structure

Once an error is detected in an input sentence, it must be recorded. To
record an error, one must keep track of its type and its location. Difficulties
start with the location of errors. Errors do not exist in and out themselves.
They are linked to a context, a sentence. Moreover, errors often occur be-
tween two mismatched elements. This is particularly true with errors linked
to constraints because, as we have seen it in section 3.1, constraints take
two elements into account. If two elements do not match, it is impossible to
decide automatically which of the two is incorrect. Probabilities and heuris-
tics might help, but they are certainly not foolproof. Thus, we have decided
to mark the errors on both mismatched elements whenever possible. An
error can therefore have two parts, two components.

Errors are encoded at two levels. There is an internal representation of
an error, as well as a representation for the purpose of display to the users.
The internal representation uses a specific, extensible, type. In the current
implementation, which is slightly simplified in example (50), it contains the
error categories found at that location, divided into two fields. The first
one is called ‘diagnosis’ and represents true errors of the syntactic level.
The second, named ‘warning’, is similar to the first, except that it is used
used for potential errors recognized by the diagnosis system with a lesser
degree of reliability, or for structures which can be grammatical in specific

4.2. ERRORS TO BE DIAGNOSED

Table 4.2: Error categories and examples

Error category

Example

AUX

CLA

CPA

CpPV

EUF

GEN

HOM

MAN

NBR

NEG

ORD

oUB

PER

VOI

*1l a venu hier.

He has come yesterday.

*Ce me plait.

It me pleases.

*1l est fier a Marie.

He is proud to Marie.

*11 la parle.

It her-accusative talks.

*J’expose le argument principal.

I expose the argument main.
*Elle est venu hier.

She has come-masculine yesterday.
*Il faut mattre au monde des enfants.

One must master to-the world the children.

*Ils ont de o force.

They have some strength.

*Ils pose les questions.

They asks the questions.

*(C’e est pas un probléme.

It is not a problem.

*Une intelligente femme.

An intelligent woman.

*Les pommes e les poires et les raisins.
The apples the pears and the grapes.
*Je dort.

I sleeps.

*J’s évanouis.

I faint.

125

126 CHAPTER 4. IMPLEMENTATION PHASE

contexts but which are not very likely to be used by language learners. A set
variable is used for both, as there can be several errors at the same location.
Moreover, a boolean variable indicates whether the error is composed of one
or several parts. In an array, an error index is given for each detected error
category; this permits the system to link two parts of a single error together,
if need be. This data structure is linked to a projection, which is taken as
the location of (one part of) the error.

(50)

GrammarErrorPtr* = POINTER TO EXTENSIBLE RECORD
(FipsTools.GrammarErrorPtr)
diagnosis* : SET;
warning* : SET;
errorIndex* : ARRAY ErrorTypes OF ARRAY 3 OF CHAR;
manyPartError* : BOOLEAN;
END;

On the output end, the whole sentence structure is provided in an XML
format, and thus the error marks are also included in this format. This is
obviously an intermediary representation which must be translated into a
user-friendly format before display to the users. This user-friendly display
is not, however, part of our mandate and we limit ourselves to the XML
output. We use two different XML tags. The first one, named ERROR,
has four attributes: the error category, a single vs. many part indication,
a warning vs. true error indication, and an error index. The second tag is
entitled PARTERROR and corresponds to the second part of a multi-part error.
Its only attribute is the error index linking it to the tag of the first part of
the same error. The first tag contains the error category so there is no need
to repeat this information as an attribute of a PARTERROR tag. Each error
tag opens at the beginning of the error location (projection or word) and
closes after it.

(51) Il <ERROR category=“NBR” manypart=“yes” warning=“no” index="“a0” >les
</ERROR> ¢ <PARTERROR index=“a0” >regardé</PARTERROR> atten-
tivement.

Il les a regardé attentivement.
He them has looked-at-singular attentively.

Example (51) presents XML tags indicating a number error between the
preverbal clitic pronoun les (them), representing the direct object of the
verb, and the past participle regardé (looked-at).® Only the error tags are
shown, excluding structural tags, so as to simplify the representation.

3In French, a past participle conjugated with auxiliary awvoir (have) must agree in

4.3. IMPLEMENTATION 127

4.3 Implementation

An important consideration in the implementation of the error diagnosis
system is that the Fips parser, which serves as a basis for the system, is
concurrently used for other applications, such as speech synthesizing and
machine translation. Thus, while transforming Fips to enable it to detect
grammar errors, we have to maintain its previous functionalities and ensure
that its output, when error diagnosis is not activated, remains the same as
before the implementation of the diagnosis techniques.

The current section describes how the grammar error diagnosis tech-
niques described in chapter 3, that is constraint relaxation, phonological
reinterpretation, and chunk reinterpretation, were implemented (or not), re-
spectively in sections 4.3.1, 4.3.2, and 4.3.3, taking into account the parser
itself, the errors which have been selected for diagnosis, and the possibilities
of each technique.*

4.3.1 Constraint relaxation

“GB’s rules (principles) are expressed for the most part as well-formedness
conditions (constraints) on linguistic forms” (Catt 1988, p. 19). As such, GB
parsers are particularly well suited for modifications involving constraint re-
laxation. In Fips, the grammar is embedded within the code itself and there
are no explicit rewrite rules. In place of these rewrite rules, possible at-
tachment points are specified in terms of types of projection and types of
attachment (specifier or complement). These correspond to the category
constraints proposed in section 3.1.1. “Il va de soi que des contraintes ad-
ditionnelles viennent limiter les possibilités d’attachement d’un constituant
comme spécificateur d’une projection” (Wehrli 1997, p. 218). The same
naturally applies to complements as well. The additional constraints are
hard, soft and conditional constraints. They control constituent attachment
to ideally allow only the construction of grammatical sentence structures.
Each constraint violation is the mark of an ungrammaticality in the sen-
tence. Thus, each time a constraint is relaxed, an error is detected.

We here describe the specific variant of the constraint relaxation tech-
nique which was implemented. We then discuss the problems which were
encountered during the implementation phase. Finally, we expose the extent
and limits of the current implementation and propose an informal assess-
ment.

gender and number with its direct object when the latter is placed before the verb. This
rule applies when a preverbal clitic pronoun stands for the direct object of the verb, as in
example (51).

It is to be noted that the author of this dissertation was not the main programmer in
the team implementing the constraint relaxation technique in the error diagnosis system,
although she wrote the specifications for it.

128 CHAPTER 4. IMPLEMENTATION PHASE

Variant employed

As we have explained above (4.2.3), not all errors are to be treated by
constraint relaxation and not all constraints must be relaxed. There is a
correlation between detectable error categories and constraint relaxation.
The first step in the implementation of the constraint relaxation compo-
nent of the diagnosis system is thus to decide which error categories are
to be diagnosed with this technique. Once this is done, one must identify
the constraints that correspond to the selected error categories. These two
steps are in fact performed sequentially for each error category, rather than
first selecting all the error categories and then finding all the corresponding
constraints. One starts by selecting one error category which is to be diag-
nosed with constraint relaxation and then one identifies its corresponding
constraints. More than one constraint often needs to be located in order
to treat one error category completely. Once an error category is treated
to the extent possible with constraint relaxation, a further error category
is selected, and the process starts over again. As an example of an error
category requiring the relaxation of several constraints, let us look at the
gender error category. This category groups all errors of gender agreement,
whether they occur in the noun phrase (52a), with a predicative adjective
(52b), or with a past participle (52c). In Fips, this is represented by several
constraints, one for each situation. Thus, there is (at least) one constraint
for determiner-noun phrase agreement, one for subject-predicative adjective
agreement, and one for past participle agreement.

(52)a. *Le maison.
The-masculine house-feminine

b. *Elle est beau.
She is beautiful-masculine

c. *La pomme que j’ai mangé.
The apple-feminine which I have eaten-masculine

For each error category, one can either relax all the constraints linked to
that error category, or relax only some of the constraints if they circumscribe
an error subtype, if the other constraints are difficult to locate and/or to
relax, or if relaxing the other constraints would be too disruptive to the
inner workings of the parser (generating too many spurious analyses, for
example).

We now turn to the manner in which constraints are relaxed in our
diagnosis system. We have defined before that constraints are a set of con-
ditions on which depend some actions of the parser (section 3.1.1) and that
constraint relaxation changes the content of the actions linked to the con-
straints (section 3.1.5). Relaxing constraints in Fips implies first checking a

4.3. IMPLEMENTATION 129

number of conditions to circumscribe the precise situation in which a spe-
cific constraint may be relaxed. The constraint itself contains both a set of
conditions as well as a set of actions depending on those conditions. The
additional conditions and the actions are isolated into a procedure associ-
ated to a specific data type. There are in fact two such procedures for each
constraint: one for diagnosis mode and one for non-diagnosis mode, as in
the latter case Fips must keep its previous output. In non-diagnosis mode,
the constraints are enforced and the actions performed correspond mostly
to what Fips did before its transformation into a diagnosis system when
constraints were unsatisfied: reject the attachment, which, in the long run,
leads to outputting partial analyses.

The implementation of the constraint relaxation technique within the
Fips parser makes full use of the fact that the parser is implemented in an
object-oriented programming language.® Projections, which are the building
blocks with which a sentence structure is constructed, are encoded as objects
with associated procedures, called methods.® Depending on the dynamic
type of the projections, different versions of the methods are called into play.
The dynamic type of a projection is a function, at least in part, of whether
syntactic error diagnosis is activated through an option of the parser. In case
the error diagnosis option is selected, the type of the projection is extended
with information about possible detected errors.

Constraints which can be relaxed are encapsulated into methods. For
each constraint, there are (at least) two methods. One represents the con-
ditions and actions for the constraint when it is enforced, the other when
it is relaxed. Thus, different actions can be performed in each case. Mod-
ifying one of the methods does not influence its sister method in any way.
The selection of which sister method to use in any particular case is auto-
matically achieved through dynamic binding.” For example, on a gender
agreement constraint when the two elements do not agree, the enforced con-
straint method returns an empty set and a Boolean negative value indicating
an incorrect parsing path. In the same situation, the relaxed constraint re-
turns a non-empty set resulting from the union of the gender sets of both
elements and a positive Boolean value, indicating that parsing can continue.

The constraints in our system are not weighted. They are either enforced
or relaxed. However, not all constraints need to have the same status. There
is an internal device which allows the programmer to switch constraints on
and off. This is implemented with a set for disabled relaxations of constraints
which is initialized before parsing starts. Methods linked to disabled relax-

»“Object-Oriented programming means programming with abstract data types
(classes) using inheritance and dynamic binding” (M6ssenbock 1993, p. 6).

5For object-oriented terminology, see Table 12.1, page 238, in (Reiser and Wirth 1992).

"“This is what is meant by dynamic binding—an appropriate procedure is bound
(called) at run-time by examining the dynamic type of the caller. That is, the specific
action performed is determined at run-time” (Nikitin 1997, p. 175).

130 CHAPTER 4. IMPLEMENTATION PHASE

ations fail if their conditions are not met. Disabling specific relaxations of
constraints is useful for two main reasons. (i) Implementation of relaxation
by packets is facilitated by this device, which also allows for tests to be run
in the way to allocate constraints to packets. We have, however, settled on
a one pass system. Therefore, the set of disabled relaxations is empty dur-
ing the first pass and all constraints are relaxed at once. (ii) In the testing
phases also, it can be interesting to disable all but one of the constraints to
see how it works in isolation. Thus, it has been possible to confirm that the
adverb order constraint was a sure cause of much overgeneration of struc-
tures. To remedy this situation, we restricted the way in which the adverb
order constraint was relaxed: the constraint relaxation was applied to fewer
adverb types, and only to locations in the sentence where the corpora stud-
ies showed that learners made mistakes. For example, manner adverbs, such
as facilement (easily), are allowed to attach with an error mark before the
tensed verb of a sentence (52a), besides their legal positions (52b). However,
attachment between the verb and a negation is never allowed, and (52¢) does
not receive a full analysis.

(53)a. *Je facilement ne vais pas au cinéma.
I easily NEG go not to-the movie-theater.
Adverb order error on facilement (easily).

b. Je ne vais pas facilement au cinéma.
I NEG go not easily to-the movie-theater.

c. *Je ne vais facilement pas au cinéma.
I NEG go easily not to-the movie-theater.
No full analysis of the sentence.

We have decided not to use graded constraints because they seemed
difficult to implement within an already existing parser which possesses a
scoring mechanism. The two systems might have interfered. Moreover, it
is not clear how different diagnosis techniques can be used in conjunction
with a graded constraint system. To take into consideration the relative
importance of constraints, which seems an interesting point to us, we use
instead a scoring mechanism (described in sections 3.4.2 and 4.3.4) in which
frequencies of error categories are employed.

Problems encountered

Two main difficulties were encountered during the implementation of con-
straint relaxation on the Fips parser. The first one is linked to the fact
that Fips was underconstrained in the first place. The second is inherent to
constraint relaxation and concerns the overgeneration of structures.

4.3. IMPLEMENTATION 131

In the description and definition of the constraint relaxation technique
(section 3.1), we have always assumed that the parser, before it was trans-
formed into a diagnosis system, acted as a recognizer and should still do
so when all its constraints are enforced. This is unfortunately not the case
with Fips. Fips was designed to treat grammatical sentences and no strict
mechanism was implemented in it to reject all ungrammatical sentences.
Fips is thus underconstrained in some areas and tries to find a syntactic
structure for every sentence rather than being restrictive and prescriptive in
what it accepts. At the same time, however, Fips requires some constraints
to be enforced, such as euphony, agreement, case, and diacritics, in order to
restrain the number of alternative paths to be investigated during parsing.
The ungrammatical sentence in (54) with an incorrect pronoun case receives
a full analysis from the untransformed Fips parser, while the one in (55),
which requires only a simple elision to be correct, is rejected.

(54) *Je lui aide.
I to-him/her help

(55) *Je aide.
I-non-elided help

Thus, the first task we had to deal with was to reinforce Fips to bring
it closer to a recognizer. For this, we added a number of new constraints
in the parser. These new constraints, when they were violated, did not
necessarily lead to the rejection of the structure, because the same structure
was accepted by Fips in its standard version. Error marks were simply added
to the structure, in order to be able to display the diagnosed errors to the
learners.

Reinforcing a parser so that it acts more like a recognizer must by neces-
sity be done either before or at the latest at the constraint relaxation stage
in a diagnosis system combining constraint relaxation, phonological reinter-
pretation and chunk reinterpretation. Indeed, the latter two techniques use
chunks as raw material while constraint relaxation can have an unparsed
sentence as input. Thus, only the addition of relaxable constraints is able
to diagnose errors which Fips used to let pass without noticing.

Inherent to constraint relaxation is the problem of the overgeneration
of structures. By relaxing constraints, many more complete analyses can
be found for a single sentence. As soon as there is more than one analy-
sis, however, selecting the most appropriate analysis becomes an important
problem. This difficulty naturally increases when the number of full analyses
grows. “If the grammar becomes more complex, several competing parses
for a given sentence might be found. Diagnosis then depends on what parse
has been chosen” (Thurmair 1990, p. 365-366). Each analysis can bear dif-
ferent diagnoses because its structure is different or because several parsing

132 CHAPTER 4. IMPLEMENTATION PHASE

paths were possible for the same sentence structure. As only one analysis is
retrieved for display of the error diagnosis, one can easily see that it is cru-
cial to choose this analysis appropriately in order to provide good diagnosis
results.

With constraint relaxation as implemented in Fips, it often happens that
the selected analysis does not bear the correct diagnosis for the sentence.
However, the correct analysis with appropriate error diagnosis is part of
the pool of complete analyses. For the sentence in (56a), the first analysis,
given in (56b), does not provide an error diagnosis, while the second, in
(56¢), does.

(56)a. *Il y a pas longtemps.
It there has not a-long-time

b [p Ipp @1 l50 0 [ip [hgup [aawp 228 1 [g, longtemps 1117]

Negation error on a.

Thus, the problem does not lie in the relaxation of constraints, but in
the selection of the appropriate alternative. Although the system is working
properly, it seems from the outside that its results are far from good. There
are several partial solutions to this problem. The first one is to relax fewer
constraints and/or to be stricter in the manner relaxation is allowed. This
should decrease somewhat the number of superfluous analyses and therefore
reduce the problem. This problem does not however disappear as long as
there are more than one complete analysis. Another more general tentative
solution is to formulate new ways to retrieve the most adequate analysis from
the pool. This is attempted in the diagnosis system by taking into account
both information about the errors detected (3.4.2) and word frequencies
(3.4.3) as complementary information to retrieve the best analysis.

Extent and limitations of the implementation

Errors categories treated by constraint relaxation are quite numerous, but
the extent to which each category is treated varies greatly from one cat-
egory to the next. In order to discuss the extent and limitations of the
implementation of constraint relaxation, we consider, in turn, each of the
error categories of Table 4.1 (page 122) which were planned for treatment
with constraint relaxation.

Employing the wrong auxiliary (category AUX) is well detected in several
cases. Use of the avoir (have) auxiliary instead of étre (be) is detected
with predicative adjective structures, with pronominal verbs, and with other
verbs which should be conjugated with the étre (be) auxiliary. Verbs found

4.3. IMPLEMENTATION 133

with étre (be) while they should conjugate with avoir (have) are harder to
detect because of the possible confusion with the passive construction.® To
prevent too much overflagging, we have limited ourselves to diagnose such
errors for verbs which cannot take a passive form only; there is then no
possibility to mistake the use of the étre (be) auxiliary for a passive.
Diagnosis of class errors (CLA) is rather limited, compared to the defini-
tion of the FRIDA error tag. In the corpus, many CLA errors are semantic
in nature, such as the choice between a definite or indefinite determiner, as

in (58).

(58)a. pour une continuation de l’espéce
for a continuation of the species

b. pour la continuation de [’espéce
for the continuation of the species

This error subtype cannot be detected with a purely syntactic error
diagnosis system. Therefore, we only detect two subtypes of CLA errors,
namely the use of the pronoun ce (it) as subject of any verb apart from the
copula, and some cases of the use of a strong pronoun (59a) when a weak

8Let us take an example to expose the risk of overflagging in the instance of the étre
(be) auxiliary being used erroneously.

(57)a. Le chat a mangé la souris.
The cat has eaten the mouse.

b. Le chat a mangé.
The cat has eaten.

c. Le chat est mangé.
The cat is eaten.

d. ?Le chat est mangé par la souris.
The cat is eaten by the mouse.

e. “Le chat est mangé la souris.
The cat is eaten the mouse.

In example (57), sentences (57a) and (57b) are grammatical. They represent two per-
fectly normal ways to use the verb manger (eat) in the past tense. (57c) is either a legal
passive or contains an auxiliary error. It is ambiguous and there is no way at this stage
to determine which is the best interpretation and, therefore, one does not want to flag
an auxiliary error. If (57¢) was completed as in (57d), then the passive interpretation
would have been correct. Note that (57d) is perfectly grammatical although semantically
weird (hence the ‘?’). Finally, (57e) is without any doubt ungrammatical. It is however
ambiguous as to the reason of the ungrammaticality. One can consider either that it is an
auxiliary error (with (57a) as the correct form), or that there is a verb complementation
error (with (57d) as the correct form). Because it is only when the parser reaches the
word la (the-feminine) that an error can be detected, we have chosen the second option
and indicated a verb complemetation error.

134 CHAPTER 4. IMPLEMENTATION PHASE

one alone is permitted,? as in example (59b).

(59)a. *Qui sont-eux?
Who are-them?

b. Qui sont-ils?
Who are-they?

Although the corpora studies indicate both predicative structure errors
as well as truly adjective complementation errors in the CPA category, the
system only treats true errors of adjective complementation. Unfortunately,
the well-known problem of the ambiguity of attachment of prepositional
phrases often leads to overflagging occurrences in this error category. Thus,
if the chosen (simplified) structure for (60a) is (60b) instead of the correct
(60c), a CPA error will be marked on the structure.

(60)a. Il est fier avec raison.
He is proud with reason

b. [TP [DP Il'] [Test [Apﬁer [PP avec raison |||]
Adjective complementation error between fier (proud) and avec (with).

c. [TP [DPIZ] [Test [Apﬁer] [Pp(wecmison]]]

Verb complementation errors (CPV) are hard to diagnose for two main
reasons. (i) Verbs often have several lexemes with different subcategoriza-
tion frames. It is difficult, not to say impossible, to decide which one to use
when looking for verb complementation errors. We are reduced to checking
that a particular argument is ungrammatical for all lexemes of the verb.
(ii) The first difficulty is greatly compounded by the ambiguity of preposi-
tional phrases which can often either be read as a complement or act as an
adjunct. We currently diagnose errors on clausal complements, but only the
omission of a preposition in nominal verb complements. Preposition confu-
sion and addition in nominal complements are so far taken to be adjuncts
and a complement to be lawfully missing. However, if we were to flag all
adjuncts as potential complements with an incorrect preposition, we would
drastically increase the number of overflagging occurrences.

Euphony errors (EUF) are very local errors, which make them stand
apart from other error categories. The main difficulty for this error cate-
gory was to derive an algorithm to treat linearly adjacent words within the
hierarchical parsing strategy. Three subtypes of euphony errors are treated:

9No distinction is made here between weak and clitic pronouns. For a discussion of
clitic, weak, and strong pronouns, see Laenzlinger (1998a, p. 125fF.).

4.3. IMPLEMENTATION 135

preposition-determiner contractions, elision phenomena, and the euphonic
410

Agreement errors (categories GEN, NBR and PER) are easily treated
by constraint relaxation. They are most often checked by pairs with varying
configurations depending on the lexical categories of the elements between
which agreement is checked.

Missing elements in the sentence (MAN) are in fact not treated as such
by constraint relaxation. Some missing elements are however diagnosed as
part of another error category, such as verb complementation or negation.

Errors of negation (NEG) are diagnosed in relatively simple cases in
which one part of the negation is present without its second element. Some
cases in which ne (negative particle) can appear by itself are also taken into
account. Distinctions between different negative adverbs (such as pas (not),
jamais (never), and plus (more)) are not made in the grammar checker as
they are related to semantics.

Three main subtypes of the order error category (ORD) are diagnosed:
adverb order (ORDAV), adjective order (ORDAJ), and to a lesser degree
verb order. The adverb order constraint is relaxed cautiously. Only some
specific types of adverbs can attach to specific, ungrammatical positions, the
types of adverbs and the positions being dictated by corpus studies. Blindly
relaxing the adverb order constraint generated too many spurious analyses
and occurrences of overflagging. Postnominal adjectives used prenominaly
are marked with an error, while the reverse structure, prenominal adjectives
found postnominaly, are marked with a warning only, as they are often,
though not always, grammatical.'!

The OUB error category, missing punctuation, was only partially im-
plemented. The diagnosis systems detects only missing hyphens and has
been trained even more specifically on missing hyphens between verbs and
subjects in inverted interrogative sentences, such as in (63).

(63) *Sont ils partis?
Are they gone?

'0An example of the use of this euphonic -- can be found in example (61).

(61) A-t-il dormi?
Has -t- he slept?

'1(62a) and (62b) are both grammatical although they do not have the same meaning.

(62)a. Un grand homme
A great man

b. Un homme grand
A man tall

136 CHAPTER 4. IMPLEMENTATION PHASE

Error of the voice category (VOI) are treated only partially. Essentially
pronominal verbs used without their reflexive are diagnosed, as well as non
pronominal verbs which do not subcategorize for any complement but are
used with a reflexive, as in (64).

(64) *La parité sociale commence & s’apparaitre.
The parity social starts to itself appear

This is far from treating all instances of this error category. However,
as this type of error is not very frequent and of little didactic relevance (see
Table 4.1, page 122), we decided not to spend any more time on it.

One of the limitations of the constraint relaxation technique concerns the
lexicon used by the system. This technique requires one to conduct many
tests on word features which are extracted from the lexicon. Incomplete
or wrong information naturally leads to a decrease in performance of the
diagnosis system. Although spot checking has been performed, we cannot
be sure that all prenominal adjectives are listed as such in the lexicon, for
example, nor that all possible subcategorization frames have been entered
for a given verb. It is however difficult to quantify the extent to which
the present state of the lexicon impedes the performance of the constraint
relaxation technique compared to a ‘perfect’ lexicon.

Some error categories, such as auxiliary errors, would have deserved a
better treatment, both on the computer science and on the linguistics points
of view. We should be able to detect a passive structure from a erroneous
use of the étre (be) auxiliary. This error type being not very frequent, it
was not considered a priority and time which would have been necessary for
a full treatment was devoted to other error categories.

Another important limitation, which has been mentioned above in the
section on problems encountered (page 130 and ff.), is the overgeneration of
structures. In order to contain their growing number, we have been forced to
relax some constraints more cautiously, such as the adverb order constraint.
This prevents us from detecting some errors but reduces the number of
spurious analyses and of overflagging occurrences to a more manageable
level.

Informal assessment

While chapter 5 is devoted to tests, results, and evaluation of the whole di-
agnosis system, it might prove useful to provide here an informal assessment
of constraint relaxation to conclude its implementation description.
Constraint relaxation is a useful technique for error diagnosis in good
part because of the extent of error categories it can detect and diagnose.
Constraints are linked quite straightforwardly to errors so that we can con-
sider that a relaxed constraint indicates a specific type of error. However, to

4.3. IMPLEMENTATION 137

know exactly which constraints need to be relaxed, it is important to have
a corpus with a large enough number of errors for each of the error sub-
categories one wants to detect. This was sometimes lacking in the present
implementation'? and we are not certain that all error categories and sub-
categories mentioned are covered in full. This could be amended at a later
development stage of the diagnosis system.

As mentioned above, the main difficulty linked to constraint relaxation
is the increased number of complete analyses provided by the system which
causes problems in the selection process of the best alternative. One must
present to the users the most likely analysis in terms of what they have
written. This implies, for non-native writers, a certain likelihood for er-
rors, while at the same time one must be careful to prevent occurrences of
overflagging.

Nonetheless, twelve error categories'? are detected through the con-
straint relaxation technique. This proves the interest for this diagnosis
technique and the feasibility of its implementation in an existing syntac-
tic parser.

1

4.3.2 Phonological reinterpretation

As we have seen in chapter 3, phonological reinterpretation has several pre-
requisites. These prerequisites are fortunately available with Fips and its
family of applications. We recall them briefly here.

1. Fips can serve as a recognizer, although it tends to give full analyses for
sentences which are not fully grammatical. Modifications made on the
Fips parser in the context of constraint relaxation somewhat alleviate
this problem by enforcing some new constraints and thus making the
parser stricter.

2. Tt is one of the great advantages of Fips to provide partial analyses
when a sentence is not fully analyzed. While useful in many contexts,
this is a requirement for phonological reinterpretation in order to know
which words to reinterpret.

3. Moreover, Fips is non deterministic, which facilitates the reinterpre-
tation process as it allows all reinterpreted words to be tried at the
same time.

4. Because of the speech synthesizer associated with Fips, FipsVox (Gau-
dinat and Goldman 1998), the lexicon used by Fips contains phonologi-
cal information. Fach word is associated with a phonological sequence,
completed, if need be, by the information about latent consonants.

120nly extracts of the FRIDA corpus were made available to us.
13Consolidating the different order subcategories (ORDAV, ORDAJ) into a global ORD
error category.

138 CHAPTER 4. IMPLEMENTATION PHASE

5. Routines have been set up to access the lexicon by the phonological
information it contains. It is thus relatively easy to retrieve all the
words with a given pronunciation.

Implementation of phonological reinterpretation was thus made possible
by the presence of all the required tools. We did not need to create them.
Our task consisted mainly in using them in appropriate ways to include this
new layer of grammar error diagnosis within the parser to transform it into a
diagnosis tool. In the remainder of this section, we first describe the variant
used and detail the implementation steps. We then discuss the problems
encountered and the extent and limitations of this implementation. We
conclude with an informal assessment.

Variant employed

The implementation of phonological reinterpretation was done step by step
and each main step is described in this section. Once the parse of the
sentence has provided partial analyses, one must find the words at the chunk
borders, determine their alternative pronunciations, find the corresponding
list of reinterpreted words for each pronunciation, insert them in the chart
used by the parser, analyze the sentence again, prepare the diagnosis, and
customize the sentence for display.

Finding the words at the border of chunks This first step in the
phonological reinterpretation process necessarily happens after the sentence
has been through a first attempt at parsing which resulted in partial analyses
or chunks. One must then retrieve the words at the border of chunks. This
is not as simple as it may seem at first sight.

First of all, we are only interested in words which are at the border of two
chunks, and not the first and last word of the sentence. If we consider the
abstract representation of an analyzed sentence in (65), where each letter
represents a word and each group of letters is a separate chunk, we should
then consider only the words ¢, d, and e for phonological reinterpretation.

(65) abc d efgh .

One should not include a into the list of words to be reinterpreted,
because it is the start of the of the sentence and it is normal that the chunk
starts with it. The same applies in the reverse with h, although the case
is slightly more complicated as sentences most often end with punctuation
and this punctuation is automatically treated as a separate chunk by the
Fips parser. One must also take care to include d only once in the list, and
not twice, although it is the pending word of both ¢ and e.

Moreover, one must take care to retrieve actual words and not a part
of a syntactic structure containing an empty position. If the chunk under

4.3. IMPLEMENTATION 139

investigation contains, for example, a verb phrase inserted inside a tense
phrase, but without a subject, one would like to retrieve the first overt
element of the chunk, rather than the empty position. For the chunk shown
in (66), it means that we recover the word dort (sleeps).

(66) [[ppe] [odort []]]

Finally, at this stage of the phonological reinterpretation process, one
is only looking for the alphabetical strings which represent the words, and
not in the words’ full lexical information as given by the partial analysis.
Indeed, the full lexical information would restrict us to a given interpretation
of the string, and thus to a given pronunciation, while we need to take
into account all possible pronunciations for a given word string. The word
couvent (convent / sit on (eggs) 3rd-plural-present) is pronounced /kuva/
when it is a noun and /kuv/ when it is a verb. A chunk resulting from a
partial analysis may provide the wrong interpretation for a particular word.

Thus, for each chunk of an incomplete analysis, we look at its starting
and ending points. We access the graph containing all the analyses built so
far by these starting and ending points and we take the word string we are
interested in. The process is repeated for each chunk, with the restriction on
the first and last chunks to prevent treating sentence front and end words,
and the recovered strings are inserted in a list of words to be reinterpreted,
along with the indication of their start and end positions in the sentence.

Determining all alternative pronunciations Once the list of all the
word strings to be reinterpreted has been established, we must find all possi-
ble alternative pronunciations for each of these word strings. Each pronunci-
ation is associated with a different lexeme of the given word string. In order
to find the alternative pronunciations, one can thus look for the alternative
lexical items of a given word string. A lexical item contains a great amount
of information, such as the word string, its lexeme, its pronunciation, as well
as many other syntactic and semantic features associated with it. The lex-
ical items, with their complete information, are extracted from the lexicon
which is accessed through the alphabetical information of the word string.
The lexical items thus recovered, complete with pronunciation, are stored
into another list.

Reinterpretation and insertion in the chart Provided with the list of
alternative lexical items, and thus with the list of alternative pronunciations,
it is now possible to reinterpret the words. Traversing the list of lexical items,
one accesses the lexicon through the phonetic information in order to retrieve
alternative lexical items with a corresponding pronunciation. One first takes
the phonetic string as such, and, at a second stage, one concatenates it to

140 CHAPTER 4. IMPLEMENTATION PHASE

its latent consonant, if one exists, in order to treat liaison phenomena which
can be misinterpreted by learners as being part of the word. Each time a
new lexical item is found, it is first compared to the original word string to
make sure that one does not insert an already present lexical item in the
graph, as this would only increase without reason the amount of ambiguity.
Once this check is passed, the word is expanded into a projection. That is,
it is inserted within a maximal projection of its own type. A noun is thus
transformed into a noun phrase, a verb into a verb phrase. The projection is
then inserted into the chart of constituents. If the projection can be further
expanded into a larger constituent, this is done and the new constituent is
also inserted in the chart. Thus, a tensed verb is inserted in the chart both
as a verb phrase and as a tense phrase, as exemplified in (67) below.

(67)a. mange (eats)
b.

[yp mange]

¢ [[ppe] [omange [1]

Apart from considering individual words, it is also interesting to take into
account the possibility of words which are split across a chunk border. In
order for such split words not to be detected at the spell checking level, each
part of the word must necessarily form a legal word of its own, as exemplified
in the paragraph on multi-words in section 3.2.6. With each of the four
possible combinations of the phonetic strings and latent consonants of two
adjacent words at chunk borders, one reiterates the process of retrieving
existing lexical items by a phonological access to the lexicon, of expanding
the lexical items into projections, and inserting these projections into the
graph.

Parsing the sentence again Once the new lexical alternatives have been
inserted into the graph, it is time to re-parse the sentence. This step is not
discussed further here as it pertains to the Fips parser itself. Suffice to
say that the parser’s non determinism makes it easy for it to try all the
additional alternatives resulting from the phonological reinterpretation.

Fine-tuning the diagnosis There are several ways in which it is possible
to fine-tune the diagnosis provided by phonological reinterpretation. Only
one is currently implemented. It is to propose a diagnosis for reinterpreted
words only when reinterpretation has allowed a sentence to be completely
analyzed. The structure of incomplete analyses is less certain than that of
full analyses. It is therefore more likely for a word to be considered in its
wrong acceptation in terms of lexical category and/or homophone if it is an

4.3. IMPLEMENTATION 141

ambiguous word to start with. By rejecting partial analyses at this stage,
one prevents a number of overdetection occurrences from cropping up.

Currently, all reinterpreted words receive a unique diagnosis which clas-
sifies them as HOM (homonymy) errors. However, some finer distinctions
can be made for homophones of the same lexical category as the entry word.
Methods to refine the diagnosis process are not implemented yet.

Customizing the sentence for display Phonological reinterpretation
provides a correction of the sentence as the problematic words were replaced
by better suited ones. Correction is not, however, what one is looking for
in the CALL context. The mandate is to provide a diagnosis of the errors,
in order to help the learners correct them by themselves. The output of
phonological reinterpretation is thus not adapted. In preparing a reinter-
preted sentence for display, one must insert the words of the original sentence
back into the output, and one must provide a precise enough diagnosis.

When one inserts the original words back into the reinterpreted sentence,
one does so only for those words which have been reinterpreted. The others
have not been modified from the original, so there is no need to touch them
at all. As for the words which must be transformed back, the whole lexical
item has been modified during phonological reinterpretation, thus modifying
either the lexical category of the words, or some other important syntactic
features. While we want to display the sentence with its original words,
we do not wish to replace the whole lexical item as this would most often
be incompatible with the newly created sentence structure. Therefore, one
changes only the word string of the reinterpreted word back to the original
word string, leaving in the structure all the lexical information regarding the
phonologically reinterpreted word. The sentence in (68a) is reinterpreted
with the structure in (68b). Once the original incorrect word is reinserted
into the structure, one obtains (68c) (which obviously would be displayed in
a more user-friendly format in the software).

(68)a. *Elle a invité des gens.
She to invited some people.

b [[pp Blle] [ga [

She has invited some people.

invité des gens |]]

[DP FElle] [=a invité des gens || |

e " [
TP T VP
She to invited some people.

The other important step in the output preparation is the insertion of
the error mark, which is naturally linked to the precision of the diagnosis. So
far, for all the reinterpreted words, whether they are actually homophones or
not, the ‘category’ attribute of the ‘error’ tag of the XML display structure

142 CHAPTER 4. IMPLEMENTATION PHASE

(described briefly in section 4.2.4) receives the value ‘HOM’ for homonymy.
Finer distinctions should be made for words belonging to the same lexical
category. Indeed, in such cases the error is not that of taking a homophone
for another, but rather of using a word with the wrong set of syntactic and
semantic features. Errors can be of gender, tense, mode, and so on, as it is
the case for the second reinterpreted word in example (70), on page 143.

Problems encountered

Problems encountered with phonological reintepretation are of two kinds
which are both linked to the increase in lexical alternatives, and which are
thus unfortunately inherent to phonological reinterpretation.

As with constraint relaxation, the overgeneration of structures created
during the parsing process for a given sentence is a major difficulty. When
a sentence is proposed for reinterpretation, a minimum of two words will
be reinterpreted, the maximum being the number of words in the sentence.
The words which undergo phonological reinterpretation can introduce many
alternatives into the chart. A word such as est (is/east) has at least the
possible reinterpretations proposed in (69).

(69) es, aie, aies, ait, aient, Est

Therefore, from a word string with a double pronunciation and meaning,
one gets a word string with six additional meanings, for a total of eight. This
phenomenon being reproduced to some extent with each reinterpreted word,
there being one or two reinterpreted word strings per chunk in a sentence,
and often more than two chunks in an incomplete parse, one quickly reaches
a combinatorial explosion in the number of alternatives to be tried during the
parsing process. This combinatorial explosion leads in turn to an increase in
the resources needed for parsing, in terms of time and memory space. The
performance of the system thus suffers.

The increase in word ambiguity also leads to more complete analyses
being found for a given sentence. Although it is the purpose of phono-
logical reinterpretation to find a complete analysis for an ungrammatical
sentence, exiting the process of phonological reinterpretation with several
complete analyses is not ideal as it raises the question of which alternative
structure to keep. As stated before, phonological reinterpretation is only in-
voked when a first attempt to parse a sentence completely has failed. One
could thus legitimately hope that the number of alternative complete anal-
yses with phonological reinterpretation would be relatively small. This is
unfortunately not the case.

Multiple complete analyses are sometimes the result of several words
being phonologically reinterpretated within the same sentence. While this

4.3. IMPLEMENTATION 143

is sometimes necessary, as in example (70), were the two words need rein-
terpretation to form a grammatical sentence, it can be detrimental if some
of the reinterpretations are not necessary to build a complete analysis. The
erroneous sentence in example (71a), can be corrected either as (71b) where
only one word is reinterpreted, or as (71c) where two words are modified.

(70)a. *II 4 aboutit.
He to succeeds.

b. Il a abouti.
He has succeeded.

(7Tl)a. *J’ai vu sait homme.
I have seen knows man.

b. J’ai vu cet homme.
I have seen this man.

c. J’ai vu sept hommes.
I have seen seven men.

Obviously, only one of the analyses proposing the correction in (71b)
and (71c) will be presented to the user, while both are possible. There is
therefore a need to order and sort the complete analyses. This can be done
by retaining the complete analysis with the fewest number of reinterpreted
words, which would promote (71b). We thus systematically prefer a sentence
where fewer errors are detected in order both to respect as much as possible
what the user wrote and to keep the number of overflagging occurrences to a
minimum. Moreover, in case of a tie, it might be more interesting to present
the analysis with the highest number of true homophones, that is of words
reinterpreted into a different lexical category, and not simply having different
lexical or morpho-syntactic features. Errors indicating different feature sets
are much more likely to be caught by other diagnosis techniques, such as
constraint relaxation, than true homophones. Phonological reinterpretation
should therefore concentrate on areas other techniques are not good at.

Extent and limitations of the implementation

The extent and limitations of the implementation of the phonological rein-
terpretation technique are described in this section.

Homophones and other erroneous words sharing a single pronunciation
with the correct words can be detected, diagnosed and corrected within a
sentence, as long as this sentence does not receive a complete analysis before
phonological reinterpretation is activated and as long as the erroneous words
are located at the border of the chunks returned as partial analyses.

144 CHAPTER 4. IMPLEMENTATION PHASE

Two interesting phenomena are so far treated in one direction only. They
are latent consonants and multi-words. When a word is identified for rein-
terpretation, the list of the possible pronunciations of the word string is
retrieved from the lexicon. The information on the pronunciation poten-
tially contains a latent consonant. Thus, we reinterpret the word string
with and without its latent consonant. This explains how the word in (72a)
can be reinterpreted as words in (72b) and (72c).

(72)a. sait (pronounced /se/ with /t/ as a latent consonant)
knows

b. sais (pronounced /se/)
know

c. cet, cette, set, sept (pronounced /set/)
this-masculine, this-feminine, set, seven

The reverse has not been implemented so far. It is therefore not yet
possible to retrieve a word such as sait (/se+t/)(knows) from the original
cet (/set/) (this). In order to accomplish this, we would need to modify the
lexicon lookup procedure, and perhaps the indexing of the lexicon, to allow
the lookup procedure to retrieve words on the basis of the combination of
the standard pronunciation plus the latent consonant.

The reinterpretation process so far allows the combination of two ad-
jacent words located at the border of chunks into one. This combination
is computed on the pronunciation of the single words, with and without
latent consonants. The resulting combined pronunciations can thus be rein-
terpreted as a single word. In many cases, these four pronunciations do not
result in legal words and thus will not be inserted in the chart as new word
alternatives to be taken into account. But from time to time, one (or a few)
of the pronunciations can be reinterpreted as a legal word and is usefully
added as an alternative.

(73)a. * Vous pouvez peut étre dormir.
You can-2nd-plural can-3rd-singular be sleep.

b. [TP [Dpvous]i [Tpouvez [Vp 11]
(oo [ppel [epent [Loy [ope] 2 [gpétre]]]]]]
(o [ppe] [z [y dommir]]]

c. Vous pouvez peut-étre dormir.
You can perhaps sleep.

d. [TP [DP
[p dormir JTT]]]]

vous |; [Tpouvez [VP [Ava peut-étre | [V [TP [DP e; [T

4.3. IMPLEMENTATION 145

This enables us to at least recuperate the words peut étre (can be) in
sentence (73a), which gives the partial analyses in (73b), to interpret them
as only one word, peut-étre (perhaps), which permits in turn a complete
analysis of the sentence as shown in (73d).

We can therefore currently reinterpret a word split into two words in the
input into a single word. However, we are not yet able to do the reverse, that
is reinterpret a single word in the input as two words. In order to do so, one
would need to be able to access the lexicon phoneme by phoneme in order to
find all the possible words contained in the input word pronunciation. Such
an access to the lexicon is not currently available to us and phonological
reinterpretation finds itself therefore limited in its current implementation.

At the present time, words can be retrieved through phonological rein-
terpretation only if their pronunciations are identical to that of the original
words. No approximation is currently possible. The inclusion of approx-
imation within phonological reinterpretation would however be greatly fa-
cilitated by existing routines which, from a given phonetic string, compute
all possible phonetic strings which vary only in vowel aperture. Obviously,
implementing this option would also increase the number of alternatives to
be treated by the parser, with the damaging effect this is bound to have
on performance. Parameterizing which sounds can be modified on the basis
of the users’ mother tongue would be a very interesting option. We do not
have, however, the corpus information which would allow us to determine
groups of variable sounds for native speakers of given languages.

Precise diagnosis information is not available at this stage either. Every
word which is reinterpreted receives an HOM error tag, without close com-
parison with the original word. There is, therefore, no distinction between
true homophones (of different lexical categories) and different forms of the
same root word, such as aboutit/abouti (succeeds/succeeded), in example
(70) or homme/hommes (man/men), in example (71). This does not pre-
vent phonological reinterpretation to detect and provide a good correction
for these errors, but the diagnosis component, the precise identification of
the error type, suffers from it.

Informal assessment

Although formal testing of phonological reinterpretation is discussed in chap-
ter 5, let us briefly make an informal assessment of it here. Phonological
reinterpretation appears to work rather well in terms of the errors it is ca-
pable of detecting and correcting. In terms of diagnosis, as stated above, we
are currently limited to only one denomination of the errors found, namely
that they are homophones.

In the chosen variant of the phonological reinterpretation, very complex
sentences containing several errors tend not to receive a diagnosis through
phonological reinterpretation. This is due to the decision not to show the

146 CHAPTER 4. IMPLEMENTATION PHASE

users the results of phonological reinterpretation if this technique was not
able to provide a full analysis of the sentence, in order to reduce the number
of overflagging occurrences. Long, complex sentences with several errors
have a higher likelihood of containing errors not diagnosed by phonological
reinterpretation and, thus, of not reaching a full analysis.

The main difficulty with phonological reinterpretation is the great num-
ber of alternatives which need to be tried as it is only by trying the reinter-
preted words that one can know whether they are valid leads for correction
and hence diagnosis. This potentially great number of additional alterna-
tives, combined with the need to parse the sentence again, makes the process
slower.

4.3.3 Chunk reinterpretation

Chunk reinterpretation has not been implemented at the present time and
we do not foresee doing it in the near future. Reasons for not implementing
the chunk reinterpretation technique are explained in this section.

The theoretical description of chunk reinterpretation which can be found
in chapter 3, section 3.3, is far from being precise enough to count as valid
specifications. The first step in implementing chunk reinterpretation would
have been to write very precise specifications which would have been read-
ily implementable. In order to do so, one would have had to study a large
amount of data in the form of parsed sentences with incomplete analyses.
Although these data are not difficult to create, it is more delicate to predict
how large an amount would have been necessary in order to be able to cat-
egorize and sort the partial analyses into different groups linked to distinct
error categories. No doubt the process of designing the specifications would
have been time consuming. Moreover, there might be differences in the type
of information one would have been able to extract from the data, depending
on whether other diagnosis techniques were applied to the sentences before
the parser returned chunks or not. Thus, an a priori decision on the type of
technique combination would have been judicious in order to get the most
of the chunk reinterpretation technique in the precise context it would have
been employed in.

The second important point which would have needed to be taken into
account is the problem of reliability of the technique. Based on partial
analyses, like phonological reinterpretation, chunk reinterpretation needs
the chunks returned by an incomplete parse to be the most appropriate
ones, that is to break at the error location exactly. This is however not
guaranteed by the chunk selection process in Fips which tries uppermost
to find a combination of the longest chunks available. The error location
might not be at the chunk boundaries as often as one would like them to be.
Besides, chunk reinterpretation itself depends vastly on a thorough study of
the data provided by partial analyses in order to derive the reinterpretation

4.3. IMPLEMENTATION 147

rules. Rules retained will be those which cover the greatest number of cases
with the fewest false positives. In a number of ways, this can be assimilated
to heuristics, or ad hoc measures, rather than a really scientific, proven
diagnosis technique. One can then wonder how reliable such a technique
would have been in practice, but obviously only its implementation and
testing would have been able to give us trusty information on that score.

The third problematic issue which did not particularly incite us to im-
plement chunk reinterpretation is its lack of portability to other systems. As
we have stated above, the rules designed during the specification stage are
necessarily extracted from a close analysis of chunks output by the parser.
This close dependency between the rules and the output of the parser bodes
poorly for portability. It is rather likely for another parser to react differently
to the input, to use a slightly different version of the linguistic theory behind
it, or to have another chunk selection process. Thus, the whole set of rules
would have to be completely redesigned on the basis of a new set of data
provided by the parser one wants to adapt the technique for. This would
basically amount to redoing the whole process and is a strong indication of
the heuristic or ad hoc nature of the chunk reinterpretation technique, as it
was mentioned in the preceding paragraph.

The last factor which prevented the implementation of chunk reinter-
pretation is the less satisfactorily but perhaps also the most concrete one:
lack of time. This lack of time showed itself in two dimensions which are the
project in which the error diagnosis system is implemented, and the disserta-
tion work itself. From the project stand point, implementation of constraint
relaxation and phonological reinterpretation took longer than expected, in
good part because we were faced with an enormous level of structure overgen-
eration which we had not imagined and for which we had to devise renewed
alternative selection procedures, as described in section 4.3.4 below. This
left no time for the implementation of chunk reinterpretation within the
project’s time frame. On the dissertation front, the need to progress in the
written part of the work in order to meet approaching deadlines necessarily
lead to some choices as to where efforts should be best spent and it seemed
that it would be more appropriate to provide comprehensive results of the
two implemented diagnosis techniques than to implement a third one.

However, we can note by looking at Table 4.1 (page 122), that all the
error categories covered by chunk reinterpretation are also covered by either
or both of the other diagnosis techniques, namely constraint relaxation and
phonological reinterpretation. This redundancy implies that, by not imple-
menting the chunk reinterpretation technique, we should not unduly damage
the total number of error categories the whole diagnosis system is capable
of treating.

Therefore, for the reasons mentioned above, some better than others
one must admit, the implementation of the chunk reinterpretation diagnosis
technique has not yet been realized. This does not imply that the technique

148 CHAPTER 4. IMPLEMENTATION PHASE

is worthless in itself, it is rather a shift in priorities. The ideas behind chunk
reinterpretation are not abandoned and one might see their implementation
outside the scope of this dissertation work.

4.3.4 Analyses selection mechanism

In an attempt to find the best way to automatically select the best anal-
ysis alternative from those proposed by the error diagnosis system with
constraint relaxation and phonological reinterpretation, three scoring mech-
anisms were implemented to complement the original scoring mechanism
available in Fips. Different ways to combine these scores were tried out and
tested on a parsed corpus. We first describe the three additional mecha-
nisms, which differ somewhat from their original description in section 3.4.
We then explain the tests which were conducted and expose the solution we
have currently adopted in view of the results.

Scoring mechanisms

The different paragraphs below mirror those from chapter 3, section 3.4, and
relate the differences between the theory and the actual implementation in
the diagnosis system which serves as a basis for this dissertation.

Syntactic likelihood Two scoring mechanisms are used to measure syn-
tactic likelihood. The first one is the score embedded within Fips and which
was designed for grammatical sentences. The score is computed by adding
and subtracting points at many levels in the syntactic analysis. The number
of points added or subtracted depends on many factors, including the words
themselves, the attachment points, and some further lexical and syntactic
features. Ties between alternative analyses are allowed and are frequent.

In section 3.4.1, we mentioned using bi- or n-gram frequencies in order to
sort the alternatives. This path was not pursued further, however, due to the
lack of an appropriate corpus from which to derive the relevant statistics. On
the other hand, a score computing the number of nodes of a structure, the
maximal depth of the structure, and the number of nodes at the maximal
depth was implemented. Calculating this metric is done after parsing is
completed, which has the distinct advantage of not interfering with other
components of the error diagnosis system.

Error frequencies The formula proposed for computing error frequencies
in section 3.4.2 proved more complex than necessary and was thus simpli-
fied in the implemented error frequency scoring mechanism. First of all,
normalization of the score by the length of the sentence is not useful in the
present case, as one tries to sort alternative analyses of the same sentence.
Thus, all the sentences under scrutiny at one point in time share the same

4.3. IMPLEMENTATION 149

number of words. Normalizing by the length of the sentence would not be
discriminative. Secondly, it seemed that multiplying the score by a factor
taking into account the number of errors detected in the sentence was re-
dundant with the addition of the relative frequencies of each of the errors
found in the sentence analysis. Finally, instead of using the modified reverse
percentage proposed initially, we used the logarithm of the error frequency,
with up to four decimal points. This gives us low numbers for frequent errors
and higher ones for less frequent errors. The error frequencies are based on
the statistics of the FRIDA corpus (section 4.2.1) and estimated for error
categories not included in FRIDA (NEG) or for which we treat only a part
of the FRIDA category (CLA and OUB, for example). Thus, the formula
for the error frequency scoring mechanism became:

e
> log(f(ei)
=1

Where |e| is the number of errors in the sentence and f a function re-
turning the frequency, up to four decimal points, of the error in the FRIDA
COrpus.

With this scoring mechanism, we still promote error-free analyses, which
receive a score of 0, and frequent error categories over less frequent ones.

Word frequencies Word and lexeme frequencies are part of the informa-
tion contained in the lexicon used by our error diagnosis system. Although
the corpus which was used to retrieve those frequencies is of journalistic
origins and not necessarily the most appropriate in the CALL context, we
decided to make use of these data instead of creating new ones, for simplic-
ity’s sake. Both word and lexeme frequencies are combined in the metrics
we use. Once the parsing phase is achieved and all the alternative analyses
have been collected, one computes the word frequency score of each alter-
native. This implies accessing each word in turn in order to add its word
frequency to the score being computed. However, if a word can have several
lexemes, the word frequency is not directly added to the score, but it is first
pondered by the lexeme frequency of the lexeme used in the particular case.

Tests on a corpus

In order to test the efficiency of the four different scoring mechanisms im-
plemented (Fips original score, node complexity, error frequency, and word
frequency), we required some data. We parsed, with the error diagnosis
system, a 10’000 word extract from FRIDA and, for each of the roughly
500 sentences, the best alternative analysis was manually selected. We thus
obtained a parsed corpus from which statistical data could be extracted on
the single and combined use of the different scoring mechanisms.

150 CHAPTER 4. IMPLEMENTATION PHASE

Two different series of tests were run on the parsed corpus. In both
cases, the manually selected analysis was compared in turn with each non-
preferred analysis of the same sentence in order to derive the fitness of each
scoring technique. The first series of test employed statistics, while the sec-
ond made use of fuzzy inferences. Both tests were designed and conducted
by a programmer with good knowledge of statistics and fuzzy logics. The
tests, however turned out to be disappointing in that they were not able to
establish an optimal way in which to weigh and combine the different scor-
ing mechanisms in order to retrieve the best analysis in a reliable manner.
Several reasons for this lack of usable results were invoked, namely too much
overgeneration in the input data, inadequate scoring methods, and lack of
information on the rejected analyses. This lead us to redesign, at least on a
temporary basis, the selection mechanism for alternative analyses.

Current selection mechanism

We were not able to find a satisfactory way to combine the different scoring
mechanisms in order to obtain the best alternative analysis most of the
time, but we needed at one point to freeze the development of the system
in order to be able to run some tests on a stable version. General results
showed that the original Fips scoring mechanism was still the one which
worked best overall. It thus seemed important to take this score strongly
into account. At the same time, we wanted our error diagnosis system to
have as few occurrences of overflagging as possible, while still indicating
error diagnoses for erroneous sentences.

In order to minimize overflagging, we decided to separate the alternative
analyses into two parts, the first one containing error-free alternatives, and
the second error-full ones. In the normal case, we present the error-free
analysis with the lowest original Fips score to the user. For example, an
error-free analysis with a score of 75 will then be promoted over an error-
full analysis with a score of 50. This is however tuned down by also looking
at the scores of error-full analyses. If an error-full analysis has an original
score of less than half the score of the first error-free analysis, then this error-
full analysis is displayed instead of the error-free one. Thus, an error-full
analysis with a score of 30 would win over an error-free analysis with a score
of 75. Moreover, in case it is decided to show an error-full sentence analysis,
all the alternative analyses which contain errors are ordered according to
the error score. This is another attempt to avoid overflagging as much as
possible.

4.3.5 Choice of technique combination

Constraint relaxation and phonological reinterpretation are the two diagno-
sis techniques which have been implemented and which need to be combined

4.3. IMPLEMENTATION 151

in order to provide a coherent diagnosis.

The sets of error categories which constraint relaxation and phonolog-
ical reinterpretation are able to detect share some of the same categories
but are mostly distinct. In fact, only agreement errors overlap in any sig-
nificant way. Moreover, phonological reinterpretation is able to detect some
errors of agreement only, provided the agreement features are not overtly
realized, while constraint relaxation treats all types of agreement errors in
gender, number and person. For these particular error categories, constraint
relaxation is thus more adequate. This should not surprise anyone, as it is
well attested in literature that “relaxing constraints of an existing grammar
is particularly suitable for identifying agreement errors” (Tschichold 1999,
p. 210).

It thus seemed possible to decide that agreement errors would be marked
only if they were detected by constraint relaxation, de facto separating the
sets of error categories detected by each diagnosis technique. The indepen-
dent approach to technique combination described in section 3.5.1 seemed
therefore easier to implement, as there would be no risk of error diagnosis
overlap. However, phonological reinterpretation requires a first pass through
the system in order to obtain chunks. Although we had designed our diag-
nosis system to have a first pass without any diagnosis technique activated
in order to filter out grammatical sentences, this first pass was never imple-
mented.'* Skipping this first pass has the advantage of shortening processing
time for ungrammatical sentences. However, it prevents using phonological
reinterpretation before, or in parallel with, constraint relaxation. Thus, the
independent approach is not possible.

Both diagnosis techniques require a rather large amount of resources to
run, both in terms of memory and time, as they often overgenerate quite
widely. Moreover, as it is rather unlikely to find all types of errors in a
single sentence, we decided to use the cascade approach (see section 3.5.2)
and to launch the second technique only if the first one failed to give sat-
isfactory results. Because (i) constraint relaxation is able to diagnose a
wider range of errors than phonological reinterpretation, (ii) the errors of
this range tend to occur more frequently than those diagnosed by phonolog-
ical reinterpretation, and (iii) phonological reinterpretation requires partial
analyses, it was decided that constraint relaxation would be activated first.?
As phonological reinterpretation needs partial analyses as ground material,
the technique is activated only when no full diagnosis can be reached even
with relaxed constraints. Thus, phonological reinterpretation is called only
when constraint relaxation is not sufficient to diagnose all errors present in

" Despite several requests to the main programmer in charge of constraint relaxation to
do so.

5Note also that this corresponded to the implementation order of these two diagnosis
techniques.

152 CHAPTER 4. IMPLEMENTATION PHASE

a sentence.

We pondered the possibility of activating phonological reinterpretation
together with constraint relaxation. That is, we would have a first pass
with constraint relaxation activated only, and, if need be, a second pass
with phonological reinterpretation and constraint relaxation activated to-
gether. This option was rejected on the ground of generating too many false
positives.

(74)a. *set animauz
set animals

b. sept animauz
seven animals
Homonymy error on the determiner

c. *cet animauz
this animals
Homonymy error on the determiner
Number error between the determiner and the noun.

Example (74a) above can be reinterpreted into (74b) quite straightfor-
wardly, with or without constraint relaxation being activated at the same
time. On the other hand, (74c) is a possible correction only if constraint
relaxation is activated at the same time as phonological reinterpretation. It
is however not very likely to have a number error on animauz (animals)
in this particular case and (74b) is much more likely the best correction.
Depending on how the alternative analysis selection works, there is a risk of
selecting (74c) as the best analysis, instead of (74b), if constraint relaxation
is allowed while the phonological process is underway, and thus of displaying
an overflagging occurrence (the number error) to the users. Therefore, the
decision was taken not to allow phonological reinterpretation and constraint
relaxation to work at the same time.

4.4 Conclusion

This chapter has presented the implementation phase of two of the error di-
agnosis techniques described theoretically in chapter 3 of this dissertation.
In order to expose the precise implementation situation, we first described
the Fips syntactic parser which serves as a basis for our diagnosis system.
We then discussed the error categories that we intended our diagnosis sys-
tem to be able to diagnose, based on corpora studies and on the theoretical
possibilities of the techniques we were implementing. Fourteen error cate-
gories were finally selected and briefly described. We went on to describe

4.4. CONCLUSION 153

the actual implementation of constraint relaxation, relating the precise vari-
ant we used, the kinds of problems we encountered, as well as the extent
and limits of the current implementation. We then turned to the implemen-
tation of phonological reinterpretation, here again indicating which version
of the technique was used, the problems which we were faced with, as well
as the extent and limits of the implementation. We briefly explained the
reasons which led us to forego the implementation of chunk reinterpreta-
tion. We then focused on the analysis selection mechanisms and the choice
of technique combination.

The major difficulties which were encountered in the implementation
phase of the error diagnosis system were the overgeneration of alternative
analyses, which we had underestimated. This overgeneration is due both to
constraint relaxation and to phonological reinterpretation. In turn, it also
leads to a potential problem of error overflagging as many of the alternative
analyses, in order to exist, have to make use of constraint relaxation or
phonological reinterpretation. Use of either technique implies the insertion
of error marks in the structure, which are displayed to the user if they are
part of the alternative analysis selected as the most likely one.

Time issues prevented us from playing around as much as we wanted
to with different parameters in order to try to discover the best settings to
maximize the results obtained by the error diagnosis system. In particu-
lar, it would have been interesting to modify the number of passes into the
parser, with different packets of constraint relaxed at different times. One
can easily imagine that many permutations are possible, each requiring ex-
haustive testing in order to be able to measure one solution against another.
Effectively trying different technique combinations, including different ways
to handle converging and diverging results from the two implemented tech-
niques, would have been interesting as well, although very time consuming.

Even implementation phases, which could go on for ever with testing,
improvements and bug fixing working in a never ending loop, must end at
one point. We thus froze the development of the error diagnosis system at a
given point in time. It is the resulting version of the error diagnosis system
which is presented in this dissertation. This gave us the stable version we
needed in order to run tests on the system, in order to verify whether the
error diagnosis system which was built was usable in the context of a CALL
system used by intermediate to advanced adult language learners. Chapter 5
thus explains the tests which were conducted in order to determine how
good, or bad, our system is in terms of diagnosed errors, of undetected
errors, and of overflagging occurrences.

154 CHAPTER 4. IMPLEMENTATION PHASE

Chapter 5

Results

After a theoretical description of error diagnosis techniques (chapter 3) and
a report on their actual implementation (chapter 4), it is now time to discuss
the results obtained through the use of these error diagnosis techniques. This
is a way to control whether the theory keeps its promises and whether the
techniques are actually usable in a wide scope error diagnosis system such
as the one described in this dissertation work.

An evaluation of the prototype needs to be performed along at least the
three following axes:

1. quantitative results, i.e. actual numbers of errors detected or unde-
tected in specific corpora;

2. qualitative results, i.e. a more subjective general appreciation of the
system;

3. efficiency of the system, i.e. an estimate as to whether the resources
needed by the system stay within acceptable limits.

All of them are important to form a complete picture of the error diagnosis
system as it now stands. It is only by having a clearer image of the system
in action that we can try to draw conclusions as to its interest for actual
language learners as a tool, integrated or not within a larger CALL system.

In this chapter, we start by describing the types of corpora which have
been used to test the error diagnosis system (section 5.1). We continue in
section 5.2 by detailing the different results obtained on different corpora
and for the different error types which are supposedly treated by our error
diagnosis system. We then compare our system to a commercial system in
section 5.3, before concluding the chapter (section 5.4).

155

156 CHAPTER 5. RESULTS

5.1 Description of the test corpora

To test the error diagnosis system (EDS, for short) and its implemented error
diagnosis techniques, we have been using three different types of corpora.
Each of them has distinct advantages over the others. Two types of error-full
corpora were tested for six error categories, but only one for the remaining
categories. Combinations of tests with different types of error corpora help
us to form an overall picture of the diagnosis system.

In the following sections, we describe the three types of corpora, starting
with the most artificial one (5.1.1), moving to a corpus closer to reality
(5.1.2), to end up with almost authentic learner productions (5.1.3).

5.1.1 ‘Linguist’ sentences

The first type of corpus is composed of ‘linguist’ sentences. By this term,
we understand sentences which have been thought of and created only with
the goal of building such a corpus. The main characteristics of such a corpus
are

e relatively short sentences (sometimes even only parts of sentences);
e controlled vocabulary items;
e only one error per sentence;

e specific sentence structures to test particular configurations of the error
category.

A corpus of ‘linguist’ sentences is an interesting device to test that the
targeted error category is well detected in the expected syntactic configura-
tions. It is easy to modify one or two parameters of the sentence, such as
a vocabulary item, in order to verify possible reasons for undetected errors
or overdetected ones. This type of corpus is thus especially helpful in the
first stages of development in order to test the system while still being able
modify it according to the test results.

For a final evaluation stage, ‘linguist’ sentences are useful because they
might cover some areas of the error category under examination which are
not part of more authentic corpora because of a sparse data problem. In
particular, when an error subtype is especially rare in the authentic data,
it might still be important to have several examples of it for testing pur-
poses. However, one must note that ‘linguist’ sentences are usually relatively
shorter and simpler than sentences in more authentic corpora, and that there
may well be sentence structures never attested in actual language learner
productions.

A sample corpus made up of ‘linguist’ sentences for the verb complemen-
tation (CPV) error category is provided in appendix B.1.

5.1. DESCRIPTION OF THE TEST CORPORA 157

5.1.2 Simplified sentences

A more authentic corpus is composed of what we call ‘simplified’ sentences.
The source of this corpus is authentic sentences produced by language learn-
ers and extracted from the FRIDA corpus (for a description of FRIDA, see
section 4.2.1). These sentences have then been simplified by isolating only
the clause in which an error of the relevant category occurred, by correcting
any spelling mistake and all other errors in the sentence. In so doing, one
creates a corpus perfectly targeting one error category while still taking into
account sentence structures used by language learners and the specific errors
they produce.

The main characteristics of a corpus composed of simplified sentences
are

e actual errors made by language learners are present;

e there can be several errors in a sentence, but all should be of the same
error categorys;

e sentence structures used by language learners are used, as long as they
are grammatical;

e longer sentences are shortened to focus on the error category.

Thus, this type of corpus is already closer to what learners are going to be
inputting into the error diagnosis system. Obviously, however, only corpus
extracts are taken into account, and one can therefore easily miss some
error-full constructions produced by language learners but not included in
the extracted sentences.

A sample corpus of simplified sentences for the CPV error category is
presented in appendix B.2.

5.1.3 Authentic sentences

The last corpus type is composed of nearly authentic sentences. By this, we
understand sentences which have been actually produced by language learn-
ers, without being simplified. The only modification we permitted ourselves
on these sentences was to correct spelling mistakes with the help of a spell
checker. We tried to be loyal to the learners’ intentions by substituting er-
roneous words by what seemed the most likely proposal of the spell checker
and trying to imagine what the learners would have chosen, had they been
using a spell checker. Spelling corrections were deemed appropriate in view
of the fact that EDS does not include a spell checker but that it is supposed
that one is used before the error diagnosis system is activated.
The main particularities of this corpus type are:

158 CHAPTER 5. RESULTS

e several errors of different error categories can be found in the same
sentence;

e apart from spelling errors, language learners wrote the sentences as
such;

e sentences tend to be longer, more complex and more error-full than in
the other corpus types;

e sentences are as close as possible to the predicted input of the target
user population.

Moreover, corpora composed of authentic sentences used for this evalu-
ation can be further subdivided into two subtypes depending on the origin
of the sentences. Our main source of authentic data, for the development
and implementation phases as well as for the evaluation phase, has been the
FRIDA corpus. The FRIDA corpus, as described in chapter 4, section 4.2.1,
is essentially composed of hand-written essays produced by language learn-
ers and then keyed in by the CECL team. A sample corpus is available in
appendix B.3.1.

A second source of data comes from a CALL software prototype tested
with a student population within the FreeText project (a brief description
of the project was given in section 1.4). Sentences from this second source
were typed in directly by the learners in answer to specific questions or ex-
ercises encountered within the FreeText software, that is within the kind
of application in mind when designing this error diagnosis system. Unfor-
tunately, this second source of data, which we will call ‘FreeText data’ for
convenience sake, is not very rich in terms of sheer quantity of data. More-
over, the FreeText data was available quite late in the development of the
error diagnosis system and had not, at the time of the experiment, been
error tagged in the way the FRIDA corpus has been. Therefore, using it
implied first marking down all the errors that are found in it, and especially
the errors which EDS should be able to detect, in order to be able to verify
the actual performances of the diagnosis techniques. The whole corpus of
authentic sentences we used from this source is available in appendix B.3.2.

Differences between these two corpus subtypes, apart from size and error
tagging, are linked to the original writing medium. The FRIDA sentences
were first hand-written and then transcribed faithfully. However, it some-
times happens that words in the original paper corpus were unreadable and
were replaced with question marks to indicate that a word was not recov-
ered. It makes the automatic treatment of these sentences very difficult.
The FreeText data, on the other hand, is more likely to contain typograph-
ical errors and to miss a number of diacritics as it was directly typed by the
learners.! The FreeText data is thus more adequate overall, but its main

! Missing diacritics are especially frequent in typed data from learners whose first lan-

5.2. EVALUATION 159

drawbacks, small size and lack of error tagging, makes it unsuitable for large
amounts of testing.

5.1.4 Use of the different corpora

The diagnosis of the error categories were tested individually, using the
three types of corpora in different ways. Most categories were treated with
simplified sentences. Some used ‘linguist’ sentences as well, essentially when
there were not enough authentic examples to make a real test corpus (class
errors, for instance), or when precise knowledge of the information contained
in the lexicon proved useful to know whether the technique was adequate
or not (as in the case of verb complementation errors). Authentic sentences
(FRIDA data) were used with caution as it was difficult at times to decide
whether error detection and diagnosis in the specific error category under
examination were perturbed by other errors within the sentences. FreeText
data was used for the comparison with a commercial grammar checker.
The same corpora were used at different stage of the design and the
implementation of the error diagnosis techniques and one might argue that
the actual implementation of the techniques was tailored to the specific data
at hand, thus providing better results than on random data. This might be
partially true, but one must deny having knowingly tried to achieve this
effect. Reusing the same corpora happened because gathering error specific
set of data is time consuming and involved, for simplified and authentic
sentences, relying on the CECL team who efficiently provided us with the
corpora extracts, but whom we could not ask to repeat the task several times.
The FreeText data, however, was not used at all during the development and
implementation phases and thus can act as a neutral corpus.

5.2 Evaluation

An evaluation of the error diagnosis system as such, independently from
other systems, has been conducted. The version of the error diagnosis system
used for these tests includes both the constraint relaxation technique and the
phonological reinterpretation technique, but not the chunk reinterpretation
technique as it has not been implemented so far. The two used techniques are
combined following the cascade method, phonological reinterpretation being
activated only when constraint relaxation has not been able to provide a
full analysis for a sentence. Moreover, when phonological reinterpretation is
activated, constraint relaxation is disabled in order to reduce the number of
alternatives to be tried out by the system and thus to reduce the processing
time. To keep overflagging to a minimum as well, one displays errors found

guage uses basically no diacritic and whose keyboards do not make typing diacritics an
easy matter.

160 CHAPTER 5. RESULTS

by phonological reinterpretation only when the technique has permitted the
system to reach a full analysis for the sentence at hand.

In this section, we first look at quantitative results for each of the error
categories treated by the error diagnosis system (5.2.1). We used corpora of
the different types described in section 5.1. Some qualitative results follow
(5.2.2), based on less systematic tests, but more on a general impression of
the error diagnosis system and of its diagnosis techniques. We then discuss
the efficiency of the system as a whole (5.2.3).

5.2.1 Quantitative results

The error diagnosis system was tested on fourteen error categories. For each
of these categories, test files of different types of corpora were set up and
processed by EDS. A precise count of the number of errors in the corpora,
of detected and diagnosed errors, and of undetected errors was made in
each case. These results are reported here, hopefully in a sufficiently similar
format for each category to allow for easy comparison. Complete similitude
between the error categories is however impossible as the types of testing
corpora used are not always the same, nor the number of sentences in them.

In each case, we distinguish between the number of errors actually present
in the corpus, the number of errors which have been correctly detected and
diagnosed, errors which have been detected but which have received an in-
correct diagnosis tag, as well as overdetected or overflagged errors.

It is easy to compute the error recall rate? for all the types of corpora.
However, a precision rate® is not informative on corpora composed of either
linguist or simplified sentences as the sentences in both types of corpora are
biased by removing all difficulties besides one specific error per sentence.
Thus a recall rate will be provided systematically, but a precision rate will
be stated only when discussing an authentic corpus.

Auxiliary errors (AUX)

Errors of the auxiliary category are relatively few in number. The error diag-
nosis system was tested on this error category using three different corpora.
The first one is made up of linguist sentences, each containing an auxiliary
error. The second corpus mirrors the first one, but all the errors have been
corrected. Finally, the third corpus contains simplified sentences.

Table 5.1 shows that only a third of the auxiliary errors of this corpus
are correctly diagnosed. However, another third of the errors are detected

>The recall rate is the percentage of errors in the corpus actually diagnosed and/or
detected by the error diagnosis system.

3The precision rate is the number of diagnosed errors actually present in the corpus
compared to the total number of errors detected by the system, including occurrences of
overflagging.

5.2. EVALUATION 161

Table 5.1: Linguist sentences with auxiliary errors

Errors Diagnosed Detected Undetected Overdetected
Number 12 4 4 4 0
Percent 100 33.3 33.3 33.3 -

although given misleading diagnosis labels: two errors are considered to be
voice errors (as in example (75)) and the other two homonymy errors (as
in example (76)). Recall for detected errors, thus combining both correctly
diagnosed errors and simply detected ones, reaches 66.7%.

(75) *Tu t’as évanoui.
You yourself have fainted.
Voice error on évanoui (fainted).

(76) *II est dormi.
He is slept.
Homonymy error on est (is). Proposed correction: ait (have-subjunctive).

The second corpus, containing corrected versions of the sentences in the
first corpus, did not present any auxiliary error. However, three errors were
detected with a voice error tag.

Table 5.2: Simplified sentences with auxiliary errors

Errors Diagnosed Detected Undetected Overdetected
Number 26 8 0 18 0
Percent 100 30.8 0 69.2 -

Results of the third corpus, made of simplified sentences, are summarized
in Table 5.2. Only eight of the twenty-six errors were diagnosed, giving a
recall rate of 30.8%. There were no other detection of errors on the precise
location of the auxiliary error. For a number of undetected errors, the
problem seems to be linked to an incorrect analysis of the structure of the
sentence, and/or to incorrectly disambiguated lexical items. But these cover
only seven sentences, leaving eleven unaccounted for.

One should also note that each time an auxiliary error has been detected,
it is always the avoir (have) auxiliary which has been employed instead of
the expected and grammatical étre (be) auxiliary. We are thus able to detect
errors such as in (77).*

“Note also that when an incorrect auxiliary is used, no check is performed on the
agreement of the past participle. Past participle agreement rules in French strongly depend

162 CHAPTER 5. RESULTS

(77) *La pillule a apparu pendant les années 60.
The pill has appeared during the years 60’s.

Recall for auxiliary errors is low with linguist sentences and even lower
with simplified ones. Results are therefore not very satisfactory.® On the
plus side, however, there is no real occurrence of overflagging and thus users
of the error diagnosis system can trust the system when it indicates an
auxiliary error. They must nonetheless be aware that probably not all of
their auxiliary errors are detected.

Class errors (CLA)

Errors of the class category treated by our error diagnosis system are very
limited. This category was tested only on the incorrect use of the ce (this)
pronoun as subject of a verb other that étre (be).5 For this error category,
we were not able to provide a corpus of simplified sentences, as there were
too few examples, but we were forced to work with a very small set of linguist
sentences only. Test results are summarized in Table 5.3.

Table 5.3: Linguist sentences with class errors
Errors Diagnosed Detected Undetected Overdetected
Number 4 2 1 1 0
Percent 100 50 25 25 -

The CLA errors in two sentences were not shown by the error diagnosis
system because the first analysis provided by the system was not the ex-
pected one. In both cases, a further analysis gave the appropriate result.
One of these sentences is presented in (78), with the erroneous sentence
in (78a), the first but incorrect analysis in (78b), and finally the correct
analysis, complete with error tag, in (78c).

(78)a. *Ce montre qu’il l'avait vu.
This watch/shows which/that he it had seen.

on the auxiliary used. When an auxiliary is incorrectly used, we do not know whether to
apply the agreement rule with the current or the correct auxiliary. Thus we prefer doing
nothing. A second run through the diagnosis system, once the auxiliary error has been
corrected, would then detect agreement errors, if there are any.

®Remember the difficulties encountered during the implementation phase for the treat-
ment of the erroneous use of the étre (be) auxiliary and described in the section entitled
“Extent and limitations of the implementation”, page 132.

®Many class errors (as defined by the CECL), such as the choice between a definite or
indefinite determiner, are too semantic in nature to be treated by a syntactic grammar
checker.

5.2. EVALUATION 163

b. [DP ce [NP montre [CP [DP qu’ |; [6 [TP [DP il] [T I’y avait [VP
o [o] [el111110]
This watch which he it had seen
Gender error between ce (this) and montre (watch).

c. [TP [Dpce] [Tmontre [VP [CP qu’ [TP [Dpz’l] [T Uy avait [VP
ve [oee] 111111

This shows that he it had seen
Class error between ce (it) and montre (show).

In both analyses, there is an error: a gender error between ce (this-
masculine) and montre (watch-feminine) in the first analysis (78b); the ex-
pected class error between ce (this) and montre (show) in the second (78c).
Thus the problem does not lie here in the detection of the error, but rather in
the selection of the appropriate alternative analysis provided by the system.

The number of sentences is really to small to speak of recall or precision
rates. We can note, however, that in a second corpus containing seven
grammatical sentences with the kind of structures encountered in the corpus
of erroneous linguist sentences, no class error was detected. This result is
probably very dependent on the tight restrictions we imposed on errors of
this category, but it is nonetheless encouraging.

Adjective complementation errors (CPA)

Errors of adjective complementation are already more frequent than auxil-
iary errors or our limited version of class errors. Choosing the appropriate
preposition, whether it follows an adjective or a verb, is a particularly dif-
ficult task for language learners. We have been testing this error category
with a corpus of simplified sentences only, without resorting to made-up
sentences. The test corpus contains more sentences, which are longer and
more diversified in kind. This test corpus contains sentences which have
been less simplified than in many other cases. Test results are summarized
in Table 5.4.

Table 5.4: Simplified sentences with adjective complementation errors
Errors Diagnosed Detected Undetected Overdetected
Number 40 16 0 24 1
Percent 100 40 0 60 -

Recall on adjective complementation errors is only of 40%, which is not
altogether impressive, although already better than for auxiliary errors. We
are able to detect errors on both nominal and clausal complements of ad-
jectives, as shown in (79) and (80), respectively.

164 CHAPTER 5. RESULTS

(79) *1I est tout a fait différent a Maria.
He is completely different to Maria.
Adjective complementation error between différent (different) and a (to).

(80) *II est libre & choisir ce qu’il fait.
He is free to choose that what he does.
Adjective complementation error between libre (free) and a (to).

On the other hand, we have an occurrence of overdetection in the corpus
of simplified, error-full sentences. This is due to having other adjectives in
the corpus, besides those which have legal complements. Moreover, we also
tested the corpus after having corrected all the adjective complementation
errors and we found six occurences of overdetection in this error category.
These are mostly due, not to missing information in the lexicon, but to
incomplete analyses from the parser or to incorrect analyses, leading to the
erroneous attachment of a phrase as complement of the adjective. Thus, in
(81), a CPA error is noted between the adjective proche and a tense phrase
containing only avancerait.

(81) Cet homme proche de la nature avancerait mais pas de la méme
fagon qu’un homme social.
This man close to the nature would-go-forward but not of the same
way as a man social.
Adjective complementation error between proche (close) and avancerait
(would-go-forward).

Adjective complementation errors are relatively hard to detect because
most adjectives do not necessarily take complements and because of the
well-known ambiguity of preposition phrase attachment. Indeed, a prepo-
sition phrase following directly an adjective does not necessarily act as a
complement of that adjective, it might, for example, be a verb adjunct.
The syntactic parser must necessarily try all attachment positions and the
selection of the best analysis does not always correspond to the correct at-
tachment of a given preposition phrase.

Verb complementation errors (CPV)

Verb complementation is an even more frequent error category than adjective
complementation. Verb complements appear in most sentences and decid-
ing whether a complement requires to be introduced by a preposition and
selecting the correct one is a daunting task for language learners. Relying
on one’s own mother tongue is often a source of errors.

5.2. EVALUATION 165

For this error category, for which controlling the information contained
in the lexicon proved crucial, we have used a corpus of linguist sentences as
well as a corpus of simplified sentences to conduct our tests. In addition,
we verified for the verbs in both the linguist and the simplified corpora that
the expected subcategorization frame was present in the lexicon.

Table 5.5: Linguist sentences with verb complementation errors
Errors Diagnosed Detected Undetected Overdetected
Number 20 15 0) 0
Percent 100 75 0 25 -

Table 5.5 shows a recall rate of 75% on CPV error category for linguist
sentences, which is a good score. On three of the five cases in which the error
was not detected, the erroneous complement, headed by a preposition, was
taken to be an adjunct and attached to the sentence as an adverb phrase. In
the remaining two cases, no complete analysis was provided by the system.
When these linguist sentences were corrected and fed again into the system,
only one sentence did trigger an occurrence of overflagging. Although the
results are good, one must admit that part of the difficulty was avoided by
using, in the linguist sentences, verbs which had only one subcategorization
frame.

Results for simplified sentences, shown in Table 5.6 are less encouraging
at first sight, as recall drops down to 27.5%. This is due in good part to
verbs having several lexemes with different subcategorization frames.

Table 5.6: Simplified sentences with verb complementation errors
Errors Diagnosed Detected Undetected Overdetected
Number 80 22 0 58 0
Percent 100 27.5 0 72.5 -

One should also note that the verb complementation error category can
be divided into six subtypes with widely varying results. The six subtypes
are missing prepositions, confusion of preposition, and adjunction of prepo-
sition, for both nominal and clausal complements. Example (82) gives an
example of each of the subtypes. It is expected that both confusion of prepo-
sition and adjunction of preposition for nominal complements are not going
to be detected by EDS, because the system considers such complements are
adjuncts and happily attaches them as such. This prediction was confirmed
by the tests, as attested in Table 5.7 presenting the details of the CPV error
category by subtype. It is also interesting to note that results for clausal
complements are always higher than for nominal complements.

(82)a. Missing preposition with nominal complement

166 CHAPTER 5. RESULTS

*Cela bénéficiera la Grande-Bretagne.
This will-benefit the Great-Britain

b. Missing preposition with a clausal complement
*Il choisit acheter un bonbon.
He chooses buy a candy.

c. Confusion of preposition with a nominal complement
*Je pense d’eux.
I think of them

d. Confusion of preposition with a clausal complement
*On cherche de continuer la recherche.
One tries to pursue the research.

e. Supplementary preposition with a nominal complement
*Nous combattrons & l’ennemi.
We will-figth at the ennemy.

f. Supplementary preposition with a clausal complement
*Chacun doit de ne pas dépasser la limite.
Everyone must to NEG not pass-over the limit.

Reasons for the non-detection of the verb complementation errors are:

e the inherent capacity of the system to consider preposition phrases to
be adjuncts rather than complements;

e the possibility to use a verb lexeme with a different subcategorization
frame than the one expected given the sentence meaning;

e misanalyses which can sometimes put the verb and its complement
into different chunks.

On the bright side, the system is reliable in that both on the error-full
simplified sentence corpus and on a corrected version of it, there was no
occurrence of overflagging of CPV errors. Thus, we can rather confidently
say that, although far from all CPV errors are detected, when one is detected
then it is a real error.

Euphony errors (EUF)

Euphony errors have the particularity that they are very local errors, strict
adjacency between the words being necessary. It thus seemed inappropriate
to use a simplified set of sentences as a test corpus, as the simplifications
should not influence the detection of the euphony errors. Therefore, this

5.2. EVALUATION

Table 5.7: CPV error breakdown on simplified sentences

167

Errors

Diagnosed Detected Undetected Overdetected

Missing preposition on nominal complements

Number 18 10 0 8 0
Percent 100 55.5 0 44.5 -
Missing preposition on clausal complements

Number) 3 0 2 0
Percent 100 60 0 40 -
Confusion of preposition on nominal complements

Number 29 2 0 27 0
Percent 100 6.9 0 93.1 -
Confusion of preposition on clausal complements

Number 10 3 0 7 0
Percent 100 30 0 70 -
Adjunction of a preposition on nominal complements

Number 10 0 0 10 0
Percent 100 0 0 100 -
Adjunction of a preposition on clausal complements

Number 8 4 0 4 0
Percent 100 50 0 50 -

Table 5.8: Authentic sentences with euphony errors

Errors Diagnosed Detected Undetected Overdetected
Number 25 19 0 6 0
Percent 100 76 0 24 -

168 CHAPTER 5. RESULTS

error category was tested only on authentic sentences which have been spell
checked. Results are summarized in Table 5.8.

Of the six errors which were not detected, two are due to unknown words
and one to an incomplete analysis which separated the two elements into
different chunks. One of the errors, given in (83), is the only occurrence
in the corpus of a supplementary contraction. It is therefore highly possi-
ble that this particular subtype of error bypassed our vigilance during the
implementation phase and is not treated by the system. Another reason
could be that the word du (of-the) does not bear the appropriate lexical
feature (non-elided form) in the lexicon. The cause of the undetection of
the remaining two errors is so far unexplained.

(83) *Les deux cotés du argument peuvent étre justifié.
The two sides of-the argument can be justified

The euphony error category provides one of the best set of results, with a
recall at 76% (moreover on authentic data which is supposedly more difficult
than the other two types of corpora) and no occurrences of overflagging in
the test corpus, that is a 100% precision rate. These excellent results might
be partly derived from the locality feature of the error category.

Gender errors (GEN)

The gender of nouns is something native speakers do not have to pay at-
tention to, so ingrained it is in them. For language learners, this is quite
another matter. Indeed, the gender of noun is abstract in that there is no set
of rules which can predict reliably the gender of a given noun. Some clues
can be derived from the ending of the words, but they are by no means
error-proof. Moreover, some homophones might have different genders de-
pending on their meaning.” Thus, the gender of nouns must be learned and
is a frequent source of agreement errors with determiners, adjectives, and
past participle.

Tests were conducted on a corpus of 50 simplified sentences, each with
a gender error, and the results are summarized in Table 5.9.

Table 5.9: Simplified sentences with gender errors

Errors Diagnosed Detected Undetected Overdetected
Number 50 29 3 18 1
Percent 100 58 6 36 -

Of the 18 errors which were not detected, 6 imply a non-obligatory pro-
noun reference in the sentence, as in example (84) where the pronoun elle

"poste is either feminine when speaking about a post office, or masculine when a job
position is meant.

5.2. EVALUATION 169

(she) could make reference to someone not mentioned in the first part of
the sentence, rather than to the masculine word mouvement (movement).
3 other errors are due to ambiguous words in the sentence which can take
both genders depending on their meaning. For 3 sentences, incorrect anal-
yses of the sentences were provided, thus hiding the gender error. For the
remaining 6 errors, no clear reason for the undetection could be extracted.

(84) Pendant que le mouvement a libéré la femme de la cuisine, elle risque
de l’enchainer au bureau.
While that the movement has liberated the woman from the kitchen,
she risks to her chain to-the office.

Given the data in this simplified corpus, there are at least two ways to
compute a recall rate. The first one is to consider that there are truly 50
errors in the corpus and to take into account both diagnosed and detected
errors. This gives us a recall rate of 64%. The second method is to consider
that in those 50 errors, only 40 could actually be detected by the error
diagnosis system. This number of 40 is reached by subtracting 6 errors
which are referential problems, 3 errors due to ambiguous lexical items, and
1 error which is actually a euphony error® (and was included in the detected
columns of Table 5.9). By doing this, we find ourselves with 31 diagnosed
and/or detected errors of the 40 which were detectable. This gives us a
recall rate of 77.5%.

Irrespective of the manner in which recall is computed, whether we reach
a rate of 77.5% or 64%, the achieved score is honorable, in particular in the
view of the very few occurrences of overflagging in this error category. On
each of the versions of the corpus of 50 simplified sentences, with a gender
error or corrected, only one instance of overflagging was presented. Thus,
gender error seems to be also a very reliable error category.

Homonymy errors (HOM)

The homonymy error category is the only one which is diagnosed through
the phonological reinterpretation technique. Results of tests on this error
category are thus the only ones available for the whole technique and their

8While both words of example (85a) are feminine, one must use the so-called masculine
possessive determiner for euphony reasons in front of words starting with a vowel (85b).
(85)a. *sa égalité
its-feminine equality
b. son égalité
its-masculine equality

This error is correctly diagnosed by EDS as a euphony error, rather than a gender error,
although it was tagged in the FRIDA corpus as a gender error.

170 CHAPTER 5. RESULTS

importance is therefore increased. Tests were conducted using a corpus
of simplified sentences containing 68 homonymy errors. The results are
provided in Table 5.10. An example of a correctly detected homonymy error
is given in example (86).

Table 5.10: Simplified sentences with homonymy errors

Errors Diagnosed Detected Undetected Overdetected
Number 68 31 2 35 4
Percent 100 45.6 2.9 51.5 -

(86) *Que se soit en Russie ou en France.
Whether itself is in Russia or in France.
Homonymy error on se (itself). Correction proposal: ce (it).

35 undetected errors might seem a very large number. They are due
to two factors. The first one is that phonological reinterpretation can ap-
ply only if a first pass in the error diagnosis system provides only partial
analyses. It so happens than in 15 sentences of this ungrammatical corpus,
the error diagnosis system still manages to reach complete analyses before
phonological reinterpretation is activated, as in (87a), with its complete
analysis in (87b)). For those, phonological reinterpretation has not been
activated and there was therefore no possibility to diagnose homonymy er-
rors. Moreover, in 20 other cases, even with phonological reinterpretation
activated, it was not possible for the system to provide a complete analy-
sis of the sentences, as in (88). As it was decided to display the results of
phonological reinterpretation only when a full analysis had been reached, in
order to control the number of overflagging occurrences, it was not possible
to show homonymy errors in these additional 20 sentences, although some
might have been computed during the phonological reinterpretation phase.

(87)a. *Sont attractivité.
Are attraction.

b. [TP [DP e] [T sont [VP [NP attractivité ||] |

(88) *L’homme est le plus fort mat la femme est la plus belle.
The man is the most strong May the woman is the most beautiful.
No complete analysis, even with phonological reinterpretation.

There were four occurrences of overdetection, which is higher than for
most other error categories. However, in all 4 cases, the overdetection ap-
pears on a word adjacent to one which actually carries a diagnosed homo-
nymy error. Thus, by stretching things a little, we could even consider that

5.2. EVALUATION 171

these overdetections are simply a form of detection of an error but of wrongly
posing the diagnosis, thus indicating two locations instead of one. Also, 2
errors were correctly detected but misdiagnosed, in that an erroneous cor-
rection proposal was made. It is thus important to make the learner aware
of the limits of the system and to warn them that the correction proposals
are tentative only and need to be verified.

For this error category, there are also two ways to compute recall. The
first one is to take into account all 68 errors contained into the test corpus.
Given that 31 errors were diagnosed and 2 additional were detected, we
reach a recall rate of 48.5%. Now, by considering only those sentences in
which the diagnosis technique had a chance to discover a homonymy error,
that is in disregarding the 15 sentences for which a complete analysis was
found before applying phonological reinterpretation, we reach a recall rate
of 62.3%. Although not as good as the recall rate for euphony errors, the
present result is already fair.

Number errors (NBR)

The number error category, while strongly linked to the gender error cate-
gory, does not depend on knowledge by heart on the part of the language
learners. It is more a question of remembering to make the necessary agree-
ments between the different elements of a sentence. While this is relatively
easy on simple sentences, errors are more frequent when sentences become
more complex, with intervening phrases, coordination and the like. This
seems to be reflected also in the results of tests on linguist sentences (Ta-
ble 5.11) and simplified sentences® (Table 5.12).

Table 5.11: Linguist sentences with number errors

Errors Diagnosed Detected Undetected Overdetected
Number 32 21 9 2 0
Percent 100 65.6 28.1 6.3 -

By taking into account both detected and diagnosed errors, the recall
rate for linguist sentences reaches the high score of 93.8%. Of the nine
errors which were detected but not correctly diagnosed, five are classified
as such because the error tag was attached to only one of the mismatched
elements. The remaining four indicate a voice error instead of the expected
number error. In those four sentences, the incriminated error is on the past
participle of the verb se laver (to wash oneself) and one can thus wonder if
the misdiagnosis is linked to reflexive verbs. For the two sentences for which

90One must remember that ‘linguist’ sentences are in fact simpler than ‘simplified’
sentences, the latter being derived from authentic learner productions.

172 CHAPTER 5. RESULTS

the number error was not detected, the underlying analysis of the sentence
was not correct.

Table 5.12: Simplified sentences with number errors

Errors Diagnosed Detected Undetected Overdetected
Number 50 28 0 22 4
Percent 100 56 0 44 -

On the simplified sentences, recall is at 56%, which is significantly lower
than for linguist sentences. Incorrect analyses leading to undetected errors
were encountered in many sentences. Sometimes, the mismatched elements
are found in separate chunks. At other times, an adjective, as in example
(89a), is taken to be a noun, thus forming a kind of compound noun with the
preceding noun (89b), instead of a complex noun phrase with an adjective
(89c).

(89)a. *II se trouvera prié de rester dans les limites fixées par le parlement
européens.
He himself will-fixed asked to stay within the limits fixed by the par-
liament european-plural.
b. *

le [yp Parlement] [.. européens |]

[DP NP

le [NP parlement [européens | | |;]

* .
[DP AP[DPeZ] [A
Number error between parlement (parliament) and européens (european).

Often coordination leads to an ambiguity of attachment, which is an
open door to misflagging. Not showing an error is sometimes preferred on
the grounds of preventing overflagging occurrences. At times also, number
errors on the verb of a relative clause remains undetected because the relative
pronoun, which acts as the subject of the clause, is not correctly linked to
its antecedent.

The not so good results for the number error category are partly linked to
the desire to keep occurrences of overflagging in check as sometimes further
analyses of the same sentence (recall that only one is actually presented to
the users) do contain the appropriate error marks. As for the occurrences of
overflagging already present in the corpus of simplified sentences, example
(90) is due to an ambiguity in a structure where both mass and count nouns
can be used and where the incriminated noun did not bear the appropriate
mass noun feature and thus was required by the system to be a plural. The
other occurrences are not explained so far.

5.2. EVALUATION 173

(90) ... trop de pouvoir ...
... too-much of power ...
Number error between trop (too-much) and pouvoir (power).

Negation errors (NEG)

The frequency of the negation error category is not known precisely as nega-
tion errors gather parts and pieces of several categories of the CECL typol-
ogy. There are two main instances of negation errors: the omission of the
negative particle ne, which is compulsory in written French but not orally,
and the omission of pas (not). Both types are encountered in the corpus
which is not surprising, given that in many languages only one element is
necessary to indicate negation. The difficulty for language learners is to
forget neither.

To test the error diagnosis system on negation errors, we used a corpus
of 42 simplified sentences. The results of these tests are summarized in
Table 5.13.

Table 5.13: Simplified sentences with negation errors

Errors Diagnosed Detected Undetected Overdetected
Number 42 21 0 21 1
Percent 100 50 0 50 -

Recall is only at 50% which is not a very high score, especially given
that one occurrence of overflagging happened in the original test corpus and
4 on the same corpus once the sentences were corrected. Main difficulties
in detecting errors seem to be linked to incorrect analyses on the part of
the parser, with the negative adverb pas (not) being attached to an incor-
rect position, often to the following verb as in (91), or taken to be a noun
(meaning ‘step’) (92).

(91)a. *On peut pas répondre a la question.
One can not answer to the question.

b- [[pponlilgpeut [[[ppeillg [yp [pqep Pos][répondre
a la question]]]]]]]
One can not answer to the question

(92)a. *En étant pas si isolé.
In being not so isolated.

b. [CP en [TP [Dpe] [Tét(mt [VP [Nppas [Apsi isolé 111111
In being step so isolated

174 CHAPTER 5. RESULTS

Most occurrences of the problem of the ambiguous pas (not/step) illus-
trated in (92) can be put aside by marking a strong preference for structures
in which this particular word is a negative adverb, rather than a noun. As
for the incorrect attachment of the negative adverb, it is, once again, due at
least in part to the desire to reduce the number of overflagging occurrences,
which tends to promote error-free analyses to the top of the computed anal-
yses.

Adjective order errors (ORDAJ)

In French, adjectives are placed either before or after the noun they modify.
The most frequent position is post-nominal, but some specific adjectives can
take both positions, with a slight difference in meaning between pre-nominal
and post-nominal positions. There are, however, truly post-nominal adjec-
tives. Thus, we can detect post-nominal adjectives placed pre-nominally
with a higher degree of certitude than we can detect pre-nominal adjectives
placed post-nominally. Tests on adjective order were performed on a corpus
of simplified sentences and the results are summarized in Table 5.14.

Table 5.14: Simplified sentences with adjective order errors
Errors Diagnosed Detected Undetected Overdetected
Number 23 7 0 16 0
Percent 100 30.4 0 69.6 -

Some of the instances in which the error diagnosis system did not detect
any adjective order error are due to adjectives which can take both pre-
nominal and post-nominal positions, depending on the context, as in the
two correct phrases of example (93). Errors with this type of adjectives are
not flagged in order to prevent a too high number of overdetections.

(93)a. Ces derniers mois.
These last months.

b. La semaine derniére.
The week last.

In a few other cases, the ordering error occurs between two adjectives
which should be inverted. Their usage is more akin to fixed phrases or
compound words, as in example (94a), corrected in (94b). This type of
adjective order error is not treated at present in EDS as fixed phrases were
not part of the selected error categories. Further research would be needed
to detect this type of adjective inversion.

(94)a. *Le produit brut intérieur.
The product gross domestic.

5.2. EVALUATION 175

b. Le produit intérieur brut.
The product domestic gross.

Given these good reasons for not detecting many errors, we reach only
a rather low recall of 30.4% for adjective order errors. On the bright side,
however, there is not a single instance of overdetection in either the corpus
of simplified sentences nor in its corrected equivalent. Once again, users can
be quite confident that when an error of this category is detected by the
system, there is actually such an error in the input data.

Adverb order errors (ORDAV)

The diagnosis of adverb order errors suffers from the same kind of difficulties
as adjective order errors. The placement of adverbs in French has a certain
degree of freedom which must be accommodated in order to prevent over-
flagging. However, at the same time, there is a number of restrictions on
which types of adverbs can be positioned in specific locations, taking into
account that many frequent adverbs belong to several types at the same
time.

Table 5.15: Linguist sentences with adverb order errors

Errors Diagnosed Detected Undetected Overdetected
Number 19 7 0 12 0
Percent 100 36.8 0 63.2 -

The first series of tests on the diagnosis of adverb order errors were
conducted on linguist sentences and the results are provided in Table 5.15.
Recall is very low, at 36.8%, especially considering that this corpus contains
carefully selected sentences and adverbs. It does not bode very well for tests
on the second corpus, this time composed on authentic sentences, as one
usually gets the best results with linguist sentences, then with simplified
ones, and the worst with authentic ones.

Table 5.16: Authentic sentences with adverb order errors
Errors Diagnosed Detected Undetected Overdetected

Number 36 6 0 30 2
Percent 100 16.7 0 83.3 -

Table 5.16 presents the test results for authentic sentences. Indeed, on
authentic sentences, recall diminishes by more than 50% to reach the very
low score of 16.7%. In order to defend the error diagnosis system, one must
take into account that the sentences under scrutiny contain many other
errors and can be very long (with a maximum of 55 words within a single

176 CHAPTER 5. RESULTS

sentence). Moreover, it is to be noted that the two occurrences of ORDAV
overflagging occur in a sentence which received only partial analyses, and
whose error marks are therefore less reliable than if it had been completely
analyzed. As such, precision stands at 75%.

Nevertheless, the poor results obtained on the adverb order error cate-
gory can be partially explained by the numerous legal positions for adverbs
in a sentence, the difficulty to classify adverbs into strict types which can
then be assigned to specific positions, and the strong desire to minimize
overflagging which leads EDS to refrain marking an error when in doubt
and thus to lower recall rates.

Person errors (PER)

Person errors are not as frequent as errors of the two other types of agree-
ment we have discussed, namely gender and number.!? This error category
was tested on a corpus of simplified sentences and the results are shown in
Table 5.17.

Table 5.17: Simplified sentences with person errors

Errors Diagnosed Detected Undetected Overdetected
Number 45 29) 11 0
Percent 100 64.4 11.1 24.4 -

The five detected errors can be split into two groups. Three sentences
receive a person error tag on only one of the mismatched elements, while
the other two are considered to be homonymy errors.

Of the eleven undetected errors, six are referential errors and cannot be
diagnosed without a complete semantic analysis, as in example (95a) where
the error is not detected by the system as there is a plausible interpretation,
while (95b) is the correction expected given the context of the sentence.

(95)a. Ils disent: fais ce que je veuz.
They say: do that which I want.

b. Ils disent: fais ce que tu veus.
They say: do that which you want.

One other undetected error comes from a sentence containing other fatal
errors which prevented the detection of the person error. The remaining four
undetected errors where not tagged in the analysis presented to the user,

0Note that we consider an error between, say, a first person singular subject and a first
person plural verb to be strictly a number error, and not a person error. An error between
a second singular subject and a third plural verb will be taken as a double number and
person error.

5.2. EVALUATION 177

but where detected in the second computed analysis of those sentences,
thus indicating that the diagnosis mechanism works well, even though the
analysis selection mechanism is not without faults.

The rough recall rate is at 75.6%. However, if we subtract from the
number of sentences the ones containing a reference error which we know
not to be able to detect, and take into account both the correctly diagnosed
errors and the detected ones, we obtain a recall rate of 87.2% which is a
high score, especially compared to some for other categories which were
much lower. Moreover, overflaggging occurrences are pretty rare, as there is
only one instance in the corresponding corpus with corrected sentences.

Missing punctuation errors (OUB)

Errors of this category, which for EDS contains only errors on missing hy-
phens between a verb and its inverted subject, have not been tested. It
was implemented on the basis of some linguist examples, but there is no
occurrence of such an error in the FRIDA corpus extract containing errors
on hyphens.

Redundancy errors (RED)

The efforts developed to treat a specific subtype of redundancy errors'! seem

at first sight to have be in vain. The specific error subtype we are trying to
diagnose is the erroneous use of des (of-the) instead of de (of) in complex
determiners as illustrated in the incorrect sentences (98) and (99).2

' This error category was not mentioned in chapter 4. Tts inclusion derives from a late
request from members of the FreeText project. Moreover, we attempt to diagnose only a
very small subtype of redundancy errors.

12There seems to be a parallel between this error type and the problem of indefinitness
encountered in the sentences of example (96). Both (96a), which is indefinite, and (96b),
with a definite determiner and a relative clause, are grammatical. However, (96¢), with a
definite determiner but no relative clause, is ungrammatical.

(96)a. Il est venu des amis.
It is come some friends.

b. Il est venu les amis que j’attendass.
It is come the friends whom I awaited.

c. Il est venu les amis.
It is come the friends.
In (98) and (99), des (of-the) is the contraction of the definite de les (of the). If a relative

clause is added, the sentence becomes grammatical, as in (97).

(97) J’ai mangé assez des olives qui sont dans ce plat.
I have eaten enough of-the olives which are in this dish.

178 CHAPTER 5. RESULTS

(98) *II s’est fait beaucoup des ennemis.
He himself has made many of-the enemies

(99) *J’ai mangé assez des olives.
I have eaten enough of-the olives.

Efforts seem to have been without results as none of the topmost anal-
yses, for none of the 10 linguist sentences or the 22 simplified ones shows
any error. Recall is therefore at 0%. Fortunately, there is a rather simple
explanation. First of all, it is important to be aware that if the topmost
analysis for a given sentence does not bear a RED error mark, a further
analysis does for most sentences. Thus, the problem does not lie in the de-
tection and diagnosis of the error per say, but rather on the ordering of the
alternative analyses. As it has been mentioned a number of times already,
we took the policy to favor a low number of overflagging occurrences over
higher recall rate, implementing a device which promotes error-free analyses
to the top. It is this same mechanism which prevents the redundancy errors
to be shown. In most cases, analyses of sentences co-exist where the word
which should be followed by de (of) instead of des (of-the) is taken either
as a determiner or as an adverb. The error diagnosis mechanism is tailored
only to the determiner analysis and thus misses when the word is analyzed
as an adverb.

The first two analyses for example (99) are given here as (100a) and
(100b). (100b) is the expected structure with the appropriate RED error
mark, but it appears in second position and is thus not displayed to the
users.

(100)a. [TP [DP] [Tai [VP mangé [Ava [PP [Ava assez [Edes [DP
[Olives 111111111

I have eaten enough of-the olives

b [[pp 1 gai [pmangé [Jassez [des [[olives]]]

1171
I have eaten enough of-the olives
Redundancy error on des (of-the).

VP

A possible solution to the current problem of not showing the expected
analysis would be to promote the importance of the determiner reading of the
words for which there is this type of redundancy error over the adverb read-
ing. If this took precedence on the error-free priority currently implemented,
the analyses containing the appropriate error marks would be displayed to
the users, thus hopefully increasing the recall rate to a satisfactory level.

5.2. EVALUATION 179

Voice errors (VOI)

The last error category to have been tested is voice. Two tests were con-
ducted, the first on linguist sentences, and the second on simplified sentences.
Results are presented in Table 5.18 and Table 5.19, respectively.

Table 5.18: Linguist sentences with voice errors

Errors Diagnosed Detected Undetected Overdetected
Number 10) 2 3 0
percent 100 50 20 30 -

On linguist sentences, the recall rate, taking into account both diagnosed
and detected errors, reaches a score of 70% which is honorable. The two
errors which have been detected but incorrectly diagnosed were considered to
contain a homonymy error and a correction suggestion was made to change
the verb for one of its homonyms. (10la) presents one of the incorrect
sentences and (101b) the suggested correction.

(101)a. *II se dort.
He himself sleeps.

b. Il se dore.
He himself sunbathes.

Table 5.19: Simplified sentences with voice errors

Errors Diagnosed Detected Undetected Overdetected
Number 8 2 1) 0
percent 100 25 12.5 62.5 -

As often, results are worse on simplified sentences. Indeed, recall for
detected and diagnosed sentences reaches only 37.5%. This is due in part to
the fact that 3 out of the 8 simplified sentences do not receive a complete
analysis from the system. Moreover, the separation of the different chunks
appears at, or close to, the erroneous part, which in the three cases is the
addition of an illegal reflexive pronoun, as illustrated in (102) where the
supplementary reflexive is in bold.

(102) *Il y a une seule chance de s’adhérer au systéme.
There here has one single chance to oneself adhere to the system.

For the other two sentences in which the mistake was not detected, it
is this time a case of a missing reflexive pronoun with a pronominal verb.
Why such missing reflexives are sometimes detected but not always has not
found a satisfactory explanation so far.

180 CHAPTER 5. RESULTS

Recapitulation

Table 5.20 gives a summarized overview of the different recall rates achieved
for the fourteen error categories detailed above, depending on the type of
corpus used.

Table 5.20: Recapitulation of recall rates in %

Linguist | Simplified | Authentic
AUX 66.6 30.8
CLA 50
CPA 40
CPV 75 27.5
EUF 76
GEN 64 - 77.5
HOM 48.5 — 62.3
NBR 93.8 56
NEG 50
ORDAJ 30.4
ORDAV 36.8 16.7
PER 75.6 — 87.2
RED 0 0
VOI 70 37.5

As one can see from Table 5.20, results vary greatly from one error cat-
egory to the next. On linguist sentences, we go from a rock bottom 0%
recall to a high 93.8%. On simplified sentences, depending on the calcula-
tion method, one reaches 87.2%, but many recall rates are between 30% and
40%. Moreover, one must keep in mind that the number of errors on which
these recall rates are computed vary greatly from a handful of sentences
to a maximum of 80. There is no guarantee that these recall rates would
remain constant on larger test corpora. It is thus difficult to give an over-
all quantitative appreciation of the system. We can nevertheless say that
agreement errors (gender, number and person), as well as euphony, negation
and homonymy errors, tend to perform better than the others.

5.2.2 Qualitative results

Assessing results qualitatively is much more subjective than doing so quan-
titatively. It is often more akin to a general appreciation than to a detailed
review, although some specific points may be discussed for illustration pur-
poses. In this section, we first discuss constraint relaxation and some of the
error categories treated by this technique. We then continue with phonolog-
ical reinterpretation, before looking at the system as a whole.

5.2. EVALUATION 181

Constraint relaxation

Results from constraint relaxation vary greatly depending on the error cat-
egories one looks at, that is depending on the constraints which are relaxed.
While results are very good for some error categories such as gender or eu-
phony, they are poor for others like verb complementation or adverb order on
more authentic data. It is quite clearly in the more complex error categories
that one encounters more difficulties, which is not very surprising.

An important factor in the quality of the results of a given error category
is naturally the information contained in the dictionary. To obtain good
results, the information must obviously be correct and complete. But apart
from this, the information must also be relatively simple and with as little
alternatives and ambiguities as possible.

For verb complementation (CPV) errors, for example, the difficulty of
error checking greatly increases when there are several subcategorization
frames for a single verb.!> The system must check each subcategorization
frame to find a best match in which all complements are present and none
superfluous, or against which to mark the diagnosis. Moreover, lacking any
form of semantics in the system, we are not able to determine whether some
prepositional phrases should be considered as complement or as adjunct.
Therefore, all prepositional phrases which do not find an appropriate slot
in the subcategorization frame end up as adjunct and are not treated as an
error. Sentences in (104a) and (104b) are treated in exactly the same way
and the system misses the CPV error in (104a).'*

(104)a. *J’aide a la personne.
I help to the person.

b. J’aide a la maison.
I help in the house.

Adverb order errors are also among the less well treated error categories.
There is, first of all, a certain degree of freedom in the position of adverbs
in French sentences. Then, it is quite difficult to strictly classify the adverbs
along the lines of their legal positions in a sentence. Moreover, it can be
argued that some adverbs belong to several types depending on their alter-
nate meanings. It thus becomes quite difficult to ascertain automatically
whether a given adverb is in one of its legal positions or not and the results

!3Having several subcategorization frames is the norm rather than the exception.
“However, if the complement is pronominalized, as in (103), the error is correctly
diagnosed.

(103) *Je lui aide.
I him/her help

182 CHAPTER 5. RESULTS

of such an error category are less than satisfactory. Both overflagging and
non-detection occur much too frequently in this error category.

There are, nonetheless, other error categories for which results are of a
much higher quality. It is the case of euphony errors, for example. Errors in
this category are ‘simpler’ to detect. The words involved must be adjacent
to one another. Some very specific word features, used only for euphony
matters, are tested. There is little room for ambiguity and none for seman-
tics, which suits an automatic syntactic system well. Overflagging in this
error category is rare and undetected errors are often due to words not be-
longing to the dictionary, such as foreign or borrowed words. This confirms
the importance of the correctness and completeness of the dictionary one
uses.

Although some error categories are more difficult to diagnose with con-
straint relaxation than others, the overall result of the use of constraint
relaxation as a technique for grammar error diagnosis is indeed positive if
proper care is respected in the implementation.

Phonological reinterpretation

Qualitatively speaking, each instance of phonological reinterpretation can
be either very good or very bad. One either indicates a true homonymy
error or one overflags. This might not seem so different from other error
categories. However, as one proposes a correction with phonological rein-
terpretation, overflagging appears quite badly because in those cases the
correction proposal is usually completely off the mark, clearly showing a
real misinterpretation of the sentence. Now, when phonological reinterpre-
tation indicates a true homonymy error, the correction proposal can also
be appropriate or not. However, an inappropriate correction proposal for a
real error is not as blatant, especially if the proposal is of the correct lexical
category and the choice between the alternatives is a question of semantics.

The number of reinterpreted words in a sentence is clearly linked to
the number of chunks resulting from a parse of that sentence. Thus, a
sentence analyzed as many chunks has a higher risk of having several of its
words reinterpreted. However, it does not necessarily correspond to a similar
increase in the risk of the users employing homophones. Therefore, in a
sentence analyzed as many chunks, the risk of overflagging is greater than
in a sentence analyzed as fewer chunks. In order to reduce the number of
overflagging occurrences, the decision was taken to present the diagnosis by
phonological reinterpretation only if it led to a complete analysis. Indeed, if
phonological reinterpretation still resulted in chunks, it would be much easier
for correct words at chunk boundaries to be reinterpreted erroneously.

Through phonological reinterpretation, several error categories can be
detected, but so far they are all diagnosed as homonymy errors.

5.2. EVALUATION 183

(105) *Heureusement elle a réussit a le retrouver.
Luckily she has succeeds to it find-again

In example (105) above, réussit (succeeds) is an indicative present, third
person singular, instead of a the past participle réussi (succeeded). It is
a tense/mode error which we do not treat as such in the error diagnosis
system, but the mistake is detected through phonological reinterpretation
and, so far, given a homonymy error mark. It would be a great improvement
to refine the homonymy error diagnosis by looking in more details at the
common features of the original word and the reinterpreted one. In the
present case, it would be easy to realize that we are dealing with the same
verb, only at a different tense and mode, and to mark the error as such.

The system as a whole

Not all errors in a sentence or a text are diagnosed by the system. Some
errors might not be part of the set of treated error categories. Moreover, not
all errors which should be treated are found by the system. It is therefore
absolutely necessary to warn the users of this matter, so that they do not
believe that the system in infallible and detects all errors.

Indeed, some errors in the sentence, whether they are themselves part
of the set of treated errors or not, prevent the diagnosis of other errors in
the same sentence. By correcting the errors flagged by the system and by
rechecking the syntax, one might see other errors appear which were, in fact,
hidden before by the previous errors. Sometimes, the blocking error is not
part of the set of errors treated by the system. This is the case in particular
with missing diacritics on the final ‘e’ of past participles from verbs of the
first group (ending in ‘-er’).

(106)a. *Mais soudainement j’ai tombe.
But suddenly I have tomb.

b. *Mais soudainement j’at tombé.
But suddenly I have fallen.
Auxiliary error on word ai (have).

c. Mais soudainement je suts tombé.
But suddenly T am fallen.

In example (106a), the missing diacritic on tombe (tomb) is not detected
by the spell checker because it results in a legal word. The auxiliary error
is not detected either. However, if the missing diacritic is replaced, as in
(106b), the auxiliary error is appropriately detected by the system. The
correct sentence is given in (106c).

184 CHAPTER 5. RESULTS

If it is of the utmost importance that the users of the system be aware
that not all error can be diagnosed by the system, and that, even for the error
categories supposedly treated, not all error are found each time, it is equally
important for them to know that not all flags raised by the system denote
real errors. Indeed, there is a certain amount of overflagging occurrences,
which vary depending on the error category. Qualitatively speaking, one
must find the right balance between recall and precision. A high recall rate
indicates that a large proportion of the errors have been found, while a
high precision rate confirms that the system detects real errors and does not
overflag much. While ideally both should be high, this is rarely the case.
With language learners, one must tend towards a high precision rate, be it
at the cost of a lower recall rate. Indeed, it is more acceptable for the system
to leave some errors undetected than to overflag so much that one does not
know anymore which error diagnosis denotes actual errors in the learners’
productions.

However, overflagging is a major unresolved issue within EDS when it
is used on authentic sentences. The longer the sentence, the higher the
risk of having overflagging instances. Some error categories seem to be more
prone to overflagging than others, but all are concerned by the phenomenon.
Some overflagging occurrences are due either to incorrect information in
the lexicon or to incomplete or imperfect implementation of the diagnosis
techniques.

(107) ... beaucoup d’attention ...
. much of attention ...
Number error between beaucoup (much) and attention (attention).

For example, in (107), there is an overflag indicating a non-existant
number error between beaucoup (much) and attention (attention). Tt is
either a coding error with a too restrictive constraint which does not take
into account that beaucoup (much) can take a singular complement if this
complement is a mass noun, or to an incomplete entry in the lexicon for
attention (attention) where the mass noun feature is missing. In both cases,
the problem can be easily put to rights.

More problematic are the occurrences of overflagging resulting from an
incomplete or erroneous analysis of a sentence. In these cases, it is much
more difficult, if not to say impossible in some instances, to pinpoint the
precise reason of the overflagging and to correct it. Numerous real errors in
a sentence can prevent the system to reach a good analysis of the sentence
and even partial analyses can be themselves faulty. Misinterpretation of am-
biguous attachments, coordinations, or words is a high risk for overflagging.
This risk can be slightly mollified if one takes the option to warn the users
each time a sentence does not attain a complete analysis, so that they know
that in these cases they must take the diagnosis as tentative only and not

5.2. EVALUATION 185

trust it as completely as at other times. The error flags would still be raised,
but they could be displayed as warnings to the users. Another possibility to
attempt to contain the number of overflagging occurrences is to be stricter in
the way constraints are relaxed. This would probably diminish the number
of real errors detected by EDS, but might be beneficial in the long run if it
significantly lowers the number of overflagging occurrences. This should be
investigated at least for error categories with few errors in the corpus and a
high percentage of overflagging.

Results obtained with the error diagnosis system vary depending on the
testing corpus. On linguist sentences, one obtains a good recall for most
error categories, and very few instances of overflagging, even when all errors
in the sentences have been corrected. Results are not as good with simplified
sentences, but they are still more than acceptable. This shows that the error
diagnosis system has the capacity to detect and diagnose the different error
categories, even in linguistically complex sentences. As expected, results
are worse with authentic data, due in good part to the length of sentences
and to the numerous errors they contain. Some errors, which our system
is not expected to treat, can prevent the detection of some other errors,
of categories which are usually correctly treated in simpler settings. This
decrease in quality of the diagnosis on more complex corpora was expected
and does not surprise us, nor prevent us from finding the system to be useful
on such corpora.

Looking at the results on the authentic FreeText corpus (see appen-
dix B.3.2), one can note that, for some error categories implemented in EDS,
no error was found. This is due in part because the corpus is quite small
and not all error categories are represented in it, but also partly because a
number of errors are not detected by the system. One seems to detect a fair
share of euphony and number errors, without too many instances of over-
flagging. On the other hand, for ORDAV and CPV error categories, there
seems to be more false detections than correct ones. Flags from these error
categories might be very disturbing to the language learners if their precision
is too low. Restricting, or even removing, the error diagnosis mechanism for
some poorly treated error categories might benefit the system as a whole. It
would enable the system to achieve an overall higher precision rate with the
disadvantage to lower, or suppress completely, the diagnosis of some error
categories. The resulting system would hopefully be less confusing to the
users than a system in which occurrences of overflagging are the norm.

5.2.3 Efficiency

Being based on the Fips syntactic parser (see section 4.1), the efficiency of
the error diagnosis system is linked to the efficiency of the parser. However,
it is not as efficient as the original Fips, given the transformations to which
it was submitted in order to transform it into an error diagnosis system.

186 CHAPTER 5. RESULTS

Both constraint relaxation and phonological reinterpretation have an adverse
effect on efficiency.

Constraint relaxation

Constraint relaxation diminishes the efficiency of the parser because of the
increased number of alternatives which need to be treated. Every time a
constraint is relaxed, a constituent which would not have existed otherwise
must now be taken into consideration. Given that this applies as well for
all of its subconstituents, one imagines very well the explosive nature of this
combinatorial process.

(108)a. Tu suis le guide.
You follow/am the guide.

b. [TP [DP Tu | [Tsuz’s [VP [DP le guide |]]]
You follow the guide

c. *[pp [pp Tu] [suis [VP [pp le guide]]]
You am the guide
Person error between Tu (You) and suis (am).

If constraint relaxation was not activated for person agreement, there
would be one reading of the simple sentence in (108a). This reading is given
in (108b). With this constraint relaxed, however, a second reading is possible
when the system follows the alternative with a person error between subject
and verb, as in (108c). For the sake of the example, we chose, in (108a),
a simple sentence with a grammatical reading. There is an even greater
amplification of number of ‘new’ constituents for ungrammatical sentences
which, instead of being rejected by the system at an early stage, end up with
one or several complete analyses. Each new alternative has its toll on the
efficiency of the whole system. Therefore, efficiency diminishes with each
new error category that one wants to treat in the system, as each category
corresponds to the relaxation of one or several constraints.

The constraint relaxations needed for the fourteen error categories treat-
ed by this technique also meant an increased number of complete analyses
resulting from the parsing process. We had to devise an analyses selection
mechanism, as described in section 4.3.4, in order to retrieve the most ap-
propriate analysis given the CALL context of the error diagnosis system.
This selection mechanism also takes its toll on the efficiency of the diagnosis
system.

With fourteen error categories diagnosed by constraint relaxation, and
the additional analyses selection mechanism, the error diagnosis system is
indeed slower than the original Fips parser. But is is still good and fast
enough for the users not to notice the difference on most sentences.

5.3. COMPARISON WITH ANOTHER GRAMMAR CHECKER 187

Phonological reinterpretation

Phonological reinterpretation is another story and is not an efficient diagno-
sis technique at all. First of all, it requires a first pass in the system in order
to obtain chunks and identify the candidate words for reinterpretation. The
system is therefore at least as slow as the first pass in the system. Then
comes the time for dictionary look up. For each candidate word, this is
done in two stages: (i) looking up the phonetic representation of the word,
and (ii) retrieving the homophones. Dictionary look up is not the fastest
action, but indexed access prevents it from being too long. Once the words
are inserted in the chart, a second phase of analysis is started, by nature
longer than the first one as new alternatives were added in the form of the
reinterpreted words. The diminished performances naturally depend on the
number of chunks resulting from the first pass, that is of the number of
candidate words for reinterpretation. They also depend on the number of
alternative homophones found for each reinterpreted word.

There is no doubt theoretically that phonological reinterpretation is a
particularly inefficient technique. In practice, the problem was even worse
than expected. Indeed, on some very long sentences, all the resources of a
Pentium IT 400 MHz PC were used up by the process which had to be ter-
minated before it could give a result. In view of this, we decided to turn off
constraint relaxation when phonological reinterpretation was activated, so
that there were fewer alternatives to be treated at the same time. This expe-
dient improved efficiency somewhat. However, it means that only homonymy
errors can now be diagnosed during the phonological reinterpretation pass,
preventing the errors diagnosed by constraint relaxation to appear. More-
over, to avoid too many instances of overflagging of the homonymy error,
only a pass resulting in a complete analysis is taken into account for display
to the users. This limits results obtained by phonological reinterpretation
even more.

There are certainly ways to improve the efficiency of the phonological
reinterpretation technique with a better implementation. In the present im-
plementation, alternative words are simply added in the chart of constituents
which already contains the results of the first parse and the analysis process
is started again. A better control of the content of this chart and some sort
of cleaning up between the two passes is probably called for.

5.3 Comparison with another grammar checker

In order to evaluate the interest of our error diagnosis system, we decided to
compare it to another grammar checker. It would have been most interesting
to choose a system described in chapter 2, but this proved impossible because
the research prototypes described are not readily available. Thus, we turned
to what seems the most common grammar checker, that is the grammar

188 CHAPTER 5. RESULTS

checker for French included into Microsoft®@Word 2000 (thereafter shortened
to WORD). As information on the inner workings of this commercial checker
is not public, we had to use the system as a black box and could only make
guesses at its internal processes.

For the comparison, we used the corpus of authentic sentences entered
by student testers of the FreeText software (see appendix B.3.2). Naturally,
spelling errors have been corrected, in order to be fair to EDS which does
not incorporate a spell checking component while WORD does.

In this section, we first present test results on error categories which
are treated by both systems. This allows us to concentrate first on really
comparable data. We then discuss differences in the types of errors detected
by both systems to contrast them and try to see if one is more appropriate
than the other for use with language learners.

5.3.1 Comparison

We start our comparison by looking only at error categories which are diag-
nosed by both our error diagnosis system and the grammar checker included
in WORD. While EDS provides the user with an error category for each de-
tected error, WORD presents a more user-friendly feedback in the shape of
sentences. The information contained in the sentence feedback was used
to deduce the category of the detected error. We evoke the problem of
overflagging before concluding with some comments.

Table 5.21 presents the number of correct flags obtained by our error
diagnosis system and by WORD on the test corpus.

Table 5.21: Comparison of correct flags

Errors | Corpus | EDS | WORD
GEN 28 21 22
HOM 12 4 2
OoUB 10 1 4
PER 7 4 6
NBR 7 4 4
EUF 5 4 4
AUX 4 1 3
NEG 1 0 1
Total 75 39 46

We must first of all note that neither system detects all the errors in the
corpus belonging to these eight error categories. Then, it appears that, on
rough numbers, WORD does slightly better than EDS. We must nevertheless
be aware that errors were detected at one go with our error diagnosis system,
while WORD, showing multiple errors in a sentence one by one, benefited

5.3. COMPARISON WITH ANOTHER GRAMMAR CHECKER 189

from corrections enabling the system to detect and display subsequent errors
in the sentence.'?

One recurrent error, given in (109) was diagnosed differently by both
systems.

(109) *grand mére
big mother

WORD diagnosed this error as a missing hyphen ‘-’ in between the two

words. We therefore considered it to be part of the OUB error category.
Our diagnosis system, on the other hand, diagnosed a gender error between
grand and mére. These errors were thus tagged as GEN, rather than OUB.
Although there is a certain degree of ambiguity in between the two inter-
pretations, in context a human corrector is more likely to consider this error
as a lexical problem, the missing ‘-’, than as an agreement error. Ideally,
this type of error should be treated at the lexical level by a spell checker
rather than by a syntactic checker. However, as both words belong to the
dictionary, it is doubtful how this could be achieved by any standard spell
checker, as they usually just check that each word they encounter belongs
to their dictionary. EDS detects only one missing hyphen in the test cor-
pus, but it has been trained on missing hyphens between inverted verb and
subject only, while in the data they are missing mostly on structures like
example (109) and (110).

(110) ce jour-la
this day-there

A large number of gender errors is detected by both systems, although
each checker misses about one fourth of these errors, which are the most
frequent of the corpus.

WORD detected two homonymy errors. In both cases, it is a missing
accent on a (has/to). For this error category, our diagnosis system performed
better and detected four errors. One a/a (has/to) error is detected on a
different sentence than WORD. Other detected errors are the use of an
infinitive for a past participle of a verb of the first group (example (111));
use of a verb instead of its corresponding noun (example (112)); and use of
a noun instead of an adverb (example (113)).

(111)a. *la créme glacée empoisonner
the cream iced poison-verb-infinitive

151t is impossible to know if several errors are found at the same time but displayed
only one at a time or if WORD stops checking after the first detected error.

190 CHAPTER 5. RESULTS

b. la créme glacée empoisonnée
the cream iced poisoned

(112)a. *le directeur de la filme
the director of the-feminine film-verb

b. le directeur du film
the director of-the movie

(113)a. *trot vite
trot fast

b. trop vite
too fast

These examples clearly illustrate the potentialities of the HOM detection
within our diagnosis system and the limitations of commercial checkers in
this area. WORD seems to be able to detect homonymy errors only for
specific known problematic words which are easily confused by native and
non-native speakers alike, such as a/d (has/to). On the other hand, our
error diagnosis system is capable of detecting the use of rarer homonyms or
identical sounding versions of the same word, which is a type of error more
likely to be made by language learners than by native speakers. Thus, on
homonymy errors, our diagnosis system performs better than WORD both
quantitatively and qualitatively.

As both systems detect an similar quantity of number (NBR) and eu-
phony (EUF) errors in the corpus, one could legitimately wonder whether
they are the exact same errors. In fact, they do not overlap precisely. In
both cases, three of the four detected errors are the same, while the fourth
error is different for both checkers. This kind of partial overlap of diagnosed
errors in the different error categories is even more flagrant when the num-
ber of detected errors is not identical for both systems. For auxiliary errors
(AUX), the single error detected by our diagnosis system is not found in
the three discovered by WORD. The inner workings of the checkers cannot
therefore be identical.

Of the seven agreement in person errors found in the corpus, four are
detected by EDS and six by WORD. Moreover, the one error which is not
detected by WORD, in example (114), is diagnosed by EDS. In (114), the
detection of another error by WORD prevents the diagnosis of the person
error.

(114) *Depuis ce jour je n’ai plus avoir une robe favorite parce que je n’aime
pas le chagrin quand je deviendra trop grand!
Since that day I NEG have anymore have a dress preferred because I
NEG like not the sorrow when I will-grow-3rd-person too tall.

5.3. COMPARISON WITH ANOTHER GRAMMAR CHECKER 191

Unlike in other cases, the detected error was not corrected because the
diagnosis was faulty, indicating that a missing past particple after awvoir
(have). Given the erroneous diagnosis, it did not seem legitimate to amend
the sentence, with the resulting effect that no attempt was made by WORD
to display feedback for other errors in the sentence. As for EDS, undetected
errors are due to the different consituents belonging to distinct chunks in
two cases. The third case, more problematic because more general, is due to
a difficulty in assigning the proper referent to relative pronouns in incorrect
sentences, leading to misdiagnosis between the relative pronouns and the
constituents they must agree with.

WORD correctly diagnoses the negation error in (115), but EDS does
not. Although EDS supposedly detects negation errors, the range is limited
to the omission of either the negative particle ne or the negative adverb pas
(not), when they should be used in pair. The only negation error in the
corpus is in a structure with a negative determiner aucun (none), which is
not taken into consideration by the current implementation of the constraint
relaxation.

(115) *... j’entendais aucun de ses mots ...
...I heard none of his/her words...

These differences in coverage of the errors are a very strong indication
that the two systems do not use the same strategies to detect errors. If
they did, the overlap should be complete, or at least larger. We now turn
to elements which are specific to each checker.

5.3.2 Specifics of each grammar checker

Besides the error categories mentioned in Table 5.21, each system diagnoses
a specific range of error categories. WORD signals one tense error, errors
on the past participle (either supposedly missing, or the use of a wrong
mode), one error on tout (all) emphasizing its dual status as determiner and
adverb,'6 errors of capitalization and punctuation (although there are many
instances of overflagging in the latter category). This error range keeps
within the domain of likely errors for native language learners, as WORD
never purports to cater to the needs of language learners.

161t is difficult to know where to classify the error in example (116) between the class,
homonymy and number error categories. There is an agreement error which depends
on the lexical category of the word which is often confused because both versions are
homophonous.

(116) tous puissants
all-plural powerful

192 CHAPTER 5. RESULTS

Our error diagnosis system, on the other hand, does not detect these
error categories. Tense is considered too semantic for a syntactic checker,
likewise missing words are a real handicap to our system and implementing
the possibility of missing words of any kind in the sentence is like open-
ing Pandora’s box in terms of overgeneration of structures, as it is possible
to imagine missing words almost anywhere. Capitalization was not a mat-
ter which preoccupied us and punctuation rules are often too subjective in
French for errors to be detected with high enough recall and precision rates,
as attested by the high number of overflagging occurrences in WORD, thus
they were not dealt with.

While our system does not detect some error categories treated by WORD,
there are also categories which are taken into account by EDS but not by
WORD. These are errors of verb and adjective complementation as well as
errors of adjective and adverb order. These error categories are typically
not encountered in the writing of native speakers while they are a difficult
matter for language learners.

(117)a. *... j’ai commencé réfléchir sur la liberté ...
... I have started think on the freedom ...

b. ... I started thinking ...

In example (117a), the verb commencé (started) takes a sentential com-
plement which should start with the preposition ¢ (to). This preposition is
absent from the learner sentence, perhaps by a negative transfer from the
English sentence in (117b). This type of error is typical for language learners
and is correctly diagnosed by our diagnosis system, showing its specificity
as a tool for language learners.

5.3.3 Overflagging

Both grammar checkers overflag, that is, indicate errors on perfectly correct
words. While overflagging is a known major problem for EDS given the
high number of overflagging occurrences it produces, WORD is not exempt
of such occurrences, to a lesser extent however.

(118) Un jour, mes parents m’ont prise au Wallibi.
One day, my parents me have taken-feminine to-the Wallibi

The sentence in (118) is grammatical as long as one considers that the
narrator of the sentence, represented by the elided pronoun m’ (me) is fem-
inine. EDS does not detect any error in this sentence. WORD, however,
indicates a gender error on the word prise (taken-feminine), forcing a mas-
culine interpretation of the narrator of the sentence, for which there is no
justification locally or in the wider context of the corpus.

5.3. COMPARISON WITH ANOTHER GRAMMAR CHECKER 193

Both systems encounter problems with missing apostrophes which lead
them both to overflagging (or at least misflagging).

(119) *Quand j étais petite j aimais nager.
When I-missing-apostrophe was small-feminine [-missing-apostrophe
liked swim.

In (119), both systems seem to have trouble interpreting the single j as
the elided form of the pronoun je (I), without its apostrophe. Therefore,
WORD takes the word étais as a noun (stays) and diagnoses a number error
between it and petite (small-feminine).!” Our error diagnosis system, on the
other hand, takes the single j as the letter ‘j” and detects a person error be-
tween it and aimais (liked), as the letter ‘j’ is considered 3rd person singular,
while aimais is 1st or 2nd person singular.'® Missing apostrophes should
be relatively easy to treat, perhaps through some preprocessing or ad hoc
measure, and should slightly reduce the number of overflagging occurrences.

5.3.4 Remarks

Neither EDS nor WORD detect all the errors in the corpus. The users
must be warned that a checked and amended text does not mean that it is
completely error-proof.

The manner in which the corpus was tested with both checkers may have
been unfair to EDS by according an advantage to WORD in correcting errors
as they were flagged. This was the only manner to obtain information on
sentences containing several errors, but it allowed WORD to re-check a less
error-full, and therefore less difficult, sentence, while EDS was given only one
chance. Whether this was a real advantage or not depends on whether it is
only the display of multiple errors which is delayed in WORD (in which case
there is no specific advantage) or whether it is the whole checking process
which is restarted.

Both systems overflag, although not to the same extent. Overflagging
is a real problem, especially for EDS, both because there are more occur-
rences, but also because its target public is less well equipped to deal with
overflagging, not necessarily being able to recognize overflagging occurrences
as such.

On error categories common to both EDS and WORD, WORD achieves
similar or better results than EDS, except on one. Given the person-months
which must have been devoted to both system, this overall result is not sur-
prising. The exception is the homonymy error category, in which errors are

17A gender error should also be detected in that frame of mind, but is not. A possible
explanation is that the number error must first be corrected before WORD can diagnose
and/or display the gender error.

8nterestingly, no error is detected in the first part of the sentence where one would
expect the same kind of overflag.

194 CHAPTER 5. RESULTS

more specific to language learners. Errors of complementation and of word
order also reinforce the fact that EDS is more specifically geared towards
the needs of language learners.

5.4 Conclusion

The major challenges encountered by our error diagnosis system and dis-
cussed in this chapter are the overgeneration of structures and a latent lack
of efficiency. These two hurdles should be resolved, at least in part, in order
for EDS to become a viable, large scale, unrestricted grammar checker.

Overgeneration of structures has already been partially tackled with the
adjunction of the selection mechanism. This mechanism, however, works by
eliminating improbable structures after the analysis phase is achieved and all
possibilities have been computed. It is therefore not helpful on the efficiency
issue for which it would be more adequate to prune highly implausible partial
analyses during the parsing process.

To tackle both overgeneration and efficiency at the same time, one should
perhaps investigate in more details the possibility of relaxing constraints by
packets. This possibility has already been evoked in sections 3.1.9 and 3.1.10,
but has neither been pursued nor tested so far. Restraining the set of con-
straints relaxed at the same time would undoubtedly diminish the number
of alternative analyses produced. However, the trade-off will be the number
of passes needed to detect all error categories. Whether this would bring a
heavy toll on efficiency because of the multiplication of passes, or whether
it would be on the whole lighter because each pass would be much more
efficient than the present single relaxed one can only be ascertained through
testing.

If the multi-pass option proves interesting, it might be worth imagining
lighter techniques than either constraint relaxation or phonological reinter-
pretation to diagnose some specific error categories. Indeed, a full syntactic
analysis is not necessary to treat some error categories. The euphony error
category, with its mandatory adjacency feature and its lack of influence on
both sentence structure and meaning, is a good candidate. A surface scan
of the sentence could locate words which are, or can be, elided or contracted
and check whether the following word bears the corresponding elision or
contraction features.

Examination of the FreeText data also informed us as to the numerous
errors which were not supposed to be, and were not, treated by EDS. These
errors, while a problem in themselves for language learners, are an issue for
the system as well because they often prevent a good sentence analysis and
therefore a good error diagnosis. We are thinking especially of missing dia-
critics resulting in legal words (in particular on past participles, as presented
in example (106), page 183) and of near homophones such as exemplified in

5.4. CONCLUSION 195

(120) and evoked in section 3.2.7.

(120)a. qui/qu’il
who/which he

b. et/est
and/is

Nevertheless, there are very positive aspects to the results described in
this chapter. Both constraint relaxation and phonological reinterpretation
are theoretically viable diagnosis techniques. This view is supported by the
good results obtained for the vast majority of the error categories tested on
linguist sentences, as well as by the results obtained for homonymy on simpli-
fied sentences. This supports us in the view that the well-known constraint
relaxation technique and the more innovative phonological reinterpretation
technique are of great interest for grammar error diagnosis. Once the di-
agnosis of errors detected by phonological reinterpretation is refined, the
importance of combining techniques in order to cover a larger range of error
categories will be made even more obvious than it is now. Although there
is a small range of overlapping error categories, constraint relaxation and
phonological reinterpretation mostly target different error categories. Elim-
inating either technique would be detrimental to the error diagnosis system
as a whole by diminishing its coverage.

While some improvements are needed to turn the error diagnosis system
into a full-fledged, large scale, independent, commercial grammar checker,
the current prototype demonstrates its potential for language learners. The
choice of the targeted error categories, the use of phonological information
for diagnosis, as well as a non-prescriptive feedback respecting users’ inten-
tions are the main features which make this error diagnosis system especially
well-suited for use by language learners.

196 CHAPTER 5. RESULTS

Chapter 6

Conclusion

In this dissertation, after stating the problematic of grammar checking for
CALL in the introduction, we have recalled the state of the art of gram-
mar checkers and of the different diagnosis techniques employed. Then, we
proposed a theoretical description of three diagnosis techniques for such a
purpose and ways to use them in combination. The implementation of the
theoretical ideas was then described and results of tests conducted with the
error diagnosis system were provided.

The present chapter concludes this dissertation and is structured as fol-
lows. Section 6.1 exposes the contributions to the research domains of CALL
and NLP. Section 6.2 recalls the interest of combining together several error
diagnosis techniques. Section 6.3 states the limitations of the work accom-
plished so far. Section 6.4 proposes leads for further research and a final
remark is made in section 6.5.

6.1 Contributions to the research domains

Work performed for this dissertation is spread over two main research do-
mains: computer assisted language learning and natural language process-
ing. Contributions have been made to both domains.

In the domain of CALL, we have showed that grammar error diagnosis
can be performed successfully on free learner productions. This opens the
way for more creative and communicative writing tasks for which language
learners can receive automatic intelligent feedback on the grammaticality of
their productions. Because our error diagnosis prototype is not yet very effi-
cient on long sentences, using it in a CALL software, therefore in a restricted
context, can only help it to achieve better performances. Even without tai-
loring the diagnosis system to specific CALL exercises, the writing medium
and environment tend to make the productions shorter and thus easier to
treat by an automatic error diagnosis system.

In the domain of NLP, the work carried out has proven the feasibility of

197

198 CHAPTER 6. CONCLUSION

adapting and transforming an existing syntactic parser in order to obtain
a grammar checker. The well-known constraint relaxation technique has
been pushed further than the toy prototype stage: it has been implemented
on a large scale system with many constraints relaxed at the same time,
enabling it to detect and diagnose errors of fourteen distinct error categories.
An innovative diagnosis technique, phonological reinterpretation, has been
successfully implemented. The implementation of both diagnosis techniques
also served as a reminder that, in order to create a usable system, one must
find ways in which to keep the overgeneration of structures and analyses at
bay.

In section 6.1.1, we comment on the usability and competitiveness of our
error diagnosis system. Section 6.1.2 recalls how the system incorporates in-
novative techniques for grammar error diagnosis. Section 6.1.3 briefly reca-
pitulates the advantages and disadvantages of adapting a existing syntactic
parser into an error diagnosis system.

6.1.1 Usable and competitive system

Our error diagnosis system is usable in terms of its large coverage of the
French grammar and of its robustness, both derived from its underlying
parser. It is also usable by language learners because it is specifically tai-
lored to their needs. EDS supposedly does not accept ungrammatical French
sentences without warning the users about their ungrammaticality. Specific
categories of errors tailored to language learners are diagnosed by the system
and feedback as to the type and location of the detected errors are provided.
The treated error categories encompass categories common to both native
and non-native speakers alike, such as agreement errors in number, gender,
and person, but error categories specific to language learners, such as ad-
jective order or verb complementation, are also present. Thus, EDS truly
caters to its users’ needs in terms of error coverage.

Although the system is usable in its present state, works remain to be
done in order to lower the number of overflagging occurrences. We be-
lieve that the system’s usability is greatly improved when its users are duly
warned about its imperfections, that is, understand that some of their er-
rors might not be detected by EDS and that EDS might also indicates errors
where there is none. “It is important to inform the students that they should
not implicitly trust grammar checkers in other matters but, rather, should
always try to evaluate their advice. Students also need to understand that
they should not assume grammar checkers detect all errors” (Jacobs and
Rodgers 1999, p. 523). Users are intelligent and the goal of our error di-
agnosis system, in its present version, is not to correct their texts, but to
make them think about what they have written, providing them with the
clues needed to better their productions.

The error diagnosis system is also competitive with regards to commer-

6.1. CONTRIBUTIONS TO THE RESEARCH DOMAINS 199

cial grammar checkers. The range of treated errors, tailored to language
learners, makes it better suited than grammar checkers designed for native
speakers and available as off-the-shelf products. The comparison between
EDS and WORD (section 5.3) has shown the interest of EDS for language
learners over a non-specific tool. As to the different systems which have
been presented in chapter 2, sections 2.3 to 2.7, most did not go beyond the
toy prototype stage. Moreover, they were often limited in the range of pro-
ductions they could treat, such as CLEF (section 2.3.2); were not designed
for language learners, such as the EPISTLE/CRITIQUE system (section
2.6.2); were limited in their coverage of the grammar and in the size of their
lexicon, such as the German Tutor (section 2.5.2); or were limited in the
number of error categories treated, such as VP? (section 2.7.4).

We also believe EDS to be competitive in terms of manpower needed for
its creation. Reusing and adapting an existing syntactic parser is the clue to
this competitiveness. A rough estimate of the person/months used for the
design and implementation of EDS, as an adaptation of the Fips parser,!
amounts to 30 person/months. We very much doubt that so few resources
would have been allocated for any of the commercial grammar checkers.

Finally, our error diagnosis system is also competitive through its output
which, besides error diagnosis, contains a syntactic analysis of the diagnosed
sentence. This feature, which allows a CALL software to display in a user-
friendly format important lexical and syntactic clues to help the users correct
their productions, is seldom available in commercial grammar checkers.? Tt
is therefore an important bonus in favor of our error diagnosis system.

6.1.2 Use of innovative techniques

While three error diagnosis techniques were described in chapter 3, only
two were implemented in our error diagnosis system. We believe that both
techniques are innovative in the ways they were employed.

The constraint relaxation technique is neither new nor rare, as can be
readily seen through the wealth of literature on this technique. Nonetheless,
the manner in which we used it in the error diagnosis system is innovative.
The innovations concentrate on three areas: (i) the addition of constraint
relaxations after completion of the grammar and/or the parser, (ii) the types
of errors detected through constraint relaxation, and (iii) the number of
constraints relaxed at the same time.

Firstly, most grammar checkers are built from scratch and the diagnosis
techniques are designed together with the parser, if a parser is indeed in-
cluded. This was naturally impossible in our case as we reused an existing

!That is, without counting the time and resources necessary to design and implement
the Fips parser itself.

2Le Correcteur 101’, of Machina Sapiens, and ‘Antidote 98, of Druide Informatique,
are notable exceptions. We do not know, however, how fine-grained their analyses are.

200 CHAPTER 6. CONCLUSION

syntactic parser. Thus, we had to figure out which were the constraints
which interested us for error diagnosis and to add constraint relaxation
mechanisms on existing constraints.

Secondly, the range of errors detected through constraint relaxation is
greater and more diversified with EDS than with most other systems. Nat-
urally, we use constraint relaxation for agreement errors, as it is rather com-
mon to do. However, we also employ the constraint relaxation technique to
diagnose errors which have an influence on the syntactic tree built by the
parser. In particular, we use this technique to detect word order errors, as
well as verb and adjective complementation errors. This is an innovative
use of the technique which is not usually utilized for this kind of errors.

Finally, we employ the constraint relaxation technique in an innovative
manner through the number of error categories detected through constraint
relaxation. We detect fourteen distinct error categories through this tech-
nique and, as an error category corresponds most often to several constraints,
this implies that a great number of constraints are relaxed at the same time.
Most error diagnosis systems using constraint relaxation seem to have fewer
relaxable constraints.

Phonological reinterpretation is a much more innovative technique than
constraint relaxation. Although some of its components have been used
before in different systems, either for spell checking or for grammar error
diagnosis, it is the first time, to our knowledge, that they are gathered
together to form a coherent error diagnosis technique. The main innovation
resides in trying to parse a sentence, which so far had not received a complete
analysis, with alternative words which are homophones of the ones found in
the original sentence. Thus, homophones of all kinds, not just the most
common ones like the a/d (has/to) pair, can be detected. This diagnosis
of homonymy errors does not resort to error lists, by necessity limited in
the number of items they contain, and is therefore much more generic than
what can be found in most grammar checkers.

The phonological reinterpretation technique also allows the system to
detect some instances of the incorrect use of morpho-syntactic features such
as tense, mode, and agreement, as long as these features are not overtly
realized in the pronunciation. While agreement errors can easily be de-
tected with other diagnosis techniques, tense and mode errors are usually
not treated. Moreover, they are often the source of incorrect analyses of a
sentence. Although the diagnosis of the errors detected through phonolog-
ical reinterpretation has not been refined yet, these errors can be detected
and corrected by our error diagnosis system. Homonymy errors are more
frequent with language learners than with native speakers and are not usu-
ally treated by commercial grammar checkers. It is therefore innovative to
detect them and goes well in line with the tailoring of our error diagnosis
system for a target user population of language learners.

6.2. COMBINATION OF SEVERAL TECHNIQUES 201

6.1.3 Adapting an existing syntactic parser

This dissertation has proven the feasibility of adapting an existing syntactic
parser to transform it into a grammar error diagnosis system. Starting from
an existing system has some very interesting advantages but it also has some
drawbacks.

The main advantages of reusing a syntactic parser are found in the work
which has already been accomplished. The diagnosis systems benefits from
the coverage in terms of grammar and lexicon, from the reliability, and from
the robustness of the existing parser. Before any modification is brought
to the parser, it should theoretically already work as a recognizer, sorting
correct sentences from ungrammatical ones. Thus, only sentences which
contain errors can be submitted to diagnosis, therefore reducing processing
time for grammatical sentences and eliminating the risk of producing over-
flags on them. Moreover, the parser underlying the diagnosis tool is able to
provide syntactic analyses of the submitted sentences, which have multiple
applications in a CALL software.

Specific advantages of Fips, besides its very large coverage, were its non
determinism and its capacity to provide partial analyses when it is not able
to find an analysis covering a whole sentence.

The major drawback of adapting an existing parser is the restrictions the
parser can impose on the choice of diagnosis techniques. Indeed, not all tech-
niques are compatible with all types of parsers. Another disadvantage with
large coverage parsers is the complexity of their algorithm and code. This
complexity makes it sometimes very arduous to locate the proper position
for a modification or the introduction of a diagnosis technique.

Compared to what might be expected of a syntactic parser, Fips has
the particular disadvantage of not being truly a recognizer. It accepts many
ungrammatical sentences in order to broaden its coverage. Moreover, its
lexicon is sometimes the source of overflagging or of non detection of errors
because of incorrect or missing information on specific lexical features.

The balance between the advantages and the disadvantages of transform-
ing a syntactic parser, and in particular Fips, into a grammar error diagnosis
system is strongly positive. Without Fips as a basis, it would have been im-
possible to create a diagnosis system such as EDS, with a large coverage of
the grammar and a relatively large coverage of error categories, in the time
frame which was allocated to us. Only reuse of an existing parser allowed
us to go beyond the toy prototype stage.

6.2 Combination of several techniques

One of the aims of this dissertation work was to combine several diagnosis
techniques together in order to investigate in which manner they could be
combined and how to deal with the results emanating from each different

202 CHAPTER 6. CONCLUSION

technique. We also wanted to determine whether the use of several tech-
niques was an advantage or not over the use of only one technique.

Unfortunately, we have been able to implement, and therefore to com-
bine, only two error diagnosis techniques compared to the three planned.
This, therefore, restricted the combination possibilities available to us. More-
over, while we would have liked to investigate different manners to combine
the two techniques, we were limited in time and could not experiment as
much as we wanted to. Thus, only the cascade combination was tried out
and implemented, phonological reinterpretation being launched only when
constraint relaxation did not provide a complete analysis for a given sen-
tence.

The combination of diagnosis techniques should imply competition be-
tween the results obtained through the different techniques. While some
error categories can be detected by both constraint relaxation and phono-
logical reinterpretation, there is in fact no competition between their re-
spective results. Indeed, if constraint relaxation permits a full analysis of
the sentence, phonological reinterpretation is not activated and therefore
produces no result. When phonological reinterpretation is launched, then
constraint relaxation has to be disabled for efficiency reasons, and therefore
only the results emanating from phonological reinterpretation can be dis-
played. Thus, in the particular case, there is no competition between the
results of different error diagnosis techniques and we have not had to find
discriminating ways between them, which prevented us from carrying out
an interesting investigation.

The two diagnosis techniques which we have combined in this error di-
agnosis system overlap partially in terms of error categories detected. A
partial overlap also means that some error categories are distinct, that is
that each technique detects errors that the other technique is not capable
of detecting. Thus, by combining the two techniques, we have enlarged the
range of detected errors, which is a definite advantage. In view of this, one
is tempted to assume that the more diagnosis techniques, and thus the more
error categories detected, the better. This is unfortunately not necessar-
ily true, as each diagnosis technique takes its toll on efficiency. However,
it is possible that if each diagnosis technique is even more specialized, its
particular efficiency might be enhanced. Thus, as long as different error
categories are targeted by each diagnosis technique, it seems worthwhile to
try the combination of as many techniques as available.

6.3 Limitations of the work accomplished

Any work naturally has its limitations and this dissertation is no exception to
the rule. Some of the limitations are due to the global research project into
which the creation of the grammar error diagnosis system inscribed itself,

6.3. LIMITATIONS OF THE WORK ACCOMPLISHED 203

as the goals of the FreeText project had to be taken into account during
the development of the grammar checker. However, the vast majority of the
limitations are due to time issues. Many improvements of the system could
be achieved if more time was taken to implement them. The main ones are
cited below.

More precise specifications for chunk reinterpretation than those found in
section 3.3 have not been designed and the technique itself has not been im-
plemented. This is an important part of the work initially planned which was
not carried out. Besides the time issues involved, reasons for this are that
the error categories which we planned to detected through chunk reinterpre-
tation were already covered by either one of the two implemented diagnosis
techniques. Thus, it is highly possible that not implementing chunk reinter-
pretation has not diminished the error coverage of the final error diagnosis
system.

Overflagging is one of the major remaining issues of the current version
of the error diagnosis system. Putting down this unaccomplishment to time
reasons solely would not be true as the issue was seriously worked upon.
Numerous bugs were discovered and corrected in the implementation which
had for effect to reduce the number of overflagging occurrences but did
not contain it sufficiently. Some ad hoc measures were also taken, such
as displaying the results of phonological reinterpretation only when a full
sentence analysis had been reached. Nevertheless, one hypothesis to reduce
overflagging occurrences has not been tried because of time restrictions: the
relaxation of constraints by packets. Implementing packets, as well trying
and testing different ways in which to assemble these packets, would have
been very interesting, but also very time consuming for an uncertain result.

The current implementation of the phonological reinterpretation tech-
nique has proven to lack in efficiency and efforts should be made to better
its implementation. At present, reinterpreted words are simply added in the
chart of well-formed constituents resulting from a first parse of the sentence,
and the parsing process is restarted. The elements contained in the chart
and created during the first pass might be cluttering the chart and forcing
the system to try redundant alternative paths, thus demanding more time
and resources to reach an analysis. It is highly probable that a more careful
management of the chart’s content before the parsing process is restarted
would help improve the efficiency of phonological reinterpretation.

Some of the error categories chosen for diagnosis with EDS could benefit
from a better treatment. The homonymy error category must be refined so
that only true homophones are flagged under this error tag. Other errors
discovered through phonological reinterpretation should receive tags appro-
priate to the actual error present in the text. This involves comparison pro-
cedures between the original and the reinterpreted words in order to assess
whether they share the same root form and, if so, which are the distinct fea-
tures which caused the error. The auxiliary and voice error categories should

204 CHAPTER 6. CONCLUSION

be redefined so as to eliminate any confusion on the appellation of errors on
the passive voice. Also, one should find ways to detect the erroneous use
of the étre (be) auxiliary even with verbs which can be put in the passive.
This type of error remains undetected currently. Verb complementation is
another area where improvements are called for. The current treatment of
preposition confusion and adjunction is not satisfactory as errors are basi-
cally ignored with nominal complements. The whole verb complementation
constraint might need revision to better account for the attachment of ad-
juncts, instead of complements, to unsaturated verbs and to improve the
management of multiple subcategorization frames for a single verb.

A complete verification of the lexicon used with the error diagnosis sys-
tem is called for. More accurate and coherent lexical information can only
improve the performances of EDS and diminish the number of overflagging
occurrences. One should, for example, check that all prenominal adjectives
do indeed bear the prenominal feature, that all lexemes of a verb which
cannot passivize are marked as such, and adverb categories are correctly set
for each adverb. This is a mammoth task which is outside the scope of this
dissertation but which is crucial to obtain better results with EDS.

The limitations of the implemented diagnosis system account for some of
the limitations in the experiments intended on the combination of diagnosis
techniques and on the competition between diverging results. Only two of
the three planned diagnosis techniques were finally implemented. For their
combination, the cascade method seemed the best suited and was imple-
mented without further ado, as there was not time, and less interest with
only two techniques at hand, to try out other methods. Moreover, as we
had to disable constraint relaxation when phonological reinterpretation was
activated, there was no possibility of competing results between the two di-
agnosis techniques. This whole experimentation scheme had therefore to be
abandoned.

6.4 Further research

Much remains to be done in the field of grammar checking in the context of
computer assisted language learning. We are still far from tools which cover
all error categories committed by language learners in a robust, reliable, and
efficient manner. Thus, there are many paths open for further research. A
few are cited below.

The language level of the diagnosis system users determines, to some
extent, the error types which are likely to occur in their productions. There-
fore, it might be advantageous to parameterize EDS according to language
levels. The language level might change the error frequencies and, thus, the
score to be used for analysis retrieval. It might also help ruling out some
complex sentence structures for less advanced users. Moreover, one does

6.4. FURTHER RESEARCH 205

not necessarily want to be as strict with beginners as with advanced learn-
ers. The introduction of parameters would allow the system to flag error
categories only if they are relevant for the current language level. Redun-
dancy errors, for example, could be reserved to the most advanced language
learners.

There might be some specific errors, either rather rare but problematic
for parsing, such as the missing apostrophe in example (119), page 193, or
extremely frequent, like the erroneous use of the homophones a/d (has/to),
which would be more appropriately treated with exceptional measures, rather
than being included into a regular diagnosis technique. We could thus set
up a list of errors to be treated in an exceptional manner. The treatment of
these errors could be done as a preprocessing task, thus facilitating the rest
of the diagnosis.

We have seen throughout this dissertation that homophones were a real
difficulty for language learners and that most commercial grammar checkers
did not detect errors of this kind, bar on some very frequent pairs of homo-
phones (such as a/d (has/to)) for which ad hoc measures have been devised.
As has been shown, homonymy errors can be detected, diagnosed and even
corrected through phonological reinterpretation. However, there is another
similar problem: near homophones (see example (121)). Besides the errors
themselves which must be detected, their presence can be very detrimental
to the whole parsing process.

(121) qui vs. qu’il
/ki/ vs. /kil/

who vs. which he

The problem of near homophones has been touched upon in section 3.2.7.
However, the solutions proposed there, introducing a distance measure or
permitting some specific phonological changes, seem inapplicable given the
efficiency difficulties already encountered with strict phonological reinter-
pretation. While we could consider using lists of very frequent near homo-
phones like example (121), this would not be feasible for less frequent, or
even unique, instances of near homophone confusion, such as example (122).

(122) parler vs. parlait

/parle/ vs. /parle/
talk vs. talked

For a general treatment of near homophones, the implementation of
phonological reinterpretation has to be greatly improved, or a completely
different diagnosis technique has to be thought of.

More or less fixed phrases (compound words, idioms, and collocations) is
a domain which even very advanced learners find difficult to master. Their

206 CHAPTER 6. CONCLUSION

proper use is however necessary to achieve a good level of proficiency. De-
tecting errors in the use of fixed phrases, either an incorrect word order as
in example (94), page 174, or use of an incorrect word in an expression such
as in (123) where the appropriate verb is battre (beat), would be a great
help to advanced learners who are unlikely to find help in this matter with
grammar checkers designed for native speakers.

(123) *Fouetter les ceufs en neige.
Whip the eggs in snow.

How to diagnose errors in fixed phrases is a completely new domain to
be investigated, as these errors are not really syntactic in nature. Solutions
to this problem are bound to be very dependent of the way in which the
fixed phrases are encoded in the lexicon and treated by the parser.

Another domain in which research should be conducted in order to im-
prove the state of grammar checkers for language learners is diacritics. As
we have seen in section 5.2.2, errors on diacritics which are not caught by
a spell checker because they result in legal words raise many difficulties for
parsing and thus for error diagnosis. Diacritic errors are particularly visible
on past participles where they might prevent the detection of other errors,
linked to the difficulties of past participle agreement in French. Investiga-
tions might be pursued along the lines of Simard and Deslauriers (2001)
who propose a statistical method for re-inserting accents in a text. This
method would have to be adapted to language learner productions, as well
as to incorrect diacritics along with missing ones.

However, if missing diacritics are mostly problematic on past participles,
another option would be to focus detection not on diacritics, but on the
past participles themselves. The method could be in charge of locating
erroneous past participles, detecting errors of diacritics, tense and/or mode,
choice of auxiliary, as well as agreement errors. This would be a shift in
orientation from focusing on an error category to concentrating one’s efforts
on a problematic lexical category or syntactic construction.

This shift in focus would connect together lexical, morphological, and
syntactic errors. We have, in this dissertation work, taken the simplified
view of separate levels of checking, independent from one another. More-
over, we have concentrated solely on the grammatical aspects, dabbing into
morpho-syntax only when necessary. Much could be gained, however, by
the integration of these different levels into a single error diagnosis system
which would take into account all levels of checking before offering a di-
agnosis. Spell checking could greatly improve its correction proposals by
taking into account the morphological and syntactic contexts in which erro-
neous words are located. Morphological errors, which are often treated by
neither spell nor grammar checkers, apart from signaling some of them as
unknown words, could be integrated into such a system. They would thus

6.5. FINAL REMARK 207

be detected even when the resulting words exist, and they would receive a
diagnosis coherent with their syntactic environment. Finally, the syntac-
tic level of checking would largely benefit from parsing with more correct
sentences at the lexical and morphological levels, thus improving syntactic
error detection and diagnosis.

Further developments, once the lexical, morphological, and syntactic
levels of checking are well in place, are the expansion towards semantic and
pragmatic levels. In parallel, adding correction proposals to this multilevel
checker would complete this tool and transform it into a comprehensive
correction system.

6.5 Final remark

Language learners have specific needs which are not catered to by commer-
cial grammar checkers built for native speakers. We have tried to answer
some of the language learners’ needs through the design and implementation
of a grammar checker specifically designed to treat some of the error cate-
gories often committed by them. This error diagnosis system can be usefully
integrated into a larger computer assisted language learning software for the
diagnosis of free production exercises, thus providing a real-time intelligent
feedback to the language learners and allowing CALL software designers to
create more challenging exercises.

208 CHAPTER 6. CONCLUSION

Appendix A

List of Abbreviations

This appendix contains a list of abbreviations which can be found through-
out this dissertation. For some synonymous abbreviations, the author has
her own preferences which do not always tally with examples found in cited
work.

ACFG Augmented Context Free Grammar

ALLP Athena Language Learning Project

ARCTA Aide a la Rédaction et a la Correction de Textes Anglais
ARI U.S. Army Research Institute

ASL American Sign Language

ATN Augmented Transition Network

AUX Auxiliary error category

BAP BAsic Parser

BKSW Black, Kwasny, Sondheimer and Weischedel’s family of systems
CALI Computer Assisted Language Instruction

CALICO Computer Assisted Language Instruction Consortium
CALL Computer Assisted Language Learning

CECL Centre for English Corpus Linguistics, Université Catholique de
Louvain, Belgium

CLA Class error category

CPA Adjective complementation error category

209

210 APPENDIX A. LIST OF ABBREVIATIONS

CPV Verb complementation error category

EAES Error Analysis and Explanation System

EDS Error Diagnosis System

EFL English as a Foreign Language

ELSE Elementary Language Study Experiment/Exerciser
ESL English as a Second Language

EUF Euphony error category

FRIDA FRench Interlanguage DAtabase

French RObust Grammar analyser

FSA Finite State Automata

FSGC Francophone Stylistic Grammar Checker

GEN Gender error category

GB Government and Binding

GPSG Generalized Phrase Structure Grammar

HOM Homonymy error category

HPSG Head-driven Phrase Structure Grammar

ICALI Intelligent Computer Assisted Language Instruction
ICALL Intelligent Computer Assisted Language Learning

ICICLE Interactive Computer Identification and Correction of Language
Errors

ILTS Intelligent Language Tutoring System

ISCA Interactive Sentence Constructor and Analyser
ITS Intelligent Tutoring System

L1 First language

L2 Second or foreign language

LFG Lexical Functional Grammar

LINGER Language INdependant Grammatical Error Reporter

211

MAN Missing element error category

MS Menzel and Schroder’s system

NBR Number error category

NEG Negation error category

NLP Natural Language Processing

NLU Natural Language Understanding

ORD Order error category

ORDAJ Adjective order error category

ORDAYV Adverb order error category

OUB Missing punctuation error category

PER Person error category

POS Part Of Speech

RECALL Repairing Errors in Computer Aided Language
RED Redundancy error category

SLA Second Language Acquisition

TESOL Teachers of English to Speakers of Other Languages
UCL Université Catholique de Louvain, Belgium

UMIST University of Manchester Institute of Science and Technology,
United Kingdom

VOI Voice error category

XML eXtended Mark-up Language

212 APPENDIX A. LIST OF ABBREVIATIONS

Appendix B

Sample test corpora

This appendix contains sample corpora in order to exemplify the data on
which the error diagnosis system was tested and from which results for
chapter 5 were derived. Both corpora of ‘linguist’ and ‘simplified’ sentences
contain errors of the verb complementation (CPV) category. The ‘authentic’
sentences, taken from the FRIDA corpus, contain euphony (EUF) errors
(among other). Finally, the ‘authentic’ sentences coming from a validation
phase of the FreeText software, the so-called FreeText data, do not represent
any specific error category.

B.1 ‘Linguist’ sentences

Je dors le chien.

Je lui dors.

Je bois au vin.

Je lui bois.

Le vin & qui je bois.

J’y bois.

Le cadeau que je Doffre.
L’ami & qui je lui offre.

Je lui offre & un ami.

J'offre le cadeau sur un ami.
Je ressemble de cette personne.
Je ressemble cette personne.
L’ami duquel je ressemble.
Je lui ressemble un ami.
J’espere a venir.

J’espere de venir.

Je ’espere venir.

J’évite & venir.

Jévite qu’il part.

213

214 APPENDIX B. SAMPLE TEST CORPORA

Je I’évite de partir.

B.2 Simplified sentences

Tout le monde a le droit d’aller 'université.

Cela bénéficiera la Grande-Bretagne.

Il est inutile de débattre 1'effet de cette déclaration.

On commence a discuter les détails.

Il faut discuter ce sujet.

On ne devrait pas douter la question.

On ne peut pas échapper notre nature.

Elles ont échappé 1’opinion publique.

C’est ce que je peux fournir ’acheteur.

L’Europe gotite les bénéfices.

Elle jouissait un grand role.

Les Anglais se méfient tout.

Elle offre les Britanniques une chance.

Cela va plaire tout le monde.

Elle se rallie la loi constitutionnelle.

Elle doit renoncer sa souveraineté.

Le gouvernement sera obligé de renoncer un certain degré de controle.
Les filles souffrent un entrainement.

Cela aidera a augmenter le respect de soi et donc étre plus content.
II choisit acheter un bonbon.

Un grand nombre de personnes craignent perdre leurs propres coutumes.
Il s’est engagé travailler.

On peut parler de la vie et nos expériences.

IIs s’accordent & beaucoup de choses.

C’est un probléme associé avec la souveraineté.

Elle veut concourir dans le marché européen.

Il se conforme avec les normes.

L’art consiste de plusieurs mondes.

Nous n’avons rien a craindre avec ’Europe.

II croit & Dieu.

Chaque étage dépend sur I'autre.

Cela la différencie aux autres.

Cela donne une stabilité dans la société.

La souveraineté pourrait échapper de la Grande-Bretagne.
Il fallait enseigner des hommes.

Elle excelle & son métier.

Il fournit des munitions pour les ennemis.

Il s’intéresse du chomage.

B.2. SIMPLIFIED SENTENCES

Il s’inquiete & cette idée.

Il se joint avec I’Europe.

Il se méle avec les autres pays.

Il s’oppose contre leur désir.

Il s’oppose de leur désir.

Participer dans une guerre sainte.

Je peux me passer sans elle.

Je pense d’eux.

Je les prépare pour I'examen.

Je profite au beau temps.

Cela se rapporte pour les activités.

Je me rapproche a la route.

Cela se réduit en rien.

Je résiste des problemes.

La bourse a aidé d’intégrer les travailleurs.
On cherche de continuer la recherche.

Il consent de partager.

Il décide & joindre le parti.

Il se délecte & ne pas étre comme les autres.
Cela les a empéchés a ruiner I’environnement.
Il 'entraine de marcher.

Ce qu’il est permis a faire.

Il a réussi de monter le meuble.

Elle tente a devenir une championne.

On ne peut pas aider a tous les pays.

Nous concurrencerons avec les autres membres.

Nous combattrons a ’ennemi.

Je connais sur nos voisins.

On nous fournit avec les moyens nécessaires.
Elle veut maximiser de ces chances.

Elle partagera dans les bénéfices.

Elle promeut de la liberté.

Elle rencontre avec des gens.

Ils doivent soigner de leur famille.
Chacun doit de ne pas dépasser la limite.
Elle espere de régler le probleme.

Il parait & supporter 1’écu.

Chacun peut d’abuser de la situation.

Je préfere de partir.

Cela semble d’étre vrai.

Il vaut mieux de se joindre a eux.

Elles voulaient d’étre respectées.

215

216 APPENDIX B. SAMPLE TEST CORPORA

B.3 Authentic sentences

B.3.1 FRIDA data

On veut de nous de les suivre, de faire comme eux “seulement pour notre
réussite” mais en cachant de nous tous les sentiments que éprouvent les étres
humains.

En prenant ce aspect il ne peut pas y avoir des avantages ou d’inconvénients
d’étre une femme ou un homme.

Y-a-il un avantage d’étre un homme? Hier soir, le vingt mai 1992, un billion
d’amateurs du football a regardé le match & Wembley entre deux équipes
européennes, de un c6té il y avait une équipe espagnole et de I'autre coté
une équipe italienne.

Plusieurs incidents de I'hoolganisme ont résulté avec des morts des ama-
teurs.

Tandis qu’il y existe des aspects mauvais du sport déja mentionnés: 'hooli-
ganisme et des frais des rassemblements des gens sportifs, on ne peut pas
nier des avantages dont les plus importantes inclurent I’amélioration des re-
lations diplomatiques et internationales.

Par exemple, sous le reine d’Hitler, la peinture devenait trés conservatrice
et tres propagandiste.

L’art consiste de plusieurs mondes il ne faut pas qu’il ressemble & le notre.
Pendant qu’elle est bonne, en tant que telle, elle a permis & les femmes aussi
de se coucher & droit et a gauche; elle a apporté une moralité relachée.
Souvent, donc des femmes se trouvent trompées, spirituellement vidées.
Peut-étre en ce contexte on comprend 'avis de Simone de Beauvoir qu’ “on
ne nait pas femme, on le devient”.

Les deux cotés du argument peuvent étre justifié.

Jusqu’a présent sous madame Thatcher le Royaume Uni avait resté favor-
ablement hostile & les moindres danger comme la création d’une banque
centrale européenne et d’une monnaie unique.

Si les anglaises ne utilisent pas sa chance unique pour qu’ils deviennent plus
indépendantes, la Grande Bretagne deviendra un pays faible par rapport
tous ses compétiteurs comme 1’Allemagne ou la France par exemple.

Le nouvel marché aidera les 12 car la disparition des tarifs restrictifs encour-
agera l’industrie.

L’idée d’un Europe unifié peut étre utile pour tout le monde mais je pense
que a une certaine mesure chaque pays doit se démarquer et garder sa iden-
tité pendant qu’ils s’efforcent d’améliorer les relations et de former une unité
beaucoup plus cohésive.

Nous avons déja devenu partie de la CEE(en 1992) qui a été former afin de
unifier les bénéfices économiques de chaque pays.

La Grande-Bretagne a peur de confondre son identité avec celui de I'Europe
et cela explique la hostilité des britanniques contre une monnaie européenne

B.3. AUTHENTIC SENTENCES 217

unique.

Mais c’est un peu trop tard pour se plaindre parce que il a été accepter dans
la Traité de Rome que le loi fait par le parlement Européen a la préséance
sur le loi des pays qui fait partie de la Communauté.

L’économie, ainsi, en Grande Bretagne va améliorer; néanmoins les Britan-
niques sont tout & fait contre un monnaie Européen unique, 'ECU, parce
que un monnaie unique est une perte de leur identité et leur indépendance.
Donc & cause de sa histoire Grande Bretagne est devenu assez différente et
indépendante en comparaison avec les autres pays d’Europe.

Mais encore une fois il faut dire que un des défauts des CEGEPs, ¢’ est le
grand choix qu’on a.

Mais, c’était ce qu’on appelle aujourd’hui “la fausse régionalisation”, parce
ce que elle n’a rien changé pour aider des habitants.

Donc, il y a une différence entre les deux livres de 'attitude envers la société,
bien que il est vrai que les deux acceptent les autres: les Chapdelaines n’ont
pas envie de la vie urbaine(méme & la fin Maria,) et Galerneau devait aller
en ville.

Parce que ils sont différents des Anglais.

C’est parce que les continentaux sont plus différents aux anglais.

En 1960, avec son “équipe du tonnerre” Monsieur Nésage a proclamé que
“il est temps que ca change”.

B.3.2 FreeText data

A Tage de 7 ou 8 ans je n’avais pas réfléchi au sujet de la mortalité et cela
m’a cause un choc.

Au début je ne pouvais pas supporter la solitude de ma chambre, jusqu’au
moment ou j’ai vu par ma fenétre un groupe de oiseaux qui volaient.
Aujourd’hui tout va bien c’est presque comme si cet événement n’a jamais
eu lieu.

Ce jour-1a, il faisait tres beau et on faisait la file pour deux heures.

Celui ou j’ai me suis rendu compte de leur futilité et de leur humanité comme
un enfant sur lequel tombe soudainement I'idée affreuse: ses parents ne sont
pas des héros tous puissants.

C’est la méme chose quand je suis dans la voiture avec quelqu’un et quelque
chose se passe.

C’était la semaine avant Noél, j’avais seulement 12 ans.

C’était merveilleux! Elle avait beaucoup de choses de tres grande beauté et
ils étaient toutes pour moi ce matin-Ila.

C’était un jour comme tout les autres.

C’était une conversation intéressant.

Comme le narrateur du texte, je suis devenue grande ce jour-la.

Depuis ce jour j’ai décidé que je dois devenue une actrice.

218 APPENDIX B. SAMPLE TEST CORPORA

Depuis ce jour je n’ai pas pu aimer un chien pareil.

Depuis ce jour je ne roule plus.

Depuis ce jour je n’y ai plus cru.

Depuis ce jour je regarde le rouge et les voitures avec beaucoup d’attention.
Depuis ce jour la je n’ai plus regretté ma décision et j’ai exigé de plus en
plus la valeur de la liberté.

Depuis ce jour la, je n’ai plus envie de voler.

Depuis ce jour 13, je ne peux pas s’arréte de lui penser.

Depuis ce jour la, je prend un gilet avant de me mettre a 1’eau.

Depuis ce jour ma vie a été renouvelée.

Depuis ce jour mes parents son divorcé.

Depuis ce jour nous habitions une grande maison.

Depuis ce jour si je suis chez moi et il fait un temps semblable a ce jour-la -
il pleut & verse - et mon pere est en retard je commence & me demander ou
il est.

Depuis ce jour, je I’écris et nous sommes encore des amies.

Depuis ce jour, je ne mange plus la creme glacée.

Depuis ce jour, j’espere devenir une poete encore.

Depuis ce jour, le gotut des parcs d’attraction a fortement diminué.

depuis ce jour, ma vie a changé.

deux jours apres elle est morte.

Elle a vécu pour deux années.

Elle est trés vieille mais trés contente parce que tous les enfants (moi, mon
frére et autre cousins ou cousines) lesquelles elle a soigné sont grandi est ont
la vie heureuse.

elle habitait dans le campagne, et le samedi nous rendions visite & ses amis.
Elle m’avait accompagné jusqu’a j’avais 6 ans.

Elle me bien soignait: elle faisait toujours le bon nourriture est me donnait
a manger; elle me racontait les histoires intéressants le soir.

Elle s’est appelé Suey et elle était un cadeau pour mon troisiéme anniver-
saire.

Elle venait de Paraguay mais elle vivait en Belgique.

Et je révait comme révent les enfants qui jouent dans la rue & soldats et a
cow-boys.

Finalement, méme si je I’aimais beaucoup, j’ai ouvert la petite porte de sa
cage et je ’ai délivré.

Heureusement elle a réussit a le trouver.

Il avait lair tellement malheureux que j’ai commencé réfléchir sur la liberté
et la chance que j’avais.

Il était vivant mais gravement blessé.

I1 voulait parlait de mon pere.

Il y avait un monsieur du coin.

Ils étaient mes héros.

J’ai mis un beau pantalon et des chausseurs rouges.

B.3. AUTHENTIC SENTENCES 219

J’ai pris des lecons et depuis ce jour 13, je joue plusieurs instruments.
J’arrivais de I’école et je me mettais a étudier I'histoire de mon pays et tous
les présidents qu’il avait eu.

Je étais tres contente de vivre avec ma grand mere.

je Paimerais parce qu’elle était tres gentille, et chaque jours elle me disait
des histoires tres droles.

je me sentais décu est faché contre moi méme pour avoir tombé dans leurs
nets de mensonges, d’illusion, illusion enfantine qui donne I’impression d’'une
pouvoir épouvantable; selon laquelle tu peux changer le monde.

Je me souviens je suis tres triste dans le jour ou elle est partie; j'ai pleut
sans arrét et j'ai refusé de rentrer a la maison.

Je ne suis plus une petite fille insouciante de tout.

Je pensais sur leurs actions: pourquoi tel avait fait telle chose, pourquoi tel
autre n’avait pas fait telle autre...

Je suis restée en dehors la maison jusqu’a le soleil est disparu et les vedette
sont sorti.

La musique est tres importante dans ma vie.

Le professeur de musique était tres sympathique et il inspirait ’enthousiasme
parmi la plupart des enfants.

Lui, dans son camion a presque écrasé la camionnette de mon pere.

Ma grande meére me regardait et demandait pourquoi je suis devenue tout
pale.

Ma mere a ouvert la porte.

Ma mere était beaucoup en colére et elle n’avait jamais me permis d’encore
entrer dans sa armoire.

Ma mere nous a racontait qu’il parlait comme si mon pére était mort.
Maintenant je grandir et deviens un adulte.

Mais I’événement m’a vraiment marqué.

Mais soudainement j’ai tombe et apres ca, je devais aller a I’hopital.

mais un jour elle disait qu’elle avait mal & la téte.

Mais un jour elle est partie & Pautre ville loin pour soigner mon cousin (le
fis de mon ongle).

Mais un jour elle est repartie pour Paraguay.

Mais un jour J’ai eu le chance a parler avec le directeur de la filme.

Mais un jour j’ai mange la creme glacée empoisonner.

Mais un jour j’ai recue un mal essai de ’anglais.

Mais un jour j’ai trouvé que j’étais trop grand pour la porter.

Mais un jour je suis allé trop loin dans le lac et j ai fait noyer.

Mais un jour je suis tombée.

Mais un jour mon chien est mort.

Mais un jour mon pére a gagne beaucoup d’argent dans un concours d’échec.
Mais un jour tout a change.

Mais un jour tout comme le petit garcon dans I’histoire un grand événement
a eu lieu.

220 APPENDIX B. SAMPLE TEST CORPORA

Mais un jour une voiture est arrivé trot vite, et je suis tombé par terre.
Mais un jour, apreés une longue recherche, mes parents ont trouvé une nou-
b)
velle maison, j’avais une chambre pour moi, il y avait un jardin et ensuite
n u prendre un chien.
on a endre chie
Mais un jour, ma mere a nous prend & une autre payé sans mon pere.
)
mais un jour, mon poisson rou mort.
als our, mon poisson rouge est mort
Mais, soudainement quelqu’un a sonné a la porte.
Moi c’était le méme avec les politiciens; je les voyais comme corrompus et
A\ ils avi Sté ieux.
menteurs quand avant ils avions été des dieu
Moi, assise dans la chambre d’a co6té, j’entendais aucun de ses mots mais de
la fagon dont ils parlaient je savais que quelque chose d’horrible s’est passé.
Moi, je I’adorais mais un jour j’ai remarqué que il regardait tout le temps
dehors de ma fenétre.
Mon grand mere est encore vivant.
Quand j étais petite j aimais nager.
Quand j’étais petite j’ai eu une robe rouge qui étais ma robe favorite.
Quand j’avais sept ans, ma grand-mere m’a acheté ma premiere violon.
Quand j’étais petit j'avais envie de voler comme un oiseau mais un jour en
jouant avec mes amis, quelqu’un a tombée du toit.
)
Quand j’étais petit, ce que je voulais le plus, ¢’était devenir politicien.
Quand j’étais petit, mon chien était un de mes meilleurs amis.
Quand j’étais petite.
Quand j’étais petite j’ai beaucoup aime la créme glacée.
Quand j’étais petite j’ai pensé que ma famille était trés content.
Quand j’étais petite j’ai regu un vélo.
quand j’étais petite j'aimais beaucoup les animaux mais un jour j’ai vu un
chien qui a tue une bébé et depuis ce jour j’ai déteste les animaux.
Quand j’étais petite j’avais un petit oiseau dans une cage.
Quand j’étais petite je n’avait aucune souci.
Quand j’étais petite je toujours promenais sans aucun attention, j’étais une
fille tres impatient, et je toujours croissait le rouge follement.
Quand j’étais petite ma mere et moi sommes allées au cinéma.
Quand j’étais petite, j’adorais aller souvent & un parc d’attraction.
Quand j’étais petite, j’adorais la musique.
quand j’étais petite, j’ai vu un homme avec une moustache qui était plus
long que ses cheveux.
Quand j’étais petite, j’aimais bien les lecons de musique a 1’école.
Quand j’étais petite, j’avais une amie.
Quand j’étais petite, je vivais avec ma grand meére.
Quand j’étais petite, j’espere devenir une poete.
Quand j’étais petite, j’était trés amusant un jour parce que ma mere a sorti
et je pouvais essayer toutes ses vétements de son armoire.
uand j’étais petite, j’habitais avec ma grand-mere.
)
Quand j’étais petite, ma famille et moi habitions dans un grand immeuble

B.3. AUTHENTIC SENTENCES 221

a la périphérie de la ville.

Quand j’étais petite, ma famille était pauvre.

Quand j’étais une petite, j’étais toujours contente.

Quel désastre! Depuis ce jour je n’ai plus avoir une robe favorite parce que
je n’aime pas le chagrin quand je deviendra trop grand! Ton voix, c’est ton
voix, c’est un trésor Mon voix peut changer leurs vies, mais pas la mienne.
Tout de suite elle s’est mis & téléphoner les hopitaux pour savoir si mon pere
était 1a.

Tout de suite me mere est entrée dans la salle et tout devenait clair, le mon-
sieur qui était déja parti parlait d’un accident routier.

Un jour, mes parents m’ont prise au Wallibi.

Un jour, pourtant, il est mort d’une crise cardiaque.

222 APPENDIX B. SAMPLE TEST CORPORA

Bibliography

Akmajian, A., R. A. Demers, and R. M. Harnish (1984). Linguistics: An
Introduction to Language and Communication (2nd ed.). Cambridge,
Mass.: MIT Press.

Allen, J. R. (1997). Ten desiderata for computer-assisted language learn-
ing programs: The example of ELSE. Computers and the Humani-
ties 30, 441-455.

Allen, R. E. (Ed.) (1990). The Concise Ozford Dictionary of Current
English (8th ed.). Oxford: Oxford University Press.

Bailin, A. (1988). Artificial intelligence and computer-assisted language
instruction: A perspective. CALICO Journal 5(3), 25-45.

Bailin, A. (1990). CALL, artificial intelligence and the representation of
social roles. In Craven, Sinyor, and Paramskas (1990), pp. 173-179.

Bailin, A. (1991). ICALI research: A special issue of the CALICO journal.
CALICO Journal 9(1).

Bailin, A. and L. Levin (1989). Introduction: Intelligent computer-assited
language instruction. Computers and the Humanities 23, 3—11.

Barchan, J., B. Woodmansee, and M. Yazdani (1986). A Prolog-based
tool for French grammar analysis. Instructional Science 15, 21-48.

Bog, L.-J. and J.-P. Tubach (1992). De A 4 Zut: Dictionnaire Phonétique
du frangais parlé. Grenoble: ELLUG.

Bolt, P. and M. Yazdani (1998). The evolution of a grammar-checking
program: LINGER to ISCA. Computer Assisted Language Learn-
ing 11(1), 55-112.

Brehony, T. and K. Ryan (1994). Francophone stylistic grammar checker
(FSGC) using link grammars. Computer Assisted Language Learn-
ing 7(3), 257-269.

Bresnan, J. (Ed.) (1982). The Mental Representation of Grammatical Re-
lations. Cambridge, MA: MIT Press.

Brock, M. N. (1990). Customizing a computerized text analyzer for ESL
writers: Cost versus gain. CALICO Journal 8(2), 51-60.

223

224 BIBLIOGRAPHY

Buchholz, E. (1992). Factors influencing the acceptance of CALLware.
Literary and Linguistic Computing 7(2), 132-137.

Burston, J. (1998). Antidote 98. CALICO Journal 16(2), 197-212.

Cameron, K. (Ed.) (1999). CALL: Media, Design and Applications. Lisse:
Swets and Zeitlinger.

Catt, M. and G. Hirst (1990). An intelligent cali system for grammatical
error diagnosis. Computer Assisted Language Learning 3, 3-26.

Catt, M. E. (1988). Intelligent diagnosis of ungrammaticality in computer-
assisted language instruction. Technical Report CRSI-218, University
of Toronto, Toronto.

Chanier, T. (Ed.) (1999). EuroCALL’99: Conference Handbook, Be-
sancon, France. EuroCALL.

Chanier, T., M. Pengelly, M. Twindale, and J. Self (1992). Conceptual
modelling in error analysis in computer-assisted language learning sys-
tems. In Swartz and Yazdani (1992), pp. 125-150.

Chapelle, C. (1989). Using intelligent computer-assisted language learn-
ing. Computers and the Humanities 23, 59-70.

Chapelle, C. A. (2001). Computer Applications in Second Language Acqui-
sition. The Cambridge Applied Linguistics Series. Cambridge: Cam-
bridge University Press.

Charniak, E. (1983). A parser with something for everyone. In M. King
(Ed.), Parsing Natural Language, Chapter 7, pp. 117-149. London:
Academic Press.

Chen, L. and L. K. Barry (1989). XTRA-TE: Using natural language
processing software to develop an its for language learning. In Pro-
ceedings of the 4th International Conference on Artificial Intelligence
and Education, Amsterdam, pp. 54-63.

Chen, S.-Q. and L. Xu (1990). Grammar-Debugger: A parser for Chinese
EFL learners. CALICO Journal 8(2), 63-75.

Chollet, G. (1994). Automatic speech and speaker recognition: Overview,
current issues and perspectives. In E. Keller (Ed.), Fundamentals of
Speech Synthesis and Speech Recognition: Basic Concepts, State-of-
the-Art and Future Challenges, Chapter 7, pp. 129-147. Chichester:
John Wiley & Sons.

Chomsky, N. (1964). Degrees of grammaticalness. In J. A. Fodor and J. J.
Katz (Eds.), The Structure of Language: Readings in the Philosophy
of Language, pp. 384-389. Englewood Cliffs, NJ: Prentice-Hall, Inc.

Chomsky, N. (1965). Aspects of the Theory of Syntaz. Cambridge, Mass.:
MIT Press.

BIBLIOGRAPHY 225

Chomsky, N. (1981). Lectures on government and binding. Dordrecht:
Foris.

Cook, V. (1988). Designing a BASIC parser for CALL. CALICO Jour-
nal 6(1), 50-67.

Cornu, E. (1994). Automatic correction of French prose written by English
native speakers: An LFG approach. TRANEL 21, 181-194.

Cornu, E. (1997). Correction automatique des erreurs morphologiques et
syntaziques produites a l’écrit en langue seconde. Ph. D. thesis, Uni-
versité de Neuchatel, Manuscript.

Cornu, E., N. Kiibler, F. Bodmer, F. Grosjean, L. Grosjean, N. Léwy,
C. Tschichold, and C. Tschumi (1996). Prototype of a second language
writing tool for French speakers writing in English. Natural Language
Engineering 2(3), 211-228.

Courtin, J., D. Dujardin, I. Kowarski, D. Genthial, and V. L. de Lima
(1991). Towardds a complete detection/correction system. In Proceed-
ings of the International Conference on Current Issues in Computa-
tional Linguistics, Penang, Malaysia, pp. 158-173.

Craven, M.-L., R. Sinyor, and D. Paramskas (Eds.) (1990). CALL: Papers
and Reports. La Jolla, CA: Athelstan Publications.

Criswell, E., H. Byrnes, and G. Pfister (1992). Intelligent automated
strategies of teaching foreign language in context. In Swartz and Yaz-
dani (1992), pp. 307-319.

Davies, G. and Y. H. Wei (1997). Do grammar checkers work? a report
on research into the effectiveness of Grammatik V based on samples
of authentic essays by EFL students. In J. Kohn, B. Riischoff, and
D. Wolff (Eds.), New Horizons in CALL: Proceedings of EUROCALL
96, Szonbathely, Hungary, pp. 169-188.

DeSmedt, W. H. (1995). Herr Komissar: An ICALL conversation simula-
tor for intermediate German. In Holland, Kapland, and Sams (1995),
pp. 371-381.

Dinnematin, S. and D. Sanz (1990). Sept correcteurs pour 'orthographe
et la grammaire. Science & Vie Micro 78, 118-130.

Eglowstein, H. (1991). Can a grammar and style checker improve your
writing? BYTE 16(8), 238-242.

Ellis, R. (1997). Second Language Acquisition. Oxford Introduction to
Language Study. Oxford: Oxford University Press.

Erbach, G. (1990). Syntactic processing of unknown words. In Jorrand
and Sgurev (1990), pp. 371-381.

226 BIBLIOGRAPHY

Felshin, S. (1995). The Athena language learning project NLP system:
A multilingual system for conversation-based language learning. In
Holland, Kapland, and Sams (1995), Chapter 14, pp. 257-272.

Feuerman, K., C. Marshall, D. Newman, and M. Rypa (1987). The
CALLE project. CALICO Journal 4, 25-34.

Freedman, A. (1989). The Computer Glossary: The Complete Illustrated
Desk Reference (4 ed.). New York: AMACOM, American Management,
Association.

Gamper, J. and J. Knapp (2002). A review of intelligent CALL systems.
Computer Assisted Language Learning 15(4), 329-342.

Gaudinat, A. and J.-P. Goldman (1998). Le systéme de synthése FIPSVox:
Syntaxe, phonétisation et prosodie. In Proceedings of the XIléme
Journées d’Etudes sur la Parole, Martigny, Switzerland, pp. 139-142.

Granger, R. H. (1983). The NOMAD system: Expectation-based detec-
tion and correction of errors during understanding of syntactically and
semantically ill-formed text. American Journal of Computational Lin-
guistics 9(3-4), 188-196.

Granger, S. and F. Meunier (1984). Towards a grammar checker for learn-
ers of English. In U. Fries, G. Tottie, and P. Schneider (Eds.), Creat-
ing and Using English Language Corpora, Language and Computers:
studies in Practical Linguistics, pp. 79-91. Amsterdam: Rodopi.

Granger, S., F. Meunier, N. Verhulst, and P. Watrin (2001). Logiciels
de correction automatique du francais et corpus de FLE. Technical
report, Centre for English Corpus Linguistics, Université Catholique
de Louvain, Louvain-la-Neuve, Belgium.

Granger, S., A. Vandeventer, and M.-J. Hamel (2001). Analyse de corpus
d’apprenants pour 'ELAO basé sur le TAL. TAL: Traitement automa-
tique des langues 42(2), 609-621.

Grishman, R. (1986). Computational linguistics: An indtroduction. Stud-
ies in Natural Language Processing. Cambridge: Cambridge Univer-
sity Press.

Guberman, S. (1990). Quo vadis? software for a meaningful second lan-
guage pedagogy. In Craven, Sinyor, and Paramskas (1990), pp. 31-39.

Giivenir, H. A. (1992). Drill and practice for Turkish grammar. In Swartz
and Yazdani (1992), pp. 275-291.

Haegeman, L. (1991). Introduction to Government € Binding Theory.
Oxford: Blackwell.

Harriehausen-Miihlbauer, B. (1991). The computer as a ‘teacher’ for
grammar and style errors. Literary and Linguistic Computing 6(4),
269-273.

BIBLIOGRAPHY 227

Hayes, P. J. and G. V. Mouradian (1981). Flexible parsing. American
Journal of Computational Linguistics 7(4), 232-242.

Heidorn, G. (1993). Experience with an easily computed metric for rank-
ing alternative parses. In Jensen, Heidorn, and Richardson (1993),
Chapter 4, pp. 47-52.

Heidorn, G. E. (2000). Intelligent writing assistance. In R. Dale, H. Moisl,
and H. Somers (Eds.), Handbook of Natural Language Processing,
Chapter 8, pp. 181-207. New York: Marcel Dekker.

Heidorn, G. E., K. Jensen, L. A. Miller, R. J. Byrd, and M. S. Chodorow
(1982). The EPISTLE text-critiquing system. IBM Systems Jour-
nal 21(3), 305-327.

Heinecke, J., J. Kunze, W. Menzel, and 1. Schroder (1998). Eliminative
parsing with grader constraints. In Proceedings of Coling-ACL’98, Vol-
ume 1, Montreal, Canada, pp. 526-530.

Holan, T., V. Kubon, and M. Plitek (1997). A prototype of a grammar
checker for czech. In Proceedings of the 5th Conference on Applied
Natural Language Processing, Washington, pp. 147-154. ACL.

Holland, V. M. (1994). Lessons learned in designing intelligent CALL:
Managing communication across disciplines. Computer Assisted Lan-
guage Learning 7(3), 227-256.

Holland, V. M., J. D. Kapland, and M. R. Sams (Eds.) (1995). Inteligent
Language Tutors: Theory Shaping Technology. Mahwah, NJ: Lawrence
Erlbaum Associates.

Holland, V. M., R. Maisano, C. Alderks, and J. Martin (1993). Parsers in
tutors: What are they good for? CALICO Journal 11(1), 28-46.

Holmes, G. (1990). Canadian computer-assisted language learning: Will
it survive? In Craven, Sinyor, and Paramskas (1990), pp. 1-8.

Holmes, G. and M. Kidd (1980). The evolving case or computers in the
study of modern languages. ALLC Journal 1, 7-10.

Hu, Q., J. Hopkins, and M. Phinney (1998). NativeEnglish?™ writing
assistant — a CALL product for English reading and writing. In Jager,
Nerbonne, and van Essen (1998), pp. 95-100.

Hubbard, P. (1992). A methodological framework for CALL courseware
development. In M. C. Pennington and V. Stevens (Eds.), Comput-
ers in Applied Linguistics: An International Perspective, pp. 39-65.
Clevedon: Multilingual matters.

Hull, G., C. Ball, J. L. Fox, L. Levin, and D. McCutchen (1987). Com-
puter detection of errors in natural language texts: Some research on
pattern-matching. Computers and the Humanities 21, 103—-118.

228 BIBLIOGRAPHY

Imlah, W. G. and J. B. H. du Boulay (1985). Robust natural language
parsing in computer-assisted language instruction. System 13(2), 137—
147.

Jacobs, G. and C. Rodgers (1999). Treacherous allies: Foreign language
grammar checkers. CALICO Journal 16(4), 509-529.

Jager, S., J. A. Nerbonne, and A. J. van Essen (Eds.) (1998). Language
Teaching and Language Technology. Lisse: Swets and Zeitlinger.

Jensen, K., G. Heidorn, L. Miller, and Y. Ravin (1993). Parse fitting and
prose fixing. In Jensen, Heidorn, and Richardson (1993), Chapter 5,
pp. 53-64.

Jensen, K., G. E. Heidorn, L. A. Miller, and Y. Ravin (1983). Parse fitting
and prose fixing: Getting a hold on ill-formedness. American Journal
of Computational Linguistics 9(3-4), 147-160.

Jensen, K., G. E. Heidorn, and S. D. Richardson (Eds.) (1993). Natural
Language Processing: The PLNLP Approach. Boston: Kluwer Aca-
demic Publishers.

Jorrand, P. and V. Sgurev (Eds.) (1990). Artificial Intelligence IV:
Methodology, Systems, Applications. Amsterdam: FElsevier Science
Publishers B.V.

Kaplan, J. D. and V. M. Holland (1995). Advanced technologies for lan-
guage learning: The BRIDGE project within the ARI language tutor-
ing program. In Holland, Kapland, and Sams (1995), pp. 273-287.

Kempen, G. (1992). Language technology and language instruction: Com-
putational diagnosis of word level errors. In Swartz and Yazdani
(1992), pp. 191-198.

Krashen, S. D. (1984). Principles and Practice in Second Language Ac-
quisition. Language Teaching Methodology. Oxford: Pergamon Press.

Kreyer, S. and E. Criswell (1995). Instructor as author in an adaptive,
multimedia foreign language tutor. In Holland, Kapland, and Sams
(1995), pp. 45-54.

Kiibler, N. and E. Cornu (1994). Using automata to detect and correct
errors in the written English of French-speakers. TRANEL 21, 235—
245.

Kwasny, S. C. and N. K. Sondheimer (1981). Relaxation techniques
for parsing grammatically ill-formed input in natural language un-

derstanding systems. American Journal of Computational Linguis-
tics 7(2), 99-108.

Labrie, G. and L. P. S. Singh (1991). Parsing, error diagnostics and in-
struction in a French tutor. CALICO Journal 9(1), 9-25.

BIBLIOGRAPHY 229

Laenzlinger, C. (1998a). Comparative Studies in Word Order Variation:
Adverbs, pronouns, and clause structure in Romance and Germanic.
Amsterdam: John Benjamins.

Laenzlinger, C. (1998b). Les outils de TALN du LATL sur Internet.
Langues 1(1), 82-85.

Laenzlinger, C. and E. Wehrli (1991). Fips: Un analyseur interactif pour
le francais. T.A. Informations 2, 35-49.

Letellier, S. and J.-P. Fournier (1990). How to deal intelligently with the
unexpected? In Jorrand and Sgurev (1990), pp. 393-402.

Levin, L. S. and D. A. Evans (1995). Alice-chan: A case study in icall the-
ory and practice. In Holland, Kapland, and Sams (1995), Chapter 5,
pp. 77-97.

Levin, L. S.; D. A. Evans, and D. M. Gates (1991). The ALICE system:
A workbench for learning and using language. CALICO Journal 9(1),
27-56.

Levison, M., G. Lessard, and D. Walker (2000). A multi-level approach
to the detection of second language learners errors. Literary and Lin-
guistic Computing 15 (3), 313-322.

Liou, H.-C. (1991). Development of an English grammar checker: A
progress report. CALICO Journal 9(1), 57-70.

Loritz, D. (1992). Generalized transition network parsing for language
study: The GPARS system for English, Russian, Japanese and Chi-
nese. CALICO Journal 10(1), 5-22.

Manning, C. D. and H. Schiitze (1999). Foundations of Statistical Natural
Language Processing. Cambridge, Mass.: The MIT Press.

Marcus, M. P. (1980). A Theory of Syntactic Recognition for Natural
Language. Cambridge: MIT Press.

Marcus, M. P. (1987). Deterministic parsing and description theory. In
P. Whitelock, M. M. Wood, H. L. Somers, R. Johnson, and P. Ben-
net (Eds.), Linguistic Theory and Computer Applications, pp. 69-112.
London: Academic Press.

Matthews, C. (1993). Grammar frameworks in intelligent CALL. CALICO
Journal 11(1), 5-28.

Menzel, W. and 1. Schroder (1998a). Constraint-based diagnosis for in-
telligent language tutoring systems. In ITE¢KNOWS Conference Pro-

ceedings: XV IFIP World Computer Congress, Vienna and Budapest,
pp- 484-497.

Menzel, W. and I. Schréder (1998b). Error diagnosis for language learning
systems. In NLP + AI 98 Conference Proceedings, Volume 1, Moncton,
Canada, pp. 45-51.

230 BIBLIOGRAPHY

Miller, L. A., G. E. Heidorn, and K. Jensen (1981). Text-critiquing with
the EPISTLE system: an author’s aid to better syntax. In AFIPS
Conference Proceedings, Arlington, VA, pp. 649-655. AFIPS Press.

Mogilevski, E. (1998). Le Correcteur 101. CALICO Journal 16(2), 183
196.

Mossenbock, H. (1993). Object-Oriented Programming in Oberon-2.
Berlin: Springer-Verlag.

Mulford, G. W. (1989). Semantic processing for communicative exercises
in foreign-language learning. Computers and the Humanities 23, 31—
44.

Murphy, M., A. Kriiger, and A. Grieszl (1998). RECALL — providing
an individualized CALL environement. In Jager, Nerbonne, and van
Essen (1998), pp. 203—222.

Nagata, N. (2002). BANZAI: An application of natural language process-
ing to web-based language learning. CALICO 19(3), 583-599.

Nerbonne, J. (2003). Natural language processing in computer-assisted
language learning. In R. Mitkov (Ed.), The Ozford Handbook of Com-
putational Linguistics, Chapter 37, pp. 670-698. Oxford: Oxford Uni-
versity Press.

Nerbonne, J., D. Dokter, and P. Smit (1998). Morphological process-
ing and computer-assisted language learning. Computer Assisted Lan-
guage Learning 11(5), 543-559.

Nikitin, E. (1997). Into the Realm of Oberon: An Introduction to Program-
ming and the Oberon-2 Programming Language. New York: Springer.

Oflazer, K. (1996). Error-tolerant finite-state recognition with apllications
to morphological analysis and spelling correction. Computational Lin-
guistics 22(1), 73-89.

Paramskas, D. (1993). ELAO: genese et avenir. In P. Liddell (Ed.), CALL:
Theory and Application, pp. 65—75. Victoria University Press.

Peterson, J. L. (1980). Computer programs for detecting and correcting
spelling errors. Communications of the ACM 23(12), 676-687.

Pollard, C. J. and I. A. Sag (1994). Head-Driven Phrase Structure Gram-
mar. Chicago: Chicago University Press.

Pollock, J. J. and A. Zamora (1984). Automatic spelling correction in
scientific and scholarly text. Communications of the ACM 27(4), 358
368.

Pusack, J. P. (1984). Answer processing and error correction in foreign
language CAIL In D. H. Wyatt (Ed.), Computer-Assisted Language
Instruction, pp. 53—64. Oxford: Pergamon Press Ltd.

BIBLIOGRAPHY 231

Reiser, M. and N. Wirth (1992). Programming in Oberon: Steps beyond
Pascal and Modula. New York: ACM Press.

Richardson, S. and L. Braden-Harder (1993). The experience of developing
a large-scale natural language processing system: Critique. In Jensen,
Heidorn, and Richardson (1993), Chapter 7, pp. 77-89.

Richmond, I. M. (1999). Is your CALL connected? dedicated software vs.
integrated CALL. In Cameron (1999), pp. 295-314.

Rypa, M. and K. Feurman (1995). CALLE: An exploratory environment
for foreign language learning. In Holland, Kapland, and Sams (1995),
Chapter 4, pp. 55-76.

Sams, M. R. (1995). Advanced technologies for language learning: The
BRIDGE project within the ARI language tutor program. In Holland,
Kapland, and Sams (1995), pp. 7-21.

Sanders, A. and R. Sanders (1987). Designing and implmenting a syntactic
parser. CALICO Journal 5(1), 77-86.

Sanders, A. F. and R. H. Sanders (1989). Syntactic parsing: A survey.
Computers and the Humanities 23, 13-30.

Sanders, R. (1991). Error analysis in purely syntactic parsing of free input:
The example of German. CALICO Journal 9(1), 72-89.

Sanz, D. (1992). Grammaire: Quatre ténors & ’épreuve. Science & Vie
Micro 90, 100-108.

Schneider, D. and K. F. McCoy (1998). Recognizing syntactic errors in the
writing of secong language learners. In Proceedings of Coling-ACL’98,
Volume 2, Montreal, Canada, pp. 1198-1204.

Schulze, M. (1998). Checking grammar — teaching grammar. Computer
Assisted Language Learning 11(2), 215-227.

Schulze, M. and M.-J. Hamel (2000). Towards authentic tasks and expe-
riences: The example of paser-based CALL. The Canadian Journal of
Applied Linguistics 3(1-2), 79-90.

Schuster, E. (1986). The role of native grammars in correcting errors in
second language learning. Computer Intelligence 2, 93-98.

Schwind, C. B. (1986). Overview of an intelligent language tutoring sys-
tem. In Proceedings of the 2nd International Conference on Artificial
Intelligence CITAM’86, Paris, pp. 389—407. Hemes.

Schwind, C. B. (1988). Sensitive parsing: Error analysis and explanation
in an intelligent language tutoring system. In Proceedings of COLING
88, Budapest, pp. 608-613.

Schwind, C. B. (1995). Error analysis and explanation in knowledge based
language tutoring. Computer Assisted Language Learning 8(4), 295—
324.

232 BIBLIOGRAPHY

Sedgewick, R. (1988). Algorithms (2nd ed.). Reading, MA: Addison-
Wesley.

Selva, T. and T. Chanier (2000). Génération automatique d’activités
lexicales dans le systeme ALEXIA. Sciences et Techniques Educa-
tives 7(2), 385-412.

Simard, M. and A. Deslauriers (2001). Real-time automatic insertion of
accents in french text. Natural Language Engineering 7(2), 143-165.

Sleator and Temperley (1991). Parsing English with a link grammar. Tech-
nical Report CMU-CS-91-196, Carnegie Mellon University, Pittsburg,
PA.

Swartz, M. L. and M. Yazdani (Eds.) (1992). Intelligent Tutoring Sys-
tems for Foreign Language Learning. NATO ASI series F 80. Berlin:
Spinger-Verlag.

Teixeira Martins, R., R. Hasegawa, M. D. G. Volpe Nunes, G. Montilha,
and O. Novais De Oliveira, Jr. (1998). Linguistics issues in the de-
velopment of ReGra: A grammar checker for Brazilian Portuguese.
Natural Language Engineering 4(4), 287-307.

Tennant, H. (1981). Natural Language Processing: An introduction to an
emerging technology. New York: PBI-Petrocelli Books, Inc.

Thurmair, G. (1990). Parsing for grammar and style checking. In Proceed-
ings of COLING-90, Helsinki, pp. 365-370. ACL.

Tschichold, C. (1999). Grammar checking for CALL: Strategies for im-
proving foreign language grammar checkers. In Cameron (1999), pp.
203-222.

Tschichold, C., F. Bodmer, E. Cornu, F. Grosjean, L. Grosjean,
N. Kiibler, and C. Tschumi (1994). Detecting and correcting errors
in second language texts. Computer Assisted Language Learning 7(2),
151-160.

Tschumi, C. (1994). Les erreurs d’utilisation des temps anglais par les
francophones: ébauche d’un vérificateur Prolog. TRANEL 21, 205-
222.

Tschumi, C., F. Bodmer, E. Cornu, F. Grosjean, L. Grosjean, N. Kiibler,
and C. Tschichold (1994). The ARCTA prototype: An English writing
tool and grammar checker for French-speakers. TRANEL 21, 223-228.

Uszkoreit, H. (1991). Strategies for adding control information to declar-
ative grammars. In Proceedings of the 29th Annual Meeting of the As-
sociation for Computational Linguistics, Berkeley, pp. 237-245. ACL.

Vandeventer, A. (2001). Creating a grammar checker for CALL by con-
straint relaxation: A feasibility study. ReCALL 13(1), 110-120.

BIBLIOGRAPHY 233

Véronis, J. (1988). Morphosyntactic correction in natural language inter-
faces. In Proceedings of the 12th International Conference on Compu-
tational Linguistics (COLING), Volume 2, pp. 708-713. ACL.

Vosse, T. (1992). Detecting and correcting morpho-syntactic errors in real
texts. In Third Conferece on Applied natural Language Processing:
Proceedings, Trento, Italy, pp. 111-118. ACL.

Wehrli, E. (1997). Traitement automatique de la langue: Problémes et
méthodes. Paris: Mason.

Weinberg, A., J. Garman, J. Martin, and P. Merlo (1995). A principled-
based parser for foreign language tutoring in German and Arabic. In
Holland, Kapland, and Sams (1995), pp. 23-44.

Weischedel, R. M. and J. E. Black (1980). Responding intelligently to un-
parsable inputs. American Journal of Computational Linguistics 6(2),

97-109.

Weischedel, R. M. and L. A. Ramshaw (1987). Reflections on the knowl-
edge needed to process ill-formed language. In S. Nirenburg (Ed.),
Machine translation: Theoretical and methodological issues, Studies
in natural Language Processing, Chapter 10, pp. 155-167. Cambridge:
Cambridge University Press.

Weischedel, R. M. and N. K. Sondheimer (1983). Meta-rules as a basis
for procession ill-formed input. American Journal of Computational
Linguistics 9(3-4), 161-177.

Weischedel, R. M., W. M. Voge, and M. James (1978). An artificial in-

telligence approach to language instruction. Artificial Intelligence 10,
225-240.

Winograd, T. (1983). Language as a Cognitive Process, Volume 1: Syntax.
Reading, MA: Addison-Wesley.

Yang, J. C. and K. Akahori (1999). An evaluation of Japanese CALL sys-
tems on the WWW: Comparing a freely input approach with multiple
selection. Computer Assisted Language Learning 12(1), 59-79.

Yazdani, M. (1991). The LINGER project: An artificial intelligence
approach to second-language tutoring. Computer Assisted Language
Learning 4(2), 107-116.

Yazdani, M. and J. Uren (1988). Generalising language-tutoring sys-
tems: A French/Spanish case study, using LINGER. Instructional
Science 17, 179-188.

