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Summary	

	

	

Recent	volcanic	crises	(2010	Eyjafjallajökull,	Grimsvotn	2011,	Iceland;	Puyehue-Cordon	

Caulle	2011,	Chile)	have	demonstrated	the	widespread	impact	that	even	small-moderate	

explosive	volcanic	eruptions	can	have	on	our	society.	The	air	traffic	closure	occurred	in	

large	 parts	 of	 Europe	 as	 a	 result	 of	 the	 2010	 Eyjafjallajökull	 eruption	 is	 still	 a	 vivid	

memory	 of	 how	 a	 moderate	 eruption	 can	 result	 in	 a	 total	 or	 partial	 closure	 of	 300	

airports	and	cost	about	1.300.000.000	€	to	the	airline	industry.	During	the	last	decade,	

several	efforts	have	been	made	to	improve	Volcanic	Ash	Transport	and	Dispersal	Models	

(VTADMs)	 and	 their	 predictions	 in	 order	 to	 better	 respond	 to	 volcanic	 crisis	 and	

mitigate	associated	volcanic	risk.	However,	the	long	range	prediction	of	volcanic	ash	is	

still	affected	by	our	poor	understanding	of	size-selective	sedimentation	processes	(e.g.	

particle	 aggregation,	 gravitational	 instabilities)	 in	 reducing	 the	 residence	 time	 of	

particles	 in	 the	 atmosphere.	 If	 this	 processes	 are	 not	 adequately	 described	 and	

parameterized,	VATDMs	tend	to	overestimate	the	atmospheric	concentration	of	fine	ash	

in	 the	 far	 field.	 Main	 objectives	 of	 this	 thesis	 include	 to:	 i)	 	 develop	 a	 robust	

mathematical	 framework	 to	 theoretically	 describe	 ash	 aggregation,	 based	 on	 field,	

theoretical	 and	 experimental	 constraints;	 ii)	 better	 characterize	 the	 physics	 of	 ash	

aggregation,	 providing	 a	 coherent	 formalization	 of	 the	 most	 important	 physical	

parameters	 involved	 in	 the	 process;	 and	 iii)	 implement	 the	 resultant	 theoretical	

framework	 into	 VATDMs.	 First,	 a	 one-dimensional	 scheme	 for	 the	 of	 coagulation	 of	

particles	has	been	developed	and	applied	to	a	thermal	plume	model	using	the	3rd	August	

2013	 Vulcanian	 eruption	 of	 Mount	 Sakurajima,	 Japan,	 as	 a	 case	 study.	 This	 scheme,	

based	on	the	so-called	Fixed	Pivot	Technique,	where	the	variable	mass	is	supposed	to	be	

discrete,	 has	 also	 been	 tested	 and	 implemented	 within	 NAME,	 the	 VATDM	 in	 use	 at	

MetOffice,	UK.	Second,	the	mathematical	framework	has	been	extended	towards	the	use	

of	arbitrary	multidimensional	parameters.	In	this	novel	approach,	the	relationships	that	

govern	the	resulting	products	of	a	collision	are	arbitrary	and	not	restricted	to	additive	

properties	 as	 in	 previous	 approaches.	 This	 new	 theoretical	 framework,	 namely	 the	



Generalized	 Fixed	 Pivot	 Technique	 (GFPT),	 can	 be	 applied	 in	 different	 contexts	 and	

disciplines.	Third,	the	GFPT	was	couple	with	specific	parameterisations	for	volcanic	as	in	

order	to	develop	a	new	methodology	for	the	investigation	of	the	role	of	aggregation	in	

volcanic	plumes.	This	resulted	in	a	new	parameterization	of	crucial	physical	processes,	

such	as	the	collision	rate	and	the	sticking	efficiency	of	collisional	processes.	To	the	other	

end	 of	 the	 spectrum	 of	 particle	 fallout	 during	 volcanic	 explosive	 eruptions,	

sedimentation	 of	 large	 clasts	 has	 also	 been	 addressed	 both	 to	 derive	 critical	 eruption	

source	 parameters,	 such	 as	 plume	 height,	 and	 to	 assess	 the	 associated	 hazard.	 In	

particular,	existing	methods	for	the	study	of	clast	sedimentation	have	been	extended	in	

order	 to	 incorporate	 important	 eruptive	 and	 sedimentation	 processes,	 with	 a	 special	

focus	 on	 the	 effect	 of	 atmospheric	 winds	 on	 plume	 rise.	 A	 comprehensive	 software	

package	 was	 developed	 that	 is	 capable	 to	 describe	 real	 topography	 and	 three-

dimensional	 atmospheric	 profiles.	 The	 method	 has	 been	 thoroughly	 validated	 with	

eruptions	of	varying	 intensity	and	applied	 to	compile	a	new	set	of	nomograms	 for	 the	

determination	of	plume	height	and	wind	intensity	at	the	time	of	the	eruption	in	various	

eruptive	conditions	(including	weak	and	transitional	plumes)	based	on	clast	distribution	

on	 the	 ground.	 Such	 a	 model	 can	 also	 be	 used	 to	 compile	 probability	 maps	 for	 the	

assessment	of	proximal	hazard	associated	with	the	sedimentation	of	large	clasts.	

	

	



Résumé	

	

	

Les	 crises	 volcaniques	 récentes	 (2010	 Eyjafjallajökull,	 Grimsvotn	 2011,	 Iceland;	

Puyehue-Cordon	Caulle	2011,	Chile)	nous	ont	montré	le	grand	impact	que	peuvent	avoir	

les	éruptions	volcaniques	de	petite	ou	moyenne	ampleur	sur	notre	société.	La	fermeture	

du	trafic	aérien	dans	une	grande	partie	de	l’Europe	suite	à	l’éruption	de	l´Eyjafjallajökull	

en	 2010	 est	 encore	 présente	 dans	 notre	 mémoire	 et	 nous	 a	 montré	 comment	 une	

éruption	 d’ampleur	 modérée	 peut	 provoquer	 la	 fermeture	 totale	 ou	 partiale	 de	 300	

aéroports	et	coûter	environ	1.300.000.000	€	à	 l’industrie	aéronautique.	Durant	ces	dix	

dernières	années	de	nombreux	efforts	ont	été	 réalisés	pour	perfectionner	 les	modèles	

de	 transport	 et	 de	 dispersion	 des	 cendres	 volcaniques	 (Volcanic	 Ash	 Transport	 and	

Dispersal	 Models,	 VTADMs)	 et	 leur	 prédiction,	 qui	 serviront	 à	 mieux	 gérer	 les	 crises	

volcaniques	et	 réduire	 les	risques	volcaniques	associés.	Néanmoins	 il	existe	encore	un	

manque	 de	 connaissances	 sur	 les	 processus	 de	 sélection	 des	 particules	 par	

sédimentation	(ej.	Agrégation	des	particules,	instabilités	gravitationnelles)	qui	réduisent	

le	 temps	 de	 résidence	 des	 particules	 dans	 l’atmosphère,	 qui	 constituent	 des	 données	

primordiales	 pour	 les	 prédictions	 à	 long	 terme	 des	 cendres	 volcaniques.	 Lorsque	 ces	

processus	 ne	 sont	 pas	 correctement	 décrits	 et	 paramétrés,	 le	 VATDMs	 a	 tendance	 à	

surestimer	 la	 concentration	de	particules	de	 cendres	 fines	dans	 les	 régions	 lointaines.	

Les	principaux	objectifs	de	 cette	 thèse	 comprennent	:	 i)	 Le	développement	d’un	 cadre	

mathématique	solide	pour	décrire	de	manière	théorique	l’agrégation	des	cendres,	sur	la	

base	 d’observations	 sur	 le	 terrain,	 tout	 en	 considérant	 les	 contraintes	 théoriques	 et	

expérimentales.	 ii)	Définir	de	manière	précise	 la	physique	de	 l’agrégation	des	cendres,	

en	 fournissant	une	 formalisation	cohérente	des	principaux	paramètres	 impliqués	dans	

le	 processus	;	 et	 iii)	 Appliquer	 le	 cadre	 théorique	 qui	 en	 résulte	 dans	 les	 VATDMs.	

Premièrement,	 un	 système	 unidimensionnel	 pour	 la	 coagulation	 des	 particules	 a	 été	

créé	et	appliqué	à	un	modèle	thermique	de	panache,	qui	est	basé	sur	 le	cas	d’étude	de	

l’éruption	vulcanienne	du	3	août	2013	du	Mont	Sakurajima	au	Japon.	Ce	système,	basé	

sur	la	soi-disant	technique	de	pivot	fixe	«	Fixed	Pivot	Technique	»,	où	la	variable	masse	



est	 censée	 être	 discrète,	 a	 été	 testé	 et	 appliqué	 avec	 les	 modèles	 NAME	 et	 VATDM,	

actuellement	 utilisés	 au	 MetOffice	 au	 Royaume-Uni.	 Deuxièmement,	 le	 cadre	

mathématique	 a	 été	 étendu	 vers	 l’utilisation	 de	 paramètres	 multidimensionnels	

arbitraires.	 Dans	 le	 cadre	 de	 cette	 nouvelle	 approche,	 les	 liens	 qui	 gouvernent	 les	

produits	 provenant	 d’une	 collision	 sont	 arbitraires,	 contrairement	 aux	 approches	

précédentes	où	ils	étaient	limités	aux	propriétés	additives.	Ce	nouveau	cadre	théorique,	

nommé	 la	 technique	 de	 pivot	 fixe	 généralisée	 (Generalized	 Fixed	 Pivot	 Technique,	

GFPT),	peut	être	appliqué	dans	différents	contextes	et	disciplines.	Troisièmement,	une	

nouvelle	méthodologie	 a	 été	 développée	 pour	 étudier	 le	 rôle	 de	 l’agrégation	 dans	 les	

panaches	volcaniques,	par	la	technique	de	GFPT	couplé	avec	des	paramètres	spécifiques	

pour	les	cendres	volcaniques.		Cela	a	permis	d’avoir	de	nouveaux	paramètres	liés	à	des	

processus	physiques	cruciaux,	comme	la	vitesse	de	collision	et	l’efficacité	de	l’adhérence	

dans	 les	 processus	 de	 collision.	 La	 sédimentation	 de	 grands	 clastes,	 qui	 représentent	

l’autre	 bout	 du	 spectre	 des	 retombées	 de	 particules	 qui	 ont	 lieu	 lors	 d’une	 éruption	

volcanique	 explosive,	 a	 aussi	 été	 abordée	 dans	 cette	 étude,	 dans	 le	 but	 d’obtenir	 les	

paramètres	 de	 source	 critiques	 des	 éruptions,	 comme	 la	 hauteur	 du	 panache,	 et	

d’évaluer	les	dangers	associés.	Entre	autres,	 les	méthodes	existantes	pour	l’étude	de	la	

sédimentation	des	clastes	ont	été	développées	pour	incorporer	de	nouveaux	processus	

sur	la	sédimentation	et	l’éruption,	focalisées	en	particulier	sur	la	croissance	du	panache	

volcanique.	Un	progiciel	 (software	 package)	 complet	 qui	 s’avère	 capable	 de	 décrire	 la	

topographie	réelle	et	des	profils	atmosphériques	tridimensionnels	a	été	développé.	Une	

validation	complète	de	 la	méthode	basée	sur	 la	distribution	des	clastes	sur	 le	sol	a	été	

réalisée	 avec	 des	 éruptions	 de	 différentes	 intensités.	 Cette	 validation	 a	 permis	 de	

compiler	un	nouveau	set	d’abaques	(nomograms)	pour	 la	détermination	de	 la	hauteur	

du	 panache	 et	 l’intensité	 du	 vent	 au	moment	 de	 l’éruption,	 ainsi	 que	 dans	 différentes	

conditions	éruptives	 (comprenant	des	 types	de	panaches	 faibles	 et	 transitionnels).	Un	

modèle	 de	 ce	 type	 peut	 aussi	 être	 utilisé	 pour	 compiler	 des	 cartes	 de	 probabilité	 qui	

seront	 employées	pour	 l’évaluation	du	danger	 proximal	 associé	 à	 la	 sédimentation	de	

grands	clastes.	
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Chapter 1 

Introduction 

 
 

 

Volcanic eruptions are one of the most violent and fascinating phenomena on our planet, 

responsible for a wide range of hazards and risks on a local and global scale. Among all 

the possible consequences involved in an eruptive event, tephra dispersion in the 

atmosphere represents an open challenge for the scientific community and a vulnerable 

aspect of the society. The air space closures occurred in large parts of Europe as a result 

of the 2010 Eyjafjallajökull eruption (Iceland) is still a vivid example of how a moderate 

eruption can affect multiple countries around the world and cost about 1.300.000.000 € 

to the airline industry. Most of the criticalities associated with volcanic tephra derive 

from its capability of acting at different spatial scales, as a consequence of the large 

spectrum of sizes of the ejected objects. Bombs and blocks              are usually 

confined within few kilometres from the vent; lapilli              can sediment up 

to some tens of kilometres from the crater; coarse ash              and fine ash 

         travel for hundreds or thousands of kilometres. Major events can literally 

impact from a local region up to the global scale. The risk associated with tephra 

dispersal goes from the damage of buildings, infrastructures, and airplanes engines to 

the effects on health of humans and animals, the contamination of plants and crops. It is 

thus evident how an improved understanding of the mechanisms connected with tephra 

dispersal and sedimentation represents a key aspect of our capacity to predict possible 

consequences of a volcanic eruption and reduce the associated impact.  

Once that lapilli and volcanic ash are injected in the atmosphere, an important role for 

the fate of these objects is driven by their vertical terminal velocity, i.e. the constant 

falling speed which is a consequence of the balance between gravity and drag force. 

Larger terminal velocities result in a reduced residence time in the atmosphere and a 

smaller travel distance. Two main aspects are needed to constrain the terminal velocity 

of an object: the characterization of i) its shape and of ii) the associated drag coefficient. 

It is thus not surprising that after the 2010 Eyjafjallajökull eruption a great effort has 
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been dedicated to the improvement of the parameterisation of the shape of volcanic ash 

and lapilli (Bagheri et al., 2015; Liu et al., 2015) and their drag coefficient (Bagheri and 

Bonadonna, 2016; Dioguardi et al., 2018; Ganser, 1993; Haider and Levenspiel, 1989; 

James et al., 2003). However, field observations over a large time frame have 

demonstrated that in a great amount of volcanic explosions ash does not sediment as a 

single object but in an aggregated form (Brown et al., 2012). In other words, the final 

object that impacts the ground is often constituted of a cluster of separated particles, 

differently packed. This aspect affects enormously both the ash dispersal forecasting and 

the studies of shape and drag. Moreover, the fact that most ash aggregates are poorly 

preserved in the field makes their study even more complicated. Several attempts have 

been dedicated in the last decades to the characterisation of ash properties (Burns et al., 

2017; Durant et al., 2009; Gilbert and Lane, 1994; James et al., 2003; Lane et al., 1993; 

Schumacher and Schmincke, 1995; Sorem, 1982; Van Eaton et al., 2015; Van Eaton et al., 

2012) and their theoretical modelling (Cornell et al., 1983; Costa et al., 2010; Veitch and 

Woods, 2001). However recent field observations show that the high degree of 

complexity of their structures requires major efforts and new tools (Bagheri et al., 

2016).  

Few words on the terminology used in the present work: in our context “particle” refers 

to a single tephra, regardless the size of the object; “aggregate” refers to an object 

formed by more than one particle. “Cluster” and “aggregate” are considered as 

synonyms. 

Another important aspect of tephra dispersal is the study of lapilli sedimentation. In 

size, lapilli are in between ash and large bombs (Fisher, 1961). The former are fully 

coupled dynamics with the plume flow, the latter form ballistic trajectories driven by the 

initial momentum of the eruption.  Intermediate sizes between these two classes results 

for lapilli in partially coupled dynamics with plume flow that cannot be completely 

considered as a ballistic. Carey and Sparks (1986) introduced a methodology to quantify 

the sedimentation process of centimetric clast sizes and relate the maximum downwind 

and crosswind distances of the associated isopleth contours to the height of the eruptive 

column. This method has been later improved by Burden et al. (2011). However this 

approach still presents major limitations and drawbacks in case of weak and transitional 

plumes, i.e. plume dominated by the external atmospheric winds. 
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1.1 Field observation of ash aggregation in nature 

The presence of aggregation in volcanic deposits has been probably documented for the 

first time by Scrope (1829). Several historical observations of one specific type of 

aggregates, the so-called accretionary lapilli, are reported in Moore and Peck (1962). It is 

not surprising that this kind of aggregate has always assumed a great importance in the 

community, since it is usually quite well preserved in the deposits.  However several 

other typologies of aggregates have been observed in modern times, such as the loosely 

bound structures collected after the 1980 eruption at Mount Saint Helens, US (Hobbs et 

al., 1981; Sorem, 1982) and also observed at Sakurajima Volcano, Japan (Bagheri et al., 

2016; Gilbert et al., 1991) and during the 2010 Eyjafjallajökull eruption, Iceland 

(Bonadonna et al., 2011; Taddeucci et al., 2011). We refer to these objects as ash clusters. 

A complete classification of the different aggregate morphologies are presented in 

Brown et al. (2012) and summarised here for convenience. Two main families are 

identified: Particle Clusters (PC) and Accretionary Pellets (AP). The first group is 

subdivided in: PC1, ash clusters, and PC2, coated particles. The second group is formed 

of: AP1, poorly structured pellets; AP2, pellets with concentric structure (i.e. what we 

generally refer to as “accretionary lapilli”); AP3, liquid pellets. PC1 objects are ash 

clusters, characterised by low densities around            ⁄  and a typical size of 

the components less than      . PC2 clusters are characterized by the presence of a 

large coated particle at the center of the geometry. The size of the inner particle is 

usually much greater than        and recent observations suggest that PC1 objects 

may be sometimes related to the coating part of PC2 aggregates (Bagheri et al., 2016). 

AP1 are poorly structured aggregates with median size of the population between 

          and overall size between        and few millimetres. AP2 are pellet with 

concentric structure, a typical overall size between        , which reveal the 

presence of inner components of          . Finally, AP3 are liquid pellets with a 

wide range on inner particles size             , a relevant presence of liquid water 

and a generally poor conservation after the impact. It is worth noticing that field 

observations and theoretical investigations suggest that iced water could play a primary 

role in the formation of AP1 and AP2 clusters (Van Eaton et al., 2015). A complementary 

scheme of definitions is based on the sticking mechanism responsible for their 

conglomeration. Usually two main groups are defined: wet aggregates and dry 



 4 

aggregates. In the first group are historically included those clusters where a 

macroscopic role of water is present (accretionary lapilli or accretionary pellets). In the 

second group are included the PC, where other sticking mechanisms are considered 

dominant, such as the electrostatic forces. However this classification is still debated and 

sometimes misleading since the role of water in form of condensed humidity may be 

crucial as dissipation mechanism. Recent observations suggest that the family of ash 

pellets (AP) is probably associated with a dominant role of liquid water and/or salt 

bridges in their bounds (Burns et al., 2017). On the other side, particle clusters are 

formed in absence of a macroscopic external source of water. For this reason their 

presence is expected to be more common with respect to AP family. Unfortunately their 

original structure is poorly preserved soon after the impact on the ground and the 

residual part left on the sticky papers or other supports can be erroneously interpreted 

without the use of appropriate techniques. The use of advanced methodologies, such as 

the contemporary use of the High-Speed camera (HS) and the collection on a sticky 

paper, helps in reconstructing the original geometry and dynamical properties of 

aggregates before the collision. Bagheri et al. (2016) reveal the presence of large inner 

particles in a vast majority of the observed PC aggregates at Sakurajima Volcano, during 

the eruptions of July-August 2013. For the same volcano Gilbert and Lane (1994) 

reported the presence of large cores, even if inside the accretionary lapilli.  An important 

fact of the observations of Bagheri et al. (2016) is that the inner particle did not stick to 

the collector, e.g. the sticky paper, as the coating part did. The remaining part of the 

cluster could have been erroneously interpreted as PC1 object, similar in shape. The 

same phenomenon has been observed a posteriori using the videos obtained by 

Taddeucci et al. (2011) during the 2010 Eyjafjallajökull eruption. Field observations 

reveal a high degree of complexity in volcanic ash aggregation: different geometries, 

different sizes and degrees of preservation, different bounding mechanisms.  

 

1.2 Laboratory characterization of ash aggregation 

In the last two decades field and theoretical observations have stimulated a large 

amount of experimental investigations on volcanic ash aggregation. The seminal work of 

Gilbert and Lane (1994) represents one of the first complete attempts to recreate the 
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accretionary lapilli in a laboratory apparatus. In particular, the authors report for the 

first time an experimental curve of the aggregation efficiency. In their experiment they 

used a vertical wind tunnel to inject ash over the surface different suspended targets: 

water droplets or polystyrene spheres. Pure water or sodium chloride solutions were 

injected together with the ash flow or deposited on the surface of the target sphere. At 

the end of the process the authors managed to recreate similar structures to those 

observed in the accretionary lapilli. In particular they suggested that sodium-chloride 

crystals could act as a strong binding medium and explain the compactness of the 

samples observed in nature. This hypothesis has been supported by recent laboratory 

experiments (Mueller et al., 2016) and field observations (Burns et al., 2017). 

Concerning the dynamical properties of ash clusters, Lane et al. (1993) experimentally 

investigated the terminal velocity of roughly spheroidal aggregates, with variable 

porosity and structure. Gilbert et al. (1991) conducted field experiments with real ash 

fallouts at Sakurajima using parallel charged plates and a Faraday cage. The authors 

estimated a surface charged density almost equal to the saturation limit, indicating an 

enormous presence of electrostatic charges. These results are confirmed from 

experiments on the role of electrostatic charges conducted by Schumacher (1994), who 

dispersed samples of ash in a strong external electrostatic field. He observed a transport 

of part of the material along the horizontal direction, along the force lines of the  

 

Figure 1.1 Image taken from Brown et al. (2011). a) PC1 particle clusters; b) PC2 coated particle; c) AP1 
particle, all taken from 2010 eruption of Eyjafjallajokull volcano, Iceland. (Bonadonna et al., 2011b). d) AP1 
from Soufriere Hills volcano, Montserrat (Bonnadonna et al., 2002b); e) AP2 from Upper Scoria deposits, 
Santorini; f) Close-up image of rims of an AP2 concentrically structured accretionary pellet from Poris PDC 
deposit, Tenerife (Brown and Branney, 2004); g) Evaporated mud rain droplet (AP3) from 2010 eruption of 
Eyjafjallajokull volcano, Iceland (Bonadonna et al., 2011b). 
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electrostatic field. This experiment confirms the high degree of electrification of volcanic 

ash. Similar experiments are conducted by James et al. (2002) in order to estimate the 

role of electrostatic charge on freely falling dry aggregates. Fragmentation of 1980 

Mount Saint Helens samples of pumices created the electrostatic charge on the surfaces 

of the particles (fracto-emission). The authors measured terminal sizes, densities and 

terminal velocities of their laboratory products. An interesting observation is that the 

measured fall velocities for clusters can be modelled as equivalent spheres of low 

density              ⁄  . These results are also confirmed by a second series of 

experiments with a similar apparatus (James et al., 2003). Telling and Dufek (2012) 

conducted experiments of ash aggregation in an enclosed tank where humidity can be 

varied and the motion of particles monitored by the combination of Particle Image 

Velocimetry (PIV) and HS cameras. The authors focused on the crucial aspect of relative 

kinetic energy of a collision. In particular they reported the aggregation efficiency, i.e. 

the probability of a successful sticking, as a function of the collision kinetic energy for a 

few dozen of points. Van Eaton et al. (2012) instead used a vibratory pan in order to 

investigate aggregation growth patterns under a wide range of temperatures and water 

conditions. A remarkable aspect of this experiment is the importance given to the 

specific role of ice in volcanic aggregates, further extended from a theoretical point of 

view in Van Eaton et al. (2015). A final interesting and recent experiment by Mueller et 

al. (2017) focuses the attention on the stability of ash pellets structures. In their 

apparatus the author analyses the impact of artificial aggregates against flat surfaces. 

The main bond between single particles consists of Na-Cl bridges that result in a stable 

cementation process. The authors find that coarse-grained aggregates (i.e. the size of 

primary particles      ) are remarkably more stable than fine-grained aggregates.  

 

1.3 Theoretical models for ash aggregation 

In the last thirty years great effort has been dedicated to the development and 

improvement of Volcanic Ash Transport and Dispersal Models (VATDMs) (Folch, 2012). 

Their role became crucial to the operational community when the air space of central 

Europe was closed during the 2010 Eyjafjallajökull eruption. Given the location of the 
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eruption, ash advisories were mostly compiled by the London Volcanic Ash Advisory 

Center (VAAC), describing the presence of ash over large parts of Europe. During the 

period 15-21 April 2010 more than 300 airports were closed and 7 million passengers 

were affected in more than twenty countries. It became evident to the overall society 

how the capacity of predicting volcanic ash trajectories and concentrations had severe 

consequences on various economic sectors. In this scenario volcanic ash aggregation 

played a primary role. As a matter of fact, the terminal velocity of clustered particles is 

usually higher than the components (Lane et al., 1993). Neglecting aggregation results in 

overestimation of fine ash in the atmosphere in the far-field, with a consequent increase 

of the predicted concentrations. Most aggregates break soon after the impact on the 

ground and evidence of their aggregated configuration is lost (Bagheri et al., 2016). 

Given that the Total Grain Size Distribution (TGSD) is a key input parameter for VATDMs 

and it describes the initial “disaggreagated” ejected particle population, if particle 

aggregation is not considered, model outcomes cannot be accurate.  

Unfortunately, the nature of aggregation presents several complications that make its 

modelling complex, challenging and often inefficient. First, aggregation may involve a 

large number of objects (particles concentration          

  ). Secondly, aggregation 

in a volcanic context frequently occurs in highly turbulent environments with Reynolds 

number up to         (Kieffer and Sturtevant, 1984). Thirdly, the physics of the 

collision and the sticking processes is quite far from being well understood for ash. It is 

thus not surprising that different modelling approaches, with different degrees of 

compromise, have been developed throughout the years. Two main families of models 

can be defined: the empirical and the theoretical models. All those methods that 

empirically modify the initial TGSD according to the best fits with field observations 

belong to the first family (Biass et al., 2014; Bonadonna and Phillips, 2003; Cornell et al., 

1983). The second family identifies those methods that obtain a modified TGSD 

according to a pre defined theoretical framework (Costa et al., 2010; Textor et al., 2006; 

Veitch and Woods, 2001). The great majority of the existing models take into account 

aggregation as a modified TGSD for the initial dispersal part (Folch et al., 2016; Mastin et 

al., 2016). This method somehow derives from the observation that a better fit between 

observed data and predicted results can be obtained modifying the terminal velocity of 

pre-determined classes of particles (Armienti et al., 1988; Carey and Sigurdsson, 1982). 
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One of the first historical attempts to fully incorporate the effects of agglomeration 

processes in an empirical prediction model dates back to Cornell et al. (1983). The 

authors assume that all aggregates appear as a unique effective aggregated class with 

diameter     
  and density     

 . To this class are attributed the 50% of ash with 

diameter         , the 75% of ash between         , and the 90% of ash smaller 

than      . These percentages derive from a best fit with predicted and observed 

quantities for the Campanian tuff ash layer (Y-5), correlated with the 38,000 y.b.p. 

Campanian ignimbrite. Bonadonna et al. (2002) and Bonadonna and Phillips (2003) 

extended this approach to wet aggregates, modifying empirically the initial TGSD 

according on the experimental results of Gilbert and Lane (1994). Sulpizio et al. (2012) 

attributed to a single aggregate size     
  the constant percentages removed from 

smaller sizes involved in aggregation processes. The value of the percentages is derived 

from a best fit. An extended application of the previous approaches is reported in Mastin 

et al. (2016). The authors investigated four deposits and a total of 192 simulations, 

holding fixed the ash density      
         ⁄   and investigating the variance of 

aggregates size     
  (i.e. the mean value of the distribution of aggregates) as a function 

of different eruptive conditions. Despite the great variability of the initial conditions 

they found that     
  ranged in a narrow interval              

          . This 

result is somehow relevant, since it demonstrated common and invariant features of ash 

aggregation regardless the eruptive scenario. All the previous methods are based on the 

modification of the TGSD in order to obtain a good fit with field data. A completely 

different approach starts from the physical equations that govern aggregation and try to 

reconstruct the observed scenarios. However, this methodology is often challenging and 

sometimes intractable, unless some approximations are made. The reason of this 

complexity is directly linked to the physics of the phenomenon: if we limit our attention 

to the volcanic plume, it is not rare to find peaks in particles concentration of 

          

  
. It is thus clear that even the most complete theory needs an initial 

simplification of the problem. In his seminal work Smoluchowski (1916) introduced the 

so-called mean field approximation to treat coagulation problems. In this approximation 

the population of particles is fully described with a density function      [units: 
 

       
], 

which is characterized by the following property: 
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Where    is the number of particles per unit volume with mass comprised between 

  
  

 

 

  
  

 

 

 . According to Smoluchowski, the creation of particles with mass   is given 

by the conservation equation:  
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(2.2) 

The first term indicates the creation of particles with mass   due to collision of smaller 

sizes. The second term describes the loss of particles of size   due to the interaction 

with all the other sizes. The physics of the interactions is condensed inside the 

quantities         , usually considered as the product of a collision rate   and a 

sticking efficiency  . The density function      can be mathematically related to the 

TGSD commonly used in volcanology.  

One of the first application of the complete Smoluchowski theory in a volcanic context 

appeared in Veitch and Woods (2001). In their work the authors introduced mass 

balance equations inside plume transport equations. The final result is a TGSD that 

changes along the curvilinear coordinate of the central axis of an erupted column. 

Despite the simplifications assumed on the definition of the quantities         , this 

first attempt of coupling of aggregation and plume equations still represents an 

important milestone, later followed by other authors.  

A more sophisticated approach, but still based on the Smoluchowski equations, is 

represented by the aggregation scheme implemented in ATHAM (Active Tracer High 

resolution Atmospheric Model) (Textor et al., 2006). In their work the authors improved 

the microphysics of the processes and adopted a set of generalized gamma functions as 

initial conditions for the TGSD. This aspect allows having analytical solutions of different 

integrals. They distinguish between intermodal and intramodal aggregation. Intermodal 

aggregation involves gravitational capture of particles of different sizes. This process 

leads to a gain of particles in the larger mode and a loss of smaller ones. Intramodal 

aggregation happens within a single fixed class.  
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A hybrid and alternative method to the Smoluchowski coagulation equations has been 

presented by Costa et al. (2010) and recently implemented in a volcanic plume by Folch 

et al. (2016). In their model the authors increased the efficiency of their numerical 

scheme using the a priori assumption that ash aggregates follow fractal geometry. This 

hypothesis implies that the number of particles    with size    contained in an 

aggregate of overall size    are: 

 
   (

  

  
)

  

 
 

(2.3) 

Where      denotes the fractal dimension of the geometry. The use of this 

relationship simplifies the equations, but its ude in volcanology is still matter of debate. 

However it has been observed and experimented in several different scientific fields 

(Kostoglou and Konstandopoulos, 2001; Matthews and Hyde, 2004; Richardson, 1995). 

Similarly to Cornell et al. (1983), Costa et al. (2010) assume that all the aggregates 

appear in one single class     
   with unique density     

  . In this sense this model is in 

between the empirical and the theoretical approach. 

 

1.4 Reconstruction of the erupted plume heights from clast 

positions on the ground  

One of the crucial aspects related with clasts sedimentation is the hidden information 

contained in their spatial distribution. As a matter of fact, tephra are frequently the only 

“witnesses” remained of many ancient or not observed eruptions. Carey and Sparks 

(1986) developed a well know method, here named as CS method, that allows 

associating the height of an eruptive column and wind intensity at the time of the 

eruption with the maximum downwind and crosswind distances on the ground of 

centimetric clast sizes. The theoretical background behind this method relies on the so-

called clast support envelopes. The underlying idea is that clast sizes can be transported 

in a volcanic plume until the drag of the rising gas mixture is strong enough to counter 

balance the gravity force. When the velocity of the gas decreases, the resulting drag is 

not sufficient anymore and clasts start their sedimentation process. Converting the drag 

coefficients in terms of velocities, the authors derive a simple relation to define the exact 
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position where particle start to sediment: this threshold is represented by the point 

where the terminal velocity of a clast equals the upward plume velocity. Assuming a 

Gaussian profile for the radial component of the gas mixture velocity, we can define a 

region inside the eruptive column where clasts will be released: the clast support 

envelope. Particles are then released from this region and sedimented on the ground 

under the action of pre-defined atmospheric wind profiles. For a given clast and 

eruption, the maximum positions on the ground along the wind axis and its orthogonal 

direction constitute the downwind and crosswind distances. 

Carey and Sparks (1986) use the plume model presented in Sparks (1986) in the 

forward process of relating final unknown distances with known column heights. For 

each eruption and wind condition investigated in their work, they associated a plume 

height to a couple of maximum downwind and crosswind distances. The final dataset 

collected at the end of this sensitivity process is then used in a backward process, i.e. to 

relate known clast distances to unknown plume heights. Their methodology provides a 

set of plots, called nomograms, that allows relating a combination of maximum 

downwind and crosswind distances with the unknown height and wind intensity of the 

eruption that generated that specific sedimentation event. Nomograms work for fixed 

clast size and density combination, in a total range of    
  

         
  

   and 

              . More recently, Burden et al. (2011) revised the CS method, 

improving some aspects related to the plume dynamics and the detail of the 

atmospheric winds. Moreover they introduced a probabilistic use of the procedure that 

allows quantifying the uncertainties associated with the method. The probabilistic 

approach relies on the execution of many repetitions of the same eruption, with initial 

conditions confined in a predetermined range. The final outcome of the procedure is a 

distribution of values from which the statistical parameters of interest for the definition 

of uncertainty can be deduced (mean, variance, etc.).  

Nonetheless, both the CS method and the model of Burden et al. (2011) do not consider 

the effect of wind on eruptive columns, i.e. the CS method can be strictly applied only to 

strong eruptions, where the central axis of the plume is supposed to be vertical.  
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1.5 Objectives of this work 

The previous sections emphasize that the study of volcanic particle sedimentation poses 

a series of open questions that still need to be fully addressed.  

In particular: 

1. When and where does aggregation of ash occur? What are its kinematic and 

dynamic properties? 

2. How is it possible to fully describe the formation of solid agglomerates from a 

theoretical point of view? 

3. What is the actual geometry of volcanic ash aggregates before their impact on 

the ground? How does it affect the theoretical description?  

4. How can we practically parameterize and study the structure of an aggregate? 

5. What are the leading processes that lead ash to stick?  

6. How can plume height be derived based on clast distribution associated with 

weak and transitional plumes?  Can we use the same model to assess the 

associated hazard? 

This thesis consists of four main chapters. Chapter 2 presents the paper written as part 

of the NEMOH special volume (Rossi E., Bonadonna C. “Field and theoretical 

investigations of volcanic ash aggregation: the case of the eruption of 3rd of August 2013 

at Sakurajima Volcano (Japan)”, In: P. Papale et al., Numerical, Experimental and 

Stochastic Modelling of Volcanic Processes and Volcanic Hazards, (INGV Pisa, in press)). 

It this chapter, the 1-D aggregation equations are coupled within a thermal plume 

model. The main goal is to compare the computed aggregation timescales with those 

observed during weak Vulcanian explosions that occurred on the 3rd of August 2013 at 

Sakuarajima Volcano (Japan). This work is characterized by the first application of the 

fixed-pivot technique to a volcanic problem.  

Chapter 3 describes the Generalized Fixed Pivot Technique (GFPT), a new methodology 

that extends the fixed-pivot technique towards arbitrary multidimensional spaces. The 

aim of this work is to provide a general mathematical tool capable to solve complex 

aggregation problems. In particular this technique attempts to overcome the limitations 

existing in the old descriptions derived from coagulation problems of water droplets. As 
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a matter of fact, volcanic ash, proto-planetary dust and particulate matter are all 

composed by solid objects that require a more advanced theoretical framework (Rossi 

E., Patterson R., Bonadonna C., “Aggregation of multidimensional arbitrary properties: the 

Generalized Fixed Pivot Technique”, submitted to “Physical Review E”).  

Chapter 4 introduces a way to combine the GFPT into a steady-state volcanic plume. 

This work represents the first application of a multidimensional population balance in a 

volcanic problem. In particular two internal parameters are proposed to fully 

characterize volcanic aggregates: mass and porosity, i.e. mass and density. The whole 

population of particles is thus tracked as it rises within the column. The main outcome 

of the model is a Total Grain Size Distribution (TGSD) that accounts for particle clusters.  

Moreover several aspects related to ash aggregation are presented in detail: a numerical 

computation of coated aggregate porosities; an exhaustive dissertation on the collision 

kernels that should be used in a volcanic plume; sticking efficiencies for wet and dry 

aggregation; quantification of the dissipative mechanisms present on the surface of 

volcanic ash, with the exclusion of electrostatic forces, net or induced (Rossi, Pollastri, 

Bonadonna , in prep). 

In Chapter 5 we propose a new model for the determination of plume height of volcanic 

eruptions based on the maximum downwind and crosswind distances of isopleth 

contours. This model is based on the approach of Carey and Sparks, 1986, but it 

introduces tilted clast support envelopes and new implementations of gravity current, 

3D meteorological data and topography. The main results of this work are twofold: the 

possibility to use this model for forward predictions and the production of a new series 

of nomograms that take into account the effect of the wind on the shape of the clast 

support envelopes. The last point extends the use of the Carey and Sparks methodology 

for weak and transitional plumes (Rossi E., Bonadonna  C., Degruyter W., “A new strategy 

for the estimation of plume height from clast dispersal in various atmospheric and eruptive 

conditions”, submitted to Earth and Planetary Science Letters). 
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Chapter 2 

Sectional methods in volcanology: the case of the eruption of 

3rd of August 2013 at Sakurajima Volcano (Japan)1 

 

 

2.1 Introduction 

Volcanoes are a source of multiple hazards, e.g. lava flows, pyroclastic density currents, 

tephra fallout and lahars. Among all the possible hazards, tephra fallout has the potential 

to affect the surrounding environment from short to very large distances, with 

disruptive consequences on local communities and both land and aviation transport. 

The spatial and temporal scales of tephra fallout strongly depend on how single particles 

interact among themselves and with all the gas phases involved in the eruption. Here we 

will focus on a particular aspect that has large consequences on tephra fallout: volcanic 

ash aggregation. Field evidence from the Sakurajima campaign of August 2013 are 

discussed from a theoretical point of view. These results are presented exhaustively in 

the work of (Bagheri et al., 2016) and more details can be found there. The main 

purpose of this work is to show how these two different and independent approaches, 

theoretical and field-based, may be connected to complete our understanding of the 

problem. Aggregation processes are known to affect sedimentation of fine ash (< 63 μm) 

by considerably reducing its residence time in the atmosphere (Brown et al., 2012; Lane 

et al., 1993). If particle aggregation is not taken into account, volcanic ash transport and 

dispersal models fail to accurately describe both particle deposition in proximal areas 

and atmospheric concentrations in the far field, with important implications for hazard 

assessment and real-time ash forecasting (Folch et al., 2010; Rose and Durant, 2011). 

From a physical perspective, aggregation is essentially the interaction of single particles, 

or clusters, to generate larger agglomerates. It can be seen as a process where two main 

                                                             
1 Rossi E., Bonadonna C. “Field and theoretical investigations of volcanic ash aggregation: 
the case of the eruption of 3rd of August 2013 at Sakurajima Volcano (Japan)”, In: P. 
Papale et al., Numerical, Experimental and Stochastic Modelling of Volcanic Processes 
and Volcanic Hazards 
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and distinct conditions must occur: collision and sticking. Volcanic particles mainly 

collide due to their different motions within the fluid. In fact, the degree of coupling of a 

particle with the flow inside a volcanic environment (Stokes number) may cover a wide 

number of ranges. This practically means that some particles will follow instantaneously 

the fluid changes and some others not. As a consequence, particles will experience 

different relative velocities and so they will collide if their cross sections are large 

enough. A given collision results in aggregation if the relative kinetic energies of 

colliding particles are depleted by some dissipative mechanisms. The final clustering 

depends on complex interactions of surface liquid layers, electrostatic forces or shape 

factors. Depending on the water content, particle aggregation results in the formation of 

particle clusters if water is absent and accretionary pellets in all the other cases 

(including poorly-structured pellets AP1, pellets with concentric structures AP2, and 

liquid pellets AP3 in the nomenclature of Brown et al. 2012). During the last two 

decades several experimental, numerical and field investigations have been carried out 

to describe aggregation processes in terms of particle grain-size distribution, terminal 

velocity, structure, density and porosity (e.g. (Lane et al., 1993; Gilbert and Lane, 1994; 

Schumacher, 1994; Schumacher and Schmincke, 1995; James et al., 2002; Bonadonna et 

al., 2011a; Taddeucci et al., 2011; Telling et al., 2013; Van Eaton, Harper, & Wilson, 

2013)). However, due to the low preservation potential of particle clusters in the 

deposits, most studies focused on the characterization of the more resistant well-

structured pellets (i.e. AP2 most commonly known as accretionary lapilli; (Gilbert and 

Lane, 1994; James et al., 2003)). In the first part of this paper we will introduce new field 

techniques especially designed for the study of particle clusters (also known as dry 

aggregates), which include ash clusters (PC1) and coated particles (PC2) according to 

the classification of (Brown et al., (2011). Ash clusters, PC1, are defined as fragile 

irregular shaped aggregates composed of particles < 40 μm, whereas coated particles, 

PC2, are defined as fragile aggregates comprised of a crystal, crystal fragment, pumice or 

lithic clast partially covered in fine ash.  The traditional terminology “dry aggregates” 

can be somewhat misleading. In fact, dry aggregation implies an aggregation process 

where there is no evidence of macroscopic liquid droplets inside the clusters. This does 

not exclude the presence of water vapour in the mixture or even condensed humidity 

upon particle surfaces. In this case the layer of water on the surfaces, if present, is much 

thinner than the size of the particles involved. Field investigations of real-time volcanic 
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ash aggregation may count on studies that cover several decades: the 1980 eruption of 

Mount St. Helens, USA (Sorem, 1982), 1990-1994 eruptions of Sakurajima volcano, 

Japan ([Gilbert et al., 1991; Sparks et al., 1997]), the 1997 eruption phase of Soufrière 

Hills volcano, Montserrat (Bonadonna, et al., 2002) and the 2010 eruption of 

Eyjafjallajökull volcano, Iceland (Bonadonna et al., 2011; Taddeucci et al., 2011). Sorem, 

(1982) observed ash clusters with diameters between 250-500 μm about 390 km from 

the vent that were composed of particles <40 μm. (Gilbert et al., 1991) and (Sparks et al., 

1997) reported ash clusters at Sakurajima volcano with diameters <3 mm, which 

consisted of particles <200 μm, whereas coated particles had diameters >200 μm and 

were covered with particles <20 μm. (Bonadonna, et al., 2002) observed both types of 

particle clusters resulting from either dome collapse or Vulcanian explosions at 

Soufrière Hills volcano. Finally, at Eyjafjallajökull volcano Bonadonna et al. (2011) 

observed both types of particle clusters between 10 and 55 km from vent. Ash clusters 

had diameters up to 600 μm and consisted of particles < 90 μm, while coated particles 

were composed of large particles up to 760 μm that were coated with particles < 100 

μm. For the same eruption, High-Speed (HS) videos recorded by Taddeucci et al. (2011) 

show how most particle clusters fell with terminal velocities between 1 - 4 m/s at 

ground level. In this work we have introduced a multi-technique approach for field 

investigations applied to a specific volcanic explosion of Sakurajima volcano (Japan), 

which includes field High-Speed-High-Resolution (HS-HR) imaging and analyses of in-

situ collected particle clusters. The advantage of this technique relies on its capability to 

describe completely aggregates as they form and fall in a real environment, without any 

a priori assumption or bias. Aggregates are so described in terms of their terminal 

velocity, density, population and structure. This work represents the first step done 

under my fellowship within the NEMOH ITN to go towards a more detailed and physical-

based approach to the unsolved problem of ash aggregation. The novel contribution of 

this work is twofold: first, we provide strong field constrains on timescales and shapes 

of dry aggregates before their impact on the ground; second, discrete methods to the 

numerical solution of aggregation equations are introduced. The main objective of this 

study is to underline how modern observations can be linked to a general theoretical 

description, which can start from the physics of the processes to retrieve some 

measured evidences from the field, like sizes or timescales for observed aggregates. In 
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order to do this, the second part of this work will be dedicated to the development of a 

volcanic plume theory which may take into account the aggregation of volcanic particles.  

 

2.2 Field observations: methods 

Dry aggregation of volcanic particles is frequently observed in those eruptions where 

fine ash is present (<63 μm) and meteorological conditions are favourable (high relative 

humidity). Electrostatic forces are also supposed to play a key role at these sizes. Direct 

observations of falling aggregates are not rare: some well-studied examples are the 

eruptions of Sakurajima Volcano in Japan (Gilbert et al., 1991) and Eyjafjallajökull 

eruption of 2011 in Iceland (Bonadonna et al., 2011; Taddeucci et al., 2011). Despite 

their importance, an exhaustive description of particle clusters is not always easy due to 

their fragile structure leading to poor preservation in the deposits. For this reason, field 

techniques mainly involve the collection of tephra samples directly during fallout using 

sticky paper (e.g. Bonadonna et al., 2011). This simple technique permits analysis of the 

population of each single aggregate with a Scanning Electron Microscope (SEM). 

Recently, more sophisticated tools based on the use of high speed cameras have been 

applied to analyze major properties of aggregates, like terminal velocity, size and 

density (Taddeucci et al., 2011). Both techniques have advantages and disadvantages: 

direct collection of samples permits us to reconstruct a posteriori the grain-size of 

aggregates and characterize the internal structure but it fails to capture the associated 

sedimentation dynamic. On the other hand, HS movies allow us to see fundamental 

details of cluster sedimentation and impact with the ground, but the information on 

particles population inside aggregates is mostly missing. Only their combination can 

give a complete overview on dynamical and morphological properties of particle 

clusters without a-priori assumptions. Therefore, in order to fully characterize particle 

aggregation, we developed a multi-technique approach. Each aggregate is recorded 

during its falling and impact on the sticky paper. The part that sticks to the paper – 

which, in our experience, is rarely the entire aggregate - is further analyzed under the 

SEM.  
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Fig. 2.1 Setup optimized for field recording of falling aggregates. Particles that land on the adhesive tape are 

filmed through the macro-lens of the High-Speed camera. The adhesive tape is usually strong enough to stick 

the coating part of the falling aggregates but not the internal core. Meanwhile a tray placed next to the tripod 

of the camera collects the falling tephra at that position. 

In Fig. 2.1 a schematic diagram of the field setup is reported: a High-Speed (HS) camera 

on a tripod focused on a thin-glass support covered with a specific double-sided tape 

allowing for further analyses with a Scanning Electron Microscope (SEM). The HS 

camera with a resolution of 1200×800 pixels at 800 fps mounted with a Nikon 60 mm 

f/2.8D AF Micro-Nikkor lens was used at the ground-based observation site in order to 

capture HS-HR movies with a pixel size of 40 µm. In addition, tephra samples are 

collected in dedicated trays at sequential time steps in order to monitor time variations 

in grain-size distribution. Ash from the trays was analyzed for grain-size using a Laser 

Diffraction (LD) particle-size analyzer (CILAS 1180). This technique allows measuring, 

directly or indirectly, the following quantities: i) terminal velocity; ii) aggregate 

population; iii) density; and iv) internal structure. This multi-approach was applied 

during the field campaign at Sakurajima Volcano (Japan) of July-August 2013. Detailed 

measurements were acquired for one particular eruption that occurred at 17:47 

Japanese Standard Time (JST) on the 3rd of August 2013, which reached a maximum 

plume height of 2.8 km a.s.l. The eruption consisted of three major single explosions that 

produced an ash cloud that reached the maximum height after about 240 seconds after 

the onset. The ash cloud spread toward south-east with a velocity of ~5.5 m/s as 

inferred from wide angle HD movies. Our ground-observation site was located about 3.7 

km downwind from the vent along the dispersal axis. Ash fallout was sampled at two 
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time intervals in order to characterize sedimentation in time: i) between 18:00 and 

18:07 JST, associated with the arrival of individual particles followed by sub-spherical 

aggregates (Phase I), and ii) between 18:07 and 18:12 JST mostly associated with sub-

spherical aggregates (Phase II). Individual particles were recognized as non-vesiculated 

fragments with diameters between ~300-1200 μm and density of ~2500 kg/m^3  

(measured by water pycnometer).  

 

2.2.1 Field observations: results and discussion 

Aggregate cores: evidence from observations 

As shown in Fig 2.2, all aggregates broke at impact with the adhesive tapes, leaving 

behind an ensemble of fine ash and a significantly larger particle (from now on defined 

as core), which in most of the cases bounced 

off of the sticky paper. Sizes of cores (~ 200-

500 μm) are comparable with the sizes of 

the entire aggregates before the impact (~ 

400-800 μm) and correspond well to the 

mode of the coarse population of ground 

deposit for aggregates sedimented during 

both fallout phases (i.e. 500 μm and 250 μm, 

respectively; red arrows in Fig. 2.2). Ash 

coating mostly consists of particles < 90 μm 

and it is clear from Fig. 2.2b that this image 

on the sticky paper recalls the idea of what 

we typically interpreted as a fragile particle 

cluster in Brown et al. (2012) (i.e. PC1). The 

whole aggregate - core plus coating - is more 

similar to a coated particle (i.e. PC2). 

However, Bagheri et al. (2016) introduced a 

new category of particle clusters (PC3; cored 

clusters) to better describe these aggregates 

that have a larger coating than PC2. In fact, 

Figure 2.2 (a) Recorded image of a falling aggregate 
upon a sticky paper that shows the escape of a 
larger particle inside the whole cluster.  (b) 
Scanning Electron Microscope image of particles of 
the shell. These small particles represent all what 
remains on the adhesive tape of the original 
aggregate. Without the recorded image, the shell 
particles could be erroneously misinterpreted as 
the whole aggregate (i.e. PC1). (c-e) Grain size 
analyses of ash collected in the tray during the first 
(18.00-18.07 JLT) and the second fallout phase 
(18.07-18.12 JLT). (d-f) Grain size analyses of 
particles contained inside two different aggregates 
sedimented respectively in the first (d) and second 
fallout phase (f). 
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cored clusters (PC3) are mostly sub-spherical fragile aggregates that have never been 

observed in the deposits nor on adhesive tape as they typically break at impact with the 

ground. They consist of a core particle (coarse ash to fine lapilli size) fully covered by a 

thick shell of particles < 90 microns.  

Aggregate cores: consequences on aggregation 

The difference is not just a matter of nomenclature, but it has deep consequences on the 

dynamics of sedimentation and modelling in general. First, if aggregates are thought to 

be created from fine ash only, as previously thought based on SEM analysis alone 

(Sorem, 1982; Lane et al., 1993; Brown et al., 2012), they should be categorized as ash 

clusters, for which the main collision mechanisms are very weak. However, we suspect 

that most PC1 described in literature originally deposited as cored aggregates (i.e. PC3), 

as it can also be seen in the HS videos recorded during the Eyjafjallajökull 2010 eruption 

(e.g. VIDEO #2 of Taddeucci et al., (2011)). Cored aggregates can form much faster and 

at much lower particle concentrations than PC1 because their collision mechanisms, i.e. 

the so-called differential settling, are several orders of magnitude more efficient than 

Brownian motion and turbulence (Elimelech et al., 1998), (Pruppacher & Klett, 2004), 

(Costa et al., 2010). Additionally, it is widely accepted that the grain-size of fallout 

deposits affected by particle aggregation are bimodal because they consist of 

simultaneous sedimentation of individual lapilli and/or coarse ash particles together 

with fine ash particles aggregated in clusters (Carey and Sigurdsson, 1982; Brazier et al., 

1983). Although this theory can account for the deposition distance of individual 

particles, which in some cases matches the deposition distance of aggregate cores, it fails 

to explain the proximal deposition of aggregates only composed of fine ash unless 

unrealistic aggregate densities are considered (Carey and Sigurdsson, 1982). In fact, 

premature fallout of fine ash can be more easily explained if most aggregates are 

considered to consist of coarse-ash particles coated a thick layer of particles <100 μm 

(PC3) instead of consisting of only particles <100 μm (PC1). 

Aggregate dynamical features  

The measured quantities from our HS videos are basically the terminal velocities and 

sizes of falling aggregates and internal cores (Tab. 2.1). The densities of the whole 

aggregates are evaluated inverting the formula for the terminal velocity. On the other 
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side densities of central cores are estimated under the hypothesis that these particles 

are part of the population of those collected in the trays. A first interesting point is the 

clear variation in the characteristics of aggregates deposited during Phase I and Phase II. 

Aggregates of Phase I are characterized by larger cores than aggregates of Phase II. 

Second, the ash coating of Phase I is thinner than the ash coating of Phase II aggregates 

compared to their core diameter. The ash fraction involved in the coating of individual 

aggregates,     , for Phase I is about 10% whereas for Phase II it is 17% (Bagheri et al., 

2016). This indicates that Phase I aggregates were associated with thinner ash coating 

than Phase II aggregates compared to their core diameter.   

 

  Aggregates Core particles 

Fallout 

phase 

Sed. Time Diameter 

[  ] 

Density 

[      ] 

Velocity 

[    ] 

Porosity 

[%] 

Diameter 

[  ] 

Density 

[      ] 

I 18:02-18:07 718 – 807 806 – 

1009 

2.7 – 2.9 60 – 68 500 – 525 2500-2700 

II 18:07-18:12 440 – 630 357 – 864 1.2 – 1.8 67 – 83 200 – 330 2500-2700 

Table 2.1 Observed aggregates at Sakurajima Volcano during the eruption  of 3rd of August 2013. 

 

Timing of aggregation 

Given that Phase II clusters are characterized by thicker shells and most likely needed 

more time to form than Phase I clusters, it can be concluded from numerical inversions 

(Bagheri et al., 2016) that particle clusters can be formed within 180 seconds after the 

onset of the eruption. As a comparison, accretionary lapilli and frozen accretionary 

pellets were reported to be formed within 300 and 600 seconds after the onset of 1990 

eruption of Sakurajima volcano (Japan) and the March 2009 eruption of Redoubt 

volcano (Alaska), respectively (Gilbert and Lane, 1994; Brown et al., 2012). It cannot be 

excluded in our case that aggregation continued to occur beyond 175 s simply because 

our observation is just based on a single proximal location in the field.  
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2.3 Theoretical investigations 

One of the main challenges in the characterization of particle aggregation includes the 

capability to describe field observations from a theoretical point of view. In this section 

a mathematical model for ash aggregation is introduced. As outlined in the introduction, 

aggregation is the result of the sticking of single particles (or agglomerates) once they 

have collided together. It is evident that a theoretical description of aggregation 

processes should be dependent on, at least, three main quantities: i) concentration of 

particles; ii) collision rate and; iii) sticking efficiency. If at least one of these quantities is 

zero, aggregation can simply not occur. The equation that relates these three quantities 

is the so-called “Smoluchowski Coagulation Equation” (SCE) (Jacobson, 2005), which 

describes the evolution in time of a population of particles of mass   in a control volume 

where no other physical processes occur (diffusion, advection, etc.):  
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                     ∫                   
 

 

 

 

(2.4) 

Key quantities that appear inside the equation are: 

       : distribution function of the number of particles per unit volume with a 

mass equal to   at a certain time   (units: [
 

       ]) 

         : Aggregation kernel, which contains all the information about collision 

rates and sticking efficiencies of particles of masses   and   (units: [
  

 
]). For 

clarity, this term is usually split in to two different contributions to enhance the 

different roles of sticking and collision:                            , where 

         is the sticking efficiency (units: [ ]) and          is the collision rate 

(units: [
  

 
]). 

The Smoluchowski coagulation equation is a particular case of a more general and 

comprehensive theory, which is called “Population Balance Equations” (PBE) 

(Ramkrishna, 2000). The underlying assumption in this theory is that there is a density 

function that describes the number of elements (particles) inside a population with a 
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given selected property, such as “mass” in this case. This density function is described by 

the quantity       , which represents the number of particles with a mass inside the 

interval [      ]. For clarity, it must be outlined that the aggregation equation is 

just a part of the General Dynamic Equation (GDE), which studies how the distribution 

function        evolves in presence of other physical processes, like for instance 

advection and diffusion, just to mention the more common ones in volcanology. The 

complete transport equation for an “advection-diffusion-aggregation” process 

characterised by a constant of diffusion   [   ⁄ ] is (Gelbard & Seinfeld, 1979): 
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(2.5) 

The solution of the aggregation equations is not trivial and analytical solutions exist only 

for simple cases. There are several methods for the numerical solution of Eq. (2.1), but 

generally they can be grouped in three major families (Vanni, 2000): method of 

moments (Standard Moment Method, Quadrature Method of Moments), stochastic 

methods (Monte-Carlo) and sectional methods (Fixed-Pivot, Cell-Average, Finite-

Volume). Each of these approaches has different pros and cons: moment methods are 

usually faster than others, since they focus on some integral quantities of interest – i.e. 

moments. Sectional methods - also called “discrete methods” - are computationally more 

expensive, but they provide a direct description of the evolution of populations (Kumar 

& Ramkrishna, 1996). In the following, we will focus on sectional methods with a 

specific attention to the fixed-pivot technique and how it can be applied inside a thermal 

plume model. The purpose is to see how well this theoretical approach reproduces the 

main features observed during the Sakurajima campaign of July 2013. 

 

2.3.1 Sectional methods: the fixed-pivot technique 

In the sectional methods the continuous density function        is discretized over a 

total number of bins      and each bin (section) evolves in time. The discretization is 

done by substituting the density function        with the so-called “Dirac-comb”, which 
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samples the continuous function at fixed positions   , as shown in Fig. 2.3 (Kumar & 

Ramkrishna, 1996): 

 

        ∑              

  

   

 

(2.6) 

The quantities    are the number of particles per unit volume with mass inside each 

interval                  : 

 
   ∫       
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)  

      

      

 
(2.7) 

A common problem to all the sectional methods arises when the fixed positions    are 

not aligned on a linear grid. In fact, for arbitrary grids, the collision of two different 

particles of masses    and    rarely correspond to an existent mass   . For linear grids 

this problem is implicitly avoided since it is always true that         . 

Unfortunately the use of a linear gridding does not permit us to investigate a large 

number of diameters, due to the mathematical relation between mass, density and 

diameter. This is clear looking at the following relations: 

 
       

  ⁄                 
  ⁄   

    

  
        ⁄       

(2.8) 

That is, assuming spherical particles with the same density, one hundred linear bins in 

mass would cover just a factor 4.6 in diameter. This suggests that we replace a linear 

gridding with a logarithmic one, capable to cover the larger interval of particle 

diameters. For this, one needs to re-distribute mass between the available grid points 

(bins) in order to conserve the total mass. All the different sectional methods differ 

basically in the way they establish this rule to redistribute the mass. Among all the 

different sectional methods we discuss here the so-called “fixed-pivot” technique. The 

fixed-pivot technique is described exhaustively in (Kumar & Ramkrishna, 1996) and 

(Jacobson, 2005) and for a given bin labelled as    it redistributes the mass between the 

two closer bins     and      conserving the zeroth and first moment of the 

distribution, i.e. the number of particles and the total mass. If we refer to the scheme of 

Fig 2.3b this implies the following systems of equations:  
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(2.10) 

For a given bin    the mass conservation is assured by the two quantities of interest 

  and   : 
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(2.11) 

The integration of Eq. (2.1) over the interval                , combined with the mass 

conservation assured by Eq. (2.8), leads to the fixed-pivot equations that rule the change 

in time of particles per unit volume of mass i due to aggregation (Kumar et al., 2006) 
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Where: 

     ∑ (  
 

 
    ) (

      

        

)          

               

      

   ∑ (  
 

 
    ) (

      

        

)          

               

       

 

(2.13) 

 

    ∑          

  

   

     

(2.14) 

    is the so-called “Kronecker delta function” : 

 
    {

        
        

 
(2.15) 

Equations (2.9), (2.10) and (2.11) represent the fixed pivot equivalent to (Eq.2.1). This 

means that the initial continuous problem has been transformed into a set of Ordinary 

Differential Equations (ODEs), one for each bin representing the i-th mass.  
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Fig. 2.3  (a) Discretization of a continuous curve n(m) using a sum of Dirac deltas. (b) Notation used in the 

fixed pivot technique, defined in order to conserve the first two moments of the distribution (number of 

particles and mass) 

 

Aggregation kernels 

Next step is to clarify the importance and meaning of quantities  (     ), which 

basically contain all the physics of the process. Aggregation kernels are basic quantities 

to study the evolution in time of populations since they describe the collision rate of 

particles of mass    and    that give rise to a new aggregate. This implicitly means that 

 (     ) contains the information about “successful” collisions, i.e. collisions that bring 

two particles to be stuck together. If, for example, the collision rate inside a volume is 

really high (e.g. billions of collisions per second), but no sticking processes have been 

occurring,  (     ) will be zero. This suggests to split the kernel matrix  (     )  

 (     )    (     )in two different parts: a dimensionless coefficient  (     ), 

which describes the probability of sticking, and a dimensional parameter  (     ), 

which contains all the information about the collision rates (Jacobson, 2005). The 

dimensions of  (     ) are similar to a volumetric flow rate [
  

 
]. A complete 

discussion about collisional kernels and their derivation can be found in (Jacobson, 

2005). In volcanology (e.g. Costa et al., 2010), the main processes taken into account for 

collision rates are turbulent-related kernels (turbulent-inertial (TI) and turbulent shear 

(TS)), laminar shear (LS), differential sedimentation (DS) and the Brownian motion 

(BM), which is negligible for the sizes involved.  
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where   is the dissipation rate of turbulent kinetic energy,   is the gravitational 

acceleration,   and   are the fluid dynamic and kinematic viscosities,    is the laminar 

shear coefficient,    is the terminal velocity and    is velocity provided to particles 

trapped inside turbulent eddies. Some of these expressions depend on quantities 

difficult to quantify, especially for turbulent flows, like  ,    or   . Some approximations 

or assumptions must be taken in these cases. For example, according to (Textor & Ernst, 

2004), the value of   is related to the plume velocity    and the sizes of the largest 

eddies inside the plume (which we consider equivalent to the plume radius): 

 
      

  
 

 
 

(2.21) 

The laminar shear coefficient is theoretically given by: 
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| 

(2.22) 

A key point is which kernels are relevant inside the volcanic environment.  Here some 

basic concepts contained in (Textor & Ernst, 2004) and (Marshall & Li, 2014) are 

summarized: 

1) The turbulent kernels    
   and    

   are valid within the Saffman-Turner limit, that 

is, for particles smaller than a characteristic spatial scale (called the “Kolmogorov 

length”) and with Stokes numbers     . In order to be inside the Saffman-

Turner limit, particles have to be smaller than the turbulent eddies, which 
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implies having well correlated velocities between them. The Kolmogorov micro-

scale is proportional to     
  

 

 
   ⁄ , where    is the air kinematic viscosity and 

  is the dissipation rate of turbulent kinetic energy. For a plausible range of   

between        
  

  , and for               

 
 we get              . 

This means that particles larger than some hundred microns will not be in the 

Saffman-Turner limit. In addition, as outlined by (Textor & Ernst, 2004) , the 

Stokes number of volcanic particles spans a huge number or values, roughly from 

    for bigger particles to      for the smaller ones. Also in this case is not easy 

to establish if the Saffman-Turner condition is valid.  

2) Particles laying outside the Saffman-Turner limit show uncorrelated velocities 

among them, which basically means that they are not trapped inside the fluid 

turbulent eddies. This extreme is often called “the accelerative-independent 

regime” and it has been treated by Abrahamson (Marshall & Li, 2014), who 

introduced to the following expression for collisions among two particles with 

Stokes number     : 
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 √〈   
 〉  〈   

 〉 
 

(2.23) 

In this expression 〈   
 〉 stands for the mean-square velocity magnitude for a i-th 

particle due to an isotropic turbulence. It is worth-mentioning that     is 

obviously different from     used in [Eq. 2.13] since     contains info related to 

the small eddies above the Kolmogorov scale.     is a mean velocity given by the 

bulk turbulence which of course depends also on the particles involved, how they 

interact with different eddies and how they keep their inertia passing through 

them. Abrahamson kernel [Eq. 2.20] remains undefined so far for a volcanic 

plume, due to its dependency from the unknown quantities    . Complete CFD 

simulations of turbulent plumes coupled with particles could provide a better 

understanding of this collisional kernel in future. 

3) Sedimentation kernel    
   is due to differences in particle terminal velocity 

because of size, density, and shape. (Textor & Ernst, 2004) suggest to compare 

gravitational and turbulent effects using their respective accelerations as a term 
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for comparison. (Pruppacher & Klett, 2004) provide an expression for turbulent 

acceleration for particles with     :    
    

    . In this case       for      
  

   . 

For larger particles with      the acceleration due to turbulent eddies with 

size    between the largest one (  plume radius) and the smallest one before 

viscosity terms become dominant (i.e. the Kolmogorov micro-scale   ) is: 

    
        ⁄

  
. Textor shows that using reasonable numbers for    of 10, 100 and 

1000 meters,      for a wide range of values of the dissipation rate of 

turbulent kinetic energy (      
  

   . In practice this means that gravitational 

collection should be the dominant process for larger sizes in most of the volcanic 

plume and cloud. Nevertheless this comparison is true under the assumption that 

particles are under sedimentation: but volcanic particles are dragged upwards by 

the rising plume and as a rule of thumb sedimentation does not occur if upward 

velocity is higher than particles terminal velocities. From the comparison of 

Gaussian profiles of plume velocity and terminal velocities (Carey & Sparks, 

1986) derive that relevant parts of the volcanic plume are not affected by 

sedimentation for particles with sizes less than 1 mm. This suggests that the role 

of the sedimentation kernel    
   inside a volcanic plume may be over-estimated if 

the role of the drag due to the upward velocity is neglected. 

To sum up the previous analyses, the common leading parameters among all the 

different kernels concern the relative velocities and projected areas of two colliding 

particles. The source of uncertainty is the knowledge of the velocities assumed by 

different sizes in different fluid-dynamical conditions. In this report the collisional 

kernels of (Folch et al., 2016) will be used. They represent a good compromise between 

general features of particles inside the volcanic plume and simplicity. After clarifying the 

collisional part, we focus on the sticking efficiency  (     ). This parameter is a 

dimensionless number that expresses the probability to have a given number    of stuck 

particles over the total number of collisions    for each pair of particles with masses    

and   . The implicit assumption here is that the sticking efficiency is an ensemble 

average 〈 (     )〉 over different collisions, involving pairs of particles with the same 

physical and chemical features. In order to have the sticking, the relative kinetic 

energies of the two colliding particles must be depleted by dissipative mechanisms. 
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Several processes are responsible for this, including viscous dissipation due to the 

presence of liquid layers upon the surfaces, presence of adhesion forces (electrostatic, 

chemical, etc.), work spent to rearrange the internal structure of aggregates, etc. A 

complete and exhaustive experimental investigation of all these processes is still far 

from being achieved, but theoretical expressions for specific cases are reported in 

literature. In this work the formulation of (Costa et al., 2010) for wet sticking is applied. 

This model is a recalibration for the volcanic environments of what is contained in the 

work of (Liu & Litster, 2002). The expression used for the sticking efficiency is a function 

of the viscous Stokes number     :  

 
       

 

              
 

(2.24) 

Where         ,      ,      
    |     |

   
  

    

     
 and    is a multiplicative constant 

(     in the original work). It is important to note that the sticking efficiency depends 

on the relative velocities of particles, which is one of the major sources of uncertainties 

affecting the collisional kernels. Here we follow the simplified approach of (Costa et al., 

2010) and set the relative velocities equal to the terminal velocities |     |  

|       |. The formulation of (Eq. 2.21) should be used in all the situations where the 

pressure of water vapor inside the plume overcomes the saturation pressure of humid 

air respect to a liquid surface. In fact, in this condition the vapor contained inside the 

plume can condense and deposit upon the surfaces of interacting particles. One-

dimensional plume models can provide general indications about this condition, but on 

the other hand they may neglect important details due to turbulence and humid air 

entrainment that can lead to a local exceedance of the saturation pressure. In this work 

we make the assumption that the shape of the sticking matrix is given by (Eq. 2.24) 

throughout the rising plume, but different values will be investigated both for the 

parameters q and   . The idea is that, in general, the mathematical form of any sticking 

process should describe the tendency to have a decrease in the efficiency as the sizes of 

the particles involved increase, as shown from the plot of (Eq. 2.24) in Fig. 2.7 . 
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2.3.2 Thermal model 

Explosions at Sakurajima Volcano are very similar to an instantaneous release of ash. 

This observation justifies the idea of coupling the fixed-pivot equations with a non-

sustained plume model, like the thermal-co-ignimbrite model of (Woods & Kienle, 

1994). To do that, the mass conservation equation is split into the mass fraction    of 

the dry gas phase, the mass fraction    of the humid gas phase (vapor), the mass fraction 

   of the liquid water and, finally, the mass fraction    of the solid phase, introducing 

the equivalence for the bulk density                       . In turn, the solid 

phase is divided among each bin according to the mass fractions    in order to assure 

∑   
    
     .  

We introduce some basic definitions to describe the contributions of dry air and vapor 

from the atmosphere to the model. Defining the atmospheric mixing ratio    as the ratio 

of the mass fraction of vapor     relative to the mass fraction of dry air    , the 

following relations hold for atmospheric values (Degruyter & Bonadonna, 2012): 

                 (2.25) 
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(2.27) 

The expressions above are all functions of known environmental quantities except for 

the mixing ratio   . This quantity can be expressed in terms of the saturation vapor 

pressure   ,  the relative humidity   , and the gas constants for vapour and dry air, 

respectively    and   : 

 
      

  

  
 

  

    
 

(2.28) 

The modified conservation equations for mass yield to a new set of relations describing 

the thermal model in terms of a dry air gas phase, a vapor gas phase and, more 
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important, a set of equations equal to the number of size bins available for the solid 

phase: 

Dry air phase:  

  
[
 

 
       ]                 

(2.26) 

Vapor:  

  
[
 

 
       ]                 

 

 
         

(2.27) 

 

Liquid water:  
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(2.28) 

Solid phase 

(size i): 
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(2.29) 

Momentum:  
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(2.30) 

Enthalpy:  
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      (        

  
 

 
)]                       
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       ]  (2.31) 

Z-coordinate:  

  
     

(2.32) 

The fixed-pivot equations (Eq. 2.10-2.11) enter on the right-hand side of (Eq. 2.29). This 

implementation is a simplified description of the problem from several points of view, 

but it shows clearly how the 

discrete equations for 

aggregation can be embedded 

inside a more complete 

transport model for plume 

dynamics. This set of ODEs is 

solved explicitly with the 

ODE45 Runge-Kutta solver of 

Matlab. The typical outputs 

from the thermal model are 

shown in (Fig. 2.4).  

 
Figure 2.4 Eruption with    =150 m/s,    = 50 m,    = 0.02,     = 

0.02,     = 0.96,     = 0. Temperature, radius, velocity and density 

differences displayed as a function of the height of the thermal 
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2.3.3 Results and discussion 

Sensitivity investigations  

Despite its simplifications, equations (2.26)-(2.32) represent a good testbed to analyze 

the dependence of the Smoluchowski equations on some key parameters implicit in the 

theoretical formulation. Three fundamental aspects of the thermal model are briefly 

analyzed here: i) the role of particle breaking (disaggregation) and its importance to not 

overestimate particle aggregation; ii) the importance of the initial conditions on the gas 

mixture; iii) the sensitivity of the outputs to changes in the sticking efficiencies. For all 

the simulations shown in this section an initial distribution of particles equal to a 

Gaussian with mean of 5   and variance of 2   is used. It is sampled every 0.5  . 

1. A complete approach describing collisions between particles and aggregates 

should also describe their tendency to break if their relative kinetic energies are 

high enough to destroy their bonds or internal structures. Disaggregation 

somehow reduces the number of aggregates and keeps the grain size distribution 

similar to the initial one, or even finer. Progressively, as the relative kinetic 

energies decrease, aggregation prevails over breakings and equations (2.26)-

(2.32) become reasonable to describe the population balance inside the thermal 

plume. We assume different initial areas above the vent where aggregation is 

forbidden in order to test the final TGSD (Fig. 2.5): these areas are parameterized 

respect to the vent, from a null region (red bars) to 10 times the initial radius 

(blue bars). Results of Fig. 2.5 show that neglecting the effect of particle 

disaggregation near the vent has severe consequences on the final distribution. 

Unfortunately, it is not easy to define quantitatively the region where aggregation 

can be considered as the leading process, since it depends on the relative 

velocities of particles and on the strength of the bonds. This deserves further 

investigation in a future. 
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Fig. 2.5 Sensitivity test to investigate the effects of a “no aggregation zone” close to the vent, in order to 

account for the effects of disaggregation on the final distribution. The width of this region is parameterized 

with respect to the vent radius (equal to 50 meters). Colored bars are relative to the final grainsize 

distribution at the top of the plume. Red bars show a plume model where aggregation is considered from the 

beginning of the eruption. The initial grain-size distribution (Gaussian with mean = 5, variance = 2) is shown 

inside the small box 

 

2. Fig. 2.6 shows that small changes in the initial conditions of mass fractions for the 

four different phases may lead to significant differences in the final grain size 

distribution. In fact, these parameters directly affect the concentration of solid 

fraction inside the plume and, consequently, the number of particles per unit 

volume. Fig. 2.6 reports different runs with different initial conditions for phases 

in the dusty gas mixture. 
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Fig. 2.6 Sensitivity test to investigate how different initial gas fractions in the mixture can affect particle 

aggregation. n_d0 indicates the mass fraction of initial dry air in the mixture, and n_v0 indicates the mass 

fraction of vapor. 

3. The role of modifications in the sticking efficiency is studied. This is particularly 

relevant since the sticking efficiency is a quantity poorly constrained, especially 

in volcanology. We focused on two different aspects of (Eq. 2.21): the role of two 

parameters   and  .    is simply a multiplicative constant, on the other hand   

alters the global shape of (Eq. 2.21) as shown in Fig. 2.7.  

 

Fig. 2.7 Effect of the q parameter on the sticking efficiency (Eq. 2.21). Smaller values of q produce larger sizes 

in aggregation processes. 
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In Fig. 2.8a it is interesting to notice that if we consider correct the original value 

of      , a difference in 10% in    (red line) produces negligible differences 

among the particles classes. Instead a difference in 50% in   (blue line) can 

produce in this case a difference for a single class up to 30%. Deeper 

consequences on aggregation are related to the parameter  , that basically alters 

the shape of the sticking matrix and modifies the threshold where the sticking is 

zero between different particle sizes. The higher the values of   the slower will be 

the efficiency among larger sizes. In Fig. 2.8b it is evident how   really influences 

the final outputs, since it basically modifies the role of different collisional 

mechanisms inside the equations. In fact the sticking efficiency can be seen as a 

weight applied to the collisional kernel that can inhibit some sizes from being 

aggregated. This short analysis shows how dramatically important a good 

knowledge of the sticking processes is, since small changes in the parameters can 

deeply affect the aggregation. Future laboratory experiments, specifically 

designed for volcanic ash and aggregates, could fill the gap between quantities 

required by the theory and our present knowledge. 

 

Fig. 2.8 Sensitivity of on the sticking efficiency.  (a) The parameterization of Costa et al. (2010) is reduced by 

90%, 50% and 10%. The small box describes the initial grainsize distribution. The q parameter is kept equal 

to the original (i.e. q = 0.8). (b) Effects of the influence of a modified parameter q. The higher the value of q, 

the less the sticking for larger sizes. 
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Application to the Sakurajima eruption of the 3rd of August 2013 

In this work the main goal is to capture general aspects of ash aggregation in a real 

context avoiding complexity. As already mentioned, some basic information is missing 

for the eruption of 3rd of August at Sakurajima volcano (Japan), like the Total Grain Size 

Distribution (TGSD) and details on the initial conditions for the gas-solid mixture at the 

vent. Nevertheless field observations for this particular eruption provide alternative 

ways of comparison with models, such as the timescales of aggregation. As mentioned in 

the previous paragraphs, numerical inversions and direct observations at Sakurajima 

Volcano indicate that the observed aggregates formed within a time-window of 180 

seconds after the eruption (Bagheri et al., 2016). This time threshold is used here as a 

point of comparison.  

 

 

Fig. 2.9 Final TGSD for a Vulcanian-type eruption. The initial grainsize distribution is taken from the eruption 

of 18 July 2008 at Montserrat Volcano (Cole et al., 2014). Different gas fractions are evaluated as initial 

conditions for the thermal       initial mass fraction of dry air;    , initial mass fraction of vapor). 
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The initial TGSD of a weak Vulcanian eruption that occurred at Monserrat on the 18 of 

July 2005 (Fig. 2.9 – blue lines) is considered as initial condition. From direct 

observations we know that the eruption consisted of at least three main explosions, 

where the second and the third happened around 20 seconds and 50 seconds after the 

first one. The three thermals merged in a single large cloud which reached the maximum 

height of         a.s.l. after 240 seconds. In Fig. 2.9 the expected TGSD at the top of 

the plume is reported for four different initial scenarios (details in Tab.2.2). In all these 

four scenarios aggregation is not allowed within five initial radii above the vent, which 

correspond to 35 s in time after the eruption. Five final TGSDs show that the expected 

maxima of weight fractions are all around 3  . All the four scenarios produce plume 

heights that are in good agreement with ground observations, but the third scenario 

(           ) seems to be quite unrealistic for the rising time of the thermal. Ash 

aggregation is expected to reduce the total number of particles inside the volume, 

conserving the mass. The rate at which this happens is a function of the particle 

concentration inside the plume. At a specific time    aggregation will be not more 

effective and the total number of particles will converge to a plateau. A good indication 

of    is given from the analysis of the decay curve shown in Fig. 2.10a. It shows that 

aggregation never stops completely but that its efficiency drops dramatically as the 

concentration reduces: we can define    as the time where the drop happens. This 

reveals that                for all the different scenarios under analysis (see Tab. 

2.2 for details). The theoretical time window is thus in good agreement with the 

observed value of 200 s. However the sensitivity test on the region above the vent with 

no aggregation (see previous section) suggests investigating how the timescales change 

if we modify the extension of this region. Considering aggregation from the beginning of 

the eruption (vent height) leads to extremely short timescales which are quite 

unrealistic if compared with what we observed in the field. An increase of the no-

aggregation region up to ten initial radii (which corresponds to a maximum time of 35 s 

after the eruption, depending on different mass fractions concentrations – see Fig. 2.10) 

leads to a time window of high efficiency for aggregation between               . 

This confirms that pure aggregation models, i.e. without breaking of particles, tend to 

seriously overestimate the effects of particles aggregation if run immediately above the 

vent.  
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Figure 2.10 Total number of particles inside the thermal volume as a function of time. Time stops when the 

plume velocity approaches zero. In a pure aggregation model, the total number of particles is expected to 

decrease continuously until the plateau, where aggregation is no more effective due to the reduced 

concentration of particles. Two initial conditions for the forbidden zone for aggregation are analysed: five 

times the initial radius, i.e. 250 m (a) ten times the initial radius, i.e. 500 m (b). 

 

2.4 Conclusions 

In this work we have combined two different aspects of volcanic ash aggregation: field 

observations and theoretical description. Field data presented in this paper come from 

the eruption of 3rd of August at Sakurajima Volcano and they are based on combination 

of High-Speed movies and particle collection on sticky papers. Observations show the 

presence of large particles (           ) inside the aggregates and a maximum 

time of formation of      . This means that ash aggregation is a fast process, at least 

Table 2.2 Initial conditions and computed timescales    for all the different simulated scenarios.  

                                   

Scenario 1 0.01 0.05 50 150 0.25 250 

Scenario 2 0.05 0.01 50 150 0.25 230 

Scenario 3 0.1 0.1 50 150 0.25 400 

Scenario 4 0.01 0.01 50 150 0.25 150 
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within the observed conditions. The theoretical perspective starts from the so-called 

Smoluchowski Coagulation Equation, which describes the change in mass of a 

population of particles interacting with given collision frequencies and sticking 

efficiencies. Several quantities and initial conditions are not easy to constrain and this 

represents a weak point for predictions. Nevertheless we showed that the way we 

combined aggregation and volcanic plume theory produces scenarios that are 

comparable to the observations. The main outcome of this work is the application of the 

Smoluchowski theory and the validation with field data that was never attempted 

before. Regardless of the many main assumptions used in the theory, the main aspects of 

collisions between particles are considered: death and birth term for a pure aggregative 

process, the most important collisional kernels and the size dependent sticking 

efficiency. The combination of transport processes inside volcanic plumes and 

aggregation equations produces timescales that are reasonable with the observed data. 

This is a key result that should not be taken for granted a priori. Our promising 

outcomes confirm that the Smoluchowski Coagulation Equation and our theoretical 

approach are appropriate and relevant to the description of particle aggregation in 

volcanic plumes and clouds.  
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Chapter 3 

Aggregation of multidimensional arbitrary properties: the 

Generalized Fixed Pivot Technique2 

 

 

3.1 Introduction 

Particle aggregation is a common process of many different natural systems including: 

planetary formation, dispersal and sedimentation of volcanic ash, food industry, biology, 

atmosphere, aerosol sciences, polymerization and blood circulation. The reason of this 

generality is that in principle all those fluids involving particles may lead to the 

formation of agglomerates. The theoretical description of aggregation is a particular 

subset of the more general Population Balance Theory (PBT). The PBT treats the 

population under analysis in terms of selected properties  , called internal parameters, 

and a density function     . The density function provides the number of elements per 

unit volume with properties between two specific values    and   : 

 
∫   

  

  

         
 

(3.1) 

For many decades the study of aggregation processes has uniquely been based on a one-

dimensional description of the problem, the so-called Smoluchowski Coagulation 

Equations (SCE) (Smoluchowski, 1916) This set of equations describes the growth of 

aggregates using one internal parameter: mass or volume. However this approach is 

strictly exhaustive for just few cases, such as the coagulation of pure water droplets, or 

the interaction of monomeric spheres in a suspension. For a large number of other 

events the SCE are not capable to describe comprehensively an aggregation event.  

The reason for this lack of completeness is that in many cases one single internal 

parameter is not sufficient to describe how solid particles aggregate. In many cases a 

                                                             
2 Submitted to Physical Review E as : Rossi E., Patterson R. Bonadonna C. “Aggregation of 
multidimensional arbitrary properties: the Generalized Fixed Pivot Technique” 
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more exhaustive description is obtained increasing the dimensionality of the equations. 

However it is just in the last fifteen years that the increasing availability of 

computational power has made the numerical solution of multidimensional problems 

feasible (Vale and McKenna, 2005). Several techniques currently exist to solve 

aggregation in multidimensional spaces. One of those that mainly took advantage of the 

increasing computing power is the so-called fixed pivot technique (Chakraborty and 

Kumar, 2007; Chiney and Kumar, 2012; Kumar and Ramkrishna, 1996; Kumar and 

Ramkrishna, 1997; Marchisio and Fox, 2005; Pollack et al., 2016; Vanni, 2000). The key 

aspect of the fixed pivot technique is that it works with a discretized density function 

    . The solution is evaluated at fixed positions in the multidimensional space of the 

internal parameters (pivots). The main advantage is that a large number of pivots 

provide an accurate description of the evolution of the entire population. The drawback 

is that for a large number of pivots the computational time can be unmanageable. 

In the present work we will discuss and demonstrate how this technique can be 

extended to the solution of aggregation problems with arbitrary internal properties 

introducing the Generalized Fixed Pivot Technique (GFPT). The term arbitrary in this 

context emphasises the use of internal properties that are not necessarily additive. This 

point represents a crucial difference respect to previous works, since in many problems 

the most useful internal properties are not additive (Johansen et al., 2008; Marchisio and 

Barresi, 2009; Matthews and Hyde, 2004).  

 

3.2 The Generalized Fixed Pivot Technique (GFPT) 

A rigorous formalisation of the fixed pivot technique has been introduced by the seminal 

work of Kumar and Ramkrishna (1996). In this paragraph we will discuss how the 

principles of the fixed pivot technique can be extended to the study of multidimensional 

arbitrary spaces. This new approach is called the Generalized Fixed Pivot Technique 

(GFPT) and it is strictly valid under the assumption of binary collisions. The starting 

point of the discussion is represented by the multidimensional aggregation equation 

with no explicit relations between the internal properties (Eq. 3.2) (Okuzumi et al., 

2009). 
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(3.2) 

Aggregation equations can always be split in a birth and a death term, regardless of the 

dimensionality of the problem. The first term on the right hand side of Eq.3.2,       , 

represents the creation of particles with property   (birth), while the second term, 

      , represents the loss (death). In Eq. (3.2)         and          represent the 

density function for two colliding particles evaluated at two specific points in the 

multidimensional space, selected using the condition on the Dirac delta functions 

        
         . For a set of properties          : 

 

         
                  

                  
           (3.3) 

 

The distribution function      is supposed to be continuous over the region of interest. 

The symbol      indicates the resulting property born from the interaction of    and    . 

In this context the symbol of integration must be considered on a space of dimension 

equal to p, where bold letters indicate a vector. It is worth mentioning that the physics of 

the process is entirely contained inside the aggregation kernels            . The 

quantities             provide a global information of the collision rate for two particles 

with properties   and their sticking probability. For a multidimensional problem the 

evaluation of these functions represents a challenging task. The higher the number of 

internal parameters, the higher the information required describing completely the 

evolution of the population. One-dimensional kernels have been derived theoretically in 

the past to describe specific conditions, such as the collision rates due to the Brownian 

motion or the sedimentation collisions between free falling particles. However the major 

complexity of multidimensional kernels requires future studies and specific 

experimental investigations to be understood. In the present work we will mostly use 

constant kernels or quantities derived from the previous one-dimensional approaches. 

For the particular condition of one internal additive property,     and            , 

Eq. (3.2) is formally identical to the Smoluchowski Coagulation Equation (SCE): 
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(3.4) 

The extension of Eq. (3.2) to account for arbitrary internal parameters generates some 

complications that must be analysed in detail. Two aspects are of particular interest: the 

limits of integration and the number of roots contained in the Dirac delta functions. 

• Limits of integration: The choice of the limits for the integration usually concerns the 

birth term uniquely. The loss term is always evaluated over the entire space of definition 

of parameters, since particles disappear interacting with all the others. The key point is 

that limits of integration for the birth term are strongly related to the definition of the 

internal parameters and how they aggregate. For example, in the SCE particles volume is 

the internal parameter. The lowest extreme is constrained by the condition that volumes 

are always positive and their interaction can produce uniquely larger particles. 

Therefore, the minimum volume, zero, is also the lowest bound of the integral. The 

upper extreme is determined by the fact that a particle of volume V can be formed solely 

by smaller particles. In the case limit in which one of the two particles is an infinitesimal 

object, the extreme bound is exactly the volume of the particle itself. This justifies value 

of the upper limit in Eq.4. In general each problem that uses the Eq.2 requires a specific 

analysis of the extremes of integration. In the fixed pivot technique this is not very 

important, since all the integrals are supposed to cover the region of interest. The 

discretization of the entire domain produces a set of multidimensional cells, in which the 

population will evolve according to the conditions contained in the Dirac delta functions. 

A particular caution must be taken in defining the region of interest. Aggregation can 

produce particles with properties outside the domain, resulting in a leakage of 

information. 

• Number of roots: The Dirac delta functions in Eq. (3.2) determine how aggregates 

with property   are generated from the interaction of two particles with properties    

and    . The Dirac deltas contain one equation to be solved for each internal parameter 

as shown in Eq. (3.3). The equalities to be solved for the internal properties 

            are: 



 47 

 

      
           {

        
      

        
      

        
      

 

 

(3.5) 

 

In this work we consider uniquely acceptable solutions of Eq. (3.5) that provide single 

values in the final region of interest, but injective functions are not mandatory. The 

study of multiple roots will be considered in a future work. 

 

3.2.1 Discrete equations in the GFPT  

The common feature to all the Fixed Pivot Methods (FPM), such as the GFPT, is to 

discretize the space of the internal parameters p and then solve a set of Ordinary 

Differential Equations (ODEs) for each cell of the discrete domain. The first step in this 

process is to divide the space of the internal parameters in a set of smaller regions, 

called cells. According to Eq. (3.1) the distribution function will be integrated over these 

cells to provide the number of particles per unit volume within each region. The 

discretization of the space creates a n-dimensional grid where each cell is represented 

with an internal fixed value, the pivot. In the present work we refer to this grid as the 

primary grid. One of the main problems in the discretization has always been how to 

deal with new aggregated particles that appear in a different position respect to the 

pivots. This happens in the great majority of cases since the product of an aggregation 

will not coincide with our discrete points, unless the number of pivots is extremely high 

and the computational time prohibitive. From its first appearance (Kumar and 

Ramkrishna, 1996), the solution of this problem has represented one of the most 

important features of the fixed pivot technique. The criterion used in the FPM is to split 

each single new aggregate within the closest cell in order to conserve some specific 

quantities. According to Chakraborty and Kumar (2007), for   internal parameters the 

minimum number of cells used in this allocation is  +1. The way in which aggregates are 

redistributed in the space requires an additional grid, as shown in Fig. 3.1. We refer to 

this grid as secondary grid and usually there is no need to use additional points to define 

it. Pivots from the primary grid will define the vertexes of the cells. In general for a 

bidimensional problem the secondary grid is composed of squares or triangles; cubes 
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and tetrahedra for a tridimensional one. As a rule of thumb the higher the number of 

points used for the redistribution the higher the numerical diffusion. A specific 

description of the secondary grid will be done in one of the following paragraphs.  

 

Figure 3.1 Representation of the primary and secondary grids for a bidimensional problem. On the x and y 
axes are reported the two internal parameters      and     . The primary grid (a) divides the space of the 
internal variables in a set of arbitrary cells where the continuous distribution function is integrated. Each 
node of the grid is thus associated with a number of particles per unit volume. The secondary grid (b) defines 
which cells are involved in the redistribution of non pivotal aggregates. It is generated following a specific 
criterion that depends on the problem under analysis. In this work the secondary grid is generated following 
the Delaunay criterion. 

 

Two main steps are required in order to discretize the aggregation equations in the 

GFPT: first, to replace the distribution function with a sum of Dirac delta functions 

centered at the pivots positions; second, to integrate Eq. (3.2) over each cell. For a set of 

internal properties             the first step means to substitute      with Eq. (3.6) 

inside the aggregation equations: 

 

       ∑             ∑                          

  

   

  

   

  

 

(3.6) 

In Eq. (3.6) the quantity       is the number of particles per unit volume contained in 

each cell   as a function of the indipendent variable  .     is the number of cells in the 

primary grid. The second step is achieved integrating Eq. (3.2) over each 

multidimensional cell. For the left hand side of Eq. (3.2), over the i-esim cell, we have: 



 49 

       

  
 ∫

       

    

   
 

(3.7) 

Therefore the evolution of the number of particles per unit volume in the i-esim cell is 

given by: 
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(3.8) 

The continuous problem described in Eq. (3.2) is thus transformed in the solution of a 

set of ODEs where the unique dependent variable is time  . In this work we will use a 

progressive index from     to    to identify each cell, and the symbol    to identify 

the relative multidimensional region in the primary grid. Cells of the secondary grid will 

be instead identified with the symbol   .   
  and   

  are the discrete birth and death 

terms for the cell  . The following sections are dedicated to the research of explicit 

expressions for quantities   
  and   

 .   

 

The birth term 

The discretization of the birth term   
  represents the main difference between the 

GFPT and the FPT. In the GFPT the relationships between the internal parameters are 

not explicit and this involves the presence of a multidimensional Dirac delta, as reported 

in Eq. (3.3). This term is not present in the FPT. The relationships between the internal 

parameters will be defined at the end of the discretization and not at the beginning, as in 

the FPT. For convenience we report the birth term   
  entirely: 
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(3.9) 

The first step in the discretization is to replace the population density      with a series 

of Dirac delta functions. Substituting Eq. (3.6) in Eq. (3.9) we have: 
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(3.10) 

For a given cell   in the primary grid, there will be s cells in the secondary grid involved 

in the creation of aggregates. Each aggregate that appears in one of the s cells will 

contribute to the term   
 , according to a relative weight          that will be discussed 

in detail later. 
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(3.11) 

The multidimensional integral over      can be rewritten as the sum of    integrals over 

each cell of the primary grid. 
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(3.12) 

The integration over     is conditioned by the presence of ∑   
  
             The 

Dirac deltas are different from zero only if the index m and k are equal. Therefore the 

integral becomes: 
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(3.13) 
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The integration over    follows the same procedure used for    . After same 

manipulations we have: 
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(3.14) 

Eq. (3.14) can be interpreted as follows: the birth term   
  is given by the weighted sum 

of s couples of particles   and   that satisfy the condition  [    (     )   ] on the 

variable  . This condition is equivalent to consider those couples of particles that 

produce an aggregate with properties   in one of the   regions   . The final expression 

for the birth term in the GFPT becomes 
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(3.15) 

 

The death term 

The discretization of the death term in the GFPT is completely equivalent to other 

techniques, such as the fixed pivot or the cell average (Kumar et al., 2006; Kumar and 

Ramkrishna, 1996). The loss of particles is not dependent on the internal properties  , 

since each particle can interact with all the others without any limitation. The details of 

the discretization for the sink term can be found in (Vale and McKenna, 2005). The death 

term for the continuous aggregation Eq. (4.2) is discretized as follows: 
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(3.16) 

 

Evaluation of weights 

One of the main advantages introduced in the fixed pivot technique is the possibility to 

choose arbitrary steps for the primary grids. The use of weights    allows redistributing 

non-pivotal new aggregates on a selected number of existing points, in order to conserve 
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specific quantities. The advantage of this procedure is the decrease of the number of 

pivots for the primary grid. The drawback is that the numerical diffusion grows with a 

decreasing number of pivots. In this paragraph we examine how this procedure can be 

applied for the GFPT. As a matter of fact the use of non-additive internal parameters 

does not change the way in which particles are redistributed. Particle redistribution is 

just dependent on how the newborn aggregate is shared with existing pivots. The 

following discussion is based on the work of Chakraborty and Kumar (2007) and 

adapted to the GFPT. 

As introduced in section 3.2.1 the GFPT uses a primary and a secondary grid. The 

primary grid is defined as the set of cells that divides the space of the internal 

parameters. Each cell is characterised by an internal point, the pivot. The secondary grid 

is instead defined as a set of pivots where non-pivotal particles are redistributed. The 

number of points involved in the redistribution of non-pivotal aggregates is not uniquely 

defined. Chakraborty and Kumar (2007) show that for a n-dimensional problem the 

minimum number of points used in the redistribution is n + 1. So far the common 

approaches used in literature vary with the dimensions of the problem: for a 1D 

problem, lines are the unique choices; for a 2D problem triangles or rectangles can be a 

solution; for a 3D problem we can select tetrahedrons or parallelepipeds. For a 

secondary grid with the minimum number of elements, consistency is obtained 

preserving     properties Q over j points of each cell of the secondary grid involved in 

the redistribution of the particle     . We identify these    points with the indexes 

vector             . 
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(           )    (      )          

 

(3.17) 

Usually the quantities to be conserved involve specific moments of the distribution, like 

the zeroth and the first for the 1-dimensional problem. The extension to n-dimensions is 

done similarly, conserving the number of particles and the n internal properties  . This 

process is not affected from the non-addictiveness of the internal properties. It is just 

dependent on the position of the new aggregate in the multidimensional space. In other 

words the weights        are a measure of how far the products of an aggregation are 

from existing pivots. It is now clear why a reduced number of pivots will generate 
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numerical diffusion: if the secondary grid is sparse, new aggregates are allocated among 

pivots far in space that in reality are not involved in the physical process. The meaning 

of Eq. (3.17) can be explained with an example. Let us consider a 3-dimensional problem 

where tetrahedrons constitute the secondary grid. The internal properties   are: 

       . Tetrahedrons vertexes involved in the single redistribution are:    

          . 
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(3.18) 

For each couple of particles   and   the quantities       (           ) are determined 

uniquely. In the GFPT this process is done once, just before the computation of the ODEs. 

The calculus of        can be speeded up noticing that the problem is symmetrical for a 

permutation of the indexes   and  . Weights evaluation completes the discrete equations 

for a multidimensional cell i in the GFPT is: 
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(3.19) 

3.2.2 Implementation of the GFPT 

The GFPT provides a set of ODEs that represents the most general expression for 

aggregation on a discrete space. This generality allows a high degree of freedom in the 

implementation of the solution. The cells of the primary grid      and those of the 

secondary      are not uniquely defined and they can vary according to the needs or the 

requirements of the user. In this section the implementation of the GFPT in a dedicated 

algorithm is described in detail. Historically the first grids have been made by 

rectangular elements on a bidimensional space and parallelepipeds on a tridimensional 

one. Both for the primary and the secondary grid. This choice for the secondary grid 

allows to express    directly, without any use of search algorithms to evaluate the 
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condition     (     )      . However the use of rectangles and parallelepipeds for the 

secondary grid is not easily adaptable for all those situations where a particular 

accuracy is required in specific regions of the space. A more flexible grid is composed of 

triangles and tetrahedrons as introduced in Chakraborty and Kumar (2007). These 

elements can be generated from an arbitrary set of points, once established a criterium 

for the triangulation. In terms of adaptablity this represents a great advantage since a 

denser number of pivots can be assigned where it is needed, without any complication. 

It is important to stress that the use of these grids for dimensions greater than three can 

be demanding. In this work all the examples proposed are described in terms of two 

internal variables. Thus the secondary grid is composed of triangles. 

The GFPT is written in Matlab. This software provides useful built-in functions to 

perform n-dimensional Delaunay triangulations or point localisation over a set of 

triangles or tetrahedrons. Of course any other language can be used but it requires 

additional work to implement the previous functions. In this case useful references to 

implement a Delaunay triangulation and spatial localisations over a set of tetrahedrons 

can be found in Liu et al. (2015). The algorithm is structured as follows: 

1. Definition of the cells of the primary grid and the relative fixed pivots. 

2. Evaluation of the initial conditions on the number of particles per unit volume 

contained in each multidimensional cell. 

3. Definition of the cells of the secondary grid by means of a triangulation between the 

fixed pivots. In this work the Delaunay criterion is used to create triangles and 

tetrahedrons. Other criteria may be chosen. At the end of the triangulation each pivot i 

will belong to s elements of the grid. Each aggregate that appears in one of the s 

elements will contribute to the formation of particles in  . 

4. For each couple of pivots j and k we evaluate which cell of the secondary grid contains 

the resultant aggregate     (     ). This search can be speeded up noticing that the 

collision of   and   is equivalent to   and  . A fraction of the quantity      is attributed to 

each single vertex of the cell according to Eq. (4.17). 
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5. Step 4 is repeated for all the couples of points. This allows to relate the creation of 

aggregates in the pivot i to specific couples of points   and   that contribute with a 

specific fraction        (     )    . This process is computed only once. 

6. Solution of the ODEs present in Eq. (4.19). An explicit Runge-Kutta solver (ODE45) of 

the fourth-fifth order is used for non-stiff problems. However stiffness can arise for 

particular initial conditions. In this case we use a variable backward differentiation 

formula (ODE15s). In both cases the positiveness of the solutions is imposed by default 

in the ODE solver. 

 

3.3 Numerical results and discussion 

The GFPT can be applied to different classes of problems. In this paragraph several 

examples are shown and discussed to demonstrate its versatility: the verification of the 

algorithm and one test case. In the verification process the numerical scheme is 

compared with analytical solutions, although these are available only for additive 

properties. The test-case is an ideal experiment where micrometer paint droplets 

interact together to form new colours that depend on masses and initial colours of 

colliding droplets. Particles are supposed to be in a box where no net motion through 

the boundaries is present. The internal variable colour can be defined as a unique 

quantity or it can be decomposed along three primary axes. Resultant colours after a 

collision are expressed as the average of the colliding colours weighted over the 

respective masses. With this example we want to emphasise the use of the GFPT for a 

variety of different and unusual applications.  

 

3.3.1 Verification: additive properties 

The Generalized Fixed Pivot Technique is compared with analytical solutions in order to 

test the accuracy. Analytical solutions of Eq. (3.2) are possible only for the specific 

condition of additive internal properties and constant aggregation kernels           

 . In this work we use the set of solutions reported in Vale and McKenna (2005) for a n-

dimensional problem. The initial conditions are: 
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(3.20) 

Where the parameters    define the shape of the initial distribution of particles. A value 

of      gives an exponential distribution,      a Gamma distribution. The validation 

is done analyzing two different cases:      and      with two internal parameters 

     . The general solutions for Eq. (3.20) are: 
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(3.21) 

Where the non dimensional time   is defined as        . The discrete results of the 

GFPT are compared with the continuous functions of Eq. (3.21) according to Vale and 

McKenna (2005). The quantities used for the comparison are the averaged density 

function             and the numerical density function   ̅  , defined as follows: 
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(3.22) 
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(3.23) 

We start our analysis from the numerical solution of Eq. (3.20) for a bidimensional case 

with two different values of   . The results are shown as a contour plot in Fig. (3.2) for 

an initial exponential distribution      and a Gamma distribution       . The primary 

grid is composed of 2500 rectangular cells (50 x 50) distributed uniformly over the log-

log space. The secondary grid of triangles is defined with a Delaunay triangulation. Fig. 

(3.2) shows a good agreement between numerical predictions and theoretical values for 

both cases. In addition these results are in line with what reported in Vale and McKenna, 

(2005) for similar initial conditions.  
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Figure 3.2 Numerical and analytical solutions for two additive parameters    and    for the initial conditions 
of Eq.3.20 with          ,     ,      :      (a, b) and      (c, d) respectevely. The primary grid is 
made of 50 x 50 cells. 

As expected, larger sizes are affected by numerical diffusion that provokes decay in the 

performances of the algorithm. Numerical diffusion is generated from the allocation of 

new particles among pivots that are far in space. This is due to the use of a constant 

number of pivots over a logarithmic scale, which produces a reduced number of points 

for large sizes. It is worth mentioning that the GFPT predicts correctly the first     

moments (Fig. 3.3). However the accuracy of higher moments is strictly dependent on 

the number of pivots used as demonstrated in Fig. (3.4). 
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Figure 3.3 Comparison between the first moments of the distribution evaluated numerically for 2500 points 
          and the relative exact analytical values for Eq. 3.20 with      (black lines) as a function of the 
adimensional time  . 

 

Figure 3.4 Differences between moments    ,    ,     and     evaluated numerically for different grid steps 
and the relative exact analytical values for Eq. 20 with          ,      and     . 
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3.3.2 Collisions of micrometer paint droplets in a box 

In this example we apply the GFPT to an ideal experiment where liquid droplets of 

coloured paints interact in a box to create larger droplets with new colours. This is a 

typical example of coagulation where the volume of the final object is the sum of the 

interacting particles. In this context the interest is focused on the study of how colours 

evolve within the population and what are the prevalent shades after a given time tend. 

We assume micrometer size particles and an instantaneous blending process among 

them. This implies that the product of a collision can be always labelled with a unique 

colour. A more realistic description could be obtained introducing a third parameter to 

describe the degree of mixing between colours. The mixing of paints, pigments and inks 

is explained with the subtractive colours theory (Pridmore, 2011), but a detailed 

analysis of the resultant colour is strictly dependent on the chemistry of the paints used. 

The subtractive theory relates the colour of an object to the frequencies of the light it 

can absorb. A given dye is described in terms of three numbers from 0 to 1, representing 

the normalised fractions of primary colours inside the dye. The normalisation factor 

used depends on the number of bits allocated to define the colour depth. The absence of 

any pigment, represented with the triplet [0 0 0], produces a white shade in the 

subtractive theory. Viceversa, a full intensity for each channel defines the black colour 

         . Primary colours are defined as those triplets that absorb completely all 

frequencies if blended in equal proportions. In this example the Cyan-Magenta-Yellow 

(CMY) triplet is used as a base for primary colours. At least two strategies can be 

adopted to treat this ideal experiment within the framework of population balances. The 

parameter "colour" can be treated as a unique variable, or it can be decomposed in three 

components. The first approach results in a two dimensional problem, where mass and 

colour are the two internal parameters; the second option in a four-dimensional one, 

where the internal parameters are mass, cyan (C), magenta (M) and yellow (Y). The 

mathematical expression that governs the resultant dye is the average of the three 

primary components, weighted over the respective masses. This formula is commonly 

used in managing colours in computer graphics and it can be expressed as follows: 
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(3.24) 

Here we discuss the solution of the GFPT using relations Eq. (3.24). Droplets are 

supposed to be in an idealized box where the collision rate of droplets is described by a 

constant aggregation kernel of             . The range of sizes analysed spans from 

1 to 10   . The variable colour can be treated both as a unique parameter or a three 

dimensional quantity in the CMY space. In the second case the application of the GFPT is 

straight-forward but it results in a four-dimensional problem              with 

consequent drawbacks on searching algorithms. On the contrary, the first case has the 

advantage of being a bidimensional problem               . But the reassignments of 

new aggregates to existing pivotal positions requires more effort, since each CMY 

newborn combination must be converted in defined values on the colour axis. We 

adopted the second strategy, i.e. the colour axis is represented with a mono-dimensional 

vector of CMY combinations, sorted according to their relative hue from violet to red as 

in the electromagnetic spectrum (CMY values must be converted in HSL to do a rainbow-

like sorting). This sorting converts the variable colour into a quantity that increases 

along the axis, as a common variable like the mass. In other words the HSL sorting 

guarantees that consecutive pivots along the colour axis have similar hues. The 

advantage is evident when particles are generated in non-pivotal positions, i.e. the 

majority of the cases. As a matter of fact, a non-pivotal particle will be shared between 

colours of similar hue with respect to the newborn droplet, as it always happens in the 

fixed pivot technique. 

Droplets collide and the resultant colour on a CMY scale is determined according to Eq. 

(3.24). The CMY value is then converted in a point on the secondary plane using a linear 

interpolation between the two closest pivotal colours. Finally, the searching algorithm 

finds the triangular element on the secondary grid that contains the point and the 

quantity is shared between the three vertexes according to Eq. (3.17). Each CMY channel 

I represented with 2 bits resulting in a total of 64 different combinations. We apply the 
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GFPT with several different initial conditions. Figure 3.5 shows the time evolution of two 

binary combinations of initial colours: cyan and yellow, red and blue.  

 

Figure 3.5 Chromatic evolution after 100 s of two initial distributions composed of just two colours. An initial 
concentration of        droplets is used for both the examples. a) Initial colours are cyan and yellow b) 
Initial colours are red and blue. Both figures represent the final population, i.e. after 100 s.  
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Initial concentrations for both examples are fixed at        with a size of 1   . The 

system starts with two tones but after a while the generation of a third colour creates 

the conditions for a cascade effect. However the propagation of the colours is bounded 

within the limits contained within Eq. (3.24). In the case of cyan and yellow, two primary 

colours in the CMY codifications, there is no way to activate the third channel (magenta). 

Red and blue, allows a wider spectrum of combinations. A different test is reported in 

Figure 3.6. Here all the 64 colours available are blended together, starting with a 

concentration of        droplets with a size of 1   . The output after 100   shows that 

for each family of colours, the maximum of the distribution is associated with the 

darkest tone. This is due to the mixing: as a matter of fact in the subtraction theory the 

higher the number of colours mixed, the higher will be the number of wavelengths 

absorbed. 

 

 

Figure 3.6 Colour evolution for an initial concentration of         droplets for each of the 64 colours 
available (2 bits). A constant kernel of             is applied to every collision. The total simulation time is 
100 s. Size distribution evolves towards larger sizes as expected for a pure coagulation problem. Darker 
shades becomes dominant with time due to the increasing absorption of light consequent to the 
superimposition of different colours. 
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3.4 Conclusions 

We demonstrated how the fixed pivot technique (Kumar and Ramkrishna, 1996) can be 

successfully applied to the solution of aggregation processes of multidimensional 

arbitrary properties. This new approach is called the Generalized Fixed Pivot Technique 

(GFPT). In population balances, members of a population are described in terms of pre-

defined internal properties. In the past, additive relations have been proposed for 

multidimensional problems as a natural extension of the one dimensional Smoluchowski 

Coagulation Equations (SCE). The GFPT expands what was achieved in previous works 

to the use of arbitrary properties.  As a matter of fact, in many circumstances the 

complexity of particle interactions can be fully described only with non-additive 

properties. This usually happens with the packing of solid objects, but can also affect 

coagulation problems. In this work the GFPT is rigorously derived from the continuous 

aggregation equations under specific, but quite general, assumptions. We have also 

shown the great versatility of the new technique with an example where previous 

techniques would be ineffective. The GFPT inherits all the advantages and disadvantages 

of the fixed pivot technique, such as the accuracy and the underlying simplicity of the 

method. On the contrary a large number of pivots is required to avoid numerical 

diffusion, as discussed in the verification section of this paper. In fact this limits the 

applicability of the GFPT for those situations where a great number of internal 

parameters is required. In conclusion this work represents our effort to extend the 

common method of the fixed pivot technique towards more general scenarios. An effort 

that is required to describe accurately the complexity of the aggregation in natural 

systems. 
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Chapter 4 

A new theoretical method for the study of ash aggregation3 

 

 

4.1 Introduction 

During volcanic explosive eruptions the fraction of fine          and coarse 

            ash injected in the atmosphere frequently sediments in the form of 

aggregates as evidenced by numerous field observations (Bagheri et al., 2016; Brown et 

al., 2012; Carey and Sigurdsson, 1982; Gilbert et al., 1991; Sorem, 1982; Taddeucci et al., 

2011; Van Eaton et al., 2015). Volcanic aggregates usually show larger terminal 

velocities and a smaller permanence time in the atmosphere than their single 

components. As a result, particle aggregation efficiently removes fine ash from the 

atmosphere, increasing the amount of proximal sedimentation. However, despite its 

importance, ash aggregation is not easily implemented in Volcanic Ash Transport and 

Dispersal Models (VATDMs) and its full description still remains a challenging task in 

the scientific community. A main consequence of neglecting ash aggregation in forecast 

models is the overestimation of fine particles in the far field and the underestimation of 

tephra fallout in the proximal and medial regions (< a few tens to a few hundreds of 

kilometres depending on plume height). The air traffic closure occurred in large parts of 

Europe as a result of the 2010 Eyjafjallajökull eruption (Iceland) is still a vivid example 

of the importance of having accurate predictions from VATDMs. In the last three decades 

many efforts have been made to describe the effects of ash aggregation on tephra fallout. 

One of the first approaches is based on the empirical redistribution of ash from fine to 

coarser classes in order to emulate the action of aggregation (Bonadonna et al., 2002; 

Bonadonna and Phillips, 2003; Cornell et al., 1983). Empirical models are calibrated on 

the comparison between field observations and model results. Recently, Mastin et al. 

(2016) has demonstrated that the lognormal distribution describing the best fit for 

aggregates in empirical models is quite general and scenario independent. However, 

despite their advantages in terms of computational efficiency, empirical methods lack a 
                                                             
3 Rossi E., Pollastri S., Bonadonna C. (paper part I, paper part II, to be submitted). 
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physical description of the process, which reduces enormously the range of applicability. 

In particular, they still represent a reasonable alternative for probabilistic long-term 

hazard assessments requiring fast computation times where aggregation processes are 

calibrated on past field observations and treated statistically. Nonetheless, empirical 

descriptions are of more complex application when used to forecast ash dispersal from 

individual eruptions in real time. Approaches based on more accurate physical models 

are possible, but the associated theoretical framework is more complex and its solution 

computationally inefficient. The main complications in describing volcanic ash 

aggregation are related to the large number of particles involved in the process and the 

poor constraint on the physical processes involved. Typical values for particle 

concentration in volcanic plumes are of the order of             (Veitch and Woods, 

2001), a number that makes a statistical approach necessary, e.g. the so-called 

Smoluchowski Coagulation Equation (SCE) (Smoluchowski, 1916): 
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(4.29) 

In the SCE the creation of droplets/particles with volume   is governed by the 

aggregation kernel   and a density distribution function      that gives the number of 

particles with volume comprised between         . The aggregation kernel is usually 

expressed as the product of two different quantities        : the sticking efficiency   

and the collision rate  . All the physics of the process is condensed in these two 

numbers, on which depends the possibility of solving Eq. (4.1). The collision rate   

quantifies the flow rate of particles impacting on each other and it is dependent on the 

particular physical phenomenon under analysis (Brownian motion, turbulence, 

sedimentation, thermophoresis, etc.). The sticking efficiency   describes the probability 

that a collision results in an aggregation process, i.e. the particle is not rebounded. It 

depends on the capability of the system to dissipate the relative kinetic energy of the 

impact. One of the first uses in volcanology of the SCE appeared in Veitch and Woods 

(2001), followed by Textor et al. (2006). Costa et al. (2010) has provided an 

approximated solution to Eq. (4.1) based on the assumption of fractal geometry within 

the aggregates. Recently Folch et al. (2016) applied this framework to the study of ash 

aggregation in a volcanic plume. However, a large number of observations suggest that 

ash aggregates have complex and irregular structures and do not follow a fractal 
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packing. According to the classification of Brown et al. (2012), two main families of 

objects are identified: Particle Clusters (PC) and Accretionary Pellets (AP). The first group 

is subdivided in: PC1, ash clusters, and PC2, coated particles. The second group is 

formed of: AP1, poorly structured pellets; AP2, pellets with concentric structure; AP3, 

liquid pellets. PC1 are ash clusters, characterised by low densities around    

        ⁄  and typical size of the components less than      . PC2 clusters are 

characterized by the presence of a large coated particle at the centre with sizes> 

      . AP1 are poorly structured aggregates with median size of the population 

between           and overall size between        and few millimetres. AP2 are 

pellets with concentric structure and a typical overall size between        . Finally, 

AP3 are liquid pellets with a wide range on inner particle size             , a 

significant presence of liquid water and a generally poor conservation after the impact. 

Bagheri et al. (2016) have also introduced an additional class of cored particle clusters 

(PC3) that consist of a core particle (200–500microns) fully covered by a thick shell of 

particles < 90microns. PC2 and PC3 mostly differ due to the thicker coating of PC3. Such 

a large variety of shapes and structures are poorly described by the one-dimensional 

description of the SCE. As a matter of fact, objects with the same mass may have 

different densities or porosities, which results in a completely different sedimentation 

process. Moreover, recent observations of falling aggregates during the 2010 

Eyjafjallajökull eruption, Iceland, and the July-August 2013 eruptions at Mount 

Sakurajima, Japan, have suggested a primary role of coated particles in aggregates 

formation for PC objects (Bagheri et al., 2016; Taddeucci et al., 2011).  

This chapter proposes an innovative perspective of the theoretical description of ash 

aggregation, which avoids most of the limitations of the one-dimensional approach of 

the SCE. The new methodology is derived from the Generalized Fixed Pivot Technique 

(GFPT) presented in chapter 3 applied to the study of ash aggregation in volcanic 

plumes. For this purpose, the mass balance equations of a one-dimensional steady state 

plume model have been modified in order to take into account several classes of solid 

aggregates and their evolution. The choice of limiting the attention only to the eruptive 

plume is motivated both by a need for computational efficiency and by the fact that 

aggregation occurs where particles concentration is higher (Veitch and Woods, 2001). 

Moreover, field observations of aggregation timescales suggest relatively fast processes 

that are compatible with an occurrence in the volcanic plume (Bagheri et al., 2016). 
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According to the GFPT, aggregates are studied tracking the evolution of two internal 

properties: mass and porosity. The initial Total Grain Size Distribution  (TGSD) is thus 

modified along the central axis of the plume on the base of the physics of collisional and  

sticking processes. The final TGSD at the top of the volcanic plume will be composed of 

classes of different size, density and mass with respect to the original distribution at 

source. A major attention is posed on the definition of the collisional processes 

occurring in the highly turbulent volcanic environment. An alternative parameterisation 

of the sticking efficiency for wet and dry environments has been rigorously presented. 

All these aspects will be discussed in the following sections. 

 

4.2 Equations of particle aggregation 

The Generalized Fixed Pivot Technique (GFPT) developed in chapter 3 is applied here to 

the study of ash aggregation in a volcanic plume. The final software package is written in 

Matlab. In the GFPT   internal parameters    are chosen in order to fully characterize 

the evolution of a population under analysis. In our notation superscript quantities   
  

and   
   denote the internal properties of two aggregating particles, the symbol      is 

referred to the final product of their interaction, bold type quantities   are vectors. The 

unique limitation posed by the theory concerns the form of the mathematical function 

that relates   
  and   

   to     . This relationship must be a single-valued function of the 

interacting properties, i.e. the final product of the collision is described by a single value 

in the final space of the internal variables. No constrains are posed on the number of 

internal properties involved in the process. 

As discussed in the introduction to this chapter, major attention is devoted to the role of 

density in the final aggregates. Density is fully characterized by a length scale and a mass 

scale. It seems thus reasonable to limit the use of the GFPT to two internal parameters. 

Moreover, two parameters are a good compromise between the accuracy of the 

theoretical description and the computational efficiency of the numerical solution. The 

definition of the first internal parameter is straightforward, considering that mass     is 

conserved for solid particles as volume is in the original Smoluchowski equation 

(Smoluchowski, 1916). Moreover, mass is responsible for the dynamics of the object. 

The role of the second internal parameter is instead to capture the complex packing of 
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the aggregate structure. In this work we chose porosity     as the second descriptor. 

This quantity can be easily translated into an equivalent density or a volume.  According 

to this choice, each particle is labelled with a bi-dimensional vector in the space of the 

internal parameters,         . The mathematical function   that relates the initial and 

final porosities of the two colliding objects will be made explicit in the next section. 

{
           

                     
 

 

(4.2) 

In the GFPT the space of the internal parameters is subdivided in two different grids 

(Fig. 4.1). The primary grid defines    cells where the actual particle concentration  
 

    

is evaluated. To each cell is associated a fixed point, called pivot, labelled with letter  . 

The shape of the  -esim cell of the primary grid is arbitrary. The secondary grid defines 

the way in which non-pivotal particles are redistributed within the existing pivots. 

According to Chakraborty and Kumar (2007), using triangular elements for the 

secondary grid in a 2-D problem minimizes the numerical diffusion.  

 

Figure 4.1 Example of gridding used in the GFPT. The primary grid is formed of triangular elements (black 
lines) with a series of fixed pivots at their barycentre (dots). In light grey the area of one cell of the primary 
grid. The secondary grid is as well formed of triangular elements (red lines). It is derived from a Delaunay 
triangulation between the positions of the fixed pivots. Triangles in orange identify the cells of the secondary 
grid involved in the process of redistribution relatively to the pivot   . 
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The secondary grid is thus composed of   triangular cells, denoted with the symbol  , 

obtained with a Delaunay triangulation between the fixed pivots of the primary grid. Our 

code takes advantages of the Matlab built-in function for Delaunay triangulations, but 

efficient algorithms can be implemented in every computing language (Liu et al., 2015). 

It is worth stressing that in general the number of cells of the primary and secondary 

grid is not the same. The evolution of particle concentration in the i-esim cell is 

governed by an Ordinary Differential Equation (ODE) defined as follows: 

      

  
        

 

(4.3) 

The two terms    and    are responsible respectively for the creation and destruction of 

objects belonging to the i-esim cell. If we denote with    the triangles of the secondary 

grid that have one vertex that coincides with the pivot i, we have: 

   
 

 
 ∑ ∑ ∑        (     )    

              

  

   

  

   

  (     )      

 

(4.4) 

 

     ∑         

  

   

   

 

(4.5) 

 

Where the aggregation kernel  (     )          
  is expressed as a function of the 

sticking efficiency     and the collision rate    
  for a couple of objects   and   involved in 

a collision process   (i.e. Brownian motion, turbulence, sedimentation, etc.). The birth 

term    states that between all the possible combinations of collisions, the ones that 

produce an effect in the i-esim cell are those that satisfy the condition               . 

In other words, only aggregates generated in triangles of the secondary grid that involve 

the i-esim cell are considered in the birth term   . The weight terms        (     )     

take in charge the redistribution of non-pivotal objects within the vertexes of the 

triangular cell. It is important to notice that the main appealing part of the GFPT respect 

to other theories is that the relationship                is general, and not restricted 

to additive properties as in the one-dimensional Smoluchowski equation. The relation 
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            is governed by Eq. (4.2). The weights    are defined in order to conserve a 

priori   properties: mass, porosity and number of the newborn created particle 

(         ). If the vertexes of a given triangle involved in the redistribution process 

are denoted with                        and property of the newborn particle as  ̅ 

(i.e.  ̅               ), the weight is given as: 

∑      

 

   

(           )     (      )   ̅                 
 

(4.6) 

As an example of application of Eq. 4.6, let us assume that the triangle of the secondary 

grid involved in the process of redistribution is formed from the fixed pivots: 

          . The aggregate to be redistributed has internal properties      and     . 

Equation 4.6 becomes: 

{

          
                      

                      

 
 

(4.7) 

The evaluation of weights    for the i-esim fixed pivot is performed only once in the 

code. It requires a searching algorithm in order to identify the triangular element that 

contains the point of coordinates     . In this work we use the Matlab built-in function 

pointLocation, alternative algorithms for the implementation in different computing 

languages can be found in Krause and Rank (1996).  

 

4.3 Porosities of volcanic ash aggregates 

The porosity of an aggregate is defined as the ratio of voids of volume    with respect to 

the total volume of the object    (Manger, 1963) 

  
  

  
   

  

  
 

 

(4.8) 

Where    indicates the volume of the skeleton structure.  
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The related density of an object with total mass      and    components of densities 

               can be written as follows: 

   
    

∑
  

   

  
   

        
 

(4.9) 

In this work we assume for simplicity that the initial population of particles is 

characterised with a unique density    and zero porosity. This is an approximation; for 

example, Bagheri et al. (2016) has shown that within the same aggregate observed at 

Mount Sakurajima, Japan, during the fallout of August 2013, the densities of the 

components may vary from a maximum of          ⁄  for       size particles to 

         ⁄  for millimetric ash. Under this simplification, Eq. (4.9) can be expressed as: 

              

(4.10) 

As outlined earlier, the most delicate part in defining an arbitrary internal parameter is 

the mathematical relationship that relates the final product to the original ones. In the 

following section we discuss existing and alternative solutions to this problem.  

 

4.3.1 Existing theories for fractal geometries 

A great majority of non-volcanological studies that report the evolution of porosity as 

aggregation occurs are based on the assumption of fractal geometry (Isella et al., 2008; 

Matthews et al., 2007; Matthews and Hyde, 2004; Min et al., 2006; Ormel et al., 2007; 

Richardson, 1995; Suyama et al., 2008). The fractal hypothesis has been adopted in 

many different contexts to describe the packing of a bunch of monomers, i.e. particles 

with unique size   . In volcanology this assumption has been used to describe the 

formation of ash aggregates by Costa et al. (2010) and recently applied to the study of 

the 26th of April eruption of La Soufrie re St.  incent, West Indies (Poret et al., 2017). The 

fundamental scaling law that links the number of monomers    and the characteristic 

length of an aggregate    is (Kostoglou and Konstandopoulos, 2001): 

 
     (

  

  
)
  

 
 

(4.11) 
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Where      is the constant pre-factor and    is the fractal exponent. A possible 

explanation of Eq. (4.11) is given as follows: if we consider two interacting water 

droplets that merge together the final volume of the resulting sphere is              . 

Posing     , Eq. (4.11) gives a value of     . This is somehow expected, since water 

droplets fill completely the available space (coagulation). If however      two objects 

will occupy a larger volume than in a coagulation problem. In other words, the 

parameter    quantifies the degree of difference between a Euclidean geometry (   

 ) and a fractal geometry     . In practical terms the main advantage of a fractal law 

is the possibility to relate the global geometry of an aggregate to its basic components. 

For example this allows the treatment of objects with different densities. The density of 

a fractal aggregate is expressed as (Isella et al., 2008):  

 
     (

  

  
)
    

 
 

(4.12) 

If an initial population of monomers evolve under the assumption of fractal packing it is 

thus possible to have two different densities     and     for objects with sizes     and 

    respectively.  

One of the most exhaustive models to describe the evolution of grains porosity as 

aggregation occurs is described by Ormel et al. (2007). The authors condense previous 

studies on aggregation in protoplanetary disks to provide a simplified formula valid only 

for fractal geometries. In their theoretical framework, porosities are expressed in terms 

of the enlargement factors   
 

   
, defined as the amount of extra volume of an 

aggregate if compared to its compact state.  The final internal properties are: 

{

           

     
      

    

 

 

(4.13) 

Where the conservation of mass is explicitly expressed and the value of the final 

enlargement factor given by: 

     
         

     
  (  

    

    
)

     

                    
 

(4.14) 

We will refer to this set of equations for final porosities as the Ormel scheme. 
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4.3.2 New investigations of particle aggregation using virtual 

reality 

Despite the fact that Eq. (4.14) represents a closed-form expression for the evolution of 

aggregates porosities, it is strictly limited to fractal geometries. However, field 

observations during the 2010 Eyjafjallajökull eruption, Iceland, and during the July-

August 2013 eruption at Mount Sakurajima, Japan, reveal how the assumption of fractal 

geometries for ash aggregates structure is not generally verified (Bagheri et al., 2016; 

Bonadonna et al., 2011; Taddeucci et al., 2011). In particular, the presence of a large core 

in the inner structure of particle clusters invalidates Eq. (4.11), where a population of 

monomers is assumed. As an example, we report two histograms relative to the volume 

percentage and the number of particles present in the aggregate 27_SK_21 observed the 

3rd of August 2013 at Mount Sakurajima, Japan (Fig. 4.2). Histograms Fig.4.2b and 

Fig.4.2c suggest that the population within volcanic aggregates may significantly vary 

and that any simplification may result in a biased and arbitrary description of their 

structure. These results are supported by other real-time field observations, e.g. 

(Bonadonna et al., 2011; Bonadonna et al., 2002; Sorem, 1982; Taddeucci et al., 2011).  

 

Figure 4.2 Example of observed cored aggregates at Mount Sakurajima, Japan, during the field campaign of 
July-August 2013. The aggregate 27_SK_21 has been related to the cores (a) and (b) in figure (a). SEM analyses 
of the population within the aggregate are reported in figure b) and c). Due to the large difference in size 
between coating and cores, the volume percentage of the entire aggregate is dominated by the cores (a) and 
(b), despite the large number of particles involved in the coating (fig. c). 
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Aggregate porosities have been experimentally studied by Lane et al. (1993). In their 

work the authors assume spheres of equal size and they define as the external volume of 

the structure a sphere with a diameter equal to the largest aggregate dimension. An 

alternative approach to the problem of the interaction of objects of different porosities 

relies on the use of virtual reality (Richardson, 1995). By this term we define a 

methodology based on the creation of virtual objects and the numerical study of their 

disposition in an imaginary volume. Porosity is a key quantity that, together with mass, 

contributes to determine the drag coefficient of an aggregate and in the end its residence 

time in the atmosphere. It is thus clear how in this context the drag coefficient is the 

most important aspect. Complex objects such as volcanic aggregates depend on many 

variables and some simplifications are needed. However, the theorem of Hill and Power 

(1956) states that the drag coefficient of an irregular particle in a Stokes regime is 

mathematically bounded by the drag exerted on the inscribed and circumscribed bodies. 

Bagheri and Bonadonna (2016) applied this theorem to demonstrate that the drag of an 

irregular object is always bounded between the drag of two ellipsoids, one internal and 

the other external to the body of interest. This idea suggests that the maximum drag of 

an aggregate is close to that of an ellipsoid that fits the external surface. The more 

spherical the aggregate shape, the closer will be this assumption. The total volume of our 

virtual aggregates will be thus defined as the ellipsoid that fits the most external 

components of the structure. This criterion is in agreement with that adopted by Lane et 

al. (1993). The algorithm for the creation of virtual objects is discussed in detail in 

Appendix (D.1). Some examples of different structures that can be realized are reported 

in Fig (4.3). 

 

Figure 4.3 Example of different geometries that can be reproduced using the algorithm detailed in appendix 
D.1. Cored clusters (a), particles clusters (b), fractal objects (c) 
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Two examples of ellipsoids applied to the external components of virtual aggregates are 

reported in Fig. (4.4).  

 

Figure 4.4 Example of fitted external volumes to two different types of aggregates. 

A typical evolution of the internal porosity for an aggregate made of       particles 

with final fractal dimension 2.73 is reported in Fig. (4.5) as a function of ratio of 

         (similar to the formation of ash clusters, PC1, and poorly structured aggregates, 

AP1 of Brown et al., (2012)). The value of    is given by the diameter of a sphere with 

equivalent volume of the ellipsoid. The red line indicates the maximum theoretical 

porosity for cored structures (        
  

     
   ). 

 

Figure 4.5 Evolution of aggregate porosity as the object changes its structure from (1) to (4). All particles are 
of       size. The red curve indicates the theoretical maximum porosity for a cored structure. The blue line 
indicates the measured aggregate porosity expressed as a function of the ratio between the aggregate 
diameter and inner core diameter. 
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It is worth noticing that in the case of unique sizes of the components, the numerical 

estimation of the porosity      coincides within 2% with the theoretical porosities 

calculated using Eq. 5 in Lane et al. (1993). Another example of how porosity evolves as 

the aggregate is formed is reported in Fig. (4.6) (similar to the generation of coated 

particles, PC2, and cored particle clusters, PC3 of Brown et al., (2012) and Bagheri et al. 

(2016)). In this case a cored particle cluster is considered, with              and 

diameter of the coating particles               . Here we recall that PC2 and PC3 

mostly differ because of the thicker coating on PC3 as observed with high speed camera 

during aggregate fallout (Bagheri et al. (2016); Taddeucci et al. (2011)). Bagheri et al. 

(2016) suggest that most PC1 and PC2 observed in previous studies (Brown et al., 2012) 

are, in fact, the remains of PC3 that broke on impact with the sticky paper used for real-

time sampling. 

 

Figure 4.6 Example of  final porosity for a cored object with internal diameter of        and coating particles 
of      .  The red curve indicates the maximum theoretical porosity. The blue line indicates the measured 
aggregate porosity expressed as a function of the ratio between aggregate diameter and inner core diameter. 

 

In the research of a mathematical expression for the final porosity     , we notice that a 

primary role in Eq. (4.14) is played by the mass ratio 
  

  
 of the colliding structures, 

where      . In other words according to Ormel et al. (2007), the final porosity of the 

aggregates is conditioned by the mass ratios of the colliding objects more than from the 

absolute values of masses and porosities. This is somehow expected since more mass 

implies a larger object, under the assumption of equal densities for the initial population 

of particles. It is thus reasonable that the porosity of a larger object is less modified by 

interaction with a much smaller aggregate. According to this view, we indicate with 
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 the mass ratio and with    

  

  
 the porosity ratio of the colliding objects, 

where without loss of generality      . The final form of the unknown mathematical 

function                       is thus expressed as               . Numerical 

simulations of the interaction of 30,000 different pairs of aggregates are performed in 

order to determine              . The range of sizes considered in the simulations 

is reported in detail in appendix D.1. Results are displayed in Fig. (4.7), where      has 

been expressed in terms of a relative increase/decrease with respect to the porosity    

of the more massive object (i.e.      
       

  
 . Despite the use of virtual aggregates can 

be applied to all the typologies of objects, in this chapter we limit our attention to the 

interaction of aggregates, i.e. we do not apply this methodology to single particles with 

zero porosity.    

 

Figure 4.7 Final porosities for 30.000 aggregates as a result of the collision of two objects respectively with 
masses    and    and porosities    and   . We assume that the most massive particle is always labelled 
with subscript “1”. The final aggregate porosity,     , is here expressed as a fraction of the initial porosity of 

the most massive particle (  ). On the x and y axes are reported the respectively the porosity ratio    
  

  
 

and mass ratio    
  

  
.  

Important considerations can be made about Fig. (4.7). First, regions with porosity ratio 

     are characterized by a final porosity      that is generally similar to    (i.e. the 

relative difference is     ), regardless of the mass ratio   . This plateau can be 

explained as follows: if the object with larger mass is also the most porous, aggregation 
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with an additional structure, smaller and more compact, does not modify dramatically 

the packing of the resulting sum. Second, the trend is completely different for     , 

where the relative difference between      and    can reach values up to       if the 

object with less mass is much more porous than   . Third, all the curves tend to collapse 

to zero or negative values of      if     , as also pointed out by Ormel et al. (2007). 

This means that aggregation of large objects with significantly smaller ones does not 

significantly alter the original porosity   . It interesting to notice that the negative 

values for      observed in this limit indicate a partial filling of the internal structure of 

  , with a consequent decrease in the porosity of the object with larger mass. Finally, for 

a fixed value of   , the maximum of      occurs always at     , i.e. when the two 

colliding objects are equal. The set of data displayed in Fig. (4.7) allows deriving an 

explicit mathematical formulation for the final porosity, expressed in terms of     . Here 

we adopt a simplified procedure that will be improved in future works. Points are fitted 

with a third order polynomial in the variable    and fifth order in the variable    using 

a least square procedure. The choice of two different exponents for the polynomial fit is 

imposed by the asymmetry of data, clearly visible in Fig. (4.7). The final form of the 

expression for  (     ) states as follows:  

 (     )                                
                    

 

      
        

              
       

       
    

      
    

          
        

       
    

       
    

 

         
        

  

 

 

 

 

 

(4.15) 

We will refer to this set polynomial formulation as the Rossi scheme for final porosities. 

Fit parameters for  (     ) are reported in Tab. (4.1) and the resulting surface is 

displayed in Fig (4.8). 

Parameters for  (     ) 

                                                                 

                                                                

                                                               

 

Table 4.1 Fit parameters for the polynomial expression of          (Eq. 4.15). 
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Figure 4.8 Fitted surface of the 30.000 simulations points obtained in different conditions using the algorithm 
of appendix D.1.The analytical expression of          allows relating each combination of colliding 

aggregates with a resulting value of the final porosity. 

 

Eq. (4.15) can be seen as an alternative to Eq. (4.13) for aggregates of non-fractal 

geometries. The extremes of sizes considered are reported in detail in Appendix D.1. The 

explicit relationship for final porosities completes the set of equations needed in the 

GFPT. The next step is the combination of the previous theoretical framework inside the 

one dimensional steady state plume model in order to quantify the evolution of the 

population of aggregates within the eruptive column.  

 

4.4 Plume modelling 

Even if the GFPT can been applied to more sophisticated plume models (Kuenzli et al., in 

prep.), a good compromise between computational efficiency and accuracy in the 
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description of the phenomenon is achieved by coupling aggregation equations (Eq. 4.4, 

Eq. 4.5) with a one-dimensional steady state plume model. In the steady state 

approximation the conservation of fundamental quantities such as mass, momentum 

and total energy is derived for a control volume (Davidson, 1986a; Morton et al., 1956). 

The assumption that time variations are negligible when the eruption is at regime and 

an explicit formulation for the air entrainment, allows expressing a closed form system 

of ODEs in the independent variable  , height of the plume, or  , curvilinear coordinate 

of the central axis (if wind is considered). A large amount of models based on these 

assumptions are present in literature. An interesting overview can be found in Costa et 

al. (2016).  

As outlined in the introduction, a key aspect in sticking processes is played by water. It is 

thus essential that plume equations adequately consider the entrainment of water 

vapour, its condensation threshold and possible changes in phase from liquid water to 

ice. In this work we combined plume models of Woods (1993) and Woodhouse et al. 

(2013) with the description of a liquid water to ice transition present in Folch et al. 

(2016). This class of models assumes that the plume remains in a saturated state if the 

vapour pressure inside the column equals its saturation value (over liquid water or ice). 

According to the assumption that in a volcanic eruption a large amount of condensation 

nuclei are available, no supersaturation is permitted. From Folch et al. (2016) we also 

derive the methodology for coupling aggregation and plume equations. The authors 

express the mass flux conservation for the solid phases as a sum of different 

contributions for each class of particles considered.  

However differently from their work where aggregates are described with a unique 

class, we will extend this procedure to each of the total number of cells    in the 

bidimensional plane mass-porosity. It is worth noticing that the birth    and death    

terms of Eq. (4.4, 4.5) appear explicitly in the mass flux equations for solid particles. An 

assumption of the air entrainment is required in order to close the system of equations. 

The entrained velocity is assumed to be function of a coefficient       along the axis of 

the plume and a coefficient       along the radial direction. (Bursik, 2001; Hoult and 

Weil, 1972) 

            |              |       |          | (4.16) 
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Where     is the top-hat profile of the upward plume velocity,       is the atmospheric 

wind at the center of the plume axis, and   is the bending angle of  the column. 

According to Devenish et al. (2010),           and          . The governing 

equations of the one dimensional steady state plume model are (Woodhouse et al., 2013; 

Woods, 1993): 
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Where                     is the total mass flux of the mixture,    

     
          the mass flux of dry air,        

          the mass flux of water vapor, 
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          the mass flux of solid particles,        

          the mass flux of 

liquid water,        
          the mass flux of ice water,        

          the mass 

flux of liquid water and        
          the mass flux of iced water. The mass 

fractions    associated to the    cells of the plane mass-porosity verify ∑     
  
    at 

each step of the integration. The number concentration    that appears in Eq. (4.4) is 

given as    
        

  
. It is worth mentioning that we assumed from the beginning a 

discretized TGSD. This means that the population under analysis is considered discrete 

and composed only by particles belonging to pivotal sizes, i.e. sizes at the central width 

of each bin. All the definitions for the quantities used in the plume-aggregation scheme 

can be found in appendix D.7. The coupling of plume model, topography and 

meteorological data is totally analogous to what presented in chapter 5. We refer to that 

chapter for further details.  

The bulk density of the mixture    is given by (Folch et al., 2016): 
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(4.26) 

The density of the gas phase (i.e. the dry air and water vapour) is evaluated from the 

equation of state of a perfect gas: 

      
    

     
 

(4.27) 

Where    is a function of the gas constants of the two distinct phases,    and     and 

their mass fractions    and   :  

    
     

       
 

     

       
 

(4.28) 

 

The gaseous fraction of the whole mixture inside the column is composed of dry air and 

water vapor. If we define the quantity   as: 

  
  

     
   (4.29) 

The partial pressure of vapor inside the plume is (Woodhouse et al., 2013):  
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(4.30) 

Where   
  

  
      . Woods (1993) assumes that the large amount of fine ash in a 

volcanic column acts as Cloud Condensation Nuclei (CCN) in the atmosphere. This allows 

for a rapid conversion of the supersaturated fraction of water vapour in liquid water. It 

is worth noticing that these assumptions do not allow capturing the contemporary 

coexistence of liquid water and ice inside the eruptive column (i.e. volcanic hail).  As 

soon as the vapour pressure    exceeds its saturation pressure    , the vapour in excess 

is converted in the right amount of liquid water necessary to recover the equilibrium 

      . Folch et al. (2016) extended the same procedure for saturation respect to ice 

        . The values of the saturation pressure respect to liquid water and ice as a 

function of the temperature can be found in Murphy and Koop (2005). Two values of 

relative humidity are thus possible in a volcanic column: relative humidity respect to 

liquid water,     
  

   
 , and relative humidity respect to ice,     

  

   
 . The conservation 

equation Eq. (4.19) is defined for the mass fraction of water    in the volcanic plume. 

However, the distinct phases   (vapour),   (liquid water) and    (ice) are required in 

order to constrain the physical processes that determine the sticking efficiency.  

Fixing the values of             and         , we define four different scenarios 

within the eruptive column. 

 Undersaturation with respect to liquid water:       and         . If 

verified at a given position   in the column, the mass fraction of water    is 

totally attributed to water vapour: 

 

Subdivision of     {

     

    
    

 
 

(4.31) 

 
 Saturation respect to liquid water:       and         . 

 

Subdivision of    {
       

           

               

        

    

 

 

(4.32) 
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 Undersaturation respect to ice:       and      : 

 

Subdivision of   : {

     

    
    

 
 

(4.33) 

 
 

 Saturation respect to ice:       and      : 

 

 Subdivision of     {

       
           

               

    
       

 

 

 

(4.34) 

The set of equations Eq. 4.20 states that the GFPT acts as a birth and a sink term in the 

mass flux rate for each of the i cell of the plane mass-porosity. Eq. 4.4 and Eq. 4.5, 

combined with Eq. 4.13 or Eq. 4.15, allows simulating the evolution of ash aggregates 

once the collision rates and the sticking efficiency of the collisional processes are 

provided. The next sections will be dedicated to a rigorous formalization of these two 

quantities. In Fig. (4.9) it is possible to observe the final result coupling of aggregation 

and plume equations for the eruption of 18th of May 1980 at Mount Saint Helens, US. We 

used a constant kernel               and a combination of the Ormel scheme and 

Rossi scheme for final porosities (Eq. 4.13, 4.14). In detail, single particles are described 

with the Ormel scheme       , aggregates with Rossi scheme       . The initial 

Total Grain Size Distribution (TGSD) is equal to that of the Mount Saint Helens 1980, US 

(Mastin et al., 2016). The TGSD with initial zero porosity evolves towards less dense 

aggregates. Fine ash at 4500 m of height a.s.l. appears in the form of aggregates with a 

median porosity of 0.4              . 
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Figure 4.9 Example of application of the GFPT into a steady state plume model for aggregation with a constant 
aggregation kernel              . A combination of the Ormel and Rossi scheme has been used. The 
different plots, from (a) to (d), show the expected population at different heights above the vent. The initial 
TGSD is displayed in (a), with a null porosity. As the eruption starts, most of the fine ash occupies a position in 
the plane mass-porosity. Large particles are less affected to this process due to the reduced number of 
particles respect to fine ash. 
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4.5 Collision kernels 

Collision kernels describe the average rate at which pairs of particles collide in any given 

aggregation process. A poor constraint of collision kernels has dramatic consequences 

on the accuracy and reliability of the final results. The aim of this chapter is to clarify 

what are the main processes that must be considered in order to well constrain collision 

kernels for a volcanic plume. In this chapter we denote every collision mechanism 

between two particles   and   with the Greek letter    
 , with upper capital letter   

dependent on the process. As a general rule,    
  is always proportional to the product of 

the cross section   of the two colliding objects times the mean of the component of their 

relative velocity projected along the direction that connects the centres of the two 

particles (in this paragraph we refer to this term as the radial velocity, 〈|  |〉, as 

explained in section 4.5.1.1): 

   
     〈|  |〉       (4.35) 

Where    
  units are        . In many cases this product is weighted taking into account 

the collision efficiency of the process   , which describes the capability of small particles 

to avoid collisions following the streamlines of the fluid. In this case the effective cross 

section of the collision is reduced by the collision efficiency (    ). In this chapter 

     if not differently specified. Differently from other papers, we always report    
  as 

an explicit function of cross section and relative velocity associated with a given process. 

This choice has two main advantages: first, it shows clearly the different contributions of 

velocity and cross section to the kernel; second, it provides the expression of mean 

relative radial velocities associated with different collisional processes.  The second 

aspect is fundamental quantifying the sticking efficiency of aggregation, as we will see 

later. As a matter of fact, aggregation is a result of the dissipation of the kinetic energy of 

the collision, which is ultimately related to the relative velocity of colliding objects. Thus, 

expressions for relative velocities derived for the collision kernels will be also used in 

the section where we discuss the concept of sticking efficiency. Volcanic eruptions are 

predominantly turbulent environments. However, turbulence itself does not imply that 

particles will have significant collisions. In addition, gravity can overcome the turbulent 

motion and lead to the sedimentation of particles. The main aspects that will be 

addressed in this section can be here summarised: 
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 Main processes occurring in a volcanic plume that control particle aggregation 

are: turbulence and gravitational differential settling. Brownian motion, 

diffusiophoresis, thermophoresis and the role of the electric charges on the 

collisions are neglected due to their relatively small relevance for the sizes 

involved (Jacobson, 2005). 

 

 The effect of turbulence is dominated by the turbulent differential coupling    
   , 

a process that affects particles with a size between the smallest (Kolmogorov 

length    ) and the largest scales of turbulence (integral length  ). The so-called 

Saffman-Turner limit seems to play a secondary role in particles aggregation. 

 

     
    is a function of a particle’s capacity to follow a turbulent flow (Stokes 

number). The final effect of turbulent eddies can be divided between class I 

vortexes, larger than particle sizes, and class II eddies, smaller. 

 

 The gravitational collection mechanism    
    matters when the drag exerted by 

the upward plume velocity is no longer sufficient to balance the weight of an 

object. 

 

 The relative importance of    
    and    

    must be evaluated at each height 

within the column.  

 

4.5.1 Effects of turbulence on the collision kernel 

In a volcanic plume, large spatial scales (i.e. the radius of the plume) and velocities result 

in an enormous Reynolds number (  ), that not infrequently reaches the remarkable 

value of         (Kieffer and Sturtevant, 1984). The interest here is to analyse how 

particles are influenced by such a high degree of turbulence. Particles with different 

sizes will react differently to the surrounding eddies. Some eddies will produce 

negligible effects; others will transfer remarkable amount of energy to the objects. The 

final result is a net relative velocity between particles that produces a collision rate. This 

process is here defined as the turbulent differential coupling kernel    
   . However two 

mathematical limits of the problem are historically of great importance: the Saffman-
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Turner limit, valid for particles completely coupled with the fluid; the Abrahamson limit, 

valid for large uncorrelated particles. The Saffman-Turner limit presents an additional 

collision mechanism, the shear effect, which is not included in the turbulent differential 

coupling. Both limits will be presented in some detail later. The main difficulty in 

quantifying    
   comes from the estimation of relative velocities between two objects. In 

order to determine this quantity we will use the semi-analytical model of Ormel and 

Cuzzi (2007). An extensive discussion of their methodology is presented in Appendix 

(D.2). A brief summary of the main fluid dynamics quantities required to describe 

turbulence is instead reported in Appendix (D.3). It is somehow significant to notice that 

despite its relevance, the turbulent differential coupling has never been applied to a 

volcanic plume before. Previous approaches considered uniquely the Saffman-Turner 

limit. However it will be shown as in a volcanic eruption the conditions of applicability 

for this limit are rarely satisfied. 

 

4.5.1.1 The turbulent differential coupling 

In the present work we use the approach of Ormel and Cuzzi (2007), which is based on 

the previous works of Volk et al. (1980) and Markiewicz et al. (1991). This class of 

models, often named Volk-type models, attribute the correlation of two particles 

uniquely to their relative sizes with respect to the turbulent eddies. In the Volk-type 

models, vortexes are grouped in two distinct families according to their sizes: class I 

eddies are usually larger than the particle and they drive their motion; class II eddies are 

smaller and contribute as random fluctuation to the trajectory of the object. Before 

defining the collision kernel due to turbulent motion, we define for clarity the different 

definitions of relative velocities used in the text :  

 〈  〉: mean value of the total relative velocity between two particles, i.e. 

considering the differences along all the axes of the system of reference. 

 〈  〉: mean value of the relative velocity between two particles along the 

direction that connects the centres of the two objects. We refer to this quantity as 

the radial relative velocity 

 〈|  |〉: mean value of the modulus of the radial relative velocity 

 〈  
 〉

 

 : root mean square value of the total relative velocity.  
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 〈  
 〉   : root mean square of the radial relative velocity. 

Volk-type models usually provide 〈  
 〉

 

 . This quantity is then converted in 〈  
 〉    

assuming that the turbulence is isotropic along the three Cartesian axes: 

〈  
 〉    

 

√ 
〈  

 〉    
(4.36) 

However, as outlined in (Pan and Padoan, 2014), collision kernels should use the mean 

value of the absolute relative radial value 〈|  |〉, more than its root mean square 〈  
 〉   . 

This aspect is fully discussed in section (4.6.1), where the concept of relative velocity 

and its statistical distribution are crucial for the sticking efficiency of a collision. Here we 

limit to report the final averages of the absolute values of the radial velocities. These 

quantities will form the nucleus of the collision kernels for turbulent processes in this 

work. One of the main advantages of the methodology proposed by Ormel and Cuzzi 

(2007) is that the analytical solution of the problem results in a great computational 

efficiency. The complete theory and its limitations are explained in Appendix (D.3). Here 

we provide their final results, dependent on five main quantities: particle Stokes 

numbers       and      , threshold Stokes number     
 , Reynolds number of the fluid 

   and its large-scale turbulent velocity fluctuation    (for the definition of the above 

quantities refer to appendix D.2). The final form of the turbulent differential coupling 

   
    can be expressed as (Marshall and Li, 2014; Pan and Padoan, 2014): 

 

   
                    

 〈|  |〉             ⁄             
  〈  

 〉    (4.37) 

 

Where        is a parameter that takes into account the clustering effect (Pumir and 

Wilkinson, 2016). Clustering effect is a relatively new concept in collision kernels. It is a 

particular aspect of the more general concept of particles segregation in a turbulent fluid 

(Calzavarini et al., 2008; Gustavsson et al., 2012; Meneguz and Reeks, 2011). It takes into 

account the enhanced local concentration caused by the radial drift of particles towards 

the edge of the vortexes.  It can be demonstrated that in a rotating system the centrifugal 

force overcomes the inward action of the pressure gradient if particles density is higher 
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than the flow (Marshall and Li, 2014). It results in a drift motion towards the edge of the 

eddy and a local increase in concentration that can enhance aggregation. The clustering 

effect is a function of the particle Stokes number      and its maximum usually occurs 

for particles of the same size and in general at        (Pan and Padoan, 2014). Large 

Eddy Simulations evidence the actual presence of the clustering effects in a volcanic 

plume. Cerminara et al. (2016) show that for a low Mass Eruption Rates (MER), i.e. 

        
  

 
 this effect can lead to a maximum factor          in proximity of the 

central axis of the plume for particles with       . In the present work we will neglect 

this aspect, i.e. we will assume a homogeneous distribution of particles (        ). This 

simplification will tend to underestimate the collision rate for larger sizes (      ), 

but it should not be determinant for smaller sizes. However future work is needed to 

improve this aspect. Ormel and Cuzzi (2007) calculate the r.m.s. of the relative velocity 

among particles as: 

〈  
 〉     √    

       
  

(4.38) 

If we denote the two particles with indexes 1 and 2, the contribute from class I eddies is: 

    
    

  
           

           
 (

     
 

    
       

  
     

 

       
      ) 

 

(4.39) 

Where             and the symbol       means the exchange of indexes from 1 to 2. 

The contribution from class II eddies is: 

     
    

  ((    
     

 
 )  

     
 

          
  

     
 

         
 
 

      ) 

 

(4.40) 

The r.m.s. relative velocity is thus expressed as a function of basic properties of the flow 

and the two particles. The last missing quantity,     
 , is defined as     

     
     where 

   
         

    
   and   

  and   
  describe the threshold between class I and class II 

eddies for each object. The determination of   
  and   

   requires the use of numerical 

methods to solve the following equation for each particle: 
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(4.41) 

Once that   
  and   

   are known,     
  can be calculated and consequently     

  and 

         
 . The conversion of the r.m.s. relative velocity into its average value provides 

the mean relative velocity between two particles in a turbulent flow: 

〈|  |〉  (
 

  
)

 
 
〈  

 〉    (
 

  
)

 
 
     

       
      

 

(4.42) 

 

4.5.1.2 The Saffman-Turner limit 

Historically it represents one of the first attempts of extension of the Smoluchowski 

theory to the cloud physics. It has been applied to the coalescence of cloud droplets, 

under the hypothesis of small sizes if compared with the Kolmogorov scale of 

turbulence. Therefore its application to the volcanic context is valid only for fine ash or 

low turbulence. This range describes particles with         and       , i.e. objects 

smaller than the Kolmogorov scale. Saffman and Turner (1956) introduced two different 

collision mechanisms at this scale: the collision kernel    
  , describing the shear effect 

for particles moving with the turbulent fluid; the collision kernel    
  , relating the 

interaction of particles due to their inertia. The shear mechanism produces a collision 

frequency parameterized as follows:  

   
             

  〈|  |〉  (
    

    
)
   

(     )
 

 
 

(4.43) 

The relative velocity associated with the shear process is: 

〈|  |〉          (
  

     
)
   

 
 

(4.44) 

The inertial mechanism    
   is instead a function of the relaxation times     of the two 

objects. If the radii of the two particles are denoted with    and   , the inertial kernel is: 
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 〈|  |〉               
  (

  

 
 
  

 
)

 
 

         
  

 

(4.45) 

Where the relative velocity associated with this process is: 

〈|  |〉       (
 

  
 
  

 
)

 
 

         
  

 

(4.46) 

 

4.5.1.3  The Abrahamson limit 

Despite this limit will be treated as a particular case of the turbulent differential 

coupling, it is worth describing here the Abrahamson kernel as a separate process. In 

fact it has been independently derived from the gas kinetic theory by Abrahamson 

(1975) under the assumption of particles with high Stokes numbers (      ). Such 

mechanism of collision, here named    
  , is usually appropriate for particles larger than 

     under particular conditions of turbulence. From an historical point of view it 

represents the opposite extreme to the Saffman-Turner range. Practically, the 

expression of    
   can be derived from Eq. (4.42) imposing the condition of heavy 

particles (   
    ). In this circumstance all eddies are class II and    

   . In other 

words all eddies contribute as a background of random noise and there is no way to 

incorporate the particles. In this limit the turbulent differential coupling kernel    
    

tends to the Abrahamson kernel    
    

   
        ⁄             

       
      

      (4.47) 

Where         
     √        (see Appendix (D.3)). 

 

4.5.2 The differential gravitational settling kernel 

Gravitational settling is defined as the downward motion of particles due to the effect of 

gravity, which brings objects to fall at a constant velocity. In their fall, particles will tend 

to move at their own terminal velocity     that in general will be different for objects of 

different size and density. The differential settling will thus produce a net relative 
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velocity among them and the necessary condition to collide. This mechanism is 

described by the differential settling kernel    
   : 

   
                    

 |       | (4.48) 

Where    denotes the collision efficiency. Wallace and Hobbs (2006) show that particles 

of       have       , a value that rapidly approaches the unity for sizes larger than 

     . However for particles within          values of        are not infrequent. 

In this work we assume      for particles larger than       and interpolated values 

for smaller sizes according to figure 6.20 of (Wallace and Hobbs, 2006).    is a number  

between zero and one introduced to take into account the effective importance of 

gravitational settling along the radial axis in a volcanic plume. In previous works it is 

implicitly      (Folch et al., 2016), but here we relax this condition. A detailed analysis 

of    is discussed in the following section. For gravitational settling collection, relative 

velocities between two objects are simply given by the differences in terminal velocity. It 

follows that particles of the same size and density cannot collide (   
     ).  The 

terminal velocity is given by: 

     √
 

 
 
       

    
 

 

(4.49) 

Where    is the particle density,    the diameter,    the fluid density and    the drag 

coefficient. In this work we use the drag coefficient proposed for non irregular particles 

by Bagheri and Bonadonna (2016). 

 

4.5.3 Dominant collision mechanisms in a volcanic plume 

All the different collision mechanisms and their range of applicability are summarised in 

Tab. (4.2). However it is not clear yet where these mechanisms occur within the eruptive 

column, how they change as the gas mixture rises and which is the prevailing one. The 

aim of this section is to clarify all these aspects and provide a final constraint on the 

correct use of the model. The following points will be discussed here: a) which turbulent 

mechanism should be applied for an arbitrary pair of particles along the plume. b) The 
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relative importance of gravity compared to the local turbulent accelerations. c) The 

relative importance of terminal velocities compared to the upward mean flow. 

a) The application of the turbulent differential coupling is very general, since it does 

not constrain the particle Stokes numbers involved in the collision. However, as 

the Saffman-Turner limit is reached, the shear effect    
   should also be taken 

into account. Moreover    
   tends to    

    (even if the contrary is not true). The 

Saffman-Turner limit requires that particles have        and        , 

where     is the Kolmogorov scale and       the turbulent Stokes number 

associated with the Kolmogorov scale. The way in which the smallest scale     

evolves is not trivial at all, as seen in Fig. 4.10 for two different eruptions. The 

change in Reynolds number modifies the smallest eddy seen by an object moving 

with the plume. As a consequence, it is expected that eruptions with higher MER 

will be characterized by smaller Kolmogorov scales. However, according to Fig. 

4.10, the condition         seems to pose the major limitation to the use of the 

Saffman-Turner kernels in a volcanic context. Without any claim of generality, 

Fig. 4.10 suggests that the Saffman-Turner limit is no longer valid for particles 

larger than       for small eruptions and larger than       for major 

eruptions. These values are in good agreement with the analysis of Textor and 

Ernst (2004). It follows that the two kernels    
   and    

   are actually active only 

for small particles sizes in a volcanic plume. In our model    
   and    

  are applied 

if and only if both colliding objects are within the Saffman-Turner limit (      

and     are calculated along the column axis). 
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Table 4.2 Main different processes involved in aggregation of volcanic ash in an eruptive column. 

Collision mechanism Symbol Range of applicability for 

particle i 

Gravitational differential settling    
            and      

(see later) 

Turbulent differential coupling    
    No limitations 

Saffman-Turner shear effect    
           and        

Saffman-Turner inertial motion    
           and        

Turbulent coupling  

for uncorrelated particles  

(Abrahamson limit) 

 

   
   

 

       

 

 

Figure 4.10 (Left): Kolmogorov scale in a volcanic plume plotted as a function of the plume height for two 

eruptive scenarios. Small scenario: vent radius 30 m, initial plume velocity 80 m/s. Large scenario: vent 

radius 200 m, initial plume velocity350 m/s. (Right): Stokes number associated with the smallest eddy size in 

the same eruptive conditions for three particles size: 1   , 10    and 100   . Both figures are obtained 

using the formulae of appendix D.2, relatively Eq. D.6 for Kolmogorov scale and Eq. D.10 for Stokes numbers.  
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b) The comparison of the gravitational acceleration with the turbulent acceleration is a 

first preliminary step to understand the relative importance of these collision 

mechanisms. Accelerations are independent of particle sizes and velocities and their 

ratio results in a physically meaningful dimensionless quantity (Shaw and Oncley, 

2001). Outside the Saffman-Turner limit for a given eddy characterised with a size   and 

overturn velocity    the acceleration    can be defined as follows: 

   
  

 

 
    

 
     

    
 

(4.50) 

Where we used the parameterization for    adopted in Ormel and Cuzzi (2007). Fig. 

(4.11) shows a sensitivity analysis for    with               ,                  

  ,           . It shows that gravitational acceleration is usually larger than turbulent 

accelerations, except when the largest scale of turbulence is less than        This 

implies that particles larger than few tens of microns will generally dominated by the 

gravitational acceleration in most of the plume. Large accelerations connected with 

smallest scales of turbulence confirm the analysis reported in Shaw and Oncley (2001) 

and Textor and Ernst (2004).  

 

Figure 4.11 Possible different values of the turbulent acceleration    expressed as a function of maximum 

eddy sizes. The acceleration in the logarithm is normalized to 1     . The range of values used in the 

sensitivity analysis is: L             ,                    ,           . 
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c) The relative importance of gravitational settling should also take into account the 

superposition of the mean upward flow    over the turbulent fluctuation   . There will 

be regions inside the plume where the drag exerted by the mean flow is sufficiently high 

to prevent particles to settle outside the plume, regardless the intensity of the turbulent 

fluctuation. But in practice it is hard to identify these regions with a simplified 1D steady 

state model. Cerminara et al. (2016) present interesting results about the preferential 

concentration of coarse ash (      ) and fine ash (     ) in plumes with high MER. In 

their work the authors show how the ratio     of coarse to fine ash along most of the 

column is       within 20 km, it descends to         between 20 km and 35 km, 

and it drops to         at 40 km, the top of the plume. This suggests that for most of 

the column, coarse and fine ash is still coupled with flow and thus no remarkable 

sedimentation is present. In this work we try to combine the observations contained in 

Cerminara et al. (2016) with concepts presented by Carey and Sparks (1986). The aim of 

the following discussion is to introduce a simple parameter that allows controlling the 

role of sedimentation on aggregation in different scenarios. Our analysis starts from the 

model of the clast support envelope adopted by Carey and Sparks (1986). Here it is 

interpreted as a measure of the relative importance of upward drag with respect to 

gravitational force. Clast support envelopes are defined as those regions inside volcanic 

columns where the Gaussian profile of the upward velocity along the radial direction of 

the plume equals the terminal velocity     of the objects. In this work we assume that at 

a given height the closer the envelope to the plume radius, the lower the role of 

sedimentation. The underlying idea is that sedimentation dominates if at a given height 

the envelope radius      is smaller than plume radius    . As a matter of fact, 

         implies that the vertical drag exerted by the mean upward flow is no longer 

sufficient to prevent particles of a given size to sediment. We adopt this concept to 

quantify the relative importance of gravitation respect to turbulence. If we define 

   
   

  
 ,    

    

   
 and re-arrange the equations of Carey and Sparks (1986), the 

following condition holds: 

           
 
 (4.51) 
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The critical value for    at which sedimentation starts to play a role is fixed a priori 

according to the scenario under analysis. The above relation can be used as a criterion to 

consider the effectiveness of the gravitational settling for a particle. For example, if we 

consider the start of sedimentation at        (i.e. the envelope radius is 9/10 the 

plume radius),       , or alternatively,            . With this value of   , the 

gravitational differential settling    
    is supposed to be present only if            . 

The three different values of    used as initial threshold for sedimentation are 

summarized in Tab. 4.3. The case        is derived from figure 14 of Cerminara et al. 

(2016) for        . Once that the condition             is verified, the gravitational 

differential settling    
    is supposed to be present for all the collisions that involve the 

 -esim particle. However, a weight    is applied to    
    in order to take into account the 

actual region of the plume where the sedimentation occurs. According to the Gaussian 

profile of plume velocity, the weight can be expressed as: 

     
∫  

 
  

       

 
  

∫  
 

  

    

 
  

        √      

(4.52) 

Once that sedimentation starts, Eq. (4.51) can be inverted to determine    knowing   . 

In the limit     , the envelope has a no extension and this means that all along the 

radial coordinate the sedimentation process has its maximum       . Vice versa, for 

     no sedimentation is present       . It is worth noticing that if only the  -esim 

particle is sedimenting, the relative velocity between collector and collected ash is 

assumed to be equal to the terminal velocity of the   object. If both particles are 

sedimenting, the relative velocity is equal to the differences of terminal velocities. 

 

 

 

 

 



 100 

Ratio of envelope 

radius respect to plume 

radius 

     

Ratio of envelope 

radius respect to 

plume radius 

     

Ratio of envelope 

radius respect to 

plume radius 

    

   

 

0 2 >2     1 

0.5 1.2 >         0.55 

1      >          0 

 

Table 4.3 Different parameterizations of how gravitational settling is taken into account in the model. For 
    , gravitational collection has its maximum        and it is applied when         . No effect due to 
gravitational settling is considered when            . 

 

4.6 Sticking efficiency 

In a previous paragraph the collision rate of volcanic particles has been presented. 

However not all the collisions will result in a process of sticking. Some of the impacts 

will produce a rebound, others an aggregate. Many aspects contribute to the 

determination of the final outcome of a collision and some assumptions and 

simplifications are required. In this section we present an exhaustive theoretical 

approach to the problem of the determination of the sticking probability of two objects 

in different environmental conditions. An intuitive way to determine the outcome of a 

collision is to evaluate whether the two-particle system is able to dissipate the kinetic 

energy of the collision. The total kinetic energy    of a two particles system is given by 

   
 

 
           

 

⏟          
               

                     

 
 

 

    

     
  

 

⏟        
              
                

 
 

(4.53) 

Where     and    are the velocity of the center of mass and the relative velocity 

between the two particles respectively.         is the total mass of the system, 

   
    

     
 is the reduced mass. The first term represents the kinetic energy of the 

center of mass; the second term the kinetic energy relative to the center of mass. It is 

worth noticing that for an observer moving with the center of mass,     drops to zero 
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and the net kinetic energy actually available in the collision is just given by the second 

term of Eq. (4.53). We will refer to this term as the collision kinetic energy      . If we 

assume all mass is conserved and that the collision time is small enough to neglect the 

change in the momentum given by external forces, then the first term is conserved 

during collision. Therefore, the kinetic energy dissipated during collision is only a 

function of the initial and final collision kinetic energies: 

                  
 

 
  (         

          
 ) 

(4.54) 

If the internal forces acting during the collision are conservative, the collision is called 

elastic and no dissipation occurs: 

                                       (4.55) 

If collision forces are not conservative, the collision is called inelastic and some energy is 

dissipated. For inelastic collisions, the final relative velocity is: 

                                  √         
  

                  

  
 

 

(4.56) 

If collision forces are sufficient to dissipate all the available collision kinetic energy, the 

relative velocity of the two objects after the collision is zero. We define this condition as 

particle sticking. If we indicate with       the amount of energy that the system is able to 

dissipate, we can write the sticking criterion as follows: 

            (4.57) 

Eq. (4.57) states a unequivocal condition on the relative velocities of two colliding 

particles in order to stick: 

   √
      

  
       

 

(4.58) 

The quantity       indicates the critical velocity below which a sticking process happens. 

This result indicates that in order to determine the outcome of a collision, the relative 

velocity of two colliding object must be compared with the critical velocity. From Eq. 

(Eq. 4.58) it derives that in the limiting case of        , no sticking process is possible 
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(no dissipation is present). Vice versa, for         all the collisions result in a sticking 

process. For the sake of clarity, we summarize here the three main concepts required in 

order to describe the sticking outcome of a collision: 

a. Evaluation of the relative velocities between particles. Relative velocity can be 

expressed as a single value (the average) or a distribution function. 

b. Evaluation of the critical velocity associated with a given dissipation mechanism.  

c. Comparison of relative and critical velocities: if the indicator chosen for the 

critical velocity is greater than the relative velocities, the collision results in a 

sticking event. 

 

4.6.1 Relative velocities between particles in a volcanic plume 

Expected values of the collision velocities between ash particles in a volcanic plume are 

presented in section (4.4.3). Here we briefly summarize the main concepts. Three 

collision mechanisms were considered: 

I. Relative velocities generated by the different interactions/coupling with the 

turbulent eddies.  

II. Relative velocities created by the turbulent shear for particles within the 

Kolmogorov scale.  

III. Relative velocities generated by the different terminal velocities between objects of 

different size and density. 

 

It is important to clarify here that the turbulent models used in section (4.4) assume a 

priori that the distribution of relative radial velocities    in a turbulent flow is described 

with a normal distribution with zero mean     and variance    (i.e.             )). 

These models provide the root mean square 〈  
 〉    of this distribution, which at the end 

coincides with   parameter (  〈  
 〉   ). However, the quantity commonly used in the 

definition of a collision kernel is not   , but its absolute value |  |  This is justified from 

the fact that the collision rate does not depend on the sign of the velocities, but only on 

their absolute values. The distribution function of the absolute values of |  | is obtained 

mirroring around the y-axis the negative values of    contained in      . The final result 

is that the distribution function of the absolute values of the relative radial velocities is 
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described with a half-normal distribution   |  | , also called folded normal distribution. 

The half-normal distribution is derived from a normal distribution, mirroring the 

negative values of the independent variables around the y-axis. The distribution function 

  |  |  can be written in terms of the variance   of       : 

  |  |  
√ 

 √ 
   ( 

  
 

   
)                      

 

(4.59) 

It is worth noticing that the mirroring process results in   |  |           In this 

chapter we use both the mean value of 〈|  |〉 and the complete distribution   |  |  in 

order to define different sticking criteria. For a half-normal distribution the average 

value 〈|  |〉 is related to the quantity   as follows: 

〈|  |〉   √
 

 
    √

 

 
 〈  

 〉    

 

(4.60) 

In other words, it is possible to fully describe   |  |  and its mean value using the root 

mean square values provided in section (4.4.1.1).  

 

Figure 4.12 Example of relative velocities between two particles of different sizes for a plume velocity of 
       . On the x axis the size of the collector, on the coloured lines the size of the collected particle. The size 
of the largest eddy is       , a reasonable order of magnitude for typical values of plume radius in a volcanic 
eruption. 
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4.6.2  Critical velocities 

The critical velocity is defined as the maximum relative velocity that two sticking 

particles can have before collision.   Such a velocity depends on the ability of the system 

to dissipate collision energy as shown in Eq. (4.58). Two different models of estimation 

of critical velocities are here presented:  

i) A model for wet aggregation here denoted as Ennis model (Ennis et al., 1991). 

In Ennis model a macroscopic liquid layer on the surface of each colliding 

particle provides the viscous forces necessary to the energy dissipation.  

 

ii) A model for dry aggregation here denoted as Chen model (Chen et al., 2015). 

The sticking criterion provided in Chen model assumes that energy 

dissipations are given both by the Van Der Waals adhesion forces 

interchanged during the contact phase and by viscoelastic forces associated 

with particle deformation. It is applicable for particles that are not 

surrounded by any macroscopic liquid water layer. 

 

It is worth noticing that the presence of ice or electrostatic charges on particle surfaces 

can be treated as a limit case of Chen model, substituting the adhesion forces with those 

of ice or the resulting ones due to presence of net electrostatic charges. However, in this 

theoretical framework no dissipation due to the rearrangement or breaking of the ice 

structure is considered. 

 

4.6.2.1 Critical velocity: wet aggregation 

Ennis model (Ennis et al., 1991) is one of the main models currently used in literature 

for what concerns wet aggregation processes in industrial granulators. In this model, the 

authors consider the collision between two spherical particles surrounded by a thin 

liquid layer compared to particles size.  The phases of a head-on collision are shown in 

Figure (4.13). When the water layers of the two particles get in touch, a liquid bridge is 

quickly formed between the particles. At this point, two forces arise: the capillary force, 

which pulls the particles towards each other, and the viscous force, which acts against 

the motion. The capillary force depends on particles size, liquid-gas surface tension and 

geometry of the liquid bridge. The viscous force is instead directly proportional to the 
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fluid viscosity, particles equivalent radius, particles relative velocity and it is inversely 

proportional to the gap distance between the spheres. As soon as particles surfaces get 

in contact with relative velocity   , they undergo deformation and then they bounce 

back at a velocity given by      , where    is the dry coefficient of restitution between 

the particles. While bouncing back, both the capillary force and the viscous force act 

against the motion. In general, energy dissipation occurs in phase b), c), and d) (see Fig. 

4.13). As far as only phases b) and d) are taken into account, the unique contribution to 

energy dissipation is given by viscous force, which always acts against the motion. In 

these phases capillary forces are not taken into account because the energy added to the 

system in the approach phase is equal to the energy dissipated during the rebound 

phase, provided that the geometry of the liquid bridge is symmetrical in the two phases. 

The amount of energy dissipated during the contact phase c), described by the 

coefficient of restitution, depends on particles incoming velocity and on their 

mechanical properties.  

For a perfectly elastic collision (    ), energy is conserved while particle deforms. In 

general, however,      due to the viscoelastic behavior of the material. Moreover, for 

particularly high approach velocities, particles might overcome the elastic limit and 

undergo plastic deformation, dissipating a much higher amount of energy. 
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Figure 4.13 Different stages for two approaching particles in Ennis model. a) Approach stage b) Liquid bridge 
formation: a liquid bridge is formed when the liquid layers are in touch. Capillary forces pull particles 
towards each other while viscous forces act against the motion. c) Contact and particles deformation. Energy 
dissipation, mainly due to viscoelastic forces in this phase, is described by the dry coefficient of restitution   . 
d) Liquid bridge separation: particles surfaces detach and they move away from each other. The liquid bridge 
is still present. Both capillary and viscous forces act against the motion. e) Moving away stage: particles 
continue to move away from each other, after breakage of the liquid bridge.   

 

The viscous force must be expressed explicitly in order to derive a condition on the 

critical velocity      . For two colliding spheres of radius  , if we define    the fluid 

viscosity,   the fluid interfacial tension,   the incoming velocity of each object, and    

the half-distance of the spheres, the viscous force is expressed as: 

     
 

 

    

 

 

  
 

(4.61) 

Ennis derives a sticking criterion for the force balance. According to this criterion, 

particles will stick if the collision Stokes number     is lower than the critical Stokes 

number     . The two quantities are defined as follows: 

    
          

   
 

(4.62) 
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(4.63) 

where    is the granule density,     
    

     
 the effective radius,    the relative velocity 

of particles along their radial direction,    the restitution coefficient for dry particles (set 

constant       ),   the thickness of the liquid layer, and   the characteristic height of 

surface asperities. The final value of the critical velocity is: 
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(4.64) 

In Fig. (4.14), the critical velocity       is plotted as a function of particle sizes    and   , 

for a density of      
  

   ambient temperature of 25   and a relative humidity (RH) of 

95%. The surface asperities of each particle are set to 1 nm. At a RH = 95% the expected 

layer thickness is of        (see later in this section). Fig. 4.14 shows that reducing the 

size of one of the two colliding objects the critical velocity increases significantly. In 

other words small particles are easier to stick, since they are characterised by higher 

values of critical velocities. For example, when a      particle collides with objects of 

decreasing dimensions, its critical velocity passes from       when the size of the 

second particle is         up to         when the size is      . It is worth noticing 

that all the curves of Fig. (4.14) are characterized by a plateau that increases only when 

the sizes of the colliding objects are comparable. The presence of a plateau region 

indicates that the smallest size involved in a collision determines the value of the critical 

velocity, regardless the size of the largest object. 
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Figure 4.14 Critical velocities for colliding objects of sizes r1 and r2 applying Ennis model for wet aggregation 

in case of layer thickness of 10 nm and surface asperities of 1 nm (95% RH). The nature of the water layer 

taken into account in this plot is due to the effect of hygroscopy.  

 

4.6.2.2 Critical velocity: dry aggregation 

Chen model (Chen et al., 2015) is based on a set of simulations of collisions between 

viscoelastic adhesive particles using the Discrete Element Method (DEM). Three 

different forces are assumed to be acting on the objects: the adhesive force, the elastic 

force and the viscoelastic force. The results of their simulations have been examined a 

posteriori in order to provide a final recipe for the sticking of adhesive viscoelastic 

particles. According to the JKR model for the adhesion force (Johnson et al. 1971) the 

force    that is needed to pull apart two adhesive spheres in contact is: 

          (4.65) 

Where   is the surface tension of the material. If we consider for example two silica 

spheres with radius             and           

  , we find that        

      .  
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However in Chen model the adhesive and elastic forces are combined into a unique term 

that modifies    as follows: 

       ( (
 

  
)
 

  (
 

  
)

 
 
)   

 

(4.66) 

Where   indicates the radius of the contact circle generated between the surfaces of two 

particles during the collision i.e. variable during the process.    denotes the radius of the 

contact circle at equilibrium, when the adhesive force (attractive) is counterbalanced by 

the elastic force (repulsive). This quantity is not variable and it can be expressed as: 

   (
      

 

   
)

 
 

 

 

(4.67) 

   uniquely depends on the equivalent radius    , the surface tension   and the 

equivalent Young modulus     
    

     
. The total contribution of the adhesive and the 

elastic forces varies with the contact radius  . Therefore, it continuously changes during 

the collision. For two silica spheres with radius            ,           

  , 

            we find              , which is 7.5% of the particle radius. In case 

of a contact radius 10 times greater than the equilibrium radius           the order of 

magnitude of the force is                           . 

The viscoelastic force is assumed to be proportional to the velocity of deformation, 

which is internally computed by the DEM method: 

         

   

  
 

 

(4.68) 

Where      is the normal dissipation coefficient      , defined in literature (Tsuji et al., 

1992) and        is the deformation of particles surface. Once that the forces are 

defined, Chen et al. (2015) solve the equation of motion for two colliding objects using a 

DEM technique.  For sake of clarity the complete procedure is summarized in appendix 

(D.5), together with a discussion on the role of the forces not taken into account by the 

model (electrical and aerodynamic forces).  
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Here we simply report the final expression for the critical velocity expressed as a 

function of the size ratio    and the critical velocity for head-on collisions        (see 

appendix D.5): 

      
    

 

     
     

        
 

(4.69) 

In figure (Fig. 4.15), the procedure of Chen for critical velocity is computed for silica 

particles of several sizes. Comparing Fig. (4.15) with figure Fig. 4.14 it emerges how 

typical values for critical velocities due to dry sticking are much lower than wet 

aggregation, even in presence of a nanometric layer due to hygroscopy. 

 

Figure 4.15 Critical velocities for colliding objects of sizes r1 and r2 applying the Chen model for dry 

aggregation of silica particles. 

 

4.6.2.3 Critical velocities in a volcanic plume 

Two models have been presented in the previous sections in order to evaluate the 

critical velocities for wet and dry environments. However the application of these 

methodologies in a volcanic plume still needs to be clarified. In particular in this section 

we will define under which conditions a given model should be considered as dominant 

in the eruptive column and how it can be practically implemented. Ennis model takes 
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into account the presence of a liquid layer on particle surfaces. This is the leading 

mechanism of energy dissipation if compared with dry critical velocities. Despite its 

importance a micrometer-size water layer is possible only when supersaturated vapour 

is present, or an environment with water droplets has been formed in the past from a 

previous state of supersaturation (here we ignore the liquid water entrained from the 

atmosphere). However, Fig. (4.14) shows that also a nanometric water film in an 

undersaturated environment can significantly increase the critical velocities. This kind 

of layer is a result of the hygroscopic properties of ash, not of the moisture saturation. It 

is of a primary role in volcanic plumes, since the external environmental conditions 

where it is applicable are more easily verified. From these considerations it is evident 

how the prediction of the presence of a water layer and its quantification is crucial to 

constrain the critical velocities of particles in a volcanic plume and ultimately their 

sticking efficiencies. Four different cases are considered in the present work: 

 

Case I:                     and         

In this regime the water vapour in the volcanic gas mixture is absorbed by the 

hygroscopic behaviour of ash. The water layer for unsaturated conditions can be 

computed using the so-called Frankel-Halsey-Hill model (FHH) (Kumar et al., 2009). In 

the FHH model the surface coverage   , which quantifies the hygroscopic growth, is 

given by: 

   ( 
    

      
)

 
    

 

 

(4.70) 

Where      and      are experimental parameters. The surface coverage    is 

expressed as a function of the final diameter  , the initial diameter of the dry particle    

and the diameter of a water molecule                : 

   
     

     
 

 

(4.71) 

The system of equations Eq. (4.70) and Eq. (4.71) can be solved for the unknown value 

  , once that      and      are known. Lathem et al. (2011) quantify the range of 

values for      and      in case of different samples of volcanic ash as:            
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      and                . In this work we assume that all the water adsorbed by 

the objects remains as a liquid phase on their surface. This is of course an upper limit for 

their sticking capacity. However the presence of absorbed water inside an object does 

not exclude an alteration of its mechanical properties, with an increase of its dissipation 

capacity. As a matter of fact, water can act from the interior increasing the final diameter 

of the object and enhancing its elasticity and consequently its viscoelastic dissipation.  

This is less true for porous objects as correctly outlined in (Textor and Ernst, 2004). 

Finally, we can express the maximum theoretical water layer on the surface of a particle 

due to hygroscopy, as a function of the relative humidity: 

  
     

 
             

(4.72) 

The layer thickness   is computed at each  -step in the column and it is substituted in 

Eq. 4.64 

 

Case II:                      and         

Plume model equations (Eq. 4.17-4.25) assume an instantaneous condensation of water 

vapour in the gas mixture for supersaturated values of the relative humidity in a 

volcanic column. This assumption is justified on the base of the enormous amount of 

condensation nuclei available during a volcanic eruption (Glaze et al., 1997). By 

definition no supersaturation is present and thus no liquid water is deposited on the 

surface of particles by condensation. However the instantaneous creation of liquid water 

in the gas mixture produces a population of droplets that can collide with volcanic ash 

and produce a macroscopic liquid layer on their surfaces. We will consider droplet 

collision as the unique process responsible for the formation of a micrometer water film. 

Under the assumption that every collision results in a successful sticking and that the 

droplet sizes is much smaller than the size of ash, the growth rate of liquid water on the 

surface of a particle is (Pruppacher et al., 1997): 

  

  
              

(4.73) 
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Where   is the cross sectional area of the ash,    is the relative velocity between particle 

and water droplets;    the bulk density of the mixture;    the mass of water present in 

the gas  
 

  
 , and   the collection efficiency. Water droplets are considered as completely 

coupled with the turbulent eddies. This is practically obtained assigning in Eq. (4.42) a 

fictitious size of        to water droplets in order to have a Stokes number   . The 

quantity    is available from meteorological data. After some algebraic manipulation, 

the growth rate for droplet collision of the external diameter   can be expressed in its 

final form as a function of the plume curvilinear coordinate  : 

      

  
 

 

     
   

                   

   
 

(4.74) 

Where    is the liquid water density and           . 

 

Case III:            

In this work we assume that all the liquid water around volcanic particles freezes 

instantaneously when temperature is lower than       . Any supercooled state of water 

is assumed, according to the hypothesis of large amount of condensation nuclei in a 

volcanic plume. No water layer is present in this region, only ice. The ice thickness in our 

model does not play an effective role in dissipation, i.e. neither viscoelastic mechanisms 

nor a rearranging of the structure are considered. Moreover its contribution to the total 

mass of the object is considered negligible. Under these assumptions no difference 

occurs between a frozen layer generated by hygroscopy or droplets collision. The role of 

ice on the sticking of volcanic ash is described using Chen model for dry particles with a 

surface tension equal to ice:           
 

  
 (Ketcham and Hobbs, 1969). 

Case IV:            

For temperatures higher than       , no liquid water is assumed to be present around 

volcanic particles. In this case the critical velocities are evaluated applying Chen model 

with a surface tension typical of silica:           
 

   (Wall et al., 1990). 
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4.6.3 Quantification of the sticking efficiencies 

The quantification of the sticking efficiency     of a collision of two particles   and   

derives directly from the concepts expressed in the previous sections. In particular, once 

the relative velocity    and critical velocity       are known, the comparison of these 

two quantities provides an idea of the result of a collision. As a rule of thumb, if the 

critical velocity is much higher than the relative velocity the outcome is a sticking 

process. It means that the relative kinetic energy of the impact can be dissipated by the 

mechanisms acting within the two objects. However several possible criteria can be 

introduced to formalize the outcome of a collision. Here we discuss the two chosen in 

this work. 

 Net threshold: in this approach both the critical and the relative velocities are 

considered as single values. Critical velocities are computed as in Eq. (4.42), 

depending to the environmental conditions in the plume.  Relative velocities in a 

turbulent flow are associated with their mean value 〈|  |〉. In case of a dominant 

contribute from the sedimentation kernel, the relative velocity is simply given by 

the absolute value of terminal velocities or their difference as described in 

section (4.4.3). The sticking efficiency   is determined as follows: 

 

{

                   〈|  |〉                

                 〈|  |〉               

  

 

(4.75) 

 

 Smoothed threshold: the underlying assumption in this methodology is that 

relative velocities in a turbulent flow are characterised with a distribution of 

values, more than a single one. The distribution function   |  |  introduced in 

section (4.5.1) describes this statistical behaviour. Critical velocity is still 

represented with a unique value. The part of the distribution function with 

relative velocities greater than       will describe particles too fast to aggregate. 

Therefore the sticking efficiency is given by the integral of   |  |  comprised 

between zero and the critical velocity (the distribution   |  |  is normalized to 

one). 
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    ∫   |  |   |  |

     

 

 

 

(4.76) 

It is important to notice that this methodology does not apply to the relative 

velocities associated with the sedimentation kernel, that are unique by definition. 

 

An example of application of the net threshold criterion is reported Fig 4.16. Critical 

velocity and sticking velocity are plotted for different heights and several collector sizes, 

colliding with a fixed sized particle of 5   . Only the hygroscopic layer is present in this 

eruption. The “Z” shaped curve represents the collision velocities, and the “bow-shaped” 

curve the critical velocity. When the two curves intersect each other, the sticking 

efficiency is considered equal to one. It is clearly evident how the relative velocities 

created in the lower part of the plume by the turbulent column are too high to be 

dissipated by the nanometric water layer.  

 

Figure 4.16 Study of the sticking efficiency due to the presence of a nanometric hygroscopic layer on the 

surface of volcanic ash. The plot is relative to the collision of objects of different sizes with particles of 5   . 

Both critical and relative velocities are displayed as a function of the plume height z [m]. When the relative 

velocities (“Z” shaped curves) are lower than the critical velocities (single horizontal line), particles stick 

together, according to the net criterion defined above. 
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4.7 Discussion on the methodology and conclusions 

Existing theoretical models for ash aggregation in volcanic plumes are affected by 

significant limitations that derive both from the simplified scenario assumed in the one-

dimensional Smoluchowski equations and the approximations required in order to 

increase the computational efficiency. Unfortunately, field observations suggest that ash 

aggregates are complex structures that cannot be adequately treated either as liquid 

droplets (i.e. as a coagulation problem) or as fractal objects. The method proposed in 

this chapter provides a complete set of equations and new methodologies to fully solve 

these limitations. The use of a multidimensional description of the problem (i.e. the 

GFPT) combined with existing steady state plume models, avoids the implicit ambiguity 

of the one-dimensional Smoluchowski equation in distinguishing porous and non-

porous structures. However, the increased level of complexity requires an explicit 

relationship between interacting properties. A simplified algorithm has been created in 

order to investigate the resulting porosities of different virtual objects. Starting from the 

creation of coated particles, the algorithm has been extended to the interaction of two 

aggregates. In addition, the definition of an overall aggregate volume, i.e. the ellipsoidal 

fit to the external points, allows computing porosities and relating colliding and final 

structures.  The final outcome of this stage of the work has been the realization of 

30,000 Montecarlo simulations. This large dataset provided a robust number of points 

to be fitted. A polynomial of order three and five in the independent variables porosity 

ratio and mass ratio has been derived in order to provide to the aggregation equations 

the missing information on the final porosities of the aggregates. This pioneering 

approach should be considered as a first step in a new methodology for the study of ash 

aggregation. Several limitations are still present at this stage. The most important one 

concerns the non-physically based composition of the aggregates, that limits the 

available number of structures and that ultimately results in an overestimation of the 

porosities. Despite its simplicity, Fig. (4.7) shows interesting features of ash aggregation 

that can probably be extended to more complex algorithms and virtual structures.  

The research of a rigorous definition of collisional processes in a volcanic environment 

has been one of the main goals of this work. Eruptive plumes show extreme conditions 

and the use of standard approaches developed for meteorological sciences can lead to a 

biased overview. A large part of section 4 has been dedicated to the rigorous definition 
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of collision kernels in a volcanic plume. The main aspect is the introduction of a new 

mechanism for collisions in a turbulent cloud that has been named the turbulent 

differential coupling. In this process, particles of different size and density react 

differently to the surrounding cascade of turbulent eddies. This results in a 

quantification of a key aspect of collision, which in past works, e.g. (Costa et al., 2010; 

Textor et al., 2006; Veitch and Woods, 2001), was not adequately constrained: the 

relative velocity between a generic pair of particles. The relative velocity is expressed as 

a fraction of the largest scale turbulent fluctuation. Moreover, the computation of 

relative velocities in a collision allows having a new parameterization of the sticking 

efficiency. In the present work the sticking efficiency is calculated in terms of the 

maximum kinetic energy that a system can dissipate. The dissipation is phenomenon-

dependent, but it can always be defined in terms of a critical velocity. The critical 

velocity represents the maximum kinetic energy that a dissipative mechanism can 

deplete. Two main dissipation mechanisms have been considered: wet sticking, where 

the dissipation is given by the action of a water layer on the surface of the particles; dry 

sticking, where the dissipation is given by the adhesive-viscous forces present on the 

objects. Specific equations for both these two cases are provided in this chapter and 

solved simultaneously in the plume model, as the growth layer rate of Eq. (4.74). 

The final methodology results in a combination of advanced mathematical tools and an 

exhaustive physical explanation of the collisional interactions in a volcanic plume. The 

expected improvements respect to existing models are: i) A more realistic description of 

the nature of ash aggregation. As a matter of fact, the fractal approximation cannot be 

used in this context. Moreover, the a priori assumption of a unique size for ash 

aggregates (Cornell et al., 1983; Costa et al., 2010) is a compromise for increasing the 

computational efficiency of the simulations, but it is substantially far from field 

observations. The use of a bidimensional description of the problem implicitly resolve 

these limitations, since the initial population of particles has different porosities respect 

to aggregates; ii) Volcanic plumes are mostly turbulent (Kieffer and Sturtevant, 1984) 

and they require ad hoc equations in order to adequately take into account the collision 

rate. Any derivation of collision kernels from scientific fields where different 

phenomena are important, results in a biased view of the problem. Concepts as 

Brownian diffusion and  Saffman-Turner limit seems to not be important in volcanic ash 

aggregation (Textor and Ernst, 2004). The collision kernels presented in this chapter are 
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derived from contexts where highly turbulent environments dominate the dynamics of 

the collisions. Moreover the introduced definitions of relative velocities between 

particles in a volcanic plume is completely new and it expected to provide a more 

realistic constrain on the relative kinetic energies of a collision; iii) The available 

information on the relative kinetic energy provides an important quantification of the 

energy that must be dissipated in a collision in order to provoke a sticking process. 

Previous approaches assumed a biased quantification of the relative velocities involved 

in an impact. This resulted in a inaccurate prediction of the phenomenon. iv) The two 

dissipation mechanisms considered in this chapter (i.e. wet and dry sticking) are 

rigorously coupled with the thermodynamic state of the plume. A new important aspect 

is that a set of ODEs governs the growth rate of the water layer. The combination of the 

relative velocities of a collision and the exact quantification of the dissipation 

mechanisms allows constraining the sticking efficiency with a degree of accuracy not 

explored in the past. 

However, the numerical combination of the aggregation scheme, plume equations and 

wet/dry sticking is the most challenging part that and it still requires further 

improvements. In particular, three main problems still need to be fully solved: the 

stiffness and the discontinuities of the resulting ODEs, and the computational efficiency 

of the code. The first two aspects are somehow related and they depend on the nature of 

aggregation. Aggregation of large amount of particles result in fast timescales that can be 

completely different from the advection processes of the plume. The presence of 

different timescales in the phenomenon under analysis results in stiff equations. The 

second aspect depends on the definition of sticking efficiency   for different couples of 

particles. The presence of net transitions between regions where    , into regions 

where    , generates huge problems to the standard ODE solvers. These aspects 

require both smooth transitions in the quantities within the eruptive column and 

different numerical techniques in the solvers. For what concerns the computation 

efficiency of the whole software package, we found that with 300 cells on the plane 

mass-porosity the time needed for the simulation of Fig. (4.9) is less than half a minute. 

However, the use of constant aggregation kernels avoids all the problems highlighted 

about stiffness and discontinuities, which seem to pose the largest constrain on the 

efficiency of the scheme. Test simulations with more complex kernels show a 

computation time of the order of ten minutes. Moreover, if higher accuracy is required in 
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detecting porosities, the number of cells can increase rapidly, reducing the 

performances. 

In conclusion, a new methodology has been presented for the study of ash aggregation in 

volcanic plumes that poses its attention on the complexity of aggregate structures. In 

particular, the sedimentation in atmosphere is enormously influenced by their density. 

Ash aggregates thus require a more complex description to be fully characterized. The 

new numerical scheme uses a bidimensional solution of the GFPT in order to track the 

evolution of a population of particles in a volcanic plume according to their mass and 

porosity. A particular attention has been posed in rigorously quantifying the main 

processes that define a collision and a sticking process in a volcanic plume. This 

methodology wants to be the first stage of a new class of models and a new perspective 

on the potentialities of combining virtual reality, field observation and laboratory 

observations. The concepts formalized in this chapter will form the theoretical basis for 

future and challenging studies on ash aggregation. 
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Appendix 

D.1 Algorithm for creation of virtual aggregates 

The algorithm created for the determination of aggregates porosities is based on a 

simple geometrical relationship between a central sphere of diameter   and its coating 

shell composed of smaller spheres of diameter   . All shells added to the aggregate are 

formed of particles of the same size. Before starting a new shell, the previous one must 

be completed, i.e. when no residual space is available for an additional sphere. Referring 

to Fig. (D1), the main steps followed by the program are: 

1. Definition of a spherical system of coordinates centered at the origin 

                .  We identify the polar angle as   and the azimuthal angle 

as  . 

2. Definition of the number of shells. 

3. Definition of the sizes of particles per each shell.  

4. Generation of a sphere with diameter    and centre              . We refer to 

this particle as central sphere or core. 

5. Generation of spheres within a single shell. Each sphere of the coating is 

attributed to a combination of angles         and angle extensions        . The 

first sphere is located at a random position along the northern axis of the core 

                       at a distance from   
  

 
 

  

 
 from    (see fig. D1). 

6.  Collocation of the next sphere at                             , with    

expressed as a function of the polar angle: 
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(D.1) 

 

7. Update the azimuthal angle            . 

8. Repetition of step 6    times, until the condition     ∑  
  
       is reached. 
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9. The ring is completed. Step number 5 is repeated, locating the first sphere of the 

new ring at                          , where: 

 

        ( 
  

     
 ) 

(D.2) 

Check if        . 

10. If        , the construction of the shell is completed and      . 

11. Repeat steps 5 to 9, if more shells are still present. 

12. Locate the most external points of the virtual aggregate. 

13. Fit the most external points using a generic ellipsoid surface (using a specific 

Matlab function made available on the Matlab utility site. This function has been 

created by Yury Petrov, 2015). 

 

In case of a collision of two aggregates with external diameters     and    , the previous 

steps are repeated for a second object with centre situated at         
   

 
 

   

 
       , as shown in figure (D1). This algorithm represents a first attempt to study 

ash porosity using virtual reality. It is clear how the simplicity of the scheme only 

captures the main features of the process. Further improvements are needed to make 

the code more general. However despite its approximations, this procedure has been 

successfully applied in paragraph (4.3.2). The initial conditions used for the 30.000 

simulations are here summarized: 

 Initial values of     and     are randomly picked within the interval:          

 The number of shells    is randomly chosen, picking a single integer   number 

within the interval:      . An additional Boolean random factor is introduced at 

this stage to increase the number of combinations analysed. A true or false 

random parameter establishes if the shell will be unique and composed of 

particles of size      or multiple and composed of   layers of particles sizes: 

 
  

 
 
  

 
   

  

 
 . 
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It is important to notice that the dimensionality of the spheres is not needed, since the 

virtual spheres are defined as a ratio between central sphere and coating. For simplicity 

we assume all the sizes in micrometers.  

 

Figure D1 Scheme of the frontal view (a) and top-view (b) of a coating particle (dark grey) added to the 
central sphere.  

 

D.2 General definitions for turbulence 

According to Kolmogorov, turbulence can be seen as an energy cascade process from the 

largest eddy to the smallest one, usually named Kolmogorov length. Energy is 

transferred from larger eddies to smaller ones, but the process arrests for smallest scale 

beyond that viscosity and heat dissipation become dominant and turbulence is dumped. 

The Kolmogorov length     can be parameterised as follows (Marshall and Li, 2014): 

     
  

 
     

(D.3) 

Where   is the kinematic viscosity and   is the dissipation rate of turbulent kinetic 

energy per unit mass. The parameter   is controlled by the large-scale flow. If the largest 

eddy size is denoted with   and the velocity fluctuations of the fluid respect to the mean 

flow with   , the dissipation rate of turbulent kinetic energy is (Marshall and Li, 2014): 

    

  
 

 
 

 

(D.4) 
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Where the constant    is of the order of unity. We refer to the largest eddy   and its 

related quantities as the integral scale of the turbulent flow. If     refers to the plume 

velocity along the central, we assume of              according to Kotsovinos (1977); 

Papanicolaou and List (1988). This assumption is necessary to introduce the effects of 

turbulence inside the 1D steady state plume model. The Reynolds number based on the 

largest scale of the turbulent flow is defined as: 

   
   

 
 

(D.5) 

For a volcanic plume this definition of the Reynolds number gives values in agreement 

with Kieffer and Sturtevant (1984) and it allows relating the Kolmogorov micro-scale 

    and Kolmogorov time-scale     to the integral scale of the turbulence (Ormel and 

Cuzzi, 2007; Textor and Ernst, 2004): 

             (D.6) 

 

              (D.7) 

Where    
 

  
 is the overturn time of the largest eddy. A quantity that will play a major 

role is the spatial frequency   associated with a generic eddy of size  . It is defined as the 

reciprocal of the size of the vortex   
 

 
. Particle will not follow instantaneously the 

fluid motion due to its inertia. It requires a certain amount of time to follow the changes 

in the external fluid. The relaxation time,   , describes the capability of an object to 

adapt to changes in the surrounding fluid. Under the assumption of a Stokes regime it is 

defined as: 

   
     

 

       
 

 

(D.8) 

The turbulent Stokes number      describes the degree of coupling between a generic 

eddy of size   and particles. It is commonly parameterized relatively to the relaxation 

time of the particle   . High values of      indicate that the influence of eddies on ash is 

negligible. As a matter of fact, in the extreme case where        no eddy is seen by the 

object. Vice versa, in the limit       , particles will follow perfectly the trajectory of 
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the eddy. However,      is not uniquely defined in a vigorous turbulent flow since many 

eddy sizes are present. In general, for an eddy with size   and velocity   , the turbulent 

Stokes number is: 

       

  

 
 (D.9) 

It can be derived that           , which means that large eddies have smaller turbulent 

Stokes numbers for a fixed particle size (Marshall and Li, 2014). Or alternatively that the 

coupling of a particle with the turbulent flow increases as the size of the eddy increases. 

In particular two Stokes numbers are of great importance in defining the effect of 

turbulence on particles. The Stokes number associated with the Kolmogorov scale,     , 

and the Stokes number      associated with the integral scale:  
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D.3 Root mean square relative velocity between two particles 

in a turbulent flow 

In the research of a closed expression for relative velocities between particles it is of 

primary importance to clarify the meaning of the quantities that we will derive. In this 

context velocity have a meaning root-mean-square values. The root mean square particle 

velocity is defined as: 

       〈  
 〉    〈   〉    〈   〈 〉  〉    (D.12) 

The root mean square relative value of the absolute velocity between two grains is: 

〈  
 〉    〈        〉    〈       〈  〉  〈  〉 

 〉    (D.13) 
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In this appendix we introduce in some detail the methodology developed by Ormel and 

Cuzzi (2007) to calculate the relative velocities between two particles of sizes greater 

than the Kolmogorov scale in a turbulent flow. Three main assumptions are present in 

the model:  

 Turbulent flow can be seen as a cascade of vortexes from the largest scale to 

smallest. 

 The energy spectrum of the flow follows a Kolmogorov scaling. 

 The correlation between particles depends uniquely on the ratio of their sizes 

respect to the scales of the vortexes. 

 

The third assumption has significant implications on the accuracy of the predictions that 

will be discussed later. According to Kolmogorov’s theory of turbulence, the energy 

spectrum depends on the spatial frequency   of eddies as           . The total energy 

per unit mass associated with the turbulent velocity    is given by:  

  
 

 
 ∫   

  

  

      

 

(D.14) 

The next step of the methodology is to evaluate the velocity of a particle of size    

respect to the turbulent flow.  olk et al. (1980) introduced the concept of “eddy classes”. 

Class I eddies vary slowly enough to give time to the particle to adapt to it. Particles will 

forget their initial conditions and will adapt to the eddy. Class II eddies fluctuate faster 

than the relaxation time of the particle   . Thus, only a small perturbation of the initial 

conditions of the grain is obtained. These concepts are formalized as follows. A specific 

eddy, with an associated wavenumber  , is characterized by a proper velocity    and 

overturn time    
 

     
. The eddy crossing timescale is             , where     is the 

relative velocity between a grain and a single vortex. Therefore the condition for an 

eddy to be of class I and class II becomes: 

{

                                 

                                

 

 

(D.15) 
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The boundary between these two classes is associated with a specific  , or   , named 

respectively    and   .  

 

  
 

 

  
 

 

      
 

 

  
            

(D.16) 

The important point here is that    is a function of the relaxation time   . In other 

words, the boundary separating the two classes is different for each particle size. The 

averaged absolute particle velocity is: 

      
   ∫   

           

  

             ∫   

    

           

                         

 

 

(D.17) 

Where:   
  

     
,              ,                 and      

 

    . Ormel and 

Cuzzi assume that             for all particles sizes with a consequent maximum 

error on the final results of about the 10%. This is verified also in the present context as 

discussed later on in this appendix. This approximation allows having an analytical 

solution of the problem in a closed form and it represents one of the most important 

advantages of the method. Expression (D.17) can be explained as follows: the velocity of 

a particle is a result of two different contributions from the turbulent flow. The first 

integral on the r.h.s. describes the effects of turbulent eddies larger than the particle size 

  . The second integral is instead related to the contribution of eddies smaller than    

but larger than the Kolmogorov scale    . It is worth mentioning that the simpler form 

of the first integral respect to the second one is due to the absence of relative velocity 

between large eddies and the particle           . Both integrals are weighted 

comparing the lifetime of a vortex      with the relaxation time      of the particle. 

Eddies with lifetimes much shorter than    will not produce a significant influence on 

the velocity of the particle      . On the contrary, long lasting eddies compared to    

tend to transfer all their energy      to the particle      . The eddy lifetime is related 

to its autocorrelation function as explained by Volk et al. (1980). Equation (D.17) finally 

provides the velocity of the particle respect to the turbulent velocity    as a function of 

the Reynolds number    and the particle Stokes number      associated with the largest 

eddy. 
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(D.18) 

It is important to realize that for highly turbulent flows and large particles    

   √      . This result coincides with Eq.8 of Abrahamson (1975) and it represents 

the limit case of relatively uncorrelated with the local fluid field (Marshall and Li, 2014). 

Once evaluated the relative r.m.s. velocity of a particle respect to the flow, the next step  

in the derivation is to calculate the relative r.m.s. velocity between two arbitrary 

particles. This quantity is given by (Markiewicz et al., 1991): 

〈  
 〉            

         
                   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (D.19) 

The last term                  
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the correlation term between the two particles due to 

their partial coupling with the turbulent flow. It is worth stressing that this term is zero 

for the limit case of uncorrelated particles, which coincides with the work of 

Abrahamson (1975). In this process of derivation we keep the dependency from the 

spatial wavenumber  . Later on it will be shown that every step can be expressed as a 

function of the eddy decay time   . Markiewicz et al. (1991) expresses the correlation 

term as: 

                 
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅         

         
  (D.20) 

Where: 

       
  

   

     
 ( ∫     

       
    

  

  

    ∫     

      
    

  

  

(
 

       
)   )  

 

 

(D.21) 

Alternatively, the above integrals can be expressed as a function of the time that an eddy 

needs to decade,   . The two differentials    and     are related using the above 

relationships between    and  . We obtain: 

       
 

 
 
  

 

  
     

 

(D.22) 
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The solution of Eq. (D.21), combined with Eq. (D.19), allows obtaining the final 

expression for the root mean square relative velocity between two particles: 

〈  
 〉        

      
   (D.23) 

Where the term    
  describes the effect of class I (slow) eddies and the term     

  the 

effect of class II eddies.  
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Where     
 , defined as     

     
     and    

         
    

  .   
  and   

   can be calculated 

solving numerically the following equation for each particle: 
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The solution of   
  and   

   are known,    
  allows having a complete set of equations for 

        
 . This quantity can then be converted into the mean relative radial velocity 

according to Pan and Padoan (2014):  

〈|  |〉  (
 

  
)

 
 
〈  

 〉    

 

(D.27) 

An additional aspect still requires to be discussed. Ormel and Cuzzi (2007) assume that 

the approximation             holds for their problem. Since their model is 

derived for astrophysical applications, it is worth asking if this assumption is still valid 

in a volcanic context. We remember here that:    
  

     
,                 , 



 129 

                and      
 

    . Assuming characteristic values for volcanic eddies 

               and fixing the size of some test particles is possible to compare their 

figure A.1 with our results. In Fig. (D2) an example for function     is reported (the 

same results are found for     ). It seems that in a volcanic context the approximation 

       holds for larger values of   than in the original work. This justifies even more 

the use of the assumption            . 

 

Figure D2 Comparison of function      reported in figure A.1 of Ormel et al., 2007 with      evaluated in the 

present work for two Stokes numbers St = 0.01 and St = 0.1 . 

 

D.4 Correction factors for top-hat values 

The 1-D steady state plume model presented in this work assumes top-hat profiles for 

quantities related to the volcanic mixture such as the plume temperature and density. 

However field observations and experiments suggest that a Gaussian profile would be a 

more accurate description of the problem. It is worth asking which are the consequences 

expected if a top-hat profile for particles concentration     is used instead of a Gaussian 

  . The problem arises since particles concentration appears in Eq. 4.20 as a power of 2, 

but it is not a priori verified that    
  ⏞

 

  
  (Folch et al., 2016). In this appendix we 

investigate the role of the correction factor   , defined as    
       

 . For a Gaussian 

concentration of mass inside a volcanic plume we have: 



 130 
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The top-hat value of the concentration is related to the Gaussian profile as follows 

(Davidson, 1986b) in the limit of    : 

    〈 〉  
 

   
∫    

 

 

      
 

(D.29) 

It is important to notice that the factor 2 in the integral guarantees the consistency of Eq. 

(D. 29) in case of       . The solution is: 

    
  

 
 

(D.30) 

The value of   
  is instead given by: 

  
  〈  〉  

 

   
∫    
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The solution of Eq. (D.31) is: 

  
  

  
 

 
 

(D.32) 

Comparing   
  with    

  we observe that no correction term should be introduced in Eq. 

(4.20) due to the use of top-hat values.  

  
        

  
  

 

 
    

  
 

 
        

(D.33) 

It is interesting to notice that the equivalence of the Gaussian and top-hat profiles is not 

general and it disappears for exponents greater than two. For example, if concentration 

has appeared as the power of three in Eq. (4.20), the correction term    should have 

been: 
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D.5 Computation of critical velocity in Chen model 

Some preliminary notions are required to fully understand the procedure. These 

concepts are introduced here. 

 Equilibrium radius   : when two deformable adhesive particles are in contact 

with each other, elastic repulsion and adhesive attraction are present at the same 

time. The two surfaces generate a contact circle with a variable radius   that 

reaches equilibrium at   , when the adhesive force (attractive) is 

counterbalanced by the elastic force (repulsive). The equilibrium radius    of the 

contact area is expressed as: 

   (
     

 
)

 
 

 

 

(D.35) 

Where   is the surface tension of the material,     
    

     
 is the equivalent 

radius and   
    

     
 is the equivalent Young Modulus. If we consider as 

representative example two silica spheres with radius            , 

          

  ,             the radius               which is 7.5% of 

the particle radius. 

 

 Critical overlap   : the quantity    describes the final compression along the 

centers of the two spheres when particles reach the equilibrium. It can be 

calculated as: 

   
  

 

    
 
   

 
 

(D.36) 

For the quantities involved in the previous example, the critical overlap is 

            m, which is 1.5% of particles radius. 

To compute the critical velocity for normal collisions, Chen et al (2015) have proposed 

the following procedure: 

1. The critical velocity at first contact     for purely adhesive particles is: 
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2. The critical velocity just after the rebound phase     is given by: 

 

    √         
 
               

  
(D.38) 

where    
 

 
   . 

3. The final critical velocity     for particles of the same radius    can be computed 

solving numerically the following equation: 

 

            

 
  

(D.39) 

where the parameter H is given by:            
 

   
 

    
 

   
 

  and   can be 

computed from the coefficient of restitution    with the following equation: 

                          
          

          
          

 

          
  

4. In order to find the final critical velocity       between two particles of different 

sizes,     needs to be multiplied by  (     ) , where    is the radius of the 

smaller particle and    is the ratio between the radii of the colliding spheres. 
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Notice that even though     is a function of     ,       does not depend on     as the 

product         is a constant. 
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D.6 Electrical and aerodynamic forces: some considerations  

As already underlined in section (4.5.2), Chen model for dry aggregates does not take 

into account the effects of net charges on the surface of particles and the aerodynamic 

forces acting in a real environment. Here we discuss some implications related with 

these assumptions. Before starting it is important to notice that Van der Waals forces are 

considered as part of the adhesion forces and thus they are considered. 

Electrical forces 

If we assume that no charge is exchanged between two colliding elastic particles, in case 

particle carry opposite charges, the energy added to the system during the approach 

phase is equal to the energy subtracted to the system after rebound. In case particles 

carry charges of the same sign, energy is subtracted during the approach phase, and it is 

added to the system during rebound. In any case, no dissipation occurs due to electrical 

forces for perfectly elastic particles. For viscoelastic particles, the simultaneous action of 

electrical and viscoelastic forces during contact may result in a different dissipation 

compared to neutral particles. In this work, however, we assume that the charge is low 

enough for its effect during contact to be neglected. The assumption of a negligible 

charge is even more applicable in highly humid environments (Schella et al., 2017). 

Aerodynamic forces 

The determination of the aerodynamic force acting on particles is strongly related to the 

fluid condition. However, an estimation of the drag acting on a sphere in a steady flow 

gives a first order quantification of the role of aerodynamic forces. If we define the 

Reynolds number of a particle as:  

   
      

  
 

(D.41) 

For air density          
  

  , particle diameter          ; particle velocity respect 

to the fluid           and air dynamic viscosity               , we get: 

       . The Drag coefficient can be calculated using the following formula: 

   
  

  
                

(D.42) 
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It results      , for a size of 20   .  The drag force   is defined as: 

   
 

 
         

(D.43) 

Where   refers to the cross-sectional area of the particle. For the particles under 

analysis we get              . Comparing this value with the total contribution of 

the adhesive and the elastic force          calculated in Eq. (4.66) we notice that the drag 

force is two orders of magnitudes lower than this force. Even though this result does not 

guarantee that aerodynamic forces do not play any role for irregular particles, it 

suggests that aerodynamic loads might be of secondary importance respect to elastic 

forces during particle-particle contact. However, further investigation is required in 

order to take into account for unsteady flow effects as well. 

 

D.7 List of symbols used in chapter  4 

Table 4.4 List of symbols used in chapter 4 

Symbol Definition Unit 

  Variable radius of the contact circle in a collision   

  Cross-section of two colliding objects    

   Turbulent acceleration       

     Experimental coefficient for hygroscopic water layer - 

   Radius of the contact circle at equilibrium   

     Experimental coefficient for hygroscopic water layer - 

   Birth term for the GFPT        

      Drag coefficient - 

      Particles concentration along a Gaussian profile      

       Particles concentration along a top-hat profile      

      Particles concentration at the central line for a 
Gaussian profile  

    

      External diameter of an aggregate    

      Diameter of a dry particle   
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   Fractal exponent - 

   Death term for the GFPT        

     Diameter of a water molecule   

     Total diameter of a wet particle   

   Diameter of a monomer in a fractal aggregate   

  Total energy per unit mass        

      Collection efficiency for the collision kernel - 

    Equivalent Young modulus    

      Saturation pressure of vapour respect to ice    

    Saturation pressure of vapour respect to liquid water    

   Restitution coefficient - 

       Adhesive and elastic force   

   Adhesive force   

   Weight factor for gravitational collection settling - 

        Viscous force   

  Gravitational acceleration       

    
            

First correlation term for the contribute of a generic 
eddy of size   

- 

       Correction factor for the clustering effect - 

  Thickness of the liquid layer   

  parameter require by Chen’s model for the 
determination of the final critical velocity 

- 

     
 

    
 

Second correlation term for the contribute of a generic 
eddy of size   

- 

   Characteristic height of surface asperities   

      Momentum mass flux  

  Spatial wavelength associated with an eddy of size       

    Aggregation kernel       

       Spatial wavelength of the boundary eddy between     
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class I and II 

   Fractal prefactor for fractals (      - 

   Spatial wavelength associated with the largest eddy L     

   Spatial wavelength associated with the smallest eddy       

     Largest size for a turbulent eddy   

              Interacting properties of a collision 

  mass 

  porosity 

      

    

   Mass associated with the  -esim cell    

     Total mass in an aggregate    

     Final mass of the product of a collision    

   Reduced mass of two-particle system    

     Total number of cells in the mass-porosity plane - 

   Mass fraction of dry air in the mixture - 

      Mass fraction of ice water in the mixture - 

   Particles concentration for object of the  -esim class     

   Mass fraction of liquid water in the mixture - 

   Number of particles contained in a fractal aggregate  - 

      Mass fraction of solids in the mixture - 

      Mass fraction of water in the mixture (all the phases) - 

  Bidimensional vector of the internal properties  

     Atmospheric pressure    

   Partial pressure of water vapour    

  Preserved properties in the weights definition - 

   Mass flux of dry air in the plume        

   Mass flux of liquid water in the plume        

   Mass of water relatively to the mass of gas        

   Mass flux of solid particles in the plume        
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    Mass fraction of water in the entrained ambient air  
(specific humidity) 

        

     Total mass flux entering in the control volume        

   Mass flux of water vapour in the plume        

   Mass flux of water (all phases) in the plume        

    Ratio of coarse to fine ash along the plume - 

   Gas constant of dry air            

   Reynolds number - 

    Effective radius   

   Gas constant of dry air and vapour inside the gas 
mixture 

           

   Relative humidity - 

   Radius of the i-esim particle   

    Top-hat radius of the plume   

      Gas constant of water vapour             

   Radius of particle one in a binary collision   

   Radius of particle two in a binary collision   

     Surface coverage - 

     Critical Stokes number in Ennis model  

     Stokes number associated to the smallest eddy  

         Turbulent Stokes number  

     Stokes number associated to the largest eddy  

    Collision Stokes number  

   Bulk temperature of the gas mixture     

      Collision kinetic energy of two particles   

      Maximum kinetic energy that a system can dissipate   

      Total kinetic energy of two particles system   

   Temperature value for ice formation             

      Temperature value for water boiling          
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       Velocity of the center of mass of two particles       

      Critical velocity for sticking       

    Final critical velocity for particles of the same radius 
in Chen model 

      

    Critical velocity at first contact in Chen model       

    Critical velocity after the rebound in Chen model       

        Entrainment velocity of atmospheric air in the plume       

   Velocity of the macroscopic turbulent fluctuations in 
the fluid 

      

     Velocity associated to the k size eddy       

〈|  |〉 Mean of the absolute value of the modulus of relative 
velocity 

      

      

 〈  
 〉    

Root mean square of the modulus of the relative 
velocity 

      

〈|  |〉   Mean of the absolute value of the radial relative 
velocity 

      

〈  
 〉    Root mean square value of the relative radial velocity       

       Terminal velocity for the object i       

      Top-hat plume velocity       

    Relative velocity between a grain and an eddy of size         

      Wind velocity       

   External volume of an aggregate    

   Volume of the skeleton structure in an aggregate    

  
  

     
 Mass fraction of vapour respect to gas phase - 

     Weights for the redistribution of particles in the 
GFPT  

- 

     Horizontal coordinate     

      Mass fraction attributed to the i-esim cell in the mass-

porosity plane ∑   
  
      

- 

  Height above sea level     
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  Sticking efficiency - 

      Coefficient for axis entrainment - 

      Coefficient for radial entrainment - 

   
      Collision efficiency associated to the Abrahamson 

limit 
      

   
       Collision efficiency associated to gravitational 

settling collection 
      

   
     Collision efficiency between two particles   and   for 

a particular process   
      

   
      Collision efficiency associated to turbulent shear       

   
       Collision efficiency associated to the turbulent 

differential coupling 
      

   
      Collision efficiency associated to turbulent inertial 

collections 
      

  Fluid interfacial tension       

       Ice interfacial tension       

   
    

   
 

Ratio between envelope radius and top-hat plume 
radius 

- 

     Silica interfacial tension       

   
   

  
 

Ratio between the terminal velocity and upward 
plume velocity 

 

  
  

     
 Auxiliary parameter defined in Ormel and Cuzzi 

(2007) 
 

   Deformation of particle surface   

  
  

  
 

Gas constant ratio           

 

- 

    Dissipation rate of turbulent kinetic energy       

     Normal dissipation coefficient     

      Kolmogorov length   

     Tilting angle of the eruptive column     

      
  

  
             - 
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, where    is associated with the more 

massive body 

- 

  Dynamic viscosity of the air      

   Dynamic viscosity of the liquid on the surface of the 
object 

     

  Kinematic viscosity       

      Correction factor for top-hat distribution of particle 
concentration 

       

      Aggregate density        

     Atmospheric air density        

   Bulk density of the gas mixture          

      Density of the fluid        

     Density of the gas phase (dry air and water vapour)        

   Density of ice        

      Density of liquid water        

   Density of solid particles                          

   Density of the single components in an aggregate 
            

       

     Variance of the Normal distribution of relative 
velocities 

      

       Overturn time associated with the boundary eddy 
between class I and II 

  

   Overturn time for eddy of size k   

    Kolmogorov time-scale   

   Overturn time for the largest eddy   

   Relaxation time of a particle   

    Aggregate/particle porosity  - 

     Final porosity of the product of a collision - 

     
       

  

 Relative final porosity respect to the more massive 
body 

- 
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  Enlargement factor according to Ormel et al. (2007)  

        Final enlargement factor - 

               independent variable for the 

correlations terms of l-size eddies 

- 

  Parameter required by Chen’s model for the 
computation of   as a function of the restitution 

coefficient    

 

- 
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Chapter 5 

A new strategy for the estimation of plume height from clast 

dispersal in various atmospheric and eruptive conditions4 

 

 

5.1 Introduction 

Determining eruptive source parameters (e.g. erupted volume, plume height, mass 

eruption rate) and evaluating the associated uncertainties is crucial to the 

characterization of eruption dynamics and the assessment of associated hazards (e.g. 

Bonadonna et al. 2015 and references therein). The increasing availability of plume and 

dispersal models and real-time measurements have resulted in a better description of 

volcanic phenomena and of their impact. Nevertheless, in many circumstances (e.g. past 

eruptions with no direct observations) field data represent the only means to 

reconstruct the eruptive source parameters. Unlike the determination of erupted 

volume, which has been addressed by several authors (e.g. Bonadonna and Costa, 2012; 

Bonadonna and Houghton, 2005; Burden et al., 2013; Fierstein and Nathenson, 1992; 

Nathenson, 2017; Pyle, 1989; Sulpizio, 2005), the determination of plume height from 

field data is still mostly based on the methodology introduced by Carey and Sparks 

(1986), hereafter CS86, and revised by Burden et al. (2011), hereafter BPH11. CS86 

provides a set of plots, referred to as nomograms, that allows deriving plume height and 

wind speed from the downwind and crosswind ranges of isopleth contours associated 

with clast sizes between 8 and 64 mm and clast densities between 250 and 2500 
  

  . 

CS86 is based on the definition of the clast support envelope, a region of the plume 

where particles of a specific size may no longer be suspended within the plume and, 

thus, settle out. The simple application has made CS86 the most widely used method for 

the calculation of plume height within the community (e.g. BPH11 and references 

therein).  

                                                             
4 Under revision in: Earth and Planetary Science Letters ; Rossi E., Bonadonna C., 
Degruyter W., “A new strategy for the estimation of plume height from clast dispersal in 
various atmospheric and eruptive conditions” 
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Figure 5.1: (a) Diagram of the coordinate system used to describe plume rise and particle sedimentation from 
the clast support envelope, shown in grey shaded colour; (b) Example of clast support envelope produced by 
the model with particle trajectories in the atmosphere and definition of downwind and crosswind range 
following CS86. 

 

However, the methodology introduced by CS86 is associated with important issues, 

some of which have already been addressed by BPH11 by: i) using a plume model to 

avoid empirical relations for volume and temperature changes of the gas mixture along 

the column; ii) quantifying the associated uncertainties; iii) describing the radial 

velocities above the Neutral Buoyancy Level (NBL) based on a gravity current model, 

and iv) using more realistic wind profiles for the sedimentation of volcanic clasts in the 

atmosphere. Despite these important implementations, additional fundamental 

processes still need to be addressed. The main goal of this work is to take into account 
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the key role of wind in defining clast support envelopes along the downwind direction. 

This results in a methodology for the determination of plume height from clast dispersal 

applicable under a large range of eruptive and atmospheric conditions. Moreover, we 

have implemented a new parameterization of the gravity current for distances smaller 

than the radius of the plume and the influence of both particle shape and tropopause 

height on the final isopleth contours. Finally, we provide a new set of nomograms that 

can be applied to a wide range of eruptive conditions. A Matlab script for detailed 

analysis of specific eruptions and for the computation of theoretical isopleth contours in 

case of eruptions with known wind field and topography is also provided. 

 

5.2 New modelling strategy 

Following CS86, our model requires two fundamental steps: first, the definition of a clast 

support envelope within the volcanic plume; second, the determination of the 

trajectories of falling particles released from the envelope margins. Clast support 

envelopes are regions within the eruptive column where the upward velocity of the 

plume equals the terminal velocity of a given clast. CS86 assume empirical 

approximations of volume and temperature changes in the gas mixture within the 

column that introduce a significant uncertainty. The revised methodology proposed by 

BPH11 improves this aspect, using a more sophisticated plume description based on the 

model of Woods (1988). However, in both these models, wind advection only affects 

clast sedimentation but not the rising plume. According to Degruyter and Bonadonna 

(2012), the influence of atmospheric wind with a height-averaged velocity  ̅     can be 

quantified with the parameter     
 ̅  

 ̅    
 (

  

  
)
 

, in which    and    are the radial and 

wind entrainment coefficients,   ̅  the height-averaged buoyancy frequency,   the 

maximum height of the plume centreline, and   a constant. Values of     characterize 

strong plumes, i.e. eruptions dominated by the vertical plume rise, while values of     

imply a dominant influence of wind on plume rise (i.e. weak plumes), with a consequent 

effect on the shape of the clast support envelopes and, therefore, on the particle 

sedimentation distance (Fig. 5.1).  

Once clasts are released from the envelope region, their deposition strongly depends on 

the wind velocity fields. Simplified sedimentation models are both present in CS86 and 

in BPH11. However, a more realistic trajectory for centimetric particles, i.e. 
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characterized by Stokes number       is obtained solving the equation of motion for 

each particle (section 5.2.3), without assuming that the horizontal velocities of the clasts 

are equal to the external velocity fields. As indicated in Fig. 5.2, we provide two ways to 

determine plume height: i) from a compilation of nomograms in various eruptive and 

atmospheric conditions or ii) from a direct calculation of the model using better 

constrained eruption and atmospheric conditions (Fig. 5.2). The first approach is of 

easier application and is based on the use of dedicated plots; the second approach 

requires the use of a dedicated Matlab package for the consideration of specific 

atmospheric and topographic data (available on GitHub.). 

  

 

Figure 5.2: Flowchart of the two main applications of the model: (a) Compilation of nomograms: this approach 
is used to compile the nomograms: the model is run several times in a Montecarlo approach varying the initial 
eruptive conditions and the maximum wind at the tropopause. The final set of points relates the height of the 
plume with the maximum downwind and crosswind ranges obtained in each simulation. Nomograms are 
derived by interpolating the information at pre-defined plume heights (i.e. 5, 10, 15, 20, 25, 30 km). (b) The 
second approach allows the user to run single simulations with complete topography and three dimensional 
meteorological data. The final result is the computation of the isopleth map for a given particle size and 
density. 
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5.2.1  Plume velocity field 

To define a clast support envelope within a volcanic plume as prescribed in CS86, we 

first require the knowledge of the plume centreline velocity and the Gaussian cross-

plume velocity profile. We first calculate the plume centreline velocity using the integral 

plume model of Degruyter and Bonadonna (2012, 2013), which assumes a top-hat 

profile. We then convert the cross-plume velocity to an equivalent Gaussian profile using 

the considerations of Davidson (1986).  The governing equations of the integral model 

consider the balance of mass, momentum, and heat flow rates within a control volume. 

The model accounts for the effect of wind, which we expand to include variations in 

wind direction in the azimuthal plane following Folch et al. (2016).  

Gaussian and top-hat velocities, denoted by    and    , respectively, are related through 

averaging over the plume circular cross-sectional area: 

    
 

   
∫          

 

 

 
 

(5.1)  

with r the cross-plume radial distance from the plume centreline and R the top-hat 

radius. Following Davidson (1986), for a plume in an external constant wind field of 

value       it holds that: 

                     (    )     
      

 
  

      
 

(5.2) 

where s is the curvilinear coordinate along the trajectory,   is the bending angle with 

respect to the horizontal axis,   
  is the velocity at the centre of the plume and b is the 

cross-plume radial distance at which the Gaussian velocity profile decays to     of the 

centreline value. This expression defines the velocity difference between plume and 

wind along the central axis as a Gaussian function. In a real environment, the wind 

varies along r. We assume that       is locally constant along the radial coordinate and 

equal to the value at the centre of the plume, i.e.                      . The wind 

velocities at a given height z are interpolated from the closest points available in the 

atmospheric profile.  

The characteristic width of the Gaussian velocity profile, b, can be expressed in relation 

to the top-hat radius R according to the following assumption (Davidson, 1986):  
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(5.3) 

 

Therefore, using Eq. (5.2) and Eq. (5.3) inside equation Eq. (5.1), Gaussian velocities can 

be expressed in terms of their relative top-hat values:  

 

  
     

                           

   
 

  

  

                             
   

  (5.4) 

where the approximation is commonly used in the literature (Davidson, 1986; Sparks, 

1986). However, it is worth mentioning that this expression is exact only for integration 

over an infinite radius. If the integration is made over the radius R, the approximation is 

associated with a relative error on the value of   
  of about 14% with respect to the full 

equation.  

 

5.2.2  Clast support envelope 

The criterion used to define clast support envelopes can be considered as follows. A 

single clast falling at terminal velocity will experience no net motion if the surrounding 

air has an upward flow of equal magnitude. This equilibrium suggests that an upward 

flux generating a velocity field greater than the clast terminal velocity will exert 

sufficient drag such that the clast will approximately follow the same trajectory as the 

plume. When the terminal velocity of the particle is equal to the plume velocity, clasts 

are no longer coupled with the gas mixture and they start to sediment. The expression 

for the terminal velocity     is: 

     √
 

 
 
     

    
  

 

(5.5) 

where   is the gravitational acceleration,   particle diameter,    clast density,    is the 

drag coefficient and    is the density of the plume mixture to be evaluated at each 

height. Given their dependence on   , terminal velocities are calculated iteratively 

equating the gravity force and the drag force (see Appendix E.1). The buoyant force is 

neglected due to the large difference in density between clasts and surrounding gas. 

Thus, the clast support envelope is defined as the three-dimensional surface where the 
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vertical component of the plume velocity field equals the terminal velocity    of the clast 

(Fig. 5.1). Solving the equation                 for the unknown radius      at a given 

height z, we find: 

        √   {
 

  
 
[

   

      
              ]}  

 

(5.6) 

As shown in Fig. 5.1, atmospheric winds strongly affect the shape of the envelope.  

 

5.2.3  Particle sedimentation 

Depending on the use of the model, i.e. for nomogram compilation (inversion mode) or 

for running single eruption scenarios (forward mode) (see Fig. 5.2), particles are 

respectively released from selected points (the most downwind and crosswind locations 

on each envelope ring) or from random points uniformly distributed on the surface of 

the envelope. We determine the maximum deposition distance along the downwind and 

crosswind axes. Initial velocities are set equal to zero and each trajectory is described in 

a fixed (inertial) frame of reference with the origin situated on a release point on the 

support envelope and the axes oriented as shown in Fig. 5.1.  

A Lagrangian tracking is applied to determine clast trajectories in the atmosphere. The 

second law of motion is solved considering the effects of drag and gravity:  

  

  ⃗⃗  
 

  
            

 

(5.7) 

where        
 

 
      | ⃗⃗  

    ⃗⃗  |  ⃗⃗  
    ⃗⃗      ,         ,   is the projected area of the 

clast with a diameter    (  
 

 
  

 ),  ⃗⃗  
  is the velocity of clast i,  ⃗⃗   is the velocity of the 

surroundings and    is the mass of the object. At each time step, the drag vector is 

evaluated and then decomposed along the Cartesian axes in order to solve the motion in 

three-dimensional space. A more detailed analysis of the global forces acting on a clast in 

the atmosphere can be found in de' Michieli Vitturi et al. (2010). We can assume that the 

forces that depend on the density ratio between solid particles and air (buoyancy and 

virtual mass term) and on the history of the trajectory (Basset force) are negligible. The 

solution of Eq. (5.7) requires an expression for the drag coefficient    and the 



 150 

surroundings  ⃗⃗   along the particle trajectory. The drag coefficient is specified from the 

parameterization proposed by Bagheri and Bonadonna (2016) for non-spherical 

particles, which ensures a reduced average error of about      with respect to the 

observed data (see Appendix E.1). The velocity field outside the volcanic column and 

umbrella cloud is determined by the atmospheric wind. Within the umbrella cloud, there 

is the additional contribution of gravitational spreading. Following CS86 and BPH11, we 

constrain the umbrella cloud region between the NBL and the top of the plume. The 

alternative description of gravity current spreading around NBL, e.g. between a 

minimum and maximum height of           and           (Bonadonna and Phillips, 

2003) was also tested with no significant difference in the resulting sedimentation 

distances. For consistency with CS86, two distinct regions of sedimentation are defined: 

sedimentation above the NBL (where the radial velocity field of the gravity current 

dominates over wind advection; see section 2.4); sedimentation below the NBL (where 

the atmospheric wind is the only component contributing to clast lateral transport; see 

section 5.2.5). The resulting set of Ordinary Differential Equations (ODEs) is solved 

using the Matlab solver ode45, an explicit Runge-Kutta algorithm of 4th-5th order 

(Shampine and Reichelt, 1997).  

 

5.2.4  Gravity current above the Neutral Buoyancy Level (NBL) 

In the region around the NBL (i.e. the umbrella cloud) the density difference between 

the volcanic mixture and the atmosphere produces radial spreading as a gravity current 

(e.g. Johnson et al. (2015). For large eruptions, there is a first-order contribution of the 

gravity current to the total spreading rate of the umbrella cloud especially for proximal 

distances (Costa et al., 2013). The parameterization of the velocity of the gravity current 

    is commonly based on the mass conservation of the incoming mass per unit time 

from the volcanic column and the consequent spreading of the current (Sparks, 1986). 

In addition, a relationship between the thickness     and velocity of the gravity current 

can be defined based on scaling arguments (Bonadonna and Phillips, 2003). In both 

cases, this is mathematically consistent for distances greater than the plume radius at 

the NBL. For smaller distances, this approach overestimates the gravity-current velocity, 

and diverges to infinity when the distance approaches zero (Fig. 5.3). This aspect has 
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some impact on plume modelling that follows the approach of CS86, since clasts are 

often released from regions inside the plume and above the NBL. We propose a solution 

that comes from balancing the actual Mass Flow Rate      (MFR) entering a given 

section at the NBL. For an object located inside the plume radius, the radial velocity at a 

distance   is generated by the actual MFR entering in a cross section    , which tends to 

zero for    . If we assume that the velocity of the front of the gravity current scales as 

a function of the atmospheric buoyancy frequency   and a correction factor      

(            (Bonadonna and Phillips, 2003), we obtain:  

     (
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  (5.8) 

Eq. (5.8) represents a generalization of gravity currents for a Gaussian profile of the 

plume velocity and for any distance. A comparison of equation Eq. (5.8) with those 

presented in Sparks (1986) and Bonadonna and Phillips (2003) is shown in Fig. 5.3. The 

unrealistic high velocities commonly present in the previous works for small distances 

are replaced with a curve that drops to zero corresponding to a null radius. For        

the velocity calculated with Bonadonna and Phillips (2003) differs by about 7% from 

equation Eq. (5.8). This discrepancy tends rapidly to zero for increasing distances (Fig. 

5.3).  

 

Figure 5.3: Velocity of the gravity current as a function of the distance from the center of the umbrella cloud, 
according to CS86, Bonadonna and Phillips (2003) and the present work (Eq. (11)). Outside the NBL the 
parameterization of Bonadonna and Phillips (2003) and our model are the same, with the exception of an 
initial 7% of difference in correspondence of the NBL. The formula proposed in the present work avoids the 
mathematical singularity for a null distance. 
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5.2.5  Meteorological data  

We use a flexible structure for the accurate description of atmospheric conditions that 

can easily be modified. In the standard mode of operation, the code reads an Era-Interim 

dataset provided by the European Centre for Medium-Range Weather Forecasts 

(ECMWF) (Dee et al., 2011). This dataset can be easily downloaded using a modified 

version of the software TephraProb (Biass et al., 2016).  This mode of operation is used 

for all situations where complete meteorological information is available, namely for all 

eruptions that occurred later than 1979 (see Biass et al., 2016 for a more detailed 

description on the application of ECMWF data to volcanic eruptions). For all other cases, 

e.g. past and future eruptions, a default wind profile provided in CS86 is applied. This 

profile assumes zero velocity on the ground and a linear increase up to the tropopause 

height, where it has its maximum value      
   . It decreases linearly down to           

    in 

the stratosphere at a height    (Fig. 5.4b). Standard values of      
    are chosen following 

CS86. A default value of 20 km is attributed to   . However, a variation of    between 14 

km and 20 km does not affect significantly the final nomograms (the change in 

downwind ranges is less than   ). 

 

Figure 5.4: Comparison of our model with the models of CS86 and BPH11 for the same initial eruptive 
conditions and a no wind case. Initial conditions are the same of table 1 in BPH11. Red dots are points 
extrapolated from the nomograms of CS86, while the blue circles represent data of BPH11; the shadowed area 
in the plot describes the space of possible outcomes according to the present model. Particle size is 0.8 cm 
and particle density is 2500 kg/m^3. (b) Typical wind profile used in the nomograms. H_T is the height of the 
tropopause and H_S is the height at which the wind profile is constant.      defines the maximum value of the 
wind at the tropopause. 
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5.3 Comparison with existing models and field observations 

 

5.3.1  Comparison with existing dispersal models 

Our new model is compared against the results of BPH11 (cf. Fig. 5.2 of BPH11) (Fig. 

5.4). The maximum plume centreline height is expressed as a function of the maximum 

downwind range for particles with a diameter of 0.8 cm, a density of           , and 

no wind. The ranges of parameters investigated covers the same ranges as in BPH11 (cf. 

their Table 1). Four quantities are varied: initial radius, gas mass fraction, initial velocity 

and temperature. Particles are released from the entire column with no preferential 

release point on the envelope. Fig. 5.4 shows a general agreement between our model 

and previous works, with two main differences: slightly smaller downwind distances for 

plume heights less than        and a wider variability of the heights for a fixed 

downwind distance. In our model, this last aspect can be explained due to the complex 

combination of radial spreading above the NBL and the effect of the initial radius on the 

exit velocity of the column.  As a result, an envelope wider in horizontal extension but 

smaller in height can produce the same downwind distance as a much higher, but 

narrower, plume. This variability can be strongly reduced if eruptive scenarios are 

identified, so that eruptions with very different initial radii are not clustered together 

(see following section).  

 

5.3.2  Comparison with field data 

The comparison with field data is carried out based on two different procedures. First, 

isopleth contours computed with our new model for a given size and density are 

compared with field observations (i.e. values of the largest clasts) of selected tephra 

deposits. Second, we compare observed plume heights for selected eruptions with the 

plume height predicted by our new nomograms. 
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5.3.2.1 Comparison between computed isopleth contours and 

field observations  

Three eruptions with different values of   have been selected to explore the effect of 

wind intensity on the sedimentation process. In particular, the eruption of Pinatubo 

1991, Philippines (Rosi et al., 2001) was characterized by both intermediate winds and 

strong plume (     ); the 1980 eruption of Mount St Helens, USA (Carey et al., 1990) 

was characterized by strong wind and a transitional plume (     );  the 2011 eruption 

of Shinmoedake, Japan, was characterized by a strong wind and a weak plume 

(        (Maeno et al., 2014). For all the three cases, we have used ECMWF 

meteorological data that are closest in time to the recorded date of the eruption. ECMWF 

provides data at 6-hour intervals (Dee et al., 2011). In this section, computed isopleth 

contours are compared with ground locations of the observed largest clasts. Ideally, we 

would expect computed isopleth contours associated with a given size to be outside (i.e. 

to contain) all locations of the observed largest clasts of the same size or larger and the 

maximum downwind and crosswind distances to match with the theoretical ones. 

However, a probabilistic approach is necessary since the maximum travelled distance of 

a clast is very sensitive to fluctuations in the eruptive parameters that are poorly 

constrained. Initial conditions are randomly picked from a uniform distribution within a 

given range (see table E.4.1 in appendix E) and the values of MFR are chosen to recreate 

the plume heights reported in the literature. This probabilistic approach allows 

confidence intervals to be defined in the explored parameter space. Two thresholds of 

5% and 95% are identified to compare independent field data and computed isopleth 

contours. Particle sizes used in the simulations are specific for each eruption. 

 

Mount Pinatubo 1991, strong plume 

The 1991 eruption of Mount Pinatubo, Philippines, is one of the largest eruptions that 

occurred in the 20th century (Holasek et al., 1996). During the 15th-16th of June, the 

plume reached the height of about 40 km above sea level (a.s.l.) (Rosi et al. 2001). This 

climactic phase is an example of a strong plume since the wind did not significantly 

affect the rise of the volcanic column. The range of initial conditions and parameters 

used for this set of simulations are reported in Table S1. Three sizes of lithic clasts are 
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considered: 0.8, 1.6 and 3.2 cm to compare with the published data based on the average 

of the maximum dimension of the five largest clasts (Rosi et al., 2001). Fig. 5.5 shows a 

good agreement between modelled isopleth contours and field data. In particular, 

particles of 0.8 cm and 1.6 cm are all contained within their own confidence interval, 

which suggests a correct estimation of the downwind and crosswind distances. Results 

for the 3.2 cm particles tend to overestimate the sedimentation distance with respect to 

observations. The discrepancy can be due to the fact that the height of the clast support 

envelope for 3.2 cm particles matches the height at which wind abruptly changes 

direction. In the probabilistic approach, the simulations with a clast support envelope 

above the height of change in wind direction smooth this sharp threshold. As a result, 

the strong wind shear produces a mismatch between model and observations for this 

particular size.  

 

Figure 5.5: Mount Pinatubo, 1991: comparison of field data points (in cm; red dots) with computed isopleth 
contours (red lines) with confidence levels of 5% and 95%. Isopleth contours are computed for the following 
lithic sizes: a) 0.8 cm b) 1.6 cm c) 3.2 cm. 
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Mount St Helens 1980, transitional plume 

On 18 May 1980, a Plinian eruption occurred at Mount St Helens (USA), (Carey et al., 

1990). Four distinct phases were identified for the entire eruption: B1 and B2 phases 

associated with Plinian fallout; B3 phase, characterized by a pyroclastic density current 

(PDC) and associated co-PDC plumes; and B4 phase, characterized by a Plinian column 

up to 19 km a.s.l. (Carey et al., 1990). The comparison of our model is done with the 

lithic clasts (1 cm in diameter) of the B2 phase as reported in (Carey et al., 1990) 

(associated plume height of 17 km a.s.l.).  This value is used as a reference for the 

simulations, leading to a reasonable MFR between              

 
 (Degruyter and 

Bonadonna, 2012; Pouget et al., 2013).  Fig. 5.6 shows a good agreement between 

computed isopleth contours for 1 cm sizes and field data with all the particles smaller 

than 1 cm plotting outside the confidence region.   

 

Figure 5.6 : Mount Saint Helens, 1980: comparison of field data points from the B2 phase (in cm; red dots) 
with computed isopleth contours (red lines) with confidence levels of 5% and 95%. Isopleth lines are 
computed for lithics with 1 cm of diameter. 
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Shinmoedake 2011, weak plume 

Three sub-Plinian eruptions occurred at Mount Shinmoedake, Japan, at 2.30 pm (LT) of 

the 26th January 2011, at 2 am (LT) of the 27th January 2011 and at 3.40 pm (LT) of the 

27th January 2011 (Maeno et al., 2014). During each of the three eruptions, the volcanic 

column reached an observed height of about 7 km above the vent (Maeno et al., 2014). 

The wind blew strongly towards southeast with a maximum intensity of 70 m/s at the 

tropopause (Suzuki and Koyaguchi, 2013). A sequence of meteorological profiles has 

been used to cover the time span from the onset to the end of the eruptive period. The 

observed largest clasts were determined based on the average of the 3 dimensions of the 

five largest clasts in a depositional plane of 0.5 m2 at each outcrop (Maeno et al., 2014). 

The rapid increase of the eastward component of wind with height, combined with a 

major role of the gravity current for larger eruptions, results in a complex shape of the 

isopleth lines. However, the computed contours are generally in good agreement with 

field observations (i.e. pumice clasts of 0.9 cm in diameter; Fig. 5.7). 

 

Figure 5.7: Shinmoedake, 2011: comparison of field data points for the three eruptions of 26th-27th of 
January 2011 (in cm; red dots) with computed isopleth contours (red lines) with confidence levels of 5% and 
95%. Isopleth lines are computed for lithics with 0.9 cm diameter. 
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5.3.2.2 Comparison with observed plume heights based on 

the new nomograms 

Following CS86, the resulting 3D plot showing downwind range vs. crosswind range vs. 

plume height is summarized in a 2D plot, i.e. the nomogram, where predefined height 

values are identified interpolating and extrapolating the information from the existing 

points (see Table S2 for eruptive conditions). Following CS86, meteorological 

parameters are described as a function of tropopause height and a default wind profile 

is expressed as a function of the maximum velocity at the tropopause. Four values of the 

wind velocity at the tropopause (     
   ) have been investigated: 0, 10, 20 and 30 m/s. 

Four sizes are initially considered for particles with a density of 2500 
  

  : 0.8 cm, 1.6 cm, 

3.2 cm and 6.4 cm (and aerodynamic equivalent for different particle densities).  

Particles are assumed to be spherical, i.e. with flatness and elongation equal to one. We 

also consider the standard atmospheric profile, i.e. with a tropopause height of 11 km, a 

surface temperature of 288 K and an average adiabatic lapse rate of the temperature in 

the troposphere of           (Champion K. S. W., 1985). However, we discuss the 

effects particle shape and of arctic and tropical atmospheric profiles on the final 

nomograms in Appendices E.1 and E.2. Three main eruptive scenarios are defined for 

the compilation of nomograms mostly based on MFR and initial plume radius: low 

intensity, with radii less or equal to 50 meters; intermediate intensity, with radii 

comprised between 50 and 200 meters; high intensity, with radii comprised between 

200 and 500 meters (see Table E.4.1 in Appendix E for more details). The choice of these 

three scenarios is in line with the three case studies considered: the low intensity 

scenario can be applied to events similar (or smaller) in MFR and boundary conditions 

to the 2011 eruption of Shinmoedake volcano, Japan; the intermediate intensity scenario 

can be applied to events similar to 1980 eruption of Mount St Helens, USA; the high 

intensity scenario can be applied to events similar or larger than the 1991 eruption of 

Mount Pinatubo, Philippines. The identification of plume scenarios helps differentiate 

eruptions associated with similar downwind and crosswind ranges but different initial 

conditions (i.e. mostly plume radius and MFR). As a matter of fact, the final deposition 

distance is a complex function of the shape of the clast support envelope and the 

sedimentation trajectory above and below the NBL. Two eruptions with different MFR 

and vent radii can be characterized by different envelopes but not necessarily by 
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different downwind and crosswind distances, if the effects of the gravity currents and 

the wind are considered. The use of three nomograms (associated with the three 

scenarios of initial eruptive conditions) for each particle size reduces considerably the 

uncertainties associated with the identification of plume height, if some constraints on 

the eruption are a priori known, such as expected intensity (small, intermediate or high) 

based on geometry and extension of isopleth and isopach maps. The comparison 

between the results obtained with the new nomograms, the CS86 nomograms, and 

observed heights is summarised in Table 1. In general, observed and predicted values 

show a good agreement: the relative differences between observed plume heights above 

the vent and predicted values are between a maximum value of 40%-50% for 

Shinmoedake and a minimum value of   % for Mount St Helens, with an average value 

of 16%. We refer to this last value as an indicator of the global uncertainty of the model. 

However, it is worth stressing that nomograms are compiled with no topography. If the 

difference in height    between vent location and collected field data is not negligible 

with respect to the column height, this would result in an overestimation of the 

predicted plume height using nomograms. In fact, a higher plume is required to produce 

the same sedimentation distance. We can notice that adding    to the plume height 

relative to the vent considerably reduces the relative error for Shinmoedake to 20-30%. 

For a fixed intensity scenario, nomograms are obtained averaging the outcomes of 

simulations with different initial plume radii, as in Table E.3.1 (Appendix E). This 

process unavoidably produces a set of different plume heights for a given pair of 

downwind and crosswind ranges in the nomogram. We quantified this variability 

evaluating the average, the minimum and the maximum plume heights for several pairs 

of downwind and crosswind ranges. The difference of maximum and minimum heights 

has been normalized to the average. Finally, we took the median of all the relative 

differences as a good unbiased indicator of the variability in a nomogram. We found that 

low intensity scenarios have smaller values of variability       respect to 

intermediate        and large intensity ones       . A crucial aspect is that plume 

height computed with the new nomograms are lower between 8% and 30% than those 

obtained with CS86 (Tab. 5.1). As expected, this is due to the contribution of the tilted 

envelope on the sedimentation distances. Tilted envelopes can produce significant 

sedimentation distances even for small plume heights. However, in CS86 remarkable 

values of downwind ranges are uniquely associated with remarkable plume heights. Any 
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contribution of the initial position along the downwind axis for clast released from a 

tilted envelope is not taken into account. For most eruptions the intermediate scenario 

produces the best result. This is not surprising since this scenario spans a range of vent 

radii that is typical for most steady, explosive volcanic eruptions. The observed plume 

height for Mount Pinatubo                     is in between the predictions of the 

intermediate scenario                     and the large one                    . 

Consequently, we can deduce that the large scenario is representative of very large 

events (e.g. ultra-Plinian eruptions), even larger than the 1991 Pinatubo eruption. This 

consideration should facilitate the practical use of the nomograms of Figures 5.8 and 5.9 

(i.e. the intermediate scenario could be applied in most cases). 

 

Figure 5.8: Nomograms for lithics of 1.6 cm of diameter and aerodynamically equivalent combinations of size 
and densities for 3 eruptive scenarios: low, intermediate and high intensity. Dashed lines represent pairs of 

points characterized with same values of maximum wind at the tropopause       
    .  
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Figure 5.9: Nomograms for lithics of 3.2 cm of diameter and aerodynamically equivalent combinations of size 
and densities for 3 eruptive scenarios: low, intermediate and high intensity. Dashed lines represent pairs of 

points characterized with same values of maximum wind at the tropopause       
    . 
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5.4 Discussion 

 

5.4.1  Advantages of the new model 

The approach presented in this paper proposes a step forward in the methodologies of 

CS86 and BPH11. The first significant advantage is the use of tilted envelopes in 

presence of weak and transitional plumes (see Degruyter and Bonadonna (2012) and 

Bonadonna et al. (2015) for more detail on the characterization of weak and transitional 

plumes). If we compare the nomograms calculated in this study with those of CS86, we 

notice that the straight lines representing plumes with a fixed height are now replaced 

by bent curves that rise as the downwind range increases. Eruptions characterized by 

downwind range larger than the crosswind range are generally attributed to lower 

heights with respect to CS86. However, weak and transitional plumes are characterized 

by a non-negligible bending of the column along the wind direction. Therefore, particles 

may be released from the plume at a significant distance from the vent. As a result, large 

downwind ranges could be erroneously attributed to significantly higher plumes if the 

effect of the wind on the column is ignored. Second, both the computation of particle 

sedimentation trajectories and the coupling with complex meteorological data are novel 

implementations. In the new model, the full equation of motion is solved for each 

particle, i.e. sedimenting particles do not immediately move at their terminal velocity. In 

addition, for eruptions that occurred after 1979, the model can take advantage of three-

dimensional meteorological profiles, time and space dependent. For historical eruptions, 

a standard wind profile is adapted to the entire grid following CS86. This 

implementation allows also for the description of dynamic wind profiles for long-lasting 

eruptions (e.g. 2011 Shinmoedake eruption; Fig. 5.7).  Third, even though the 

nomograms have been compiled for spherical particles, the new model can also account 

for the effect of particle shape on settling velocity. In particular, the description of the 

drag coefficient used in the new model allows for the description of particle flatness and 

elongation as specified in Bagheri and Bonadonna (2016). In their work the authors 

show that for a given particle Reynolds number the drag of non-spherical particles is 

generally higher than an equivalent sphere. Therefore, non-spherical clasts are expected 

to have lower terminal velocities and longer sedimentation distances along the 

downwind and crosswind axes with respect to spheres. However, an exhaustive 
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discussion on the role of particle shape on the computation of isopleth contours is 

outside the aims of the present work. A brief example of the effects of different values of 

flatness and elongation is discussed in Appendix E.1. Finally, the new theoretical 

framework has been implemented as a Matlab package. The user can visualise the 

envelopes, the sedimentation paths, and isopleth contours. The input parameters are the 

initial eruptive conditions and the number of particles of a selected released size. The 

downwind and crosswind distances used for the compilation of nomograms are 

determined from the modelled isopleth contours. CS86 is prevalently used to invert the 

plume height based on crosswind and downwind distances. However, the model can 

have multiple applications. As an example, a forward use of the model allows for the 

compilation of probability maps required in hazard assessments (e.g. Osman et al. 

2018).  

 

5.4.2. Using the nomograms 

Isopleth maps are compiled based on the distribution of the largest clasts observed at 

various distances from the vent. The two most common statistical strategies used to 

characterize the largest clasts are the average of the five largest clasts and the median 

value of a given population (e.g. Bonadonna et al. 2013). Osman et al. (2018) have shown 

that modelled isopleth contours as those presented here and in CS86 can be better 

compared with the arithmetic average of the geometric mean of the three axes of the 

five largest clasts. In addition, the collection of sub-spherical clasts is recommended for 

the application of standard nomograms, as they have been compiled based on the 

assumption of spheres. We present nomograms for a temperate climate zone, six 

densities, and three eruptive scenarios. However, eruptions may occur at almost any 

latitude and the characteristics of the clasts may not coincide with those considered in 

the nomograms. In Appendix E.2, we show how the application of nomograms of Fig. 5.8 

and 5.9 to different latitudes can bring up to      additional error in the estimation of 

height. For higher accuracy, it is recommended to apply the provided Matlab package to 

specify more appropriate topography, meteorological profiles, particle density and 

particle shape.  
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Eruption 

Observed 

plume height 

above the vent 

(km) 

Observed plume 

height relatively 

to the altitude of 

the downwind 

range location 

(km) 

Predicted 

plume height 

(this work) 

(km)  

Predicted 

plume height 

(CS86) 

 (km) 

Calbuco 2015  

 

15 (1) 16.5 17 (7) 18 (7) 

Mount Saint Helens 

1980 

15 (3) 17 (B2 phase)  15 21 

Pinatubo 1991 39 (4)     37-42 >43 

Santamaria 1902 24-26 (5) 26-28  27 34 

Shinmoedake 2011 7.3 (6) 8.4  10-11 8.6 

Askja 1875 - - 17-22 26 

Fogo A - - 30.5 35 

Fogo 1563 - - 16 18.5 

Pululagua 2450 BP - - 31 34 

Tarawera 1886 - - 30 34 

 

Table 5.1: Comparison between observed plume height and prediction using our new nomograms and those 
of CS86. The observed plume height in the third column is considered relatively to the altitude of the extreme 
point of the downwind range (which is comparable to the height predicted by the nomograms). Observation 
techniques and references for observed plume heights: (1)(2) Radar observation, Vidal et al., (2017) 
(observations related to the 1st plume of Calbuco 2015, i.e. corresponding to Layer 1 of Castruccio et al. 
2016); (3) Radar observations,  Carey et al. (1990); (4) Satellite observation, Holasek et al. (1996); (5) Visual 
estimation, Anderson (1908); (6) Satellite observation, Maeno et al. (2014); (7) This prediction is based on 
the isopleth contour of 5 cm scoria clasts with a density of            (Castruccio et al., 2016; Layer 1) and 
our nomogram for particles with 5.3 cm and density of           . The Calbuco 2015 eruption was not 
reported in the nomograms since clast size and density from field data do not perfectly match the 
combinations available in the plots. In this situation the methodology provides an upper or lower limit of the 
expected plume height, depending on the difference between the terminal velocities of the clast in the 
nomogram and the clast collected in the field.  
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5.4.3 Caveats 

The main caveats of the presented model need to be discussed in order to assure a 

current application of the proposed methodology. First, the assumption that the effects 

of the atmospheric winds on the umbrella cloud are negligible compared to the gravity 

current leads to an overestimation of the upwind axis of the isopleth contours and an 

underestimation of the downwind distance. This approximation holds for large 

eruptions, where the velocity of the radial spreading is higher, but it is not necessarily 

verified for small ones (i.e. plume height < 10 km). However, the role of the gravity 

current on the sedimentation process with respect to the role of wind in the free 

atmosphere becomes less important as the plume height    decreases, given that the 

thickness of gravity current scales as              (Bonadonna and Phillips 2003). 

Second, the value of the wind       in Eq. (5.2) (taken at the central axis of the plume) is 

assumed to depend only on the height   and not on the radial coordinate  . We can 

quantify the error that this assumption brings into Eq. (5.4). For a linear expansion of 

wind around its value along the central axis (              ), our approximation 

neglects the term    
 

 
            in Eq. (5.4). For example, if we consider a 

typical wind profile as in CS86, the relative importance of the variation of wind velocity 

along the radial axis can be quantified as  
         

 
. From this relationship, it follows that 

our approximation is exact when       (strong plumes and the initial part of weak 

plumes). However, by definition, weak plumes are characterized by lower exit velocity 

at the vent, a reduced radial entrainment and thus a slower increase of the radius 

respect to strong plumes for a fixed height. This produces 
 

 
   in most parts of the 

volcanic column for a weak plume, as also confirmed by the simulations with the one-

dimensional plume model. We can thus deduce that our approximation holds for the 

most part of the column, with the exception of the upper part for weak plumes.  

Finally, the drag formula of Bagheri and Bonadonna (2016) is derived under the 

assumption of laminar conditions in the upstream flow. We found that its application in 

a turbulent environment, i.e. inside the plume region, leads to an underestimation of the 

final maximum sedimentation distances of about 5% for low intensity scenarios, 3% for 

intermediate and less than 1% for large ones.  
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5.5 Conclusions 

The present work introduces a new versatile and comprehensive methodology to 

determine plume height and wind speed from the distribution of the largest clasts 

around the volcano. The original approach of CS86 has been revised, generalised and 

modified to include important aspects of plume dynamics and particle sedimentation:  

 

1. The effect of wind advection on the shape of the clast support envelope. 

2. A new parameterization of the radial spreading of the umbrella cloud to avoid 

unrealistic velocities for distances smaller than the plume radius (which is where 

clast support envelopes are constructed). 

3. The effect of the atmospheric structure at different latitudes on plume dynamics. 

4. The effect of particle shape on particle sedimentation (clasts are described in 

terms of their flatness and elongation). 

5. Three-dimensional ECMWF meteorological fields for eruptions after 1979.  

6. Three-dimensional topography that allows tracing realistic isopleth contours on 

the ground. 

7. The uncertainties related to the use of the nomograms are quantified.  

 

For complex eruptive conditions and atmospheric conditions, the reader is 

recommended to apply the provided Matlab script to determine the associated plume 

height. However, for an easy application of the strategy, a set of 6 nomograms for three 

eruptive scenarios (low, intermediate and high intensity scenarios), 2 particle sizes (1.6 

and 3.2 mm), density of 2500 kg/m3, temperate latitude and spherical particle shape are 

presented. A set of aerodynamical equivalent sizes are also indicated for densities 

between 250-2500 kg/m3. Discrepancies associated with tropical and arctic latitudes 

(between 7-20%) are also discussed in Appendix E.2.  

Based on our analysis, we can conclude that: 

1.  Wind advection on plume rise results in bent clast-support envelopes, and, 

therefore, in a non-linear relationship between plume height and particle 

sedimentation, which requires the introduction of three eruptive scenarios for 

the compilation of nomograms. 
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2. For a given downwind distance, neglecting the role of the wind on clast-support 

envelops overestimates the plume height.  Due to the effect of bent columns, 

heights of weak plumes estimated with the new nomograms are generally lower 

than those calculated with the CS86.  

3. The effect of particle shape on particle sedimentation results in downwind 

distances 36 to 70% larger than the equivalent spheres.  

4. The effect of atmospheric structure at different latitudes on plume dynamics is 

more significant for weak and transitional plumes than for strong plumes; 

discrepancies between plume height estimates at tropical and arctic latitudes 

with respect to temperate latitudes are between 7% and 20%. 
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Appendix E.1 – Effects of clast shape on the computation of 

isopleth contours 

The nomograms of section 5.3.2.2 are evaluated assuming spherical particles. However, 

the Matlab package associated with this study allows the use of non-spherical shapes in 

the evaluation of terminal velocities and thus in the final isopleth lines. The aim of this 

appendix is to provide an example of the influence of clast shapes on the downwind and 

crosswind ranges. We adopted the drag coefficient for irregular particles provided by 

Bagheri and Bonadonna (2016) that takes into account the effect of flatness and 

elongation on the drag. The form factors flatness fl and elongation el are expressed as a 

function of the longest (L), the intermediate (I) and the shortest (S) length of the particle 

(   
 

 
;    

 

 
). These three parameters can be measured with the low operator-

dependent error following the so-called projection area protocol (Bagheri et al., 2015). 

The drag coefficient is expressed as: 

    
  

   
    (         (    

  

  
)
   

 )   
       

               ⁄  ⁄
 

 

(Eq.E.1.1) 

The drag coefficient is a function of the particle Reynolds number     and two numbers 

associated with the shape of the objects: the Newton’s drag correction  

            (            )    and the Stokes’ drag correction  

   
 

 
 (  

   
   

    
) . We use simplified expressions to relate    and    with the 

flatness and elongation of the particle. Using Table 8 in Bagheri and Bonadonna (2016), 

we have            and          . As an example, we discuss the application to the 

tephra deposit associated with the 1980 eruption of Mt St Helens. Initial parameters are 

fixed and selected from one of the combinations reported in Table E.3.1 (see appendix 

E.3). We consider particles with a geometric diameter of 1 cm and four different shapes: 

spherical (       ), disk-like (           ), needle-like (           ) and 

intermediate (         ). According to Fig. E.1.1, the sedimentation of non-spherical 

particles results in larger downwind and crosswind ranges with respect to the 

sedimentation of spherical particles. In particular, needle-like and disk-like shapes can 

have downwind distances that are 36% and 70% larger than those of spheres, 

respectively. Given that, for simplicity, nomograms can only be constructed based on the 
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spherical assumptions, particular attention should be given when applied to very 

irregular clasts. As a rule of thumb, the flatter the clast the larger the distance travelled, 

and plume height could be underestimated.  For best results in the determination of 

plume height, we recommend collecting sub-spherical clasts for the compilation of 

isopleth maps (e.g. Bonadonna et al. 2013). Alternatively, in case most available clasts 

are irregular, the direct use of the proposed script (where particle flatness and 

elongation can be specified) is recommended instead of using nomograms.  

 

Figure E.1.1: Effect of particle shape on the sedimentation distances for lithics with a diameter of 1 cm. 
Four different shapes are investigated: spheres (   =    =1), disk-like (   =0.1;    =1), needle-like (   =1,    
=0.1) and intermediate (   =    =0.5).  
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Appendix E.2 – Effects of different climate zones on the use of 

the nomograms 

Plume rise depends on the density differences between the gas mixture and the 

atmosphere and thus, ultimately, on the atmospheric temperature. Different 

atmospheric profiles, notably different tropopause heights and temperature profiles, 

will affect both plume dynamics and sedimentation processes. This appendix provides 

an estimation of the error associated with using the nomograms provided in this study, 

evaluated for a temperate profile, for eruptions characterized by different atmospheric 

profiles. We tested two alternatives: a tropical profile, defined for latitudes between the 

23rd parallels north and south of the equator with a tropopause height of 15 km, a 

surface temperature of 293 K and a moist adiabatic lapse rate in the troposphere of 

         . An arctic profile, defined for latitudes situated poleward from the 66th 

parallel, with a tropopause height of 8 km, a surface temperature of 273 K and a moist 

adiabatic lapse rate in the troposphere of        . Tropopause heights as a function of 

the latitude are reported in Shapiro et al. (1987). Assuming the same wind profile as in 

CS86, for a maximum wind velocity at the tropopause of        the increase of wind 

velocities with height in the tropopause is faster in the Arctic region (         ) than in 

the tropical one            . Tests show that for the same initial conditions the arctic 

profile generally produces lower plume heights with respect to the standard and 

tropical profiles. However, the broader shape of the envelope under arctic conditions 

results in slightly larger sedimentation distances. In the following discussion, we refer to 

the heights provided by the plume model as the model height       and those evaluated 

with the nomograms as the nomogram height      . The match between the model and 

the nomogram height provides an indication of the error associated in using nomograms 

with different atmospheric profiles with respect to the standard temperate. Tables E.2.1 

and E.2.2 show the differences    in percentage between the benchmark and the 

predicted height for the arctic and tropical profile, respectively              

|
       

   
| . We notice that high intensity scenarios are less affected by the choice of the 

atmospheric profile         than low and intermediate intensity scenarios 

          . The large MFR and initial radii reduce the relative importance of the 

atmosphere on the plume rise height.  It is worth stressing that the uncertainties 
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introduced by atmospheric conditions should be added to the intrinsic uncertainties 

associated with the model if nomograms are used for eruptions not located at a 

temperate latitude. 

Size 

(mm) 

Intensity 

scenario 

   (%) 

Wind @ tropopause(m/s) 

0 10 20 30 

16 Low/Intermediate 8% 10% 16% 12% 

16 High 5% 6% 5% 7% 

32 Low/Intermediate 18% 18% 20% 20% 

32 High 5% 5% 6% 5% 

 

Table E.2.1 Arctic atmospheric profile. Differences between plume height predicted using the 
nomograms of Figures 5.8 and 5.9 and plume heights computed with the integral plume model, 
expressed in terms of the quantity   . 

 

Size 

(mm) 

Intensity 

scenario 

   (%) 

Wind @ tropopause (m/s) 

0 10 20 30 

16 Low/Intermediate 13% 12% 16% 20% 

16 High 7% 7% 6% 7% 

32 Low/Intermediate 9% 11% 13% 16% 

32 High 8% 7% 7% 8% 

 

Table E.2.2 Tropical atmospheric profile. Differences between plume heights predicted using the 
nomograms of Figures 5.8 and 5.9 and plume heights computed with the integral plume model, 
expressed in terms of the quantity   . 
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Appendix E.3 – Range of initial conditions used for the 

comparison 

The validation process of the model is based on the comparison between field data and 

computed isopleth lines. However, the determination of the isopleth lines is strongly 

influenced by the actual maximum Mass Flow Rate (MFR) of an eruption. This value 

depends on the fluctuations that occur during the eruption and thus it can differ from 

the MFR reported in the literature. Moreover, several additional parameters influence 

the shape of the clast support envelope and clast sedimentation, such as the initial 

plume radius, the initial mass fraction of solid particles, plume temperature, the shape of 

particles. All these values are usually not easily constrained and a probabilistic approach 

is preferred in order to span the outcome of a given eruption. In table E.3.1 we report 

the range of initial conditions used for the validation of the model. Three eruptions are 

used in this phase: the 1991 Pinatubo eruption, Philippines; the 1980 Mount St Helens 

eruption, USA; the 2011 Shinmoedake eruption, Japan.  

 

Table E.3.1 – Range of initial conditions used for the validation of the model.  

Eruption MFR 

(Kg/s) 

Plume 

temper

ature 

(K) 

Elongation 

or 

Flatness 

Particles 

density 

(kg/m^3) 

Mass 

fraction 

solid 

(%) 

Radius 

(m) 

N 

Simulation

s 

Pinatubo 0.8-1.2 

1e9 

1100 - 

1400 

0.5-1 2600-2700 95-97 200-500 200 

MSH 0.7-1 

1e8 

1100 - 

1400 

0.5-1 2600-2700 95-97 50-200 200 

 

Shinmoe- 

dake 

 

1-4 

1e6 

 

1100 - 

1400 

 

0.5-1 

 

1100-1300 

 

95-97 

 

25-50 

 

100 
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Appendix E.4 – Definition of the eruptive scenarios 

 

Scenario Radius 

Low intensity        

Intermediate intensity              

Large intensity               

 

Table E. 4.1. Definition of the three eruptive scenarios applied to the compilation of the nomograms of Figures 

5.8 and 5.9 

 

Appendix E.5 – List of mathematical symbols of chapter 5 

Table E. 5.1. Definition of mathematical symbols used in chapter 5 

Symbol Definition Unit 

  Projected area (  
 

 
    of a single clast    

  Gaussian width parameter 
  

       

   Specific heat capacity of the air           

   Specific heat capacity of the mixture           

   Drag coefficient - 

   Zero-order coefficient of the Taylor series expansion for wind 

velocity as a function of the radial coordinate  

  

      

   First-order coefficient of the Taylor series expansion for wind 

velocity as a function of the radial coordinate  

  

    

   Clast diameter   

    
    Volumetric flow rate      

   Clast elongation    
 

 
 - 
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       Drag force   

    Gravitational force   

   Clast flatness    
 

 
 - 

  Gravitational acceleration       

    Height of the gravity current   

     Height of the Neutral Buoyancy Level (NBL)   

    Maximum height of the plume used as benchmark for testing the 

effect of different latitudes 

  

    Maximum plume height predicted by the nomograms    

   Height in the stratosphere where the CS86 wind profile assumes the 

constant value of           
    

  

   Height of the tropopause   

  Intermediate length of the clast   

   Error in the Gaussian velocity profile of Eq.5.4 assuming a wind 

profile that not depends on  .  

   holds under the hypothesis of a linear relation for wind velocity 

and radial coordinate, i.e.                 

      

   Newton’s drag correction factor - 

   Stokes’ drag correction factor - 

  Longest length of the clast   

   Mass of a single clast    

  Atmospheric buoyancy frequency     

   Mass fraction of dry gas component - 

   Mass fraction of solid component - 

   Mass fraction of water vapour component - 

     Atmospheric pressure    

     Saturation pressure of water vapour Pa 

   Mass flux of dry air        

   Mass flux of solid phase        
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     Total mass flux                      

   Mass flux of water vapour        

  Radial coordinate along plume radius   

   Relative humidity - 

  Top-hat radius of the plume   

   Gas constant of dry air              

     Radius of the clast support envelope   

    Particle Reynolds number - 

   Gas constant of the mixture              

   Gas constant of waer vapour              

  Curvilinear coordinate along the center-line of the plume   

  Shortest length of the clast   

   Plume temperature   

 ⃗⃗  
  Velocity of the i-esim sedimenting clast       

      Velocity of the entrained atmospheric air       

 ⃗⃗   Velocity of the surrounding fluid for a sedimenting particle       

   Gaussian profile of plume velocity       

  
  Maximum value of plume velocity at the center line       

    Velocity of the radial spreading of the umbrella cloud       

    Terminal velocity of an object       

    Top-hat profile of plume velocity       

      Modulus of wind velocity       

 ̅     Modulus of wind velocity       

     
    Maximum value of the modulus of wind velocity at the tropopause       

  East-ward coordinate in the Cartesian system of reference    

  North-ward coordinate in the Cartesian system of reference   

   Mass ratio of water vapor to air in the atmosphere - 
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   Mass ratio of water vapor to air under saturated conditions - 

  Vertical coordinate in the Cartesian system of reference   

     Maximum plume height   

   Entrainment coefficient along the axis of the plume - 

   Entrainment coefficient along the radial component of the plume - 

   Difference between the benchmark and the predicted height, 

normalized to the height of the benchmark, expressed as a 

percentage  

  

   Difference in height between vent altitude and the altitude of the 

field location at the downwind range 

- 

  Angle of the plume central axis respect to the ground     

  Geometrical correction factor for the gravity current  

    

- 

    
  Density of dry air        

    
  Density of water vapour        

   Bulk density of the plume mixture        

   Density of the clast        

   Density of the fluid surrounding the clast        

     Density of the gas phase        

   Density of the solid phase inside the plume model        

   Azimuthal wind angle     
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Chapter 6 

Concluding remarks 

 

 

In this thesis new methodologies for the study of ash sedimentation are presented, with a 

specific attention to particle aggregation and to the characterization of large clasts dynamics. 

First, a discrete solution of the one-dimensional Smoluchowski equation applied to a thermal 

plume model is discussed (chapter 2). Second, a complete mathematical description is 

introduced (chapter 3), where the solution of aggregation problems has been obtained in a 

general form.  Third, this new theoretical framework was combined with a 1-D steady state 

plume model in order to provide an exhaustive and versatile tool of investigation of ash 

aggregation processes within the eruptive column (Chapter 4). Finally, in chapter 5 an improved 

methodology for the study of large clasts sedimentation and their associated hazard assessment 

is presented.  

 

6.1 Application of a discretized solution of Smoluchowski 

equation to the study of a real eruption 

In chapter 2 a numerical solution of the one-dimensional Smoluchowski equation is 

combined with the equations governing time evolution of a thermal plume model. The 

main goal is to compare specific outputs of the model with observed quantities from 

field observations for weak Vulcanian eruptions occurred at Mount Sakurajima, Japan, 

between July and August 2013. The observations used in this chapter are reported in 

Bagheri et al. (2016). The internal parameter mass is sampled over a discrete set of 

values according to the Fixed Pivot technique (FP) (Kumar and Ramkrishna, 1996). The 

continuous Smoluchowski coagulation equation is discretized according to these bins 

and then coupled with the equations governing the solid phases mass flux inside the 

thermal. It results in a set of Ordinary Differential Equations (ODEs) that can be solved 

simultaneously to the plume equations. Sensitivity tests are performed in order to 

investigate the role of disaggregation in the gas thrust region, several mass fractions for 
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the each initial gas phase, the role of sticking efficiency on the final distribution. The 

sticking efficiency is assumed to follow the parameterization of Costa et al. (2010). As 

expected, it results that aggregation is very sensitive to the initial value of the mass 

fraction of the solid phase, since it influences particles concentration. Moreover, 

considering aggregation in the first parts of the plume leads to a sensitive 

overestimation of the number of the aggregates in the larger sizes. As a matter of fact 

disaggregation should also occur in this highly energetic region. However, the 

importance of this effect decreases rapidly with the distance from the vent. A key aspect 

of the study is represented by the timescale governing aggregation processes in a 

volcanic plume. This parameter is defined as the time a population needs to not evolve 

further due to aggregation processes and it can be easily compared with observed 

values. The initial TGSD assumed in this test has been set equal to the TGSD of a weak 

Vulcanian eruption occurred at Montserrat on the 18 of July 2008 (Cole et al., 2014). For 

the eruption under analysis, the time needed for the observed aggregates to form is 

about 180 s (Bagheri et al., 2016). The timescales    estimated from our model are 

reported in table 2.2 for four eruptive scenarios. Since the computed timescale is 

relative to all the possible aggregation events in the thermal, we can conclude that 

scenarios 1 to 3 are all a priori possible. A larger number of observations along the 

dispersal axis of the cloud are needed to better constrain the most realistic scenario. 

However this simplified approach demonstrates the possibility to successfully use the 

fixed pivot technique to study aggregation in volcanic environments.  

 

6.2 The Generalized Fixed Pivot Technique 

An innovative methodology to treat aggregation of complex objects is presented in 

chapter 3. We named this approach the Generalized Fixed Pivot Technique (GFPT). The 

GFPT is an extension of the Fixed Pivot method (FP) (Kumar and Ramkrishna, 1996) 

that allows treating aggregation of arbitrary properties. As a matter of fact, the original 

Smoluchowski Coagulation Equation (SCE) is based on a mass conservation balance 

(Smoluchowski, 1916). Only one single internal parameter is treated, mass. However, 

solid aggregates with the same mass may have different properties, such as their 

density. The need to characterize sedimentation processes in volcanic eruptions has led 
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to the creation of the GFPT. In the GFPT the population under analysis is described in 

terms of multiple arbitrary properties   {          }, internal properties of the final 

objects      and the balance equations are discretized following the FP procedure. The 

space of the internal parameters is subdivided in  -dimensional elements of arbitrary 

shape (cells), identified with a single internal point (pivot). The position of the pivots is 

rigorously fixed. The rigorous mathematical demonstration of chapter 3 states that the 

GFPT can be applied both to additive properties, such as mass, as well as to non additive 

ones, like density, porosity, colours. The final Ordinary Differential Equation (ODE) that 

governs the creation of objects in a given cell   can be written according to the GFPT as: 

      

  
        

 

(6.1) 
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The multidimensional matrix  (     )                    indicates the aggregation 

kernel,   the sticking efficiency,   the collision frequency. The quantities 

       (     )     are necessary to attribute newborn particles to the existing 

network of pivots. The definition of        (     )     is based on the a-priori 

conservation of     properties  , where usually      is the number of particles and 

               .   

∑      

  

   

(           )                      

 

(6.4) 

 

In chapter 3 two examples of application of the GFPT are discussed: the interaction of 

liquid paint droplets and the sedimentation in a vertical laboratory column. These 
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examples are thought to underline the great versatility and the high degree of 

abstraction of our formalism.  

 

6.3 Aggregation in volcanic plumes 

In chapter 4 the GFPT has been applied to the study of ash aggregation in volcanic 

plumes, where particle concentrations is thought to have its maximum value (Veitch and 

Woods, 2001). The main goal is to provide a coherent theory to describe the problem of 

aggregates with different densities. The strategy adopted can be summarised as follows: 

 Definition of mass and porosity as two internal parameters. 

 Definition of a bi-dimensional grid in the space of the internal parameters. 

 Evaluation of the weights        (     )     (Eq.6.4). 

 Definition of a relationship between the porosities of two colliding objects and 

the porosity of the resultant object. A simplified code to simulate virtual 

aggregates has been created. Literature formulae for the specific case of fractal 

objects are also provided. 

 Definition of one-dimensional steady-state equations for plume model. The 

scheme adopted in this work is a combination of (Woods, 1993), Woodhouse et 

al. (2013) and Folch et al. (2016). These schemes allows for an approximated 

parameterization of the relative humidity inside the plume. 

 Definition of the atmospheric profile and topography. 

 Modification of the mass fraction of the solid phase in order to take into account 

the creation of objects in the GFPT cell  : 

 

  
             

           
 
(6.5) 

Where    and    are given by Eq. (6.1), (6.2) 

Then for each  -step in the plume rise we evaluate: 

 Computation of the collisional velocity associated with each cell   that defines the 

quantity   in Eq. (6.2). 

 Computation of the sticking process in action as a function of the temperature 

and the relative humidity. This stage defines the quantity   in Eq. (6.2). 
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The above procedure is a complete and innovative recipe for the study of ash 

aggregation in volcanic plumes.  

We found that in a volcanic plume the main collision mechanism should be associated 

with the different reactions of particles to the turbulent vortexes. This mechanism, 

named the turbulent differential coupling, has been applied for the first time to volcanic 

plumes. As a matter of fact, the common description based on Saffman-Turner limit 

seems to be not easily verified in a volcanic context (Textor and Ernst, 2004). Moreover 

an alternative formulation of the gravitational collection kernel has been introduced in 

order to take into account the effect of the upward plume velocity as in Carey and Sparks 

(1986). Two main models for aggregate sticking have been adopted: a model for wet 

sticking (Ennis et al., 1991), and a model for dry sticking (Chen et al., 2015). As expected 

the dissipation mechanisms associated with wet sticking are at least one order of 

magnitude more efficient than those associated with dry sticking (i.e. adhesion and 

viscoelastic forces). The role of hygroscopy in ash aggregation has been taken into 

account as a possible mechanism to explain aggregation in sub-saturated plumes. It 

results that a hygroscopic water layer for a relative humidity of 95% (            ) 

can dissipate twice the collision kinetic with respect to dry aggregation.   

 

6.4 Sedimentation of large clasts 

A new strategy for the estimation of plume height based on the ground deposition of 

large clasts is presented in chapter 5. Our approach consists in a revised version of the 

methodology introduced by Carey and Sparks (1986) (here named CS method), where 

the effect of the wind on the eruptive column is now taken into account. Particles are 

released from the clast support envelope, internal regions of the plume where the 

terminal velocity of the objects equals the upward plume velocity. Their trajectories are 

then computed solving the full Newton’s second law. The complete procedure is 

implemented in a Matlab code that can be applied to single eruptions with a three 

dimensional topography and meteorological data. Running thousands of simulations 

with different meteorological conditions is then possible to relate the maximum 

downwind and crosswind distances with the height of the plume. This information is 

stored in a set of plots, nomograms, that allows for inverse process: determining the 
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height of the plume based on isopleth contour dimensions. One of the main limitations of 

the original CS method is that, neglecting the effect of wind advection on plume rise, it 

can rigorously be applied only to strong plumes. The new model avoids this restriction 

and it can be applied to all plumes, i.e. weak, transitional and strong plumes. Moreover 

three intensity scenarios are defined according to the initial plume radius    and the Mass 

Eruption Rate (MER): low intensity                   , intermediate intensity 

(                        ) and high intensity                         . 

This choice increases the accuracy of the predictions and is necessary because the effect 

of wind on plume rise makes the function between plume height and clast deposition 

non-linear. The most important outcome of the model is a new set of nomograms that 

can be used for every eruptive and meteorological condition. Table 5.2 shows that for 

increasing wind velocities the height associated with eruption is smaller, if compared 

with the CS nomograms. This interesting result is explained taking into account that part 

of the downwind distance of an object is now attributed to the tilted plume.  

Additional aspects are also investigated in chapter 5: the role of particle shape on 

sedimentation distance, a new parameterization of the gravity current,  and the effect of 

latitude on atmospheric profiles. Extreme particle shapes, such as needle-like and disk-

like, are characterized by downwind distances that can be up to 36% and 70% larger 

than those evaluated for spheres, respectively. For high intensity scenarios, we also 

estimated a relative error of 7% when using for high and low latitudes a nomogram 

calibrated for middle latitudes. However, the relative error rises up to a 20% for small or 

intermediate scenarios. This result reflects the property of large eruptions to be 

relatively less affected from the surrounding atmospheric profiles, if compared to 

smaller ones. A final consideration is the possibility to use  newly developed Matlab code 

to compile probability maps for the assessment of hazard associated with the 

sedimentation of large clasts. A recent application of this strategy for the hazard 

assessment at Mount Etna, Italy, can be found in (Osman et. al, submitted).  

 

6.5 Future perspectives 

Even though new comprehensive models have been presented for the characterization 

and parameterization of both particle aggregation and large clast sedimentation, more 
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investigations are required to have an exhaustive description of particle fallout during 

explosive volcanic eruptions. Relatively to the methodologies presented in this thesis, 

we cite five aspects that require further attention in the future. First, the theoretical 

framework for ash aggregation presented in this thesis is only a preliminary step 

towards a better understanding of ash aggregation. In order for this framework to be 

used operationally, it still needs to be validated, systematically tested and combined 

with additional field observations. In particular, dedicated field and laboratory 

experiments need to be set up in order to produce ad hoc data for model validation. 

Second, a more general algorithm is required in order to fully simulate aggregate 

porosities. Algorithms based on the minimization principles could be applied to the 

construction of more realistic virtual objects. Without the limitation of the basic 

algorithm presented here, the real population of particles observed on the surface of 

cored aggregates could be applied to virtual objects. This would result in a more reliable 

relationship between collisions and associated porosities. Third, a more efficient 

solution of the multidimensional aggregation equations is probably required for an 

operational use of the model. The increase in the dimensionality   of the problem scales 

as   , where   is the number of cells considered in the GFPT. This means that the use of 

more than three variables is practically impossible. An alternative solution can be 

derived from the method of moments (Marchisio and Fox, 2005). This methodology is 

based on the solution of bulk properties of the multidimensional distribution of particles 

 . This results in a tremendous speed up of the entire solution. The price is the loss of 

information on the details of density function  . Fourth, experimental investigations are 

needed to support the theoretical description of collisional frequencies and sticking 

efficiency adopted in this thesis. The experimental investigation should be focused in 

detail on the validation of Ennis and Chen models. Fifth, further extensions of the 

nomograms elaborated in this work should be proposed for particle shapes. We found 

that for extreme shaped objects the sedimentation distance are affected tremendously.  

Under a more general perspective, if we consider the future challenges associated with 

ash aggregation, a key aspect that emerges from this thesis is the importance of a 

multidisciplinary approach of the investigation techniques. In fact, field observations of 

cored aggregates at Sakurajima have been the main motivation to extend the theoretical 

framework into a multi-dimensional description. However, field observations require 

advanced techniques in order to capture an unbiased reconstruction of the phenomena. 
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In the recent past, the contemporary use of high-speed cameras and ash collectors 

revealed to be a promising tool of investigation for aggregation. Improvements can 

regard the addition of ash concentrations measurements in the cloud, using Optical 

Particles Counters (OPC), drones or aerostatic balloons, and a better way to preserve the 

structure of collected aggregates avoiding disaggregation. A better observation of 

natural phenomena results in a more defined constrain for theoretical models, 

improving their predictions. In turn, theoretical models can suggest new field and 

experimental investigations. As a matter of fact, one of the key points addressed in this 

thesis is the link between sticking processes and environmental parameters. The 

concept of dissipation of relative kinetic energy in a collision is as crucial as tricky to 

assess in field campaign. Laboratory experiments are the perfect tool to recreate 

observed conditions in controlled environments and to simplify the intrinsic natural 

complexities.  

These considerations show how the future of tephra investigations is thus related to a 

synergic approach between field, laboratory and theoretical studies. A multidisciplinary 

view of the problems triggers a virtuous circle, which in turn stimulates the progress in 

research and helps society in reducing the consequences of volcanic eruptions. The 

fragile coexistence of billions of people over a live and active planet requires the 

scientific community to be ready to measure up with new challenges, from new 

perspectives. 
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