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Abstract. In this paper we address the problem of high-dimensionality
for data that lies on complex manifolds. In high-dimensional spaces, dis-
tances between the nearest and farthest neighbour tend to become equal.
This behaviour hardens data analysis, such as clustering. We show that
distance transformation can be used in an effective way to obtain an em-
bedding space of lower-dimensionality than the original space and that
increases the quality of data analysis. The new method, called High-
Dimensional Multimodal Embedding (HDME) is compared with known
state-of-the-art methods operating in high-dimensional spaces and shown
to be effective both in terms of retrieval and clustering on real world data.

1 Introduction

The difficulty of analysing high-dimensional data, mainly at global level, is a
consequence of the relative equidistancy among distances. The effect of high
dimensions on pairwise distances was investigated in [1], [2], [5], [8]. Results
in [5] report that the distance from a query point @ to the nearest neighbour
(DMIN) and farthest neighbour (DM AX) tend to become equal in ratio given
that the condition is fullfilled:
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Then for every € > 0 there exists D > Dqy such that:

Theorem 1. If
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where distp(Xp, Q) is the distance between data points Xp and the query
point @ and E[distp(Xp, Q)] is the expected value of the distances. The proof
can be found in [5]. The problem of high-dimensional spaces was introduced by
Bellman in 1961 and was called the “curse of dimensionality” [4].

Further research showed in [8] that even when distance tend to be equal in
ratio, their absolute difference DM AX — DMIN does not necessarily go to zero
for all distance metrics. The above observations show that it is important to



consider the behaviour of distances not only in terms of ratio, but of absolute
difference too.

Another important aspect is that real world data often lies on complex man-
ifolds with the intrinsic dimensionality lower than the original space. This is the
typical case where dimension reduction methods can be used with success to
find the low-dimensional embedding space. Many methods have been proposed
to reduce the dimensionality and they can be roughly categorized into two main
classes: global and local methods. Local methods aim to recover the local struc-
ture of the data - by mapping nearby points to nearby points - and hope to
recover the global structure from local fits, while global methods try to recover
the global topology at all scales - by mapping nearby points to nearby points
and far away points to far away points. Local methods have generally proven
to be more effective in many real cases. However they do not totally recover
the global structure of the data. Moreover, in many datasets, data naturally
follows a multimodal distribution, being organised into clusters. We therefore
propose in this paper a dimension reduction method (High-Dimensional Mul-
timodal Embedding) that combines local and global information to obtain an
effective embedding. For this we perform a transformation of distances in order
to avoid the equidistancy in ratio. The transformation will prove to be necessary
for proper preservation of certain global properties, like clusters.

2 Related work

Dimension reduction is mainly employed in order to improve the analysis of the
data and to simplify its processing. It is mostly based on the assumption that
the data lies in subspaces of lower dimensionality than the original space. It is
hoped that there exists a meaningful intrinsic dimensionality (d) of the data that
is smaller than the original dimensionality (D), d < D.

Principal Component Analysis (PCA) is the most employed dimension reduc-
tion method in practice. It is a linear transform whose objective is to capture as
much as possible from the variance in the data, but it is not designed to cope
with non-Gaussian distributions and even less with clustered data. Multidimen-
sional Scaling (MDS) [6] is a global approach to pairwise distance preservation,
optimising a stress function over all distances. A widely used variant of MDS is
Sammon Mapping [13] that increases the importance given to smaller distance
values by using a self-normalisation procedure. As in high dimensions distances
tend to be equal, global methods that use distances directly (e.g. MDS, Sam-
mon Mapping) fail in preserving any agglomeration of data (e.g. clusters). The
resulting embeddings are generally spherical.

The manifold assumption has been the key for some of the main algorithms
developed recently (e.g. Isomap [15], Locally Linear Embedding (LLE) [12, 14]).
The high-dimensional data is assumed to lie on a manifold of lower dimension-
ality than the original space (e.g. Swiss Roll, a 2D-manifold embedded in a
3D-space). A manifold is a space in which local neighbourhoods ressemble a
Euclidean space, but the global structure is generally more complex. The local



FEuclideanity of manifolds only justifies the use of the Euclidean distance for lo-
cal neighbourhoods. Larger distance values may be estimated using “geodesic”
distances computed along the manifold and not through the manifold. Unfortu-
nately, whereas the geodesic distance captures well the shape of the manifold, it
is not designed to discriminate between clusters.

A global method (e.g. MDS, Isomap) tries to recover the global structure of
the data. On the contrary, a local method (e.g. LLE, Laplacian Eigenmaps) aims
to recover the local structure of the data and hopes to recover the global struc-
ture from local fits. LLE preserves the linear reconstruction of a point from its
neighbours. Laplacian Eigenmaps (LE) [3] embed points in the low-dimensional
space with respect to the eigenvectors of the Laplacian matrix. SSammon [10]
modifies Sammon Mapping so that only the first neighbours of a point contribute
to the stress function. DD-HDS [9] uses a sigmoid function, similar to Curvilinear
Component Analysis [7], to also allow only the shorter distances to contribute
to the error. Among all the above-cited dimension reduction methods, Laplacian
Eigenmaps is the only method tailored for clustered data, since it uses Laplacian
graphs, as in spectral clustering, for the embedding.

3 High-Dimensional Multimodal Embedding

Local neighbourhoods can carry important information especially when data lies
on manifolds. This information can be captured by absolute differences between
distances that was shown to be meaningful even in high dimensions for certain
distance metrics, like the Euclidean distance [8]. However local fits can not always
capture the global structure of the collection, that becomes particularly useful
in clustering tasks. Moreover, at global level, distances tend to be equal in ratio,
which hardens cluster discrimination. To avoid the negative effects of the curse
of dimensionality [4], we propose to apply a transformation of distances, prior to
the embedding in the low-dimensional space. Distances are transformed by a step
scaling function, such that distances between similar points are scaled down by a
scaling factor. Two points will be considered similar if they are neighbours in the
original space. After the distance transformation, a distance-based embedding is
used to find the low-dimensional space. In this new space, distance measurements
become more meaningful and thus allow for improved further data analysis.

3.1 Model

Let X be a set of N data points x; in the original high-dimensional space RP.
We search for a low-dimensional space R? (d < D) where points are to be
embedded.

In high dimensions, data often lies on manifolds. On manifolds two points
are consider similar if they are neighbours. In the following, we approximate
the sought manifold by a k-nearest neighbour graph G = (V, &) built using the
Euclidean distance.



Given graph relationships, two points become similar if they are neighbours
in G, i.e. they are connected in G.

Let P = X x X be the set of all pairs of points (x;,x;) for x; # x; € X and
P1 be the subset of similar points:

P = {(xi,%5)| 3 eij € &} (3)

and

Py=P\P1 (4)

The matrix of distances between the N points is given by A = (§;;) € RV*N,
where d;; is the Euclidean distance in the original space between point x; and
point x;.

Given the similarity between points, we want to scale down distances between
points that are similar. Different transformation functions (linear or nonlinear)
can be applied but here we will report results using the following step function
fs

%y if (x;,%x;) € Pu;
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where 0;; are the new transformed distances and A is a scaling factor with A > 1.
Here, distances between similar points are scaled down with the constant scaling
factor A, while distances between points not considered as similar (not neighbours
on the manifold/graph), remain unchanged.

The embedding of the points into a lower-dimensional space is performed on
the transformed distances using Sammon Mapping. We chose Sammon Mapping
as HDME seeks to preserve both small and large distance values as faithfully as
possible. Hence, the presence of a weighting factor in the embedding function to
escape from privileging large distance values is desirable. This is typically the
case in the Sammon Mapping stress function:

1 (dij — 0ij)?
5 (6)
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>

where y;, i = 1..N are the projected points in the embedded space (y; € R9)
and d;; are the distances in the low-dimensional space between projected points
yi and y;. Replacing the original distances d;; in (6) with the scaled distances
d7;, we obtain the embedding function for HDME:

1 (dij — 0%)°
Ep = p — (7)

i<j

1
The presence of the non-linear weighting by 55 inside the sum naturally in-
x

J
creases the importance of smaller distance values in the embedding, thus rein-
forcing the scaling performed on distances.



4 Experimental results

4.1 Data preparation and Evaluation Measures

We choose for the experiments the 20 Newsgroups dataset as it is a fairly high-
dimensional dataset (44,764 dimensions). It contains approximately 20,000 arti-
cles from 20 different newsgroups divided into training (60%) and testing (40%).
For the experiments, we use the data from the training set of 11,269 documents.
The dataset is processed as follows: 1) stopwords are eliminated and stemming
[11] is performed; 2) stems that appear too many times (> 2000) are deleted. The
documents are represented as feature vectors where each feature represents one
stem. Thus the dimensionality of the original space is 44,764 dimensions (cor-
responding to the number of stems). Feature values are given by the frequency
of appearance of stems in documents. In this feature space we normalize docu-
ments to unit length (to avoid giving too much weight to long documents) and
we eliminate duplicate documents and documents with Euclidean norm equal to
zero. The final collection contains 11,222 documents from 20 categories in the
44,764-dimensional space.

High-dimensional spaces suffer from the “curse of dimensionality” with neg-
ative impact on the quality of data analysis. In these spaces, operations such as
clustering or retrieval often give poor results. We consider the ground truth to be
provided by data labels. HDME is proposed as a method meant to improve data
analysis through dimension reduction. Therefore, in the evaluation part, we will
test results obtained with HDME against results obtained in the original space
and with other dimension reduction methods. Since the tasks that suffer the
most from the curse of dimensionality are global tasks, like clustering, for eval-
uation we choose measures that evaluate the global quality of the data, that is
Mean Average Precision (MAP) and k-means purity. MAP is chosen as retrieval
tasks become more and more present in real data applications. MAP combines
Precision and Recall and is therefore sensitive to the entire ranking of the data.
Thus, it represents a good indicator of the global topology of the collection.
Clustering is one main application of data analysis. k-means was chosen for its
wide utilisation, however we mention here that cluster shapes may not always
be well approximated by the spherical Gaussianity of k-means. To evaluate the
quality of the clusters, each cluster is assigned the label of the majoritary class.
We then estimate the purity of the clusters, that is, the percentage of points that
were assigned the correct (real) label. For each parameter values, k-means is run
three times on the whole collection with k=20 (the number of categories). And
the average purity over the three runs is reported in the experiments. Reporting
the mean over multiple runs of the algorithm avoids falling into extreme cases.

In Table 1 we show the MAP obtained when eliminating certain stems accord-
ing to the frequency of appearance in the dataset. One important observation
is that the value of MAP is very low when no normalisation is performed on
documents (first column). The highest value obtained is when we eliminate all
stems that appear more than 2000 times. A few example of stems that appear
more than 2000 times are ’write’, ’about’, ’other’. Still we see that results do



not deteriorate drastically with the decrease in dimensions. Thus, choosing only
those stems that appear more than 100 times and less than 2000 gives a MAP
of 0.1916. This may be more appropriate when a too high dimensionality is
preferably to be avoided.

Dims|all(no norm.)|all(with norm.)|<5000|<2000|5-2000|10-2000|50-2000{100-2000
MAP 0.0718 0.1706 0.1946|0.1982(0.1980| 0.1979 | 0.1953 | 0.1916
Table 1. Mean Average Precision in the original space for the 11,269 documents.

HDME relies on the nearest neighbour graph built in the original space
(44,764 dimensions). Table 2 gives the accuracy of the k-nearest neighbour for
different values of k. The values show that despite pessimism concerning the
meaningness of the nearest neighbour, real data often displays high quality of
local information. This is generally due to the underlying patterns that govern
real data applications, and that have low intrinsic dimensionality.

kNN| 1 2 5 10 20 30 40 50
Acc.|83.59 79.25 79.34 78.33 77.09 76.23 75.37 74.86
Table 2. Accuracy of nearest neighbour in the original space.

4.2 Experiments

In the first experiment (Figure 1) data is embedded in a 2-dimensional space
using various dimension reduction methods. Mean average precision and k-means
accuracy for the 11,222 documents from Newsgroups were estimated. MAP is
estimated for the original space with the euclidean and the geodesic distance, for
HDME, LE, PCA and Sammon Mapping. k-means accuracy is estimated in the
original space, for HDME, LE, PCA and Sammon Mapping. PCA is chosen as it
is the most widely employed dimension reduction method in practice. Sammon
Mapping is the baseline for HDME and LE gives the best results for clustered
data, to our knowledge. The geodesic distance is chosen as it captures better
than the euclidean distance the complex structure of high-dimensional data.
However the geodesic distance often performs poorly in discriminating among
data groups, especially in high dimensions. We vary k& = 1..150 (the number of
nearest neighbours used to build the graph) for multiples of 10. For HDME we
also vary the scaling factor .

As a first observation, local-based methods (HDME, LE and geodesic) gener-
ally perform better. In terms of clustering accuracy, HDME performs fairly the
same as the original space. Still, 2D spaces are very limiting, especially in our
case of a complex dataset with 20 classes and more than 10,000 elements. The
clear advantage of 2D spaces is that they allow for data visualisation.
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Fig. 1. MAP and k-means accuracy for the Newsgroups in a 2D space for different k
(the number of nearest neighbours used to build the graph).

In the next experiment (Figure 2) we increase the dimensionality of the em-
bedded space to 3, 4, 20, 50 and 100. For LE, HDME and the Geodesic Distance
we show here results for k¥ = 20 to build the nearest neighbour graph. Results
show that dimension reduction can be very helpful for further data analysis as
results are generally better than in the original space. Moreover HDME outper-
forms the other dimension reduction methods. We observe that an increase in
the dimensionality of the embedded space (e.g. d = 100) results in lower qual-
ity of the analysis (with both MAP and k-means) for LE, PCA and Sammon,
probably because a 100-dimensional embedded space starts to be influenced by
the curse of dimensionality.
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Fig. 2. MAP and k-means (k = 20) for different dimensionalities of the embedded
space.

The last experiment gives two examples of mappings for the Newsgroups
data: 1) the first 200 documents from each of the following categories: N8:
rec.autos, N9: rec.motorcycles, N10: rec.sport.baseball, N11: rec.sport.hockey



and 2) the first 200 documents from each of the following categories: N1: alt.atheism,
Nb5: comp.sys.mac.hard-ware, N10: rec.sport.baseball, N15: sci.space. We apply
the same processing as for the whole collection. Visualisation with HDME and
LE of the embeddings are displayed in Figure 3 and MAP and k-means results in
Figures 4 and 5. For the first dataset, HDME performs the best both in terms of
retrieval and clustering, while for the second dataset, LE outperforms HDME in
terms of retrieval, but not in terms of clustering. Various experiments performed
on different datasets showed that LE performs well when the number of clus-
ters is small as the eigenvectors computed on the Laplacian graph successfully
represent the main directions corresponding to the real clusters, whereas HDME
behaves particularly better than other methods when the number of real clusters
increases.
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(c) N8, N9, N10, N11 (HDME) (d) N8, N9, N10, N11 (LE)

Fig. 3. The best mappings in terms of MAP with HDME and LE of the two subsets
of the 20Newgroups data (a) HDME (A = 5000, £ = 9), (b) LE (k = 10), (c) HDME
(A =5000, k =5) and (d) LE (k = 6).
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Fig. 5. Results for the newgroups N8, N9, N10, N11.

5 Conclusions

We showed in this paper that very high-dimensional data may be embedded in
a different space that is not influenced by the curse of dimensionality and where
distances start to be meaningful both at local and global level. In this trans-
formed space data analysis can be performed with improved results. Existing
dimension reduction methods are either local or global, whereas HDME wishes
to preserve information at all levels, by using all distances. However, as distances
are not meaningful in high dimensions at all scales, we perform a transforma-
tion/scaling based on the construction of a nearest neighbour graph. HDME,
as a class of dimension reduction techniques tailored for structured datasets is
valuable as a preprocessing for mining, retrieval, and visualisation.

HDME shows good performance in quality. The complexity in time is high,
but once the embedding obtained (e.g. the 2D space) following computations be-
come much faster than in the original space. Parameter estimation is important
but not too sensible, as good results were obtained for a wide range of values.
However, we plan to further investigate methods of automatically estimating
the values of the parameter. The scaling factor depends on the dimensionality



of the data, whereas the number of nearest neighbours depends on the number
of documents in each class. Evaluation with global methods like MAP and k-
means showed that HDME helps global analysis, like clustering and full ranked
retrieval, while local evaluation measures like kNN, even is poorer than in the
original space, still gave good results, showing that HDME still preserves well
local information.
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