> UNIVERSITE

g DE GENEVE Archive ouverte UNIGE

https://archive-ouverte.unige.ch

Chapitre de livre 2007 Published version

This is the published version of the publication, made available in accordance with the publisher’s policy.

Deriaz, Michel

How to cite

DERIAZ, Michel. Trusting Virtual Tags. In: Mobile trust. Konstantas, Dimitri (Ed.). Genéve : Université de
Geneéve, 2007. p. 17-32.

This publication URL: https://archive-ouverte.unige.ch/unige:156230

© The author(s). This work is licensed under a Creative Commons Attribution (CC BY)
https://creativecommons.org/licenses/by/4.0

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:156230
https://creativecommons.org/licenses/by/4.0

Trusting Virtual Tags

Michel Deriaz

Abstract. Spatial messaging, or the fact of publishing virtual tags, is clearly not a new
concept. In the GPS world, these tags are materialized through POIs (Point Of Interest) and
they consist more or less in geo-referenced information. They are often classified in
different categories. A typical use is to show on a map all the neighboring POIs of a certain
category. But the only solution to trust the information is to get them from a reliable source.
This paper presents a first approach to a generic way of presenting these virtual tags, and
how to add trust information to them. Every user is therefore able to create virtual tags and
the trust engine is responsible to return to a specific user only the ones that he is interested
in.

1 Introduction

It exists different places where you can share your POIs with other people, like
POIPlace [1] or the Google Earth Community [2], but you can casily convince
yourself that this information can not be trusted. When you search a specific
feature, like the "Jet d'eau” of Geneva, you will find it located in several different
places. POIs suffer from the following drawbacks:

e They can be trusted only if they come from a known and reliable source.
Everybody can, intentionally or not, publish wrong or misleading information.
To scope with that, we need to know and trust the provider. There are people
paid by companies (like Tele-Atlas) just to drive and record points of interests.
This information is usually sold and not always up-to-date.

e They can not be moved. Since they are related to a current geographical
position, POIs can not be moved easily. For instance, we can not attach a POl
on a person or on a moving object.

e No deadline. The time component is not part of a POI. A reader has therefore
no idea if the POI is still current or if it describes a feature that disappeared a
long time ago.

¢ No information about the precision of the position. A position is usually
expressed in latitude and longitude, typically with 6 digits after the decimal
point. This guaranties a precision of less the 0.12 meters worldwide.
However, the devices that are used to record these positions are probably less
precise. Typically, a GPS device has a precision between 5 and 50 meters. And
this difference can be critical in some situations.

e No possibility to comment them. A POI is static information and there is no
way to comment one, or to ask to remove it because it is out of date.

e Search possibilities are limited to position and category.

17

18 Michel Deriaz

Spatial messaging goes a step further. A virtual tag can be attached to an object and
move with him, can contain any type of information (sounds, video...), can be
reviewed and commented, is aware of the time component, and can be trusted.
Everybody can publish and make reviews, which favor lots and up-to-date tags,
and the system manages the trustworthiness of these tags, which should give us the
same quality than provided by commercial solutions.

This paper is divided on two main parts. The first describes what a virtual tag is
and defines its generic structure. Several examples illustrate how our contribution
covers very different application domains, The second part presents a short state of
the art of trust mechanisms related to our work and explains why new models are
required. The reader will be convinced that contextual information, which is hardly
ever laken into account in traditional trust engines, is capital in the domain of
virtual tags.

2 A vTag

We define a vTag as a virtual tag structured in a specific way. Some of the ficlds
are obligatory in order to be treated by a trust engine, and some are not and just
given as additional information. Basically a tag is a geo-referenced and dated piece
of information with a list of ratings and reviews.

2.1 The ID field

This field, which is an URL, identifies uniquely a tag. Using URLSs allows us to see
the tags in a web-browser (useful if someone does not have a specific application),
let us to bookmark them, to send the URL to someone else, and we are free to use
any type of content in the tag. Another advantage is that an URL can be easily
coded in different ways. It can for instance simply be written on an object, and
people that want to see the tag attached to that object simply browse this URL, Or
the URL can be transmitted by a RFID tag, so that the client application gets the
tag when the user approaches the tagged object. In a similar way we can also use
Bluetooth or wireless hot spots.

Another interesting way is to use visual tags, like described in Mobile Tag [3]
(commercial) or in the MUSCLE European project [4] to signal the presence of a
virtual tag. A visual tag is a small squared picture encoding an URL. This
technology has the advantage of being very simply to use (just point the camera of
your mobile phone to the visual tag), intriguing (people want to know what is
hidden behind this strange image), and mobile (visual tags can be painted
everywhere).

There are and they will be more different possibilities to present an URL. Using
them to identily our vTags is a guaranty that future technological improvements
will be easily integrated in our model.

It must be clear that we do not need necessarily to know the URL of a tag in
order to get it. To get all the tags around us, we simply need to give our current

Trusting Virtual Tags 19

position. URLs just give us another way to access it, useful when the position is
unknown.

2.2 The author field

Each tag is assigned to a given author. This allows a trust engine to compute the
reputation of it. An author is represented by a pseudonym so that its real-life
identity remains hidden. An application can choose whether it allows anonymous
postings as well. Even if this allows more privacy, anonymous posting can not be
treated by a trust engine and thus prevents information about the reliability of the
tags.

In certain cases, to avoid a Sybil attack [5] an application can require that a
single user owns only a single pseudonym (or at least a limited number of them).
This can be achieved by different means. For instance we can use a reverse-charge
SMS service like the one provided by [6], so that a single user cannot have more
pseudonyms than mobile phones. Or, if the user needs to stay anonymous even
from the server, he can use blind signatures and a ZKP (Zero Knowledge Proof)
algorithm as described in [7] in order to stay completely anonymous and still be
able to change, still in an anonymous way, its pseudonym.

2.3 The position field

The position field describes where the tag is. Unlike POIs, a vTag is not limited to
a single point. A vTag can also cover an area. The coordinates are expressed in the
WGS84 standard (latitudes/longitudes/altitude), so that the system works
worldwide. Taking the altitude into account allow us to draw virtual boxes in the
air. It is therefore possible to show one tag to the people that are at the top of a
tour, and a different tag to the people that are at ground level. An area can be very
small: "here you are in my garden" or very big: “high risk of malaria in (his
region”. Like in conventional GIS applications it is possible to draw the tags on a
map, for instance to study the progression of a disease. And this with the obvious
advantage of being almost real-time thanks to the high interactivity provided by the
system.,

The position can be given by any technical mean, including GPS or GSM Cell
ID. The precision can therefore vary from centimeters (differential GPS) to
kilometers (GSM Cell ID). To scope with that, the application is responsible (o
send also the precision used to make the measure. This precision can also be given
manually by the user. For instance, let us consider a user that wants to tag an
inaccessible object that is about, according to his estimation, 200 meters in front of
him. This precision parameter can also be used in the future by technical means
that compute distances. In the former example, we can imagine that the phone
contains a built-in radar that computes the distance to the sighted object.

Tags can be mobile. We can imagine users that carry a tag with their profile in
order to find neighboring users that share the same interests. Or a taxi company
that wants to know in real time where the drivers are in order to send the closest to
a client. Theses tags are clearly meant to move and we expect that they send their

20 Michel Deriaz

new coordinates time to time. But we can also have a lag that was initially
designed to be tixed, but that need to be placed somewhere else (tor instance the
tagged object has moved). In booth cases, the "technical" operation consists in
changing the coordinates of the tag. But then a history of the previous positions as
well as the corresponding times must be kept. The reason is that the content or one
of the reviews can be true only if the tag is at a specific position. It is the
application that decides whether a tag can be moved, by whom (author,
reviewers...), and what rights are given to the users (rating...) in each situation.

For some tags, it is not possible lo give a position related to the Earth, expressed
in latitude and longitude. In this case the tag can also be "attached” to a specilic
object (probably moving), so the position of the tag is simply the position of the
object. The attachment is therefore done by a contextual description instead of a
latitude/longitude coordinate. For instance, visual tags are paint on the boats
parlicipating to a regatta, and the spectators get information about the navigators by
scanning the visual tags through the camera of their mobile phones. In this case,
the vTag is attached to the boat, wherever it is.

2.4 The creation time field

In order to know the "freshness” of a tag, each new tag contains the date and time
of its creation. These are written in the 1SO 8601 format (to be understood
worldwide) and the time stamp is set by the server (UTC). The choice whether it is
the server or the client that put the timestamp is important in cases where the delay
between the writing of the tag and the reception of it by the server becomes
significant. This can happen in a region where there is no network. A user records
tags and they are stored on his device until a network connection is available.
According to where the user is, a delay can be expressed in milliseconds as well as
in days, weeks or months!

It is not a good idea to let the user to timestamp the tags. First, we can not be
sure that he is sending the right date. And second, since there can be various
delays, we can have old tags that appear before new ones. This complicates
significantly the handling of data by the trust engine, and can also create confusion
by the users. For instance, a tag that should exist since a long time but which
appears just now. These are the main reasons why we prefer Lo let the server 1o
timestamp the tags. In this way, the creation time indicates in fact the time the tag
has been made available.

However, the time the user makes a given observation can be important
(especially if the delays are long). In this case the user sends also the time of the
writing (in UTC), which is given as additional information (not taken into account
by the system). It is therefore the role of the application to decide how to deal with
il. For instance, an application could show a warning if the time difference is above
a certain level. This is clearly highly related to the application, and can not be taken
into account in a generic system.

Trusting Virtual Tags 21

2.5 The deadline field

After the deadline, the tag is removed. Some tags report an observation that is true
only for a certain amount of time, and sometime this amount of time can be
guessed by the author. For instance a mountain guide reporting a high risk of
avalanches can clearly put a deadline to its tag. The first advantage is to avoid
spamming other users with outdated tags. And the second advantage is to help the
trust engine to evaluate how to adapt a trust value after a rating. If you disagree
with the content of a tag but you are close to the deadline, you will not decrease to
much the trust value of the author since this tag is perhaps simply outdated.

Unlike the creation time field, the deadline field must be completed by the user
(ISO 8601 format, UTC time). We can not just say how long a tag must be visible,
and let the server to compute the deadline. The reason is that we have no idea about
how much time the tag will need Lo arrive 1o the server (we saw that il can be
milliseconds or months), so the deadline information becomes useless. The tag will
be visible only if it arrives on time. For instance if we send a tag today and put the
deadline in 10 days, then it will be visible only if the server gets it before 10 days.

2.6 The request to delete time field

To avoid malevolent acts, it is not possible for a user to directly remove a tag.
Instead, when certain conditions are met (for instance several users that rated the
tag negatively), a "request to delete” is made to the tag. Its value is the time the
request is made, and external rules define when the tag should be definitively
removed. It is the time of the server that is used.

2.7 The content field

The content of a vTag is coded in XHTML. This language is sulficiently flexible
and extendable to add specific fields for a given application, and sufficiently
generic to be viewed by any web browser (for people that do not have an
application for managing vTags). Doing so. we allow our vTags to contain the
same type ol content that we find on the Internet (text, pictures, videos...) and give
them the possibility to link them though hyperlinks to other tags or to any web

page.
2.8 The reviewers field

A user can agree or disagree with the content of a tag. A tag contains a reviewers
list that is sorted in an inverse chronological order. Each review contains the
current time, the 1D of the reviewer, the rating, and possibly some content (same
format than the content written by the author). The time of a review is the server
time. The reviews must be independent from each other, and always comment the
original content. It is not possible to review another review, so this must not be
confused with a blog. In the same way, a single user can review only once a given
tag. If he reviews a second time, the old review is erased and the new review is put
at the top of the list.

22 Michel Deriaz

2.9 Visibility of a tag

A vTag remains basically information related to a current position. But we saw that
this position is not always available, and that it is also possible to access to a given
tag by its URL. In fact, it is the application that decides how the tag must be
presented to the user. A simple solution consists in showing permanently all the
tags around you. But in case where the positions represent areas, we can also
decide that a tag is visible while entering the area, while inside the area, or while
exiting the area. We can also play with the notion of time, and decide when a tag is
visible and when not. Or even leave another external trigger to decide if the tag
must be currently visible or not. It is not a good idea to leave the system to decide
how to show the tags to the user, since it is very application specific and can not be
made generic easily. And anyway, our model allows easily adding such specific
requirements (meta-data).

2.10 Interoperability of the tags

To guaranty a quick and efficient deployment and acceptance of the virtual tags
among the users, tags must be visible even by people that are not equipped with
specific software or material. XHTML is a good candidate. Every request to a
server is done by a HTTP request, and every response is returned as an XHTML
file. It means that any single web browser on a desktop computer or on a mobile
device is sufficient to deal with virtual tags, i.e. reading and rating them. The only
difference with a "standard" XHTML file is that vTags are structured in a
particular way and contain some additional meta-data, like the position. It is clear
that in most cases the web browser is not the best solution to deal with tags. An
application can be aware of its position and show automatically all neighboring
tags, present them on a map, launch an alarm il certain conditions are met, or
propose an intuitive and easy way to rate tags. The fact that we can see tags
through a web browser allows potential users to discover easily new services, and
then decide if they want to install a specific application for this service.

2.11 Revoking and deleting a tag

To avoid malevolent acts, the user interface does not allow deleting directly a tag.
It is the trust engine that decides when it is safe to remove a tag from the system,
and this issue is discussed in the trust engine part. The important point here is to
see that nobody, not even the author, is able to delete a tag. The user interface
allows only creating a new lag and rating it. Of course, the trust engine can be
configured so that a single negative rating (even done by the author) deletes the
tag, but then it is done under the responsibility of the application. A specific right
that is given to the author of the tag is to revoke it. Again, revoking will not delete
it. It will just mark this tag as revoked, meaning that the author does not agree
anymore with the content of the tag.

The fact that an author cans only revoke (and not delete) a tag is very important.
Otherwise a user could easily cheat the trust engine, for instance by posting a tag,
increasing its trust value thanks to the reviewers, deleting the tag and recreating the

Trusting Virtual Tags 23

same tag in order to benefit again from good rating from other users. The details
are discussed in the trust engine part of this document.

2.12 Simultaneous updating

This can happen when two users are rating a tag simultancously. For the system
this is not a problem since the time of the rating is the time given by the server
when it gets the information. In other words, there is no simultaneous updating for
the server. At the client side, it is not a problem as well. Remember that a single
user can only have one review (a second rating erases the first one), and that a
review is only about the original text (we can not review or rate a former review).
Since the reviews are therefore completely independent from each others, the order
they arrive is irrelevant.

2.13 Shadow areas

We call shadow area a zone where the user is unable o know its position, like in an
urban canyon or a tunnel if he uses a GPS. There is no generic and efficient way to
handle this issue. Especially since it is actually only a technical problem. In the
future, GPS devices will improve and other positioning systems will appear. And a
shadow area is not necessarily one for another user, equipped with a more
sophisticated positioning device. It is therefore the application that decides how to
handle this problem. For instance, visitors ol a national park get vTags thanks to
the position given by their GPS while outdoor, and thanks to visual tags while
inside grottos.

2.14 Searching for tags

There are several ways to search specific tags. The first consists in using contextual
data, like the position or the time the tag has been created. For instance, asking all
the tags around my current position that have been created during the last 24 hours.
Handling contextual information for searches has been studied in the MobilLife
European project [8)] and can be reused in this work. The second solution consists
in using keywords. The author of a tag can fill a keywords field, and searches will
be done using these keywords, like it is done in Flickr [9], a service that allows to
geocode and share photos with others. Note that Flickr uses the term "tag" to define
what we call "keyword", which can be a bit confusing. A third solution consists in
using the title of the tag. For instance, il user Alice drew a virtual path using tags
and called them (title) "waypoint 1", "waypoint 2" and so on, an interested user can
therefore ask his system to show all the tags authored by Alice where the titie starts
with "waypoint". These are only basic examples of searches. We can also imagine
that searches are done in the all tag through regular expressions [10], which would
allow to find, for instance "all the tags around me, authored or reviewed by Alice
during the last 12 hours, that does not contain 'waypoint’ in the title, with either 'cat’
or 'dog’ in the keywords".

24 Michel Deriaz

2.15 Tracking

There are two ways of doing tracking. The first has already been discussed
previously and consisted in modifying the position of the tag. This can be used if
we are interested to know where a person or an object is, at current time or a few
times ago. The second way consists in sending a new tag each given time interval,
and so draw a virtual path. For instance the GeoSkating [11] application built over
the GeoTracing [12] generic framework allows skaters to draw maps, where the
roads are colored according to the quality of the surface.

It is possible to create virtual paths with successions of vTags. We can decide
that these tags can only be rated by the author (in order to delete them), and that the
content is limited to a number corresponding to a road surface quality. And in some
countries where maps are inexistent or forbidden, this will allows to create them in
a collaborative way.

A particular way of doing tracking is passive recording. We do not need
necessarily a human interaction to send tags. For instance, we can record every
second all the information sent by the GPS (like the speed, the altitude...) during a
ski trip, and then analyze our journey on Google Earth. But we can also collect data
through other sensors (for instance the concentration of pollens, the signal strength
of a mobile phone operator, the temperature...) and fill a geo-referenced database.
If we have enough data, it becomes possible to interpolate the values for every
position. We can therefore draw useful maps, like one indicating the concentration
of pollens, or one that show where the network coverage of a phone operator
should be improved.

2.16 Itis generic

Applications that allow finding neighboring friends exist. Applications that allow
tracking people or object exist too. Displaying geo-referenced objects on a map is
in a no way something new. However, the architecture described in this document
brings a new advantage: it is generic. It means that different new scrvices can be
built without writing a single line of code. For instance, the system allows easily
in-the-field recordings, like in the GeoSkating project. But we can also set up a
dating service just by defining the structure of the vTags. In addition to the web
browser, we can easily imagine a generic lag-viewer application that gets the
current position through a GPS, displays tags on a map and provides an interface to
review them. This application will be able to connect itself to different servers in
order to get their tags. Additional tools, like a visual tag scanner can be included as
well. To our view, such a generic application would be sufficient for most vTag
applications.

3 The trust engine

We saw that POIs can be trusted only if they come from a known and reputable
source. In practice it consists in buying them from a company. The main
disadvantages are the costs and the fact that information is not necessarily up-to-

Trusting Virtual Tags 25

date. A collaborative system like the one described in this paper cancels the cost
and freshness problems, but then we need a trust mechanism that informs about the
reliability of the tags. A trust engine is a software block between the application
and the database that is responsible to add trust information when the database is
updated, and that filter the tags returned to the user according to his trust
relationships.

3.1 Related work

Lots of work has already been done in the trust context, and the obvious question
that arises is why not just using well-known trust models and apply them to virtual
tags? The answer is simply that it will not work. Indeed, traditional trust models
are mainly designed with file sharing or auction applications in mind. In this case,
people are rating each other and when user A wants to download a file (or buy an
item) from user B, he questions the system in order to determine how trustworthy
user B is. Currently, commercial systems (like e-Bay) are using very basic
centralized systems, and the academics are suggesting solutions to transform such
systems into peer-to-peer architectures. But spatial messaging is noticeably
different from file sharing or auctioning. First of all, we want to take care about the
context. For example time is important. Imagine that you see during summer time a
tag that warns about a high risk of avalanches. Even if there is no snow anymore, it
does not mean necessarily that the author was lying: it can also mean that the tag
has been written six month ago. Second, we believe that trust cannot only be
applied to users. The tags themselves have to maintain information so that a user
can compute how reliable it is to him.

We already tackled the time component in a paper that has been published in the
PST'06 proceedings [13]. In the survey, we wrote that several authors are aware
about the difficulty to take the time into account, but no one proposed a trust model
that gracefully solved the problem, or at least it was not directly applicable to
virtual tags. Dimmock [14], who realized the risk module in the EU-funded
SECURE project [15], concluded in its PhD thesis that "one area that the
framework does not currently address in great detail is the notion of time." Guha
[16] built a generic trust engine allowing people to rate the content and the former
ratings. He recognized however that in case of highly dynamic systems (like in
spatial messaging where tags can appear and disappear very quickly),
"Understanding the time-dependent properties of such systems and exploiting these
properties is another potentially useful line of inquiry." Most existing trust metrics
update their trust values only after a specific action, like a direct interaction or the
reception of a recommendation. The few trust engines that take the time component
into consideration simply suggest that the trust value decreases with the time.
Mezzetti's trust metric [17] consists in multiplying the trust value at time 7 by a
constant between 0 and 1. We proposed in the ASG technical report [18] a similar
model that also takes into consideration the dispersion of the outcomes. In
Bayesian-based trust metrics [19], the trust value converges to its initial value over
time. All these models work in situations where the changes occur slowly, but are
challenged in short-lived cases.

26 Michel Deriaz

Our former time-patterned trust metric, called TIPP GC (TIme-Patterned
Probabilistic Global Centralized), was used in a collaborative application allowing
to signal speed cameras on mobile phones. A full description of the trust engine
and the application can be found in our former PST'06 paper. Even if we brought
some novelties about the way we updated the trust values, we still used a
"traditional" way to store them, i.e. the number of positive outcomes P and the
number of negative outcomes N. The trust value equaled P/ (N + P). And under a
certain trust value, the malevolent users where simply excluded from the system.
The problem with this kind of metrics is that it is difficult to decrease the trust
value of a user that behaved correctly for a long time. We suggest therefore, to be
closer to the human way of handling trust, that any trust value must decrease
quickly in case of bad behavior. An honest user that becomes malevolent must not
be able to use its long term good reputation to subvert the system.

3.2 The uncertainty of the truth

In traditional computational trust, we usually agree over a set of axioms and
hypothesis. For instance, the "truth” is a notion that is common to all. A corrupted
file is seen as corrupted by everybody. In spatial messaging however, the truth is
context dependant. The truth becomes a subjective and temporal notion. Something
that is true for one user is not necessarily true for the others. Something that is true
at a certain time is not necessarily true later. We call this new notion the
"uncertainty of the truth". If user A posts a tag saying "Dangerous path", user B
only knows that user A finds this path dangerous. But A is perhaps just a tourist and
the path is in no way dangerous for user B, which can be a confirmed mountain
guide. Or this path was maybe dangerous because of the snow, which melt away by
the time.

To our view, trust is not only a tool that can be used to exclude malevolent users
from a given system. Trust is also a way of creating relationships between users
that behave in a similar way. Like in real life, each user has its own definition of
what the truth is. The aim is therefore to create trust relationships between people
that share the same definition.

3.3 Contextual trust

The trust given to a user varies according (o the context. A first example of context
is risk. Trust and risk are closely related topics. There is no use to trust if there is
no risk. More precisely, the amount of trust you need before undertaking an action
is correlated to the risk and the costs of a negative outcome. You will probably
accept more easily to lend 2 € to an acquaintance that you meet sometimes by
chance in front of the coffee machine, than 2000 € to a close friend, even if the
chance that you will never get back your 2 € is much higher. The way you update a
trust value of someone else is also related to the costs involved. If your friend gives
you back the 2000 € you lent him, you will probably qualify him as reliable, and
perhaps lend him more money next time. However, if it the coffee machine guy
that returns you your 2 €, it is not sure that you will now trust him for a bigger
amount. The opposite notion of risk is the benefit. Most of the time you undertake

Trusting Virtual Tags 27

an action only if you get a benefit in retum. If you ‘see a tag mentioning an
interesting exposition, you will compare the benefit (having fun) with the risk
(loosing time) and then compute the probability of a positive outcome according
too your trust value in the tag's author.

A second example of context is the domain. You can trust someone for his
knowledge in computer science, but have no trust at all in him for his tastes in
cooking. When the domains are very different, we can simply decide to have one
trust value per domain. In practice however, domains are not always that much
different. There are often (more or less strong) links between them. If you know
someone that excels in the domain of Java programming, you will trust him more
easily to program you something in C++ than in repairing your car.

The third example of context is time and geography. If you know that a tag has
been posted in a forest and using a GPS, we will be more tolerant about the
precision of the positioning, since trees perturb heavily GPS devices. In the same
way, you could decide to be more tolerant with a tag that has been posted by night,
or a long time ago.

The fourth example is additional information. Additional information is
everything that is not included in the above text. For instance, il you sce a tag
signed by a trustworthy friend testifying very good food in a restaurant, you will
not go there if you learned by another mean (newspaper...) that rats are used in
some meals. The tag can however remain true; it is a question of taste.

3.4 Updating trust values

A traditional way to store and update a trust value consists in counting the number
of positive outcomes P, the number of negative outcomes N, and to define the
current trust value as P / (P + N). It is a simple model that fits very well to file
sharing applications where a good file is simply considered as a positive outcome
and a corrupted file as a negative one. In spatial messaging however, defining a
positive and a negative outcome is more complicated. And since we have to deal
with what we called previously the "uncertainty of the truth”, we need to define a
model that is specific for spatial messaging.

A model that can be used in case people are honest is one that uses data mining
techniques in order to determine how reliable a given tag is, in a given situation for
a given person. Basically, when you rate a tag, you enforce the trust link with all
the people that reviewed it in the same way, and decrease the trust link with all the
people that rated it differently. While requesting tags, data mining algorithms are
then able to determine how “close" you are with each reviewer according to the
situations where you previously interacted with these people, and take this into
account to determine how pertinent this tag is to you.

This model is challenged when malevolent users take part in the system. For
instance, an attack would consist in rating automatically and positively all new tags
so that the next reviewers increases the malevolent user's trust value. And then this
user will use its high value to post "reliable" funny tags. A solution to this consists
in increasing only the trust value of the author of a tag, since posting randomly
interesting tags (if they are not "interesting”, nobody will rate them positively) is
almost impossible.

28 Michel Deriaz

In applications where it is possible to scan all the tags, and rate them in an
automatic way, it is always possible to cheat the system. It is ditlicult in some
cases to differentiate a normal hehavior from a malevolent one. For instance, if you
see a lag warning about a specific danger and you do not see this danger, you do
not know if the author is a spammer (and you need to decrease its trust value) or if
the danger simply disappeared (and then you should not decrease its trust value).
To date, the only solution we found consists in specifying how a trust value
changes according to a specific behavior, and a simulator helps us to find the
values of the parameters. For instance, we will find how much a trust value must be
decreased when we rate negatively a tag, so that an honest user is not too much
penalized, but so that a spammer can be excluded from the system in a reasonable
delay. It means that even if the system is generic. it needs a high comprehension of
the application domain in order to determine what are the right rules and
parameters. The main challenge today is to simplify all this, and ideally to end up
with a single generic trust engine that is specialized for a given application only via
a few paramelers.

Like in the human world, trust varies not in the same way when it increases than
when it decreases. It is well known that trust takes time be built, but can be
destroyed very fast. And this non-linear way of handling trust is certainly necessary
to protect ourselves. If you lent 10 times 2 € to someone that always paid you back,
you will probably stop to trust him before 10 times when he stops refunding you.
The reason is even more accentuated in a digital world where people can act in an
automaltic way, thus very fast. If we use our former P / (P + N) example, it is easy
for a user to behave correctly (most probably in an automatic way) for a certain
time, and then use its high trust value to subvert the system. A lirst idea consists in
representing a trust value as a single value. A good behavior increases it, a bad
behavior decreases it. But the maximal value is limited. It means that even if
someone behaves very well for years, its trust value is not that high, and can
quickly become negative in case of a big bad behavior, or a succession of a few
bad behaviors. Another important point is that trust increases in a linear way but
decreases exponentially. We know that an exponential function varies very slowly
at the beginning and then increases endlessly. Like in the human model, we forgive
seldom and small misbehaviors, but we break our trust relationships if you we face
a big misbehavior or a succession a small misbehaviors.

3.5 Deleting a tag

We saw previously that the system does not allow deleting directly a tag. The
reason is obvious. A malevolent user could delete tags and since they do not exist
anymore nobody will be able to decrease the trust value of this malevolent user.
Instead, we can make a request to delete. For instance, if a few people rate the tag
negatively, then a request to delete order is given to the tag. The latter remains
visible for a certain amount of time, and if nobody rates positively the tags in the
meantime, the tag is definitively deleted. But the fact that a user can rate a tag
while a request to delete is made lets him the possibility to decrease the trust value
of the malevolent user wiling to delete all the tags. The amount of time the tag
remains visible can be determined according to the application. An example could

Trusting Virtual Tags 29

be to keep the tag for the same amount of time than elapsed between the creation of
the tag and the request to delete order, so that an "old" tag needs more time to be
deleted. In addition to that we can also define a minimum delay (to avoid that
people scan the system in order to delete any new tag as soon as they appear) as
well as a maximum delay (so that a "very old" tag still can be deleted in a
reasonable time).

3.6 Reverse rating

Reverse rating is an automatic process that consist to rate the people that are rating
you. For instance, an author can decide to rate positively all the users that rates its
tag positively as well, since they seem to share the same opinion. There are two
main advantages in doing reverse rating. The first is to speed up the creation of
trust relationships. And the second, the most important, is to motivate people in
publishing virtual tags. Otherwise the only motivation for an author is to update its
reputation. But since this value is limited (to avoid future malevolent acts), there is
no interest for an author to post lots of tags. However, if this allows him to build
bidirectional trust relationships, so that the quality of the information he will get in
the future improves, then the author has a clear motivation in publishing new tags.

However reverse rating can be easily exploited by malevolent users. The easiest
way consists in scanning the system for new tags and (o rate them automatically
and positively, so that the authors increase the trust values of these malevolent
users. To scope with that, we found mainly two solutions. The first is to hide the
information and not allow system scans. For instance, a user that rate tags in
different remote places within a short amount of time is suspicious. But again,
defining what is suspicious and what is not is directly related to the application.
This is especially true if we allow also using the system without being in the field.
The second consists in posting funny tags in inaccessible places, or tags that are not
true. If someone rates all the tags in an automatic way, he will soon or late fall in
such a pitfall. And then the system can simply exclude this user from the system.
Again, posting pitfalls is an operation that is application specific and that probably
needs human interaction.

In short, reverse rating brings some advantages (motivation to post new tags,
and speeding up the process of creating trust relationships), but need to be used
with greatest care since malevolent users can use this opportunity to increase easily
their own trust value in order to subvert the system.

3.7 Opinions versus facts

The fact that two users do not share the same opinion does not necessarily mean
that one of them is malevolent. For instance, if you see a tag about a restaurant that
pretends that the food is very good, it will not necessarily suits you, even if the
author has a good reputation. In this case you will rate negatively this tag in order
to mark the fact that you do not agree with the content, but however you will not
ask the remove this tag since it can be useful for someone else.

But if you see a tag warning about a danger that clearly does not exist
(anymore), then you will do a request to delete for this tag. By decreasing the trust

30 Michel Deriaz

value of the author and the former reviewers that agreed with this tag, you will help
the system to exclude potential malevolent users. The trust engine has therefore
two roles: the exclusion of malevolent users and the creating of virtual
communities grouping people sharing the same ideas and opinions.

3.8 Querying for tags

We saw previously that querying for tags consists in applying a filter to all the
existing tags and return only the ones that cross the filter. We can, for example, ask
all the tags around the current position that are authored by Alice and that contain
"cat" or "dog" in the keywords. The trust engine offers an additional filter that
accepts only "pertinent" tags. A pertinent tag is one that has been authored by a
trustworthy friend sharing the same opinions than you. So that you are not
disturbed by spammers or by tags that are irrelevant for you, like the ones that
advertise about art expositions il you do not like art.

3.9 Web of trust

The notion of Web of trust has been defined by Zimmerman [20]. It says that if A
trusts B and B trusts C, then A trusts C. The weight of a trust relation decreases
with the number of levels. For instance, if A's trust in B is 0.9 (out of 1), and B's
trust in C is 0.5, then A's trust in C could be 0.9 * 0.5 # k, k being a constant in the
interval]0..1[. Roughly speaking, a web of trust allows you to trust people to trust
other people.

This notion is very useful in spatial messaging for big communities. Indeed,
when you join a community, you do know the others and you are not able to trust
them either. You need actually (o interact with every of the users in order to know
if you will be able to trust them next time. In a web of trust system, you just need
to make a few friends. When you later face a tag signed by an unknown author,
you will be able to ask your friends il this author is reputable. And your [riends
will ask their own friends, and so on up 1o a certain level.

To judge the trustworthiness of a tag, we combine the local trust value (our own
opinion of the author, computed during past interactions) with the global trust
value (the opinion of my friends, who also asked their own [riends...). Each of
these two values is weighted according to the application domain. For instance we
could decide to take 20% of the local trust value and 80% of the global trust value.
It is important to note that we always ask our [riends for advice, even if we have a
local trust value for the author. This allows us to still trust someone even if we
gave him previously a bad rating, for instance if we saw a tag warning about a
danger that disappeared. But this avoids us also to trust "old friends" that became
malevolent since the last interactions we had with them.

3.10 Passive behavior
A passive behavior is when a user observes something that deserves to be tagged

(like a rock on the road), but he does not report it. It can have its importance for the
trust engine. Imagine you know that a given user drove on a specific road a few

Trusting Virtual Tags 31

minutes ago. You could think that he will tag any danger, so if there is not tag, it
means that there is probably no dangers as well. But perhaps there is a danger and
the driver could not tag this object, simply because he is alone in is car and it is
thus not save to handle its mobile device while driving. Or he just wanted not to tag
this object for any other reason.

We prefer a different approach. We prefer to consider that someone that does
not tag is like someone that does not exist. Doing so solves the previous problem of
knowing why a given user did not reported a given situation. Of course, doing so
make us also loose some information. But remember that a tag can occupy any
area. It can also be represented by a line. So a driver can also post a tag that covers
exactly his path and that informs that there is no danger. Any following driver will
therefore know that while he is inside the tag area, the road is safe.

4 Conclusion

We defined different requirements for virtual tags in order to have a single generic
solution that can be applied in very different application domains. We saw that
POIls (Points Of Interest), the most well known way to present geo-referenced
information on a map, is actually only a simplilied and limited instance of our
virtual tags. In the second part of this paper, we showed that adding a specific trust
mechanism to these tags allow us to cumulate the advantages of a collaborative
system (where everybody can tag new object) and a reliable system (where the
information is provided by a reliable source).

References

[1] http://poiplace.oabsoftware.nl/

{2] http://bbs.keyhole.com/

[3] hup://www.mobiletag.com/

[4] hup:/fwww.muscle-noe.org/content/view/39/64/

[5] John R. Douceur, “The Sybil attack”, in Proceedings of the IPTPS02 Workshop, 2002

[6] htp://www.truesenses.com/

[71 Michel Deriaz, "ASG technical report 06", 2006.

[8] http://www.ist-mobilife.org/

[91 http://www.flickr.com/

[10] http://www.michelderiaz.com/Softs/RegexSR/

[11] http://www.geoskating.com/

[12] hup:/iwww.geotracing.com/

[13] M. Deriaz and J.-M. Seigneur, "Trust and Security in Spatial Messaging: FoxyTag, the
Speed Camera Case Study", in Proceedings of the 3rd International Conference on
Privacy, Security and Trust, ACM, 2006.

[14] N. Dimmock, "Using trust and risk for access control in Global Computing”, PhD
thesis, University of Cambridge, 2005,

[15] http://secure.dsg.cs.ted.ie/

[16] R. Guha, "Open Rating Systems", 2004.

[17] N. Mezzetti, "A Socially Inspired Reputation Model", in Proceedings of EuroPKI,
2004.

[18] M. Deriaz, "What is Trust? My Own Point of View", ASG technical report, 2006.

32 Michel Deriaz

[19] S. Buchegger and J.-Y. Le Boudec, "A Robust Reputation System for P2P and Mobile
Ad-hoc Networks", in Proceedings of the Second Workshop on the Economics ol Peer-
to-Peer Systems, 2004, Or D. Quercia, S. Hailes, and L. Capra, "B-trust: Bayesian Trust
Framework for Pervasive Computing”, in Proceedings of the 4th International
Conference on Trust Management, LNCS, Springer, 2006.

[20] P. Zimmerman, "PGP Users Guide”, MIT, 1994,

