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Abstract

Migraine is a common episodic neurological disorder, typically presenting with recurrent attacks of
severe headache and autonomic dysfunction. Apart from rare monogenic subtypes, no genetic or
molecular markers for migraine have been convincingly established. We identified the minor allele
of rs1835740 on chromosome 8q22.1 to be associated with migraine (p=5.12 x 1079, OR 1.23
[1.150-1.324]) in a genome-wide association study of 2,748 migraineurs from three European
headache clinics and 10,747 population-matched controls. The association was replicated in 3,202
cases and 40,062 controls for an overall meta-analysis p-value of 1.60 x 10711 (OR 1.18 [1.127 -
1.244]). rs1835740 is located between the astrocyte elevated gene 1 (MTDH/AEG-1) and plasma
glutamate carboxypeptidase (PGCP). In an expression quantitative trait study in lymphoblastoid cell
lines transcript levels of the MTDH/AEG-1 were found to have a significant correlation to rs1835740.
Our data establish rs1835740 as the first genetic risk factor for migraine.

The recent boom of genome-wide association (GWA) studies has had a major impact on our
current view of genetic susceptibility to common traits and complex disorders. However, the
number of loci identified in central nervous system disorders (CNS) is underrepresented
(www.genome.gov/gwastudies 1). To our knowledge no GWA studies or any common,
robustly established variants have been reported for major episodic neurological disorders (ICD
G40-44, migraine, epilepsy, ataxias). However, there is substantial genetic information for rare
Mendelian forms of migraine, epilepsy and ataxia, which classify them as channelopathies
associated with compromised neurotransmitter homeostasis?. So far there is no evidence for
the contribution of ion channel variants in common forms of these diseases®+.
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Migraine is an episodic neurological disorder with complex pathophysiology, affecting 8% of
males and 17% of females®. Migraine ranks among the 20 most disabling diseases and has
been estimated the most costly neurological disorder for society with a considerable impact gn
public health8. Clinically, the International Classification of Headache Disorders (ICHD-I1")
recognizes two main common forms: i) migraine with aura (MA), (ii) migraine without aura
(MO). The two forms are distinguised based on the presence of aura, a period of variable and
diverse neurological symptoms that precede the headache phase. Patient may have attacks of
only MO, or only MA, or a combination of both types in variable proportions. There is debate
whether MA and MO attacks represent two distinct disorders, or merely are variations of a
single disease entity on acommon complex genetic background. Migraine headache is believed
to be caused by activation of the trigeminovascular system and the aura by cortical spreading
depression (CSD), a slowly propagating wave of neuronal and glial depolarization8-10,
However, these are considered to be downstream events, and it is unknown how migraine
attacks are initiated.

To identify variants associated with the common forms of migraine we carried out a two-stage
GWA study in six clinic-based and one population-based European migraine samples
(Supplementary Figure 1). In the discovery stage, we studied 3,279 migraineurs (1,124 Finns,
1,276 Germans and 879 Dutch) recruited from headache clinics and genotyped using Illumina
arrays, against population-matched controls (10,747) recruited from pre-existing population-
based GWA studies (see Supplementary Note for details). In the replication stage, a further
3,202 patients and 40,062 population-matched controls from Iceland, Denmark, the
Netherlands and Germany were studied.

Diagnoses were made by headache experts using a combination of questionnaire and individual
interviews that are based on the ICHD-I1”. Due to the overlap between MA and MO, we
analyzed the following groups: i) “all migraine”, i.e. all migraine patients irrespective of
subtype, ii) “MA only”, i.e. patients who only have attacks where aura is present, iii) “both
MA and MO, i.e. patients with attacks both with and without aura and iv) “MO only”, i.e.
patients with only attacks of migraine without aura.

A multi-population Cochran-Mantel-Haenszel (CMH) association analysis and a significance
threshold of p <5 x 1078 were applied. In the initial GWA study, 2,748 cases and 10,747
controls (Table 1) passed quality control steps, and 429,912 markers were successfully
genotyped (see Online Methods for details). A quantile-quantile plot of the CMH analysis
(Supplementary Figure 2) and an overall inflation factor (A = 1.08) were used as final quality
control measures.

Only one marker, rs1835740 on chromosome 8g22.1, showed significant association to
migraine in the multi-population CMH analysis (Figure 1, Supplementary Figure 3). Further
11 loci were found with p-values <5 x 10~ (Supplementary Table 1). The minor allele (A) of
marker rs1835740 was associated with migraine with a p-value of 5.12 x 102 and odds ratios
ranging between 1.21 — 1.33 (Table 2). Two nearby markers with the highest linkage
disequilibrium (LD) to rs1835740 (rs982502: r2=0.59, p=1.54 x 10~ and rs2436046: r2=0.68,
p=3.83 x 107°) also showed association to migraine (Supplementary Table 2). Haplotype
analysis detected a 27 kb haplotype (p=1.15 x 10~') (Supplementary Figure 4 and
Supplementary Table 3). We analysed the HapMap Phase 11 datal! to demonstrate that no long-
range LD to rs1835740 exists within a 5 Mb window using the ssSNPer program?2, strongly
suggesting that the causative variant is tagged by the minor allele of rs1835740 located between
two close recombination hotspots (at 98.199 Mb and 98.309 Mb, Figure 1). The 2 Mb window
around rs1835740 was also imputed against the 1000 Genomes data (August 2009 release),
but no other marker exceeded (Figure 1) the evidence of rs1835740 for association. Conditional
analysis of the SNPs around rs1835740 showed no additional independent signals
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(Supplementary Table 2). The proportion of genetic variance explained by the rs1835740
variant was estimated to be 1.5-2.5% depending on the heritability estimate used and the
population attributable risk to be 10.7% using the methodology of Risch et al.13

To confirm and extend our results, we performed a replication study on the only marker with
genome-wide significance in the initial study, rs1835740. The replication samples were divided
into the phenotypic subgroups similar to the discovery sample. Replication was successful in
two “MA only” subsets (Danish: p=0.015, OR 1.29; Icelandic: p=0.038, OR 1.36), the Icelandic
MO set (p=0.0292, OR 1.18) as well as in the Icelandic “all migraine” group (p=0.010, OR
1.18) (Table 2). Overall, the A allele of marker rs1835740 was overrepresented (OR 1.05 —
1.36, Table 2) in each subset of all replication samples except in the Danish “MA, MO” group
(OR 0.99). The effect was stronger in the MA groups than other migraine subgroups (Figure
2). It should be noted that the majority of the groups which did not reach formal replication
were small with limited power. Meta-analysis was conducted using the CMH test for each
diagnosis subgroup alone as well as for all migraine samples, with the latter showing a final
p-value of 1.60 x 10711 (Table 2).

Marker rs1835740 is located between two potentially interesting candidate genes, MTDH/
AEG-1 and PGCP. We analyzed the effect of the marker genotype on the expression of genes
within a 2 Mb window in fibroblasts, primary T-cells and lymphoblastoid cell lines (LCL)
established from umbilical cords!®. In the expression quantitative trait locus (eQTL) analysis,
the rs1835740 genotype was found to have significant correlation to the transcript levels of the
nearby MTDH/AEG-1 gene in LCLs (see Table 3 and Supplementary Table 4), with the risk
allele A being associated with higher expression levels (Figure 3). This is in line with previous
studies, which have proven expression analyses in LCL cells to be informative in neurological
and neuropsychiatric traits1>-17. No significant association was detected in fibroblasts or
primary T-cells. The eQTL analysis suggests rs1835740 to be a cis regulator of MTDH/
AEG-1in LCLs.

The location of the associating sequence variant, rs1835740, between two genes involved in
glutamate homeostasis, PGCP and MTDH/AEG-1, suggests that this region contains elements
that could regulate either or both of these flanking genes, the eQTL analysis pointing to the
latter gene. Although MTDH/AEG-1 has mainly been studied in carcinogenesis!®, previous
studies in cultured astrocytes have shown that MTDH/AEG-1 down-regulates EAAT2/
GLT118-22 the major glutamate transporter in the brain. Furthermore, mice lacking the EAAT2
gene have been shown to suffer from lethal spontaneous epileptic seizures23. Despite the
limitations to extrapolate eQTL findings from LCL cells directly to brain tissue the data
suggests a plausible link between the identified variant and glutamate regulation. This is a
tempting hypothesis as this neurotransmitter has long been suspected to play a key role in
migraine pathophysiology24.

Although the evidence provided here is indirect, accumulation of excess glutamate in the
synaptic cleft through down-regulation of EAAT2/GLT1 or through increased PGCP activity
(or both), would provide an intriguing putative mechanism for the occurrence of migraine
attacks. It is reasonable to speculate that this accumulation can increase susceptibility to
migraine through increased sensitivity to CSD, the likely mechanism for the migraine aura®:
10 as well as through glutamate involvement in central sensitization, which has been postulated
to be the underlying mechanism of allodynia during a migraine attack?®.

This and our previous study? did not yield evidence for association of ion channel genes to
common forms of migraine. Thus, even if the contribution of ion channel genes is well
established in Mendelian forms of paroxysmal neurological disorders, such as familial
hemiplegic migraine (FHM)26-29, their direct role in more common forms remains open.

Nat Genet. Author manuscript; available in PMC 2011 April 1.
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Interestingly, previous studies suggested that the imbalance of glutamate release and clearance
is a key component of the pathogenesis of FHM, where the underlying mutation is in
CACNAI1A, ATP1A2 or SCN1A30:31 The results of the present study support the hypothesis
that complementary pathways such as the glutamate system may tie the Mendelian
channelopathies with pathogenetic mechanisms of more common forms of episodic
neurological disorders, such as migraine. Mutations in the functionally related EAAT1
transporter have been identified in other episodic phenotypes (such as episodic ataxia 632, and
anon FHM1/2 hemiplegic migraine/episodic ataxia/seizure phenotype33), providing an
example of the link between EAAT transporters to episodic disorders. Future studies should
be conducted to specifically test this hypothesis.

In summary, we have identified the first robust genetic association to migraine. As our cases
were mainly selected from specialized headache clinics, subsequent studies are needed to
establish the contribution of rs1835740 in population-based migraine cohorts. These
population based cohorts may represent a different severity spectrum and thus, possibly, also
a somewhat different underlying combination of genetic susceptibility variants. The effect of
rs1835740 is stronger in MA than MO, but further studies are needed to confirm the role of
the variant in different migraine subgroups. The variant explains only a small fraction of the
overall genetic variance in migraine and future GWA studies, perhaps with different
ascertainment schemes, will likely identify additional loci explaining more of the genetic
variance.

Online Methods
Study design

We jointly analyzed patient samples from three migraine with aura collections from Finland,
Germany and the Netherlands with population-matched controls obtained from pre-existing
studies. This initial phase was followed by a replication study of the top SNP, rs1835740, in
migraine samples from Denmark, Iceland, the Netherlands and Germany. Characteristics of
each study sample are described in Table 1, and the recruitment and ascertainment of cases
and controls are described in the Supplementary Note.

Initial genome-wide association (GWA) study genotyping

DNA was extracted from patient blood samples using standard methods. Genotyping of the
GWA study samples was done at the Wellcome Trust Sanger Institute on the Illumina 610K
(Finns, Germans) and 550K (Dutch) single nucleotide polymorphisms (SNP) microarrays
following the Infinium 11 protocol from the manufacturer (Illumina Inc., San Diego, USA).
Genotype calling was performed using the Illuminus software34.

Replication study genotyping

For the replication study, Danish cases and 459 migraine-free controls were genotyped using
the Centaurus platform (Nanogen Inc., San Diego, CA, USA), and 904 additional controls were
genotyped at deCODE genetics using lllumina HumanHap650 BeadArrayTM. The Icelandic
cases and controls were genotyped using the Illumina HumanHap 317K, 370K, 610K or 1M
bead arrays at deCODE genetics. The Dutch replication cohort was genotyped using the
TagMan technology (Applied Biosystems, Life Technologies, Foster City, CA, USA) at Leiden
University Medical Center. The German replication cases were genotyped using Illumina
HumanHap 610K at Munich with external replication.

Nat Genet. Author manuscript; available in PMC 2011 April 1.
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Expression study

The GenCord resource, a collection of cell lines derived from umbilical cords of 75 newborns
of Western European origin born at the maternity ward of the University of Geneva Hospital,
was used. Sample collection was performed on full term or near full term pregnancies to ensure
homogeneity for sample age. Three cell types were derived: 1) primary fibroblasts, 2) LCLs
and 3) primary T-cells!4. Total RNA was extracted from these cells and two one-quarter scale
Message Amp Il reactions (Ambion) were performed for each extraction with 200 ng of total
RNA. 1.5 pg of cRNA was hybridized to Illumina's WG-6 v3 Expression BeadChip array to
quantify transcript abundance3®. Intensity values were log2 transformed and normalized
independently for each cell type using quantile normalization for sample replicates, and median
normalization across all individuals. Each cell type was renormalized using the mean of the
medians of each cell type expression values. DNA samples were extracted from umbilical cord
tissue LCLs with the Puregene cell kit (Gentra-Qiagen, Venlo, the Netherlands) and genotyping
was performed using the Illumina 550K SNP array (Illumina Inc., San Diego, USA) to obtain
the SNP genotypes for the samples.

Statistical analysis of initial genome-wide scan data

Stringent per-SNP and per-sample limits were implemented in order to obtain high-quality
data. Quality control measures were: exclusion of samples with call rates <97%, non-
comparable ancestry as measured using multidimensional scaling plots from PLINK36,
possible contamination as identified by being an extreme heterozygosity outlier, and cryptic
relatedness (low-level relatedness to a large number of samples), and non-cryptic relatedness
of pi-hat>12.5%. From the initial 3,279 cases and 12,369 controls, altogether 2,748 cases and
10,747 controls passed all quality control criteria, while 531 cases and 1,622 controls were
excluded. The majority of case exclusions were due to quality issues on the 550K chips, and
the majority of control exclusions were due to low-level relatedness in the Dutch control set.
SNPs were excluded for having a minor allele frequency of <1% or for departing from Hardy-
Weinberg equilibrium with p < 1078 in cases or controls. Only completely overlapping SNPs
from the three populations were used, leaving a total of 429,912 SNPs for analysis. To ascertain
whether the control samples were properly matched to the cases, a population-specific and
overall genomic inflation factors (1) was estimated using the median 2 value from a 1-degree
of freedom allelic 42 test. For the Finns, A = 1.05, for Germans A = 1.07, for the Dutch A = 1.09,
and overall A = 1.08, suggesting reasonably well-matched controls in each case. Differences
between cases and controls were assessed between each SNP and disease using a two-tailed
Cochran-Mantel-Haenszel (CMH) test for 2x2xK stratified data (K = 3), as implemented in
PLINK v1.06. To exclude long-range LD for the identified variant, we used the program
ssSNPer2 to demonstrate that no SNP within a 5 Mb window had high LD to rs1835740 in
HapMap Phase |1 data.
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Conditional analysis for secondary effects

In addition to rs1835740, two other SNPs on 8922.1, rs2436046 and rs982502, showed a CMH
p-value < 103 (main paper Table 2 and Figure 2). Based on our data, rs2436046 (r2 = 0.68)
and rs982502 (r2 = 0.59) are in moderate LD with rs1835740. To evaluate whether these signals
were independent from the top SNP association signal, the association between migraine and
SNP alleles was tested using logistic regression and conditioning on rs1835740 as implemented
in PLINK v1.06. Conditioning on rs1835740, no evidence of additional independent signals
was found either for rs2436046 or rs982502 (p = 0.89 and p = 0.47) (Supplementary Table 3),
suggesting that the moderate association of rs2436046 and rs982502 observed in the CMH test
is the result of these SNPs being in LD with rs1835740.
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Meta-analysis of initial and replication samples

Imputation

The CMH test was used for meta-analysis, with a nominal covariate used to distinguish each
sample collection from the others. For the replication in Icelandic and Danish samples,
association analysis was carried out using a likelihood procedure3’, and results were adjusted
for relatedness by dividing the chi-square statistics by an inflation factor estimated through
simulation38,

For each cohort, imputation of the untyped markers in the 2 Mb region around rs1835740 was
carried out using IMPUTE v2 with recommended options3?. Haplotypes from the 1,000
Genomes Project (August 2009 release) and haplotypes from HapMap Phase 3
(www.hapmap.org) were used as reference panels.

eQTL analysis

URLs

Association between genotypes and expression was analyzed with Spearman rank correlation
for all SNPs with a 2 Mb window centered on the transcription start site of the gene.
Significance was assessed by comparing the observed p-values at a 0.001 threshold with
minimum p-values from each of 10,000 permutations of the expression values relative to
genotypes3.

Control populations: Finland — Health2000 study, www.nationalbiobanks.fi; Finland —
Helsinki Birth Cohort study, www.nationalbiobanks.fi; Germany — KORA S4/F4 study,
www.helmholtz-muenchen.de/kora; Germany — PopGen study, www.popgen.de; Germany —
HNR study, www.recall-studie.uni-essen.de; lllumina iControlDB — www.illumina.com; the
Netherlands — Rotterdam | and 111 studies, www.epib.nl/research/ergo.htm; the Netherlands —
Lumina study, www.lumc.nl/hoofdpijn. Other URLS: International Headache Genetics
Consortium — www.headachegenetics.org; ssSSNPer —
http://gump.qgimr.edu.au/general/daleN/ssSNPer/; GWAS plotter —
broadinstitute.org/node/555; HapMap Phase 2 and 3 data — www.hapmap.org

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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_|Marker legend

Genotyped
¢ 0.80-1.0

¢ 0.50-0.80
¢ 0.01-0.50
¢ <0.01

O Imputed

PGCP .
TSPYL5
<
MTDH/AEG-1
—_—
[ | |
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Chromosome 8 position (Mb)

Figure 1. Cochran-Mantel-Haenszel association results for combined analysis of the three study
populations between 97.5 and 98.5 Mb on chromosome 8g22.1
Diamonds show position and p-value for each marker in the region, with colors representing
extent of linkage disequilibrium (measured in r2) with marker rs1835740, and blue circles
indicate locations and p-values of imputed markers. For rs1835740, p-values are shown for
both the original genome-wide association study and the meta-analysis of all migraine samples
in the study (denoted by asterisk). The blue graph shows the local recombination rate based on
HapMap Phase 11 datall. Red line denotes the threshold for genome-wide significance (p <5
x 1078). Figure was generated using a modified version of the script available at

broadinstitute.org/node/555.
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MA only
Initial GWA _ 133,
Denmark 129, 00000
Iceland 1.36
the Netherlands 1.11
Both MA, MO .
Initial GWA e,
Denmark 0.99
Iceland 1.05
the Netherlands 1.14
MO only 11
Denmark - e
Iceland __ 118,
Germany* __pos
All migraine 123
Initial GWA . 15+
Denmark 4L,
Iceland 118,
the Netherlands 1112
Meta-analysis 12
All MA only .29,
All Both MA, MO 117
All MO only 1.12
All migraine 1.18,
0.5 1.0 15 2.0
Odds Ratio

Figure 2. Forest plot of migraine risk for individuals carrying the A allele of marker rs1835740 in

each study population

For each dataset, the horizontal line indicates 95% confidence interval, and the number above
the line indicates the point estimate of the odds ratio. MA only — patients whose attacks are

always accompanied with aura, Both MA, MO - patients with attacks with and without aura,
MO only - patients whose attacks never include aura.
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GG AG AA
Genotype of individual

Figure 3. A box-plot of the quantified expression values for MTDH/AEG-1 ordered based on sample
genotype of rs1835740
Normalised expression levels in lymphoblastoid cell lines using Illumina's WG-6 v3

Expression BeadChip array are shown. In each group, the small pyramid indicates median
value, the shaded area represents the lower and upper quartiles, and the crosses show the
minimum and maximum values in the expression data.
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