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Abstract. A recent trend in health-related machine learning proposes the use of
Graph Neural Networks (GNN’s) to model biomedical data. This is justified due
to the complexity of healthcare data and the modelling power of graph abstrac-
tions. Thus, GNN’s emerge as the natural choice to learn from increasing amounts
of healthcare data. While formulating the problem, however, there are usually
multiple design choices and decisions that can affect the final performance. In
this work, we focus on Clinical Trial (CT) protocols consisting of hierarchical
documents, containing free text as well as medical codes and terms, and design
a classifier to predict each CT protocol termination risk as “low” or “high”. We
show that while using GNN’s to solve this classification task is very success-
ful, the way the graph is constructed is also of importance and one can benefit
from making a priori useful information more explicit. While a natural choice
is to consider each CT protocol as an independent graph and pose the problem
as a graph classification, consistent performance improvements can be achieved
by considering them as super-nodes in one unified graph and connecting them
according to some metadata, like similar medical condition or intervention, and
finally approaching the problem as a node classification task rather than graph
classification. We validate this hypothesis experimentally on a large-scale manu-
ally labeled CT database. This provides useful insights on the flexibility of graph-
based modeling for machine learning in the healthcare domain.

Keywords: Graph Neural Networks · Machine Learning · Natural Language Pro-
cessing · Clinical Trials · Healthcare Informatics

1 Introduction

Healthcare-related events and the underlying clinical data sources are typically highly
heterogeneous, irregular, consisting of multiple modalities and dealing with various se-
mantic representations [13], [24]. The patients records during multiple visits to care
centers, the large body of medical text generated in hospitals, the multiple imaging
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modalities required for diagnosis and various other sources like lab reports are poten-
tially all relevant in healthcare practice [22]. A natural choice to model these variations
in a unified manner would be the use of graphs, where nodes, edges and features have
the flexibility, as well as the capacity to hold these interrelated sources of data, and
under many different scenarios [23], [22].

While the literature of machine learning and its related fields has evolved primarily
to deal with regular grid-like sources of data, recent years have seen significant activities
to generalize machine learning concepts to graph-based data. This has given rise to the
field of geometric deep learning [1] with high promise and noticeable success using
Graph Neural Networks (GNN’s) across various disciplines that can benefit from graph-
based representations (see e.g., [10] and [21] on the use of GNN’s in natural sciences).

The domains of healthcare informatics and machine learning in medicine, therefore,
have seen significant activities in this direction and many works have shown promising
results in the integration of GNN’s to tackle healthcare-related problems. As an ex-
ample, the work of [3] uses GNN’s to supplement Electronic Health Records (EHR)
with hierarchical information, showing noticeable improvements in diagnosis predic-
tion compared to Recurrent Neural Networks (RNN’s). Similarly, the work of [20] uses
GNN’s combined with neural language models to better capture the hierarchical struc-
ture of medical codes and perform medication recommendation from EHR’s. Several
prediction tasks again based on EHR’s are addressed in the work of [31], where the
authors propose a regularization technique to improve the robustness of training.

While the use of GNN’s has been shown to be very effective, in this work, we show
that the way the graph is constructed and the problem is formulated is also of prime
importance. In particular, we build up on our prior work [7], where we encode Clinical
Trials (CT) protocols in a hierarchical graph to predict their termination risk, by further
linking them with edges according to connections between the CT phases, conditions
and interventions. Therefore, rather than considering multiple disconnected graphs and
posing the problem as graph classification, we consider a single but very large graph
and target a node classification problem to classify CT protocols. Interestingly, while
all these newly considered edges between graphs arise directly from the CT protocols
and do not contain any extra information that is not already encoded as node features,
we show that under all setups, this new formulation, not drastically but very consistently
improves the CT classification performance.

2 Background and related works

In this section, we showcase the required backgrounds and review some of the relevant
methods and efforts in the literature. Section 2.1 discussed data-driven CT risk analysis,
which is the main task we target in this paper. Since our proposed methodology is
the use of GNN’s to tackle this problem, we review some basic concepts of graph-
based machine learning in section 2.2. We then very briefly discuss the concept of text
featurization in section 2.3.
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2.1 Data-driven efforts for CT risk analyses

The systematic way to assess the safety and efficacy of candidate clinical interventions
and medications for the treatment of medical conditions is to carry out randomized
studies, a.k.a. Clinical Trials (CT’s), on volunteer subjects and during multiple phases.
Because of their complexity and extent of the resources needed for these studies, they
take around 60-70% of the average 13.8 years long drug development cycle [18] and
constitute a major portion of the average estimated 1.3B$ cost for drug development
[29]. In spite of the very strict guidelines in place from healthcare authorities and careful
planning of trials prior to their execution, unfortunately, no more than only 14% of CT’s
manage to continue from phase 1 to the market approval [28]. Therefore, in order to
minimize these costs and the associated risks, it would be highly beneficial to try to
optimize CT protocols prior to their implementation.

Although there are various government registries that provide access to past and
current CT records to the public, there has been only few works in the literature report-
ing data-driven methods to assess the behavior of CT’s based on simple risk measures.
The works of [9] and [11] use traditional data-mining techniques to classify termination
risk of CT’s. The more recent work of [5] uses hand-crafted features and feeds them to
off-the-shelf classifiers to target “completed” and “terminated” CT status categories.
Similar methodologies have been developed in [6] to assess COVID-19 CT’s.

To benefit from the power of end-to-end deep learning and to avoid using hand-
crafted approaches, our recent work [7] targeted the CT classification problem using
GNN’s. This was motivated by the highly hierarchical structure of CT’s as shown in
Fig. 1, where besides their textual content, also the structure of the protocols was shown
to be relevant for risk classification, an assumption that was strongly corroborated by
the significant performance gains reported. In this work, we revisit this approach by
reformulating the graph-based CT classification and show performance improvements.
Before presenting our proposed method in section 3, we briefly review some basic con-
cepts from graphs and graph-based machine learning.

Protocol

Design Eligibility Condition

Intervention

· · ·

Phase

Enrolment

Info

Inclusion Exclusion

0 1

· · ·

“Covid 19”

“Phase 1/2”

“400, actual”

“Patient will be randomized 1:1 to placebo

with standard care combined doxycycline

and ivermectin with standard care.”

“COVID-19 infection, confirmed

by polymerase chain reaction

(PCR) test within 3 days ..”

“Unable to take oral medication, Pregnant

or breast feeding lady. Patients with

severe COVID symptoms or admission ..”

“Ivermectin 6 mg, 2 tab stat and Doxy-

cycline 100 mg twice daily for 5 days

“Paracetamol, Vitamin D, Oxygen

if indicated, Low molecular weight

heparin, dexamethasone if indicated

Fig. 1: Simplified schematic view of a CT protocol. Leaf nodes contain free text and
medical codes. While the top parent nodes are fixed, children nodes have variable struc-
ture across CT examples within the same registry.
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2.2 Graph neural networks

In its most abstract, yet practically powerful form for many applications, a graph G =
(V, E ;X ) consists of node sets V = {v1, · · · , v|V|}, the set of edges E with pairs of
nodes (ui, vi), which denote the existence of an edge between the two nodes ui, vi ∈ V ,
as well as a set of features X = {x1, · · · ,x|V|} associated to each of the nodes (and/or
also to the edges in some applications).

Graph Neural Networks (GNN’s) try to generalize the deep learning practice and
machine learning concepts to a graph G, or multiple graph objects {G1, · · · ,GN}. This,
however, is more challenging to deal with than the case of regular grids like images,
text, sound or time series data. The difficulty lies primarily in that, unlike grids, there
does not usually exist a canonical way to order nodes of a given graph. Hence, all
machine learning steps should be agnostic to node orderings5, both within a graph and
also across multiple graphs.

A largely successful approach to tackle this permutation ambiguity is the Message
Passing (MP) paradigm of [12], which replaces some of the usual list operation steps
of machine learning with set operations that are order-agnostic. Concretely, for a node
u ∈ V the nodes v ∈ N (u) = {v ∈ V|(v, u) ∈ E} in its immediate neighborhood
send a “message” using a generic differentiable “aggregation” operation A{· · · } on
their features. This is then used to “update” the features of u, using another generic
differentiable operation U[·, ·]. These steps can be summarized as:

x[l+1]
u = U

[
x[l]
u ;A

{
x[l]
v ,∀v ∈ N (u)

}]
, (1)

where super-scripts 1, · · · , l, · · · , L refer to the fact that this operation is carried out L
times, and starting from initial raw features x[1] = x ∈ X . After the L iterations of MP,
each x

[L]
v , v ∈ V has aggregated features from its L-hop neighbors, so that the content

from both the initial raw features, as well as the topology of the graph are captured
within the final features. Famous instances of these generic operations are the Graph
Convolutional Networks (GCN) from [17], the Graph Attention Network (GAT) from
[26], or the GraphSAGE operator of [16], among many others.

Certain machine learning tasks on graphs, e.g., node classification, node regression
or link prediction, are performed locally and on the node level, rather than globally on
the whole graph. For these tasks, the resultant feature of every node, i.e., x[L]

v , v ∈ V ,
or perhaps a subset of nodes (like those from train, validation or test splits) can further
follow processing steps like typical Multi Layer Perceptron (MLP) (i.e., multiple affine
layers with non-linearities in between) to be matched against some label information.
A common scenario in these cases is that the nodes from all data splits (Vtrain, Vvalid and
Vtest) are present at the time of training. However, only the feature information of the
test set is used during MP operations and their label information is of course not used
during training and loss calculation. This scenario is referred to as the “transductive”
case6, as opposed to the “inductive” case where the test nodes are entirely absent during
training.

5 More technically, they should be either “permutation invariant” or “permutation equivariant”
to the order of nodes.

6 which resembles semi-supervised classification in some sense
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On the other hand, other machine learning tasks on graphs, like graph classification,
regression or generation, are performed globally and on the whole graph. For these
tasks, before continuing from the features x

[L]
v , v ∈ V to the target labels, a global

“pooling” stage PG{· · · } is needed to provide a global representation zGj
for the whole

graph from individual nodes. While this should again be an order-agnostic set oper-
ation, a simple averaging of features is usually sufficient at this stage, since the MP
algorithm has already integrated the topological content to the features. For each of
the graphs in a given split {G1,G2, · · · }, the pooled representations and their corre-
sponding labels {(zG1

, y1), (zG1
, y1), · · · are then treated as typical machine learning

feature-target pairs and can be fed to MLP’s with standard training recipes.
Note that for both these cases, i.e., the node-level and graph-level scenarios, since

the whole pipeline is designed to be differentiable, end-to-end training using stochastic
gradient descent is possible, as is the case for other deep learning tasks. However, the
concept of mini-batching, while very straightforward in grid-like data, is more intricate
for graph-based data and in particular the node-level tasks, since the connectivity of the
nodes should somehow be taken into account during random sampling of the nodes.
Examples of approaches to tackle this issue are the works of [2] and [30].

2.3 Text featurization

A crucial step in doing machine learning on text is to perform text featurization to come
up with unified-length vectors as representations of textual content. Since vectorial rep-
resentations are very fundamental for machine learning algorithms, this basic step has
been extensively studied within NLP communities and various generations of methods
have been proposed. Among the earliest efforts in this direction is the use of Bag-Of-
Words (BOW), where the frequency of the appearance of the tokenized items of the
collection within a piece of text is considered as its vectorial features. While an impor-
tant difficulty to do machine learning on such representations is the high dimensionality
imposed by the number of the tokens of the collection, one can benefit from their high
sparsity to project them to much lower dimensions, as e.g. in [7], where a very practical
setup has been implemented suitable for the classification task and with low latencies.

The fundamental shortcoming with BOW-based representations, however, is that
they disregard entirely the token context within the text sequence. The state-of-the-art
approach to account for this sequential structure is the transformers of [25], where re-
lying on the (self-) attention mechanism, they achieve significant improvements across
many tasks, as e.g., in [4]. Due to their very demanding computational complexities,
however, instead of always considering a large transformer model within the typical
end-to-end machine learning loop, an active line of work (e.g., as in [19]) tries to ben-
efit from them to embed text to vectors, while freezing the transformer weights and
obviating the need to always backpropagate the errors through them.

3 Proposed framework

We now described different elements used in our framework.
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3.1 Graph formation

Individual CT’s: A typical biomedical text, notably our example of CT protocols, is
usually structured in a hierarchy of different components. This hierarchy can be trans-
lated to graphs, most commonly as trees, similar to the example of Fig. 1.

In our case, for every individual CT protocol, pieces of text appear as leaf-nodes,
where they are featurized to fixed-length vectors. As a simple baseline, here we use
the BOW-based featurization described in section 2.3, which is very fast to execute.
To increase performance of featurization, we also use the contextual text embedding
approach using transformers which benefits from pre-training on medical text.

These vectorial features will then constitute x[0]
v ∈ V , in our terminology of section

2.2, while non-leaf nodes without content will be initialized with all-zero vectors of the
same dimension (d = 768). This is depicted in Fig. 2 (top), and is performed for all
individual CT’s of the collection.

v1

v2
v3

v4

v5

v6

v7
v8

v9

v10
v11

v12 v13

v14

x1

x2

x3

x4

x5

x6

x7
x8

x9
x10 =




0.35
1.21
2.84
...




x11

x12 x13

x14 =




1.21
0.73
3.44
...




CT1

CT2

CT3

CT4

CT5

CT6

CT7

Fig. 2: (top) A sample CT document in the collection forming a graph with nodes con-
sisting of featurized text. (bottom) Connecting graph of the documents in the collection
as super-nodes. Each CT document contains a similar sub-graph as in the top figure.

All CT’s as one graph: The above setup considers each protocol independently, so a
graph-classification task can be performed to classify them, as in our prior work [7].
As we propose in this work, however, certain criteria can be used to connect these
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individual CT protocols together so that the MP algorithm of equation 1 can benefit
from richer and more meaningful connections between the CT’s. This implies a single
but very large graph containing the individual protocols as super-nodes, keeping all their
nodes, edges and features within the large graph. As sketched in Fig. 2 (bottom), similar
CT’s can send messages between one another during the steps of the MP algorithm.

As for the criteria to connect the CT protocols together, we consider the fields “con-
dition”, “intervention”, and “phase” of the CT’s as important aspects where CT’s can be
considered as similar. In one model abstraction, we connect every CT, i.e., every super-
node of the large graph, if they have at least one condition (among possibly many)
and one intervention in common. In the second abstraction, we further require them
to have the same trial phase. To benchmark this idea against the case where CT’s are
considered entirely independently (e.g., as in [7]), we consider these super-nodes as an
empty graph, i.e., without any edges between them, while of course considering all the
nodes and edges within the super-nodes. Table 1 provides some basic statistics of the
connecting graph induced by these 3 cases.

connecting graph # nodes # edges avg. degree # connected components

empty 164326 0 0 164326
cnd.+int. 164326 4766646 3.53e-04 95033
cnd.+int.+ph. 164326 1896404 1.40e-04 102633

Table 1: Basic statistics of the connecting graphs (considering only super-nodes)

3.2 Classification

Once the large graph corresponding to all CT protocols in the collection is formed, we
perform L = 5 stages of the MP algorithm of equation 1. Note, however that this graph
may not entirely fit within a GPU, as e.g., in our case we have more than 15.4 million
nodes overall (an average of around 94 nodes per each super-node), as well as more
than 24.7 million edges. We therefore need to sample nodes and edges prior to training.
In order not to lose the correspondence of nodes and edges, random sampling should
be avoided and more meaningful sampling strategies that keep connected nodes within
the same bag should be preferred. In our case, we use the cluster-GCN algorithm [2] to
sample connected nodes by benefiting from graph clustering techniques.

Finally, once the MP algorithm is run on the sub-graphs and the raw features of all
nodes are enriched with connectivity information, all the nodes belonging to the same
CT protocol are pooled together to provide a final representation of the CT. This is then
followed by an MLP to provide the final class outputs with softmax, where they are
matched against the target labels using a class-weighted cross-entropy loss.
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4 Experimental Results7

Data preparation: We use the publicly available ClinicalTrials.gov8 with more than
360K CT items Similar to the setting described in [7], we exclude the CT’s whose status
is not yet settled (e.g., recruiting, not yet recruiting, ..). This leaves us with 164,326
protocols, which we split into train, validation and test sets with ratios of 70%, 15% and
15%, respectively. In order to assign risk-related labels to the CT’s, we consider those
with “completed” status as low-risk and otherwise consider them as high-risk. Before
proceeding with graph formation as described above, we eliminate all label-sensitive
content from the protocols (status field, results field, ..).

Classification results: The results of binary classification on the test set of the
CTGov collection described above are presented in Table 2 for the BOW-based fea-
turization approach, and in Table 3 for the transformer-based featurization, where we
used the BERT-like language model described in [15], which is pre-trained on a large
collection of biomedical text.

precision recall f1-score AUC
micro macro micro macro micro macro ROC PR

GCN
empty 0.8455 0.8064 0.8455 0.8157 0.8455 0.8108 0.8990 0.8958
cnd.+int. 0.8502 0.8128 0.8502 0.8179 0.8502 0.8153 0.9006 0.8974
cnd.+int.+ph. 0.8634 0.8337 0.8634 0.8210 0.8634 0.8270 0.9050 0.9017

GAT
empty 0.8597 0.8283 0.8597 0.8175 0.8597 0.8226 0.9008 0.8989
cnd.+int. 0.8635 0.8283 0.8635 0.8377 0.8635 0.8327 0.9158 0.9127
cnd.+int.+ph. 0.8615 0.8297 0.8615 0.8222 0.8615 0.8258 0.9033 0.9011

SAGE
empty 0.8688 0.8395 0.8688 0.8301 0.8688 0.8346 0.9061 0.9048
cnd.+int. 0.8753 0.8538 0.8753 0.8278 0.8753 0.8392 0.9080 0.9064
cnd.+int.+ph. 0.8759 0.8537 0.8759 0.8300 0.8759 0.8405 0.9087 0.9076

Table 2: Binary classification under different connecting graph configurations and graph
convolutional layers. Results based on Bag-Of-Words features.

As it can be seen from the results of Table 2 and 3, for both cases and under all
graph convolutional layers, the new edges induced by the introduction of the connect-
ing graphs improves the performance over the baseline “empty” graph. Note that while
this improvement is not drastic in this case, because essentially no new source of infor-
mation has been added, the proposed framework can be highly beneficial when external
sources are available that are not straightforward to represent as vectorial features.

As a general conclusion, the use of the super-graph topological features seems to
consistently increase the predictive power of the models. This is consistent with works
in other domains that show the benefit of topological features in the predictive power of
machine learning models based on graph abstractions [14].

7 Source code at https://github.com/sssohrab/ct-classification-graphs.
8 https://ClinicalTrials.gov/AllAPIJSON.zip

https://github.com/sssohrab/ct-classification-graphs
https://ClinicalTrials.gov/AllAPIJSON.zip
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precision recall f1-score AUC
micro macro micro macro micro macro ROC PR

GCN
empty 0.8739 0.8476 0.8739 0.8333 0.8739 0.8399 0.9105 0.9095
cnd.+int. 0.8721 0.8430 0.8721 0.8359 0.8721 0.8393 0.9119 0.9105
cnd.+int.+ph. 0.8778 0.8542 0.8778 0.8356 0.8778 0.8441 0.9146 0.9129

GAT
empty 0.8647 0.8306 0.8647 0.8357 0.8647 0.8331 0.9118 0.9110
cnd.+int. 0.8668 0.8324 0.8668 0.8409 0.8668 0.8364 0.9164 0.9148
cnd.+int.+ph. 0.8641 0.8288 0.8641 0.8395 0.8641 0.8338 0.9155 0.9139

SAGE
empty 0.8666 0.8326 0.8666 0.8388 0.8666 0.8356 0.9147 0.9139
cnd.+int. 0.8804 0.8520 0.8804 0.8495 0.8804 0.8507 0.9258 0.9238
cnd.+int.+ph. 0.8736 0.8424 0.8736 0.8439 0.8736 0.8431 0.9202 0.9189

Table 3: Binary classification under different connecting graph configurations and graph
convolutional layers. Results based on pre-trained transformer text featurizers.

5 Discussions

The literature of CT studies identifies various common reasons behind the very frequent
scenario of trial failures (see e.g., [8] [27]). While in general, it is useful to know the
common reasons behind trial failure on the average, it would perhaps be much more
beneficial to be able to predict the outcome of any given trial study, and before its ex-
ecution. This can be an important step towards optimization of trial design to mitigate
the risk factors and eventually to increase the odds of success. Given the central impor-
tance of CT’s within the whole drug design pipeline, any such risk mitigation can have
direct impact on medication prices and their time-to-market.

In this work, relying on large-scale data and machine learning techniques, we pro-
posed one such framework to predict CT behavior from raw protocols. While we showed
very high risk classification performance, it should be mentioned, however, that our
measure of trial success in this work, i.e., the reported completion vs. non-completion
of trials is perhaps rather simplistic. For a more realistic risk quantification and subse-
quently risk prediction for candidate trials, more detailed criteria like the duration of
the study, the attrition rate of patients, or the toxicity reports of drugs should be taken
into account. This, however, requires more data resources that are usually not publicly
available in large scale.

On another note, our adopted methodology is highly flexible and can benefit from
various sources of information while treating them under one common framework, i.e.,
deep learning using GNN’s. This is thanks to the very versatile structure of graphs
that can incorporate both vectorial features and topological information. In particular,
our main proposition in this work, i.e., to enrich graph classification by using further
connectivity information can be very suitable for using external data resources. While
we used attributes like trial phase and medical intervention that are already present
within the CT protocols, future work can consider external medical onthologies or drug
information as better similarity measures to connect CT’s.
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6 Conclusions

With the increasing popularity of graph-based machine learning approaches within the
healthcare domain, this work investigated the role of the problem formulation and the
way the graph is constructed on the overall task performance. For our application ex-
ample of CT protocol classification, we showed that while they can be considered as
independent graph objects and hence formulated under a graph classification problem,
by connecting the objects to one single large graph using some domain-aware similarity
measures and hence formulating the problem as node classification, consistent perfor-
mance gains can be achieved. This can particularly be useful for cases where some extra
metadata is available that cannot be directly encoded as features. Our experiments were
performed on the publicly CTGov data, for which we provide the open source codes.
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