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Abstract. We describe a method of looking for rational divisor classes on a curve of genus 2.
We have an algorithm to decide if a given class of divisors of degree 3 contains a rational
divisor. It is known that the shape of the kernel of Cassel’s morphism (X − T ) is related to
the existence of rational classes of degree 1. Our key tool is the dual Kummer surface.

1. Introduction

We draw the attention of the reader on the fact that every comment or reference
concerning the Brauer–Manin obstruction is made under the assumption that the
Tate-Shafarevich group is finite.

There are several reasons to look for rational divisor classes of degree 3 and
rational divisors in such classes, on a curve of genus 2. Note that adding an appropri-
ate integer multiple of the canonical class one obtains a bijection between rational
classes of any odd degree.

If
(
Pic 1C)G = ∅ (see Sect. 2 for notations and definitions), the Brauer–Manin

obstruction is the only obstruction to the Hasse principle for a smooth proper curve
defined over a number field k (see [9], Corollary 6.2.5).

Also, a main tool for computing the Mordell–Weil group is the homomorphism

� = (X − T ) : G −→ L = L∗/k∗(L∗)2 where L = k[T ]/(F(T )),
as defined in [3]. Its kernel is related to rational classes of degree 1, as shown in [6].
In Sect. 4 of this paper we give a method for searching for rational divisor classes
of degree 3.

Finally, for curves of genus 2, to decide whether any rational class contains a
rational divisor (the so called BigPic property) only divisor classes of degree 3 mat-
ter and BigPic holds iff in a given rational class there is a rational divisor (see [4],
Sect. 3). Section 3 of this paper gives a method for solving this problem.
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2. Background and notations

Let k be a perfect field of characteristic different from 2 and G = Gal (k̄/k).

Definition 2.1. Let X be a proper, geometrically integral variety, defined over k.
We denote by Pic X the divisor classes containing a divisor defined over k and
by (Pic X)G the classes invariant under the action of G. There is an injection

Pic X −→ (
Pic X

)G

The property BigPic is defined by

BP (X, k) ⇔ Pic X = (Pic X)G .

By curve we mean a projective irreducible smooth curve. The linear equivalence
class of a divisor U on the curve C is denoted by [U]. We denote by J = Pic 0C the

Jacobian of C and G = J (k) = (
Pic 0C)G

the Mordell–Weil group. For genus 2
curves this is the same as Pic 0C (see [4], Lemmas 3.1 and 3.2). Every curve defined
over k of genus 2 is birationally equivalent over k to a plane sextic

C : Y 2 = F(X) = f0 + f1 X + · · · + f6 X6 ∈ k[X ]
where F has no multiple factors. The points with 1

X = 0, Y
X3 = ±√

f6 on the
completion of C are called the points at infinity. For any point P = (x, y), we
denote by P = (x,−y) the conjugate of P under the ±Y involution and extend
this notation and terminology to divisors.

Let P1, P2 ∈ C(k̄); we denote by KC a divisor in the canonical class and
by {P1, P2} ∈ J (k̄) the class of the divisor P1 + P2 − KC .

3. Rational divisors

Starting from a curve of genus 2 one can construct the Kummer surface and its
dual. These are quartics in P3. The Kummer K (respectively its dual K∗) classifies
divisors of degree 2 (respectively of degree 3) up to linear equivalence and ±Y invo-
lution. The rational points of K∗ correspond to elements of Pic 3C defined over k or
defined over a quadratic extension and whose Galois conjugates are the conjugates
under ±Y involution. We look for rational points on K∗. When such a point is
found, we are able to decide if the corresponding divisor class is rational and if it
contains a rational divisor (Proposition 3.5). We can compute a rational divisor in
any class which contains one (cf. Proposition 3.5 and Examples 4.2 and 4.3). Our
method is different from that proposed by Bruin and Flynn (see [1]).

We give the construction of K∗ in [2], Chapter 4. This can be generalized to
divisors of degree g + 1, in general position, on a hyperelliptic curve of genus g.
The main result is that the corresponding variety is still birational to the Kummer
variety; this is work in progress, which will be submitted for publication under the
title “A Generalization of the Dual Kummer Surface”.
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Definition 3.1. An effective divisor U on C of degree 3 is in general position if it is
given by

U (X) = 0, Y = W (X),

where U, W ∈ k̄[X ] have degree at most 3, such that there exists a polynomial
V ∈ k̄[X ] for which

F = W 2 − U V .

If U has degree less than 3, then some of the points of the support of U are at
infinity.

It is easy to see that divisors in general position are exactly those not equivalent
to P + KC with P ∈ C(k̄).

The following lemma can be stated and proven in a more general and conceptual
form; see

http://arxiv.org/abs/math.AG/0604545

Lemma 3.2. The linear equivalence classes of effective divisors of degree 3 in
general position are in 1 to 1 correspondence with proper equivalence classes of
representations of F by W 2 − U V , where U, V, W have degree at most 3. The
involution Y �→ −Y corresponds to U �→ U, V �→ V , W �→ −W . Hence an
improper automorphism of W 2 − U V (i.e. of determinant −1) takes the corre-
sponding element of Pic 3C into its conjugate.

Remark 3.3. Let � be the matrix

� =



0 − 1

2 0
− 1

2 0 0
0 0 1



 .

An automorphism of W 2−U V has a matrix A acting on the column vector (U, V,W )

by multiplication on the left such that At�A = �. The automorphism is proper if
det A = 1, it is improper if det A = −1.

One introduces new variables x0, x1, x2, x3 which establish a linear correspon-
dence between linear forms u(x0, . . . , x3) and polynomials U (X) of degree at
most 3 given by

x j
ψ�−→ X j for 0 ≤ j ≤ 3 . (1)

The quadratic form

S = S(x0, x1, x2, x3) = w2 − uv (2)

is unchanged under automorphisms of W 2 − U V , so by Lemma 3.2 the form S
depends only on the element [U] ∈ Pic 3C. In fact [U] and [U] give the same

quadratic form. The quadratic form S is defined over k iff [U] ∈ (
Pic 3C/± Y

)G
.
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The form

S4 = f0x2
0 + f1x0x1 + f2x2

1 + f3x1x2 + f4x2
2 + f5x2x3 + f6x2

3

corresponds to F underψ . A basis of the kernel ofψ acting on the space of quadratic
forms is

S1 = x0x2 − x2
1 ,

S2 = x0x3 − x1x2,

S3 = x1x3 − x2
2 .

Denote by u j the coefficient of X j in U , etc. The equation F = W 2 − U V is
equivalent to

S = w2 − uv =
4∑

1

η j S j , (3)

where

η1 = 2w0w2 − u0v2 − u2v0,

η2 = 2w0w3 − u0v3 − u3v0,

η3 = 2w1w3 − u1v3 − u3v1,

η4 = 1.

The symmetric matrix of the singular form (3) is

Q = 1

2







2 f0η4 f1η4 η1 η2
f1η4 2 f2η4 − 2η1 f3η4 − η2 η3
η1 f3η4 − η2 2 f4η4 − 2η3 f5η4
η2 η3 f5η4 2 f6η4





 .

Definition 3.4. The dual Kummer surface is the singular quartic K∗ ⊂ P3 given
by the equation det(Q) = 0 in the variables η j .

For a point η on K∗ with η4 
= 0, we take η4 = 1 by homogeneity. The quadratic
form S = ∑

η j S j is singular and of rank at least 2 (since ψ(S) = F and F has no
multiple factors) and thus representable over k̄ as w2 − uv. The transformation (1)
gives polynomials U (X), V (X), W (X) defining an effective divisor U of degree 3
on C. The point η determines completely the class of U up to linear equivalence
and ±Y involution. If η ∈ K∗(k) the class [U] is defined over k or over a quadratic
extension k ⊂ k′ and in this case [U]σ = [U] for the non-trivial σ ∈ Gal (k′/k).

By a specialization argument, the points of K∗ with η4 = 0 correspond to
classes of divisors not in general position :

[(x, y)+ KC] �→ (x2,−x, 1, 0).

where x = η2/η3. If η3 = 0, the point (x, y) is at infinity. The rationality of this
divisor amounts to that of y.
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Now, let η ∈ K∗(k) be a point with η4 = 1 and S the corresponding qua-
dratic form. Since S = w2 − uv, its rank is 3 iff the forms u, v and w are
linearly independent and else is 2. Bringing S to diagonal form over k, one obtains
a form a1 y1

2 + a2 y2
2 + a3 y3

2 of rank 2 or 3. Our goal is to determine when the
corresponding divisor class is rational and if this is the case, if there exists a rational
divisor in this class.

Proposition 3.5. Let η ∈ K∗(k) be a point with η4 = 1, let S be the quadratic
form obtained from the Eq. (3) and a1 y1

2 +a2 y2
2 +a3 y3

2 its diagonal form, where
a1, a2, a3 ∈ k and y1, y2, y3 are k-linear forms in (x0, x1, x2, x3).

Let α, β be the square roots of a3 and −a2/a1 respectively and let U be the
divisor given by U (X) = 0 and Y = W (X), where

u = −a1(y1 − βy2),

v = y1 + βy2,

w = αy3,

and




U
V
W



 = ψ




u
v

w



 .

(i) rank S = 3: The class [U] is rational iff −a1a2a3 is a square in k. If so, [U]
contains a rational divisor iff a1 y1

2 + a2 y2
2 + a3 y3

2 represents 0 over k.
(ii) rank S = 2, (a3 = 0): The class [U] is always rational and it contains a rational

divisor iff the form a1 y1
2 + a2 y2

2 − y2 represents 0 over k.

Proof. For any σ ∈ G, there exists an automorphism of matrix A ofw2 − uv, such

that tσ = At , where t =



u
v

w



 and the matrix A is one of the matrices I , B, C or

BC , where:

B =



0 −a1 0

− 1
a1

0 0
0 0 −1





︸ ︷︷ ︸
proper

and C =



1 0 0
0 1 0
0 0 −1





︸ ︷︷ ︸
improper

.

Recall that Uσ ∼ U if A is proper and Uσ ∼ U else. In the case of rank S = 3,
we have:

∀σ ∈ G we have Uσ ∼ U
⇐⇒

∀σ ∈ G we have tσ = t or tσ = B t

⇐⇒
ασβσ = αβ, ∀σ ∈ G

⇐⇒
αβ ∈ k

⇐⇒
−a1a2a3 is a square in k.
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For rank S = 2, we have α = 0 and tσ = t or tσ = Bt for any σ ∈ G; thus
U ∼ Uσ ∼ U . The first part of the statement is proved for both cases. Now we
come to rational divisors.

(i) In rank three, suppose that [U] contains a rational divisor given by

U1(X) = 0, Y = W1(X) with ψ




u′
v′
w′



 =



U1
V1
W1



 ,

where u′, v′, w′ are k-linear forms. Then a1 y1
2 + a2 y2

2 + a3 y3
2 is equivalent

over k to w′2 − u′v′, which obviously represents 0 over k.
Conversely, if a1 y1

2 + a2 y2
2 + a3 y3

2 represents 0 over k, there exist rational

linear forms u′, v′, w′ such that S = u′v′ + δw′2 =
(√
δw′

)2 − u′(−v′). This

is equivalent over k to w	2 − u	v	 iff δ ∈ (k∗)2. But

a1a2a3 = disc (a1 y1
2 + a2 y2

2 + a3 y3
2) = γ 2disc (u′v′ + δw′2) = −γ 2δ/4

for some γ ∈ k∗, so δ is a square iff −a1a2a3 is. Since [U] is rational, −a1a2a3
is a square by the first part of the proof, so δ ∈ k∗.

(ii) For rank two, suppose that

S = w′2 − u′v′ = a1 y2
1 + a2 y2

2

where u′, v′, w′ are linearly dependent k-linear forms in y1, y2, y3. Since
rank S=2, it is possible to find a k-solution for w′ = 1 and u′ or v′ = 0,
if the linear form w′ is not 0. If w′ = 0 as a linear form, then we can find a
solution for u′ = −v′ = 1. This means that a1 y2

1 +a2 y2
2 represents 1 over k, so

a1 y1
2+a2 y2

2−y2 represents 0. Conversely, suppose that a1 y1
2+a2 y2

2−y2 rep-
resents 0 over k. If there is a solution with y = 0, then there is another with y = 1
(see [8], Appendix, Theorem 8). Let n1, n2 ∈ k such that a1n1

2 + a2n2
2 = 1.

We have then:

S = a1 y2
1 + a2 y2

2 = (a1n1 y1 + a2n2 y2)
2 + a1a2(n1 y2 − n2 y1)

2,

so S can be written as w′2 − u′v′ with rational u′, v′, w′. This concludes the
proof.

��
Remark 3.6. One sees that S will be of rank 2 iff U ∼ U (recall that U is in general
position).

Indeed, U ∼ U iff it is equivalent to a sum of three Weierstrass points, which in
turn corresponds to W = 0 and F = −U V . Now, S is of rank 2 iff it is equivalent
over k̄ to a form −uv.

Local-global principle Let k be a number field. Let X be a proper, geometri-
cally integral variety defined over k. Then

BP (X, k) ⇔ BP (Xkν , kν) for every completion kν of k.
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Proof. See [4], Proposition 2.4. ��
With no machinery but the Hasse principle for quadratic forms we can prove a

particular case of the local-global principle.

Corollary 3.7. Let k be a number field. The local-global principle holds for curves
of genus 2.

Proof. Let [U] ∈ (
Pic 3 C)G

such that U is a divisor in general position. Since
Gν = Gal (k̄ν/kν) ⊂ G, we have

[U] ∈
(

Pic 3 Cν
)Gν

.

Suppose that the quadratic form corresponding to [U] is of rank 3. By hypoth-
esis, BP holds locally, and so by Proposition 3.5 the form a1 y2

1 + a2 y2
2 + a3 y2

3
represents 0 over kν and −a1a2a3 is a square in kν for any place ν of k. By the
Hasse principle the same is valid over k and again by Proposition 3.5 there is a
rational divisor belonging to [U]. Then BP holds ([4], remark after Lemma 3.4).
Same proof for rank 2.

4. Finding rational classes and rational divisors

Let a = (θ, 0) be a Weierstrass point of C. One has a commutative diagram

J ψθ−−−−−→ Pic 1 C

ξ


�


�
η

K −−−−−→
Lθ

K∗

where, for a divisor U of degree 0, we define ψθ([U]) = [U + a]. Also, Lθ is a
projective map from K to K∗ defined over k[θ ] (see [2], Lemma 4.5.1), and the
columns are the quotient by ±Y involution. The diagram commutes because

[U + a
] = [U + a

] = [U + a
]
,

since a = a.
Suppose (Pic 1 C)G 
= ∅ and let g1, . . . , gs be generators of the Mordell-Weil

group G, including those of the torsion part. We assert that there is a class [V] ∈
(Pic 1 C)G such that, after renumbering g1, . . . , gs , we have

[V − V] = g1 + · · · + gl in G.

Indeed, let [W] ∈ (Pic 1 C)G , so [W − W] ∈ G. Write then

[W − W] = g1 + · · · gl + 2
∑

ci gi .

Let [U] = ∑
ci gi . Then, since [U − U] = 2[U] on the Jacobian, we have

[U − U] = 2
∑

ci gi . On taking V = W − U , one gets

[V − V] = g1 + · · · + gl .



410 V. G. L. Neumann, C. Manoil

Lemma 4.1. Let [V] ∈ (Pic 1 C)G and denote by h′ the logarithmic height on P3.
Then

h′(η([V])) = 1

4
h′(ξ([V − V]))+ O(1).

Proof. Since [V − V] = 2[V − a] in the sense of the group law we have:

h([V − V]) = 4h([V − a])+ O(1),
where h is the logarithmic height on J ⊂ P15. Since ξ and Lθ are morphisms, of
degree 2 and 1 respectively, one has

h′(η([V])) = h′(Lθ ◦ ξ([V − a])) = h′(ξ([V − a]))+ O(1)
= 2h([V − a])+ O(1) = 2

4
h([V − V])+ O(1)

= 1

4
h′(ξ([V − V]))+ O(1) . ��

This suggests that, if (Pic 1 C)G 
= ∅ and if one can find decent generators
for G, there will be a point [V − V] ∈ G whose height is not too big, and therefore
a point η([V]) ∈ K∗(k), of much smaller height, corresponding to a rational class.
Conversely, points on K∗ are easier to find and they may help finding generators
for the Mordell-Weil group.

In practice this method turns out to be very efficient. Combined with Propo-
sition 3.5 it allowed us to find very quickly rational divisors for all examples in
the tables of Flynn [5]. Examples are available at the electronic adress below. Of
course, we are not able to conclude in any case, that on a given curve there are no
rational classes of degree 1. As long as one works only with curves having points
everywhere locally, by the local-global principle we know that every rational class
will have a rational divisor, but this is by no means needed to apply the method.

To illustrate this last remark, we take curves which do not have points every-
where locally. For instance, for any p 
= 2, choose integers a, c which are non-
squares mod p. Then the curve

Y 2 = c(X2 − a)
(

X2(X2 − a)+ p
)

has no p-adic points, because the factors X2−a and X2(X2 −a)+ p are at the same
time squares or non-squares modulo p. We have run our programs for a, c ≤ p−1
(which is an arbitrary bound) and have looked for rational points on the surface K ∗
corresponding to each curve, actually in a fairly small range. We find primes, curves
and points on the duals which correspond to rational classes with no rational divisor,
and thus to curves for which BigPic fails. The Maple programs implementing the
method as well as the results of the different computations made are available at

http://www.mat.ufmg.br/∼gonzalo/publications/rational/maple.htm

We now illustrate two applications of Proposition 3.5, one in rank 2 and one in
rank 3 for the quadratic form S.
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Example 4.2. Rank 2
The curve C : y2 = 2(x2 + 1)(x2 + 4)(x2 + 9) is a counter-example to the

Hasse principle. It doesn’t have rational points because its Jacobian is isogenous
to the product of two elliptic curves of rank 0 and the torsion points of the elliptic
curves do not come from rational points of C. Denote P1 = (i, 0), P2 = (2i, 0)
and P3 = (3i, 0). We have

U = P1 + P2 + P3 ∼ (P1 + P2 + P3)
σ

for every σ ∈ G, so (Pic 3 C)G and therefore (Pic 1 C)G is non-empty. By results of
Siksek [7] or Skorobogatov [9] the Brauer-Manin obstruction is the only one.

The divisor U is given by

U (X) = (X − i)(X − 2i)(X − 3i) and Y = W (X) = 0
= X3 − 6i X2 − 11X + 6i = 0 .

The quadratic form obtained is

S = 72x2
0 − 144x0x2 + 242x2

1 − 44x1x3 + 72x2
2 + 2x2

3 .

The rational divisor equivalent to U is given by

U ′(X) = X3 + 6X2 − 11X − 6 = 0 and Y = W ′(X) = 2X3 − 22X .

The proper automorphism from (U, V, W ) to (U ′, V ′,W ′) is given by:






U ′

V ′

W ′






=







1 + i

2

−1 + i

4
−i

1 − i −1 + i

2
−2i

1 −1

2
−i












U

V

0





.

This reflects the fact that the equivalence of the corresponding divisors is not given
by a function defined over Q. ��

Example 4.3. Rank 3
To illustrate the rank 3 case, we take an example already considered by Flynn ([5],

Example 3, page 446). Consider the curve

Y 2 = F(X) = −2X6 − 2X5 + 2X4 + X3 − 2X2 − X + 2,

listed as C2U in Flynn’s tables. A quick search finds two rational points on the dual
Kummer surface, namely [−2 : −1 : 2 : 1] and [−2 : 0 : 1 : 1], corresponding
to the rational divisor classes listed in our tables. However, Flynn finds a rational
class of degree 1 given by
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R =
[

P0 + (0 ,
√

2)− (−1 , −√
2)

]
, where

P0 =
(

7

17
+ 4

17

√
2 , −1888

4913
+ 3465

4913

√
2

)
.

By adding to R a canonical divisor expressed as (−1 ,
√

2) + (−1 , −√
2), we

obtain a divisor of degree 3, in general position

U = P0 + (0 ,
√

2)+ (−1 ,
√

2)

whose class is rational. This divisor is given by U (X) = 0, Y = W (X), where

U (X) = X (X + 1)

(
X − 7

17
− 4

17

√
2

)
,

W (X) =
(

− 2

17
− 6

17

√
2

)
X2 +

(
− 2

17
− 6

17

√
2

)
X + √

2 .

Here, W (X) was found by imposing the curve Y = W (X) to pass through U . The
algorithm and a simplification yield

F(X) = 12 − (X3 − X + 1)(2X3 + 2X2 − 1) = W ′2 − U ′V ′.

The proper automorphism which sends W 2 − U V to W ′2 − U ′V ′ is given by the
matrix

C = 1

17

(
A + B

√
2
)
,

where

A =



7 5 2

20 7 −4
−2 1 3



 and B =



4 −2 6

−8 4 −12
−6 3 8



 .

Comparing with the tables, we see that the initial class [R] corresponds to the point
[−2 : −1 : 2 : 1] on the dual Kummer surface.

Acknowledgements. We thank the referee for his careful reading and several remarks which
improved our paper.
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