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Abstract

In this paper we adopt a correlation approach to neuronal modeling of visual perception,
using oscillations. We propose a hierarchy of processing modules corresponding to different
levels of representation. The first layer consists of an array of FitzHugh-Nagumo oscillators,
which receive a grey—level image as external input. The dynamic behaviour of the coupled
oscillators is rigorously investigated and a stimulus-driven synchronization theorem is derived.
However, this module reveals itself insufficient to encode correctly and segregate different ob-
jects when they have similar grey levels in the input image. Therefore an attention mechanism,
composed of two further layers is added. The first layer computes a saliency map which ex-
tracts a number of salient regions whose average activity greatly differs from their surround.
The second layer of the attention mechanism consists of a perturbation map, which computes
a positional information on the salient regions and feeds it back to the corresponding groups
of oscillators as a one-time perturbation. The perturbation signal drives different groups of
oscillators to different isochrones, and therefore induces non-zero phase lags between them.
Simulation results are presented using real grey—level images.



1 Introduction

A considerable number of neurophysiological findings suggest the hypothesis that brain cells encode
information not only by their average firing rate, but also through the precise timing of their firing
pattern (Gray et al., 1989; Singer, 1993; Roelfsema et al., 1997). This hypothesis has been sup-
ported on computational ground, as one possible way to overcome combinatorial coding strategies,
when multiple objects are defined over a multi-dimensional feature space (binding problem) (von
der Malsburg and Schneider, 1986; Hopfield, 1995). The basic idea underlying most computational
models is that of temporal correlation: two cells encoding the same object establish a relationship
by synchronizing their activities, while two cells encoding different objects evolve asynchronously.

In practice, most models employ continuous units exhibiting periodic activity, such as the
Wilson-Cowan oscillator, for which a number of analytical results have also been obtained (Wilson
and Cowan, 1972; Campbell and Wang, 1996). However, models employing the Wilson—-Cowan
oscillators appear to have several limitations, both in terms of robustness to input noise and in the
presence of graded inputs as shown in the next section.

In this paper we propose a multi-layer architecture (cf. figure 6) based on an alternative
neuronal model, the FitzHugh-Nagumo oscillator (FitzHugh, 1961; Nagumo et al., 1962).

Figure 6 about here ‘

The input layer encodes the stimulus, which is a grey—level image. The second layer is a feature
map which consists of an array of FitzHugh—Nagumo oscillators. In section 2 we show that, for
this model, nice relationships can be established between the value of the external input and the
frequency, phase and amplitude of the oscillations. The input from the lower layer is meant to
be filtered by some receptive fields, encoding a specific feature, such as edge orientation, color,
or shape. For the sake of simplicity we shall henceforth consider a trivial feature map of the
same size as the input layer, directly encoding the value of the input unit at the corresponding
location. Lateral connections in the feature map link every oscillator to its four neighbours in a
Laplacian diffusion scheme. In section 3 we show that, under some constraints on the coupling
weights, oscillators receiving the same input asymptotically synchronize, independently of their
initial conditions.

This property, although useful to group objects receiving uniform input values, appears unsuf-
ficient to discriminate two or more disconnected objects when they possess similar features. This is
due to the fact that synchronization depends only on the stimulus intensity but not on the spatial
relationships, such as connectivity and position, in the image. In order to take these spatial rela-
tionships into account, two further layers are introduced. One, which we call the attention map,
consists of an array of feature detector units which receive an input signal (the amplitude map)
from the oscillators. The receptive field of these units is implemented as a filter whose impulse
response 1s the difference of two Gaussians having different widths. Its goal is to detect connected
groups of oscillators whose average amplitude strongly differs from the background (Milanese et
al., 1995).

The saliency map is then used to generate spatial information to identify each connected region
of the image. This information is computed by an additional layer (the perturbation map) which
has the same size as the oscillators map. Its units compute the average polar coordinates of all
units located in the same attended region; units corresponding to the background are masked to
produce zero output. This spatial information 1s then fed back as a one time perturbation to the
oscillators, in order to desynchronize those belonging to different regions, while leaving background
units unaffected.

2 The FitzHugh-Nagumo Neuron Model

Before describing the structure and interconnections of the feature map, we first analyze the model
used for the basic units, 1.e. the FitzHugh-Nagumo oscillator. This model was derived directly
from the Hodgkin-Huxley neuron model and is described in (FitzHugh, 1961; Nagumo et al. 1962).
A neuron’s membrane potential is defined by two coupled variables # (excitation variable) and y



(recovery variable) whose dynamics are given by:

edr — _y—g(x)+ 1
{d—ydt =zr—b ) (1)
dt = ¥,

where ¢ is a third order nonlinearity, such as g(x) = #(x — a)(x — 1) with 0 < a < 1, and T is an
external input current. The parameter € << 1 controls the relative speed of variation between the
variables # and y, « generally varying faster than y (in which case the system is called a relaxation
oscillator). The parameters a and b control the asymptotic behaviour of the system for a given
input I, as well as the characteristics of the oscillations when they exist (period, amplitude and
phase). On the other hand, for fixed a and b, the oscillator dynamics varies according to different
values of the input 7. Figure 2 shows the system’s nullclines for different values of the external
input. For more details on the bifurcation analysis of the FitzHugh-Nagumo neuron model, the
interested reader is referred to (Murray, 1993; Troy, 1976; Rajasekar and Lakshmanan, 1994).

‘ Figure 2 about here

For small values of the input (I < I), the system relaxes to a stable attractor state (stable
equilibrium) since the eigenvalues of the linearized system around the singularity have negative
real parts. When I = I, the eigenvalues have zero real parts; consequently, the fixed point 1s no
longer stable and bifurcates into a small amplitude limit cycle as [ is increased. This is a typical
supercritical Hopf bifurcation and the period of the limit cycles corresponding to [ in the vicinity of
11 may be approximated by T' = 2w—”, where w is the imaginary part of the eigenvalue of the Jacobian
at the singularity associated to I = [;. In figure 3 we show how the amplitude and frequency of
the oscillation vary as a function of I. It can be seen that, for a large interval of I in the vicinity of
the bifurcation, the amplitude is monotonic in [ while the frequency is nearly constant. Figure 3
illustrates two typical phenomena which are generally observed for a supercritical Hopf bifurcation:
the amplitude of the oscillations grows continuously from zero and proportional to /i — p1, where
1 18 the trace of the Jacobian at the singularity, while the frequency of the oscillation may be
approximated by w = det(Jy), where det(Jy) is the determinant of the Jacobian at the bifurcation
(Strogatz, 1994).

‘ Figure 3 about here ‘

The above observations can also be derived analytically using the gradient-Hamiltonian decom-
position of a system of differential equations. Given a continuous 2D differential system,

{ & =Tr(zy) @)

CC%/ =Gz, y)

the Francoise-Saito theorem (Francoise, 1980) states that, around a singularity, it can be uniquely
decomposed as follows:

L = LVie) - £H() + Rile) ®)

where V(x,y) is a dissipative potential which defines the gradient part of the dynamics, and
H(xz,y) is a conservative potential representing the Hamiltonian part. R;(z,y) is a residue which
tends to zero as (z,y) tends to the singularity.

A conjecture by Thom-Sebastiani (Thom, 1978; Demongeot et al., 1988) states that there
also exists a mixed gradient-Hamiltonian decomposition of any 2D differential system, when the
singularity is replaced by an attractor or repellor, particularly for a limit cycle. In the case of
FitzHugh-Nagumo system (1), one can easily derive such a decomposition with zero residue using
simple integration. If we consider the following potentials,
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where p = (¢)71, then one can easily verify that the system (1) can be written as

;Cll—f =—2V(x,y) — ;—yH(x,y) (%)
& :—(f?—yV(x,y) + ;’—xH(x,y).

Due to the conservative property of I, the Hamiltonian dynamics at a point (z,y) tends to move
the trajectory of the system (5) along the level curve of H defined by C = H(x,y). Conversely, the
dissipative property of the gradient tends to move the trajectory towards the minimum of V', and
to bring the trajectory around such minimum under the influence of the Hamiltonian dynamics.
A detailed analysis of the frequency and amplitude of oscillations, by way of the Hamiltonian part
of the dynamics, will be developed in a subsequent paper.

The above dependency between of the amplitude and frequency on the input signal is particu-
larly important for information encoding. When the input is binary (stimulus present or absent)
a correspondence is in general straightforward, since one only needs to have a limit cycle for the
stimulus and a fixed point in the absence of a stimulus. To this end, Wilson—-Cowan oscillators
appear suitable (Campbell and Wang, 1996). However, in our study we are interested in model-
ing continuous input represented by a grey—level image. In this case, it is essential to establish
a one—to—one continuous mapping between the input and the period and/or amplitude of the re-
sulting oscillations. The FitzHugh—-Nagumo model satisfies this property, thanks to the monotonic
dependency between the input and the oscillation amplitude. Furthermore, the almost constant
frequency is also an attractive property, in view of the possibility of synchronizing oscillators coding
for the same object but receiving different inputs. As shown in figure 4, this property is missing in
the Wilson—Cowan oscillator whose frequency depends nonlinearly on the input (figure 4, dashed
curve), therefore making synchronization harder.

‘ Figure 4 about here ‘

3 Synchronization of Coupled FN Oscillators

In this section we present a theoretical result on the stimulus-driven synchronization of coupled
FitzHugh-Nagumo oscillators. We prove the following theorem in the case of an open chain of
oscillators which are symmetrically—coupled with nearest-neighbor connections between x and y
units (cf. figure 5).

‘ Figure 5 about here

Theorem. Given an open chain of N coupled FitzHugh-Nagumo oscillators {(z;,y;),% =
1,.., N} receiving the same input I; = I,i = 1,.., N, and whose dynamics are described by:

{ W =y —gle)+ L oo — @) Foaleg —a), i=2,..,N—1 (6)
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with boundary conditions:
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the oscillators asymptotically synchronize with zero phase shift provided that o and [ satisfy
the following conditions:
a > (1 + 28 cos(n/N))
B> sacor ™)) (8)
fza.



Proof: The basic idea of the proof is to show that, ¥ i,7? = (z; — 2;41)? + (yi — yi+1)? tends to
zero asymptotically for any initial conditions. Let us first consider the following variable change:

2 — wip1 = rpco8(y) , i — yig1 = msin(d;) , i=1,..,N—1, r>0,0; €[0,2nr[. (9)

Then, differentiating %rf = %(1‘2 —2i11)% + (yi — yir1)? with respect to time gives,
) dr? d
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+ of@ipr — xigo)] + (W — vir) (2 — 2ig1) — by — Yigr) + Byi-1 — ¥i)

= 28(yi — yi+1) + B(yi41 — Yit2)] - (10)

Using simple algebra, it is easy to show that

— (@ —zip1)(g(2i) — g(2ip1)) < (@i — i) < (11)

By assuming a < 3, the following inequalities hold:

acos(f;) cos(bi41) + Fsin(6;) sin(0;41) < Brivigs (12)
acos(f;) cos(b;-1) + Bsin(6;)sin(b;_1) < Briri—1 .

Therefore, after some developments and simplifications, the previous system can be rewritten in
(ri,0;) coordinates as:

riy =  —ricos(0;)(g(x;) — g(wiy1)) — br? sin(é’i)2 — 2ar? cos(é’i)2 — 2077 sin(é’i)2
+  rri—1(acos(0;) cos(f;—1) + Fsin(f;) sin(0;—1)) + ririp1 (e cos(f;) cos(bi41)
+ Fsin(f;)sin(fi41))
< = 2ari 4 Briri_y 4 Brivign (13)

Now let us consider the linear differential system defined by
QZ:(I_QO[)QZ‘i'ﬁQZ—l +ﬁ(h’+1 ’ ZzlaaN_l ) (14)
which can be rewritten as ¢ = Aq where q = (¢q1, 92, ...,qn—1), and the N x N matrix A is:

(1-22) B
g (1-22) 8
A= L . (15)
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From the inequality (13), we have r < q for any initial condition r(0) = q(0).Therefore r(¢)
is bounded by q(¢). Since r(t) > 0, to show that r(¢) tends to zero asymptotically, it suffices to
show that this is true for q(¢). The problem hence amounts to finding conditions under which the
matrix A is stable, i.e. all its eigenvalues have negative real parts. Since A is a triangular Toeplitz
matrix (Barnett, 1990), its eigenvalues are:

A =1—2a+2Fcos(kn/N), k=1,..,N—1, (16)

with Any_1 < Ay—2 < ... < A;. To garantee negative eigenvalues, it suffices to impose 1 —
200 4+ 2F cos(n/N) < 0, i.e. 1+ 2Fcos(nr/N) < 2«. Since we assumed o < f, this reduces to
14+ 2B cos(m/N) < 24, which implies the condition, 5 > m, and ends the proof.

The synchronizing dynamics of the system may be intuitively interpreted as follows. For any
given initial conditions on (#;, y;), the coupling terms a(x;_1 —22; +#;41) and B(yi—1 — 2y + Yig1),
which are proportional to the difference between two neighboring oscillators, are large enough to



drive the oscillators towards neighboring fixed points. Eventually, the difference between the os-
cillators will decrease below some bifurcation threshold. Then oscillators with identical inputs will
adjust minor differences in their phases, due to the coupling term, to reach zero-lag synchroniza-
tion.

When the chain is replaced with a 2-D array of oscillators, we have observed experimentally
(through extensive simulations) the same stimulus—driven synchronization property.

One can readily see from the constraints of the previous theorem that the values of o and
are monotonically increasing in N. However, simulations revealed that much smaller values are
sufficient to achieve synchronization, and that one can safely employ &« < G < 1, as has been
done for all simulations presented in this paper (¢« = 8 = 0.05). Indeed, the above conditions are
sufficient but not necessary, and better upper bounds may possibly be found. Similar observations
can be made for a closely related result (Campbell and Wang, 1996) who derived coupling conditions
which are sufficient to synchronize a chain of piece-wise linearized Wilson-Cowan oscillators.

4 Desynchronization Through Selective Attention

As shown in section 2, the information carried by a FitzHugh-Nagumo oscillator lies in its phase
and amplitude, whereas the frequency remains approximatly constant. During simulations, we
observed a global synchronization behavior of the oscillators, i.e. each neuron oscillates with
approximatly the same frequency and phase, altough it encodes its own input by the amplitude.
This leaves the amplitude as the only information available to separate multiple objects. However,
if two disconnected objects have the same intensity in the input image, the two corresponding
groups of oscillators will synchronize their activities.

We therefore introduce an attention mechanism which carries spatial information and selectively
modifies the phases of disconnected groups of oscillators. Such a mechanism is implemented by the
two upper layers of the architecture (cf. figure 6). The first one is the saliency map, which selects
connected groups of feature map oscillators whose amplitudes exhibit high contrast from their
surround. The second layer is the perturbation map, whose goal is to compute a desynchronizing
feedback signal for the feature map oscillators located in the extracted salient regions.

4.1 The Saliency Map

This map consists of feature detector units computing the convolution of the oscillators amplitudes
with a difference of two Gaussians, which corresponds to a very common receptive field type in the
striate cortex, as well as in the thalamus and the superior colliculus. The two latter brain areas
have been hypothesized to play a central role in selective attention and eye movements (Crick,
1984; Desimone et al., 1990). The goal of the saliency layer is to detect blob-like groups of feature
map oscillators whose amplitudes greatly differ from their surround. These groups of oscillators
correspond to regions in the image most likely to contain objects of interest to human subjects
(Koch and Ullman, 1987; Duncan and Humphreys, 1989).

The activity of a unit s;;, at position (7,7), 4,5 = 1,..., N, is thus defined by thresholding
the rectified output of the convolution between the oscillator amplitudes a;; and a difference—of-
Gaussians (DoG) filter F'. The amplitudes a;; are computed from the z;; variables of the oscillators
after a transient T, = 2 - T', where T is the FN oscillators average period:

N N
Uj; = Zamn Fz—m,]—n
m=1n=1
2 -2 2 -2
Fiy; = exp—Z 2] —c exp—Z do-zj
S5 = H(uij —79)—|—H(—uij —79) (17)

where ¢ 1s a weight guaranteeing equal integrals of the two gaussians over the bounded, discrete
image domain, ¢ is the width of the positive (on) Gaussian, d is the off/on ratio, and H is the
Heaviside function, with offset #. In the simulations presented in this paper, the following values
have been used for these parameters, o = 8,d = 8, N = 128, ¢ = 30; the image size is 128 x 128.



Due to the band-pass filter F, its convolution with the amplitude map (i.e. the values u;;)
presents a number of peaks, corresponding to regions of oscillators having similar amplitudes to
each other and different amplitudes from the surrounding region. The role of the units s;; is to
represent the objects’ shape in the feature map by simply thresholding the filter response, thereby
segmenting them from the background. It is important to note that these feature detectors are
insensitive to the absolute input levels of the background and foreground objects; and depend only
on their difference.

This saliency map can more easily be used to generate a selective feedback for the feature map
oscillators. Figure 6 shows an example image containing three foreground shapes over a textured
background, together with the corresponding amplitude and saliency maps.

Figure 6 about here

4.2 The Perturbation Map

Desynchronization between different oscillator groups, selected by the saliency map, 1s attained by
introducing an additional layer of units called the perturbation map (cf. figure 6). Each unit in this
layer needs to identify uniquely the group to which it belongs. We do so by encoding positional
information about the region occupied by each group. Therefore, each unit p;; = (ri;,6i;) is
initialized with the polar coordinates of position (¢, j), and in order to have all units corresponding
to a same group of oscillators pointing to the same region, we employ the following anisotropic
diffusion dynamics:

1

dpis
n gt] = —Pij S Zm,neN(i,j) Pmn - Gmn

_Lmnenti) “m (18)
pi;(0) = (/SR
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where N(i, j) is the set of the four nearest neighbours of unit p;;. Due to the initial conditions
of pij, the system converges to the following configuration: the values of units p;; located in
the background are zero since a;; = 0; units p;; belonging to the same connected foreground
region R will tend to a same average value of { (ri;,0;;) , (¢,j) € R }; units located in
two different foreground regions will converge to different values. Asymptotically, the values of
the desynchronizing map thus contain the necessary information to generate a desynchronizing
feedback.

By selecting a large relaxation speed 7 in eq. (18), the convergence of the desynchronizing map
is accelerated, since it does not depend on a varying input. The diffusion process can thus be
stopped at a finite time such as 7, = 4.7 The temporal evolution of the perturbation map units
(#;; components), for the input image shown in figure 6 (left), is reported in figure (7).

Figure 7 about here ‘

Given the perturbation map, a feedback must be generated for the corresponding units of the
feature map oscillators. In order to illustrate the effect of different perturbations on the oscillators
phases, it is useful to draw the isochrones of a FN oscillator (figure 8). An isochrone is the set of all
initial conditions (z,y) such that all uncoupled oscillators initialized with with any of these values
asymptotically synchronize with zero phase lag. Therefore, if one wants to impose a certain phase
lag between two oscillators, it suffices that they be perturbated in such a way that they restart
their dynamics at different 1sochrones.

‘ Figure 8 about here

In our case, the vectors p;;(7},) computed by the perturbation map will be fed back to oscillators
in the corresponding regions of the feature map as a one-time additive perturbation at time 7.
The z;5, ¢,j = 1,..., N, components of the oscillators are additively perturbated by the r;; values,
while the y;; variables are perturbated by the ¢;; values:

Tij Tp = Tp + 41 T Tp
{ yz’j((Tp)) = yz’j((Tp))Jr 52'9217'((Tp)), (19)



where d; and J2 are weighting coeffcients. Since for disconnected regions the perturbation values
are different, the effect of the feedback is to drive oscillators belonging to different regions in
the phase space corresponding to different isochrones. Due to the relaxation property of the FN
oscillator, the isochrones are nearly horizontal while far away from the cycle. This means that, to
desynchronize two oscillators, only a perturbation of the y variable i1s useful whereas perturbating
only along the = direction would still leave the oscillators on the same isochrone. However, in the
proximity of the limit cycle, the shape of the isochrones is more complex, and perturbations both
in the x and y directions are more convenient for desynchronization. To this end, the value of «
in eq. (19) should not be large. In our simulations, we used §; = §> = 3.

After the perturbation, the system will continue to evolve according to coupled oscillators’
dynamics but with a certain phase lag between different groups of oscillators.

Figure 9 shows the activity diagram of the x variables of the oscillators, before and after
perturbation at time 7, = 6, for the input image presented in figure 6 (left).

‘ Figure 9 about here

5 Experimental Results

In this section we present the results obtained on two additional real images, containing multiple
objects on a noisy background.

‘ Figure 10 about here

The input images (figure 10.a) are 128 x 128 grey—level images containing multiple objects. Every
oscillator at location (7,j), 4,5 = 1,..,128, in the feature map receives, as external input, the
corresponding pixel intensity [;;. After a transient T, = 2 -7, the oscillators stabilize their
behaviour, and the saliency map is computed (figure 10.b). The saliency map is then fed into the
perturbation map whose units compute the perturbation values associated to the salient regions
during a time interval of two oscillator’s periods. At time 7, = 4 - T', the perturbation values are
fed back to the oscillators as a one time additive perturbation in order to drive different groups of
oscillators to different isochrones, therefore causing a phase lag between such groups. To quantify
the induced desynchronization, figures 10.c and 10.d show the cross-correlation diagrams between
units of different objects before and after the perturbation. These diagrams indicate that different
foreground objects can easily be discriminated from each other. However, it is also important to
verify that oscillators in a foreground object can also be discriminated from the background. In
figure 11, we show the cross—correlation diagrams between oscillators located in foreground objects
and in the background of figure 6 (left). In order to draw a valid conclusion, we considered the
worst case scenario which consists of picking for an oscillator in the foreground, one oscillator in
the background which receives the same external input.

’ Figure 11 about here ‘

In order to quantify the desynchronizing role of the perturbations we analyzed the cross—
correlation among x variables of the oscillators (figures 10(d) and 11). For any two units 2, 2,
we define the normalized cross—correlation index over an interval [T}, T5] as:

B [02) — Blafea)? -\ /B [07] — BT [, ]2

pr;(u,v) = ) (20)
\/

where E% [2] = TTf z(t)dt. Note that this index takes values in the interval [—1, 1], whose
extrema indicate perfect desynchronization/synchronization respectively. For the simulation de-
scribed in figure (10.a (top)), we defined the time interval [2, 6] before perturbation and the interval
[8,12] after perturbation. We selected two x units for each object: ¥,z for the teddy bear, x§, x5
for the cup, and z¢, x4 for the duck (top left corner of the image). First, we computed p before
perturbation. The average value of p within objects is very high, namely 0.98. However, the



cross-correlation between objects is also high (0.94), despite the amplitude differences among dif-
ferent objects. This is due to the normalized cross-correlation, which discounts from each signal’s
amplitude. We then computed the cross-correlation index in the post—perturbation interval. The
desynchronizing role of the perturbation clearly appears by evaluating p across different objects,
the average cross-correlation index decreasing from 0.94 to 0.44.

These results indicate that the proposed system successfully achieves spatio-temporal object
segmentation in real images provided that foreground objects exhibit sufficient contrast from the
background. Oscillators representing the same object synchronize their activities, while oscillators
representing different objects are desynchronized thanks to the top-down attention mechanism.
Furthermore, oscillators in a foreground object are desynchronized with oscillators in the back-
ground. The foreground objects can then be easily labeled in the oscillators amplidude and phase
space.

6 Discussion and Related Work

The present paper adresses a central application of the temporal correlation approach to visual
modeling, which concerns image segmentation using continuous oscillators. Several previous stud-
ies have adressed the same issue, using networks of Wilson-Cowan oscillators (von der Malsburg
and Buhmann, 1992; Wang, 1995; Campbell and Wang, 1995; Vorbruggen and von der Malsburg,
1995), or a time-delayed version of such oscillators (Schillen and Koenig, 1994). However, these ar-
chitectures are quite complex in the sense that the input stimulus is encoded by employing as many
networks of oscillators as there are grey levels in the input image. In fact these oscillators receive
only binary inputs, whereas we have shown that FitzHugh-Nagumo units allow the establishment
of a one-to-one mapping between a graded input and the oscillation amplitude, and that synchro-
nization is achieved using simple nearest-neighbor connections. Another highly related work is the
LEGION system, described in (Terman and Wang, 1995; Wang and Terman, 1997), which consists
of a network of locally connected (through the z variable only) relaxation oscillators which form
groups of synchronized oscillators competing through a global inhibitor. The interactions (lateral
and through the global inhibitor) between oscillators in such networks are mainly due to a selective
gating process, which is based on the fast threshold modulation introduced in (Somers and Kopell,
1995). The LEGION system exhibits a rapid synchronization dynamics and achieves segmentation
of real grey—level images, although it seems to be sensitive to the initial conditions of the oscillators.

Although the FN oscillator properties shown in this paper can be exploited for perceptual
grouping in noisy images, they appear insufficient to segment multiple objects containing large
input variations. To this end, we introduced an attention mechanism for selecting regions of
interest in the image, and then generating a feedback signal to selectively modify the oscillators
phases.

Several lines of improvements of the present study are under investigation. The oscillators
dynamics when the input stimulus is modeled by the response of Gabor filters 1s being studied, in
order to construct an illumination—invariant shape representation. Also, the isotropic connectivity
between oscillators (i.e. nearest-neighbor coupling with fixed weights) should be enhanced in a way
which reflects the contrast variation in the input image. This would require a dynamic coupling
approach based on discretizations of anisotropic reaction-diffusion operators (Berthommier et al.,

1991; Cottet, 1994).
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Figure 2: Phase plane nullclines of the FN system for different values of I. (a) For I = 0, the fixed
point is globally stable; (b) the fixed point is unstable and a limit cycle solution is possible; (c)
the fixed point is stable again.
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Figure 3: Amplitude and frequency of FN oscillator in function of I in a neighborhood of the
bifurcation. The frequency is nearly constant while the amplitude is monotonic in I.
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Figure 4: Amplitude (dashed curve) and frequency (solid curve) of a Wilson-Cowan oscillator as
a function of 1.

16



)
}
o8

A\/2

N
7\
)
A/

\l/

\l/
A\

O

Figure 5: Connection topology between x and y units in a chain of FN oscillators.
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Figure 6: (left) An input image containing three salient objects over a textured background.
(center) Amplitude map of the oscillators after a transient T, = 2 - T'. (right) Output of saliency
map; units belonging to salient regions have output s;; = 1 while background units have zero
output.
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Figure 7: Temporal evolution of #;; components of perturbation map units p;; according to system
(18), for the input image shown in figure 6 (left).
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Figure 8: Isochrones of a FitzHugh-Nagumo oscillator (I = 1,4 = 0.1, = 0.4). Due to the
relaxation property of the oscillator, the isochrones (curves denoted by crosses) are nearly horizontal
except in the proximity of the cycle (solid curve) because the speed of variation of z relatively to
y is very high far away from the cubic nullcline (dashed curve).
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Figure 9: Temporal evolution of three pairs of oscillators belonging to the three salient objects
in figure 6 (left) before and after perturbation at time T, = 4 -T. The additive perturbation
desynchronizes the different groups of oscillators while those of a same group remain synchronous
because shifted by the same amount.
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Figure 10: Experimental results for two 128 x 128 grey-level images. (a) Input images; (b) attention
maps; (c) cross-correlationdiagrams between pairs of units in different foreground objects for ¢ €
[2, 6] (before perturbation); (d) cross-correlation diagrams for ¢ € [8,12] (after perturbation). For
comparison, the cross-correlation plots between two units in the same object are redrawn (open

circles).
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Figure 11: Cross-correlation diagrams between the three pairs of oscillators and the background.
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