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Abstract

The Standard Model constitutes an excellent effective description of nature for most strong, weak and elec-
tromagnetic processes. However a wealth of evidence exists telling us that there should be additional physics
beyond it, coming from the combination of cosmological observation, experimental results and theoretical
expectations. Additionally, recent concerted efforts have led to advances in modern small-scale precision
experiments. They can be used to probe potential new weakly coupled light states, motivating studying
them further. This thesis will make use of effective field theory techniques to explore a variety of topics
relating to these light state extensions of the Standard Model. These techniques lead to applications which
span from dark matter detection experiments to deriving theoretical positivity bounds, by using assumed
fundamental principles such as unitarity and causality.

We begin by analysing the discovery potential of a specific class of dark matter experiments; spin-
precession experiments. Concretely, we estimate their sensitivity to additional dark matter candidates that
couple to electromagnetism directly; a kinetically mixed dark photon and axion with coupling gq~,. If the
dark matter couples weakly to electromagnetism, then it is possible to use such a spin-polarised sample
to detect an induced magnetic field. This is because the magnetic shielding of such an experiment can be
‘rung-up’ by the dark matter. The sample is then affected by the genuine magnetic field that is induced. It is
projected that if CASPEr-Gradient can measure the spin coupling at the level predicted for the QCD-axion
then such a setup has sensitivity of € ~ 3-107'6 and Gayy =22+ 10716 GeV ™! for masses near m =~ lueV.

Following this we will see how geophysical phenomena can be exploited to search for these same dark
matter candidates. We show that resonant conversion of dark matter into photons can occur in Earth’s
ionosphere, constituting a well-modelled and observed natural plasma environment. These qualities make it
full of experimental potential for discovering dark matter. Through explicit computation of the signal and
comparison with the dominant noise source of anthropogenic noise, we find that a simple antenna experiment
has projective sensitivity of e ~ 107'* and gg,, >~ 107! GeV ™! for masses in the range 107 %eV < m <
10~8eV. Additionally these projections can be improved upon in a number of ways.

We then explore the phenomenological consequences of the quadratic coupling of QCD-axions to photons.
Such an operator is shown to be more relevant in analysis than one might naively expect, taking inspiration
from the analogous operator for pions. The unitarity of the theory demands that the coupling is reasonably
sized. Motivating UV constructions are given for axion-like particles, to show that such large quadratic
couplings are ubiquitous for all axions. We also explore how this imposes constraints on ultralight axions
that make up dark matter.

Properties of effective QFTs such as unitarity, causality and locality can be used to constrain the coeffi-
cients of the effective action in this way quite generally. In the final sections we explore how such conditions
are found in theories involving dynamical gravity, a case where standard techniques become ill-defined.
Newly developed techniques are proposed. They are then used to place conservative theoretically consistent
constraints on the space of theories involving light scalars and gravity. We see that these techniques remain
robust under the inclusion of non-analytic loop effects, lending credence to their validity.



Résumé

Le modéle standard de la physique des particules (Standard Model) constitue une excellente description
effective de la nature pour la plupart des processus d’interaction forte, faible et électromagnétique. Il existe
une multitude de preuves indiquant qu’il devrait y avoir une physique supplémentaire au-dela, provenant de
la combinaison d’observations cosmologiques, de résultats expérimentaux et d’attentes théoriques. En outre,
des récents efforts concertés ont permis de progresser dans les expériences modernes de précision a petite
échelle. Elles peuvent étre utilisés pour sonder de potentiels nouveaux états légers faiblement couplés, ce
qui motive I’étude de les approfondir. Cette thése utilisera les techniques de la théorie effective des champs
pour explorer une variété de sujets relatifs a ces extensions du Standard Model sous la forme d’états légers.
Ces techniques conduisent & des applications qui vont des expériences de détection de la matiére noire &
la dérivation de limites théoriques de positivité, en utilisant les principes fondamentaux supposés tels que
Punitarité et la causalité.

Nous commencons par analyser le potentiel de découverte d’une classe spécifique d’expériences sur la
matiére noire, les expériences de précession de spin. Concrétement, nous estimons leur sensibilité a des
candidats supplémentaires a la matiére noire qui se couplent directement a 1’électromagnétisme; un photon
et un axion sombres cinétiquement mélangés avec un couplage g.~. Si la matiére noire se couple faiblement
a ’électromagnétisme, il est possible d’utiliser un tel échantillon polarisé en spin pour détecter un champ
magnétique induit. En effet, le blindage magnétique d’une telle expérience peut étre « remonté » par la
matiére noire. L’échantillon est alors affecté par le véritable champ magnétique induit. Les projections
indiquent que si CASPEr-Gradient peut mesurer le couplage de spin au niveau prédit pour I'axion QCD,
un tel dispositif a une sensibilité de € ~ 3 - 10716 et Gayy = 2 - 10716 GeV ™! pour des masses proches de
m =~ 1ueV.

Nous verrons ensuite comment les phénoménes géophysiques peuvent étre exploités pour rechercher ces
mémes candidats & la matiére noire. Nous montrons que la conversion résonnante de la matiére noire en
photons peut se produire dans 'ionosphére terrestre, qui constitue un environnement naturel de plasma bien
modélisé et observé. Ces qualités en font un site plein de potentiel expérimental pour la découverte de la
matiére noire. Grace au calcul explicite du signal et & la comparaison avec la source de bruit dominante
qu’est le bruit anthropique, nous constatons qu’une simple expérience d’antenne a une sensibilité projective
de e ~ 107 et de g4y ~ 10711 GeV ™! pour des masses dans la gamme 1072 eV < m < 10-%eV. En outre,
ces projections peuvent étre améliorées de différentes fagons.

Nous explorons ensuite les conséquences phénoménologiques du couplage quadratique des axions QCD
aux photons. Nous montrons qu’un tel opérateur est plus pertinent dans ’analyse que ce que 1’on pourrait
attendre naivement, en nous inspirant de I'opérateur analogue pour les pions. L’unitarité de la théorie exige
que le couplage soit grand. Nous motivons ces considérations par des constructions UV pour les particules
de type axion, afin de montrer que de tels couplages quadratiques sont omniprésents pour tous les axions.
Nous explorons également comment cela impose des contraintes sur les axions ultralégers qui constituent la
matiére noire.

Les propriétés des théories quantiques des champs (QFT) effectives telles que 'unitarité, la causalité
et la localité peuvent étre utilisées pour contraindre les coefficients de ’action effective de cette maniére
assez générale. Dans les derniéres sections, nous explorons comment ces conditions sont trouvées dans les
théories impliquant la gravité dynamique, un cas ol les techniques standard deviennent mal définies. Des
techniques nouvellement développées sont proposées. Elles sont ensuite utilisées pour placer des contraintes
conservatrices théoriquement cohérentes sur ’espace des théories impliquant des scalaires légers et la gravité.
Nous constatons que ces techniques restent robustes lors de I'inclusion d’effets de boucle non analytiques, ce
qui donne du crédit a leur validité.
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Chapter 1

Introduction

1.1 Introduction overview

The central topic of this thesis is very low energy particle phenomenology and its description through the
use of effective field theory (EFT) methods. EFT-like methods have always been employed throughout
physics, long before QFT existed, in that the relevant scales for a given problem are always identified before
a calculation is performed. For example in our Solar system of approximate size 10'4 m, for astrophysical
sized effects like the orbits of planets, the most relevant force to consider is gravity and the others are safely
ignored. This is because gravity is mediated by a massless boson. Zooming in to 10'" m, we appreciate that
electromagnetism becomes relevant, as the Solar wind influences the plasma surrounding the planets. Strictly
speaking electromagnetism is also mediated by a massless boson, and so should propagate infinitely far like
gravity meaning that it is difficult to pin the exact scale where electromagnetic effects become relevant.
One major reason that we do not consider electromagnetism in astrophysics is that we are lucky to live in
a Universe which is charge neutral; electromagnetic waves are screened on long length scales and also will
not interact strongly with large uncharged objects such as the Earth. These two forces, and in particular
electromagnetism, reign supreme from anthropic scales, right past atomic lengths down to the sizes of nuclei,
roughly larger than 107'% m, within the Sun. Here, the nucleons within nuclei are bound together by the
exchange of pions, which give the first hints of the existence of nuclear forces. The pion mediators have a
characteristic mass preventing them from being relevant at larger distances. The effective theory used to
describe the interactions of pions and nucleons is called chiral perturbation theory (xPT). We observe that
the nuclei within the Sun fuse together to make larger nuclei emitting photons and neutrinos. In order to
understand this more properly, we have to zoom in further. Below 107! m the strong force is seen to be
mediated by gluons, with the baryons and mesons composed of quarks and gluons. On these scales and
smaller quantum chromodynamics (QCD) becomes the relevant description for the strong nuclear force. If
we are to look at scales on the order 1078 m, then we see that the weak nuclear force is mediated by
additional massive bosons. The relevant description to use for processes with comparable energies would be
the Standard Model. This can be used to explain the addition of the neutrinos in the earlier nuclear fusion.
Beyond these length scales we know that we should expect something to happen before 1073 m, as this is
where quantum mechanical effects from gravity are expected to become relevant.

In this thesis we will discuss a variety of applications of EFTs. We will first use EFTs pragmatically to
study the relevant phenomenology for dark matter experiments. After this we will explore the theoretical
self-consistency of EFTs, in particular for theories involving gravity. Throughout this introduction we will
develop the EFT perspective necessary to understand these goals. The tenets for the EFT user will be
introduced through an exploration of the standard model EFT. Before this we will introduce a motivating
example that predates QFT, to show that the EFT philosophy is a natural refinement of older techniques.

Hydrogen Model Once the relevant scale has been identified, there is still work to do. We have to identify
the most appropriate mathematical framework to use, the symmetries of the problem and whatever remaining
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ratios of scales can be taken. We can step back and identify one archetypical example coming from the early
days of quantum mechanics when physicists wanted a good model of the hydrogen atom, that could hopefully
be extended to more complicated atoms. Their problem was threefold: they had to identify the relevant
framework for their calculations, the symmetries of the problem and whatever dimensional parameters seemed
most relevant to the atom. Heisenberg and Schréodinger saw two separate sides of the quantum mechanical
coin while trying to find the new framework. Their viewpoints initially seemed unrelated until Dirac revealed
that their formulations of quantum mechanics were actually the same, and that the problems were nicely
formulated in terms of Hamiltonian mechanics. This defined the framework. For an atom, it would seem
very unnatural that the dynamics of the electron around the nucleus should depend very strongly on the
microphysics within the nucleus itself, with approximate size 107! m. This can be substantiated upon by
looking at the multipole expansion of the electron’s Coulomb interaction with the nucleon’s internal degrees
of freedom and we see that the dipole is suppressed by Ruucleus/ Ratom ~ 107°. Therefore the system was
taken to be well described by the Hamiltonian

2 2

Pe + Py _ o 7 (1.1)
2me  2my  |re — 1y

H =

where pe/p, Te/p and m,/, are the momenta, displacement and masses of the electron and proton respectively,
which should be the appropriate degrees of freedom, and « is the fine structure constant. We work to leading
order in «, as it is measured to be a small number. Since the electron is much lighter than the proton, m. is
approximately equal to the reduced mass of the system, allowing the motion of the proton to be effectively
decoupled from the electron in the centre of mass coordinates in the infinitely heavy limit for the proton.
In this language we now see that the above Hamiltonian has a good SO(3) rotational symmetry about the

proton. More formally, this means that the Hamiltonian commutes with L? = qjkrgp’;. It should be stressed
here that the symmetries of a physical problem simplify analysis hugely, so it is very beneficial to identify
them early.! Because the energy of the system is the eigenvalue of the Hamiltonian, we see that the energies
cannot depend on the angular momentum quantum numbers, otherwise rotations would change them. This
implies that the answer can only depend on the principal quantum number n whose size is related to the
radius, and on physical grounds we know that as n increases an electron’s energy should increase, because
the electron will be less tightly bound to the proton. We can also use dimensional analysis to see that the
only length and energy scales in the problem that can be constructed are (m.a)~! and m.a? respectively.
It can be shown using the semi-classical methods of Bohr’s model [1] that the radius scales proportionally
with n2. Combining these facts gives the formula for the energy levels for hydrogen

mea2

En=- 2n?

(1.2)

We did not need to solve the Schrédinger equation to find this answer, merely identify the relevant framework,
symmetries and scales of the problem was sufficient. We also made use of the large ratios of the measured
dimensionful quantities to enhance the rotational symmetry.

Standard Model EFT This notion has been honed over time to a high level of sophistication in particle
physics [2-5]. Here the ultimate goal is to describe the entire particle content of our Universe. As non-
relativistic Hamiltonian mechanics was the most appropriate framework for the atom, QFT is the most
appropriate for this task. Symmetry plays an even more important role than it did for the Hydrogen atom,
as the particles themselves are classified by their symmetry properties. The appropriate scales are those
of the relevant operators in the effective action, and also the cutoff scale of the EFT, this is the energy
scale near which new particle content or new dynamics is expected. The standard model (SM) of particle
physics consists of the renormalizable part of a larger EFT [6-9]. Its particles are representations of
the Poincaré group; 12 fermions and 13 bosons. Each of the particles is charged under the gauge group
SU(3)c x SU(2)r, x U(1)y according to the experimentally determined values and such that there are no
gauge anomalies, summarised in the following table

IFurther, the Universe’s particle content seems to be organised by its symmetry structure.

12



Qi ug ds L; €; ®
(3,2)176 | (3,1) o5 | (3,1)1y3 | (1,2)_12 | (1,1)1 | (1,2)10

Table 1.1: Standard model particle charge assignment.

The Lagrangian for this EFT can be written as the sum of all singlet operators made from these fields,
1

where L<4 contains the relevant and marginal operators and the remaining ‘irrelevant’ operators are sup-
pressed by the scale of new physics A, .. Relevant operators are those with negative mass dimension,
marginal operators are dimensionless and irrelevant have negative mass dimension. The operators of L<4
form the following SM Lagrangian

1 v 1 LV 1 LV 2
Loy =GR GM = W, WM — 2By, B + (D) (D) + 12t = A (o19)

- (1.4)
+i (L'PL' + ele + Q' PQ" + w' Pu' + d'Pd*) — (Y5, L' pe? + Y1Q'¢u! + YiQ pd’ +h.c.) ,

where G, W and B denote the gauge bosons, ¢ is the Higgs boson, ¢! = e7;(p”)*, the fermion doublets are

denoted by capital letters, the Yukawa matrices are denoted by Y and the flavour indices are left explicit.

The above Lagrangian accounts for the electroweak symmetry breaking we see in nature when the Higgs

field gains its expectation value and the well-known story that follows [10-13]. The most relevant effects are

captured by this part of the Lagrangian and the higher order operators are omitted in the spirit of EFTs.

It is noteworthy that the accidental global symmetries of Baryon number conservation U(1)p and the
Lepton number conservation laws U(1), are an output of this construction. The symmetries do not require
any specific values for the Yukawas, or other measured parameters, only that the irrelevant operators be
ignored, due to a large separation of scales before new physics appears. These symmetries are explicitly
broken upon the inclusion of the irrelevant operators in the EFT, for example the Lepton number violation
occurs upon the inclusion of the dimension 5 Weinberg operator?

5= (L'p) (') +he. (1.5)
M

So, baryonic and leptonic conservation is expected until at least some high scale ‘M > 100 GeV’, near

where the SM is assumed to be UV completed. It is an experimental fact that both of these symmetries are

respected quite well in nature [14], which could imply that the physics corresponding to (1.5) is high-scale.

This is a perfectly valid explanation for the quality of the symmetries which moves the explanation to higher

scales.

Furthermore, there are additional approximate symmetries of the SM that emerge once some values of the
SM input parameters have been measured. These can be used advantageously in modelling the lower energy
phenomena we observe. For example, there are approximate chiral symmetries for the low mass quarks
broken both by confinement and their non-zero masses. There are also approximate flavour symmetries like
the SU(3)y symmetry leading to the famous eightfold way and also incidentally the isospin symmetries of
the lower energy hadrons. These are themselves broken by the mass differences of the light quarks. We see
that the symmetry breaking pattern [15-18] is extremely important in constructing a low energy theory.
We can use all the symmetries to build another lower energy EFT called chiral perturbation theory (xPT)
to describe the dynamics of the low energy hadrons [19-21]. The way this works practically is that one
begins with the chiral symmetries and then specifies the symmetry breaking pattern by saying that the
quark condensate spontaneously breaks the chiral symmetries to the diagonal

SU(Q)L X SU(?)R%SU(2)V7 (16)

2 A non-unique list of dimension 6 and lower operators in non-redundant bases can be found in [7, 8].
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for example, in the case of the up and down quarks. Then one builds an EFT by using the coset construction,
matching the global currents in the high energy theory to those in the low energy theory. For the up and
down quark example, we can define the 2 x 2 matrix U containing the pions that transform non-linearly

under the SU(2)y
A ATy, S
U =exp (z A H) with II = < - _WO/\/E) . (1.7)

Further breaking can be accounted for by using spurions. As an example, one can account for the quark
masses, which explicitly break the symmetries, by introducing a spurious mass ‘field’ y that transforms
covariantly under the symmetries and then setting it to a background value in the low energy theory. Such
a construction is used to describe pion dynamics at energies far below the chiral symmetry breaking scale
set by Aqcp, resulting in the Lagrangian

2
L =TT (0,U0"U" +xUT +xTU) . (1.8)

The pions can also be coupled to gauge fields by introducing a covariant derivative such as
DU = 8,U +ieA,[Q,U], with Q= (263 _f/3> . (1.9)

This construction will be very useful in chapter 4, where it is minimally modified by the presence of an
additional light pseudoscalar field.

Today the study of low energy phenomena is well-motivated, both experimentally and theoretically, for
those interested in extending the SM. While its successes cannot be downplayed, beyond the Standard Model
(BSM) physics is necessary to explain various issues associated with observations and theoretical issues. The
SM’s problems are not singular in their nature in that there are several seemingly unrelated issues, coming
from cosmology, high-energy experiment and internal theoretical questions. In this introduction we will point
out a number of the SM’s issues, which motivate the study of low energy phenomenology that follows in the
remaining chapters of this thesis. We will do this by starting with operators of highest dimension in the EFT
and moving down in dimension to the most relevant. Not all of the SM’s problems are discussed here, for
example there will be no mention of neutrino oscillations [22], nor problems associated with flavour [23].

1.2 1Is dark matter irrelevant?

Given the successes of the SM, all of the operators higher than dimension 4 are suppressed by the scale
of new physics which is assumed to be much larger than the electroweak scale. This is precisely why the
nomenclature of irrelevant operators is appropriate. All operators are constructed to be singlets under the
SM symmetries, where the expectation is that the SM symmetry group is contained within the group of the
UV complete theory. UV completions of the SM can be matched to the coefficients of the SMEFT in order
to impose constraints [24-27].

Dark Matter A noteworthy problem highlighted by these (and all other operators in the SMEFT) is
that there is insufficient particle content to correctly account for the observed Dark Matter (DM) making
up ~ 25% of the energy budget of the Universe. DM is required to explain a variety of astrophysical
observations, for example to explain structure formation [28], the rotation velocities of galaxies [29] and
the centre of mass positions in galactic collisions [30, 31]. Furthermore, there is evidence for its existence
from CMB measurements [32]. There are also few compelling alternatives to the DM paradigm, without a
considerable modification of our understanding of gravity [33, 34]. Additionally, alternative explanations can
often describe one phenomenon well, but also require the presence of additional DM to explain the remaining
observations|35], motivating the study of DM phenomenology further.

SM particles lack the required properties to explain the observed phenomenon attributed to DM. DM is
not relativistic [36], ruling out the worst potential SM DM candidate of the photon immediately. Additionally,
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DM should couple weakly (if at all) to light, or it would have been observed by non-gravitational means,
meaning that none of the charged leptons or hadrons are viable. It should also be relatively stable [37],
which discounts the unstable weak bosons and any mesons, or potential glueballs formed in the strong sector
[38]. Unbound neutral hadrons like the neutron are also unstable, meaning that the only possibilities for
hadronic matter to make up DM comes from composite dark objects called massive compact halo objects
(MACHOs), or more exotic states such as strangelets [39]. MACHOs do allow for a percentage of DM to be
made from SM matter, but crucially not all of DM can be accounted for this way [40-42]. This leaves the
neutrinos as the only remaining SM option; they are electrically neutral, interact very weakly and appear
massive. However, they move too fast upon production. Even if they could be produced in a way that were
sufficiently ‘cold’, the Pauli exclusion principle prevents them from having a large enough number density
required to match the inferred energy density required [43]. One possibility is that right-handed neutrinos
make up the DM, these are not present in the SM as written above [44]. They would couple to the SM
Lagrangian through a renormalizable neutrino portal (Y”LoN +h.c.), unless a symmetry were to forbid the
operator. This alone motivates the extension of the SM by additional particle content.

WIMPs Particle DM remains a compelling hypothesis to explain the missing energy density. Existing
evidence does not pinpoint any particular mass, nor coupling strength to visible matter. The irrelevant
operators in the SMEFT may offer potential explanations by encoding information of BSM dark sectors.
New particles are expected to appear at the scale of the UV completion. This new particle content, if
sufficiently stable, can make up the DM. We can postulate the existence of an additional heavy particle yx
that interacts with SM particles very weakly, through a coupling ¢ < 1. By dimensional analysis it will
have a scattering cross-section annihilating into SM particles scaling as o ~ g*/ mi. This allows the DM
abundance to be populated thermally in the early Universe, in a freeze-out mechanism. An approximate
solution of the Boltzmann equation for the x number density shows that the energy density is inversely
proportional to the thermally averaged cross-section and velocity of x

0 1 —26 3
x _1077cem S5 (1.10)
(0.27) (ox Uy)

Fixing the annihilation cross-section to have that near the weak scale allows the DM density to be consistent
with observation. Variations on this argument and supersymmetric extensions of the SM, where SM super-
partners like Higgsinos or Winos are expected, motivated the weakly interacting massive particle (WIMP)
to become the archetypical DM candidate. The above argument is known as the WIMP miracle as it seemed
to predict that the WIMP should exist near the electroweak scale. Unfortunately, the WIMP has not been
discovered in any DM matter experiment and constraints on it are becoming increasingly tight. WIMP
parameter space is now highly constrained from null results at large-scale scattering direct detection experi-
ments [45-49], LHC searches [50, 51] and astrophysical searches [52-55]. Looking again at the cross-section
o~ gt/ mi we see that the mass can naively be much larger than the weak scale if the coupling is brought
down to compensate, which could either be achieved by some tuning or as the result of loop factors.

There is a theoretical upper limit for the mass of these WIMPs. Because their abundance is populated
thermally, it has been shown using unitarity (¢ < 4m) that they can have masses of at most < 100 TeV
[56]. This constraint on masses can be circumvented if there is no requirement that the relic abundance is
populated thermally. Opening this door allows the number of DM particle candidates to grow enormously,
leading to a modern hypothetical particle zoo, spanning many orders of magnitude in mass and incorporating
particles of many different kinds. The theoretical upper bound for a DM particle now comes from equating
the size of a particle to its Schwarzschild radius; the largest mass it can have before just being a black hole
mpm S 10'” GeV. The lowest mass is constrained by the fact that the DM must be at least as small as
the smallest Galaxies that we have observed mpy > 10721 eV [57]. This results in a mass window spanning
~ 50 orders of magnitude [58]!

Light Bosonic DM One possible mechanism to form the DM abundance called the misalignment mechanism
applies to bosons, it can lead to DM candidates which have extremely different phenomenology to a WIMP,
and that are not accounted for in the SM Lagrangian as written. It can be shown that light bosons ‘¢’ may
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redshift as DM with the correct abundance by considering their equation of motion in a background FLRW
metric, after inflation. The equation of motion is

b+3Hp+V'(¢) =0, (1.11)

such that near the potential minimum the last term is well approximated by mig{). This equation can be
solved generically for any equation of state w # —1.

= % <w—1~—1) — ¢ (t) = (mp)/27Y/0F) [d)l ‘7[%—1%] (mt) + ¢2 y[%_ﬁ] (mt)} , (1.12)

where ¢; o are undetermined coefficients, J and ) are Bessel functions. For example, in radiation domination,
where w = 1/3, this solution becomes

6 (t) = (mt) " [61 Ty (mt) + 62V (mt)] . (1.13)

If (i)\tzo = 0, then the field remains frozen near its initial values for some time of size ~ m™!, due to Hubble

friction. One such light bosonic candidate is a pseudoscalar called an axion-like particle (ALP). It is assumed

to arise from the breaking of a symmetry at some scale f,, as the Goldstone boson of the spontaneously

broken group. Assuming that there is standard cosmology, it can be shown [59] that the relic abundance
associated to such a field formed by this mechanism is

90 \*
, 1.14
(g* (Tose) ) ( )

Q. ~0.26 fa90 2 Mg
‘e 1.9 x 1013 GeV 1LpeV

where f, is the symmetry breaking scale, 6y is the initial misalignment angle of the ALP in its potential,
the combination f,fy is the initial field value, m, is the mass of the ALP, and g.(Ttsc) is the number of
relativistic degrees of freedom at the onset of oscillations®. This is interesting as it implies these bosonic
particles can be made incredibly light, and still account for the observed DM in the Universe.

[N

Although little is known about the specific particle properties to give preference to one candidate over
another, some DM parameters can still be estimated using simple methods. Our local relative velocity
through the DM halo can be found by appealing to the virial theorem. The virial theorem states that our
speed at our radius in the galactic disk is given by

2y . GM(R)

(v) = ==, (1.15)
where Rg ~ 8.3 kpc is our radius from the galactic centre and M (Rg) ~ 1011 Mg is the total mass enclosed
within this radius, resulting in the value (v?) ~ (220kms™")? ~ (107%)2. It is also possible to infer the local
energy density of the DM by a variety of means, one of which is to consider nearby stellar tracers and infer
the local gravitational potential by modelling the vertical harmonic oscillations about the plane of the disk
[64]. The value obtained by doing this is ppym ~ 0.3 GeV em~3. Typically constraints on the DM couplings to
SM particles will be dependent on the background number density of the DM and can be rescaled as /ppm
assuming a different DM local energy density. It is very important to understand the various possibilities
of formation mechanisms for DM when making any statements about discovery potential. This is because a
typical DM direct detection experiment is sensitive to a combination of the coupling being probed and the
local energy density of the DM. Other properties of wave-like DM can be probed through simulation, for
example how they affect galactic formation.

Very light bosons do not suffer the same problem as neutrinos; their statistics do not prevent them from
having the required number density to make up all the observed DM. In fact, if DM were to be composed

3This is the simplest known formation mechanism for DM candidates of this kind, though there exist a plethora of others
[60-63].The above story can further be complicated by changing the initial conditions for the scalar, or by including more terms
in the scalar’s potential.
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of these ultralight bosons, they could be treated as classical waves due to their high phase space occupation
numbers, below around ~ 10eV. In order to make up the total energy density of DM, then the number
density must increase to compensate a decrease in mass. The phase space occupation number is

PDM 1

N = npwm )\BDM = (1.16)

mpM (mpMm U)3 7

where we identify the wavelength of the particle as its de Broglie wavelength. We see that for masses lower
than mpy < 10eV [65], the occupation number is larger than one, implying a classical, wave-like nature.
The alternative, for DM particles with higher masses, would be to have “particle-like” properties. Of course,
we live in a quantum mechanical world, where it is never completely fair to make this distinction. The reason
it is a relevant picture to keep in mind is for the mechanism used to detect a potential experimental signature.
For DM that comes in heavy lumps, one can watch a sample of nuclei very closely, for example, and wait
to see if a lump collides with one to observe a recoil. This picture is less useful for the lighter DM. A much
more useful one is that a signal from this DM is statistical in nature. The large number of particles become
virialised leading to a phase space distribution given for example by the standard halo model distribution

(V + Vobs.)2

fv)= %eXp —1 , (1.17)

(v?)

where vgp. is the velocity of the observer in the halo’s rest frame and N is a normalisation for this dis-
tribution. All of the individual collisions are averaged over, resulting in a background of DM, where the
expectation value and variance for the fields have known values [65]. This is true of the photons that we
observe all the time in everyday life; it is very rare that we have to think about a single photon colliding
with an antenna, almost always we only care about the smeared-out classical field.

Many of the experiments searching for this DM will try to exploit the coherence of the signal, and as the
DM is non-relativistic the DM should be coherent. We expect that the DM is well described by a massive
wave, meaning that there should be an approximate dispersion relation of the form

k) ~ 1 LK 1.18
w()_mDM(+2m2). ( )
Such a dispersion relation results in a non-relativistic group velocity. The signal should be centred around
the mass of the DM, with a spread dictated by the virial velocity, or more accurately the speed of the
Earth through the DM background. In turn this implies that there is a coherence time determined by the
bandwidth of the DM wave itself, . .

DM = Af = Mo (02) (1.19)

Thus, the DM can be said to have an associated quality factor of size @ ~ (v?)~! ~ 10°. For timescales
shorter than the coherence time of the signal, it is reasonably accurate to treat the bosons as a perfectly
monochromatic signal with a frequency set by the mass

#épm = ¢; cos (mpmt +9;) , (1.20)

where ¢; is an amplitude drawn randomly from a Gaussian distribution such that (¢?) = 2ppy/mpy and
1; is a random phase. After one coherence time has elapsed then these parameters should be redrawn. This
means that if the experiment occurs over multiple coherence times one must account for it in their analysis,
with the signals adding incoherently. This will affect the scaling of a DM signal in time. We will elaborate
on this further in a later section (2.7) for a specific experimental set up. Furthermore, there is another sting
in the tail for ultra-coherent signals corresponding to the very low mass bosons. We move through the DM
at approximately the virial speed, this means that over one coherence time we see a patch of DM with a
coherence length

(1.21)



which is the de Broglie wavelength of the DM. There is no reason to expect that the patch we move through
right this second has an amplitude that is comparable in size to /2ppy/mpy, as might be expected. We
only demand that the variance of all the amplitudes drawn over many coherence times be of size 2ppy/md, ;-
It is a possibility that we have been very unlucky on the draw in our patch, with an amplitude far below
what one might naively expect. This would make it far more difficult to detect the DM in an Earth based
laboratory experiment. For an idea of the timescales involved a mass of mpy =~ 107 '® eV has a coherence
time of ten years. Thus, the lowest three decades 1072 eV < mpy < 107 eV of allowed DM masses suffer
from this potential issue.

Axions and Dark Photons Two natural kinds of particle to include in the category of light bosonic DM
would be pseudoscalars and spin-1 vectors. We note that the effective theory in (1.4) including higher order
operators is not appropriate as these extra light states are in the spectrum. This is because we have implicitly
assumed that the scale of the new physics is above the electroweak scale. The addition of a light ALP leads
to the low energy Lagrangian relevant for table-top experiment by the addition of the terms

Ca

CaNN _
- fze ouaevytyse, (1.22)

Larp D —C}ﬂ aF’“’FW — fiaua NAH~ysN —

a a

where ¢; is a number denoting the coupling strength of the ALP to the low-energy SM particle, e is the
electron field, N is the nucleon field and F is for photons. Given an explicit UV model for the ALP the
coefficients ¢; are in principle computable. Each of these operators is dimension 5 and therefore suppressed
by the scale of symmetry breaking*.

A variety of experiments and proposals have been put forward to search for these couplings. See the
following for a non-exhaustive subset [67—69]. In particular the coupling to SM photons has received much
theoretical and experimental interest [70-80].

Many of the experiments used to detect this ALP photon coupling can be repurposed in some way to
search for the other bosonic DM candidate mentioned, a kinetically mixed dark photon (DP). A massive
DP could arise from an additional U(1) gauge group broken by a compact scalar field, a possibility strongly
motivated by UV completions of the SM [81-91]. Typically it is assumed that there is no matter charged
under the additional U(1) because otherwise it would be this matter that forms the bulk of the DM, as
opposed to the DP. The most relevant operator coupling an additional massive U(1) boson to the SM at
the energy scales of interest is through a kinetic mixing to the photon, where we can write the standard
Lagrangian for the photon and the Proca Lagrangian coupled through the kinetic terms [92],

Lpp D —iFWF‘“’ — iF;/wF/W + %e E, F!' + %mi,A;A’“ —eA,T". (1.23)
The DP field is denoted by primed quantities, € is the kinetic mixing parameter and 7 is the electromagnetic
current density®. It is assumed that we only work at energy scales well below the weak scale, so any effect
of size G although present, is irrelevant. We see that the presence of the mixing term breaks the charge
conjugation symmetry of both of the vectors, A") — —A(). This allows for € to be a naturally small number,
as sending it to zero restores the symmetry. We also note that redefining the fields as A" — — A’ shows that
no physical observable can depend on the sign of ¢, only the magnitude.

The fields in the Lagrangian as written are in the kinetic mixing basis, but one can perform a rotation
to other in-vacuum bases. It is clear that if there are no currents for the additional U(1) and no mass term
then the effect of the kinetic mixing parameter can be rotated away. This implies that any physical effect
should come proportional to the mass of the DP. Canonical kinetic terms can be obtained, while keeping the

40One could have included contact terms between the ALPs and the SM pseudoscalars built from the fermions. At tree-level
there is a redundancy in this parametrisation. We choose to write the interactions such that the shift symmetry of the ALP is
manifest [66].

5This is one of three possible renormalisable interactions that can be added to the SM Lagrangian, the others are scalar
singlets coupled to the Higgs and right-handed neutrinos from earlier.
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SM photon massless by the field transformation

€ / / /
AM — AM + ﬁA”’ AIJ« — ﬁAM . (124)
This results in the mass-eigenstate basis,
1 v 1 / ang 1 2 / !/ € /
EDP D _EFP”’F# 4FHVF H —|—§mA,AMA K _eAMju_eﬁAujuv (125)
where the mass has been appropriately redefined. The fields remain canonically kinetically normalised under
an arbitrary additional SO(2) field rotation meaning that any other basis can be parametrised from this

mass-eigenstate basis by a single angle ‘@’. Choosing the angle such that tan ¢ = —¢/(1 —€2)~'/2, we obtain
another important field basis called the interaction basis,
Lop > LB, Lp ey L g an Ly € A A+ AL A — e AT, (1.26)
PP = Tyt 1w M A 2T e YVi—e me

where again the mass and charge have been appropriately redefined. It is named as such because only one
field interacts with the SM currents. Performing calculations in any basis will result in the same physics
although sometimes it is easier to see a physical effect in one as opposed to the others.

The stress-tensor of the system with no currents is determined by
1 1 1
TH — 7F,u,aF(1; + Zg/u/FvZ - F,HaF/: + Zg,uz/l;w/2 + m2 (A//,LA/V o 29114114/2) , (127)

from this we see that the system now differs massively from the photon alone because the trace of the stress
tensor is
2472
T, =—-m AZ, (1.28)

such that it is non-zero. This is because the mass introduces a scale, so now the theory cannot be conformally
invariant like that of the photon. The new Lorentz force law can also be written in this language as

0,TH =e[F" +eF'"™] J,, (1.29)
where we can interpret the right hand side to be a force density.

Stiickelberg’s Trick The above Proca Lagrangian containing a massive vector is gauge invariant. There is
a nice trick due to Stiickelberg to see that the Proca Lagrangian shows a special case of the Higgs mechanism.
Writing the case of a U(1) Higgs

1 v 2 2 A u
L=—1F"F, + D, +p* o] - S |®", (1.30)
which is manifestly gauge invariant and the Higgs has a charge g. The field ® has a non-zero vev at
v = +/p?/A. In the radial parametrisation, the Lagrangian is then

1 1 1 2
L= -Fmp (0up)® + 5 (9u0)" + = (0)” + 4”? (9,0)2

P
4 ,U.l/ 2 \/§U (131)
—V2vgA' ), 1+L+ﬁ + g?2 A2 1+Q+7 +Vip) . .
N 22

The radial mode can be decoupled by taking the vev to infinity and Higgs’ charge to zero, holding the
combination fixed. What results is the Proca Lagrangian, if we work in the Lorenz gauge and with the
identification of 2¢g%v? = m?%,. Therefore the Stiickelberg mechanism can be thought of as the Higgs mech-
anism with an infinitely large vev. The DP’s mass can also come from the usual Higgs mechanism, but
decoupling the radial mode allows one to consider a massive DP whose phenomenology is independent of
an additional scalar. Among others these wave-like DM candidates are both well-motivated [93-102], with
modern precision experiments improving the chances of their detection.
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1.3 Marginally puzzling strong sector

We now leave the world of cosmology and return to the SM Lagrangian. The marginal part of the of the SM
contains all of the operators in Eq. (1.4) other than the Higgs mass term. First we note that it is possible
to write an additional three terms which are naively consistent with the SM gauge group,

QY
3272

mz gW I pvyyrl gb A pv A A
5 B By + 0w 0 WL, + 055 A, (1.32)

Terms with tildes correspond to the Hodge duals of the Faraday tensors (F w = 1/2e08F of ). Notably,
each of these violate both parity and time reversal symmetries. One can see this most easily by considering
the explicit example of F - F in electromagnetism, which is proportional to E - B. Under parity the B field
is even whereas the E is odd, so their combination must also be odd. The same argument applies to each of
the terms listed. Likewise the photon is charge conjugate odd, meaning that F - Fis charge conjugate even,
because A, appears twice. Together this implies that - F is CP odd, as well as each of the other operators.

Each of these terms is a total derivative. Because of this it can be shown that these angles are related to
the topological nature of the vacuum structure of the gauge groups. This immediately allows us to set 0y
to zero because the homotopy group, or equivalently the vacuum structure, of U(1) is trivial. There are no
non-trivial configurations of these fields to contribute in the path integral. The vacuum structure of SU(2),
which is homeomorphic to a sphere (S?), is non-trivial. However, because the SU(2)y, fields couple only to
the left-handed fermions, one can perform a simultaneous rotation to the left-handed and right-handed fields
such that this angle can be removed, within the SM. If one were to include higher dimension operators this is
no longer true, if there is explicit violation of B + L, one sees that it is not possible to rotate the angle away
[103]. Modulo this fact, the only remaining operator that we cannot simply rotate away is the one made
of gluons. Chiral rotations will not leave the Yukawas invariant, so it is expected that 6 has some physical
effect. One important caveat to this is that if a single eigenvalue of the Yukawas were to be zero, then such
a rotation would be possible, like for 6y . Effects on physical observables can be computed by including the
effects of instantons, or by including its effect in xPT.

SM CP Violation CP violation from the electroweak sector is a standard story in the SM, but we will give
a quick recap for completeness. We set the Higgs to its expectation value, breaking SU(2), spontaneously.
It is desirable to diagonalise to the mass basis for the fermions while keeping the kinetic terms diagonal.
This will introduce mixing in the couplings to the gauge bosons. This is possible through the use of a set of
unitary matrices in flavour space, one for each doublet or singlet independently. Because the electromagnetic
and strong gauge interactions are vector-like, there is no effect of this diagonalization for the right-handed
fermions, who only see these forces. This is not true for the left-handed doublets, which have non-zero charge
under the SU(2). We see that the quark kinetic term contains

Si Tyl ~ (i 7Y | L I 1 )
for example. After this unitary rotation there is an off-diagonal mixing sensitive to the rotations performed.
i * \Jt + * \Jiyrik 37 117
iQ'PQ" > EQW {( )J Vir a LW di + (Vi) Vit LW UIZ} . (1.34)

The unitary CKM matrix Vogmy = VJLVdL is a remnant of this diagonalization procedure. Although a
generic unitary 3 x 3 matrix is expected to require 9 real numbers be specified, this is not true for the CKM
matrix which only needs 4 because each quark can be rotated by a phase independently, without changing
any physics. A global rotation can be discounted resulting in the removal of 5 degrees of freedom. The CKM
matrix is then expressible in terms of three real angles and one phase. This is at odds with CP invariance,
because the transformation properties of the currents and bosons require VCTKM = Ve for CP to be a good

symmetry. CP violation is observed experimentally.
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The CKM matrix entries are

1 0 0 Cc13 0 513671‘5 C12 s12 0
Vokm = | 0 co3  s23 0o 1 0 —s12 c12 0 |, (1.35)
0 —S8923 (23 —513615 0 C13 0 0 1

where the same parametrisation as [14] is chosen. The angle ¢ appears in physical observables through the
Jarlskog invariant,
J = s15C13813503C12C23 5100, (1.36)

because a trivial mixing (¢;; or s;; — 0) means that a pair of quarks becomes degenerate and will allow ¢
to be rotated away. The measured value of § ~ 1.20, which is an O(1) number, indicating that CP is not a
good symmetry of the SM. The Jarlskog can be written in terms of the Yukawa matrices as

, 3
J =TIm (Tr [YuYJ,YdYH ) , (1.37)

Strong CP Puzzle We are now at a point where the puzzle corresponding to 6 can be seen. The strong-CP
phase 6, is a flavour invariant combination of QCD’s topological angle # and the phase of the Yukawas

0 = 6 — arg (det [V, Yy]) , (1.38)

which is invariant under the anomalous Ua(1) rotation of the quarks. By means of a rotation it can be
placed entirely in front of GG, meaning that it will never show up in perturbation theory, only through non-
perturbative effects. This angle can be related to the neutron electric dipole moment (eDM) in a classical
way to illustrate the map between the eDM measurement and strong CP problem. A more complicated
analysis can be done, using instantons or xPT, to verify this more intuitive picture. To get the correct
quantum numbers of a neutron (electric charge, isospin etc), one posits that it is a combination of two down
quarks and an up quark. The classical electric dipole moment for the neutron is the charge weighted vector
sum of the quarks’ relative positions

du = £ [(ru =) + (0u — 10,)] (1.39)
where the subscripts denote the quarks in the neutron. The typical size of the neutron is ~ 0.8 fm set by
the pion mass, implying that the maximum length of these vectors will be 1/m,. This would imply that
|dn| ~ ed/my, if the angle ‘¢’ between the quark displacements were small. The estimate leaves something
to be desired because it is not immediately clear physically why the angle ¢ should correspond to §. One
can improve on it by imagining that the quarks are not static, but undergoing motion from the internal
forces. There should be a CP violating force acting on the quarks. We know from the above symmetry
arguments that such a force must be proportional to a quark mass, because a zero quark mass allows for
the CP violating effects to be rotated away. We can choose this order parameter as m,, as the smaller of
the quark masses. Those strong forces that violate CP should also come proportional to 6, presumably with
a scale set by Aqcp. These will naively be the more relevant forces, because the weak sector CP violation
will be suppressed further by my ~ 100 Aqcp. Likewise we know that restoring forces should be set by the
binding energy in a nucleon which are also of scale Aqcp ~ m,,. Combining these facts gives the estimate
for the typical separation of the quarks in a neutron and therefore the eDM as

My ~
|dn] zcnem—%ﬁ, (1.40)
where ¢,, is some unaccounted for O(1) number. This is similar parametrically to that obtained using xPT
[104].

The kernel of this ‘strong-CP puzzle’ is to explain why the neutron’s eDM is so small, when there is
no reason a priori that QCD should restrict it to small values. The experimentally determined value is
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|dn| < 1.8 x 10726ccm (90% CL) [105]. This is made yet more mysterious because we know that CP is
not a good symmetry of the SM, which might have otherwise been used to explain the smallness of |d,,].
We also know that further sources of CP violation are expected to explain the observed matter anti-matter
asymmetry in the Universe. The value obtained using the experimental value for the eDM is # < 10~0. To
resolve the strong CP problem is to explain why the angle 6 is so small, without resorting to fine-tuning.
Furthermore, as opposed to other theoretical problems of the SM, this one has no known anthropic resolution,
without putting further priors onto the solution [106].

There are finite corrections to the parameter at four loops [107], with the estimate for the SM contribution
being that § ~ 10~'°. Taking  to zero restores CP invariance in the strong sector, but not in the whole
SM because of 6. One can see based on flavour symmetries that 6 runs very slowly in the SM [108]. The
parameter receives no corrections to its running until at least 7-loop order. This is because the only source
of CP violation in the SM is the CKM phase, and so a divergent diagram must appear proportionally to the
Jarlskog [109]. This property is also not robust under SM extensions, which as argued before must exist.
For example, in supersymmetric extensions to the SM there is running at one loop from the Gluino mass
phase.

1.3.1 Symmetry solution and Axions

One popular solution to the puzzle postulates that there is a global U(1) symmetry protecting the angle.
This symmetry allows the § angle to be effectively rotated away. One way to realise it is to set one of the
light quark masses to be zero, which we can see from the classical estimate (1.40) would make the neutron
eDM zero. At the level of the Lagrangian this is because the left and right handed chiralities of this quark
become decoupled, which introduces an additional anomalous U(1) axial rotation. It is often said that for
such a solution the puzzle is solved dynamically by the ' meson. Unfortunately, nature seems to disfavour
this solution. Lattice results show that the lightest quark has a mass incompatible with zero by 26 o [110].

QCD-Axions Instead, there could be an additional global U(1)pq called Peccei-Quinn symmetry after its
initial proponents. This symmetry is spontaneously broken, resulting in an additional particle, called the
axion, which is the pNGB associated to the broken group [111-113]. QCD generates a potential for the
axion which is periodic in the newly dynamical QCD CP-violating angle. This potential is minimised when
this angle is zero, meaning that the axion is a dynamical way to make the observed 8 compatible with zero.
Because the PQ symmetry is explicitly broken by chiral symmetry breaking, the axion has a mass given by
Ma >~ My fr/fa. This linear relation between the mass of the axion and the scale of symmetry breaking is
known as the QCD-axion line. Additionally, such an axion will inherit a coupling to photons determined
both by the choice of U(1)pgq fermion and gauge boson charges in the UV and pion mixing in the IR.

1.3.2 Quality problem

The axion solution is an elegant EFT solution to the strong CP puzzle, that can be probed experimentally
through detection of an axion at the QCD-axion line. However, it is very important to address why the
global Peccei-Quinn symmetry is of such high quality, when it need not be. This is again a concern inherited
from UV thinking. There are expected non-perturbative sources of symmetry breaking coming from QCD
itself, which set the axion’s potential at low energies. The expectation that we have is that exact global
symmetries are not realised in nature. Naively this is because there is at least explicit violation of global
symmetries coming from gravity [114]. In symbols, if ¢ is the complex scalar, whose axial mode is the axion,

then there is an expectation that

1

Lo en g (6" +hee) (1.41)

terms such as these should be present in the Lagrangian, where M < Mp;. These terms also contribute to
the axion’s potential. This means that the axion obtains a new mass term not necessarily centred around
the theta angle. This is what is required for the strong CP puzzle to be solved. It appears as though we
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should demand that

f " B
<M fE <1010 AgCD, (1.42)

to suppress the non-QCD contributions to the axion mass. Enforcing this implies that operators with
n < [86/(19 — r)] should be tuned to small values in order for the axion solution to not be spoiled, if M is
chosen at the Planck scale and f, = 10" GeV. For example, if f, = 10'2 GeV then, n < 13.

The tuning can be realised by demanding a number of additional discrete symmetries, for example a Z4
symmetry can allow the tuning required [115]. There are also other ways to invoke the required high quality
U(1)pq. For example the axion can be a component of a gauge field on some higher dimensional manifold
[116]. The shift symmetry inherited from gauge symmetry is protected.

It could also be that treating the symmetry breaking from gravity in this way is flawed. Outside of
some simple regimes, we are largely ignorant of how to include the effects of gravity in EFT analyses. For
example, in explicit constructions in string theory [117] it appears as though these contributions to the
axion potential are not relevant, rendering the problem a non-issue. Furthermore, axions are generically
predicted in string theory, as a consequence of compactifying extra-dimensional manifolds [118-121]. Thus,
finding many axions would provide evidence in favour of string theory. For these reasons, the QCD-axion is a
well-motivated example of one of the light pseudoscalar DM candidates mentioned in the previous subsection.

1.4 Relevant problems from Gravity

We now move to the most relevant operators in Eq. (1.4). Note that there are no dimension 3 operators
in the SM. As written the only operator included is ;2¢'$, where p has mass dimension 1. Currently this
appears to be the sole dimensionful quantity of the SM. Already it presents us with a question: “why does
the weak scale have the size that it does?". This question is referred to as the electroweak hierarchy problem;
a potential problem for naturalness. It has motivated many extensions of the SM, with clear links to the
study of supersymmetry [122-124], composite models for the Higgs [125, 126], mirror world models for the
Higgs [127] and many more. We must also however add another dimensionful operator to the Lagrangian,
the identity operator A, which contains no fields. A is the most relevant operator that we may possibly write,
with the coupling having mass dimension four. It respects all of the SM model symmetries and so should be
included, from an EFT perspective®.

The expectation that physics is blind to A cannot be correct; upon including gravity such a term acts as
the cosmological constant. Implicitly in the construction of the SMEFT is that any mass scale of non-SM
particles is larger than the electroweak scale. We have seen that new light pseudoscalar or vector particles
can be added to the spectrum and this assumption is not true. The new states have not been observed
because of a sufficiently weak coupling. Even without appealing to unknown new particle content, we know
that this same reasoning applies to gravity. An EFT description of gravity requires the existence of an
additional massless spin-2 boson, called the graviton, which can be thought of as resulting from gauging
Poincaré symmetry. One can then introduce a connexion to minimally couple the gravitons to the SM
particles, in the same way as for the other SM gauge bosons, and the Einstein-Hilbert action as the most
relevant diffeomorphism invariant term that can be written down. This recovers the equivalence principle
of GR upon inclusion of the most relevant operators. Scattering computations are also possible within this
EFT involving gravity and match expectations from GR. As one might expect, there are hints that gravity
behaves contrary to the way the usual EFT construction works. Gravity does care about the size of A. It
appears as the cosmological constant in Einstein’s equations. One can think of the term physically as the
energy density associated to the vacuum itself. A also poses a naturalness problem, although a much more
severe one, known infamously as the cosmological constant problem.

6In flat space, there is no Feynman rule associated with it, and it receives corrections only from bubble diagrams, thus it
will not contribute to any scattering amplitude of the SM particles. This is no longer true upon the explicit inclusion of gravity.
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Problems with A Dark energy accounts for approximately ~ 70% of the Universe’s energy budget and
causes its accelerated expansion [36, 128-131]. The question of dark energy is intimately linked to the
cosmological constant problem. Estimating the energy density associated with the vacuum by computing
bubble diagrams, one finds that the result is highly sensitive to the energy scales at which the computation
is done, and which states are included. For example, computing the vacuum diagrams expected to correct
A, we see that the naive estimate is that A should have a size determined by the fourth power of the cutoff
scale M*. For example, in a very low energy theory involving particles only lighter than electrons, one has
the expectation that A ~ m?, where we know that the electron gives a threshold correction when we match
to a theory where electrons are again dynamical. In the SM the heaviest particle is the top, meaning that
one expects that the low energy should have a value A > m{ without significant tuning, where we expect
that there is a theory containing new particles of masses above the top’s. We already see the running of A
is extremely sensitive to the states in the spectrum, which is due to how relevant it is as a parameter. The
measured value Apeas ~ (1073 eV)? is an unnaturally small value within the EFT of the SM and gravity.
It is important to recognise that this statement is not about comparing the measured value Ape.s and
an unphysical regulator dependent quantity, as is sometimes claimed. Within any given EFT there is no
problem, or internal inconsistency whatsoever. One computes correlation functions using the usual methods,
defines the physical observables that one would like to use as inputs, and then all other physical observables
are computable, within the EFT’s regime of validity. Instead, it is a UV problem. If A should be a quantity
that is calculable, from UV parameters alone, then it is very difficult to build a model valid to high energies
‘M’ such that A ~ M* is not true. Given that we have fairly strong control of electroweak and strong physics
up to ~ 10TeV scales, there appears to be a discrepancy of at least 64 orders of magnitude. However, we
do not have good control at scales between these and M, scales, so one could argue that the tuning is as
bad as ~ 120 orders of magnitude. Researchers look to resolve this in a variety of ways (see [132-134] and
references therein), although there is currently no known solution to this problem. One can also appeal
to anthropic reasoning to resolve this tension between the estimate and the measured value [135]. These
arguments explain the discrepancy roughly by stating that we as observers would not exist to question the
value of the cosmological constant, had it been any value other than one which allows us to exist in the first
place. While this position does resolve the problem somewhat, it does not provide a mechanism by which it
can be disregarded as an explanation.

The reason that we should care about this disconcerting difference between the measured result and the
expected one stems from how we expect EFT models to work. Naturalness is a criterion used to quantify
the features of a physical model. Loosely speaking (technical) naturalness [136] can be thought of as follows:
one expects all dimensionful parameters of a model to be related to the cutoff scale of the model by order one
numbers involving couplings. Any parameter of the model which differs significantly from this expectation
should be explainable using a symmetry argument i.e. seemingly unnaturally small numbers should be
protected by a symmetry and setting these numbers to exactly zero should restore the (non-anomalous)
symmetry. It is implicit in this story that one should also address why the parameter remains small as one
runs the parameters by integrating out the high-energy modes. In other words, the notion of naturalness
corresponds to the lack of requirement of fine-tunings in the model”. Any model that does not posses these
features is said to have a naturalness problem. It is precisely this notion of naturalness that allows us to make
parametric estimates without always resorting to solving complicated differential equations. The relevant
scales of a problem are typically all that is needed to roughly get the answer; for example the period of a
simple pendulum is ~ \/7 , the Bohr radius is ~ (am,.)~! and the hydrogen energy levels are ~ —m.a?/n?
which are only wrong by O(1) numbers and found by dimensional reasoning alone. Less trivial examples
come from the naive estimates performed in calculations of amplitudes using Feynman diagrams.

Now that these criteria have been loosely established, we can comment on whether the SM is a natural
model, or not. The most commonly stated theoretical problems of the SM are those of the cosmological
constant problem, the electroweak hierarchy problem and the strong-CP puzzle. The small parameters

7A theory is known as Dirac natural [137] if all of its dimensionless parameters are of order one, but this is a much stricter
requirement than that of technical naturalness.
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associated with these problems have been labelled: A,u and 6 respectively. Furthermore, it is widely
acknowledged that the severity of the problems is worst for A which has been discussed already, then u, 6
is the least severe. The level of severity is linked to how relevant the associated operator is in the EFT.
This might initially look confusing, as taking A, u — 0 nalvely appears to restore scale invariance of the SM,
implying that these parameters are naturally small. The resolution to this apparent contradiction, is that
classical scale invariance is typically a bad symmetry at the quantum level, broken by loop effects [138, 139].
The two parameters are indeed unprotected by any genuine symmetry. Furthermore as they correspond to
relevant operators in the SM, they receive plenty of IR contributions in their running. There has been a lot
of model building work done to try to address both of these problems as well as anthropic considerations for
both [135, 140].

While it is still conceivable that there is nearby physics that can explain the size of u, it is clear that
something is going very wrong if we wish to avoid fine tuning A at least. Note that it was the inclusion of
gravity that upgraded the constant term in the Lagrangian from an innocuous and ignorable term to the
most poorly estimated physical parameter ever. It stands to reason that the resolution to the problem lies
in treating the SM and dynamical gravity like any other EFT. This has been explored in the literature, with
holographic arguments implying that we should expect gravity to not distinguish between UV and IR like our
typical Wilsonian EFTs should [141]. There could also be problems related to the other postulates typically
assumed to be true in constructing any normal EFT. We are then motivated to explore what problems
emerge from gravity when it is treated as an EFT.

1.4.1 EFT self-consistency arguments

Gaining information about gravity through its embedding into an EFT may initially appear opaque. We
can learn about the properties of the UV by seeing the implications that UV assumptions have on an IR
EFT. So far, we have been using EFTs as tools to describe physics at the boundary between measurable
phenomena and the unknown. Universality can be seen through the guise of EFTs as the principle that
different high-energy theories converge to the same effective description at low energies. This fact naively
allows EFTs to be applied agnostically to a wide range of systems, including gravity, BSM physics and pion
physics, as described above. However, this universality also limits any given EFT’s intrinsic predictive power.

Strictly speaking, the only robust predictions within an EFT are the low-energy analytic structures,
governed by the interplay of calculable loop effects and unknown Wilson coefficients. The question of which
low-energy phenomena can be described consistently within an EFT plays an important role in BSM physics.
Even minimal assumptions about the UV theory, such as unitarity or causality, constrain EFTs with testable
features. This philosophy aligns with the bootstrap community. Exploiting unitarity and the analytic prop-
erties of scattering amplitudes, implied by the Lorentz-invariant causal structure of QFT [142, 143], it is
possible to characterise the space of UV-completable EFTs, via positivity bounds and dispersion relations
on their Wilson coefficients [144-152]. Applications of these techniques have been found in QCD [153-164],
quantum gravity [165-195] and physics beyond the Standard Model [196-208] as a non-exhaustive list of
examples. These tools have been used to prove the a-theorem in 4-dimensions [209, 210] and to show
that EFTs dominated by soft interactions [147, 166, 211], such as EFTs with weakly broken Galilean sym-
metry [149, 150], or higher-spin particles parametrically lighter than the EFT cutoff [205, 212, 213], are
inconsistent.

1.4.2 Requirements for self-consistent EFT

The non-perturbative bootstrap program champions the use of the requirements of causality, analyticity,
unitarity, locality and crossing symmetry, where these requirements have some overlap.

Causality implies analyticity throughout physics, it is not only important for the S-matrix bootstrap
program. This fact will be used both in chapters 2, 5 and 6 so we can keep the discussion more general.
Consider a function ‘f’ whose value at time ¢ depends on the value of some other function ‘g’ at all preceding
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times as -
f(t):/ drx(t—7)g(r), where x(t—7)x0(t—71), (1.43)
—00
here x is known as the susceptibility function. It can be interpreted as the propagation of the non-relativistic
signal f coming from the source g. This immediately implies that in Fourier space the functions are related
by
flw)=xw)gw). (1.44)
If the quantities f and g are real observables, then it implies that x is also real. The statement of causal
propagation is encoded in the proportionality to the Heaviside function. From this and the definition of
Fourier transform we see that x*(w) = x(—w), implying that the real part of x(w) is even and the imaginary
part is odd. Further y(w) can be analytically continued in the upper-half plane through the relation

X(w)E/_O; dr x (7) eWZ/OOCdTX(T) ¢ (1.45)

The function x(w) is analytic in the upper-half plane, as a consequence of the Heaviside in the time domain.
Cauchy’s residue theorem says that an arbitrary contour integral in this plane of the following quantity will

vanish /
o X (1.46)
w—w

Deforming this contour, we find the Kramers-Kronig relations, that constrain the form of x(w) strongly, such
that specifying the imaginary part fully determines the real part or vice-versa

X (w) = 1 /_OO dw’ X,(w/) : (1.47)

s w—w

While this is a very simplistic toy-model it captures how implementing causality determines the analytic
structure of a transfer function. In chapter 2 the above susceptibility represents the magnetic susceptibility,
where f takes the place of spin and ¢ is a magnetic field, and the argument must be modified slightly
to account for additional indices. In chapters 5 and 6 this susceptibility takes the place of the S-matrix
itself, upon modifying the above toy model sufficiently. Similar relations exist between micro-causality and
analyticity of the S-matrix in QFT.

Unitarity the statement that information is conserved in a system (as long as all modes of the system are
properly accounted for). In classical mechanics this is heavily linked to Liouville’s theorem, where the phase
space volume is conserved under time-evolution. For a quantum mechanical system we can quantify the
information content by the von Neumann entropy,

Sen. (p) = =Tr (plogp) , (1.48)

where p is the density matrix of the system. The information contained in p is the total information content
of the system. Under unitary time-evolution ‘U(t)’, this information is conserved

Sux. (UpUT) = ~Tx [UpUT Ulog (p) UT] = Sux. (p) - (1.49)

Using the previous toy model, unitarity is implemented by demanding the integral relation
[arls@F < [arlgo?, (1.50)
where we now implicitly absorb any dimensional differences into y, such that f and g have the same dimen-

sion, to make this a sensible comparison. Using Parseval’s theorem then the following holds in frequency
space

/ dw [x @) |g @)|? < / dwlg )2 | (151)
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which must hold regardless of the spectrum of g. Taking it to be a single damped plane wave it is straight-
forward to show that for any w in the upper-half plane |y(w)| < 1. In the case of magnetic susceptibility,
this fact can be used to help see how signals scale in time under different regimes 2.7.

The S-matrix is schematically defined as the operator corresponding to the projection of asymptotically
free states at plus and minus infinity,

Sas =out (Blay;, = (B] QT (t = +00) Q (t = —c0) o) = (8] S |a) , (1.52)

where 2 is known as the Mgller operator and we have defined the S-matrix as this product. The above
non-relativistic description is not immediately applicable to S-matrix unitarity, which can instead be stated
as the following operator equation

SST =818 =1. (1.53)

Strictly speaking such a definition is only sensible when smearing against a wave packet of states, such that
there is non-trivial mixing between Hamiltonian eigenstates. The optical theorem may be derived from this
equality and the decomposition of S into the trivial and interacting parts S =144 T.

—i(T-T" =TT". (1.54)

Consider the scattering of two particles to two other particles, denoting the incoming momenta by p; and
outgoing by k;. The above operator statement takes the form

—i (kke| (T = T7) [p1ps) = Z (kika| T [4) (| T |p1pa) (1.55)
P

where the sum is taken over all intermediate states. In the forward-limit (the limit of no transverse momentum
exchange between the particles, or ¢ — 0) the resulting expression, quantifying the link, follows

21m [(p1p2| T Ipip2)] = > Hpape| T 1) . (1.56)
P

This powerful theorem then links the imaginary part of the amplitude to the cross-section in the forward
limit. Frequently the momentum conserving Dirac delta functions are factored out, and the new object M
referred to as the amplitude.

(2m)% 6% (p1 + pa — k1 — ko) M (s,t) = (kiko| T |p1ps) . (1.57)

For theories involving massless particles, such as gravity, the forward limit may be divergent. In these cases,
one can exploit unitarity away from the forward limit by appealing to the partial wave expansion of the
amplitude

M(s,t) =Y M (s) Py (1 + 2;) , (1.58)
=0

where Pj(cos ) are Gegenbauer polynomials in d-dimensions and reduce to the standard Legendre polyno-
mials in d = 4. This basis diagonalises the statement of S-matrix unitarity, where Im[M,(s)] > 0.

Dispersion relations allow us to relate low-energy properties of the amplitude, namely Wilson coefficients,
to the high energy representations. Dispersion relations exploit the analytic properties and the crossing-
symmetry of amplitudes in complex energy to relate integrals of the amplitude in the IR to integrals in the
UV, using Cauchy’s theorem. This is largely possible because of the boundedness of the amplitude at large
energies. There exists an N such that

M (s,t)

lim
SN

|s|—o0

—0. (1.59)

It has been proved for theories with a mass gap that the amplitude grows as M < slog?(s) in four dimensions
and so N > 2 will result in the desired boundedness [214, 215]. For theories involving the exchange of massless
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gravitons the choice N > 2 gives the correct boundedness [216] for d > 4. The earlier property of unitarity
then implies positivity properties for the UV integrals, which translate into consistency conditions for the
low-energy EFT coefficients. An important example of one of these dispersion relations is that of the arc
variable, defined as a twice subtracted dispersion relation of form

an(t):/ ds _ M(st) (1.60)

~ 2mis [s (s + )"

~

which is named for its arc-shaped contour in s of radius M2. The contour is deformed such that it probes
the discontinuities of the UV theory, along the real s-axis, which are positive in the forward limit by the
optical theorem. This shows that the arcs are themselves are positive in the forward limit. From here one
can use this positivity to impose constraints on the allowed Wilson coefficients in the IR theory.

In the analysis of scattering amplitudes, the notion of maximal analyticity is also sometimes assumed,
where one assumes that the amplitude is analytic in both s and ¢ up to the physical cuts [217-219]. This allows
one to make more identifications between the UV and IR than might otherwise be possible. It is an additional
unproven assumption about the form of the amplitude, although there are no known counterexamples which
do not violate locality, unitarity.

1.4.3 Positivity for problematic theories

One particular question to address is how can Wilson coefficients be constrained in a theory involving
dynamical gravity? Gravity is problematic because of the massless graviton exchanges resulting in IR
divergent kinematics. This is relatively easy to see without reference to a Lagrangian, consider the scattering
of scalars through gravitons. In four dimensions the three-point interactions are uniquely fixed by dimensional
analysis and helicity structure to be®

31][32]\” - (31)(32)\°

19,29 3%F) = B 132] d 1920377) =k | 22 1.61
M ( ? ? ) R [12] a1 M ( ’ ? ) K <12> Y ( )
where we have implicitly omitted the irrelevant phase of the amplitude and also k = 1/Mp;. Gluing these
three-points together yields one of the channels

b (U (o) -

up to terms which are zero on-shell. We can use the crossing symmetries of the diagram to see that the term
should actually be proportional to x?tu/s, meaning that the full amplitude at tree-level is

v tu t
MES = K2 (;‘ + o S“) . (1.63)

U t

A pole has already developed at t — 0. This pole corresponds to the Coulomb pole of graviton exchange,
leading to the 1/72 force of attraction between all massive particles.

One has to be careful in discussing IR effects involving photons or gravitons. The above Coulomb pole
is a genuine physical effect of having a massless graviton mediator in the theory. Such theories are also
plagued by unphysical IR divergences that appear order by order in perturbation theory. These are a basic
consequence of the fact that asymptotic states cannot be described well by free particle states in theories with
long range interactions. One can remove these fictitious divergent pieces by considering inclusive observables,
by redefining the asymptotic states or by excising them directly from the amplitude.

8Here we use the d = 4 spinor-helicity notation of [220, 221] such that [ij] denotes 1/2 positive helicity for legs i and j and
(ij) denotes 1/2 negative helicity.
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How positivity bounds are found consistently in theories involving gravity is an important question to
address, as everything we know interacts gravitationally and, in principle, bounds for these theories give
information about the space of possible UV completions containing gravity! It is especially pertinent at very
low energies, where all massive particles have been integrated out of the theory, leaving only an EFT for the
remaining light states. Here, the forward limit is divergent and we must appeal to less simple methods to
find self-consistency conditions for the theory. This issue was partially overcome in [179, 185] by treating
dispersion relations not as functions of ¢, but as distributions to be smeared against appropriate functional
measures. The method proposed was designed to avoid only the Coulomb singularity. However, this is only
part of the issue, as the inclusion of loop effects involving gravitons lead to contributions to the amplitude
at small ¢ at least as poorly behaved as [222],

SM(s,t) o s*log(—s) (—t)dQ;4 (xlog(—t) in even dimensions). (1.64)

The method of [185] relies on crossing-symmetry and exploits a mixture of ¢ # 0 information (the twice-
subtracted dispersion relation), combined with dispersion relations obtained with additional subtractions
and their derivatives evaluated strictly at the forward limit t = 0. Due to this feature, the validity of the
procedure is limited only to a tree-level idealisation in which Mp — oo and all Wilson coeflicients vanish
gn — 0, and effectively all loops are neglected. It is clear that this and its first derivatives are also divergent
in the forward limit for dimensions less than 7. This further singular behaviour is not accounted for in
this smearing method. We would like to have a method robust against the inclusion of these quantum
mechanical effects in order to ensure that the constraints we make are conservative. Achieving this can act
as a link between the positivity program and the numerical bootstrap program and may act as a step towards
addressing the cosmological constant problem.

1.5 Dissertation outline

This thesis is divided into two parts; the first part will cover light dark matter candidates and their experi-
mental signatures and the second will look at conditions for EFTs involving gravity. The logical flow of the
thesis follows the topics as they were introduced in this introductory chapter. We will begin in chapter 2,
by looking at how a proposed experiment; CASPEr-Gradient, can be repurposed beyond its intended use,
to search for the axion coupling to photons and the DP kinetic mixing parameter. In chapter 3, with this
repurposing philosophy in mind, we see if we can repurpose basic terrestrial information that we already
have access to, to set constraints or propose new searches for ultralight DM. Next in chapter 4 we look at
the axions, and ask about their quadratic coupling to photons. Naively, this is a highly suppressed operator
and so one might think that it is never phenomenologically relevant. Here we address whether this is true or
not, by looking at the self-consistency of the low energy QCD-axion EFT. Then in the final chapters 5 and
6, we seek to address what methods can be used to find positivity constraints even in very poorly behaved
theories with bad IR behaviour.

Here is some more information on each chapter individually.

Ch2: Casting New Light on DM NMR

This chapter is based on a pre-print written in collaboration with Sebastian Ellis, Nicholas Rodd and Jacob
Leedom [223]. In it, it is demonstrated that nuclear magnetic resonance based searches for DM have intrinsic
and powerful sensitivity to dark photons and the axion-photon coupling. An instrument such as CASPEr-
Gradient begins with a large sample of nuclear spins polarized in a background magnetic field. In the presence
of axion DM coupled to nucleons, the spin ensemble feels an effective magnetic field B o« Va. However, the
spin ensemble feels the presence of any perturbing magnetic field in its precession as an additional torque,
that acts to tilt the spins and generates a potentially observable precession. A real field can be generated by
a kinetically mixed dark photon within the shielded region the sample is placed, or by an axion coupled to
photons through its interaction with the background magnetic field. If CASPEr-Gradient were to reach the
QCD axion prediction of the axion-nucleon coupling, it would simultaneously be sensitive to kinetic mixing
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of € ~ 3 x 1071¢ and axion-photon couplings of ggy, ~ 2 x 10716 GeV™! for m ~ 1 peV. It is a worthwhile
endeavour to see if multiple DM signals can be probed by the same means because of our ignorance as to
the nature of DM and also economic necessity.

Ch3: Dark Matter Constraints from Earth

This chapter is largely based on a letter written in collaboration with Sebastian Ellis and Andrea Caputo
[224]. Tt covers ideas which aim to constrain DM parameter space using resources of the Earth directly.
Firstly, it will be shown that considering something as simple as the lack of observation of the anomalous
heating of the Earth’s core can provide a fair constraint. We see from this exercise that there are non-trivial
effects to consider in medium, such as using the correct propagating degrees of freedom and also how to
account for boundary effects with kinetic mixings present.

Following this, the possibility of resonant conversion of wave-like DM into low-frequency radio waves in
the Earth’s ionosphere will be demonstrated, and a search for this signal is proposed. Resonant conversion
occurs when the DM mass and the plasma frequency coincide, defining a range m,,, ~ 1079 — 1078V
where this approach is best suited. Owing to the non-relativistic nature of DM and the typical variational
scale of the Earth’s ionosphere, the usual linearised approach to computing DM conversion cannot be used.
Therefore a second-order boundary-value problem is solved instead, effectively framing the ionosphere as a
driven cavity filled with a positionally-varying plasma. Then a radio based experiment using an electrically-
small dipole antenna is proposed to target the radio waves generated during the conversion. Such an antenna
is applicable as it has a large bandwidth and can be built from widely available components. Additionally,
the primary noise source is external to the experimental set-up, coming from human-made sources. This
proposal can be orders of magnitude more sensitive to DP and axion-like particle DM in the relevant mass
range than pre-existing constraints.

Ch4: Quadratic couplings of axions to photons

This chapter is based on a paper written in collaboration with Sebastian Ellis, Jérémie Quevillon and Pham
Ngoc Hoa Vuong [225]. It is shown that the QCD axion couples to the electromagnetic kinetic term at one
loop with a coupling larger than one might naively anticipate. One might expect that the shift symmetry
of the axion should result in such an operator being extremely subdominant. The heuristic reason that this
expectation fails is that the axion acquires an IR contribution to its mass at the same scale as its quadratic
coupling to photons. The same is true of neutral pions, which also have a larger than expected quadratic
coupling to photons. The result is that if axions make up DM, they induce temporal variation of the fine
structure constant «, which is severely constrained by a variety of means. These constraints are recast for
the QCD axion parameter space. How to generalise the finding to axion-like particles is also discussed and
the resulting constraints are shown.

Ch5: Consistent Positivity at Finite-t

This chapter is based on a pre-print written in collaboration with Giulia Isabella, Davide Perrone, Sara
Ricossa, Francesco Riva and Francesco Serra [226]. In it we study bounds arising from the analyticity and
unitarity of scattering amplitudes in the context of effective field theories with massless particles, in particular
with massless scalars and gravitons. We provide an approach that only uses dispersion relations away from
the forward limit to set constraints on EFT Wilson coefficients. This is suitable to derive constraints in the
presence of gravity, in a way that is robust with respect to radiative corrections. The method not only allows
us to avoid the Coulomb pole, but also the singularities associated with calculable loop effects, which would
otherwise diverge. Further, we describe under what circumstances smeared distributions are sensitive to the
individual coefficients of a Taylor expansion, such as the amplitude stemming from an EFT.
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Ch6: EFTs involving gravity at finite Mandelstam-t

This chapter too is based on another pre-print written in collaboration with Giulia Isabella, Davide Perrone,
Sara Ricossa, Francesco Riva and Francesco Serra [222]. We explore the impact of loop effects on positivity
in EFTs containing dynamical gravity. Focusing on massless particles coupled to gravity, we address the
treatment of forward-limit divergences from loop discontinuities and establish necessary conditions for main-
taining computational control in perturbation theory. The loop corrections to the scattering amplitude of
scalars is computed using modern on-shell methods. While loop effects remain small, ensuring consistency
in our approach leads to a significant impact on previously derived bounds, even at tree level. The robust
constraints found will be compatible with UV completions involving gravity. This study represents a foun-
dational step toward bridging the gap between the tree-level results of the positivity program and the fully
non-perturbative S-matrix bootstrap, which relies on ansatz-driven methods [227].
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Chapter 2

Casting New Light on DM NMR

2.1 Chapter overview

This chapter points out that previously proposed DM NMR experiments, like CASPEr-Gradient have non-
trivial sensitivity to additional couplings such as the axion’s coupling to photons g, and the DP kinetic
mixing parameter. The basic reason why this is true is that the spin sample of the experiment exists encased
within metallic shielding. The shielding forms a conductive cavity that can be rung up by the aforementioned
DM candidates . The sample can then experience a torque from the magnetic field modes. We will discuss
this idea more quantitatively in the remainder of the chapter, as well as how a typical NMR experiment
such as CASPEr-Gradient operates. First the basic idea will be discussed. The results will be presented
and compared against pre-existing constraints. Additional information about ringing up the cavity modes
is presented in 2.6. Then we will show in 2.7, the rate at which the DM induced magnetization grows in
CASPETr in all regimes [228]. Given the confusion that has appeared in the literature around these scalings,
we believe it is useful to outline our additional derivation. Lastly, in Sec. 2.8 we provide a detailed description
of the transition from a microscopic transition of individual spins to a macroscopic magnetized sample as
relevant for DM NMR.

2.2 DM NMR Experiments Have Additional Sensitivity

Planned experiments aim to cover enormous swathes of unexplored ultralight DM parameter space. Unex-
pected signals could emerge. For example, these devices can detect relativistic signals such as a cosmic axion
background [229, 230] or gravitational waves [231-235]. In this chapter we instead demonstrate that even
sensitiwity to DM signals have been overlooked: devices designed to search for one type of wave DM can be
strongly sensitive to another. More to the point, ongoing efforts to detect axion DM coupled to nucleons with
nuclear magnetic resonance (NMR), for example by CASPEr-Gradient [236, 237], would be highly sensitive
to the axion-photon coupling and dark photon DM. Given our near-complete ignorance as to the nature of
DM, it stands that these situations should be highlighted whenever possible.

To justify our claim we recall the basics of axion NMR. Consider a sample of nuclear spins aligned in a
background magnetic field By. In conventional NMR, one fires an electromagnetic wave through the sample
that generates an interaction according to Hg = —yB - S, with v and S the nucleon gyromagnetic ratio and
spin operator. Consequently, the spins are tipped into the plane transverse to By and begin to precess at
the Larmor frequency, wyg = By, yielding an oscillatory signal in the transverse plane. CASPEr-Gradient
exploits the same physical principle. If the spins are immersed in an axion DM wave, then the axion-nucleon
coupling, L,y = gN(aua)N'y”'yg,N7 generates an interaction Hqy = —2gyVa-S. By analogy to ‘Hp the axion
induces an effective magnetic field of the form B,y = gn(2/7)Va. The axion field has an identical effect:
DM tips the spins, which then precess leading to a detectable signal. There is a resonant enhancement when
wp ~ m and therefore one performs a resonant search by scanning through values of By.

33



We can now explain our core insight: if DM generates a real rather than effective magnetic field, CASPEr-
Gradient can also detect it. Consider first dark photon DM, A’, that mixes with the visible photon via a
kinetic mixing parameter € [92]. To mitigate the impact of stray magnetic fields, the spin sample must be
placed within a shielded region of geometric size L. The dark photon will penetrate that shield and generate
a magnetic field B ~ em2LA’ [238]. Setting B,n ~ Ba, the qualitative dark-photon sensitivity in terms
of the axion-nucleon coupling is € ~ gyv/ymL, with v ~ 1072 the local DM speed. We can rephrase the
sensitivity as follows. Writing gy = cym/my fr, which depends on the pion mass and decay constant, we
have

e~ 107 ¢y (vie/v) (10cm/L), (2.1)

assuming a helium-3 sample. Although an ambitious target, the ultimate goal of all axion experiments is
QCD sensitivity, where ¢y ~ 1. Note the above scaling is distinct from ideas to repurpose axion-photon
searches for the dark photon, as in e.g. Ref. [80]. In those cases the dark photon sensitivity does not gain
from the large magnetic field volume that is maximized for the axion sensitivity. Here, however, the scaling
of both the axion and dark photon signal is controlled by the density of spins, or effectively the background
magnetization. _

A similar argument applies to the axion-photon coupling, £, = f% JayyaF'F, where axion DM couples
to By and induces Boy ~ gayyBoL(0:a), where now L is the scale over which By is generated. The expected
sensitivity from By ~ Bay 1S gayy ~ gnv/vBoL, or taking gayy ~ CyQpum/2mmy fr,

¢y ~ ¢y (10T/By) (yie/7v) (10cm/L). (2.2)

This result demonstrates that at the highest frequencies — recall By is tuned to adjust the resonant frequency
— an instrument sensitive to the QCD axion value of ¢y would also be sensitive to the QCD axion prediction
of ¢y ~ 1.

In what follows we refine the qualitative results of Egs. (2.1) and (2.2) culminating in the projections
shown in Fig. 2.1. These results show the reach for several sensitivity estimates for CASPEr-Gradient that
exist in the literature, specifically Refs. [228, 239], each shown for two different target nuclei, xenon-129
and helium-3. The results are compared to existing constraints from Refs. [240-260] and the theoretical
predictions of Refs. [71, 73, 261, 262], see Ref. [263].

2.3 Principles of DM NMR

In the presence of a magnetic field, a spin with magnetic moment p = S experiences a torque, and therefore
precesses according to ft = p x yB. Taking B = Bz, the transverse coordinates pi4 = (uy £ipy)/ V2 evolve
under the precession as 4 (t) o eTot. NMR extends this picture to a macroscopic sample of spins: p is
promoted to M, the magnetization within the material, and B to H. We assume H = Hyz up to small
corrections, however, the dynamics in the sample is also controlled by spin-spin and spin-lattice interactions.
These interactions exponentially damp coherent oscillations in the transverse and longitudinal directions,
respectively, and are quantified by corresponding timescales T, and T;. The system evolves according to the
Bloch equations,

Myx + Myy (M. — My)z
T, T

with M, the steady state magnetization generated by Hy.

We now introduce DM into the system as a small correction to the magnetic field, H = Hyz+Hy,,. While
the aim of CASPEr-Gradient is to detect the effective magnetic field Hf = ¢, (2/9)Va, the goal of this paper
is to highlight a broader range of possibilities. Taking Hpy/Ho < 1, we solve the problem perturbatively.
At zeroth order, the steady state solution is M = Myz. In general, both transverse components of M and
H,,, are coupled and must be accounted for carefully. If, however, we define My = (M, &+ iM,)/ V2 and
similarly HZ, the first order Bloch equations decouple, leaving

M =M x yH — (2.3)

M+ = —T2_1M+ — i(w0M+ — VMngM) (24)
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Figure 2.1: Projected reach of DM NMR to dark photons (left) and axions (right). Both searches can
be performed simultaneously along with a search for the axion nucleon coupling. The purple and blue
lines correspond to a sample constituted of xenon-129 (y = 12MHz/T, n = 1.3 x 10?2 cm~3) and helium-3
(y =32MHz/T, n = 2.8 x 1022 cm~3). Solid curves assume T = 100s, whereas dashed curves assume a line
width limited by a part-per-million. A search capable of reaching the QCD axion prediction for g, would
have the sensitivity shown in red [228]. The reach assumes a single TM mode with the sample placed at the
optimal radius of r ~ 0.77R. See the text for further details.

Taking M, (0) = 0 the solution to this equation is
¢
M (8) = iy My / dt’ e~ =)/ Ts g=iwot=t') (41, (2.5)
0

Accordingly, for a perfectly resonant DM field, HZ,, = Hpye 0!, the magnetization grows as
M (t) = ie" "0t y Mo Hpp T (1 — e/ 12), (2.6)

For t <« T DM drives a linear growth in the transverse component of the magnetization which continues
until the amplitude begins to saturate once t ~ T5. The dynamics are comparable for a more realistic model
of a DM field with finite coherence. An exception occurs if the DM coherence time, 7y, is shorter than 15,
in which case for 75y < t < Ty the growth of M, slows from linear to v/t [228]. Regardless, for ¢ > To, Ty
the amplitude of the transverse magnetization saturates at yMyHpyT5.

In summary, DM drives the growth of a transverse oscillatory component to the magnetization. To
provide a sensitivity estimate we must determine the appropriate backgrounds. Firstly, the spins within
the sample generate an intrinsic noise source according to the fluctuation dissipation theorem. Specifically,
Eq. (2.5) defines a susceptibility of x4 (t) = iyMoe™t/T2e=*0tQ(t) or x4 (w) = ivyMy/[i(wo — w) + Ty ).
The imaginary part of this expression dictates the power spectral density (PSD) of the noise,

2’7M0TS T2
S57 ~ )
r, (@) wV o 14 (w—wo)?T?

2.7)

This background is none other than the spin projection noise; the result as stated adopts the good res-
onator (woT> > 1) and rotating wave approximations. The noise depends on the bulk magnetization
My = nywo /4T, with n the spin density in the sample and T the spin temperature—from this we confirm
the usual result that the form is independent of temperature.

The combined effect of DM and spin-projection noise is a transverse magnetization that leads to a
corresponding magnetic field outside the sample. If the magnetization is measured inductively through a
SQUID, there is an additional background contribution from the magnetometer itself. Further, thermal noise
sources throughout the device contribute additional backgrounds. Nevertheless, for the parameters CASPEr
intends to employ the dominant effect is spin projection noise.
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Figure 2.2: The profile of the physical magnetic fields DM could excite as compared the size of CASPEr’s
sample of nuclear spins. The contours denote 10% changes in the magnetic field value. The dominant mode
the axion-photon coupling can excite is TMg1g, whereas a dark photon can also excite the TE;;; mode
depending upon its polarization. The figure highlights that as the sample is moved within the magnetic field
the response varies, opening a path to distinguishing different DM signals and even mapping out the dark
photon polarization.

Accordingly, we can estimate the sensitivity by searching for a DM signal over the spin projection back-
ground. Working at high masses where T > 75, we imagine interrogating the system for a time T' = T5
so that the observed power is distributed over a frequency bin of width 27/T,. For the bin centred around
wo, the average spin projection noise power is Psp = 2nT/167V. For the signal, after accounting for
the finite coherence, the equivalent expression is Ppy = (YMoHpyTs)?7,/27.  Assuming the signal and
background magnetizations undergo Gaussian fluctuations, the power is distributed exponentially and we
therefore expect the sensitivity limit to occur for Ppy = Psp, or neglecting O(1) factors

v m
Hoy ~ =\ =+ 2.8
o Dy (28)

where we took My = n(v/2), assuming a hyperpolarized sample, and 7, ~ 1/mwv?. A longer measurement
with 7' > Ty would improve on this sensitivity by (T/T)'/*; further, when Tb > 7, a gain can be made by
accounting for the multiple frequency bins the signal appears in [228]. For the axion-nucleon coupling, where
Hpyw = gn(2/7)Va ~ g (v/7)\/Pom, Eq. (2.8) gives an estimated sensitivity of gy ~ \/m/pounT2V.

This ends our compact review of DM NMR. A more detailed discussion appears in the later sections and
we now turn to the different forms of Hp,,.

2.4 Dark Photon NMR

Consider the scenario where DM is a boson of a dark gauged U(1): a dark photon A™. (We leave our
discussion UV agnostic and refer instead to Refs. [264, 265].) This state can couple to the visible sector
through the marginal operator %eF wE [W parametrized by a kinetic mixing € taken to be small throughout.
Rotating the two gauge fields to remove the kinetic mixing transforms to the interaction basis, where the
dark photon remains decoupled from standard model currents yet provides a source for the visible U(1),
quantified by J/i ~ —em? A",

This effective dark-photon current penetrates shielded regions, such as surrounds CASPEr-Gradient.
Taking the shielded region to have parametric size L, DM NMR operates in the regime where mL < 1 and
therefore the induced magnetic field dominates [238]. In that limit we can neglect the displacement current
implying the relevant equation is V x H ~ —em?A’, confirming the parametric size of the induced magnetic
field as em?LA’. From Eq. (2.8), the parametric sensitivity scales as

v 1
~N— . 2.9
‘ YLV mppunT2V (2:9)
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When compared to the scaling for g, this result is consistent with Eq. (2.1).

To fully quantify the sensitivity we must consider how the modes of the shielded region can be driven by
the dark-photon current and the geometry of the associated magnetic fields. We treat the shielded region as
a cylindrical cavity (deviations away from this will not strongly impact our projections) and as mL < 1 the
DM driving frequency is always much smaller than the electronic resonant frequencies (wg ~ 1/L), implying
we can ignore dissipative effects. Further, the precise composition of the shielding material is not important,
as the DM signal is at sufficiently high frequencies that the shield can be treated as a perfect conductor. We
can then decompose the cavity field into the conventional transverse electric (TE) and transverse magnetic
(TM) modes, each labelled by indices ¢ = (m,n, p) (for the azimuthal, radial, and longitudinal indices), from
which the amount each mode is excited by the dark photon can be computed directly. The computation is
standard and therefore not presented here, although the full details are provided in 2.6.

One aspect of the calculation that must be mentioned, however, is the spatial profile of the dark-photon
induced magnetic field. This dictates the direction of the magnetic field experienced by the spin sample and
opens the possibility of distinguishing various DM induced NMR signals; see Fig. 2.2. To understand the
field profile, we first emphasize that it is the lowest accessible cavity modes that are dominantly excited. If
E; represents the field of a given mode, then the induced magnetic field depends on the following integral
over the shielded volume,

/dVE;f T ~ —em?A’ - /dVE;f, (2.10)

where the accuracy of the approximation exploits the spatial uniformity of DM over spatial scales O(L) [65].
The value of the final integral is suppressed for higher modes; indeed, it is an excellent approximation to
only retain the lowest non-vanishing modes, TMg19 driven by A’ and TEj;; driven by A . Accordingly,
the modes driven are sensitive to the polarization of the dark photon, a fact that could be exploited to not
only measure the polarization distribution in the event of a detection but also to distinguish the signal from
axion DM.

The spatial profile of the modes determines the ideal placement of the spin sample as shown in Fig. 2.2.
For CASPEr-Gradient the sample is sufficiently smaller than the shielded region such that the sample can
in principle be moved around and in the case of the TMy19g mode can inhabit a region of uniform induced
field. For other modes and a larger sample the effect of a non-uniform field across the sample must be
accounted for. In detail, we take the shielding to have a radius of R ~ 9cm and height of 18 cm, whereas
the cylindrical sample has a height of 3cm and radius of 2.5 cm. In Fig. 2.2 the axis of the sample is taken
to be perpendicular to that of the shielding. Generally, the optimal placement is determined by looking for
where the modes take their maximum value; for the TMg;¢9 mode the sample should be placed at a radius of
roughly 0.77R, whereas for the TE;1; mode the sample should be placed on-axis radially and near the end
caps longitudinally.

Comparing Eq. (2.9) to Fig. 2.1 we find that the parametric estimate for fixed T5 accurately reflects the
scaling of the full result, but overstates the sensitivity by roughly a decade. The difference is a combination
of O(1) factors and roughly a factor of ~1.8 suppression from the geometry of the cavity. The sensitivity
breaks down for m 2 1 ueV as the cavity modes begin to be driven resonantly. This breakdown is largely
irrelevant to our projections because the largest mass value that can be observed is dictated by the externally
applied magnetic field and is below the point where the Q-factor of the cavity must be specified. The weaker
projections arise by assuming that the scan is limited by a part per million line-width at every frequency
due to magnetic field inhomogeneities [266]. The effective T, is then frequency dependent, T5 o 1/m, so
that Eq. (2.9) predicts a flat sensitivity scaling with mass as approximately observed.

2.5 Axion-Photon NMR

The considerations for axion DM that couples through £~ are almost identical to those for the dark-photon.
For axion DM, the leading effect is an induced current Jeg >~ g4y~ (0:a)B. As the background magnetic field
points along the axis of the cylindrical shielded region, from Eq. (2.10) it is apparent that the axion does
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not couple to the TE modes, leaving the dominant contribution from the TMyi9 mode, again as shown in
Fig. 2.2. For Fig. 2.1 we assume the sample is placed optimally. The quantitative sensitivity there can be
determined as for the dark photon: Hpy ~ govyBoL(0ia). A critical point, however, is that By is not a fixed
parameter, but is rather adjusted to scan through various DM masses. If we denote By as the magnetic field
used to scan the largest mass in the search, m, then By = By(m/m). Finally, we can use Eq. (2.8) to obtain

a parametric sensitivity of
vm 1
~ — . 2.11
90 ™ SByL mpoun TV @11

As for the dark photon, this result correctly reproduces the scaling in Fig. 2.1.

2.6 Driven cavity modes

Here we elaborate on the cavity modes that were briefly discussed before. A quick review of cavity modes is
provided before a discussion of the selection rules for a DM signal that are dictated by the cavity’s geometry.

2.6.1 Cavity Basics

We specialise the analysis to cylindrical cavities as the shielding of the CASPEr-Gradient experiment is well
approximated by a cylinder, and because of its relative simplicity. All of our qualitative findings will extend
to more general geometries. The cavity modes are determined by solving source-less Maxwell equations. We
align the bore of the cylinder with the z-direction and decompose the electric and magnetic field as follows,

E(th) _ dwdk E(l’,y, kvw) i(kz—wt)
e =/ e Ame o)} (2.12)
The fields satisfy the wave equation

2 2,21 JE@uykw) | _
VT + pew® — k7] {H(x’y,kw) =0, (2.13)

where T indicates a sum over the transverse directions, whilst 1 and € are the permeability and permittivity.

The cavity walls are formed by the magnetic shielding which is used is to mitigate the effects of low-
frequency external magnetic fields. This is normally achieved by using a metal alloy with very high magnetic
permeability. These alloys usually have electrical conductivity values somewhere in the range 106 — 108 S /m,
typical of metallic materials. For frequencies away from a cavity resonance, it is then sufficient to approximate
the walls of the cavity as perfectly conductive, recovering the following simple boundary conditions:

nxE=0, n-H=0, (2.14)

where n denotes the normal direction from the surface of the conductor. For finite conductivity, the analysis
is modified by introducing the generalised Ohm’s law contribution to the cavity quality factor. Typically the
quality of a cavity is limited by the heating of its walls. In general, the presence of the CASPEr spin sample
within the cavity will provide a small modification to the modes. For simplicity, we neglect the impact of
the sample on the calculation as it will only lead to minor impact on our projections.

In order to impose the boundary conditions, we label the two end-caps of the cylinder by C and the circular
wall by §. The cylinder is taken to have a radius R and height /.. Imposing the boundary conditions of
Eq. (2.14) on C determines the allowed values of k, and imposing them on S allows us to split the possible
field configurations into two groups, the transverse magnetic (TM) and transverse electric (TE) modes. The
TM modes satisfy EZ‘S = 0 with H, = 0 throughout the cavity. The TE modes instead satisfy 871Hz‘5 =0
and E, = 0. The two sets of modes are further labelled by integers £ = (m,n,p) that determine the mode
number in the azimuthal, radial, and longitudinal direction.
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With the above requirements, the TM modes are given by
E.(x,t) = ¢(z,y) cos(prz/L.),

)= Doy )
Er(x,t) = Vro(z,y) (pﬂ'/lz)2—€uw2

tEw
Hr(x,t) = —-2xV T,Yy) —————————
T( ) Td)( y) (p?T/lz)Q 7 6,11,(,02

where ¢ is a function satisfying the two dimensional wave equation and ¢| s = 0. The TE modes are similarly
described
H.(x,t) = ¢(z,y) sin(prz/L.),

(pr/l.)
Hr(x,t) =Vry(z,y) ——————
T( ) T ( y) (p?'r/lz)2 B EuwQ
N 1w
Er(x,t) =z x Vy(z,y) —————
T( ) Tw( y) (p?T/lZ)Q — 5,uw2
Here ¥ plays the role of ¢, and satisfies the modified boundary condition 6nz/)| s = 0. Note for the TM

modes p begins at 0, whereas for the TE modes the smallest value is 1. The transverse fields are described
by Bessel functions,

sin(prz/1.), (2.15)

cos(prz/l,),

COS(])WZ/ZZ)7 (216)

sin(prz/l,).

$(@,y) < T (mnr/R) €™, (@, y) o< T (pnr/R) €™ (2.17)

Here r and 6 are the cylindrical coordinates, j,, denotes the nth zero of the mth Bessel function and j/,,,
denotes the nth zero of the mth Bessel function’s derivative. The full set of modes form an eigenbasis of
functions and so are orthogonal to each other when integrating over the volume of the cavity. The constants
of proportionality in Eq. (2.17) can be chosen to ensure the modes are orthonormal, for instance we assume
f dV E; - Ej, = d4¢, where the integral is taken over the shielded volume, V. The eigenfrequencies are

Wt = 8B + (/7). (2.18)
The geometry of the magnetic field for the lowest lying cavity modes is shown in Fig. 2.3 (cf. Fig. 2.2).

2.6.2 Driven Cavity Modes

The above discussion provides us with a complete set of modes within the cavity, allowing for a decomposition
of arbitrary electric and magnetic fields. These can then be used to determine the form of the fields generated
by an effective charge or current configuration as,

& o) {iy} = {0} @19

The electric field can be decomposed as,

E(x,t) = / ‘;i;e*iwt > er(w) B(x). (2.20)

14

This result can be applied for the TE and TM modes separately. The coefficients are determined from
Eq. (2.19) as,

CZ(W) = W /dV Jeff . EZ (221)

The integral in this expression dictates a set of selection rules relating the form of the DM current to the
modes generated, as explored in Eq. (2.10). Note that the gradient of the charge density has no effect on the
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Figure 2.3: The transverse magnetic field geometry of the lowest lying modes of a cylindrical cavity. We set
@ =¢ =1 and show a section at z = 0 (i.e. at a cap). The heat map is such that yellow corresponds to
larger field values and blue smaller.

divergence free field modes we consider [267-270]. The magnetic fields are fixed from the above discussion
through Faraday’s law. In detail,

H(x,t) = / dw et Z % co(w) Hy(x). (2.22)

The focus of CASPEr-Gradient is on the DM parameter space where w < wy. Therefore the induced
magnetic field is parametrically larger than the induced electric field.

Given DM is non-relativistic and has a characteristic speed of v ~ 1073, the spatial scale the DM varies
over is set by the de Broglie wavelength, Agg ~ 1/mv ~ 1km (1 zeV/m) (or more accurately the coherence
length [65]), which is far larger than any relevant experimental scale. This implies that it is an excellent
approximation to take the DM effective current in Eq. (2.21) as spatially uniform, so that ¢y & Jeg - [ dV Ej,
as in Eq. (2.10). The symmetry of the modes is such that for the TE modes we require m = 1, p odd, and
n arbitrary; [ dV Ej is then purely transverse, implying it is accessible to the dark-photon current, but not
the axion-photon coupling. For the TM modes, m = p = 0, and the integral can be evaluated as

TM modes: /dV Ej,.0 = (—1)"+1ji\/‘72. (2.23)
Oon
Being purely in the z-direction, all DM currents can excite these modes.

As long as the DM frequency is well below wy, the lowest modes will be dominantly excited: higher
modes are always more oscillatory and therefore suppressed by the volume integral, additionally as the
excited modes have an even larger frequency, the DM is further still off resonance. The key modes are
therefore TMg19 and TEq1;. If the ratio R/I, > 0.492, then wifi > wgf\(/)[ and vice versa. Therefore, if the
diameter of the cylinder is roughly the same size as its length these frequencies are comparable.

An important point to emphasize is that the modes are not spatially uniform throughout the cavity. This
determines the magnetic field as seen by the sample. The relative sizes of the sample and shielding matter;
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a small sample will effectively see a uniform field across it whereas a large sample will resolve the mode. If
the spin sample were comparable in size to the shielding, then the average magnetic field across it will be
zero. In reality, one could improve upon this because the exact spatial profiles of all of the modes are known,
meaning that even though the net field is zero, the magnetic field in a given domain of the sample is known.
This allows one to either take local readings of the magnetic flux with a magnetometer across a portion of
the sample, or to form particular geometries in the pickup loops such that the flux coming from different
parts of the sample is additive. For example, the TE;1; mode has a cross-section of the form shown in Fig.
2.3 near the upper cap. The magnetic field for this mode varies as cos(rz/l,), such that at the bottom cap
the magnetic field lines point the opposite direction. A gradiometer configuration of the pickup loop could
exploit this variation, such that the two contributions are additive and the field can be seen.

Nevertheless, given the relatively small size of the CASPEr-Gradient sample compared to the shielded
region, the field will be close to uniform across it. The magnetic field of the TM modes varies only radially,
proportional to Ji(jo17/R). The field is largest at r = j1;/jo1 R ~ 0.77R, and for a small deviation §r away

from value we have,
§H 1 (i \° T, 2 5r\?
—__ (& -1 (=) . 2.24
e~ 2 () (0071 (5 22

For the sample, that implies the field varies by ~ 6% across the sample (cf. Fig. 2.2). The analogous result
for the TE modes is that the field takes its maximum values at the centre of the shielding at » = 0, but near
the caps z = 0 or [,. The fractional size of the magnetic field away from the optimal placement is set by

§H 1., o(6r\> =2 [62\°
Hmax_ii(]ll) <R) 2<ZZ> ' (225)

Note we have ignored the angular dependence, as it is only a small correction.

2.7 Time-scaling of CASPEr Magnetic Field Signals

Here a frequency-domain analysis of the time-scaling of the signal for a generic dark matter-induced magnetic
field in an NMR experiment is provided. The results match those of Ref. [228], where a similar analysis was
performed in the time domain for the axion-gradient signal.

We begin by detailing our conventions. The time-average of the square of a quantity f(¢) can be written
in terms of the power spectral density (PSD) as

T
. N dw
) =i o [ deisre) = [ 52 s (226)
T ™

where 270 (w — w')S¢(w) = (f(w) f*(w’)) is the PSD of the quantity f, and 7" is the integration time. It will
be useful to have approximate relations for the PSDs in the cases where f(w) is real, narrow, and peaked at
a given frequency wy, or broad and flat over a bandwidth dwy:

1) hasrow = T2 660 — w0g) + 8w + g, (227)
57 lorona = w [@ (B +wrun)o (- wrun)+o (B +w-wp)o (- w-up) ]

The expressions above define the mean value of the PSD, as the power itself will be a stochastic variable if
f(t) is a random field.

Now these definitions have been given we can show how the magnetisation vector scales in time. The
starting point is the Bloch equations in the My = (M, + zMy)/\/ﬁ basis, given by (cf. Eq. (2.4))

My = —Ty "My Fi(woMy — vMoHE,)), (2.28)
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where we have omitted the time-dependence of the relevant quantities for notational simplicity. Note that
the magnetic field induced by the DM generically has both z and y components. This can be solved
straightforwardly as (cf. Eq. (2.5))

t [e’e]
My () = iy M, / dt’ e~ )/ T2 Fiwo (=) g 47y — L iy M, / dt' W (t, t' YHZ, (1), (2.29)
0

— 00

To simplify the subsequent analysis, we have introduced a windowed susceptibility function Wy (¢,t') =
OOt —t)e =)/ TeeFiwo(t=t) "with O(x) the Heaviside step-function. The form of Eq. (2.29) allows us
to define the time-averaged quantity

(ML (b)) = (vMo)Q/ W (t, w)WE (1, w) Sy (@), (2.30)

— 00

where we introduce the DM PSD as (HZ, (w)Hiy' (') = 276(w — w')SE, (w). The quantity W (t,w) is the
Fourier transform of the time-domain function defined above, in particular

73

W (t, )W (tw) = T+ (@ wo)?T2

(1 + e 2T _ 9072 cos|(w £ wo)t]). (2.31)
We may now use Eq. (2.30) to evaluate the left hand side under various assumptions regarding the hierarchies
in timescales; in particular, as between transverse relaxation time 75, the DM coherence time 74,;, and the
integration time T, effectively the time at which we evaluate the magnetization. Throughout, we will assume
that wy = m in the final results we give, but not in the intermediate steps of the calculation. We divide the
discussion between whether T5 > T or vice versa.

Relaxation time T, exceeds the integration time 7. Consider first T5 > T. We study the scaling of
the magnetization for different assumptions regarding the hierarchy with 7. In all cases, we can take the
Ty — oo limit of Eq. (2.31), simplifying it to

lim W (t, )W (t w) = 20— Cosl@ £ w)t])

Ty —00 (w :I:wo)2 (232)

The only difference will be whether we can resolve the signal, determined by the hierarchy between T and
Tom- Consider first T < 7py. We can then invoke the narrow signal PSD approximation of Eq. (2.27),
writing ST (w) ~ 7|HZ,|? [§(w — m) + §(w + m)]. We therefore obtain,

(ML) r<rmets = (IMe)) ety cmy = 5 (vMolHi, )2 T2, (2.33)

DN | =

Causality dictates that all results will also have a ©(T) present, although we suppress that for simplicity.
The physical origin of the 1/2, which appears in all expressions, is that only half of the DM power is matched
with the +wp resonant frequency—this is effectively the rotating wave approximation. If instead we have
an integration time T >> 75, we cannot approximate the magnetic field PSD as a d-function, and should
instead use the broad approximation in Eq. (2.27), taking the width as dw = 27 /75y Then we find

1
(IMs(t)]?) rppcrect, ~ 5( Mo|HE, ) o (2.34)

Integration time 7" exceeds the relaxation time T5. If the relaxation time is shorter than the integration
time T, we must use the full form of the windowed susceptibility given in Eq. (2.31). However, we can still
straightforwardly evaluate the scaling of the signal in the relevant regimes. If the signal coherence time
exceeds T, we can once again approximate S]fM (w) as infinitely narrow, resulting in

(YMo|H 3, ) T5 - (2.35)

N | =

(ML) ot o =
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The other cases require T > 15y, so that the DM signal is well resolved and can be approximated as broad.
Performing the integrals and carefully treating the hierarchy between T» and 7y, we find,

1
(IML(®)*) 1y crpme = 5(7M0|H§M|)2T22, (2.36)
2 1 + 2
<|M:|:(t)| >TDM<<T2<<T = 5(’7M0|HDM|) ToTon- (237)

2.8 Microscopic to macroscopic description

The Bloch equations can be derived from a microscopic perspective [271-274]. The derivation clarifies the
microphysical origin of the macroscopic equations. In this section, we discuss some of the salient aspects of
this microphysical description and how they affect the analysis we present earlier in the chapter. Throughout
this section we reserve the symbol H for the Hamiltonian and will use B for magnetic fields.

2.8.1 Master relaxation equation

A quantum spin system can be described by a density operator p = p; |1;) (], where p; is a weight for the
state labelled by 1);, and summation is implied. This density matrix evolves according to the Liouville-von
Neumann equation: 1

3P =tle H]. (2.38)
Observables can be calculated by taking the weighted trace (Q) = tr (p Q). We may decompose the Hamil-
tonian into time independent and time dependent parts ‘H = Hy+ Hy (t)’. This choice allows us to account
for interactions between the spin system and the reservoir, which is treated as being classical, in a simple
manner. In the interaction picture, a quantity X is transformed as X = exp (iHot) X exp (—iHot), and the
evolution of the spin density per Eq. (2.38) is therefore

Co=ilot). ()] . (2:30)
We assume that environmental processes are characterised by a short correlation time 7. such that 7. (H7)/? <«
1. This corresponds to assuming that the environment is a thermal system, and 7. < t < (H?)~Y/2. (H?)1/?
is the root-mean-square energy driving the system from the environment which dictates a natural largest
timescale after which the system will have fully relaxed. Correlations between the density matrix and the
interaction Hamiltonian representing the environment can therefore be neglected. We further assume that
the evolution is only dependent on the current state of the system, meaning that we take the Born-Markov
approximation. This allows us to rewrite the evolution equation in the form of the master equation [275, 276],

dp (¢) R = _

L = [ 1 0. [ ¢+ ) p )] dr (2.40)
The upper limit of the integral has been extended to infinity as the short correlation times ensure that
the integrand does not have support at large times. Formally, the calculation accounts for semi-classical
fluctuations about a background density operator pg in thermal equilibrium, so the density matrix should be
modified to p — p — po. The classical background magnetisation My can be thought of as being represented
through the thermal background pg, as we will see upon derivation of the Bloch equations.

2.8.2 The interaction Hamiltonian

The non-relativistic limit of the Dirac Lagrangian leads to the appropriate description for the interaction
between the fermion spins and EM fields. The leading interaction between a magnetic field and spin in the
v/c < 1 expansion is given by

H,>-B - 8,, (2.41)
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with the index n indicating that the full Hamiltonian is the sum over all spins. The coefficient ~y is the
species-dependent gyromagnetic ratio that accounts for substructure of the nuclei. The Hamiltonian of
Eq. (2.41) is valid at the location of the spin in question ‘S,,’. To remove any ambiguities that may arise
when taking volume averages of quantities to obtain macroscopic quantities, we can define the spin-density
operator

Sx)=> 8,0% (x—x,), (2.42)

such that [dV S = > 8n. The validity of this definition is ensured as long as there is a sufficiently large
scale separation between the typical inter-spin distance and the typical scale of variation of the applied
magnetic field. This is always the case for the situations we consider. We can then decompose the applied
magnetic field into a background field By entering the free Hamiltonian Hy, and interacting fields B; in the
interaction Hamiltonian Hy, with B — By + B; in Eq. (2.41).

2.8.3 Thermal magnetisation vector: M,

To derive the Bloch equations, we first define the macroscopic magnetisation vector in terms of the spin-
density operator and a spatial window function f(x) [277]

M®(x,t) =~ /d3x’f(x’) (8% (x —x)), (2.43)

where (-) indicates that the weighted trace of the spin-density operator is taken, and a is a spatial index.
For the purposes of the experiment, the Mj in the Bloch equations corresponds to a volume averaging
across the entire spin sample, such that any local inhomogeneities are integrated out. Assuming an external
magnetic field applied along the z-direction, the resulting Mo = Myz. Starting from the thermal density
matrix pg, weighted by thermal Boltzmann factors, one can obtain Curie’s law for the magnetisation vector

from Eq. (2.43)
My =", ( 7 Bo ) 7 (2.44)

) kg T,

where n is the number density of spins, J is the largest spin value, kp is Boltzmann’s constant and T is the
spin temperature as in [278]. The function B is called the Brillouin function, taking the form

B, (z):% |:(J+;) coth((JJr;) a:) —%coth (;)} . (2.45)

When J = 1/2, the result reduces to

ny vBo
My = — h . 2.4
0 5 tan <2kBTS) ( 6)

2.8.4 Non-thermal magnetisation vector: M’

The full interaction Hamiltonian contains the interactions of spins with the magnetic field, the lattice and
other spins. However, the analysis can be simplified by treating all interactions as spin-magnetic field, with
the latter being generated by different sources. Therefore we decompose the By into contributions from
excitations of the effective cavity containing the spin sample, fields generated by the spins, inhomogeneities
in the applied magnetic field By, and the back-reaction field arising from radiation damping. The volume
average of inhomogeneous fields is assumed to be zero. In the case of spin-induced fields, this is a good
approximation. We can then use Eq. (2.40), expanded as

p =i [p, Ho + Hy (1)) — e~ 0t / T ), [H () p(1)])] dr o, (2.47)
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to obtain the equation of motion for the magnetisation. Retaining only the first term above, we recover the
dissipationless part of the Bloch equations,

MO (x,t) =72 €™ Y " f (x — %) (8)) B (Xn, t) (2.48)
~ y e MO (x,t) B®(x,t) . (2.49)

The Latin indices indicate spatial components of the vectors. To obtain the second line above, we make
the approximation that the magnetic field does not vary significantly over the scale of the window function
f(x). Since the characteristic scale of this function is the typical inter-molecular spacing of @(nm), this is
a reasonable assumption. The magnetic field B¢(x,t) above includes the applied background field By, as
well as the signal and radiation damping fields. It is assumed that shimming leads to inhomogeneities whose
volume average is negligibly small [279].

Dissipation in the system can be recovered by retaining the higher-order term in Eq. (2.47). This gives
rise to terms that are typically of the form

N~ /d%’/ooo dr f (x') R4 (8 (x — x')) B () B (t+7) | (2.50)

where R is a tensor contracting the indices of spin and magnetic fields with terms that can also have a

trigonometric time dependence. The result is that dissipation depends on the auto-correlation function of
the magnetic fields acting on the spin system. For temporally and spatially inhomogeneous fields these will
typically be non-zero, and will therefore give non-vanishing contributions to such terms. Summing over all
non-zero contributions of the form given in Eq. (2.50) leads to spin relaxation. Therefore, they dictate the
magnitude of 77 » in the Bloch equations:

Mmf( + Myy (Mz - MO)i

M=M x 1B —
15 T

(2.51)

We will now explain the significant processes that set the relevant timescales.

2.8.5 Timescales: T, 75 and T3

An intuitive model of both T and T5 relaxation timescales can be found in early works on NMR [280, 281].
From the form of the Bloch equations in Eq. (2.51), we can see that the organising principle behind relaxation
is to determine whether a process contributes to longitudinal relaxation along My, or to transverse relaxation
along the two perpendicular directions. An observation that can be made is that the magnitude of the
magnetisation vector in any direction at any time must remain |M?| < My, if prepared such that it is
initially so. This requirement can be used to show that To < 27; [282]. Different microscopic processes
contribute to the two timescales; a subset of interactions that need to be accounted for are spin-lattice,
spin-spin and back-action.

Consider the rate of transition I'y from state |1) to state ||), which will correspond to the timescale 7. It
is proportional to the square of the matrix element: ‘(|| H; [1)’, by Fermi’s golden rule. Using the interaction
Hamiltonian (2.41), we see that only magnetic fields in the transverse directions have non-vanishing matrix
elements, because the states are orthonormal eigenstates of the spin-z operator. Therefore, we can estimate
the mean transition rate as

I ~%(B3)S(wo) , (2.52)

where (vB)? comes from the state transition matrix element, and S(wp) carries the spectral information of
the magnetic fields evaluated at the Larmor frequency wy. Some of these magnetic fields are the result of
spin-lattice interactions, where a spin exchanges energy with the lattice, contributing to relaxation in all
directions. The energy exchange with the thermal bath of the lattice allows a spin flip that would otherwise
be forbidden in a fixed background magnetic field. That only transverse magnetic field fluctuations ‘Br’ can
cause T relaxation can also be seen from the explicit form of Eq. (2.50). These transitions are conceptually
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the same as those in the two transverse directions i.e. from |sz;+) to |sz;—) or from |s,;+) to |sy;—).
These transitions describe the same kind of dissipative spin flips in the transverse directions and will also
have rates of the form (2.52). Alternatively, consider the transition from |s;;+) to |s,; %), related to the
rotation of a spin. One can see that the corresponding matrix elements for the process do not vanish on
insertion of any spin operator, meaning that this transition can occur from magnetic fields in any direction.
These transitions are related to the dephasing of the spins, and can occur for arbitrary mixed states, not
only eigenstates of the spin operators. We see from this that generally processes will contribute to 75 and
a subclass of these will contribute to T;. Sufficiently long 77 has been achieved experimentally so that in
practice, T5 is the limiting quantity for dark matter searches.

Spin-spin interactions contribute largely to T5. These interactions are the result of local magnetic fields
generated by each of the dipoles

B (x) = ﬁ [3"("';;)_‘“] . (2.53)

A naive estimate of the timescale associated to these local magnetic fields can be derived by taking m ~ ~
and x ~ n~1/3_ so that nearby spins experience an additional field of magnitude yn, and therefore precess and
decohere on a timescale T, ~ 1/n~?. This estimate is confirmed through the more general analysis above.
Inserting the magnitude of the local magnetic fields into Eq. (2.50), we find the same result. Intuitively
the volume integral over the spin-density will become the magnetisation vector M as per the definition, the
magnetic fields have values of size yn and their integral will be coherent only over the timescale 1/(nv?).
Combining these we see M ~ ~2 M (nv)? {1/(ny?)} = M(n~?), recovering the estimate for Tj.

It is common practice in the literature to account for effects such as detector back-reaction and magnetic
field inhomogeneities by introducing the timescale T5. Where 75 may be thought of as the parameter
coming from the microphysics of the sample itself, T5 is determined by both the microphysics of the sample
and interactions between the spins and detection apparatus. T, can be derived if a complete microscopic
description of the spins is known. In practice we do not do this, although the size of the parameter can be
determined to the order of magnitude level as above. From that estimate, the expectation is that 75 ~ ms
for 129Xe and T» ~ 10 us for 3He.

The definition of T3, arising as a sum of dissipation from within and outside the sample, implies it can
be decomposed as

1 1 1

T + T (2.54)
where T, is a timescale associated with spin-bath interactions. (Here the bath captures the broader envi-
ronmental effects that are not included in the previous spin-spin analysis.) Thus, it must always satisfy
Ty < T,. A dominant contribution to 75 comes from the small inhomogeneities in the externally applied
magnetic field. This induces a spread in the Larmor frequencies of the spins across the sample, causing them
to dephase. The stated level of inhomogeneities in the field is 2 ppm, which can be translated directly to the
spread in frequencies [266]. For the mass scales of interest we see that this implies that Ty can be estimated
to be 0.1 milliseconds.

Radiation damping occurs from back-reaction of the sample against the pickup coils, by Faraday’s law of
induction. Not all of the magnetic fields from the coils can be accounted for in 73'; some must be included
directly in Bloch’s equations. This is because a component will be spatially coherent across the entire spin
sample and so must enter the Bloch equations as B to be self-consistent. The effect of radiation damping can
be estimated by using considerations of the torque on the magnetisation vector as was done in a very early
analysis of Ref. [283]. There, it was shown that one must solve a coupled system of equations, whereby the
dynamics of the magnetic field are accounted for in the circuit equations and the spins by the usual Bloch
equations.
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2.9 Fluctuation-dissipation theorem for Spin Projection Noise
The fluctuation-dissipation theorem [284, 285] allows us to determine the thermodynamic fluctuations of the

spins from the susceptibility of the system. Here we follow the approach to dissipation taken in Ref. [286],
but applied to the system of spins. Semi-classically, we can compute the total energy dissipated by the

system up to a time T as,
T T T
dE OH;
= t— = B
“ /,ood dt /mdt<832>at "
T

= —7/ dt » (sk) 0, B

n

(2.55)

In the first line, we have used that the only time-dependence on the average energy E arises through B¢, and
used the Hellmann-Feynman theorem to relate OpF = <8BH I>. When writing (OpH;), we are implicitly

assuming that the averaging includes the quantum averaging over states and the statistical averaging. To
get the second line above, we have used the form of the interaction Hamiltonian in Eq. (2.41).

Next, we take the system to be a discrete number of spins, interacting with a magnetic field. Their time-
evolution is dictated by the interaction Hamiltonian of Eq. (2.41). Additionally, we define the susceptibility
of a single spin through the following integral, to encode causal dynamics of the spins

7 (s2 (1)) = / dr aap(7) BY(t — 1), (2.56)

where here we sum over repeated indices a, b that indicate spatial components, while the index n identifies
the spin, and the position at which the magnetic field is evaluated. Note that o must be proportional to a
Heaviside function to have the correct causal properties. In the frequency domain, the above expression can
then be written as

Yisn (W) = aap(w) By (). (2.57)

We can use this definition to evaluate @, which after symmetrisation leads to
{ dw .
Q=3 > / 5 WBn(w) By (—w) [agy(w) — apa(w)], (2.58)
n

where the ordering of the indices a, b is physical, as aq,(w) is not necessarily a symmetric matrix. To obtain
this result we took T"— oo implying that this is a steady state calculation of the noise.

From here, the aim is to use Eq. (2.58) to obtain the PSD of the spins. We can achieve this by mapping
the result onto a dissipation rate that is directly dependent on the spin PSD. On general grounds, we would
expect that the time-averaged rate of change of energy for the system should scale as

Q ~ Aw Sga o (w) R(w;a,b;n,m) . (2.59)

This is simply the statement that the thermally-averaged spin state PSD, Sga oo (w), should set the average
rate at which spins dissipate energy. The function R(w;a,b;n,m) will in general depend not only on the
frequency, but also the orientation of the spins a, b and on their locations n, m. However, in the absence of
long-range interactions causing correlations between spins at spatially-separate locations, or for short times,
(52 (w)sb, (w)) o< (s%(w) 8 (w))0pm. Therefore, we impose Sgast (W) = Sa g (W) Opm- As a result, we can
map Eq. (2.58) onto an equivalent expression given in terms of the thermally-averaged spin PSD %(w),
without needing to explicitly compute the PSD. We demonstrate this approach below. o
We proceed by defining the non-thermally-averaged PSD for the spin operators as

2m8(w — w') Segen, (W) = 5 (Y] 57 (W)spn (—w") + 57, (—) s} (w) [¥) (2.60)

N |
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where 1 denotes the state of the system. This definition has the properties required to be mapped onto a
classical PSD. Setting the state of the system |¢) to be a thermal state we read off the PSD as

e*ﬁEz
Seag (W) =7 (1+e ) Z ~ (1] 5% |E) (k| s2, 1) 6(w — wii), (2.61)

nTm
k,l

where wy; is the energy difference between states |k) and |l) and Z is the partition function. We can
compute @ directly using Fermi’s golden rule and see its dependence on the thermal PSD. For the thermally
averaged energy loss we find that Qqum, which is given semi-classically by Eq. (2.58), is also given quantum-
mechanically by

Qaqum = ° Z Z / — wB(w)B. (—w) (1 —e ) % (1] 8% |k) (K| 2, ]1) 6(w — wpi). (2.62)

m,n k,l
This is precisely of the form given in Eq. (2.59), with R(w;a,b;n, m) given by
2 a b 5‘*}
R(w;a,b;n,m) = Z w B%(w) B,,(—w) tanh 5| (2.63)
n,m

If the semi-classical and quantum mechanical rates of energy loss are identified — specifically, we equate
Egs. (2.58) and (2.62) — then using Eq. (2.61) we can extract the spin PSD as

V2 Sagr = z [y, — apg) coth {5;] . (2.64)

2
However, the quantity that we are really interested in is the PSD of the magnetisation vector. As in Eq. (2.43),
we can take a volume average over the entire sample using the appropriate smearing function, obtaining the
following form for the magnetisation vector in terms of the average spin state

()= (s (1) (2.65)

This object is of primary interest in an experiment when length scales smaller than the dimensions of the
sample are unresolvable. We see that this definition and the definitions of the microscopic and macroscopic
susceptibilities imply the identification

Xab(w Z ap(w (2.66)

Using this crude smearing function results in the PSD

Bw
Sab = Sprane = 2V [Xab Xba) coth [2 ) (2.67)

which (as stated above) should be used on scales where individual spins are completely unresolvable. Chang-
ing the smearing function such that there is manifest position dependence results in a different coefficient
which could be computed or determined through calibration. In identifying the PSDs we have implicitly
assumed that the spins are not correlated with each other. Note that in using Bloch’s equations of the form

given in Eq. (2.51), we have effectively ignored any spatial dependence in M, so we are already implicitly
assuming that we can ignore this information.

Using the causality properties enforces the conditions Xz = Xyy and Xy = —Xy«, Which themselves
imply
1 Bw i Bw
Spp = v Im (xzz) coth [2] = Syy, Szy = v Re (Xzy) coth {2] =—Sys. (2.68)
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In the previous analysis the problem was studied not in the Cartesian basis but in the 4+ basis. We can also

convert these results to that basis by noting that x4 = Xze — IXay a0d X—— = Xz + IXay- We then see
1 1
S++ =5__= O, S_+ = VCOth |:ﬁ2w:| Im (X++), S+_ = V coth |:52w:| Im (X__). (269)

To recover Eq. (2.7), we must take the high spin-temperature limit and further we have the following form
of the imaginary part of the susceptibility,

MoToy
1+ (w—wp)® T2

Im (x44) = (2.70)

Note that the expression derived here differs from that of App. SII in Ref. [228] by a J-dependent factor.
The correction arises from a more careful treatment here of taking the macroscopic limit.
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Chapter 3

Dark Matter Constraints from Earth

3.1 Chapter overview

This chapter points out that there are many ways to find constraints in DM parameter space using well-
known properties of the Earth. First we give some details for why the non-observation of anomalous heating
of the Earth’s core can be taken as a very robust and conservative constraint for DP DM. There are various
interesting technicalities involved in such a calculation which are worth exploring in their own right. For
example, the presence of a medium changes the propagating degrees of freedom when there is kinetic mixing
with a massive DP.

We will then describe an experimental proposal to search for the resonant conversion of DP DM or axion
DM into radio-waves in the ionosphere. This takes inspiration from astrophysics research, whereby ultralight
DM resonantly converts in astrophysical plasma. There are proposals to search for signals associated with
this conversion. The ionosphere is very well studied and continuously monitored, meaning that there is much
less theoretical uncertainty associated to it than there would be for a typical astrophysical environment. In
what follows below, we will cover the conversion of the DM into radio waves, the typical noise sources that
must be accounted for and a very simple proposal for an antenna.

3.2 Anomalous heating of the Earth

Consider the kinetically mixed DP system of (1.23). It is clear that the propagating degrees of freedom
within a medium will not be the same as those in vacuum, due to the presence of the electromagnetic currents.
The basis rotations required to diagonalise to the propagating combinations have been calculated, see for
example [287, 288]. A simple method to compute the heat dumped into a system by a DP background is
to look for the presence of Ohmic heating. This is the determined by the power density: @ = E - J, where
E is the electric field corresponding to the visible photon and J is the current.

Very robust constraints on the DP kinetic mixing parameter can be inferred considering the Earth’s
interior. There are known constraints on the power generated in the Earth’s interior through measurements
of the Earth’s surface heat flux [289]. The total power emanating from the interior is 47 & 2 TW. Most of
this power has a known origin, generated by the radioactive decay of isotopes in the mantel and crust. One
can still place robust bounds on the kinetic mixing parameter and mass of the DP, by requiring that the
Ohmic heating of the Earth’s core does not exceed the inferred heat output of the core. Based on analysis
of heat flux at the core-mantle boundary [290], one can infer that the power being pumped out of the core
alone falls between 4 — 15 TW. The electrical conductivity of the core has been determined to be of the order
of ~ 100 eV [291].

To simplify the calculation, it is assumed that the Earth is surrounded by vacuum. This allows one to
choose the mass eigenstate basis as the propagating basis outside the Earth. Additionally, we do not consider
the gravitational capture of the DPs which will only increase the number density in the core and therefore
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increase the rate of heating. As is usual in any electromagnetism problem, enforcing the boundary conditions
is of particular importance. The easiest way to see what the relevant boundary conditions are, is to derive
the analogue of the macroscopic Maxwell equations, involving the kinetically mixed DP. This can be done
in whichever basis is most natural.

Because the interaction and mass eigenstates do not align, it is somewhat non-trivial to map from the
microscopic degrees of freedom to the macroscopic ones. In standard electromagnetism auxiliary fields D and
H are introduced to account for the aggregate behaviour of microscopic charges and currents in whatever
medium is being considered. In principle, one introduces the notion of a smearing function, which allows
one to perform a multipole expansion for bound charges and currents. This results in a macroscopic charge
density, polarisation vector, quadrupole density etc. The auxiliary fields D and H then act as a bookkeeping
device to absorb these terms. This is still perfectly fine, even when including the DP mixing. A potential
problem arises in introducing constitutive relations of a medium, for example D = ¢ E or H = ;! B. One
imposes a physical bias on which field combination that materials reacts with. An incorrect choice of this
combination can lead to incorrect analyses at the O(e) level. It seems natural to enforce the constitutive
relations only in the interaction basis, as this will be the local combination of fields imparting a force on any
given charge.

In the interaction eigenstate basis the relevant inhomogeneous equations read

V-D=p—em} A° VxH-9D=J—em% A,

V-E=-m%3A°—em? A, VxB' —0,E =-m% A —em? A, (3.1)
to leading order in e. It is important to recognise that the U(1) gauge symmetry still exists here, it is
the choice of basis that makes it appear as though there are unphysical gauge potentials in the equations.
Integrating these equations over vanishingly small surfaces one can read off the required boundary conditions,
where we assume that there is no singular behaviour on the boundary. We obtain the usual boundary
conditions for Maxwell’s equations; the normal components of D are conserved and the tangential components
of H, but we also see that the normal components of E’ and the tangential components of B’ are conserved.
One can obtain additional boundary conditions from the homogeneous equations.

Returning to the Earth’s core, we can solve for the propagating modes as in [287]. We impose Ohm’s
law in frequency space, then using a Helmholtz decomposition we find dispersion relations for the transverse
and longitudinal fields. The dispersion for the transverse modes then reads

2

. im ow
k%lzwz—l—ww—eQZi_,
’ m* + 10w (32)
m* ’
k%2:w27m276272 —
’ m* + 10w

to second order in e. It is clear which of the modes corresponds to the photon and DP in the limit of no
mixing. The corresponding dispersion relations for the longitudinal modes are

2,2
kL,l_wa
miw? . mlow (3'3)
k2. — 2 2 2 2
L =W —M —€ H5 —o T 5 5"
’ o“ +w o“ +w

The gapless mode does not correspond to a physical degree of freedom which fixes a constraint, as seen in

the interaction basis as,

AL,IZO = A=c¢ v

—A’. (3.4)
w+10

Combining the above information, we can solve for the power density () in the Earth’s core. In the low
frequency regime we may justify the conductivity being frequency independent by appealing to the Drude
model. The collision frequency in the plasma of the Earth’s core is incredibly high, such that this is typically
not relevant. The general form for ) computed is not particularly illuminating, it accounts for all the mixing
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Figure 3.1: The conservative constraint coming from the lack of observation of anomalous heating of the
Earth’s core in yellow is compared with pre-existing experimental bounds and astrophysical constraints
shown in grey. We see that it is subsumed by the other bounds. The dashed black line at ~ 10eV denotes
where the fully classical description starts failing to capture the behaviour of the DM properly.

between the bases at the boundaries as well as the finite size effects coming from the Earth’s core. We see
that limiting cases of [292] are reproduced. In the low mass limit we see that

m2

Q ~ 62 7PDM s (3.5)

where we have omitted the numeric prefactor. Interestingly, if we look at very low masses a different scaling
behaviour emerges, when the ratio m/o < v2. Here the scaling is approximated by

Qe ()" o) pous. (3.6)

Formally, in the very large mass limit we recover the behaviour
22 @
Q ~ e, —aPDM- (3.7)

Taking this limit is purely academic as the description of DP DM as a classical wave breaks down before
this. The constraint 3.1 comes from demanding that the full value of @ is less than that which is observed.

3.3 Resonant Conversion in the Earth’s Ionosphere

We consider a possible signal due to resonant conversion of wave-like DM into radio waves in the Earth’s
ionosphere which is common to both ALPs and DPs. For the DP signal to exist, the presence of a plasma
is sufficient, while for ALPs, a background magnetic field must also be present. Both conditions are met
in the weakly-ionised plasma of the Earth’s ionosphere, where the Earth’s small magnetic field (B ~ 0.1 G)
is present. Non-resonant signatures using the Earth and its ionosphere at lower masses have been studied
previously [287, 305-307].

The structure of the interactions between DPs/ALPs and the SM photon are such that in a medium
the mass eigenstates no longer correspond to the vacuum mass eigenstates as described above in the case
of the Earth’s core. When the plasma frequency of the medium and the vacuum mass of the DM are
degenerate, resonant level crossing between one state and the other can occur. For DPs, this condition
has been exploited to study resonant conversion in various astrophysical environments such as the solar
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Figure 3.2: (Left) Prospective reach in the DP kinetic mixing e by considering a broadband search with
integration time of 10 hours and 1 year (solid curves), for both a 95% (purple) and 50 (green) discovery
potential. The dashed curves indicates the reach of 1 hour of observation when measurements are limited
by atmospheric noise rather than anthropogenic noise. The light grey region is excluded by cosmological
probes [94, 293, 294], the dark grey region by Haloscopes, while the light gold region is excluded by LOFAR
observation of the solar corona [241]. The dashed black lines indicate possible future reach of LC-resonator
DM-radio [295], as well as LOFAR reach for DP direct detection in the antenna [296]. (Right) Projections
for the axion to photon coupling g, with the same experimental set-up used for the DP. The light gray
region is excluded by astrophysical probes [297-301], the dark grey regions by terrestrial DM experiments
ABRA|302| and SHAFT[303|, while the light yellow region is excluded by CAST [304]. The limit from
LOFAR observation of the solar corona|241] are shown in light orange.

corona [241, 308], neutron star magnetospheres [309], or the intergalactic medium [293, 294, 310, 311]. For
ALPs, this effect has also been studied in a variety of astrophysical environments [312-321].

In the remainder of this chapter we propose searching for the conversion of DM in the Earth’s own
ionosphere. This approach has two advantageous properties: the ionosphere is well-studied and monitored
(see [322] and references therein), allowing for a precise understanding of the conversion and propagation of
the resulting radio waves; the peak plasma frequency in the ionosphere is wp ~ 1078 eV, such that the mass
range that can be probed is complementary to existing searches. Furthermore, galactic noise is reflected by
the ionosphere, such that the dominant noise source is of anthropogenic or atmospheric origins, both of which
can be monitored or even partially mitigated. Several features of the ionosphere might allow for an improved
ability to distinguish true signals from spurious ones. For example, there is a daily modulation due to solar
irradiation varying the free-electron number density, introducing a spectral feature in the true signal that
would be absent for certain spurious signals. Finally, for ALP searches, the dependence on the transverse
component of the magnetic field makes the amplitude of the signal latitude-dependent. Such variations are
the subject of constant monitoring [323], and would have to be accounted for when analysing collected data.

The idea to resonantly convert DPs into photons in the Earth’s ionosphere was roughly sketched in
Ref. [324]. However, these authors used an unsuitable approach to estimate the signal and introduced a
somewhat arbitrary boost from gravitational focusing to enhance it. Additionally they did not conduct an
accurate noise analysis, which as we show, is crucial and thus did not produce a compelling sensitivity curve.
Furthermore, a different measurement technique using a stratospheric balloon was proposed whereas we will
discuss a ground based antenna. Finally, this other work did not consider axion conversion.
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3.3.1 DM conversion to electromagnetic waves

The DP-photon system is described by the Lagrangian
1 v v v 1
£o5— (Fu F' — 2€F}, F* + F; F'") + imi,A;A’” - AT", (3.8)
where primed quantities are associated to the DP, while the axion Lagrangian is
L 1 F v 8. .ad” F Fp,l/ 1 2 2 A o
D _1( o —20,a0"a+ goyyaF,, ) = 5Mad” — w T (3.9)

The parameter € is the kinetic mixing between the photon and the DP, g4, is the axion-photon coupling,
while m 4. and m, are the masses of DPs and axions, respectively. For convenience, we define the effective
DM-photon coupling geg = € for DPs and geft = gay|Br|/ma for axions'.

The evolution of the photon and DM system can be modelled as a two-state system of equations. While
in vacuum the photon and DM are mass eigenstates, so no mixing can occur, in a medium such as a weakly-
coupled plasma, the equations of motion of the two states become coupled through their interaction strength
gett- The form of the coupled equations implies that as long as geg is non-zero, resonant two-level crossing
can occur when the effective photon mass (i.e. the plasma mass) and the DM mass are equivalent. If the
spatial variations of the plasma frequency occur on scales much larger than the de Broglie wavelength of the
DM?, then the conversion probability is well approximated by the Landau-Zener formula [241, 328-331]

Oln wgl a
or

2
Yot Ma

T

Posy 2(fpor ) ) (3.10)

Te

where o = A’, a depends on the DM candidate being considered. The polarisation fraction is fyo1 = 2/3, 1 for
the DP and axion respectively. The probability is evaluated at the conversion radius . where wpi(re) = M.
The velocity factor v, ~ vg is the radial component of the DM velocity, with vg ~ 220km/s the galactic
dispersion velocity of DM [332].

Unfortunately, for the Earth’s ionosphere, which we model in what follows using a Chapman pro-
file [333, 334] and for the DM masses of interest, the plasma frequency varies on a scale similar to or smaller
than the de Broglie wavelength of the DM. As a result, the WKB approximation used in the derivation of
the simplified formula in Eq. (3.10) does not hold, and the full second-order differential equations must be
solved. We use the fact that the ionosphere plasma density has a strong gradient only along the z-direction
to model the problem as a driven one-dimensional cavity filled with plasma, where the driver is the DM field.
This is a very good approximation due to Snell’s law [335]: light rays in the ionosphere naturally experience
strong refraction towards the z-direction as they propagate downwards. Therefore, considering only vertical
propagation with respect to the ground is good up to corrections which we expect to be suppressed by the
ratio h/Rag ~ 1072 (with h being the width of the ionosphere), which sets the difference between the gra-
dients along the parallel and orthogonal directions to the ground. Thus, the equation to be studied reduces
to

pl
w? + ivw

wiw?, (2)

02 +w? — 7 (2) = iwgeg m2 V (2) (3.11)

where Er is the sourced electric field, V. = A%, (a Br) for the DP (axion), v, is the electron-ion collision
frequency in the ionosphere, and z is the height into the ionosphere as measured from the Earth’s surface.

'In this chapter we will take |B7| ~ 0.4 G and assume it is homogeneous (a good approximation over the scales relevant for
the ionosphere) [325].

2The spatial coherence length of the DM waves is set by its de Broglie wavelength [326], this is the intuitive reason why this
(and not other scales, such as the Compton length) is the important quantity to compare with the density gradient. At the
mathematical level, when one studies the EOM for the two-level system of interest (photons/DM waves) and passes to Fourier
space, it is the momentum kq of the particle which appears in the wave equations to be solved and 1/k, is the quantity to be
compared with the plasma characteristic length scale [293, 327].
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The form of Eq. (3.11) shows the salient aspects of the problem. When (82 + w?)Er = mZEr = w2 Er,
we see that there is a resonance as expected. Meanwhile, when %2)1 <« w?, we obtain the evolution of
the transverse electric field as a function of z, subject to the appropriate boundary conditions. For the
wavelengths of interest, the Earth acts as a good conductor [287], so that the field will vanish within one
skin depth of the surface. Similarly, the plasma of the ionosphere behaves as a conductor for frequencies
below wp1, imposing that the field should also vanish once deep inside the plasma. In the above, we are
neglecting effect of the Earth’s magnetic field on the motion of the electrons in the plasma. Including it

0.1Gauss
While this frequency is similar to the DM masses we consider, we have numerically verified that its impact
is limited. Particularly, it does not affect the magnitude of the signal strength. However, for specific DM
masses (depending on the detector’s location), cyclotron motion suppresses one polarization of the signal
fields. This effect could possibly aid in detection, so it is important to account for it properly when analysing
experimental data.

This 1D model breaks down if we consider DM waves with de Broglie wavelengths comparable to the
Earth’s radius, i.e. for m, < 1071%eV. In practice, for DM masses below m, < 1072 eV, our model of the
ionosphere is a poor approximation of the real data [336] which we show in the following subsection, so we
restrict ourselves to only considering masses above this value.

does introduce modifications of the equation of motion by the cyclotron frequency, Qp ~ 10~ L)e\/’.

3.3.2 Ionosphere modelling: the Chapman profile

A very simple parametrisation of the ionosphere electron density is the so-called Chapman model [333, 334].
The model has three parameters that must be provided as input: the maximal free electron density nyax, the
scale height H and the maximal height z,,.x. In terms of these three parameters, the free electron number
density as a function of height can be expressed as

1 Z — Zmax Z — Zmax
Ne(2) = Nmax €XP [2 <1 — H) — exp <_H)] , (3.12)

where z is the distance from the Earth’s surface, and we have set nyax = 106 cm ™3, H = 100 km and 2y =
300km. In Fig. 3.3 we plot the corresponding plasma frequency (red curve), wpi(z) = /47 ne(z)a/me,

where m, is the electron mass and a the electromagnetic structure constant. In the same figure we also
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Figure 3.3: A simple Chapman profile for the plasma frequency in the ionosphere as a function of the distance
from the Earth surface. The profile is compared with midday and midnight data from the 15* January 2023
at the location of the EDGES radio telescope at the Murchison Radio-astronomy Observatory in Western
Australia, from the International Reference Ionosphere [336]. The salient features of the ionosphere are
well-modelled within the shaded grey region.

show two real plasma frequency profiles as monitored at midday and midnight on the 15¢ January 2023
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at the location of the EDGES radio-telescope at the Murchison Radio-astronomy Observatory in Western
Australia (data from the International Reference Ionosphere [336]). As discussed in the main text, this
model is a reasonable approximation to the daytime free electron number density for plasma frequencies
10726V S wpi(2) <3 x 1078 eV only.

3.3.3 Electromagnetic field and energy density at detector

In this subsection, we describe the method we use to solve for the electromagnetic fields and energy density
that arrives at the detector. For the mass range under consideration, the phase-space density of the DM
particles is high, such that it is appropriate to treat the system classically. We consider the DM field to
constitute the full local DM abundance, such that we may write it as follows [238, 326]

{ A (x,1) }: @Zﬁ{ n }exp(—z’wlt+ikl-x+i¢z), (3.13)
*

a(x,t)

where m,, is the mass of & = A’, a where appropriate, and f; is the combination of the velocity distribution
in a local frame and a random variable drawn from a Rayleigh distribution. The quantity ¢; is a random
phase, while n; specifies the polarisation of the vector field in the case of the DP. The dispersion of the DM
wave oscillation frequency w; (discussed in greater detail below) is such that there is a natural coherence
time 7. ~ 27 /m,v? where v ~ 200 km/s. For the masses of interest, this coherence time is about one second.
The expected data-taking campaign will involve recording data for much longer timescales, such that we can
approximate the DM wave as having a fixed amplitude |/pp,/mq.

As before we can treat the presence of wave-like DM as leading to an additional effective current density
J5s = (pest, Jerr) in Maxwell’s equations

V.D:p—peﬂ‘7 VXH—atD:j_jeff7
V.B=0, VxE+8B=0.

The effective charge density is peg = emi‘,A’ O for the DP and peg = gayyB - Va for the axion. The effective
3-current density can be written in terms of the effective coupling and a vector V defined in the main text,
jet = germ2V. We remind the reader that V = A/, for the DP, and V = aBr for the axion, where
the subscript T refers to transverse modes. Furthermore, we recall the definition g.g = € for DPs and
Geft = Ga~~|Br|/m, for axions.

The Drude model allows for a simplified characterisation of the motion of electrons in the plasma in the
presence of EM fields. The model combines the Lorentz force law with a collision term that accounts for
electron-ion collisions. The model allows us to solve in frequency space for the motion of the electrons, and
thereby derive the physical EM current j entering in Maxwell’s equations. Neglecting the Earth’s magnetic
field, we can solve for the average momentum of electrons

(p) ~

This is not always a good approximation in the parameter space we consider. As mentioned above, the main
effect of including the magnetic field would be that the resulting EM radiation gets polarised. However,
without detailed knowledge of the antenna type and its placement, any inclusion of magnetic field effects on
the resulting EM radiation is premature. The average current density can then be found

e

_ 3.14
w+ i, ( )

J ne g 3.15
=P v (319

where we have used the definition of the plasma frequency in the second equality. Here m. and e are the
electron mass and charge respectively, w is the frequency of the driver and v, is the electron-ion collision
frequency. We model v, as arising due to Thomson scattering of electrons and ions [337]:

log A, . (3.16)



In general this quantity will depend on the position in the ionosphere as a result of the varying electron
number density and temperature. For our mass range of interest v./w < 1074 [338], we see that it is negligible
compared with other effects (even on resonance), but we include it for completeness. This is also verified
numerically.

The current density can be related to the charge density by the continuity equation in frequency space.
Assuming the entirety of the effect of charged or polarised matter is contained in j, p, we can further simplify
Maxwell’s equations by setting H = B and D = E. This approach is equivalent to setting up the problem
with both a conductivity and a polarization tensor and assuming no free charges or currents are present.
Unless otherwise stated, from here on, we are working in frequency space.

One can keep track of the relevant degrees of freedom in the problem by performing a Helmholtz decom-
position,

E=Er+E, suchthat V-E; =0 and VxE;, =0. (3.17)

We will only consider transverse modes, as these will be the ones relevant to detection on Earth. The second
order differential equation governing their evolution is obtained by combining Ampére’s and Faraday’s laws,
yielding

w2

V2Er + w? (1 — M) Er = igeg miywV, (3.18)
which is the 3D generalisation of Eq. (3.11) in the main text. In order to make further progress some
information about the plasma needs to be specified.

One natural approximation to make in the case of the ionosphere is that the number density of elec-
trons is primarily a function of height from the surface of the Earth. For the masses under consideration,
we are justified in ignoring effects coming from the curvature of the Earth; they will contribute at most
O(1/mpm v Rg) corrections which are at the percent level for the smallest masses we consider. The combi-
nation of these assumptions leads us to work in a 1D approximation where the only relevant variation is in
the z-direction, defined as the height above the surface of the Earth. One can now see that there is a good
translational symmetry in the transverse directions, implying conservation of momentum in these directions.
An immediate consequence of this will be the significant refraction of light rays towards the z-direction as
they propagate downwards. A photon near the Earth’s surface should approximately satisfy the dispersion
relation: w? ~ k2. Given that the photon produced as a result of the DM effective current should inherit
both the frequency and transverse momentum of the DM, the only way this relation can be satisfied is if the
momentum in the z-direction is of order m, which is ~ 103 times larger than the value in the transverse
directions. An alternative, but equivalent, way to see the same effect is by considering the relation between
the plasma frequency and the refractive index of the ionosphere and using Snell’s law as explained before.

It is now very natural to decompose the fields of Eq. (3.18) into plane waves in the transverse directions
and some generic function of the z-direction, resulting in:
w2

02 + w? — w2 (2)| Er(2) =igeg mipyw V (2). (3.19)

w? + ivw
The problem has now been reduced to finding the form of these modes. For a totally generic plasma frequency
profile this is still not a trivial problem, as the gradient and any possible turning points of the plasma will
influence the amplitude of a wave arriving at the detector. For the radio wavelengths of interest, the surface of
Earth is effectively a perfect conductor, thereby imposing an important boundary condition on the problem.
The boundary conditions imposed are that the electric field is zero by the time that the wave gets to the
Earth’s mantle and similarly that the electric field is zero deep into the bulk of the ionospheric plasma.
In order to solve Eq. (3.19) we adopt a finite difference method. We first discretise the equation as

EZ', — 2Ez + El w2w21 i .
- A2 =+ E; (wz - m) = deffwszMVi, (3.20)

where the subscript ¢ indicates the ith position on a grid along the z-axis. We are then left with an algebraic
system of the type
AiE; 1+ B, E;+C;Eiy1 —D; =0, (321)
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where A; = C; = 1/Az?, B; = —A222 + <w2 — %Wfﬂ,i
a tridiagonal system of equations, and to do so employ the well-known Thomas algorithm. Our formalism
automatically takes into account all the wave propagation phenomena, including reflection, absorption and
refraction of the electromagnetic (EM) waves that ultimately arrive at the detector. In fact, because of
these propagation effects, the amplitude of the wave at detection point is expected to be different than the
amplitude at the resonance point, as we now show.

Fig. 3.4 shows the EM energy density in natural units as a function of the ionosphere height for a fixed
effective coupling, geg = 10710, Different colours correspond to different DM masses; the solid curves are our
numerical results, while the horizontal dashed lines show the result of applying Eq. (3.10). We notice that
the resonant peak of each of our curves never deviates too much from the naive calculation. However, the
energy density near the Earth’s surface, which is the quantity relevant for detection, is typically suppressed
with respect to the peak. This is a particularly important effect for large masses, ~ 1078 eV, whose resonant
conversion condition is only satisfied for the largest electron densities near the peak of the Chapman profile.
An EM wave produced at that height undergoes many reflections as it propagates through the plasma, and its
amplitude is therefore attenuated before it reaches the detector. The effect is less evident for smaller masses,
where reflection plays only a minor role. The EM energy density near the Earth’s surface is approximated
to within ~ 10 % by the following sigmoid function

) and D; = i gegt wszMVi. We thus have to solve

3% 10728 eV (et )’

1 +exp [_ (2.3xToaf9ev - 3'8)}

which is valid for masses in the range 1072 < m,/eV < 3 x 1078, The lower boundary is defined by the
aforementioned issues with the validity of our calculation, while the upper bound is defined by the peak
values of the free electron number density. Ultimately, a detailed analysis taking into account the detector
location and time could be performed using real ionosphere data [336], and could extend our sensitivity to
much smaller masses.

EM energy density

.
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Figure 3.4: EM energy density in natural units as a function of the distance z from the Earth surface. Different
colours correspond to different DM masses, while the effective coupling is always fixed to gog = 10710, The
solid curves are our full numerical solutions, while the horizontal dashed lines correspond to the Landau-
Zener conversion probability from Eq. (3.10).

3.4 Signal detection

The EM radiation incident on the Earth’s surface has a characteristic wavelength A > 1 m, and can therefore
be detected with an electrically-small antenna [339]. The signal approximated by Eq. (3.22) is the total
integrated energy density. For detection, the more relevant quantity is the spectral density (SD) of the
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EM radiation Sgg(w) ~ ppmf(w). The function f(w) is approximately a Maxwell-Boltzmann distribution
[332, 340], normalised as [ dwf(w) = 1, which describes the frequency dispersion of the signal inherited
from the DM velocity distribution. The signal is spread between frequencies w € mq[1,1 + 02/2], where
o ~ 200km/s is the DM dispersion velocity. The bandwidth of the signal is thus narrow, and can be
approximated as having an effective quality factor of Qsig ~ 10°. Full details are given in the later section
3.5.

The dominant noise at the relevant frequencies is from processes external to the receiver antenna. It is
primarily a combination of atmospheric and anthropogenic radiation. As a fiducial noise level, we adopt
the anthropogenic noise expected at a quiet rural location given by the International Telecommunication
Union (ITU), see for example curve C of Fig. 2 of Ref. [341]. This can be characterised by the characteristic
temperature of the Gaussian component of the noise

MHz\ 27
Tn(v) ~ 6.1 x 107 (Z> K. (3.23)
v
Under the assumption of an equivalent loss-free receiving antenna, this temperature can then be converted
to a noise SD (see e.g Ref. [339] for a pedagogical derivation)

Sn(v) ~ 3?))27'['2 VP TIx(v). (3.24)

A real device might contend not only with this typical anthropogenic noise, but also with impulsive com-
ponents at particular frequencies. Furthermore, atmospheric noise leads to a temperature that can vary
significantly depending on weather conditions, sometimes exceeding typical anthropogenic noise by many
orders of magnitude [341].

Both the signal and the noise are external to the antenna, and are filtered by the same transfer function
determining the antenna response, which therefore does not enter the signal-to-noise ratio (SNR). As a result,
the optimal SNR is given by [326, 342]

- S22
tint / du( Sig) ] , (3.25)
0 Sn

where t;, is the integration time of our measurement (assumed to be larger than the DM coherence time).
If the receiver antenna is critically coupled, it will have a narrow bandwidth owing to the small radiation
resistance. As a result, it is optimal to couple the antenna to an additional in-series resistance. In section
3.7 we provide a simple model for an RLC circuit that allows to broaden the frequency response up to
Av ~ MHz. The circuit we describe, and the value of its parameters, are similar to those of very old radio
missions [343, 344]. The result of this broad frequency response is that in order to scan an e-fold in DM
mass t., an integration time at a given frequency of tiny ~ t. min (1,27 Av/my) is required.

SNR =

Fig. 3.2 shows our fiducial prospects (solid purple lines) for a broadband search with 1 MHz bandwidth, for
10 hours and one year of e-fold time, for both DPs (left panel) and axions (right panel). In both panels light
grey regions are excluded by cosmological and astrophysical probes (94, 293, 294, 297-301|. Observations
by LOFAR of the solar corona are shown in light orange [241] in both panels. For the DP panel the dark
grey region is excluded by Haloscopes. The dashed black lines indicate possible future sensitivity of DM
Radio [295], as well as LOFAR sensitivity to direct absorption by the antenna. For the axion panel, the
dark grey regions are excluded by terrestrial DM experiments ABRA [302] and SHAFT [303], while the light
yellow region is excluded by CAST [304].

In case anthropogenic noise can be mitigated, we also show a dashed purple curve corresponding to the
typical atmospheric noise in Western Australia around midday on a winter day (see Fig. 18 of Ref. [341]),
assuming a single hour of e-fold time.
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3.5 Frequency spread of the DM

In this section we give some details about the DM energy distribution entering the signal PSD in the main
text. We make the simplifying approximation that the DM is well-described by a gas of non-relativistic
particles and is thus characterised by the following momentum distribution:

fp)= ;3/2 o {_sz} , (3.26)

(Zm2(v?)) sm?(v?)

where we have fixed the normalisation such that the distribution integrates to one and the rms momentum
is given by (p?) = m?(v?). Here (v?) denotes the mean-square velocity, which in the case of isotropic
distribution is related to the velocity dispersion by (v?) = 302, where o = /3/2v,, with v, = 220km/s
being the circular velocity for the Milky Way [332, 342]. We then make the identification f(w)dw = f(p)d®p
to find the distribution in frequency space, namely:

1 |w—m w| —m
f(w):f%exp {'1 | 5 ] 0 (lw] —m) . (3.27)

VT (m(?) (%)
We see that this is the same as previously found in the literature [340]. As mentioned above, the signal

should inherit this frequency spread. The PSD of the signal E-field may then be constructed from the EM
energy density pgpm as:

w

Suig (w) = 47 (E)2 F(w) pen - (3.28)

A straightforward calculation shows that this PSD is peaked at w ~ m (1 + §(v?)); assuming that the signal
energy density varies more slowly in w than f(w). From here we may find the bandwidth of this PSD by
the usual FWHM criterion, where we see that it given by the expected: Aw =~ m(v?).

3.6 Comparison with direct detection

The same antenna used to detect radiation resulting from the resonant conversion of wave-like DM in the
ionosphere can also be sensitive to the non-resonantly-converted signal that is present on Earth anyway. In
the case of DP DM, this is especially straightforward to understand: if there is a non-zero A’ amplitude in
the vicinity of the antenna, it can couple to charges in the antenna and generate a current. The signal PSD
associated to this effect is

Ssig, DD (W) = €ppy f(W) (3.29)

and would enter Eq. (3.25) as an additional contribution to the signal PSD in the numerator. We notice
that this PSD and the resonant conversion signal PSD share the same spread in frequency space, f(w),
such that the comparison between the two signals amounts to a comparison between p,,, and Eq. (3.22).
For geg = € = 10710, we find that €?p_,, ~ 3 x 10726eV*  and is therefore between 2 and 3 orders of
magnitude smaller than the EM energy density due to resonant conversion given in Eq. (3.22) for the mass
range considered.

For axion DM, the analogous effect can be estimated by arguing that axions can convert into an electric
field parallel to the Earth’s magnetic field of a magnitude E, ~ gqyyap5, such that the direct detection signal
PSD is approximately

p
Ssig, DD (W) =~ ginez9 772;1 fw). (3.30)

The prefactor without the frequency spread function can be compared with Eq. (3.22). This is the same
comparison as for the DP above, indicating that once again, the resonant conversion EM signal PSD is
between 2 and 3 orders of magnitude larger than the direct absorption PSD.
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3.7 Modelling of transfer function in a simple antenna circuit

Here we provide a simple description of a small linear antenna that could be used for detection of the DM
signal. This is not intended to be exhaustive of the list of possibilities to detect our signal, but it gives an
idea of the simplicity of a possible detector.

The antenna and read-out circuit combined are treated as a simple, in-series RLC-circuit, where the
driving voltage is provided by the antenna. There is a characteristic impedance Z4 = R4 + X4 for the
antenna element, determined primarily by its geometry and material properties. We consider a linear antenna
of length h, cross-sectional area A, resistance R4 = Ronm + Rraq and reactance X 4(A). In this case, we are
working in the “electrically small" limit for the antenna meaning that the radiation resistance reads:

21 Zo (h\? A\? [ ma \2
= — ] ~0.05Q [ — 31
Rrug = = (/\> 0.05 <m> (10*86\/) : (3.31)

where we identified A\ = 27/m, and the reactance of the antenna is largely dominated by its effective

capacitance:
Zy A Zo [ A h
Xi M) m———==—-—— | — )1 . .32
B <2h> n(JA/w) (3:32)

The remaining circuit elements are well-modelled by a resistive load element ‘R;’ and an inductive element
‘L.

The power dissipated across the load may be computed by finding the voltage across it using Kirchhoff’s
laws and the standard relation for power in a circuit element. We see that the current flowing through any
given element is:

Tw) = L(w?— ojgw—i-iw Av) Va(w), (3.33)

where the circuit resonant frequency is w2 = 1/(C4L) and the bandwidth is Av = (Ra + Ry) /L. The
result is that the power dissipated is

w? h?

PL = /dw 5
Ry L2 [(wQ—wg) + w? Auz}

Sg (w) , (3.34)

where Sg is the PSD of the electric field incident on the antenna, consisting of the signal and any external
noise sources. We note that the bandwidth is dominated by a constant Ry > R4 for resistive elements easily
available for purchase by amateurs, leading to a broadband detector response. As discussed in the previous
analysis, by far the dominant noise source is extrinsic to the detector, and therefore is filtered by the same
detector response as the signal. This transfer function of the antenna, i.e. the prefactor of Sg(w) in the
integrand above, therefore factorises out of the integrand of the SNR, Eq. (3.25). However, the bandwidth of
the receiver Av affects the scan rate, which enters the expression for the integration time ¢, in Eq. (3.25).
In Fig. 3.5 we show the signal flux spectral density for three different DM masses, fixing gog = 1071° and
showing three choices for the detector bandwidth. This demonstrates how the detector response affects the
signal as a function of frequency and bandwidth.

3.8 Estimates of uncertainties in the analysis

In this section we quantify some of the uncertainties in our sensitivity estimates. In our analysis we make
certain assumptions, for example on the typical value of the Earth’s magnetic field, the effect of losses and
reflection, or that we can treat the problem as being 1-dimensional. We must further assume a benchmark
noise level. Below, we address various assumptions in turn, and attempt to quantify the level of uncertainty
this leads to in our sensitivity projections.
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Figure 3.5: The value of the signal PSD fed through the transfer function of the antenna circuit assuming
the signal is peaked at frequency w, for all curves we take geg = 10719, The value of wy is 1- 1072V for
red curves, 5-107%V for blue and 1-10~3eV for golden curves. The bandwidth of the circuit is 10MHz for
dotted lines, IMHz for solid and 100kHz for dashed lines.

« Non-inclusion of magnetic field in plasma modelling: as discussed in the main text, this assumption
only affects our result at the O(1) level numerically, but can have an important qualitative impact.
In particular, including cyclotron motion of electrons in the plasma leads to polarisation of the signal,
which we have not accounted for in our sensitivity projections. As this is a feature of the signal that
might not be shared of all noise sources, omitting this effect is conservative. Inclusion of this plasma
effect might allow us to overcome certain noise sources, possibly improving the expected sensitivity,
and will be the subject of detailed analysis when considering actual data.

o Magnitude of Earth’s magnetic field: this is primarily a concern for the sensitivity to axion DM, which
requires the background magnetic field for conversion to occur. The magnetic field of the Earth varies
by O(1) depending on location, and its orientation is also subject to similar variation due to e.g.
solar activity. This variability corresponds to an uncertainty on the sensitivity to g,y of the same
magnitude.

» Losses in propagation: as discussed throughout, a key finding we made is that the signal fields expe-
rience attenuation from their peak at the location of resonant conversion to the surface of the Earth.
This attenuation is typically due to multiple reflections undergone by a photon as it propagates from
the conversion region to the Earth, and is accounted for in our numerical results. Uncertainty in this
result is therefore carried over from uncertainty in our modelling of the profile of the plasma (see above
discussion on “ionosphere modelling”. As shown in Fig. 3.3, our use of the Chapman profile is a reason-
able approximation to real ionosphere profiles. For small masses, our approach is likely conservative, in
that our profile is shallower than a true ionospheric profile, such that photons will undergo more losses
in propagation. For larger masses, our approach is likely optimistic when compared with a daytime
profile (orange curve in Fig. 3.3, which is shallower than the Chapman profile), but conservative when
compared with a nighttime profile (purple curve, steeper than Chapman). Since typical losses in the
mass range under consideration vary between a factor of 2 and 10 in the energy density, this leads to
O(1) variability in the sensitivity to the effective coupling ge-
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Figure 3.6: The sub-figures show the typical variation in the reach when limited by atmospheric noise, given
one hour of integration time. The noise levels vary over eight hours during the winter in Western Australia.

+ 1-dimensional approximation: as discussed above, this assumption is most likely to affect the smallest
masses we consider, as the de Broglie wavelength of the DM approaches the Earth’s radius. However,
the smallest mass we consider corresponds to a typical de Broglie wavelength of 0(0.03 Rg), such that
corrections are likely to be small. The low-velocity component of the Maxwell-Boltzmann distribution
should in principle be treated as 3-dimensional, since individual k-modes can have very long wave-
lengths. However, only a tiny sliver of the DM phase space has wavelengths greater than Rg, even for
m = 10"%eV. As such, this is unlikely to be more than an O(%)-level effect.

« Typical noise levels: this is the main source of uncertainty in our sensitivity estimates. From Ref. [341],
it is clear that the effective temperature of anthropogenic noise can vary over orders of magnitude. This
can be mitigated by performing observations in radio-quiet environments, and is already done by many
experimental collaborations. Therefore, a greater source of uncertainty comes from atmospheric noise,
whose effective temperature can also vary by orders of magnitude. As this noise cannot be controlled,
we must account for this variability in our estimated sensitivity. In Fig. 3.6, we show as a green band
the typical variability in atmospheric noise levels over an 8-hour period at a radio-quiet site in Western
Australia, taken from Ref. [341]. Compared with the anthropogenic noise-limited sensitivity (solid
purple line), we see that when atmospheric noise is large, it can lead to a loss in sensitivity of an order
of magnitude in geg. This effect can be mitigated by e.g. not using data taken during storms, or by
cross-correlating detectors separated by less than a DM coherence length ~ 1/muv, but greater than
the coherence length of the noise (set by the typical size of the atmospheric perturbation).
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Chapter 4

Quadratic Coupling of the Axion to
Photons

4.1 Chapter overview

In this chapter, we explore the quadratic coupling of axions to photons. We provide a heuristic explanation as
to why the coupling is larger than might initially be anticipated. Following this is an explicit calculation for
the QCD axion, using Chiral Perturbation Theory (xPT) to show how the operator of Eq. (4.6) is generated
at one-loop order, verifying the heuristic. We then identify a sufficient condition to achieve such a large
coupling for more generic ALPs and motivate this discussion with toy constructions. We also explore where
this effect might become phenomenologically relevant.

4.2 Motivation for the coupling

Originally introduced to explain the non-detection of the electric dipole moment (EDM) of the neutron [111-113],
it has since garnered much interest as a candidate for DM [70, 101, 102]. The incarnation of the axion that
explains the (so far) unobservably small neutron EDM is often called the “QCD axion”, while a generic
pseudo-scalar particle with an additional explicit mass term (then giving up solving the strong CP puzzle) is
often referred to as an “axion-like particle” (ALP). Many experimental searches are directed at discovering an
axion, a large number of which assume it to make up all of the DM of the universe. Many of these searches
rely on the coupling between the axion and photons [345],

£ -I8ag,, o (4.1)

to generate observable signals from axion-photon conversion. This interaction and that of the QCD axion
with nuclei are the subject of extensive experimental and theoretical work (see e.g. [67, 79] for reviews).
The axion field, being odd under parity-conjugation (P) and charge-parity-conjugation (CP), does not
couple to the kinetic term of the photon and therefore does not lead to a shift in the fine-structure constant
« to leading order. Likewise, it can be shown through simple helicity arguments, symmetry prevents the
operator of Eq. (4.1) from generating a quadratic axion-photon amplitude. There are both ¢- and u-channel
contributions to the amplitude. The axion-photon-photon vertex is associated to the structure:

Gary Eqmape it es pips, (4.2)

where the subscripts label the distinct outgoing photon momenta and their corresponding polarisation vec-
tors. We may construct a 4-point vertex by gluing two of these vertices together, choosing opposite helicities
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for the outgoing states such that this contributes to the same amplitude as the a?F? operator. We see that
the t-channel diagram contribution is:

My 4= ga% [(ef ~e3) (p1-@) — (e -q) (3 - p1)] (P2 - ), (4.3)

where p; o are the momenta of the outgoing photons and ¢ is the transferred momentum. One can now
easily verify that a gauge choice exists where this is zero. A nice way to see an appropriate gauge choice is
by using the spinor-helicity formalism and the Fierz identities for spinors. For example, take the following

product in Eq. (4.3):

We have used Fierz identities to go from the first to the second line. The label ‘s’ corresponds to a light-
like reference momentum we are free to choose; this encodes our choice of gauge. Choosing the reference
momentum to be that of the other photon’s momentum:‘s = 17, is a good choice as the spinor-helicity
brackets are antisymmetric in their arguments, so the product is zero. Having chosen s = 1, the same now
occurs for the product of polarisation vectors:

1] @Y o2
2( o)y 1] ><r1>[2110'

4 _
€1 &9 —

(4.5)

The w-channel diagram calculation follows similarly, making the whole contribution zero. Note that the
result could be anticipated by seeing that parity forbids the process [346].
However, we show for the QCD axion, and generalise to ALPs, that an operator of the form

2
« a v
£a2F2 D) CF2 W (fa) F;U/F'u s (46)

is generated at one loop. This operator does not respect the UV shift symmetry of the axion and originates
in dynamics that are explicitly symmetry-breaking, with c_, encoding the origin. In the case of the QCD
axion, c_, arises from the same dynamics that generates the potential, which preserves a discrete Z,, shift
symmetry for a, such that ¢ _, ~ O(1071). Crucially, when expressed as a function of m,, the coupling above
scales as ~ m2 /Adp, 50 that ¢ _, ~ O(107") is not further suppressed by mq or f. For ALPs, we present
two constructions that lead to non-zero c,,, one QCD-like and one invoking an explicit symmetry-breaking
operator. In the latter, ¢ , directly depends on the explicit symmetry breaking parameter, emphasising the
fact that the quadratic operator only exists when the axion shift symmetry is broken. However, for ALPs
some degree of model-building is required to generate this coupling’.

The operator of Eq. (4.6) leads to time-variation of the fine-structure constant « if the axion has a
time-varying field value, as expected for DM axions:

alt) ~ a (1 +e,, ﬁ (“}?)j . (4.7)

Such a variation in the fine-structure constant is severely constrained by both cosmological and lab-based
experiments [68, 350, 351], and is currently the subject of an intense experimental program (see, e.g., [68]
for a recent review). We demonstrate that these constraints also apply to axions, QCD or otherwise. In
particular, we consider constraints from cosmology, violations of the weak equivalence principle and direct
searches for ultralight DM. Our results are summarised in Fig. 4.1 for the QCD axion, and in Fig. 4.4 for
ALPs.

1Populating the parameter space where ALPs have a larger coupling to FE than the QCD axion also requires model-
building [347-349].
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4.3 Generating the quadratic axion-photon coupling

In the standard lore, the shift symmetry of the axion implies that a basis can be found such that it is
derivatively-coupled to SM fields. In this case, the naive expectation is that the first order at which a
quadratic axion-photon coupling is generated will be O((9,,a)? f; %), and will therefore be vanishingly small.
However, since axions have a small mass due to a breaking of the shift symmetry, a much larger quadratic
axion-photon coupling can be generated. Below we will explore this coupling, first for the QCD axion, and
subsequently for an ALP.

4.4 The QCD Axion

The coupling of the QCD axion to SM fields can be consistently treated in Chiral Perturbation Theory
(xPT) associated to the breaking of the approximate SU(Ny) x SU(Ny)gr flavour symmetry of the N light
SM quarks?. Our guide to understanding the coupling of axions to SM fields is then the neutral pion, which
shares the same quantum numbers as the axion®.

In xPT, the first order at which an operator appears leading to a tree-level coupling of neutral pions
to F?2 = F, s O(p®). However, the process vy — w7 is experimentally observed to have a cross-
section that is only ~ 100 times smaller than that of vy — 7t7~, a tree-level O(p?) effect, at /s ~
0.4 GeV [353, 354]. In xPT, the large vy — 77" cross-section is explained by the observation that unitarity
requires it to be generated at one-loop order involving O(p?) operators, and is thus O(p*) in the YPT power-
counting. Importantly, as there is no tree-level (7°)2F? operator in the O(p*) YPT Lagrangian, there can
be no counterterm and the amplitude for 4y — 707 is finite [346, 355].

The same arguments apply to the QCD axion, which couples to 7 7~ at tree-level in the O(p?) La-
grangian, and therefore couples to v at one loop. In the following subsection, we derive the coupling of two
axions to two photons, whose size is approximately

2
«@ mymqg T [ a y 6
Lozps o~ T2 porw 40
PF 1672 (mw + ma)2 3 (fa> K +00)
2
~ 2 T e 2p PP+ OO0 . (4.8)

1672 3 em2 f2

We identify ¢ _, = mm, ma/3 (my + ma)?* ~ 0.2 when comparing with the form of Eq. (4.6). In the second
line of Eq. (4.8) we have written the coupling in terms of the axion mass

2 r2
2 o My My mﬂ'fﬂ'

O (mutma)® [

m (4.9)

where € encodes possible deviations from the usual QCD prediction [356-358] and is typically taken to be
e < 1, but it may also account for large tunings of the potential. We see the expected result that any
non-derivative coupling is suppressed by the shift-symmetry breaking parameter, the axion mass, and goes
to zero when the shift symmetry is restored. Crucially, the denominator has no powers of f, when the
numerator is expressed in terms of m,, and therefore the suppression is not as small as might have been
anticipated on dimensional grounds. Indeed, since the operator is generated through the same dynamics
as the axion potential at A, the naive power counting should have been that c_, ~ (mx fx)? /A%, which is
confirmed in the more detailed computation. Given the size of cg2 ~ O(1) one anticipates a variation of
a, and could exploit the precision of non-measurements of variations of the fine structure constant to place
bounds on axion-photon coupling.

2We will take Ny = 2 for simplicity, but our results hold for Ny = 3.

3In a particular axion coupling parametrisation, there is tree-level mixing between a and °. Since observables should not
be parametrisation-dependent, we should already conclude that the axion will have all the same couplings as a 7%. Due to its
transformation properties under the chiral symmetry, the 77<’) is an even better guide, and also possesses a quadratic coupling
to photons [352].
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Higher-order one-loop and tree-level corrections to Eq. (4.8) appear at O(p®) in the yPT power-counting
scheme, and can safely be neglected.
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Figure 4.1: New constraints on the decay constant f, as a function of the mass m, for axion DM, which
rely on the existence of the quadratic coupling, are shown in a variety of colours. Pre-existing constraints
(relying on axion-photon linear coupling and axion-nucleon coupling) are given in grey with dark shades
indicating DM axion and lighter shades indicating that the bound does not rely on the axion being DM.
The new constraints from atomic clocks are shown in shades of red [359-364], as well as from E&t-Wash
(EW) [365, 366] and MICROSCOPE (labelled by EPV) [366, 367] in shades of purple, which search for fifth
forces and violations of the equivalence principle respectively. Finally, new constraints from BBN [368] are
shown in blue. In addition to these new constraints, we show projections for future atom interferometer
experiments AION-100/MAGIS, AION-km and AEDGE [369-371], as well as from a Nuclear clock [372]
with sensitivity |6a|/a = 10722, as coloured lines. Also shown are existing constraints on tuned QCD
axions, such as searches for EDMs (HfF " [373] and n [374]), Rb clocks [360], BBN from to the coupling
to nucleons [375], in-medium effects on the tuned QCD axion potential from the Sun [376] and White
Dwarfs [377], SN1987A [378], cosmology [379] and from GW170817 [380]. We also show exclusions from
black hole superradiance [381-383] as dashed grey lines. Analysis of ultra-faint dwarf (UFD) galaxies [384]
and of the Lyman-« forest [385] exclude wave-like DM with very low masses.

4.4.1 Axion-Photon Couplings in Chiral Perturbation Theory

We derive the non-derivative axion-photon couplings from the Chiral Lagrangian, showing that they first
appear at O(p?). This is analogous to the couplings between the neutral pions and photons, which also
appear at this order [346, 355]. After performing a rotation of the light quark fields to remove the anomaly-
induced coupling of the axion to gluons, the axion enters the Chiral Lagrangian through the light quark
mass matrix,

A@=MW%WaC“ 0>mew% (4.10)
mq
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where ), is a matrix whose trace is unity, following the notation of Ref. [386]. At O(p?), this matrix gives
rise to the QCD axion mass through the mixing with the neutral pion,
2 2

Lpp =7 [DUDU)T] + 2By Tr (UM} + MU', (4.11)

70 Vort
N "
assignment of Ref. [387], Qo = M ' /Tr(M, '), which removes the tree-level mixing between the axion and
pion, we find the usual relation for the axion-pion potential,

9 9 dm,my .o f a 1/2
V(a) = —m:fz (1 = T + ma? sin (2fa>> , (4.12)

(my, + my

where U = /= 11 = ( ) and we define By = m2/(m, + mg). Choosing the charge

We make this choice in order to simplify the calculation, but note that the final results should be parametrisation-
independent [388]%.

Expanding Eq. (4.11) to second order in both the axion and the pion fields, we find that it contains terms
coupling the charged pions to the photon, which is contained in the covariant derivative D,,, as well as a
term that goes as a2 7w+ 7~. Therefore, at one loop we can construct an a-photon coupling. The relevant
Feynman rules are given in Fig. 4.2, which lead to three one-loop diagrams contributing to the axion-photon
coupling shown in Fig. 4.3. These loop diagrams, made of two insertions of p? operator, are O(p?) in the

usual xPT power-counting scheme.
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Figure 4.2: Feynman rules for the vertices from the O(p?) chiral Lagrangian leading to a loop-induced a?F?
coupling.

It can be shown that the sum of the three one-loop diagrams of Fig. 4.3 is finite. Indeed, they must be,
since the O(p*) YPT Lagrangian contains no tree-level a>F? coupling to absorb any eventual counterterm.
The amplitude for vy — aa is
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Figure 4.3: Three diagrams contributing to vy — aa at O(p*) in the YPT Lagrangian.

A(yy = aa) = eu(p1)en (p2) MM, (4.13)

where the tensor multiplying the polarisation vectors is

iMM = fg (mu - md>2
[ )l
@2m)* (12 —=m2)((1+p1)> = m2)((l — p2)® —m2)

(mumdm,2T +2(mg — my)? (k1 - kz))
(4.14)

4This choice doesn’t avoid a kinetic mixing term, but as it is suppressed by ~ mg/m%, it will be a sub-dominant effect.
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The possibly divergent terms appear as ¢g*¥1? — 41*1¥, and will therefore cancel in four dimensions after
dimensional regularisation, leaving a finite result. Unsurprisingly, this scattering amplitude looks precisely
like that of vy — 797% which was calculated long ago [346, 355], albeit with a different prefactor. The
amplitude also has a structure that is manifestly gauge-invariant, and contains a part proportional to the
combination g""p; - pa — phpY, which is characteristic of renormalisation of the coupling «:

2

iMM = ( — ) ﬁ (mumam?2 + 2(mq — my,)? (k1 - k2)) <

872 My + My)

g* (p1 - p2) —pé‘pT)
P1 D2

x [1 _2ma <L12 ( 2vs ) + Lis < 2vs ))] . o
s Vs — /s —4m2 Vst /s —4m2

In the s = p1 + p2 — 0 limit, this gives

€2 my, my

M* = (g™ (p1 - — php¥) II(0 I1(0) ~ . 4.16
(g (pl PQ) p2p1) ( ) ’ ( ) 48 72 f(% (mu + md)2 ( )
The result is that « is modified from its initial value «q as
a~ap|l+ U0 1y 1 04 (4.17)
-0 127 f2 (my, + mg)? '

where a in the case of DM axions has a vacuum expectation value, (a(t)?) = p,,,/m2, so that the shift
will be non-zero. The same shift in « can be obtained by writing a quadratic axion-photon operator as in
Eq. (4.6).

4.5 Axion-like Particles

ALPs are often characterised as possessing a mass m, and decay constant f, that are unrelated. This
is a convenient way of considering the phenomenology of ALPs as an effective field theory (EFT) while
setting aside unknown UV dynamics. However, given this ignorance of the UV, one must be careful about
consistently building the EFT and including all possible operators (for recent discussions see [389, 390]). As
we saw in the preceding discussion of the QCD axion, the dynamics that breaks the axion shift symmetry
also generates the quadratic axion-photon coupling. Similar arguments can be applied to an ALP.

A simple QCD-like model for an ALP with a quadratic coupling to photons is an SU(N) ® U(1)’ sector
where SU(N) instantons break the ALP shift symmetry, and there are chiral fermions charged under both
SU(N) and U(1)'. If the chiral fermion masses are O(GeV), they can have an effective charge under EM of
gest S 0.1e through kinetic mixing of the U(1)" with U(1)gm. The dynamics of the SU(N) sector ensure that
the ALP couples to the kinetic term of the U(1)’, while the kinetic mixing induces a corresponding coupling
to U(1)gm with a suppression from the effective charge. The resulting quadratic ALP-photon operator
assuming N; = 2 with degenerate SU(N) quark masses is

()’ (a)\’
Loppe o~ ) ST (%) g Frv. 418
P e 12\ f,) (4.18)

We can relate this coupling to the ALP mass as in the case of the QCD axion, with m2f2 ~ exrp m2, f2,.
The scale A’ ~ 47 f;/ of the SU(N) sector must be sufficiently heavy compared with the light quark mass
scale, such that the price to pay for having a light ALP is that er,p must be very small. Explicit computation
in a later section shows that for this construction of the ALP-photon coupling, we have c_, =~ @2 (m/12)
which can be O(1072) for A’ ~ TeV.

An alternative construction of the quadratic operator starts from a UV Lagrangian in which the complex
scalar field containing the radial (p) and ALP fields couples to fermions charged under U(1)gy, similar to the
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KSVZ model [72, 73]°. Without an explicit shift-symmetry breaking operator, no quadratic coupling of the
ALP to photons is generated upon integrating out the fermions. However, an operator of the form (p/f.)FF
is generated. Since the radial mode mass is M, ~ O(f,), one might think this operator is never relevant for
the ALP. However, the potential typically contains a term of the form V(p,a) D S[a] p+ h.c. such that upon
integrating out p, the operator (p/f,)FF — (S[a]/fo M pz)F F. For the canonical potential with no symmetry
breaking, S[a] ~ (9a)?/f., so that the original intuition that the first quadratic axion-photon operator is
O((0a)?/ f1) appears to be confirmed. However, if the UV does not respect the full ALP shift symmetry but
only the milder a — a + 2n7 f, Z, symmetry, e.g., S[a] ~ g2 f.cos(a/f,) with g a dimensionful parameter,
integrating out p leads to an operator ~ (g%a®/fZM7)FF. A precise calculation is given in the later section

a

4.7, yielding ¢ _, = (47/3)Q*(g9/M,)?, where @ is the charge of the fermions integrated out in the UV. While
the potential we give in 4.7 does not lead to a new contribution to the ALP mass, the symmetry-breaking
removes some of the protection of the small mass. Significant tuning could therefore be required for the ALP
mass to remain small in the IR.

In a sense, the two constructions above reflect the same overarching result: dynamics that breaks the full
axion shift symmetry (possibly to the smaller Z,, symmetry) at a certain scale leads to an a? F'? operator with
a coeflicient given by a ratio of some power of the shift-breaking parameter over the scale of the breaking. For

the QCD-like model, this ratio is ~ (mx fr)?/A* ~ 1, while for the UV-driven model this ratio is (g/M,)>.
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Figure 4.4: ALP parameter space excluded by considering only ALP-photon coupling. The colour scheme
is the same as in Fig. 4.1. We have compared with existing and future constraints on linear ALP-photon
couplings as discussed in the main text. We have set ¢_, = 0.2, and constraints from variations of « scale as
(" )1/2 f, . Existing constraints on the linear coupling to photons shown here are from CAST [304], Astro-
physics [297, 391], Birefringence [392-397], SHAFT [398], ABRA [399, 400] and axion star explosions [401].
Future haloscopes aimed at ALP DM in this mass range include [402-408]. Analysis of ultra-faint dwarf
(UFD) galaxies [384] and of the Lyman-« forest [385] exclude wave-like DM with very low masses. To com-
pare with constraints on the linear coupling, we use gqy = /(27 fo).

5A DFSZ-like model [71, 74] would result in tree-level couplings to QCD.
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4.6 Phenomenology of the Quadratic Coupling.

The quadratic axion-photon coupling leads to a shift in the fine-structure constant in the presence of a
non-zero background field value of the axion. For DM axions near a spherically-symmetric, homogeneous
body of mass M and radius R with dilaton charge Q. [409], the background field value is [366]

V2
a(t) = YL cos(mat + 0) X (1) (4.19)
Mg
c,aM1
1673f2r )"
where r is the distance between the centre of the homogeneous body and a detector. The function s¢(Q.) ~
@ min [1, 3/ :EQ], accounts for the screening of the scalar near the macroscopic object, and

c.aM
= e — 4.21
Y 52 R (421)

Aa P 200
= P22 2 £2
! 4m2 m?2 f2

X(r) = (1 (@) (4.20)

The resulting shift in « is given by

cos? (mqt + )X (r)?, (4.22)

with ¢ an arbitrary phase. The form of Eq. (4.22) implies that there is a static shift in «, since (cos® x) = 1/2,
and that the time-varying part oscillates at a frequency w ~ 2m,,.

The constraints from a quadratic scalar-photon coupling have previously been considered in, e.g., Refs.
[350, 351, 368, 410, 411]. There is a far more extensive literature considering a linear scalar-photon coupling,
which has recently been summarised in Ref. [68]. To facilitate comparison between constraints on f, arising
from the a? F? coupling and constraints on the linear axion-photon coupling, Eq. (4.1), we use Gayy = /27 f,.

4.6.1 Big Bang Nucleosynthesis (BBN)

Variations of the fine-structure constant would impact the predictions of standard BBN, as has been discussed
previously [350, 351, 368, 412]. The most sensitive BBN observable is the yield of “*He, measured to be
Y2*P(*He) = 0.245+0.003 [413], which agrees extremely well with the theoretical prediction in the Standard
Model, Y (*He) = 0.2467 £ 0.0002 [414]. A careful analysis of the impact of a quadratically-coupled
ultralight scalar DM candidate on BBN was recently performed in Ref. [368], which we recast as a limit on
axions through Eq. (4.22) with X (r) = 1. We take the “zero-T” result from their analysis, but caution that
the true constraint on f, could be be up to a factor of ~ 3 weaker due to thermal loops contributing to the
mass of the axion [368]. Changes to the primordial *He abundance are given schematically by [351]

AYP(4H6) ~ A(n/p)weak
Yp (4He) (n/p)weak
where (n/p)weak 18 the neutron-to-proton ratio when the weak interaction freezes out, I'), is the neutron

decay rate, and tgpn is the end-time of BBN. The neutron-proton mass difference enters the calculation,
and is affected by a variation in « as

A(m, —mp)  baMgep o (a 2
B fa)

(my, — my) (mp, —my) “r2 162

— A(TyteeN) , (4.23)

(4.24)

where baAqcep ~ —0.76 MeV [412].

For the QCD axion, the resulting constraints are weaker than those arising from the axion-nucleon
coupling [375]. This is expected, since the nucleon coupling appears at tree level, while the photon coupling
is a one-loop effect. The EM effect should translate into constraints on f, that are a factor ~ 47 /\/a ~ 102
weaker than the nucleon coupling, an estimate which is confirmed in Fig. 4.1. For an ALP, however, the
nucleon coupling is model-dependent such that the BBN « constraint might be the most stringent in much
of the ALP parameter space, as seen in Fig. 4.4.
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4.6.2 Fifth Forces and the Weak Equivalence Principle

The effects of ultralight scalar DM quadratically-coupled to photons on searches for fifth forces and violations
of the weak equivalence principle were considered in Ref. [366]. These results apply to the quadratically-
coupled axion also, and therefore appear in Figs. 4.1 and 4.4. The strongest constraints are from the
MICROSCOPE experiment [367| searching for violations of the weak equivalence principle, and the Eot-
Wash torsion balance experiments [365].

4.6.3 Ultra-light DM Searches

Experiments looking for ultra-light scalar DM with a coupling to photons are sensitive to the resulting shift
in a. The axion-induced oscillation of o leads to a change in atomic energy transitions, allowing strong
constraints from very precise clocks [359-364]. These constraints are shown in Figs. 4.1 and 4.4. We also
show projections for atomic interferometers AION and AEDGE [369]°, and from a nuclear clock [372]. Notice
that some constraints have abrupt endpoints, ranging from m, ~ 1077 eV for Dy clocks to mq ~ 10713 eV
for ATON-km. This is a result of screening by the Earth [366, 410, which occurs for f, < (c,, )1/2 %10 GeV,
as can be computed from Eqgs. (4.20), (4.21).

4.6.4 Other Phenomenology

A quadratic axion-photon coupling can have profound implications for experiments looking for axion DM
on Earth due to the screening of the axion field at large coupling to matter. On Earth, the screening effect
reduces the amplitude of the axion field drastically if f, is too small. This affects not only the observables
associated to the quadratic axion coupling, but the linear axion couplings as well.

It has been shown that the polar cap regions of neutron stars (NSs) have large E - B and can therefore
source non-DM axions [297, 416]. The quadratic coupling to B - B leads to an effective mass for the axion

of order
1/2
o |B| 2 -9 |B| Jaryy
a ™~ _— —_— ~ 1 .
. <0F2 Am? ( fa ) ) 0V tog 5x 10712 GeV !

This “plasma’” mass for the axion coincides with the lower end of the range of bare axion masses to which
the analysis of Ref. [297] is sensitive. A careful re-analysis taking into account this effect is therefore
motivated. More generally, the plasma mass from the magnetic field around the NS exceeds the bare mass
for gay 27 x 1079 GeV ™! x(m,/peV) (10'2 G/|BY).

4.7 ALP couplings to Photons

We discuss the generation of the quadratic coupling of an ALP to photons, fleshing out the arguments made
in the previous section. Two approaches are possible: IR dynamics similar to that which generates the a?F?
coupling for the QCD axion also apply to the ALP; the ALP shift symmetry is broken, leading to a?F?
operators being generated by UV dynamics. For the quadratic coupling to be phenomenologically relevant,
some level of tuning of the ALP mass will likely be required in both cases.

6In Figs. 4.1, 4.4 we have re-interpreted Fig. 4 of Ref. [369]. However, as shown in Ref. [415], the sensitivity of atom
interferometers to a scalar with linear couplings is likely slightly weaker. Depending on the specific design of the experiment,
the signal amplitude is refined by a correction factor, which might take the values ~ 0.98 for AION-km and ~ [0.8, 0.95] for
AION-100. These correction factors are taken into account on the bounds of quadratic coupling.
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4.7.1 QCD-like Dynamics

A simple model for realising QCD-like dynamics for the ALP-photon coupling consists of a sector with gauge
symmetry SU(N.) x U(1)’. Instantons of the SU(N.) sector will generate a potential for the ALP,

V(a) ~ mNr A4 N5 cos (;) , (4.25)

a

where m is the mass scale of the Ny ‘quarks’ which remain light at the condensation scale of the SU(N,)
sector, A’, in analogy with QCD. Assuming N; = 2, with both fermions having equal mass, we can use yPT
to refine our estimate to

1
V(a) = —m2, f2 cos <2;> ~ fimiaQ , (4.26)

with m2 f2 = m2, f2, /4.
Let us now consider the U(1)’, which we will take to be unbroken. The couplings of the ALP to the dark
photon will have exactly the same structure as those of the QCD axion to photon, so that we have

af a®
o'~ ap (1 + 487”[3) , (4.27)

assuming equal light quark masses. In order to transmit this shift in the dark photon gauge coupling to the
regular photon, we can invoke a kinetic mixing x of the two photons,

]‘ v v 1% . .
£k = -1 (FrywFli + Fie o Fic"" = 2xFic i Fi"™) — e j* Ay — € §" Al (4.28)

where the subscript K indicates that these quantities are associated to the kinetic mixing basis, and j and j'
denote the SM and hidden sector currents respectively. For a massless dark photon, the kinetic mixing basis
quantities can be rotated as Ax , — A, A’K# — A}, + xAy to leading order in X, such that the photon
now couples to the dark current j7'#

1
Loy = - (FuF™ + F F'"™) — Ay (ej* + x e j*) — € j" A, + O(x%) . (4.29)

We see that the dark current couples directly to the photon with a strength y e’. As a result, in the xPT
analysis of the couplings to external vector fields, the covariant derivative acting on the U’ contains not only
the dark photon A’, but also the regular photon A. The dark sector therefore has the same Feynman rules
as in Fig. 4.2, only with m, = my and e — xe/. Therefore, the shift in e is the same as the shift in ¢,
moderated by the kinetic mixing factor yx,

a2
a~ ag (1 + X2a648ﬂ'fa2> : (4.30)

Above we considered a massless dark photon, for which y ~ 1 is allowed until we account for the dark
fermions. The dark pions will have an effective milli-charge of g.q = xe’/e under EM, and are therefore
subject to constraints from collider searches [417-421] and stellar cooling [418, 422]. The latter require
x S 10715 for € ~ 1, which would make the shift in o so small that it could not be observed for reasonable
values of f,. If the dark pions have masses m,, > MeV (GeV), then y < 1074 (0.1) is allowed, such that the
shift in « can be substantial for reasonable f,.

If the dark photon is massive, the rotation to obtain the mass eigenstate basis is different from above,
and results in

1 v w1 . , _
Loy = 1 (Fu F™ + Fy F'™) — imi/A;A'“ —ejlA, — AL (e j" +xedt) + O(x?). (4.31)
Ay is now an admixture Ag j, — XA ,, so that an ALP-induced shift of e’ translates into an ALP-induced
shift of e at O(x). This follows from the fact that ¢’ is defined in the kinetically mixed basis through the
dark current interaction, so that the shift in e’ due to the ALP can be absorbed by a shift in A% ,» Which

then enters A, at O(x). The resulting shift in « is the same as in Eq. (4.30) above.
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4.7.2 Shift Symmetry-breaking EFT

For our EFT analysis, let us consider an ALP with a coupling to vector-like (VL) fermions similar to a KSVZ
model [72, 73]. In order to couple to photons, the fermions should have electric charge. The UV Lagrangian
is

Lyv = *EFWFW + iy + YrilPYr + (yorvr +he.) + 9,0'0"p - V(¢79), (4.32)

with ¢ being the complex scalar field containing both the radial field and the axion. As written, the
Lagrangian is invariant under a global U(1) transformation, and the potential can be written as

(¢>T¢>>—A<¢>*¢> o 2) . (4.33)

The field ¢ admits two commonly used and equivalent representations, one linear with ¢; = f (0 + fo +ia),

and one polar with ¢, = ﬁ (p+ fa)exp(ia/f,). The polar representation makes the shift symmetry that
acts on the axion field a evident, while the linear representation obscures it. There exists a map between
the two representations and to leading order, p ~ ¢ and a ~ «a.

The a?F? operator is not generated from the Lagrangian of Eq. (4.32) upon integrating out the VL
fermions v, g, as expected given the shift-invariance of the Lagrangian. In order to see how such an
operator is generated if the shift-symmetry is broken, it is instructive to examine this result.

It is straightforward to calculate in the polar representation, where the Yukawa interaction of ¢ with
the VL fermions is £ O (1/v2) y(p + fa)e'*/ /%) pr + h.c. We can then demonstrate that the coefficient
of the operator a?F? is zero in two ways. In the first, we can expand the Yukawa interaction in powers
of a/f,, leading to two diagrams contributing to the operator: a box containing two vertices linear in a
and a triangle containing one vertex quadratic in a. Integrating out 1 using the universal structures of the
fermionic Universal One-Loop Effective Action (UOLEA) of Ref. [27] we obtain

1-loop iz 1 2 a2 ‘2 2 (ia)z - 2 2
Lop = 16772% [wag} (iQue)?Fy, FM + 1672 30, [ » 2f2 ](zQwe) E, F' =0, (4.34)
where @, is the EM charge of the VL fermion in units of e, and M, = y f,/v/2. The first term in Eq. (4.34)
corresponds to the box diagram, while the second corresponds to the triangle. They precisely cancel each
other, as indeed they should. A more elegant way of obtaining the same result is to make use of the symmetries
of the UV Lagrangian, and perform a chiral rotation of the fermion field 1) — exp(—iavys/2f,)® to remove the
a—dependent phase in the Yukawa interaction in favour of a manifestly shift-symmetric derivative coupling
LD ——w’y#’yg)w Using the fermionic UOLEA we find that the coefficient of the operator O((9a)?A?),

which can map to a?F?, is zero as expected. Both approaches demonstrate that the symmetry structure of
the Lagrangian is responsible for ensuring that symmetry-breaking operators are not generated.

In the above analysis, we have neglected the radial mode p. It has a linear coupling to the fermions, such
that upon integrating them out, we obtain a pF?/ f, operator with a non-zero Wilson coefficient. Integrating
out the p at tree level, from the Lagrangian of Eq. (4.32) we find that this leads to an operator ~ (9a)?F?2/f2,
since the classical background field value of p is p. ~ (9,a)?/(fa M?), with M2 = 2X\f2. However, this also
means that if the potential for ¢ contains non-shift- Symmetrlc terms, p could be the origin of an a?F?
operator. For example, adding a shift-symmetry-breaking potential that preserves CP and a Z, symmetry

for a,
V(a, p)sb. = (M fZ) (1_(:05(;:)), (4.35)

where g is a dimensionful parameter, leads to p. = (9,a)?/(fa M, 2) +a%g?/2 fa M 2 and therefore both the
(0a)?F?/f4 and a®F? operators. We do not specify the origin of this potential, but merely point out that
it is possible to generate the a?F? coupling without generating a mass for a, without violating CP, and
retaining the residual Z,, symmetry for a. Integrating out first the fermions with the UOLEA, and then
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integrating p out by setting it to its classical background field value, we find

2 2 P
Lozpm® D 2—[1\@—} (iQpe)* Fu F™ (4.36)
1672 3M,, fa ppela)
2
:L(Q )L __a?F, Fm + L (Qye)? L (0,0)*F,o F*° (4.37)
I IV 2472 VT papgz R e '

(9a)? a%g?
JaMZ — 2fa M

In the second line, we have replaced p = p. = Comparing with Eqs. (4.6), (4.7) one can

identity the value of cp2 and a(a) as,

A 5 g° bea g*a?
Crp = ?Qiﬁﬁg? afa) = a (1 + ERh (4.38)

More generally, the condition for the a?F? operator to be generated by a symmetry-breaking potential
is that the potential takes the form
Veb. D Slalp + h.c., (4.39)

where we can further impose that S[a] be an even function of a to preserve CP, and that it be a trigonometric
function of a/ f, in order for a to possess a residual Z,, symmetry. In this case, we should expect the coefficient
of the a®?F? operator and the corresponding shift in alpha to obey

Q3 fa 0%5[a)
C X
F? Mg 0a?

. ala)~a (1+Qia Slal ) : (4.40)

M fa

where the leading term is S[a] o< a®/ f2.

4.8 Scaling of constraints with cp2
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Figure 4.5: ALP parameter space, showing how a subset of constraints change with a rescaling of cp2. The
colour scheme remains the same as in Figs. 4.1 and 4.4. We have chosen to show how the constraints of Dy,
MICROSCOPE, BBN «a and AEDGE change; although the behaviour of the rescaling should be generic.
Three values of cp2 are chosen: 2.3-1071, 2.3-107% and 2.3 - 107'°, where the increasing colour intensity
denotes the smaller value of cp2.

We also present a subset of the expected bounds and future experimental sensitivities for axion-like particles
while allowing the coupling coefficient ¢ , to vary. The results are shown in Fig. 4.5.
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Chapter 5

Consistent Positivity at Finite-t

5.1 Chapter overview

This chapter introduces the problems associated with deriving dispersion relations for theories which have
divergences in the forward limit. Time is spent developing the notion of smeared dispersion relations in section
5.2, which can be used to rectify these issues. We then propose a procedure to obtain positivity bounds, which
completely avoids the forward limit. The procedure can be consistently used to derive bounds in any theory
(including gravity) beyond the strictly tree-level case. There may be problems in obtaining Wilson coefficients
from smeared dispersion relations, due to the Miintz-Szasz theorem, related to the non-uniqueness of the
parametrisation of distributions. The necessary implicit assumptions required to circumvent this theorem
are discussed in section 5.3. Results are then presented which we claim are robust under the inclusion of
loop effects in section 5.4.

5.2 Dispersion relations

Here we focus on EFT positivity bounds, as derived by dispersion relations for the 2 — 2 scattering ampli-
tude for spin-0 particles, in the Mandelstam variable s and for fixed ¢, where the analyticity and boundedness
properties of amplitudes are best understood. The bounds stem from writing this quantity in an IR rep-
resentation, where it can be computed within the EFT as a function of the Wilson coefficients, and a UV
representation, where unitarity implies positivity. In the forward limit ¢ = 0, these UV/IR relations are
effectively completely understood, see e.g. [145, 147] In this context, several approaches have been proposed
to extract bounds, by including information about the finite ¢ behaviour. The simplest method involves a
Taylor-expansion at ¢t = 0 [145, 146, 150], and as such, is only applicable when the amplitude is analytic
in ¢t = 0. This fails to be true in physically relevant theories containing massless particles. As an example,
in the presence of dynamical gravity, not only is there a Coulomb pole ~ su/t, but also loop effects which
diverge in the forward limit. Because the effects are not analytic in s they will appear in all dispersion rela-
tions, meaning that the dispersion relations are all contaminated by this divergent behaviour in the forward
limit.

We are interested in the 2 — 2 scattering amplitude for spin-0 massless particles, i.e. Goldstone bosons,
and study this amplitude in the complex Mandelstam variable s € C plane, for fixed ¢ < 0. The Lorentz-
invariant causal structure implies that the only non-analyticities are confined to the real s axis and are
associated with physical phenomena [142] (see Figure 5.1). We define arcs in their IR representation as
contour integrals in s,

ds M(s,t
an(t) E/c 2ris s (s+(t)]3+1’ n>0. (5.1)

9

As shown in Figure 5.1, the contour of integration ‘2’ is given by the union of two semi-circles of radius
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| M2 +t/2|, centred at —t/2. Notice that the measure and subtraction is manifestly s-u crossing symmetric.
Arcs probe the theory at finite energy, and are particularly appropriate in the presence of massless particles,
where the branch cut extends all the way to the origin in s [147, 423]. An assumption that is often made
in the literature is that below the mass-gap of the EFT s < M?, the theory is weakly coupled and the
discontinuity along this branch cut is negligible. In this situation, arcs would reduce to the residues of the
n-subtracted amplitude at s = 0 and s = —t. In this chapter we develop a tool that is suitable to deal with
the IR effects, and therefore we keep the arc as defined above, although in practice we will often work with
the tree-level formulae as well.

s

@ >

0
-M? —t M?

Figure 5.1: The 2 — 2 scattering amplitude is analytic in the upper (and by crossing, lower) half plane in s. The inner
semi-circular contour is the IR arc Eq. (5.1) that runs within the EFT validity region, whereas the horizontal contour denotes
the arc in the UV Eq. (5.3). In red the IR part of the branch cut, due to loops in the EFT, in violet its UV part, associated
also to particle exchange in the unknown UV theory.

Exploiting the analyticity properties of the amplitude in the complex s-plane, the integration contour
2 can be deformed into another contour that encompasses the discontinuities on the positive s > M? and

negative s < —M? —t real axis, as well as a pair of semicircles at infinity enclosing the upper and lower-half
planes (Figure 5.1). Assuming that the latter contributions vanish, as implied by generalisations of the
Froissart-Martin bound [214, 215, 424] to theories involving gravity in d > 4 [185, 216], corresponds to the
asymptotic behaviour
lim M(s,t)/s* =0. (5.2)
|s|—o0
Moreover, the property of s-u crossing symmetry of both the amplitude M(s,t) = M(—s—t,t) and the
measure in Eq. (5.1), combined with real analyticity M(s,t) = M™*(s*,t), allows us to relate the integrals
along the positive and negative real axis, obtaining,

an(t) = = /wdsMImM(S,t). (5.3)

™ e [s(s )2

At this point, unitarity in the forward ¢ = 0 limit directly translates into Im M(s,0) > 0, and the condition
an(s,0) > 0. For theories including massless particles the forward limit may be divergent. As mentioned in
the introduction, to exploit unitarity away from the forward limit, we can project the amplitude onto partial
waves,

M(s,t) =S Mas) P@(1 + %) : (5.4)
£=0

where Py(cos) = oF; (=4, +d—3,(d—2)/2,(1 — cosf)/2) are the Gegenbauer polynomials in d space-
time dimensions, which reduce to Legendre polynomials in d = 4. The appeal of using this basis is that
S-matrix unitarity is diagonal in the partial waves, and directly implies Im M,(s) > 0. In Eq. (5.4) we absorb
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any normalisation factors into the definition of M,(s). For identical scalars, the amplitude is symmetric under
cos — — cos 6 and the partial waves expansion has support on only even ¢’s. By projecting the right hand
side of Eq. (5.4) onto partial waves, we are also expressing the arcs in a UV representation

o0

1 (2 s+t) 2t
an(t) = = dsZpg(s)WPg(lJr?)

- <WP£(1+?)>, (5.5)

where we have defined the average

<...>:71T/1\:d:§pe(s)(...)7 (5.6)

and py(s) = Im M, > 0 is the spectral density, which provides a positive measure for the average (- --). This
positivity implies constraints for the UV representation of arcs of Eq. (5.5), which are inherited by the IR
representation (5.1), implying bounded coeflicients within the EFT.

5.2.1 IR arcs

In this section, we explicitly compute the arcs in their IR representations, for the 2 — 2 scattering of
massless Goldstone bosons interacting among themselves and gravitationally in a theory with a mass gap M.
As usual, at sufficiently low energy E < M the theory is weakly coupled and well described by an effective
Lagrangian with interactions ordered by a derivative expansion. We organise the amplitude as,

M = Mgty + Mioor. (5.7)

The tree-level contribution includes graviton exchange and higher order contact interactions,

N ut su st u R i
s = 2 ( Tt u) +D°2 Pwtaa (2) (st o

p>1¢=0

with k2 = # denoting the gravitational constant in d-dimensions, where Mp is the Planck scale My z =
P

87G in d = 4 dimensions.! The coefficients g,, , scale as 1/M?" in units of the mass gap. We will refer to

an amplitude with M1°°P$ = 0 as “strictly tree-level”. This is equivalent to taking the limit &, g, , — 0 while
keeping ratios g, ,/k? fixed.

Strictly tree-level. The tree-level part of the amplitude is analytic in both s and ¢ away from the origin
and the arcs reduce to the sum of residues at s = 0 and s = —t. From Eq. (5.8) we can then find an all-order
expression for the arcs,

M(s, )
s[s(s+t)]nt+t

K N P—q
_7 6”’0 + Z Zg2p+q,q(_t)2(p_n_l)+q < ) (5‘9)

oo n+1l—gq

a™*®(t) = (Res|s—o + Res [s=_¢)

n

1A constant term in the amplitude Eq. (5.8), as well as a pole associated with the scalar exchange are forbidden by the
Goldstone Boson shift symmetry. Furthermore, the contribution from gravity is limited to the amplitude emerging from minimal
coupling because 3-point interactions between massless particles are completely fixed up to field redefinitions.
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Notice that the gravity pole only appears in the zeroth arc,

2 o0
K _ _
agree(t) — f7+§ [nt2n 29211,0*152” lg2n+171}
n=1
K2 2
e mat +2gaa (5.10)

while all of the other arcs are polynomials in ¢, for example:

atree(t) = ga0 —tgs1 + 3t2gﬁ,o + t2ga72 + .-

tree 2 2 (511)
ay(t) = ge,0 — tgr1 +4t°ggo +1t7ggo + -

Without gravity and in the strictly tree-level limit, these IR arcs are all polynomials in ¢. Then one can
expand both the IR and UV arcs in ¢ using a Taylor series, which provides a set of equations for the EFT
coefficients in terms of UV averages Eq. (5.6). For instance, from Eq. (5.3) and Eq. (5.9) at t = 0 we may

read
1 1 1
92,0 = <s> , G40 = <S3> and g0 = <s5> . (5.12)

Since s > M? and the measure in the average is positive, the Wilson coefficients surviving in the forward
limit must monotonically decrease in units of M2, and must also satisfy two-sided bounds 92,0 > ga oM 4>
96)0M8 2 0 [147]

Moreover, there is a redundancy in these equations because many EFT coefficients g, 4 appear in multiple
arcs, multiplying different powers of ¢. Indeed, from Eq. (5.10) and Eq. (5.11), we observe that g and
g3,1 appear only in ag, while g4 and g5 ; also appear in a;. On the other hand the coeflicient gg 2 appears
uniquely in a1, while there are none in as. This redundancy implies the existence of “null constraints™
non-trivial relations between UV representations of different arcs. For instance, from Eq. (5.10) (with x = 0)
and Eq. (5.11), we see that for the IR arcs,

(afagree _ 4airee)|t:0 =0. (513)

These relations can be thought as constraints on the UV measure p;(s) appearing in the average. Using them,
one finds two-sided bounds also for the coefficients that vanish in the forward limit, such as g3 1 [149, 150].

With gravity, the first arc Eq. (5.10) is singular at ¢t = 0, so the approach based on the Taylor expansion
fails. There will be more on this in the next section. On the other hand, gravity at tree level does not enter
any other arc a,, with n > 1, all of which are still polynomials. Therefore, in the strictly tree-level limit, it
is still possible to build null constraints using these higher arcs.

Loop-level. The 1-loop effects in M!°°P% are known, see e.g. [178, 222, 425, 426] in the context of positivity.
Since, by construction, the EFT is weakly coupled in the far IR, these effects have small coefficients, of the
order g?/1672 or k%/167? in the case of gravity. For this reason, they are mostly neglected in the EFT
positivity literature, where one works in the strictly tree-level limit. We will comment on this further in the
next chapter.

Despite the small coefficients, loop effects qualitatively modify the analytic structure of amplitudes, and
therefore play an important role in dispersion relations, see Eq. (1.64). For instance, at order x* in d = 5
dimensions, where the computation is particularly well-defined, the amplitude develops features such as,

MIPS o /1 5% log s, (5.14)

which is clearly no longer analytic. Because of the non analyticity in s, such effects appear in all arcs. Then,
the non-analyticity in ¢ prevents the dispersion relations from being Taylor expanded. This also implies that
all null constraints obtained using arcs a, with n > 1 are singular. These facts force us to rethink both
dispersion relations and null constraints, while entirely avoiding the ¢ = 0 limit.
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5.3 Positivity at finite ¢

When equating the IR and UV representations of the arcs (Eq. (5.1) and Eq. (5.5)), it is important to under-
stand in what sense the partial wave expansion correctly reproduces the amplitude. Pointwise convergence
(convergence at each point in ¢) is not always guaranteed. Indeed, in the presence of gravity or loop effects,
it is of course impossible to reproduce non-analytic structures, such as the 1/¢ pole or branch cuts, using only
polynomials. Instead, the series might converge in a weaker sense, meaning that given appropriate measures
du(t) = f(t)dt, the integrals,

0

[ e, (5.15)
—tmax

with 0 < tyax < 1, will converge both in the IR and UV representations. The arcs a, (M 2, t) are therefore

treated as distributions. Hence, rather than Taylor expanding dispersion relations and comparing different

powers of t (as illustrated above), we shall project (smear) dispersion relations against an appropriate basis

of functions f;(¢). The projected dispersion relations shall shape the allowed space of EFT parameters [185].

5.3.1 Improving arcs to circumvent the Miintz-Szasz theorem

There is a crucial difference between the Taylor expansion method and using the smeared relations that we
should first discuss. Indeed, the Taylor expansion is in one-to-one correspondence with the EFT approach,
and the t-expanded arcs directly imply conditions on the EFT coefficients. Does a suitable basis of functions
fi(t) exist, such that the smeared IR arcs are also projected directly onto the EFT coefficients?

To answer this question we rely on the fact that the space of continuous functions in ¢ € [—tyax, 0] con-
stitutes a vector space, albeit an infinite dimensional one. While many of the properties of finite dimensional
vector spaces extend to infinite dimensional ones, the Miintz-Széasz theorem [427, 428] represents a striking
difference between the two cases. The monomials {1,¢,¢2,¢3,---} are a basis of continuous functions on an
interval. The Miintz-Szasz theorem states that the same is true for the generic basis,

{tho th tr2 L) (5.16)

with parameters 0 = A\g < A; < ---, iff
Z 1 — 0. (5.17)
= A
Notice that it is a necessary condition that Ay = 0. In other words, this theorem quantifies how many “missing
terms” a basis of monomials is allowed to have to still approximate a function or distribution arbitrarily well.
For instance, it implies that any basis missing a few monomials, such as the set {1,¢,¢3,¢4,¢5 ...} that does
not contain 2, is still a basis.

In a Taylor expansion it makes sense to expand two equal expressions (such as the UV and IR representa-
tions of the arcs) in powers of ¢ and then compare their coefficients. Instead, when we talk about distributions
under a measure, there is no absolute meaning associated with the coefficient of a particular power of ¢, be-
cause it can just be re-written in terms of the other powers. For instance a function go 0 —g3,1t+ 294,0t2 +--
like the one appearing in ag, may be re-written as g o + 2§4,0t* + - - - as well, without the linear term in ¢,
but instead with some new coefficients g, 4. Therefore, without extra assumptions or information, it is not
possible to extract unique coefficients of an infinite Taylor series from integrated distributions.

To understand what type of information might be needed, it is interesting to see how the Miintz-Szész
theorem works in practice. For instance, in the above example, how large would the coefficients g, , have to
be relative to g, 4 in order to be able to accurately describe the same function? In the following subsection,
this question is discussed in detail and some extra examples are provided.

5.3.2 Miintz-Szasz in practice

The Miintz-Szasz theorem provides a fundamental obstruction to reconstruct the individual coefficients in a
Taylor expansion when all the information at our disposal is in the form of its integrals against test measures.
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While the fundamental obstruction is indeed there, in this section we want to make its implications more
quantitative. Given a series expansion ) g, t", we ask how would the “Miintz-Szasz alternative solution”
2o, dn t*» look if the basis were missing one or more of the monomials? For instance if A, ¢ [n_,ny] for
some ny > n_ > 0 were missing. More explicitly, we want to approximate the function ¢, with higher powers
from t2V to some other tVmax, to some precision e,

Nimax

t= > gut"

n=2N

<e, telo,1]. (5.18)

This is exactly the situation we are focusing on, where the function ¢ is associated to the coefficient g3 1
which we want to bound, and we have removed all terms up to t>% in the partially improved arc; tVmax
would be the highest term that can be resolved by the computer.

In figure 5.2 we show the minimum (absolute) value for the last coefficient in the series |gn|, as a function
of N, in two cases. In the first we demand e = 1/10 and allow Ny.x = 4N (red dots). In the second
(blue dots) we take e = 1/20: in this case the previous value of N was not enough to approximate the
function to the desired accuracy, and we had to take more terms in the series: Nyax = 6 N. Even then,
for N > 22 the problem Eq. (5.18) has no solution, and a higher N should have been taken. Ref. [429]
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Figure 5.2: The size of the smallest possible coefficient gy, .. in order to fulfil Eq. (5.18), with Npax = 4 N and
e =1/10 (red) or e = 1/20 and Npax = 6 N (blue). The minimal coefficient was found solving a simple linear
programming algorithm in Mathematica, by discretising ¢ over 100 points in the interval [0, 1] and imposing
Eq. (5.18) in each point. The dashed red (blue) line corresponds to gy, ~ 2Vmex for Nyay = 4 N(6 N).
studied a similar problem, the approximation of [¢t| in ¢ € [0,1] with a basis of even-power monomials ¢2*,
with £ = 1,--- ,n. The author showed that for the approximation to be valid with precision ¢, the series
requires at least 2n = 1/(20¢) terms, and the coefficients are as big as (0.75€) 21/(409) implying coefficients
as large as 1019700 for an e = 1075 precision.

These results tell us two things about how the Miintz-Szasz theorem is realised in practice. First of all,
the coefficients can become so large, that it is plausible that in numerical studies the “Miintz-Szész alternative
solution” discussed in the main text cannot be found numerically with current machine precision. Secondly,
and most importantly, it also tells us that even the weakest assumptions on the behaviour of the coefficients
as n grows, are enough to avoid the solution taking over. For reference, the dashed lines in Fig. 5.2 correspond
to coefficients that grow as gy, ... ~ 2%m=x in the two scenarios above (where Ny = 4N (6N)). These would
be the coefficients in an EFT with ordinary power-counting if the ratios of energy versus cutoff were of order
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2, rather than being much smaller than one. Furthermore, from a physical point of view, it is reasonable to
assume that after a certain order, the coefficients start decreasing, otherwise the whole idea of EFT loses its
appeal. This assumption would be enough, by far, to prevent the higher coefficients from playing the role of
the smaller ones and invalidating the bounds.

To summarise, the coefficients g, , would need to grow exponentially fast in n w.r.t. the original coeffi-
cients to appear as the lower coeflicients. Both on numerical and physical grounds, very mild assumptions
about the convergence of the EF'T coefficients is enough to prevent the low coefficients from being expressible
in terms of higher ones. For instance, the underlying assumption behind every EFT that after a certain order
the coefficients start becoming smaller in units of the energy, would be enough to limit the impact of the
Miintz-Széasz theorem. On the other hand, without making use of such an assumption, even implicitly, one
might wonder if it even makes sense to talk about bounds on the coefficients of the EFT from smearing, as
the tree-level approximation is identical to a Taylor expansion.

Even without this assumption, in the case of dispersion relations, extra information is available. Full
crossing symmetry implies that the same EFT coefficients appear in different dispersion relations. The most
straightforward way to see how this information can be used is to algorithmically use dispersion relations
themselves to subtract off all of the higher coefficients. It is indeed possible to find coefficients ¢,, ; to build

an ‘“emproved arc’,
t2n+k

ag™(t) =" cn,kTafan(t) , (5.19)
n,k :

such that in the IR representation, only a finite number of terms appear. For instance, in the strictly
tree-level limit, the first arc can be improved to

2
im K
ag""(t) = — 1920~ gsat, (5.20)

removing any higher order term. The improved arc lacks the freedom to reproduce the monomial ¢ with
other coefficients and the Miintz-Szasz theorem, as used above, does not apply. The resulting dispersion
relations can be projected on test functions to unambiguously extract bounds on gs o and g3 in terms of «.

Similarly, an improved arc,
2

i K
Clbmp(t) = —7 + g2,0 — gg,lt + 2g47ot2 , (521)

allows one to include also g4, in the projected dispersion relations, and so on.
The idea of improved arcs has been introduced in Ref. [185], where an improved ag arc of the form
Eq. (5.20) was achieved via the following linear combination,

ao(t) — Y 2" (n an(0) — t yan () L:o) . (5.22)

n>1

Crucially, this expression uses higher arcs and their first derivatives at ¢t = 0.

Outside of the strictly tree-level regime, when loop effects are introduced, there will be corrections to this
formula when evaluated in the IR representation. In particular, all couplings g, 4 re-appear in a non-linear
way, at all orders in the perturbative expansion. They multiply each other so that their effect cannot be
removed by a simple algebraic operation on the arcs. In principle, one could take a perturbative approach
and ignore these contributions,? were it not for the fact that Eq. (5.22) is evaluated at t = 0 where the loop
effects entering into higher arcs, such as Eq. (5.14), diverge. Therefore, a finite ¢ improvement procedure in
the form of Eq. (5.19) or similar is qualitatively necessary to ensure the bounds survive at finite coupling
rather than Eq. (5.22).

2By ignoring loops one is assuming that the EFT is infinitely perturbative in the sense that any loop is smaller than even
the most irrelevant EFT operator. On the other hand, in this approximation, one still keeps all orders in the EFT expansion.
This approximation is correct only in the exact gn,q — 0 limit as we have commented on.
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5.3.3 Improvement at finite ¢

For the reasons outlined in the previous subsection, in what follows we introduce a procedure to improve arcs
while not exploiting the information at ¢ = 0. This will eventually enable a consistent perturbative derivation
of bounds in theories with any IR structure M!°°P £ 0. Indeed, if we improve the strictly tree-level arc
of Eq. (5.22) using only relations at ¢ # 0, the M!°°P entering the improved arc will not be infinite when
evaluated at t # 0, but small in perturbation theory. It will then provide a genuinely small correction to the
bounds, rather than compromising them.

It is useful to express derivatives of arcs in the form,

1 - p—q 2(p—n—1)+q e

While this result seems opaque, it is easy to show that it is true using some basic complex analysis. In the
strictly tree-level approximation and without gravity x — 0, the IR representation of arcs can be written in
a compact form via Eq. (5.8),

ds  MER5S(s, ds [s*+ 2 +st]"1
t = _— PR
an{f) yg 2ni (s)"*2(s +t) "'H Z:l ;92194-(1 “ ¢ 2mi s71t2(s 4 t)nmatl
=3 > Gopraa (=TT gy (5.24)

p>1¢20

In the last step, we have pulled an overall t-dependent factor outside of the integral and have used that,

O :75 de (22— 241" _ (") . (5.25)

2 zmtl(z — 1™ m

The integral is easily solved using the binomial and residue theorems. Using this, we can then take k
derivatives in ¢ and obtain Eq. (5.23).

We insert this expression into the definition of the improved arc given in Eq. (5.19), and require it to
match the improved almp of Eq. (5.20). The result provides relations between the coefficients ¢, . For
instance a partial improvement,

2
alree () — 242a7° (£) + 30,7 (£) — 3t4ale (t) = —“7 + 920 — gaat + Ags.of® + - - (5.26)

eliminates the coefficients g4, 95,1, 96,0, 97,1 from the Oth arc. For each further gs,1q4 coefficient that we

wish to cancel from aj™, there exists an additional constraint. The collection of these constraints leads to
the following system of equations for the ¢, ;’s:

Z Z (n pe ) (2(29 — nk— 1)+ Q) eon =0, gaiag &S (5.27)

n>0k>0

where S is the set of indices we wish to keep in the improved arc. For instance, in order to improve the
arc to the form of Eq. (5.20), the relevant set S is S = {g2,0,93,1}, which is equivalent to setting cpo = 1
and co1 = 0 in the system of equations. On the other hand, for Eq. (5.21) S = {g2,0, 93,1, 94,0}, such that
co,0 =1, co,1 = 0 and ¢1,0 = 0. In both cases ¢y = 1 provides the correct normalisation because we start
with the zeroth arc. In particular, the first n arcs contain (n?+3n)/2 couplings not appearing in higher arcs.
Generically, solutions for some improved arc exist if there are at least k¥ < n+ 1 derivatives per arc included
in Eq. (5.19). This expectation does not hold in special cases, such as the improvement of Eq. (5.26), where
we require only k < n derivatives per arc, due to accidental cancellations. We can think of the solution with
k < n as the minimal one, while solutions for higher £ are redundant, since they can be repackaged in the
form of null constraints, as we show in the following subsection.
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5.3.4 Null constraints and higher-arcs

There is a general procedure for improvement and to find null constraints algorithmically, without using arcs
(or their derivatives) in the forward limit. It consists of gradually removing all the coefficients g, , from
an initial object, using higher arcs. The coefficients have dimension, and they always multiply the same
powers of t when grouped into dimensionless objects. For simplicity we neglect gravity in this subsection.
Its inclusion is trivial.

The starting point is to identify an object to be improved. In subsection 5.3.3 this is ag(t), but we may
as well start from a;(t) to improve the first arc, or we could start from 9}ay(t): in this case we could use
higher arcs to remove all coefficients, and we would obtain genuine null constraints.? Here we will follow the
example of ag, in a way that will make its generalisation straightforward. Using Eq. (5.24), the object to

improve is,
N N-n

) =3 % (72 ) ampsaa(-tpo. (5.29)

p>1 ¢>0

where we highlighted that, although the original arc has infinitely many terms, the procedure is constructed
to cancel a finite number of them, up to N. We make the choice to truncate in both the number of arcs used
and also at some order in ¢; in practice we choose these to be the same, but this is not required.

To improve this object, we can subtract combinations of arcs a,,, with n > 1, and their derivatives dFa,,
where 0 < k < n + 1 is in principle necessary to find a solution:

N N-—n n+1 D q 2(]? n 1) + q
imp, N - - - _
= Z Z ok Z Z (n +1- Q) ( k )tQ(p 1)+qg2p+q,w (5.29)

n=1 k=0 p>1q=0

which is simply Eq. (5.19) combined with Eq. (5.23) for the arc’s k-th derivatives. The sum of these two
expressions Eq. (5.28) and Eq. (5.29), must give the improved arc gs,0 — g3,1t. We can phrase this in matrix
notation by defining a vector

7= {920,931t ga,0t> g5.1%, . .., gan 0 2N 21, (5.30)

of all coefficients multiplied by the appropriate powers of ¢ to endow them all with the same dimension.
We can then write the right-hand side of Eq. (5.28) as dp - g, the improved arc as Gimp - § (With Gimp =
{1,-1,0,0,0,---}), and Eq. (5.29) as ¢- A - g, with ¢ a vector collecting the ¢,, i coeflicients and A a square
matrix of size (N? + 5N)/2, defined by Eq. (5.29). With this definition the improvement formula becomes,

G- GHC A G=Gmp-§ = &= (Gmp—ado)A", (5.31)

since the formula must be valid for all values of §. This algorithm can be implemented for different V.
To find null constraints, the procedure is very similar, but with @iy, — 0, since all coefficients must be
cancelled. For instance, in the case without gravity, we could cancel all coefficients order by order in dZag

using higher arcs. The associated coefficients ¢, j are ¢ = d7ao - A~', where the A matrix is the same as
—

above, while dZag is the vector of coefficients of g in 92ag(s, t).

We do not use these null constraints since smearing the improved arc with high Legendre polynomials
gives zero on the IR side and something non-trivial on the UV side, thus automatically delivering null UV
conditions.

The resulting algorithm is infinite, meaning that in order to cancel the infinitely many coeflicients, we
need a series containing infinitely many arcs. In practice, we will solve the system algorithmically after
truncating Eq. (5.27) at some value n < N, which is equivalent to setting ¢, = 0 for n > N. Then
Eq. (5.27) becomes a linear system of equations with unique solution,

cl0o=-2, ci1=1, c12=0,

3Null constraints can also be obtained trivially by taking m + 1 derivatives in ¢ of an arc ap>1(t) improved up to order m.
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c20=-3, ¢c21=0, co2=1, c33=0,

c3o=-8, 1=-2 c32=2, cz33=1 ¢34=0
(5.32)
satisfying the recursion relation,
Cn+1,k = Cn,k—1 +2 Cn, k + Cn,k+1 - (533)
Alternatively, this solution can be expressed using the generating function,
z(l14++v1—4x — 62
G(z,y) = ( ) , (5.34)
VI—dz 2z +y (20 — 1+ /1 —4z)]
as
or ok
Cnge =~y Gl,y) : (5.35)

r=y=0

Importantly, the improvement presented here is only ever partially implemented: if we include arcs
only up to N, we cannot cancel coefficients such as gany2,0, which require the arc ay(s,t). Following the
discussion on the Miintz-Szész theorem, the use of this expression only makes sense by postulating that
the coefficients g, , with n > NN are bounded in some way. This way they can not reproduce the effects of
the lower coefficients as implied by the Miintz-Szasz theorem. This assumption is further justified by two
facts that will be discussed in the next subsection. Firstly, we will see that |¢| is limited by an upper value
tmax < 8, implying that the neglected terms are exponentially small in N. Secondly the bounds derived
with this algorithm converge very quickly with N, and asymptotically approach the ideal situation with no
additional assumptions on the coefficients.

5.3.5 Partial improvement in the UV

Now that the problem is well posed, we can apply the same improvement algorithm to the UV representation
of the arcs. This means substituting the UV arcs Eq. (5.5) in the sum Eq. (5.19), obtaining,

ag™(t) = (I (s,1)) (5.36)
with P , - ),
Iy (s,t) = ; ek~ O ST se D) Py (1 + b> : (5.37)

where the coefficients ¢, , are given by Eq. (5.35). To our knowledge (and dismay) this function cannot
be re-summed, unlike the improved arc in Eq. (5.22) taken from Ref. [185]. Using a simple trick, we may
nevertheless write it in such a way that some of its convergence properties are manifest. We introduce the
additional variable ¢ and bring the 2" factors in Eq. (5.36) inside the partial derivative by the replacement,

2RO () =05 () (5.38)

t=t

The sum in n can then be carried out explicitly. The result is the kth order in y of the generating function
Eq. (5.34), with x = #2/s(s + t):

k
; tk 2
imp _ v k _
%o (t)_<;k!at 1_ 4y 1
s(stt) (5.39)
(25+t)(s(s+t)< —S(i—ft)+1)—6t~2)
X

2(s(s+1))3/24/s(s +t) — 412
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By inspecting the improved arc in this form, it is clear that the formula cannot converge if the expression
appearing under all of the square roots is negative, which puts a bound on the values of ¢ for which it can
be used,
t 1
1, <t<0 with —= = - <\/17 - 1) ~0.39. 5.40
SH<0 with ot = (5.40)
This is an important result, since it limits the range, thax < t«, over which the dispersion relations can be
smeared against the measure appearing in Eq. (5.15). The existence of this upper bound is supported by
numerical results.

5.3.6 Projection on basis functions

Integrating both the IR improved arcs Eq. (5.20) and their corresponding UV representations Eq. (5.36)
against a complete set of basis functions f;(t) (as in Eq. (5.15)), we obtain the most general set of IR-
UV relations in algebraic form. In the absence of gravity (v — 0), arcs are continuous functions of t.
For continuous functions, the space of polynomials provide a complete basis by the Weierstrass theorem.
Moreover, orthogonal polynomials, in particular Legendre polynomials P;, are useful as they provide a
countable set for this goal. Indeed, they are orthogonal with respect to the flat dt¢ integration measure and
therefore are the most natural choice of basis.
We consider a smearing function of the form,

Jmax
F =Y bp (120 (5.41)
j:0 max

where in principle jpha.x — 00, but in practice it will be taken to be finite. Notice that when integrated
against the IR representation of the arcs at tree-level,

0 2 2
im tmax tmax
k—0: / dt f(t) Qg p(t) = by (9270 tmax + 937172 ) - b 93,1 76 R (542)

tmax

only the first two polynomials have support. As the constant and linear terms in ¢ can be expressed entirely
in terms of the first two Legendre polynomials, all P; with j > 2 integrate to zero on the IR side. Then,
in a sense, the 7 > 2 polynomials provide all of the null constraints: when integrated against the UV
representation of the arcs, the corresponding expression has to vanish. For the improvement of Eq. (5.21),
which includes g4,9, the same holds true for j > 3 and so on.

In the presence of gravity, the IR arcs are clearly no longer analytic in ¢ € [ —tmax, 0], due to the pole.
Nevertheless, by modifying the integration measure to

dp(t) = (—t/tmax)“ f(t), with a >0, (5.43)

the arcs become integrable. Continuous functions span the set of integrable functions on an interval. There-
fore polynomials, which are themselves a basis of continuous functions, again provide a complete basis. In
this work we take o = 1, in order to preserve the property that, at tree-level, higher Legendre polynomials
integrate to 0 in the IR and provide null constraints. On the other hand, the small j terms have support in
the IR leading to,

0 2
im 7fmaux tmax
6205 [t ) SO0 = o (64 gm0 )

tmax

5.44
byt 92,0 + tmax + b trznax ( )
1 Umax 6 g3.1 6 2 93,1 30 .

Notice that in this expression the integral with j = 2 is non-vanishing, as opposed to the case without gravity
of Eq. (5.42).
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Now we need to compute the integrals on the UV side, as in Eq. (5.36). We express the smeared Eq. (5.36)
as

0 . 0
/ At (=t /tmax)™ f () @™ () = / At (—t/tax)” £ (1) (1o (s5,2) ) (5.45)

—lmax tmax

where we can take o = 0 in the absence of gravity, and a = 1 otherwise. We then assume convergence and
exchange the various orders of integration and sums. It turns out that for all fixed values of k£ and n for the
coefficient ¢, j, and for each value of ¢, the integrals in ¢ can be performed analytically.

In summary, the equalities between UV expressions (5.45), and smeared IR arcs (which in the strictly
tree-level approximation look like Eq. (5.42), or Eq. (5.44) with gravity) allow one to extract bounds on
Wilson coefficients. This means that we can access the information contained in dispersion relations at
finite ¢, through the space of basis functions spanned by the coefficients b; in Eq. (5.41). In the next section
these results will be implemented to find the constraints on various Wilson coefficients.

5.4 Bounds on Wilson coefficients

The finite ¢ dispersion relations obtained in the previous section 5.3 imply bounds on the IR Wilson coef-
ficients deriving from the positivity properties of the average (---) of Eq. (5.6). In the forward limit the
bounds can be obtained analytically and at all orders by expressing the UV integrals as moments [147]. As
for the smeared dispersion relations discussed above, there is no similar formulation, but the problem can
be recast as a linear or semi-definite optimisation problem and solved numerically, as proposed in Ref. [185].
We take this numerical approach in what follows.

We have the freedom to choose the parameters b; of the smearing function f(¢) to ensure that the
projected UV representation is positive. Assuming convergence, we take the ¢ integral inside the other sums

and integrals, where it is computed explicitly. We then demand positivity of the integrand for all values of
ls:

0 0
UV: / dp(t) 1Y (s,t) >0, Vsand ¢ = IR: / du(t) ad™ ™ (t) > 0, (5.46)
—lmax —lmax
where we use the notation IV and az)mp’N (t) to refer to the truncated sum and arc used for numerical
applications. Here, abmp’N (t) is the truncated, improved arc Eq. (5.19) in the IR representation (as in

Eq. (5.20) or Eq. (5.21)).

Therefore, if the positivity of the t integrals of each individual IéN (s,t) can be ensured, it implies a
positivity statement for the IR improved arc. Practically, we truncate various parameters: the maximum
order in ty.x by which the arc is improved, the maximum order in the partial wave expansion, and the
maximum order of the smearing polynomials. This introduces three parameters that are scanned over: N,
Lrnax, and Jmax, respectively.

On the other hand, to ensure positivity in s, differently from Ref. [185], we approximate the integrand
in s with a polynomial, for every £. Such an approximation follows naturally by expanding in ¢,.x/s as a
Taylor series, because s /M? > 1 from the integral range and #,.x/M? < 1 from kinematics. For consistency
with truncation, we keep terms up to order 2N in t,,c. This approach is advantageous because positive
polynomials are more simple to characterise than positive functions: every positive polynomial can be written
as a sum of squares of polynomials, which have a straightforward characterisation in terms of semi-definite
positive matrices. Furthermore, for every fixed ¢, it captures all values of s.

5.4.1 Numerical implementation

In the following subsection some technical details of how this procedure is implemented are given. There
is a review of Ref. [185] and the differences are highlighted. A first difference w.r.t. Ref. [185] is that we
use polynomials in ¢ rather than p, with ¢ = —p?. In terms of building functionals, both approaches are

equivalent, we opted for ¢ to preserve the property described below Eq. (5.42). The constraints in impact
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parameter space described in Ref. [185] can still be added to our procedure, but we found that they have
little impact on the results.

To define a semi-definite optimisation problem we start by writing f(¢) as in Eq. (5.41). We can explicitly
integrate the single functions both in the UV as in Eq. (5.45), defining the vectors W and V in the space

spanned by the P;’s
0
t t
W; o(s) :/ dt (t) P (t )Igv(s,t), (5.47)

tmax

0
t t i
v, = / dt (t ) P (t) ) (5.48)
t max max

“lmax

and in the IR

such that the positivity requirement is written as

jmax jlnax
Z b;Wj o(s) >0, Vs, {, = Z b;Vi > 0. (5.49)
j=0 j=0

Having complete freedom on the choice of f(t) and therefore bj, we can try to find a function which makes
the bound evident.

This is a semi-definite optimisation problem, where we have a target vector V; and a vector we want to
optimise b; to get b;V; > 0, subject to some constraints W, ,(s) = 0.

Writing the form of V; reveals the details of the numerical procedure involved, because the IR arc contains
information about go, g3 and g4 for the 2D bound, depending on which coefficient we want to target. For

example,
0
t t
Vi = / dt < > P; <t> (292 —g3t+8g4t2) . (5.50)

tmax max

tmax
We can then ask to optimise the value of g3/go for a fixed value of g4/ga, for example. Furthermore the
boundary of the allowed region is found when the inequality is saturated. Therefore we can implement
an additional bisection algorithm, where we choose a value of g4/g2 and multiple values of gs/go. If the
optimisation problem results in a positive value for b;V; then the value is allowed, otherwise it is prohibited.

In Figure 5.3 we show how the g3 15/¢2 0 bounds behave as functions of the algorithm’s parameters £y ax
and jmax. For small £, and a large basis of polynomials jmax, the bounds might be too strong (non
conservative), since not enough conditions have been imposed. For larger values of both parameters, they
asymptotically approach the correct values (dashed black lines).

To set up the problem numerically and ensure positivity for every s we performed an expansion in s as
described in Sec. 5.4.

In the UV, we can change variables to & = ¢/t ax,

0

Wy r(8) =t | o Py )T (5,0 ) (5.51)

Inspecting the function I}V reveals that it can be written as an overall dimension 1/s* times a function of
the variable xtyax/s. Because tmax/s < 1 and z € [—1,0], we can expand with a Taylor series the function
in the integral, giving

M J (M+1)
Z tmax T tmax tmax
SPIN (s, (Ttmax)) = g (s ) => a ( Sa ) + <0£4+1g‘t_<> (C sa ) , (5.52)

Jj=0

where the second piece is the rest of the Taylor expansion and gives us an estimate of the error. Therefore,

we can expand the whole partially improved arc 1, év as a polynomial in £max/$, up to a certain order O.
The parameter O is chosen such that O =~ 2N, i.e. we require consistency in the size of the terms we omit,

since the improvement omits terms of order t2¥+2 and the Taylor expansion omits terms of order t¢}!. For

max max °
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Figure 5.3: Convergence of the 1D bound for gs,15/g2,0 for various values of fmax. The colour bar refers to the number of
elements of the polynomial basis used, jmax. For fited bmax, a large enough basis is needed to obtain a better bound. For small
lmax the bound is not conservative, since too few conditions have been imposed in the UV. For large enough values of both
lmax and jmax, bounds converge to the correct value (dashed black line).

all our bounds, we consistently discard higher powers of t,.x if the leftover terms in the improvement and
the Taylor expansion are of order 1079, Table 5.1 shows some of the various consistent choices we make.

tmax | N | O | (tmax/s)? | first discarded term in the improvement
05t, | 6 | 12| 3x107°? 2 x 10 %g14,0
0.8, | 8 | 16 | 8x107? 7 x 1078 g18,0
099, | 12 |20 | 5x107° 1.6 x 1029260

Table 5.1: Consistent parameter choices for the partial improvement and Taylor expansion of the arcs, such that the discarded
pieces are of similar order. These are the choices we use throughout.

This expansion in tpax/s serves two purposes. Firstly it speeds up the numerical calculation because
now W, after the expansion is written as a polynomial in s with a global pre-factor 1/s°*! and can be
easily integrated analytically. Secondly it allows us to require positivity for a generic polynomial in s, for
s € [1,00]. Without the expansion we require to optimise a generic function for all values of s and the only
way is by taking a discrete grid of values for it. This discretisation not only makes the numerical problem
harder but it also weakens the bound, as argued in Ref. [185].

Given that we require positivity for each

Jmax

> bW e(s) 20 (5.53)

j=0
we can solve now the equivalent problem expanded in #,.x
Jmax

sOt1 bW, o(s) > 0. 5.54
A IR
j=0

To obtain the various bounds found in this work we set up the problem as above and we use the numerical
optimisation algorithm sdpb [430, 431]. We used the constraint as input for multiple values of ¢, optimising
a polynomial in s. We built a matrix with rows made from 1 x 1 matrices for the discrete values of ¢, and
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a column for each j of the basis chosen for f(¢). While setting up the problem we are free to choose a
normalisation for the target vector b;. We choose to always take the following normalisation condition,

Jmax 0 ¢ "
ij/ dt <> P; < ) t==+1, (5.55)
=0 —tmax tmax tmax

which corresponds to the “vector” associated with g3, giving for example the bound with the + sign in the
normalisation,

Jmax 0 t t g4 Jmax 0 t t ) g3
2 b; dt | — | P | — 8— b; dt P; t > =, (5.56
jgo ’ /_ (tmax> ’ (tmax> * 92 Z / /_ (tmax) / (tmax) - g2 ’ ( )

tmax

or, choosing the other normalisation, a lower bound.

For the bounds with gravity, we find it useful to restrict the parameters b; to be at most of order 10° in
absolute value. This facilitates numerical convergence and avoids any fake solutions. We implement this in
sdpb by adding rows and columns to the positive matrix for each j, forcing +b; > —10%. We include typical
values used in the Table 5.2. The algorithm for sdpb taken from Ref. [430, 431] is set up with the default
parameters except the maximum number of iterations that has been increased for the case with gravity from
500 to 1000.

Fig. 5.4 | Fig. 5.5 | Fig. 5.7

Jmax 7 10 16,8

Cimax 14 100 400
N 3,8 6 6,8, 12

Table 5.2: Values of the parameters of the improvement algorithm for all the plots in this article.] Refer to
Table 5.1 for the choices of NV, O, and t,.x.

Now that the numerical procedure has been fleshed out, we can move onto the bounds that can be found.

5.4.2 Bounds at Kk =0

In Section 5.3.5, we pointed out that our partial improvement algorithm has a finite radius of convergence,
which requires smearing over —t, < t < 0, see Eq. (5.40). In order to compare with previous literature,
in this section we present results using both our approach and the one of Ref. [185], for different smearing
windows —tpa <t < 0.

We first work in the x — 0 limit and d = 6 for easier comparison with the next section. Bounds in d = 4
share the same qualitative features, although the numerical values for the lower bound vary slightly.

In Fig. 5.4 we show upper and lower bounds on the ratio g3 1/g2,0 in units of the arc energy scale M2, for
different values of t,.x, fixing the parameters jax = 7, fmax = 14 used in the bound derivation. The blue
line is obtained using the algorithm of Ref. [185], but expanded in the UV side in powers of ty.,/M? (hence
the plot ranging only to tyax = 0.7 M?). In purple/orange, instead, our approach for N = 3,8 respectively,
limited to tmax < t« (dashed black line). As discussed previously, these correspond to neglecting terms of
order O(t7,.) and O(tL7 ).

From Fig. 5.4 we conclude that our algorithm correctly reproduces the 1-dimensional bounds without
gravity, despite the limit on the smearing range tax < t«. Furthermore, we notice that it rapidly converges
with N. In particular, for N = 8 the obtained bounds are indistinguishable from the exact results. Finally,
for fixed jmax, fmax, the bounds become unreliable as . — 0.

In Figure 5.5 we present a similar analysis, extended to bounds on the ratio of coefficients g3 1M? /g2,
and g470M4/gg70, using . = 100, jmax = 10.
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Figure 5.4: Bounds on the ratio g3 ; M 2 /92,0 as a function of tyay, the maximum value of ¢ in the smearing
integral. All curves are derived with fixed jmax = 7, fmax = 14. In blue the improvement approach of
Ref. [185] where positivity is obtained expanding the integrand at order O(¢.6 ). In purple (orange), our
improvement at order N = 3 (N = 8). The dashed vertical line delimits the applicability of our improvement
formula, tyax < t.. As N is increased, the algorithm at finite ¢ of Section 5.3 rapidly converges to the value

of Ref. [185].

M4g4,0/g2,0

M?2g3.1/82.0

Figure 5.5:  Positivity bounds on the ratio of coefficients ga0/g2,0 and gs1/ga,0 in units of M?, for d = 6,
using bmaz = 100 and jmar = 10. In blue the bounds using our partial improvement Eq. (5.36) with N = 6
and tmaz = t«/2 ~ 0.2M?2. The approach of Ref. [185] is shown for comparison in black for e, = M?, in
red for tmas = 0.8 M2 and orange for tpas = 0.5 M2.

First, we explore how changing the lower bound of integration Eq. (5.15) affects the bounds in the
approach of Ref. [185]. The black line, the orange and the red areas are smeared over —tp.x < t < 0
with tmax = M? in black, tmax = 0.5M? in orange, and tya.x = 0.8M?2 in purple. For tp.x = M? the
figure coincides with the forward limit bounds [150, 432]. We observe that constraints corresponding to the
algorithm of Ref. [185] become weaker as we take smaller values of tyax.

The blue area shows instead our approach, with the smearing range t,.x = 0.2M2. Our partial improve-
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ment goes up to order N = 6, meaning we neglect terms of order O(¢!2 ) in the improvement, which, given

the value of ., are of order 1078 x ga,, ;M *". We checked that the results are stable for larger values of N,
meaning that the truncated algorithm has converged.

In Figure 5.5, for both algorithms, we observe a feature that develops as soon as tyax < M?: a kink
in the lower bound. The fact that for large values of g4 0M*/ga, the tmax < M? bounds are slightly more
stringent than the t.c = M2 ones, makes us think that this feature is some numerical artifact. Were this
not the case, one would expect that even for ., = M? the test polynomials would arrange to (almost)
vanish at large |t|, to obtain a more stringent result. On the other hand, we have tried several approaches
to improve the bounds in this region. We have explored values as large as ¢,,x = 600 and introduced the
¢ — oo constraints discussed in Ref. [185]. Moreover, we have produced the red curve by employing two
different methods. In the first we have followed exactly the procedure detailed in Ref. [185], where positivity
of Eq. (5.46) is ensured by discretising s and requiring that the integrand be positive at each discrete value.
In the second we have used the expansion of the integrand in ¢m,.x, and its polynomial approximation in
s, as described above. Despite having explored various approaches and increased numerical precision, the
kink on the left hand side of Figure 5.5 survives. Regardless of this feature, the results of our algorithm are
qualitatively consistent with those obtained from the approach of [185].

5.4.3 Bounds at k # 0

In this section we work in the presence of gravity, at x # 0, and in d = 5,6 dimensions, where the partial
wave expansion converges and the 2 — 2 amplitude is well defined w.r.t. soft graviton emission.

400 —

3001

100

[ 9 e = 0.31 M2
F M by = 04702
[ W i = M2

[ (I [ [
-40 -30 -20 -10 0 10

M? g2/

Figure 5.6: Bounds in the presence of gravity on the ratios g2,oM?/k? and gs,1 M*/k2, in d = 6, for different values of tmax.-
All bounds in this figure are derived using the improvement of Ref. [185]. The blue (orange) line uses jmaz = 6 (9), and is
ezpanded up to order 16 (25) in tmaz-

In Figures 5.6 and 5.7 we show the bounds on the coeflicients g2 o and g3 ; in units of the gravitational
coupling x2 and the arc energy scale M?2. Both figures are derived in d = 6 dimensions and use £,,.x = 400,
and up to jmax = 9. Figure 5.6 uses the method of Ref. [185], but for different values of t;,.x. Figure 5.7
uses our method Eq. (5.45), where the smearing polynomials involve the overall (—t)® factor, with & =1, in
order to make the EFT amplitudes integrable.

In Figure 5.8, we show the ¢ dependence of the functionals f(t) that optimize our bounds, for different
extremal points, defined by the colours in the top left-hand corner plot. Gravity plays the most important
role for small values of the couplings. Interestingly, the functionals exhibit a distinctive peak at finite values
of ¢, far from the maximum allowed value t,,x, while staying away from ¢ = 0 to avoid the gravity pole. The
existence of a scale associated with this feature provides an explanation of why the bounds become weaker
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Figure 5.7:  Same as Figure 5.6, but using our improvement formula Eq. (5.36) up to order N = 12 (refer to Table 5.1
and 5.2 for the exact choices of parameters we make). All the bounds are computed with {maz = 400, and up to jmaz=8. Here
tmax 15 expressed in units of the mazimum allowed smearing range t. = 0.39M?2. For reference, in black we show the bounds

from Ref. [185].
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Figure 5.8: In the top left-hand corner, the d = 6 bound of Figure 5.7 for t,.x = 0.99¢,, with each extremal
point colour-coded. In the main figure, for each extremal point, the corresponding smearing functions f(t)

Jmax

as a function of ¢. The functions are normalised as = b; = 1. Here, we use jmax = 8.

as the smearing range to tyax < s is reduced. For larger values of the couplings, the functionals morph into
oscillatory functions, which are less impacted by the ¢, cut. Indeed the asymptotic upper and lower slopes
g3.1/92,0 are almost insensitive to tmax, as already observed in Figure 5.4.

It seems as though our bounds are less stringent than those of [185], they are in a sense more robust
as they will be stable against the introduction of IR loop effects. Moreover, as discussed above, they are
penalised by the ., < M? constraint. It is plausible that a variation of our algorithm exists that possesses
a larger radius of convergence, and which re-sums to all orders. An example of such a method are the crossing
symmetric dispersion relations that will be introduced in the following chapter.
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Chapter 6

Positivity Bounds and Gravity Loops

6.1 Chapter overview

Most efforts to map the allowed parameter space of EFTs have assumed a tree-level framework, where
the amplitude’s non-analytic features arise solely from high-energy exchanges above the EFT cutoff. This
approach neglects calculable non-analyticities within the EFT. In this chapter, we systematically examine
the infrared structure of EFT amplitudes at one-loop order, focusing on 2 — 2 scattering of massless
scalar particles interacting via gravity in various spacetime dimensions. Now that we have seen how to
self-consistently find positivity bounds, for theories which have a divergent forward limit, it is time to check
that the procedures are robust against loop effects as claimed. A simple argument is provided to show that
at sufficiently low energies the loop effects must dominate over the less relevant operators. This must impact
the positivity bounds. We find that in scalar-gravity systems, the dominant gravitational IR effects scale
as k*s3y/—t or k*s?log(—t) in d = 5,6, where the calculation is particularly well defined. In this chapter
we compute the scattering amplitude of shift symmetric scalars to one-loop, including EFT-vertices and the
exchange of internal gravitons in section 6.2. This is done by using on-shell methods. We then compute the
arc variables used in the previous chapter and introduce another kind of dispersion relation called a crossing
symmetric dispersion relation in section 6.3. We find the modified bounds on the couplings using both types
of dispersion relation and comment on the differences that we find in section 6.4.

6.2 The Structure of EFT Amplitudes

6.2.1 Tree-Level

We remain focused on the 2 — 2 scattering amplitude for exact (massless) Goldstone bosons in generic
d-dimensions in a theory with a mass-gap M, such that at sufficiently small energy ¥ < M the theory is
weakly coupled and well described by an effective Lagrangian with interactions organised in a derivative
expansion. We insist on the Goldstone nature of the spin-0 particles to naturally justify their lack of mass
that we assume throughout. At tree-level, the 2 — 2 amplitude can be written as Mee = MEET 4+ MY

with one part associated with contact interactions,

n—3q
2 t2 2\ ~ 2z
MET = S g, (3 + . +u ) - (stu)? (6.1)
n>2,q>0
and one mediated by gravity,
t t 1
MER — 2 (u + 8 S) , where K= —— (6.2)
S t U My,
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denotes the gravitational constant in d-dimensions, and Mp; the Planck scale.
It is illustrative to keep track of the size of the various terms in situations where the EFT is dominated
by a single scale M and a dimensionless coupling g, such that,

g2

Gn,m ~ M2ntd—a (6.3)

This relation holds in simply weakly coupled UV models, but also captures important features at strong
coupling [433]. This expression helps to separately keep track of the EFT energy expansion controlled by
E/M < 1 and the EFT loop expansion, controlled by g2/ (47T)d/ 2 < 1. For gravity instead it’s roughly
controlled by x*M?24=4/(47)4/2.

Gravity is always more relevant than all other EFT interactions and dominates at sufficiently small
energies. Moreover, even loops of gravity can dominate over certain EFT interactions. This was alluded to
in the previous chapter and can be quantified as follows. Comparing the contributions to the amplitude,
we see that an irrelevant EFT operators with n > d/2 contributes less to the amplitude than a one-loop
diagram from gravity, at energies

2(d—2)] T-a
(4m)"? g)=2 (M) ] | (6.4)

Therefore the tree-level EFT is a good approximation only within a window at sufficiently high energy
where gravity loops are negligible, but with energies sufficiently small that the EFT description holds,
E./M <« E/M <« 1. For larger n, this window shrinks and disappears, meaning that for statements on
n > d/2 couplings, loops are always important. Furthermore dispersion relations, by construction, are
sensitive to the amplitude at all energies, in particular also in the region of Eq. (6.4), where loops dominate.
In the rest of this section we compute these effects more precisely and study how they appear in dispersion
relations.

6.2.2 IR Effects

We are interested in how higher order effects modify the structure of Eq. (6.1) by altering the analytic
structure in both s and ¢, as well as how this impacts dispersion relations. The inclusion of long-range
interactions has different consequences in the study of scattering amplitudes [434-436]. First of all, it is well
known that IR divergences in diagrams with a fixed number of external legs cancel against divergences in
the real IR radiation, when appearing in the total (inclusive) cross section. The contribution to the total
cross-section from the real emission of gravitons diverges in d < 4 due to collinear /soft effects, which also
implies that the amplitude is not well-defined for any exclusive process (e.g. 2 — 2 scattering). To make
this more concrete, we study the case of d > 4, where the problem is absent and the phase-space integral of
collinear radiation is finite. We will discuss the case d = 4 separately in sec. 6.2.4. Technically, the study
of d > 4 in the context of gravity is made possible by the convergence of the partial wave expansion, which
diagonalises the unitary property of the S-matrix. Its coefficients are given by the integrals,

0

fg(s):./\/'d/ B 42 2Py (14 2/5) M(s,1),  with Ny = 16T E (6.5)

B r(2)

where Py(z) = oFy (=0, +d—3,(d—2)/2,(1 —x)/2) are Gegenbauer polynomials, and © = —s — t. This

allows us to write the amplitude in the partial wave expansion as,

(47)% (d 420 — 3)[(d + € — 3)
T (452) (¢ +1) ’

M(s,t) = Py <1+ 2;) fe(s), where n{® = (6.6)

£=0

LA constant term in the amplitude Eq. (6.1) and a pole associated with the scalar exchange are forbidden by the Goldstone-
Boson shift-symmetry.
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and ¢ runs over even integers for identical scalars.

For gravity in d = 4 this expansion does not converge due to the pole of the amplitude ~ 1/t. Ind > 5
it converges, but only as a distribution [216, 437] appearing within integrals over given measures. In other
words, the amplitude and the dispersion relations that follow will have to be smeared with weight-functions
in ¢ as in the previous chapter, rather than being thought of as functions of ¢.

After the above IR ambiguities have been addressed, massless particles still leave their imprint via finite
computable loop effects. These are physical predictions of the theory, they also exist in d > 4 and would
plausibly survive in an IR safe definition of the S-matrix. We are interested in the ones that modify the
analytic structure of the amplitude as s,t — 0, since these have an impact on how dispersion relations can
be used. We refer to these generically as IR effects, and we seek to identify the most relevant ones.

6.2.3 Finite IR Effects in the theory of a scalar and gravity

For our purpose, the most important IR effects arise at 1-loop, because they represent the first qualitative
modification of the amplitude analytic structure compared to at tree-level. As discussed above 1-loop effects
can in principle be relatively large in certain circumstances, without necessarily implying a breakdown of
the perturbative expansion. Indeed, higher loops introduce more powers of energy and soften the s,¢ — 0
behaviour, thus playing less of an important role in the context of positivity bounds. In this section we
compute these 1-loop effects. Although parts of these already appear in the literature, we present a systematic
study in general d and including EFT couplings. We work in dimensional regularisation d = D —2¢ for integer
D, which is recovered by assuming that all couplings are defined in integer dimensions.
The 1-loop contribution to the amplitude can be divided into three pieces,

Mitoop = MEFEEFT 4 pMERCEFT 4 gy, (6.7)
where the subscripts denote the power counting both in terms of gravitational and EFT couplings. Each
piece can be projected onto a basis of scalar one-loop integrals [438, 439]. As we are looking at the 2 — 2
amplitude, they are limited to bubble, triangle and box integrals. Because all states are massless the

contribution from all triangle integrals can themselves be projected onto bubble integrals using integration
by parts (IBP) identities [440-442]. This leaves,

M1_100p: Z CiIi~ (68)
i=0,0

where the ¢; are rational functions of the kinematic variables and,

e [ A1 1 T (2- )T (4 - 1)’ Y
ol = / @) 2 (1+pi+ps)’  (4m)?T(d-2) ( 47T> ! (6.9)
R O S R S W V'l B )|\ B
Tole,t) = /(27r)dl2 (I+p)2 (I +p1+p3)2 (I—p2)? (4m)2stT(d — 4)
s\ d _d s
X{(M;ﬂ) 21 <1’22’21’1+t> Jr(SHt)} : (6.10)

These expression are most often found in the literature having applied dimensional regularisation in the
d = 4 case [443, 444], or in generic dimension d [445]. The hypergeometric function in Eq. (6.10) will play
an important role for us because of its analytic structure; explicitly,

1 d

nh~?! \/

(i1J+j>: o (V15271 d
d

\/1+s/t
log(—s/t)
1+s/t

(6.11)

d
F(1,S-22_
21(72 52

I
SN I
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To determine the factors ¢; in Eq. (6.8) we use reverse unitarity [446-449]. Unitarity dictates that the
1-loop integrand discontinuity is given by the product of two tree-level amplitudes and by projecting said
discontinuity onto that of the above 1-loop scalar integrals in Eq. (6.9) and Eq. (6.10), we can then extract
M oop- In any specific number of dimensions, this type of procedure determines the 1-loop amplitude only
up to possible rational terms that do not have the above-mentioned singularities. However, since we consider
general d-dimensional integrands, these rational terms are also uniquely determined; they contribute to non-
analytic behaviour in other dimensions and are therefore picked up by our procedure [450]. IBP identities
are applied with the help of the ‘LiteRed’ package [451, 452].
The 1-loop amplitude is then reduced to a weighted sum of box and bubble diagrams of the form,

i~/\/117100p = fl (37 t) ID (37 t) + f2 (U, S) ID (’LL, S) + f3 (t7 ’LL) ID (t7 u)
+ g1 (u, S) IO (t) + g2 (S, t) IO (u) + 93 (t, u) IO (S) ,
where f; and g; are functions of d and of the external momenta. They are in principle independent of one

another. However, since the particles scattered are identical scalars, we can use crossing symmetry to see
that the functions in Eq. (6.12) are related by,

fl (3372./) = f2 (x’y) = f3 (m7y) = fd(xvy) )
91 (z,y) = g2 (v, y) = g3 (z,y) = ga(w,y), (6.13)

and are reduced to two independent functions fg, gq. This also implies that it is sufficient to match the
discontinuities of an individual cut, which we choose to be the t-channel cut, as illustrated in Fig. 6.1. The
discontinuities in the other channels will then be reproduced by the identities Eq. (6.13). As shown in the
figure, there are two contributions to this cut, one obtained by cutting internal scalar legs and another by
cutting internal graviton legs.

(6.12)

Figure 6.1: Non-trivial cuts used for the matching in Eq. (6.8). LEFT: cuts for 1-loop diagrams with scalar propagators
in the ‘t-channel’. RIGHT: cuts for 1-loop diagrams with gravitons. The grey blobs denote all possible tree-level interactions

associated with either graviton exchange or insertion of an EFT 4-point interaction.

EFT interactions

First we focus on the interactions without gravity, M??CEPEFT The tree-level EFT has only 4-point contact

interactions Eq. (6.1). Because of this it is clear that at 1-loop level, there can only be a projection onto
scalar bubble integrals, implying f; = 0. At small enough energies, the leading effects within the EFT should
come from the couplings g, »,’s in Eq. (6.1) that are labelled by the smallest integers, and dominated by the
term o< g%ﬁo, followed by less relevant terms from the mixing of g2 o and other Wilson coeflicients.

Performing the ¢-channel cut on the scalar legs and counting the powers of Wilson coefficients allows us
to isolate some of the contributions; the others will be reproduced via crossing symmetry. Loops involving
arbitrary EFT coefficients share a common, dimension dependent factor, which stems from the scalar bubble
integral Z~(t). The most relevant contributions are written as,

t2
iM EFT-EFT _

3
2 2
1-loop = ml@ (t) g270 (4SU — id (Sd + 2)t ) (614)
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t2
+92,093,1t (((2— 3d)d + 8)t* — 8su) + g§71 5 (8su — (d — 2)dt?)

3t ((9d (d + 2)? + 32) £ — 16(d + 4)su)

— t & .
92,0 94,0 1 3) + + (t < s,u)

This matches Ref. [425] in the d — 4 limit. Polynomial pieces in Eq. (6.14) are resorbed into the definitions
of the renormalised EFT coefficients. Higher order terms, denoted by dots in Eq. (6.14), become less and
less relevant but are systematically calculable.

For MY UEFT the function Zoy(t), and its crossed counterparts Zo(s),Zo(u), are responsible for the
amplitude’s non-analyticities. These are associated entirely to the factor (—¢)%2 in Eq. (6.9), multiplied by
a polynomial in the crossing symmetric combinations su,t?, and similarly for the other channels. In even

dimensions these will lead to logarithmic discontinuities, while in odd dimensions to square-root ones.

Mixed EFT-Gravity Interactions

Loops involving both gravity and EFT interactions, also have the property that they project onto scalar
bubble integrals only; because of this, they have a structure similar to EFT-EFT effects. The most relevant
pieces are,

 AfETav-EF T 2t 6 ((d—2) (9(d — 2)d? + 32) t* — 8(d(5d + 2) — 8)su
1M1_1OO§F = kK mzo(t) 2.0 (¢ ) (9 )(d - 4)()d — 2)t( ( ) — 8)su)
Faar (8%5? I)?c)l - iisu T3y 2)t2) (6.15)

3((d—2)d(3d + 4) (9d® — 36d + 128) t* + 2048(d + 1)(d + 3)s*u?)
2(d —4)(d — 2)d(d + 3)t
3 (—16d(d(3d(5d + 22) + 64) — 32)st>u)
2(d —4)(d — 2)d(d + 3)t

+94,0

+ (t < s,u)

The analytic structure of these effects is similar to that of EFT-EFT diagrams discussed above. Notice that
in d > 2 dimensions, the apparent 1/t pole in the first line is cancelled by positive powers of ¢ in Z(t). At
low enough energy, these effects dominate over the ones in the previous paragraph, since gravity is a more
relevant interaction.

Gravity Only

The largest loop effects in the IR are associated with diagrams involving only gravitational interactions. An
example of such diagrams is shown in Fig. 6.2, which contributes to the cut represented in Fig. 6.1.

Figure 6.2: One of many diagrams contributing to the 1-loop amplitude at order x*.
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To compute the effects from diagrams of this class using reverse unitarity, we must cut the internal graviton
legs in the t-channel and sum over the different graviton polarisations. For this we need the tree-level
scattering amplitude of spin-0 particles and gravitons in generic dimension d [453]. This can be compactly

written as,
2

K
Moh—en = o [25 (€1 - pa) (€3 - p2) + 2u (€1 - pa) (€3 - pa) + su (€1 - €3)]°, (6.16)
which in d = 4 can be recast in spinor-helicity language, simplifying to
2
Monoon| =L 1[2/3)4 (6.17)
oh=o W, Stu ' '

The sum over graviton helicities is given by the full momentum-dependent graviton propagator, suitable to
be employed with this tree-level amplitude [454]:

1 2
DA (-0 =5 (P“PP”" + PHOPUP — HPWP’”) , (6.18)
)
where,
Prq? Y gt
PHY = v %, (6.19)

and ¢ is a reference momentum.

Repeating the matching procedure for the one-loop gravity corrections allows us to write M%Tffgf;av in
the form of Eq. (6.12) with,
fa(w,y) = '@ +yY),  ga(zy) =w" (2% + %) (d) + K oy (d) - (6.20)
The dimension specific rational functions are themselves given by,
(d) = dS — 11d° — 562d* + 2820d3 — 2792d? — 2848d + 3584
ne= 64(d—4)(d—2) (2 —1) ’ (6.21)
o (d) = d® — 27d° 4 74d* — 232d® + 648d> + 496d — 576 ’
2 = .

32(d — 4)(d — 2)(d® — 1)

Contrary to loops involving EFT interactions, here we inherit the non-analyticities of the box integral Zg.
The hypergeometric function o Fy (1, % -2, % —1;1+ z), with z = s/t in the box integral Eq. (6.10) has a
branch cut which extends from z = 0 to real infinity, see Eq. (6.11), but is otherwise analytic everywhere.
Therefore, at fixed-t, the amplitude contains a branch cut on the real axis. As we will review in section 6.3,
the coefficient of such a discontinuity enters dispersion relations with an arbitrary number of subtractions,
when the contour of integration is taken across the Zm[s] = 0 axis. In turn, this coefficient has ¢ — 0

singularities. We find that the most singular such pieces are?,

T § a6 log (—t) dis even
D [ B grav} ~ K ()T 8 ’ 6.22
18C |1 1—loop t<s Kk ( ) § 1 d is odd ( )

where we have regulated the integrals using the dimensional regularisation in the MS scheme, which we
employ throughout. This is an important result that reveals how beyond-tree-level dispersion relations can
be employed. In particular it shows that in dimensions d < 6 all dispersion relations diverge in the forward
limit, while in d < 8 the dispersion relations’ first derivative in ¢ will diverge.

Lastly, from the non-analyticities of the one-loop amplitudes reported above, we can easily extract the
running of the Wilson coefficients. In particular, we observe that g4 o runs for d < 8, g3; for d < 6 and g2
for d < 4, as expected by naive dimensional analysis arguments [459].

2In the Regge limit é < 1, this leading contribution arises from the box diagram, and is consistent with the first iteration
of the tree-level graviton exchange relevant in the eikonal approximation, see e.g. [455-458].
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6.2.4 4 dimensions

As mentioned above, S-matrix elements in d = 4 are affected by IR divergences when massless particles are
considered. After regularisation, these divergences can be cancelled by considering inclusive observables or
different notions of asymptotic states, see e.g. [460-463], or resummed when the IR cutoff has a physical
meaning, in the case of IR sensitive observables, see e.g. [464-466].

In this section, we compute the d = 4 IR divergences that appear for generic kinematic configurations and
we compare them with the ¢ — 0 singularities of Eq. (6.22). This comparison makes it clear that the ¢ — 0
singularities affecting the dispersion relations are not captured by kinematic-independent IR divergences that
might be resorbed by redefinition of the asymptotic states. Rather, the contributions in Eq. (6.22) are the
result of the dynamical properties of gravitational scattering in ¢ = 0.

To see this we can explicitly compute the kinematic-independent one-loop IR divergences of a scattering
amplitude in the presence of gravity. In dimensional regularisation, d = 4 — 2¢, the IR divergences take the
form of poles around € = 0 whose residues are non-polynomial functions of the Mandelstam invariants. At
1-loop, these divergences will be of two kinds. The first kind of kinematic-independent divergences are those
corresponding to massless bubble loops on external legs, contributing to the so-called collinear anomalous
dimension. Since the on-shell computation of the 1-loop amplitude uses connected tree-level amplitudes as
building blocks (see for example Sec. 6.2.3), the result of Eq. (6.22) is not affected by these bubble loops
on the external legs. The second kind of kinematic-independent IR divergences are those corresponding to
the exchange of one soft particle between two external legs, contributing to the Sudakov double logs and to
the so-called cusp anomalous dimension, see e.g. [467-470]. Indeed, aside from bubble loops on the on-shell
legs, kinematic-independent IR divergences can only arise when three consecutive propagators are on-shell.
In this case the loop will be of the form:

d'p o dp
p2(kr +p)2(k2 —p)?  p?pkip-ky’

(6.23)

which gives a divergent integral when p? = k? = k3 = 0, regardless of the direction of k; and ko. The
only case in which the three legs are on-shell regardless of the kinematics will be when the loop arises from
the exchange of a soft particle between two external legs. Therefore, we only have to compare the ¢t — 0
singularity of Eq. (6.22) to the contributions from exchanges of soft particles between external legs of a
tree-level amplitude.

Figure 6.3: Example of one-loop diagram contributing to the cusp anomalous dimension in an N -point
scattering amplitude. The graviton internal line is taken to have soft momentum. FExternal particles are
taken to be on-shell.

In the case of scattering of shift-symmetric scalars coupled to gravity, at 1-loop only a graviton can be
exchanged between external legs, as there are no three-point scalar self-interactions. The 1-loop IR divergence
will be proportional to the tree-level scalar N —point amplitude My,ce, ;v and will have the following form in
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dimensional regularisation, see for example [471]:

irr K2 a 1—e
(@n)e— 1 > (=sij) Miree,N (6.24)
i#j

where 10 = I'?(1 —€)I'(1+¢€)/T(2 —€) and the sum is performed on the Mandelstam invariants for N particle
scattering in the unphysical region s;; < 0, Vi,j. Expanding at leading order for small €, for N = 4
particles, we find:

(= T () ) oottt 09

where {s < t,u} indicates two contributions equal to the s—dependent one, but evaluated in ¢ and u
respectively. This result makes clear that the log slogt contributions found in Eq. (6.22) are not captured
by kinematic-independent IR divergences. Therefore, such contributions cannot be eliminated by re-dressing
the one-particle states, or by redefining the asymptotic Hamiltonian that evolves the single-particle states.
Rather, the ¢ — 0 singularities of Eq. (6.22) signal the IR kinematic dependence of gravitational scattering
as provided by the Coulomb interaction.

6.3 IR effects in Dispersion Relations

The IR loop effects that we have computed in section 6.2.2 define the analytic structure in the IR, and
therefore also contribute to the IR integrals. In this section we discuss how these dispersion relations are
affected by the IR loops.

We consider two different approaches, dispersion relations at fixed-t (FT), as developed in Ref. [226] and
covered in detail in the previous chapter, and crossing symmetric dispersion relations (CS) [148, 152, 472-476],
which will be covered in an upcoming subsection. We assume that the amplitude is analytic in both s and ¢
up to the physical cuts: maximal analyticity. Then dispersion relations can be developed on any hyper-slice
of the s,t complex planes: F'T and CS dispersion relations make different choices for these slices. For clarity,
we present the results specifically in d = 6, and we set the renormalisation scale 4 = M, so that our results
will involve (running) Wilson coefficients evaluated at that scale.

6.3.1 Fixed-t dispersion relations

For fixed values of ¢t < 0, the discontinuity associated with physical scattering implies the existence of a
branch-cut along the entire real axis in the s plane, but the amplitude is analytic elsewhere (see Section
6.2.2). For n > 0, we again define arcs in their IR representation as integrals in s that probe the theory at
finite energy M2 and momentum transfer ¢> = —t, and are suited to study amplitudes with the discontinuities
associated to massless particles,

d
IR: afT(t) = /,\ FZ’CET(S’ t)M(s,t), (6.26)

where the integral is performed along the contour ¢ : the circle with radius M? +¢/2 and centred at —t/2

(minus its interception with the real axis), see Fig. 5.1. The idea is now to exploit s-analyticity of the
amplitude to deform the contour { into a contour that encompasses the discontinuities on positive s > M?

and negative s < — M? —t real axis, together with the semicircle at infinity. Then, IR-UV relations follow if
the kernel KT satisfies a number of conditions:

« it has poles in |s| < M? such that the IR arc is non-trivial even for analytic amplitudes,
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« it is s,u—symmetric, allowing to easily combine the s and u non-analyticities,
« it must decrease sufficiently fast at s — oo, |KET| < 1/s2.

The last condition allows us to neglect the integration contour at complex infinity for amplitudes that
satisfy limg 00 M(s,t)/ 52 = 0. For gapped theories, this is a result of unitarity and it is guaranteed by
the Froissart-Martin bound [214, 215, 424|. For gravitational theories a similar result applies to dispersion
relations when smeared over compact impact parameter [185, 216], which is also required for convergence of
the partial-wave expansion in gravity, as discussed in section 6.2.2. Kernels that satisfy all of these conditions

can be built from )

[s(s + )]~
Crossing symmetry in s — u leads to M(s,t) = M(—s — t,t). It is also manifest in the denominator with

subtractions in s = —t and s = 0. Together with real-analyticity M(s,t) = M*(s*,t) it allow us to relate
the integrals along the positive and negative real axis and write,

KET (s,t) = (6.27)

1 ds2s+1
FT _ = i FT
a;” (t) = - /M2 P K7 (s, t) ImM(s,t) . (6.28)

The partial wave projection Eq. (6.6) allows us to rewrite arcs in a UV representation

1 [ ds2s+1 = 2t
Uv: afT(t):—/ EE LS 0D () KET (5,8) P <1+>
T™Jyz s s+t s

=0 (6.29)

25+t _.pr 2t
<3+t Ko™ (5, 2) P <1+ 5>>FT.

Positivity of the integration measure Imf,(s) > 0 implied by S-Matrix unitarity, leads to a number of
constraints on the UV representation of arcs, which will be interpreted as consistency conditions on the
calculable IR representation of arcs.

These constraints can be extracted by smearing both arcs in the UV Eq. (6.29) and in the IR Eq. (6.26)
with appropriate functions f(q) of ¢> = —t, as described in the previous chapter. Functions that evaluate to
a positive value in the UV imply positivity conditions in the IR [185],

dmaz 25 — 2 2 2
/ dq (@) ——5KE (s, ~¢*) Py (1 _ q) >0 s,/ (6.30)
0 $—dq s
dmax
= [ daf(@) ol 1> 0,
0

For such smearing functions f(q) to give useful results, they must integrate to a finite quantity in the IR
too, in particular on the Coulomb pole, requiring that for small ¢, f(q) ~ ¢' %, with § > 0. On the other
hand, as nicely remarked in Ref. [185], at large ¢ and large s (but fixed impact parameter b = 2¢/./s) we
have Py — T'(d/2 — 1)Jg/9—2(bp)/(bp/2)¥/?>~2, with J;/5_5 the Bessel function. In this limit, therefore, the
UV part of Eq. (6.30) becomes proportional to the d — 2 dimensional Fourier transform of F(q) = f(q)/q% 3.

Now, Bochner’s theorem [477] requires that functions ‘F” with positive Fourier transforms must be such
that the matrix b;; = F'(¢; —¢;), for all ¢; ; € [0, gmaz] be positive definite. Taking only two values ¢; = 0 and
¢; = ¢, this condition implies that |F'(¢)| < |F'(0)|, which translates into 4 —d + ¢ < 0. This is incompatible
in d = 4 with the positivity of § required by the Coulomb singularity, but provides a necessary condition to
build the functions f in higher dimensions.

IR arcs

The IR representation of arcs instead can be computed within the EFT via Eq. (6.26) as was done in the
previous chapter, and then confronted with the UV bounds. At tree-level the EFT amplitude is analytic
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when s < M? and, along with the kernels of Eq. (6.27), finding the IR arc reduces to computing the sum of
residues at s = 0 and s = —t as previously described. From Eqs. (6.1) and (6.2) we find the arcs [226],

M(s,t)
s[s(s +1)]"*

K . p—q
= _76”’0 + Z Zg2p+q,q(_t)2(p 1)+q( ) . (6.31)

"
p>1420 a

Tree-level: alT(t) = (Res|s—o + Res|s=_¢)

n

The gravity pole appears only in the first arc,® al? (t) = 7“72 + 3 [t 2gan.0 — 2" L gan41,1], while all
higher arcs are infinite polynomials in ¢.

As discussed in Ref. [226] and the previous chapter, an important aspect of Eq. (5.34) (the generating
function for these coefficients) is that it contains an intrinsic upper limit on

(V17 -1)

[t] < tmax = M? S ,

(6.32)

which limits the range on which dispersion relations can be smeared, affecting the bounds.

Loop effects in IR arcs

It is at this step that the IR effects computed above play a role. The different pieces in the amplitude in
Eq. (6.7) give different contributions to the arcs. The computation of the IR arcs and their derivatives, even
when containing the loops, is conceptually straightforward, but the expressions eventually obtained tend to
be rather complex. Using Eq. (6.26) we compute the contour integral explicitly by introducing an angular

variable 0 such that,
t t\
__Z M2 e 0
S 5 + ( + 2) e,

which is integrated from 0 to 7 and from 7 to 2. For simplicity we perform a series expansion [t/M?| < 1
when integrating against these kernels, justified in particular by the upper bound Eq. (6.32) which implies
t <0.39 M?. The leading terms for the first three arcs in d = 6 dimensions (which we assume in most of the
following) are,

5aFT = A (4900072 — 310049) ¢ + 70log(—t)(1829¢ + 1050t log(—t) -+ 840) + 90020
0 188160073

83 29
2 ( _ar2
+g2.0K ( M 44807T3+t6407r3>+”" (6.33)

(653t +420(7t — 4) log(—t) + 788
5376073
56017 369
2 M2 - .
2,08 ( 47040073 44807r3) ’
(4774 210(27¢ - 8) log(~1) — 332
16128073
83 107 >

2 2
M —t
+g20% ( 448073 ' 2688

FT  _
day =

(6.34)

FT  _
0ay =

(6.35)

where the dots contain contributions from all combinations of EFT coefficients as well as higher powers in
t. We show these results, for the gravity-only contribution, in Figure 6.4.

3This is due to the graviton having spin-2, which forces the residue of the t—channel pole in the amplitude to be s2, regardless
of which interactions beyond minimal coupling are considered.
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Figure 6.4: Solid lines: 1-loop contributions to the fived-t arc al’™ from the O(x*) terms, for various values
of N in Eq. (5.19), in d = 6. The dashed vertical line shows the radius of convergence of our expres-
sions Eq. (6.32). The dashed blue line shows the same contribution to the crossing-symmetric arc a$”,
where we identify —t = p*. Despite the discrepancy at large p, the two methods give bounds on Wilson
coefficients that are in agreement with one another, see Fig. 6.1

We see that any discontinuity in s induced by loop effects in the amplitude, appears in every arc al (t).
So, contrary to the tree-level idealisation where the ¢-pole appears only in the first arc, here the non-analytic
functions like log(—t/s) propagate to all arcs. The most important such pieces are associated with the
gravitational interaction only. In the |t| < M? limit these are easy to identify in any dimension, and
contribute to the arcs as,

(6.36)

" 1 d is odd.

T R8240 [log (—t/M?) d is even,
[t|<M 2n—1

6.3.2 Crossing Symmetric Dispersion Relations

Naive fixed-t dispersion relations have the inconvenience that already at tree-level, they contain infinitely
many EFT coefficients in the IR. The reason behind the appearance of infinitely many coefficients is that
dispersion relations correspond at tree-level to n-residues in su = 0; these are not aligned with the crossing-
symmetric expansion of the amplitude Eq. (6.1), where (stu)™ and infinitely many terms (s? + 2 + u?)" =
2" (su+ st +tu)™ contain the same powers of su. For this not to be the case, only (stu)™ and (s? +t2+u?)™
must appear in the same dispersion relation, and nowhere else.* The simplest way to realise this is to choose
new variables with the property
2stu 9

(s2 4+ 12 +u?) - (637)

4Similarly, it might also be possible to obtain finitely many terms if (stu)™ and (s? + 2 + uQ)ml7 with m # m’ appear in
the same dispersion relation.

105



where p? > 0 is held fixed in dispersion relations. Crossing symmetric dispersion relations® are developed
along variables with the property Eq. (6.37).

For maximally analytic amplitudes, dispersion relations can be developed on any slice of the s, ¢ complex
planes. In particular the slice of constant p in Eq. (6.37) is what we are interested in. Following [473], we
change variables from (s,t) to (z,p),

3p2z

.o P =sEEn), uzp) =s(:E0p), (6.38)

s(z,p) =
with € = ¢27/3 and 0 < p? satisfying Eq. (6.37). The amplitude is analytic in z € C, up to the physical cuts
corresponding to real positive values of s,t,u. These are located on the unit circle, where all Mandelstam
variables are real (e.g. s = —3p?/[1 + 2cosf)]), and on the lines that span from the origin in the directions
—1, ¢, —£€2, see the left panel of Fig. 6.5.

8 | ]
/
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B
e
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Figure 6.5: LEFT: Analytic structure of the amplitude in the z € C plane, with branch-cuts on the unit
circle and the radial directions —1,—&,—£2. In blue(red) the UV(IR) contours of integration Cyy (Cir)
from Eq. (6.42) (which include the analog around the points B and C). On the unit circle the amplitude is
real; points and arrows help translating to the right panel. RIGHT: Values of s,t,u along the unit circle as
a function of the angle . At the black points A,B,C two of the Mandlestam variables diverge, with the third
asymptoting to —p?. On the positive side we have s,t,u > 3p? and on the negative s,t,u < —p>. In blue,
points of fized s = M? > 3p?; as M is lowered the points move closer to the radial directions, as shown by
the arrows.

As illustrated in the right panel of Fig. 6.5, the points z = 1,£, &2 correspond to infinities in one of the
(real) Mandelstam variables; for instance approaching z = £2 from above corresponds to s — oo, t = —p2.
We build dispersion relations starting from knowledge of the amplitude’s behaviour in these limits. Along

the discussion below Eq. (6.26), we assume that amplitudes smeared in p grow slower than s? at large |s|,

_[Pmas M(z, p?
lim dp f(p)% —0. (6.39)

§—00 0

where M(z,p?) = M(s(z,p),t(z,p)) . From Eq. (6.39) we can write,

75 42 JoCS () M(2,p?) = 0, (6.40)

e dmi "

5Which might be equally well referred to as fixed-p relations.
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where it is implicitly assumed that these relations will be smeared in p. The kernel K¢ is built according
to the following criteria: it is invariant under z — £z and z — €2z, as imposed by crossing symmetry. Then,
in the Regge limits z = (1,£2,£72) it contains enough subtractions to ensure convergence as assumed in
Eq. (6.39), which is explicitly realised by a (1 — 23)2"*! factor. Finally, the kernel contains a low energy
symmetric pole at z = 0, i.e. s =t = u = 0, in order to capture the EFT contributions. We then consider

the kernel _—
WEH) (-2

33(n+1)p4n+4z3n+4 :

KS5(2) = (1) (6.41)

with n > 0.

The contour in Eq. (6.40) can be deformed and separated into two (equivalent) pieces, as illustrated in
the left panel of Fig. 6.5, where the separation is defined by the value s = M?, t = M? and v = M? on the
unit circle (see green dots in left and right panels),

aCS (p) = ﬁcsz 5 p?) = — dz cs(, 2. p2
n<p>_gg KE@OMEr) =~ K @ME?). (6.42)

w4 oy 4mi

Now the UV representation of ' is equivalent to the integral along the (positive) amplitude discontinuity,
and can be rewritten in terms of a more familiar integral in s,

as®(p) = / %3_3"‘4 (3p° +2s) (p° + )" DiscM(s, p) . (6.43)
M2
where ¢ (and u) read,

. _s(p2—|—s— V8 —3p%\/s+ p?)

2(s +p?)

P ts iR 6.0

B 2(s + p?)

)

So, in contrast to fixed-t dispersion relation here ¢ changes with s: for s — oo we have t — —p?, while for
s — 3p? (the minimum value on the unit circle) t — —3p?/2. Moreover, since we need M? > 3p? (see the
dashed line in the left panel of Fig. 6.5), this implies that |¢| < MTz , while for values larger than this the role
of t is taken by u, as shown in the figure. This implies that CS dispersion relations also have a naturally
built-in upper bound on the allowed smearing range

p? <

M?
6.45
3 ) ( )

which translates into t,,4, = MT2

In the tree-level approximation, the IR contour has no non-analyticities and the only contributions come
from poles at z = 0 and z = co. In more realistic amplitudes like the ones computed in section 6.2.3, the IR
contour involves a complicated sum over non-analyticities in z across the unit circle and the radial directions.
We circumvent this problem with a trick. The EFT series expansion converges in the IR s < M? where
the amplitude can be well approximated by finitely many terms, including the tree-level polynomial part
and the non-polynomial loop contributions described above. The truncated function has non-analyticities
associated only with the discontinuities of the loop contributions and the subtraction. These are known a
priori in the whole complex plane and they consist of the regions already illustrated in Fig. 6.5 but also
include eztra poles in the points z € D = {1,£,£2}. We will use this analytic continuation to compute the IR
arcs along the UV contours plus the poles in D. Importantly, this is different from the actual, more-refined
UV amplitude which receives further contributions to the discontinuities from UV states and has vanishing
residues at infinity. Therefore the IR integrals can be written as,

=P KM ) (6.46)
Cuvep =T

as illustrated in Fig. 6.6. As it is clear from Eq. (6.43), the integral of the EFT amplitude along the UV
contour diverges, for instance a slog(—s) term has a 7s discontinuity that diverges quadratically. However,
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this divergence is cancelled by an equal and opposite contribution from the poles at z = 1, &, £2, leaving only
finite pieces, as it should. With this method we compute below the IR part of CS dispersion relations, see
section 6.3.2.

Meanwhile, the bounds will come from the UV representation, after writing it in terms of partial waves
via Eq. (6.6),

ds1 " — 3p2
=3 [ R 20 (700 m( Hﬁ’) (647

which can also be expressed in the form a$®(p) = <I f;? (s, p)>cs, with the definitions,

(d) ds Imfg Cs _ 3p+2s s — 3p? 6.48
CS - Z / ) 27T () ) Ln (Svp) - $3n (p2 +S)—n P S+p2 : ( : )

At tree level, using the explicit form of the amplitude Eqs. (6.1) and (6.2), we obtain the following IR-UV
relation for n = 0,

oGS K’ 2 2 s — 3p°
ag”(p) = —5 + 920+ g31p" = ( (25 +3p°) P, > : (6.49)
b Stp cs

Notably, on the IR part only a finite number of terms appear, as discussed above Eq. (6.37).
We can now perform the same procedure used for the fixed-t case and smear the IR and UV sides, now
in p € [0, M/+/3], which gives (for n = 0),

M//3 K2 M/V3
/0 dp f(p) <p2 +g20 + 93,1p2> = /0 dp f(p) (I3 (. p)) - (6.50)

Exploiting convergence of the partial wave expansion in the UV and finiteness of the dispersion relations,
we swap the order of integrations ds and dp. Then, if each element of the UV sum in ¢ is positive for each
value of s after being integrated in dp, then the integral on the IR side is positive,

M/V3 M/V3
/ dp f(p) Igf(s,p) >0, VsandV/{ — / dp f(p) ang > 0. (6.51)
0 0

Loop Effects in Crossing Symmetric Dispersion Relations

Following the approach described in Fig. 6.6, we compute the contribution of loop effects on the IR CS
dispersion relations. The leading EFT interactions give,

dag® = —mfﬁ]ﬁ, [60 +1335% — 2 () +2 (%) log (1 + ;)]
~Ter9800s {33 +705 +3(p*)° =6 (5°)" +6 (p°) " log (1 + ;)}
+ el [2616 — 475557 + 100 (57)” — 150 (%) + 300 (52)" — 300 (%) log <1 . pl2>}
*3)22?6’01()773 [72 —105p% +20 (57)° = 30 (5*)° + 60 (%) — 60 ()" log <1 n pg)]
Fo 62)
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Figure 6.6: Alternative contour of integration for the IR EFT amplitude. The contour includes the integrals
along the discontinuity and the poles around A, B and C, both of which independently diverge. We reqularise
them by integrating at a finite distance from the poles and the singularities cancel out.

while mixed EFT-gravity effects give,

cs _ 2| 920 ) o2 1
saS® = kK [448%3 (83+203p —23(p?) log (1+p2>>
93,1 91 , o\ 2 o\ 3 1
L (10+ =52 +23(p*)° =23 ()’ log (1 + =
Pt (104 57+ 307 - 27) s (14
g0 (191444250 + 1721 (52)% + 1119 (p%)° + 2238 ()"
24192073 1+ p?

(6.53)

—2238 (5%) " log (1 + p12>) +o.

where we define p = p/M. In pure gravity, we instead obtain a long expression which we report in a later
section 6.5, to try to have a level of readability. Figure 6.4 provides a graphical representation of these
results, and also compares it with the FT approach.

It is instructive to isolate the leading effects at small p/M, which can be computed using the leading
discontinuity across the unit circle in z € C (i.e. real kinematics) from the box diagram in Eq. (6.22).
Similarly to what was found for arcs at fixed ¢t in Eq. (6.36), this discontinuity will contribute to all arcs.
Following Eq. (6.43), we are able to find a compact expression in all dimensions,

s KA M A—4(n+2)d—6 {log (152) d is even, (654

n e n 1 dis odd.

6.3.3 Impact on Dispersion Relations

From the above discussion we see that IR loops affect dispersion relations in several ways. Firstly, they in-
troduce non-analyticities, which exhibit certain singular behaviours in dispersion relations. These effects can
be classified into two categories. The first involves contributions that grow as ¢ — 0, such as those described
in Eq. (6.36), or their crossing-symmetric counterparts as p — 0, see Eq. (6.54). These contributions impose
limitations on how dispersion relations can be applied to extract bounds. Specifically, they affect dispersion
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relations with any number of subtractions, unlike tree-level dispersion relations where even in the presence
of gravity, non-analyticity arises only in ag, as shown in Eq. (6.31). The gravitational effects highlighted
in Eq. (6.36) lead to divergent FT arcs at t = 0 for d < 5, with their derivatives diverging for d < 8. By
contrast, in d > 3, EFT-only interactions result in arcs and their first derivatives that remain regular as
t — 0, as also discussed in [145, 425]. This remains true also for the CS case.

This distinction shows the necessity of moving beyond the improvement procedure of Ref. [185], which
relies on higher arcs and their derivatives in the forward limit. Instead, the methodology of Ref. [226], which
is fully defined away from ¢ = 0, provides a more suitable framework to address such problems.

On the other hand, divergences in M? — 0 are the reflection of the fact that the running induced by
more relevant operators sooner or later dominates over that induced by the less relevant ones, as discussed in
section 6.2.1 and detailed in the context of dispersion relations in Ref. [147]. As discussed in this reference,
the first operators that exhibit running is crucial for the following reason: at small M, the bounds on the
leading running operator are modified by log M corrections. However, by dimensional analysis, the bounds
on less relevant coefficients are influenced by terms proportional to powers of 1/M, which are much larger at
small M. In d > 5, the bounds on {x, 92,0, 93,1} are impacted solely by log M effects along g3 1 as M — 0.
Polynomial effects would instead enter the bounds of the more irrelevant coefficients, like g4 ¢ etc, which can
now violate tree-level positivity and become negative by amounts that are polynomial in 1/M [147].

Another very important aspect of loop effects is that they imply that all dispersion relations contain all
couplings. This stems from the fact that the discontinuity is proportional to the entire amplitude, involving
all of the coefficients. This is also in sharp contrast with the strictly tree-level limit. There, when in the
vanishing coupling limit (g, xM?~2 — 0 in sec. 6.2.1), the boundedness of the EFT expansion parameter
E/M <1 emerges as a result of dispersive bounds, [147, 150]. At finite coupling, it becomes unfeasible to
derive sharp results because arcs involve infinitely many couplings, appearing linearly and quadratically. To
extract quantitative results we will have to make a priori assumptions about the size of the higher coefficients.

Finally, an intriguing implication of loop effects is that, as discussed at the beginning of this paragraph,
they require consistent dispersion relations without forward limits. The two such examples, at fixed-t [226]
and in crossing-symmetric dispersion relations [148, 473], operate within a naturally compact range in t.
This range, determined by the smearing procedure, is restricted to at most |t| < M?/2. The size of this
range will have an important effect on the bounds, even at tree-level.

6.4 Bounds on Gravitational Amplitudes

The arcs defined in dispersion relations are non-perturbative objects. When computed in the IR at tree-level
they take the simple form like Eq. (6.49), in terms of the Lagrangian couplings and when computed at
loop-level they also involve the corrections that we have computed, like Eq. (6.60). At stronger coupling
higher loops will also appear in the IR expression. The UV expression, on the other hand, remains the same.

To answer the question of how loop effects impact the bounds, one would like to define non-perturbative
objects that in the limit of weak coupling match to &, g2 0, 93,1, etc. Unfortunately there are infinitely many
such combinations, because there are infinitely many functionals f(p) that integrate to the same quantity
in the IR Eq. (6.50) . Therefore we take the following approach. We first compute the tree-level bounds
on ratios of the most relevant couplings g2 o/x* and g3 1/k%. For every point on the boundary there will
be an associated functional f(p). We then evaluate this functional on the loop contributions to derive the
modification of the bounds. In section 6.6.1 we will also compare this approach to that of exploring more
generic loop-level functionals, and verify that this only leads to a small change in the bounds — see Fig. 6.12.
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Figure 6.7: Bounds on gao and g1 in units of k2, for CS dispersion relations and the FT with the improve-
ment of Ref. [226], in d = 6 dimensions. In grey (black) dashed the results from Ref. [185] with smearing up
t0 tmae = M? (tmae = M?/2). The bound from CS dispersion relations is obtained with {4 = 30, a basis
of 20 functionals and 10 values of s as described in Appendix 6.6. The bound from FT was computed with
Linaz = 400 and a basis of 8 functionals and degree of improvement N = 12 consistently with Ref. [226].

6.4.1 Tree-level Bounds

We derive the bounds using different methods, based on FT and CS dispersion relations, as described in
Eq. (6.30) and Eq. (6.51). We begin by examining the tree-level bounds and later show how loop effects alter
them. Using only the tree-level amplitude, in Fig. 6.7 we show the bounds on the first two EFT coefficients
g2.0 and g3 1, normalised by the strength of gravity 2, in units of the EFT cutoff M. The different lines
compare results obtained with CS (orange) and FT (blue) dispersion relations. For comparison, in black
(grey) the results obtained with the method of Ref. [185] for smearing in —tpax < t < 0 with ty. = M?/2
(tmax = M?). The black line has the same upper limit on [t| as the CS method discussed in this work, while
the grey one extends to higher values, hence explaining the tighter constraints.
All methods exhibit the same asymptotic behaviour, with slope

2 4 2
M920 , oo o _go7< M 9a/r
K2 ~ M2g270/ﬁ72

3
<= .
<2 (6:55)

compatible with bounds in the absence of gravity [150] — this result is not obvious in Fig. 6.7 and is highlighted
in Fig. 6.13 in a later section. In this limit gravity becomes negligible and the functionals can move closer to
the near-forward region where Eq. (6.55) holds. Moreover, in all methods, the upper bound always saturates
the asymptotic slope. This is consistent with the expectation in terms of UV models: exchange of a scalar
of mass M provides a consistent UV completion and gives an EFT amplitude with g3 1M?/g20 = 3/2,
corresponding to the steepness of the upper bound in Fig. 6.7.

6In the IR the O-th tree-level arc contains only powers 1/p? p® p?: there are infinitely many functionals of the form
p? x Pol(p), with Pol(p) a polynomial, which are positive in the UV, but vanish in the IR. For instance, because of orthogonality
of the Legendre polynomials, any Pol(p) = ;- P;(p) integrates to 0 in the IR of Eq. (6.50).
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We believe the small difference in the upper bound observable in CS and FT results can be traced
to numerics rather than a physical effect. In particular, the two methods have very different convergence
properties, with CS involving heavier initial computations but converging faster, while FT needing more
constraints to stabilize [226]. The results shown have converged within our computational abilities; we show
more details of this in Fig. 6.11 of section 6.6. It is plausible however that including more values of ¢ as well
as larger bases for the functionals f(p), would bring the two methods to agree.

The situation is more interesting and more complicated for the lower bound, where the methods of
Ref. [185] differ the most from the methods presented here. In principle, it is not surprising that the figures
appear different since they are based on different assumptions about the analytic structure in s and ¢, with
Ref. [185] extending to ¢ = 0 in higher subtracted dispersion relations. The different methods also employ
different kernels, reflecting the underlying assumptions on the amplitude, and these kernels have different
behaviours. In particular, CS and FT relations are limited to |t| < M?/2, while the dispersion relations of
Ref. [185] can extend to larger values of |t|. The range [t| < M?/2, corresponds to arcs limited to physical
scattering angles < 7/2 and is motivated by crossing symmetry, which implies that larger values of |¢|
would be redundant under u <+ ¢t exchange.

It would be interesting to develop a sharper perspective on extremal UV amplitudes, to identify what
theories — if any — satisfy our bound, but not the one of Ref. [185], smeared over larger values of ¢t. It was
already pointed out in Ref. [185] that for theories with only a finite number of UV weakly coupled particles
of finite ¢ with masses my; < M, the residues are finite polynomials in ¢ and dispersion relations hold to
t] < M. Interestingly, the stu-model proposed in Ref. [150], with UV amplitude,

1
M= o) = M) — M) (6.56)

would appear to violate this, since the simultaneous poles in the s, ¢t and v channels can be thought of as the
exchange of infinitely many particles with all spins at s = M?2, thus implying possible non-analyticities as
Py(1 —2t/M?) diverges with ¢ — oo for |t| > M?. However, for s = M? and negative t, Eq. (6.56) becomes
singular only at t = —2M?2, when the u-pole is hit. So, even the stu model, despite its accumulation point,
has amplitudes that are smearable up to [t| = 2M2. On the other hand, amplitudes in gravity including
loops have a smaller cutoff. Indeed Zg, evaluated at s = M?, is singular for ¢t < —M?, see Eq. (6.11) (Z
instead depends only on one kinematic variable and does not pose any problem).

In summary, while tree-level amplitudes at fixed s = M? are smooth over a broad range in t < 0, gravity
at finite coupling imposes ¢ > —M?2. However, the dispersion relations that remain finite with gravity loops,
imply the more stringent condition ¢t > —M?2/2, possibly implied by crossing symmetry.

Higher Couplings at tree-level

At tree-level, higher arcs a,, with n > 0 don’t have the graviton pole. Bounds between the higher couplings
can therefore be derived with the simpler methods of Refs. [145, 147, 150]. In particular one finds that,
starting from g4, the coefficients are monotonically decreasing in units of M — up to computable O(1)
numbers that depend also on the coupling normalisation. For instance,

0< M50 <1 (6.57)
94,0

and so on, for other coefficients. Moreover, there are also bounds on g4 ¢ in units of &.

This is an important result: qualitatively, higher coefficients respect dimensional analysis. Without
gravity this convergence starts already at gao (e.g. 0 < M%gs0/g20 < 1), but gravity changes this
statement. With gravity it is possible to have g2 o = 0 or g3;;1 = 0, but g4,0 > 0, and then the coeflicients
respect monotonicity, as in Eq. (6.57). Indeed, this is the case for dilaton scattering in Type II String theory,

where g2 9 = g3,1 = 0, despite gravitational effects and the other coefficients being sizeable.
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6.4.2 Bounds with Finite Couplings

At finite coupling, the IR expressions of arcs in terms of Lagrangian parameters differ from the expressions at
tree-level, although the UV arcs are always the same. Now the method of Ref. [185], which was not designed
for handling loop corrections, diverges in the IR, because it involves n > 1 dispersion relations evaluated
in the forward limit. For illustration, we could imagine regularising these with an IR cutoff |t| > p?, and
we would find that gravity loops enter dispersion relations with effects of order O(k*M'/u3,) in d = 6
or even O(k*M®/ulp) in d = 4. In d = 4 this polynomial behaviour in urr behaves much worse than the
logarithmic “negativity” effects discussed in Refs. [185, 187]. So, in what follows we abandon the approach
of Ref. [185].

Using FT and CS dispersion relations, we take a perturbative approach around the tree-level bounds
discussed in the previous section 6.4.1. For this, we rely initially on the assumption that, in the leading
approximation, the functionals f(p) that extremise the couplings at tree-level are unchanged by loop effects
— we discuss this in more detail in the later section 6.6.1. We integrate these functionals against the 1-loop
contributions,

/ " dp £(p) 8055/ (p) (6.58)
0

and then add these to the tree-level result to obtain the 1-loop corrected result. In the FT case we have
P2 = M?(v/17 — 1)/8, while in the CS case we have p,a. = M/V/3.

The results of this analysis are shown in Fig. 6.8 for CS dispersion relations, with the FT approach
providing similar results (see section 6.8). This figure shows the most relevant effects discussed in section 6.3,
in particular effects of order O(x*, k2920, 95 0, £°93,1,92,093,1,93 1), organised here in terms of relevance of
their dimensionality. These effects are evaluated on a point in the boundary, labelled by the value of
g2.0M?/k? on the horizontal axis. The normalisation of the vertical axis differs from Fig. 6.7, because it
carries units of the gravity loop. This means that, to obtain the relative shift in gs1/x? we have to first
choose the size of gravity loop effects. To guarantee that the loop expansion stays perturbative, these will
have to be smaller than tree-level effects, k*M®/(47)3 < k2 M*.

The inherently multi-scale nature of this problem makes the result non-trivial. While the overall magni-
tude of these effects is governed by the scale M and the size of the gravity loop, the smearing in p introduces
a smaller scale. Loops involving different coefficients involve different powers of either scale and lead to
effects of different sizes, as can be seen in Fig. 6.8.

The sum of all these effects is displayed in Fig. 6.14 in section 6.8, where we see that FT and CS
methods produce very similar results: the small differences can be traced to the different position of the
tree-level boundary as discussed above. This is an important test, given that the dispersion relations, their
IR contributions, and the numerics follow completely different paths.

6.4.3 A Consistent Perturbative Approach

An important message conveyed by Fig. 6.8 is that contributions from less relevant operators, like g3 o, appear
comparable or even dominant over more relevant contributions like x* in some points at the boundary. This
is a rather generic consequence of the fact that we study loop effects around extremal tree-level amplitudes.
As discussed already in Refs. [147, 150, 211], tree-level bounds tend to saturate the EFT expansion, meaning
that on the boundary all the coefficients have comparable size, in units of the cutoff. This is not a problem for
tree-level bounds, because each coefficient can be treated almost individually as appearing only in dispersion
relations with a given number of subtractions. Beyond tree-level however, unitarity forces all couplings to
enter the discontinuity, and also the arcs. So, for extremal amplitudes, it is possible that even though the
loop expansion is perfectly under control, all coefficients would have to be taken into account: the EFT
expansion fails and poses a problem for calculability.

Extra assumptions must be introduced to keep the EFT expansion under control, while still working at
finite couplings. One such possibility, that preserves all physical properties of the amplitude and at the same
time is in principle testable in IR experiments, is to focus on theories where the less relevant couplings are
small, see Ref. [478] for a broader discussion of this aspect inspired by phenomenological requirements and
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also Ref. [151] for application of a similar condition to non-perturbative amplitudes. Assuming a small value
for go 0 M?/k? allows for significant gravitational effects while suppressing contributions from gs . Likewise,
the smallness of g3 1, 94,0, and higher-order terms shall also be assumed. A key question is how to efficiently
impose this assumption.

In the absence of gravity, assuming a small tree-level g, o would be enough to ensure that all higher
couplings are small. As discussed in section 6.4.1, however, with gravity g»o or gs 1 can vanish without
implying an inconsistency. Instead, the first condition that we can impose leading to smallness of all higher
order terms is,”

ga,0M° <
EEE

(6.59)

with small enough e. From the bounds of section 6.4.1, we know that Eq. (6.59) implies gqu2("_1),‘$_2 <el
This in turn implies that loops involving all higher EFT coefficients will be negligible.

The condition Eq. (6.59) is in fact not satisfied by all points in the tree-level quadrant allowed by positivity
in Fig. 6.7. In Fig. 6.9 we update this result to include the condition Eq. (6.59) with e = 0.1. It is immediately
noticeable that the slope of the upper bound is different in this case, as expected from EFT results without
gravity - we have checked that for large values of positive g2 o the curves asymptote to the slopes expected
in the absence of gravity.

Now, the boundary of Fig. 6.9 provides a robust platform on which to discuss the size of loop effects,
consistent with a perturbative loop expansion and a perturbative EFT expansion. On the boundary of this
figures, loops are entirely dominated by effects involving only the couplings %2, g2 o and g3.1, which we have
computed above. We show their sum in Fig. 6.10 colour-coded in such a way to match the corresponding
point on the tree-level bound, shown in the inset (notice that the axes are inverted with respect to Fig, 6.8,
so that the entire boundary can be represented on the same figure). The kink in the size of loop effects is of
course located at the same position of the kink of the tree-level boundary. Corrections to the lower bound
are much smaller than the upper bound.

6.5 Gravitational Contribution to the Arcs

In this section we list the expression for the arcs’ corrections from loops of order O(k*), for the CS case of
Sec. 6.3.2.

B 173p% log(p) 3 3p°Lis (_z%) log (1% + 1)

saSs =
224073 6473 6473 2
1 L [ 9800p%(p*(p* + 3) + 3) log(8) log(32) )
S - 3430072 — 76529 | — 148820
188160077 ( ( P2+ 1) + T

2 -1 4
3\/%tanh ( Ea 3) ~ 1409p° coth™ ! (2p* + 1)

32m3(p? + 1)3 1344073

1 4
875 73—61 4—2 —2 1
+21504O7T3p2(p2+1)3{ \/psz og(4p”(p” +1))
1
2485 —3p%1 (*2_ 1—302) (02 + 1 1)
+ \/WTP og (P = VI =3p2)(P*+ 1) +
1
— 4235 -3 %1 (*2 1—352)(52 + 1 1)
\/ﬁzTP og (P + V(1 =3p2)(P*+1) +

"To study theories with sizeable ga,0 one could instead impose 9670M12/n2 = ¢€; a condition on g5,1 would not be sufficient
to ensure convergence of the higher order terms.

8TLoop effects will introduce departures from monotonicity, see Ref. [147]. These will be of the size of a non-divergent loop
factor, hence small. In turn, such departures propagate into loops of g4,0 as a 2-loop effect.
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10014/ i1 3p” log(4p*(p~ + 1)) + 11081 ) 3p* log ( VA =3p2)(2 + 1) + 1)
_ 4 _ a5t =2 _ 252\ (52 =
9079’/;52“ 3p* log (p +V/0 -39 +1)+1)
4 =2 52\ (72
+3360, /152 — 3log ( 2 -/ (1 -3p2) (P2 +1)+ 1)} ) (6.60)

There is no expansion in p, the above is the result in full.

—_ 0 =

+ log(32) log (

6.6 Bounds from Smearing and Consistency Checks

Here we adapt the smearing algorithm to CS dispersion relations. We also explain details of how the semi-
definite optimisation program is built and how we treat the logarithms appearing in IR arcs. In this section,
for simplicity, we work in units of the cutoff, M2 = 1.

We write a generic smearing function f(p) as,

Jmax

f)=p" > ep?, (6.61)
=0

where a constant overall factor p® is added to integrate to a finite value on the gravity pole — a will be fixed
later in the procedure. We define the vector W in the UV as

1/v3 .
Wi o(s) = / dpp’™ Ino(s,p). (6.62)
0
While in the IR, we define the vector V as
1/v3 4
Vi= [ a0, (6:63)
0
Then, positivity bounds can be written as
jxnax jlnax
Z ;Wi o(s) >0, Vs, {, = Z ¢;V; > 0. (6.64)
Jj=0 j=0

The coeflicients ¢; can be varied, in search of an optimal function which minimises or maximises the bound.
We therefore have a target vector V; and a vector to optimise ¢; tin order to obtain ) ¢;V; > 0, subject to
some constraints W; ,(s) = 0. This defines the semi-definite optimisation problem.

In principle positivity should be imposed for all values of ¢. To reiterate, in practice, we work with a
finite £ < /,ax and increasing its value until the bound stabilises.

The finite range £ < f,.x means fewer UV conditions and hence artificially stronger bounds. As described
below Eq. (6.30) this can be complemented with £ — oo information, through the finite impact parameter
limit to gather information at large values of £. This corresponds to s — oo, £ — oo with b = 2¢/./s fixed.
In this limit the Gegenbauer polynomials give,

- m? —3p*\ _ T (%5?)
At P2 <\/T+pz > = bp)y%(bp% (6.65)

2
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with m = /s. In this limit the dispersion relations can be integrated exactly into fixed-impact-parameter
relations,

B 1/V3 ' Jas (bp (i+a+1)/2 | Fy j+a+1; ﬁ’ ]'+a+3; b2
Wﬂ®=F<i—2)/ﬁ <Mﬂ+”—l—x;:<l> (5 sz 2 m). (6.66)
2 0 (bp/2) = j+a+1

3
This leads to more constraints on the function f, complementary to fixed-£. In particular we impose Eq. (6.66)
at fixed values of b and following Ref. [185], we demand that it is positive for large values of b, where,

j+a+l. d—2 j+a+3.  b?
1F’2<‘7 2 y T 9 ,J 2 y T 12

j+a+1

)~M®+B@aM@+C@$M@, (6.67)

with ¢ defined as the argument of the oscillatory terms, which depends on b, and A, B, C obtain at a certain
order in the 1/b expansion. Positivity for all ¢ requires,

A(b) + B(b C(b
( o A E39(6)) 70 (6.68)

For these expressions to be polynomial in b and to satisfy the condition 4 — d + o < 0 implied by Bochner’s
theorem (see below Eq. (6.30)), we demand o = %. Then, up to an overall factor, we are left with a matrix
of polynomials in b, which can be treated with the usual techniques of semi-definite optimisation.

For the bounds described in the main text, we have used,

1/v/3 k2
WZ/ @f“<p+wp+%wﬂ4M%@m)y (6.69)
0

and optimised the value of g31/k? for a fixed value of g2 0/k? using the software sdpb [430, 431]. We
utilise multiple values of £ < ., and discretise in /s € [1,00] in the CS case, by defining /s =

1—x

with « € [0,1 — 0z] sampled in steps 6z = 0.1. We have checked that smaller values of dx do not change
quantitatively the results. Furthermore, we show how the plot changes when increasing fy, and jpax in
Fig.6.11. Changing these parameters does not modify the plot qualitatively.
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Figure 6.11: Bounds in the CS case, for various values of liax, the number of spins, and jmax, the number
of elements in the basis. The bound becomes stable with . ~ 30 and jumax ~ 30.
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We built a matrix with rows made out of 1 x 1 matrices for each value of ¢ and z, and a column for
each element of the basis of polynomials. For the optimisation procedure a normalisation choice for f(p) is

required.
1/V3 Jmax 1/V3 i
[ s =Y e [ s (6.70)
0 - 0
j=0

where the — sign gives the upper bound and the 4+ the lower bound.

6.6.1 Loop order functionals

In our perturbative approach we have employed the tree-level extremal functionals f(p) to compute the loop-
level contributions via Eq. (6.58). In principle, dispersion relations with loop effects might be extremised
by other “loop-level” functionals. Fig. 6.12 shows the difference between using tree-level and loop-level
functionals, in the context of CS dispersion relations. For clarity we have limited the analysis to loops
involving only gravity, with x2/(4r)3 = 0.1M ~*.

The deviations are most notable near the kink, with the rest of the bound being unaffected. This difference
can be explained by the fact that the g3 ; position of the kink is not captured by the tree-level functionals.

170
160}
150 —_

140

M4g3,1/,<2

130"
120F

110-

Lo b e e e b e e e b b

100 L. | . . . | . . . | . . . | . ) . .
-34 -32 -30 -28 -26
M 2gz,o/K2

Figure 6.12: Comparison, in the CS case, between the perturbative expansion used in Sec.6.4 (blue), and a
direct approach of including the loops in the semidefinite optimisation problem (green) both for the gravita-
tional loop only, with fized k?/(47)3 = 0.1M . In orange the tree-level bound.

6.7 Bounds with fixed higher order Wilson coefficients

As described in section 6.4.3, to ensure control over the EFT expansion into loop effects, we demand the
condition Eq. (6.59). This is reflected in Figs. 6.9 and 6.10. For practical reasons, it is simpler to impose,
beside MSgy /K% = ¢, also MBg51 = M'"gs o = ex?, although smallness of g5 1, ge 2 is normally implied by
the condition on g4.
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The reason for this is that we impose these conditions by adding a term p*a$® to the 0-th CS arc a§S,

1/V3 .
V= / dpp™* [ag®(p) + p'ai®(p)] , (6.71)
0
where the first arc in the IR reads,

af®(p) = 910+ g5.10° + g6 20" (6.72)

By entering specific values of each parameter in the objective function we fix their values. In this way we
obtain Fig. (6.9). The lower bound and the kink are unchanged, while the slope of the upper bound changes
from 3/2 to ~ 1.08. This is equally expected, since the scalar UV completion is excluded by our choice of
Wilson coefficients. We use all the same parameters as for Fig. 6.7, with £,,,x = 30, and 20 elements in the
basis of polynomials.

This method of setting explicit values for g0, g5,1, and gg 2 does not formally yield a bound for M 6g4’0 <
ex?. However, one expects that for smaller values of € any bound will be contained within the region obtained
by saturating Eq. (6.59). We have also verified this to be true by scanning several values of € in our numerics.

6.8 FT versus CS Dispersion Relations

As referenced in section 6.4.1, in the region where the effects of gravity are small, k? <« M2(—1) |gn.ql, the
asymptote of the lower boundary reproduces a slope of ~ —4.07, which is indeed the lower bound on the ratio
M?2gs.1/ g2,0 in the absence of gravity. We show this in Fig.6.13. The upper slope reaches the asymptotic
value of 3/2 already quite close to the tip, therefore we do not show it here.

A further comparison between CS and FT methods is given by the correction to the bounds on g2 ¢ and
g3,1 in the presence of gravity and all loops, which we show in Fig. 6.14. These corrections are displayed as
a deviation g3 1/(M*k%) in terms of ga oM?/k* — the same as Fig. 6.8 but opposite than Fig. 6.10.
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Figure 6.8: Loop-correction to the tree-level bound, obtained with the CS method on g3 varying g2, for
various loop contributions evaluated on the boundary of the allowed region, in d = 6. The vertical axis has
the shift in M*gs1/k? normalised to the k*M?® scaling of a gravity loop. The upper (lower) plot shows the
correction to the upper (lower) bound.
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Figure 6.9: The tree-level bound for CS dispersion relations in d = 6. In orange the same as in Fig. 6.7. In
green, with the additional condition Eq. (6.59) with € = 0.1, with the procedure described in Appendiz 6.7.
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Chapter 7

Conclusions

Throughout the preceding thesis we have discussed a variety of topics relevant in contemporary particle
physics. They are linked thematically in that they all address very low energy phenomenology. In the first
two chapters after the introduction, 2 and 3, we explored experimental signatures that could be seen from
ultralight DM particle candidates. The fourth chapter 4 dealt with the self-consistency of one of these DM
models; namely the QCD-axion, where unitarity demanded a larger than expected quadratic coupling to
photons. The final two chapters 5 and 6 sought to address theoretical questions involving the consistency of
very low energy EFTs involving massless particles and gravity, with standard UV assumptions like unitarity,
causality and locality.

7.1 Casting New Light on DM NMR

Axion NMR is a promising avenue to search for axion DM through its coupling to nucleons. This coupling gen-
erates an effective magnetic field that couples to a spin sample, causing it to precess in a measurable manner.
Significant experimental efforts are underway by the CASPEr-Gradient collaboration [236, 237, 239, 479],
and other proposals have been made to conduct similar experiments [480-483]. Axion NMR is also an
active area of theoretical research aiming to refine the ultimate limits in sensitivity achievable with this
technique [228, 484, 485].

In this chapter we quantified the sensitivity that axion NMR experiments have to alternative DM signals
that produce real magnetic fields in the vicinity of the hyper-polarised spin sample. We demonstrated that
CASPEr-Gradient can have world-leading sensitivity to DP DM as well as to the axion-photon coupling
in the same experimental setup they use to search for the axion-nucleon coupling. Importantly, the three
signals can be distinguished by virtue of their symmetry properties. The canonical signal induced by the
axion-nucleon coupling is homogeneous throughout the electromagnetically-shielded volume in which the spin
sample is placed. In contrast, the DP and axion-photon coupling generate inhomogeneous signals. We see
by explicitly looking at the excited modes (for example Fig. 2.2) that the three signals can be differentiated
by modifying the placement of the sample inside the shield.

The coming years promise revolutionary progress in the search for ultralight DM with masses below a
peV. In particular, as instruments like DMRadio [404, 486] or heterodyne SRF haloscopes [405, 406, 487] are
increased in scale, the goal is to improve the sensitivity by many, many orders of magnitude beyond existing
low-mass haloscopes [398-400, 488] to push towards the QCD-axion prediction. DM NMR represents a
completely distinct experimental strategy to push towards that same goal, and as the present work has
highlighted it can probe many forms of DM as it does so. For this reason it will be critical to determine how
far the DM NMR approach can ultimately be scaled, in particular understanding the quantum mechanically-
imposed limitations [484] and ways they can be evaded through the use of quantum resources [489).
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7.2 Dark Matter Constraints from Earth

In this chapter we saw that it is possible to derive robust constraints in DM parameter space, by using natural
features of the Earth. We also proposed a new way to detect bosonic DM with mass m, < 3 x 1078 eV,
i.e below the typical maximum ionosphere plasma frequency. When DM waves pass through the ionosphere
of the Earth, they can get resonantly converted into radio waves that are detectable by a small meter-scale
antenna. Our pessimistic projections suggest many decades of DP parameter space could be probed in just
a few hours of observation time. The small magnetic field of the Earth affects the sensitivity to axions, but
we nevertheless project that a similar setup can improve on the best laboratory constraints, and possibly
the best current astrophysical constraints.

Fully characterising the electrical and physical properties of the antenna must be done. The location
of the antenna can also be optimised, depending on anthropogenic and atmospheric noise, as well as the
Earth’s magnetic field for the axion. With a precise detector design and location in mind, the ionosphere’s
plasma properties require a more accurate treatment, for example using available data [336]. For example,
one necessary feature to capture would be the diurnal variation, which can be used to look for modulations
of the signal. This could be useful in discriminating it from backgrounds. Moreover, the signal can be
characterized by the propagation of the signal radially towards the Earth’s surface, k o r, imprinted by the
large plasma gradient in this direction.

Finally, given the simplicity, (small) size and low cost of the proposed antennae, one can easily envision
the use of an array of antennae operating in an interferometric mode. Placing N antennae ~ O(10) km from
each other can improve the signal to noise ratio by at least a factor v/N. The coherence length of the DM
signal would exceed the antenna separation, while anthropogenic noise varies more over these scales, thus
the potential for improvement is greater if it enables the subtraction of anthropogenic noise sources.

7.3 Quadratic Coupling of the Axion to Photons

The dynamics that endows an axion with a mass, breaking its shift symmetry, can also lead to a non-shift-
symmetric quadratic coupling of axions to photons. In the case of the QCD axion, we showed that the
leading contribution to this operator arises at one-loop order. For a generic ALP, some model-building is
required, but the quadratic coupling can still be generated. The result is that DM axions would induce
temporal variation of the fine-structure constant «, an effect which is severely constrained. In the case of
the QCD axion, other constraints are typically stronger, but the quadratic photon coupling offers a new way
to independently rule out significant regions of parameter space. For ALPs, the quadratic photon coupling
could be the strongest constraint in wide regions of parameter space, and offers a new way of probing regions
that are inaccessible to traditional haloscope searches. Indeed, the existence of a quadratic coupling of axions
to matter can have important implications for such searches due to screening near macroscopic objects [490].
Additionally, large magnetic fields found in astrophysical environments offer an interesting environment to
study the inclusion of these effects.

The co-existence of the linear CP-odd and quadratic CP-even couplings of axions could lead to different
phenomenology from that of ultralight scalars, which only have CP-even couplings at all orders in the scalar
field. A thorough exploration of the implications of this admixture of couplings should be undertaken to
study its effect.

7.4 Consistent Positivity at Finite-t

Positivity bounds help to discern swampland theories from those consistent with UV completions, whether
weakly or strongly coupled. Despite the fact that most results in this field have been derived via Taylor
expanding UV-IR dispersion relations in the vicinity of the forward limit, this approach fails for IR theories
containing gravity or quantum effects associated with loops of massless particles [222, 425].

In this chapter we have presented a procedure that avoids the forward limit entirely, adding an important
ingredient to Ref. [185]. A proof of principle has been provided to show that positivity bounds can be found in
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all theories, independently of their IR structure, even in those theories where physical IR divergences appear
in dispersion relations with any number of subtractions. It is based on a combination of arcs (dispersion
relations with different subtractions), at ¢ # 0. In the UV, this can be integrated in ¢ against a weight
function, demanding a manifestly positive quantity. In the IR this combination of arcs will have non-
analyticities from gravity’s poles and loop discontinuities, but it will integrate to a finite quantity.

In other words, we have seen how to open the door to treat loop effects as perturbative effects, rather
than as an absolute obstruction to finding positivity bounds. Contrary to results in the strictly tree-level
approximation, which can be packaged as relations among any finite numbers of coefficients or arcs, the
results found here are based on approximating all infinite integrals and sums as finite ones. In this sense,
the approach is rooted in the spirit of perturbation theory: it works at finite (albeit arbitrarily large) order
in the EFT expansion and can work at any order in a perturbative loop expansion. Loop effects introduce
infinitely many terms scaling with higher orders in ¢ anyway. These cannot be removed by improvement. In
light of this, partial improvement is qualitatively as good as it can be.

While discussed in the context of gravity, this approach is designed to work for any theory with massless
particles. It would be interesting to study the IR structure of these theories in detail and evaluate their
impact on positivity bounds quantitatively. In particular in gravity [179], spin-1 bosons [187, 205, 491] or
pion physics [159, 188, 189, 492] to understand for instance the interplay between these effects and bounds
on the chiral anomaly [190, 191].

It would be interesting to see if some of the results presented in this chapter can be re-summed into more
compact expressions valid at all orders. Such expressions might reveal properties of the UV extreme ampli-
tudes that saturate the bounds. The partial improvement procedure we proposed is only one of many possible
treatments: it is based on identifying the smallest set of arcs needed to cancel all terms, but various combi-
nations are also possible. Alternatively, adding the null constraints, as described in subsection 5.3.4, could
lead to more compact forms for the improved arc. Manifestly crossing symmetric dispersion relations [148],
provide a different take on this problem, as was discussed in the following chapter.

In this chapter, we also stressed the importance of the Miintz-Szasz theorem, which highlights the tension
between Taylor expanding an amplitude and their appearance in distributions. Besides the case of smeared
positivity bounds, such a situation typically does arise in the context of EFTs. Indeed, the very idea of
EFTs is based on Taylor expanding around small energies. The amplitude stemming from such an EFT
construction is then used as a distribution in cross sections or other observables, where it is integrated over a
finite energy range, or another certain measure. The Miintz-Szasz theorem implies that to reverse-engineer
this, i.e. to extract the coefficients from integrated distributions, we would need an infinite amount of extra
information. As discussed, this can be in the form of assumptions about the convergence of the EFT, as is
the case for phenomenological applications of EFTs [478], or in the form of null constraints as implied by full
crossing symmetry at tree-level, as it is for positivity bounds. This problem could also potentially appear
in the context of the non-perturbative S-Matrix bootstrap [493, 494], where one searches for a bound on the
low-lying coefficients in the energy expansion of a generic function; it would be interesting to understand
whether analyticity in both s and ¢ provides a solution to this puzzle.

7.5 Positivity Bounds and Gravity Loops

In this chapter we discussed positivity bounds from dispersion relations in the EFT of a spin-0 particle
coupled to gravity, including loop effects. We worked at finite IR couplings and focussed on effects coming
from loops of the massless particles.

Amusingly, our most important result is that loop effects are calculable and small — under the right
circumstances. The path to this conclusion, teaches us several lessons. Discontinuities from a box-diagram
introduce singularities in dispersion relations at small fixed-t. We compared different methods to obtain the
bounds from such dispersion relations, and found which ones are immune to these singularities: the approach
of [226] and the manifestly crossing-symmetric one [148, 473]. The methods are completely different both in
terms of their underlying hypothesis (such as analyticity and polynomial boundedness) and the methodology
by which they are implemented (different slices in s,¢ complex planes). Thus, they offer us an important
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check for our results, showing agreement within our computational abilities.

With these methods, we have addressed the question of how much loop effects modify tree-level bounds.
Alas, tree-level extremal theories tend to saturate the validity of the EFT expansion. This is an important
show-stopper given that at even 1-loop level all EFT couplings enter dispersion relations simultaneously.
We have identified Eq. (6.59) as the simplest requirement which is physical, IR testable and guarantees that
only a finite number of effects must be taken into account. The computation is robust, and loop-effects are
indeed of the expected size, as shown in Fig. 6.10. Higher-loop effects will bear no surprises, beyond the
obvious quantitative refinements of the perturbative expansion, as they should not qualitatively change the
analytic properties of the amplitude as substantially as the first loop.

Regarding the addition of the initial loops, the effects may be small, but the changes needed to introduce
them are significant. Indeed, the combination of the IR-safe approaches [148, 226] and the convergence
condition Eq. (6.59), imply O(1) changes in the bounds w.r.t. the original approach of Ref. [185]. Moreover,
these changes are already evident when implemented at tree-level, as shown in Fig. 6.9.

The first running coefficients were identified: g for d < 4, g3 ; for 4 < d < 6, and g4 for 6 < d < 8.
This is significant as the running of a relevant operator dominates over less relevant ones at low energies.
In bounds coming from dispersion relations, this implies that for d = 5,6, the (running) coefficient g4 (M),
along with all less relevant terms, receives polynomially growing corrections at small M. For d > 7, this
behaviour begins at gg o(M). The constraints on these coefficients are determined by forward dynamics, and
indicate that Wilson coefficients can become negative, as discussed in Ref. [147] — the sign-definiteness being
a direct consequence of unitarity in the EFT.

There are many further questions left to be addressed as a result. It would also be satisfying to identify
any non-trivial healthy UV completions involving gravity which sit in the allowed region. Are there any
theories that satisfy these bounds and not those of Ref. [185]? In particular, understanding if the upper
bound |t| < M?/2 implied by the loop-resilient approaches bears any deeper meaning in terms of assumptions
on the underlying theories that satisfy these dispersion relations. Conversely, can we exploit these different
t-ranges to exclude unwanted theories from the UV spectrum? Smearing at values [¢t| > 2M? might rule out
certain UV theories with accumulation points/double poles, like the stu amplitude of Eq. (6.56).

Again, the direct exploration of other theories using these methods would be interesting. Some of the
aspects discussed here are expected to also arise in the theory of electromagnetism coupled to pions in single-
subtracted dispersion relations [188, 189, 495]. In particular, it would be interesting to see how constraints
involving anomalies [190, 191, 496] are impacted by the finite- N, effects we discuss, given that the anomaly
itself is loop generated.

More generally, it would be interesting to establish a solid bridge between the positivity program on
weakly coupled gravitational theories, and fully non-perturbative approaches to the S-matrix bootstrap, as
in [151, 227]. The work explored in this chapter constitutes an important step in this direction.
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