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Population scale studies combining genetic information with molecular phenotypes

(for example, gene expression) have become a standard to dissect the effects of genetic

variants onto organismal phenotypes. These kinds of data sets require powerful, fast and

versatile methods able to discover molecular Quantitative Trait Loci (molQTL). Here

we propose such a solution, QTLtools, a modular framework that contains multiple new

and well-established methods to prepare the data, to discover proximal and distal molQTLs

and, finally, to integrate them with GWAS variants and functional annotations of the

genome. We demonstrate its utility by performing a complete expression QTL study in a few

easy-to-perform steps. QTLtools is open source and available at https://qtltools.github.io/

qtltools/.
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T
o increase the explanatory power of genome-wide
association studies (GWAS), many genetic studies now
routinely combine genetic information with one or

multiple molecular phenotypes such as gene expression1–3,
protein abundance4, metabolomics5, methylation6 and
chromatin activity7. This makes the discovery of molecular
Quantitative Trait Loci (molQTL) possible; a key step towards
better understanding the effects of genetic variants on the cellular
machinery and eventually on organismal phenotypes. In practice,
this requires analysing data sets comprising of millions of genetic
variants and thousands of molecular phenotypes measured on a
population scale; a design that aims to perform orders of
magnitude more association tests than in a standard GWAS,
which prevents the use of standard tools designed to handle only
few phenotypes8,9. To face this computational and statistical
challenge, there is a clear need of computational methods that are
(i) powerful enough to handle the multiple testing problem,
(ii) fast enough to easily process large amounts of data in
reasonable running times and (iii) versatile enough to adapt to
new data sets as they are being generated. Here, we present such
an integrated framework, called QTLtools, which allows users to
transform raw sequence data into collections of molQTLs in a few
easy-to-perform steps, all based on powerful methods that either
match or improve those employed in large scale reference studies
such as Geuvadis1 and GTEx10.

QTLtools is a modular framework designed to accommodate
new analysis modules as they are being developed by our group or
the scientific community. In its current state, QTLtools performs
multiple key tasks (Fig. 1) such as checking the quality of
the sequence data, checking that sequence and genotype data
match, quantifying and stratifying individuals using molecular
phenotypes, discovering proximal or distal molQTLs and
integrating them with functional annotations or GWAS data.
To demonstrate the utility of this new tool with real data, we used
it to perform a complete expression QTL (eQTL) study for 358
European samples where genotype and expression data were
generated as part of the 1,000 Genomes11 and Geuvadis1 projects
(Supplementary Data 1).

Results
Controlling the quality of the sequence data. To control the
quality of the sequence data, QTLtools proposes two com-
plementary approaches. First, it can measure the proportions
of reads (i) mapping to the reference genome and (ii) falling
within an annotation of interest (Supplementary Note 1), such as
GENCODE for RNA-seq12. Second, it can ensure that the
sequence data matches the corresponding genotype data; the
opposite being an evidence of sample mislabelling13. To achieve
this, QTLtools measures concordance between genotypes and
sequencing reads, separately for heterozygous and homozygous
genotypes (Supplementary Note 2). Low values in any of the
two measures indicate problems such as sample mislabelling,
contamination or amplification biases (Supplementary Fig. 1).
When performed on Geuvadis, these two approaches
demonstrate the high quality of the RNA-seq data
(Supplementary Fig. 2) and the good match with available
genotype data (Supplementary Fig. 3).

Quantifying gene expression. To quantify gene expression,
QTLtools counts the number of sequencing reads overlapping a
set of genomic features (for example, exons) listed in a given
annotation file (Supplementary Note 3). We quantified both exon
and gene expression levels in all 358 Geuvadis samples using this
approach and find 22,147 genes with non-zero quantifications
in more than half of the samples (Supplementary Fig. 4). Then,

we run principal component analysis (PCA) on these quantifi-
cations, as implemented in QTLtools (Supplementary Note 4),
to capture any stratification in the sequence data or in the
genotype data. In the Geuvadis data, we did not observe any
unexpected clusters in the expression data or in the genotype data
(Supplementary Fig. 5) and used the resulting weights on the first
few principal components as latent variables to increase discovery
power of any downstream association testing (Supplementary
Note 5).

Mapping proximal molQTLs. A core task of QTLtools is to
discover proximal (that is, cis-acting) molQTLs. To do so,
it extends the QTL mapping method introduced by FastQTL14

and offers multiple key improvements that make this step fast and
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Figure 1 | Flow chart of the main QTLtools functionalities. This represents

how the various functionalities of QTLtools can be combined to go from the

raw sequence and genotype data to collections of molecular QTLs which

can then be integrated with both GWAS data and functional annotations.

Data is represented with ovals and tasks with boxes in which the name of

the mode is shown in bold black with a short description of what it does.
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easy-to-perform. First, it uses a permutation scheme that needs
a relatively small number of permutations to adjust nominal
P values for multiple testing (see Methods section and
Supplementary Fig. 6). As a consequence, the whole-Geuvadis
eQTL analysis can be performed in short running times
(B32 CPU hours) which has previously been proved to be an
order of magnitude faster than a widely used tool, Matrix eQTL15

and provides adjusted P values without any lower bounds
(Supplementary Fig. 7). The running times are actually so small
that it becomes possible to process rapidly massive data sets such
as the GTEx v6p study16 (7,051 samples in B870 CPU hours;
Supplementary Fig. 8) and to repeat the whole analysis multiple
times across different sets of quantifications, covariates and QC
filters to determine the optimal configuration which maximizes
the number of discoveries (Supplementary Figs 9 and 10). In
addition, QTLtools also provides ways to easily extract subsets of
data and therefore facilitate detailed inspection of particular
eQTLs (Supplementary Fig. 11).

Mapping proximal molQTLs for groups of phenotypes.
As multiple molecular phenotypes can belong to higher order
biological entities, for example exons lying within genes or
histone modification peaks which form larger variable
chromatin modules (VCMs7), we also implemented two methods
to maximize the discoveries in such particular cases (Methods
section). Specifically, QTLtools can either (i) aggregate multiple
phenotypes in a given group into a single phenotype via PCA or
(ii) directly use all individual phenotypes in an extended
permutation scheme that accounts for their number and
correlation structure. In our experiments, the permutation-
based approach seems to outperform the PCA-based approach
in terms of number of discoveries in the two data sets we tested
(Fig. 2a, Supplementary Data 2, Supplementary Fig. 12).
In Geuvadis, the permutation-based approach is able to
discover an additional set of B1,056 eQTLs compared to the
standard gene-level quantifications, most of them being for genes
containing many exons (Supplementary Fig. 13).

Mapping proximal molQTLs using conditional analysis.
Furthermore, QTLtools can also perform conditional analysis to
discover multiple proximal molQTLs with independent effects on
a molecular phenotype. To do so, it first uses permutations to
derive a nominal P value threshold per molecular phenotype
that varies and reflects the number of independent tests
per cis-window. Then, it uses a forward–backward stepwise
regression to (i) learn the number of independent signals per
phenotype, (ii) determine the best candidate variant per signal
and (iii) assign all significant hits to the independent signal they
relate to (Methods section). We applied this conditional analysis
on Geuvadis and discovered that B38% of the significant genes
have actually more than one eQTL (Fig. 2b); some have up to six
independent eQTLs (Fig. 2c). Interestingly, we also find that
combining the conditional analysis with the phenotype grouping
approach described above could help to discover even more
signals (Fig. 2b,c). The new discoveries resulting from theses
analyses in Geuvadis have high replication rates within an
independent data set (GTEx10) suggesting that these are genuine
discoveries (Supplementary Note 6, Supplementary Fig. 14).

Mapping distal molQTLs. Beyond mapping proximal molQTLs,
QTLtools also includes methods to discover distal (that is,
trans-acting) molQTLs. The first method we implemented relies
on permuting all phenotypes together to draw from the null
distribution of associations while preserving the correlation
structure within genotype and phenotype data intact (Methods

section). By repeating this permutation scheme multiple times
(for example, 100 times in our experiments), we can obtain an
empirically calibrated Quantile–Quantile plot that properly shows
signal enrichment (Fig. 2d) and can estimate the false discovery
rate (FDR) for all the most significant associations: in Geuvadis,
we could find 52 genes with at least one significant signal in trans
at 5% FDR. Given that this full permutation scheme is compu-
tationally intensive (B450 CPU hours for 100 permutations),
we also designed an approximation of this process that gives
reasonably close FDR estimates while being multiple orders of
magnitude faster (B7 CPU hours; Methods section). Given that
the whole genome is effectively tested for each phenotype,
we quickly build a null distribution of associations for a single
phenotype by permutations. We then use this null distribution to
adjust each nominal P value for the number of variants being
tested and then use standard FDR methods17 on the resulting set
of adjusted P values to correct for the multiple phenotypes being
tested. In practice, this approach can be seen as an extension of
the mapping strategy we use in cis for trans analysis, and gives
FDR estimates that are close to those obtained with the full
permutation pass (Supplementary Fig. 15) while being much
faster to obtain (B64 times faster in our experiments).

Integrating molQTLs with GWAS and functional data. Finally,
we also implemented multiple methods to integrate collections of
molQTLs with two types of external data: functional genome
annotations and GWAS results. First, QTLtools can estimate
if a molQTL and a variant of interest (typically a GWAS hit)
pinpoint the same underlying functional variant. To do so,
it uses regulatory trait concordance18 (Supplementary Note 7);
a sophisticated conditional analysis scheme designed to account
for linkage disequilibrium as a confounding factor when
co-localizing molQTLs and GWAS hits. This can be used,
for instance, to determine the subset of GWAS hits that are
likely mediated by molQTLs; a useful piece of information
to understand the function of GWAS hits. When applied on
Geuvadis and the NHGRI-EBI GWAS catalogue19, we estimated
to which extent the disease associated variants reported in this
catalogue overlap with eQTLs for lymphoblastoid cell lines
(Supplementary Fig. 16). Alternatively, QTLtools can also look at
the overlap between molQTLs and functional annotations such as
those provided by ENCODE12. Specifically, it can compute the
density of annotations around molQTL locations and, when they
do overlap, estimate if it is more often than what is expected
by chance (Methods section). This allows the distribution of
functional annotations around molQTLs to be inspected visually
(Fig. 2e) and statistically (Fig. 2f). When using this on the various
sets of eQTLs we have discovered so far, we find that they tend to
fall within transcription factor binding sites and open chromatin
regions (Fig. 2f), in line with previous knowledge on eQTLs1.

Computational efficiency. All functionality described above has
been implemented in Cþþ for high performance and in a
modular way to facilitate future implementation of additional
functionalities by the community. In practice, this allows all the
experiments described above to be run in a relatively short time
(Supplementary Table 1); the full set of analyses described above
were completed in B1,327 CPU hours (¼B55 CPU days). In
addition, QTLtools has been designed so that the computational
load can be easily distributed across the multiple CPU cores that
are typically available on a compute cluster. The tasks run on
individual samples (for example, QC the sequence data) are
simple to parallelize as one compute job per individual. For
population-based tasks, such as QTL mapping, the input data is
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automatically split into small genomic chunks that are then run
conveniently and independently on distinct CPU cores.

Discussion
Population scale studies combining genetic variation and
molecular phenotypes have become a standard to detect
molecular QTLs. This requires multiple computational steps to
go from the raw sequence and genotype data to collections of
molecular QTLs. So far, this can be done using multiple tools that
are often hard to combine and/or adapt to the amount of data
involved. We propose in this paper, QTLtools, a software package
that integrates all functionalities required to easily and rapidly
perform this task. It includes multiple new and powerful
statistical methods to prepare and control the quality of the
data, to map proximal and distal QTLs and to integrate those
with GWAS results and functional annotations. It also offers a
unique framework for the community to develop further
additional methods or alternative to the ones already included,
so that molecular QTL analysis can be more seamless among
laboratories. By its integrative design and efficient implementa-
tion, QTLtools dramatically decreases the time needed to set up

and run the various analysis pipelines traditionally needed by
molecular QTL studies, freeing researchers to spend more effort
on the interpretation and validation of their results.

Methods
Mapping proximal molQTLs using permutations. Mapping proximal molecular
QTL consists of finding statistically significant associations between molecular
phenotypes and nearby genetic variants; a task commonly undertaken using linear
regressions1,10,14. In practice, this requires millions of association tests to scan all
possible phenotype-variant pairs in cis (that is, variants located within a specific
window around a phenotype), resulting in millions of nominal P values. Due to the
large number of tests performed per molecular phenotype, multiple testing has to
be accounted for to assess the significance of any discovered candidate molQTL.
A first naive solution to this problem is to correct the nominal P values for the
number of tested variants using the Bonferroni method. However, due to the
specific and highly variable nature of each genomic region being tested in terms of
allele frequency and linkage disequilibrium, the Bonferroni method usually proves
to be overly stringent and results in many false negatives. To overcome this issue,
a commonly adopted approach is to analyse thousands of permuted data sets for
each phenotype to empirically characterize the null distribution of associations
(that is, the distribution of P values expected under the null hypothesis of no
associations). Then, we can easily assess how likely an observed association
obtained in the nominal pass originates from the null, resulting in an adjusted
P value. In practice, thousands of permutations are required in this context and
therefore fast methods able to absorb such substantial computational loads in
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using the extended permutation scheme (in red). (c) The number of eGenes on a log scale (y axis) as a function of the number of independent eQTLs
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reasonable running times are needed. FastQTL has recently emerged as a good
candidate for this task by proposing a fast and efficient permutation scheme in
which the null distribution of associations for a phenotype is modelled using a beta
distribution14. This allows approximating the tail of the null distribution relatively
well using only few permutations and also accurately estimating adjusted P values
at any significance level in short running times. In the original FastQTL paper,
it has been shown that running 1,000 permutations gives accurate adjusted P values
while being B17 times faster than when implementing the standard permutation
scheme with MatrixeQTL running on a BLAS-optimized R version15. In QTLtools,
we use exactly the same approach than in FastQTL: we approximate the
permutation outcome with a beta distribution. We run this method on Geuvadis
using 1,000 permutations and a cis-window of 1 Mb. And since the eQTL mapping
is quick and easy, we repeated the whole-mapping pass multiple times across
multiple conditions. Specifically, we repeated the whole-Geuvadis analysis across
multiple missing data proportion filters (that is, %genes with RPKM¼ 0 between 0
and 100; Supplementary Fig. 10) and numbers of expression-derived Principal
Components (that is, PCs between 0 and 100; Supplementary Fig. 9). We therefore
determine that the optimal configuration to maximize the number of discoveries
relies on filtering out genes with more than 50% of the samples with non-zero
quantifications and using 50 expression-based PCs as covariates. In all downstream
analyses, we used this configuration when not specified otherwise.

Mapping proximal QTLs for groups of phenotypes. It is common that some
kinds of molecular phenotypes may belong to higher order biological entities.
For instance, a given gene often contains multiple exons. Similarly, nearby
regulatory elements may cooperate within some module structures such as VCM7

or topologically associated domains20. To map molecular QTLs at the level of these
higher order biological entities, we need methods able to properly combine
information at all the multiple molecular phenotypes they contain. In the context
of genes, this has traditionally been done at the quantification level: read counts at
multiple exons are summed up to get gene-level quantifications that are then used
to discover gene-level eQTL. In QTLtools, we introduced two approaches to
combine locally multiple molecular phenotypes belonging to a given group. First,
we extended the permutation scheme described above to deal with each group of
phenotype independently. Assuming that a phenotypic group P (for example, gene)
contains M phenotypes (for example, exons) and that the corresponding
cis-window G contains L genetic variants, QTLtools proceeds as follows:

(1) All MxL possible variant-phenotype pairs are tested using linear regressions.
The pair with the smallest nominal P value is stored as best candidate QTL for
this group of phenotype.

(2) Permute simultaneously all phenotypes in P using the same random number
sequence. As a result, the inner correlation structure within both P and G
remains completely unchanged, while the correlation in between P and G is
broken.

(3) Draw from the null distribution of association between P and G by scanning all
MxL possible variant-phenotype pairs in the permuted data set and by
retaining the best association.

(4) Build empirically the null distribution of association between G and P by
repeating the steps (2) and (3) as many times as needed (typically 1,000 times is
enough).

(5) Fit a beta distribution on this empirically defined null distribution using
expectation-maximization14. This effectively makes the null distribution
continuous.

(6) Adjust the nominal P value of the best pair obtained in step (1) using the fitted
beta distribution.

(7) Repeat step (1) to (6) for all groups of phenotypes to get a candidate QTL
together with an adjusted P value of association for each.

(8) Determine all significant QTLs at a given FDR (typically 5%) using a
FDR procedure such as Storey–Tibshirani implemented in R/q value17 on the
adjusted P values.

Note that this permutation scheme corrects for both the number of genetic
variants and the number of molecular phenotypes being tested while properly
accounting for their inner correlation structure. As a consequence, when the beta
distribution is fitted in step (5), we get an estimate of the effective number of
independent tests corresponding to the actual MxL tests we performed.
Alternatively to this extended permutation scheme, we also implemented an
approach based on dimensionality reduction. This has been previously used to
discover QTLs for VCMs from single-ChIP-seq peak quantifications7. Here, a PCA
is first performed on the M phenotypes and the loadings on the first PC are used as
a quantification vector for the entire group of phenotypes. We can then perform
the standard mapping approach implemented in QTLtools to discover a QTL for P.
We applied these two approaches on Geuvadis to discover gene-level eQTL from
exonic quantifications and compared them with the standard gene-level
quantifications. We find that the largest number of eQTL is obtained with the
extended permutation scheme and the smallest with the PCA-based approach; the
gene-level quantifications lying in between. The boost provided by the extended
permutation scheme is really appreciable since we get an additional set of 1,019
eQTLs that the gene-level quantification is unable to discover (Fig. 2a). Of note,

it really helps to discover eQTL for genes having a high number of exons
(Supplementary Fig. 13). In addition to this, we also applied both approaches on
the histone modification data to discover vcmQTL and find similar results
(Supplementary Fig. 12). Despite the lower performance of the PCA-based
approach in this context, we decided to keep it in QTLtools since we believe it can
still be useful in a different context; such as for instance when we are more
interested in capturing instead the common trend between multiple phenotypes
within a group.

Mapping proximal molQTLs using conditional analysis. The two mapping
approaches above only report a single candidate QTL per phenotype or group of
phenotypes. In some cases, this limitation may reduce significantly the number of
discoveries. For example, it is relatively frequent that expression for a given gene is
affected by multiple proximal eQTLs1. A well-established approach to discover
multiple QTLs with independent effects on a given phenotype relies on conditional
analysis: new discoveries are made by conditioning on previous ones. In QTLtools,
we implemented a conditional analysis scheme based on stepwise linear regression
that is fast, accounts for multiple testing and automatically learns the number of
independent signals per phenotype. Specifically, we implemented it as follows for
both grouped and ungrouped phenotypes:

(1) Initialization. We determine a nominal P value threshold of significance on a
per-phenotype basis. To do so, we first perform a permutation pass as
described above which gives us an adjusted P value per phenotype (or group of
phenotypes) together with its most likely beta parameter values. Next, we
determine the adjusted P value threshold corresponding to the targeted FDR
level (for example, 5% FDR) and feed the beta quantile function (for example,
R/q beta) with it to get a specific nominal P value threshold for each phenotype.
Here, the beta quantile function allows us to use the Beta distribution in a
reversed way: from adjusted P value to nominal P value. Note that the resulting
nominal P value thresholds vary from one phenotype to the other depending
on the complexity of the cis regions being tested and the effective number of
independent tests they encapsulate.

(2) Forward pass. We next learn the number of independent signals per phenotype
using stepwise regressions with forward variable selection. More specifically,
we start from the original phenotype quantifications and search for the variant
in cis with the strongest association. When the corresponding nominal P value
of association is below the threshold defined in step (1), we store the variant as
additional and independent discovery and residualize its genotypes out from
the phenotype quantifications. We then repeat these two steps until no more
significant discovery is made: this immediately gives us the number of
independent molQTLs together with a best candidate variant for each.

(3) Backward pass. Finally, we try to assign nearby genetic variants to the various
independent signals we discovered in step (2). To do so, we define a linear
regression model that contains all candidate QTLs discovered so far in the
forward pass: P ¼ Q1þyþQiþyþQR where R is the number of
independent signals and {Q1, y, Qi, y, QR} are the corresponding best
molQTL candidates. Then, we test all possible hypotheses by fitting this model
Rx(L-R) times each time fixing { Q1, y, Qi� 1, Qiþ 1,y, QR } and setting Qi as
another variant in cis (L–R variants in cis not being a candidate molQTL times
R independent signals). We then end up with a vector of R nominal P values
for each variant in cis which allows us to determine the signal the variant
belongs to by simply finding the smallest P value in this vector and comparing
it to the significance threshold obtained in step (1).

Mapping distal molQTLs. Another common problem in the field of QTL
discovery relates to mapping distal QTLs (that is, trans-QTL). This presents
multiple computational and statistical challenges related to multiple testing,
computational feasibility and confounding factors such as read misalignment, gene
homology or incorrect gene location. In the context of this work; we only address
two particular problems: how to correct for multiple testing and how to perform
this analysis in reasonable running times. We solved this problem by testing all
possible phenotype-variant pairs for association excluding all those in cis (that is,
implying that the phenotype and the variant cannot be proximal, typically o5 Mb)
using linear regressions with high computational performance as we do for cis
mapping. In practice, we manage to perform B1.3 M linear regressions per second
for 358 individuals on an AMD Opteron(tm) Processor 6,174 at 2.2 GHz.
To minimize the RAM usage, the phenotype data is stored in memory and the
genotype data streamed as we move along the genome and tested against all
phenotypes at once. To minimize the size of the output files, we only report
detailed information for associations below a given threshold (typically 10� 5 for
nominal P values); all those above are simply binned to have an idea of the overall
P value distribution. Once the nominal pass done, we correct for multiple testing
using one of these two approaches:

(1) Full permutation scheme. We permute all phenotypes using the same random
number sequence to preserve the correlation structure unchanged. By doing so,
the only association we actually break in the data is between the genotype and
the phenotype data. Then, we proceed with a standard association scan
identical to the one used in the nominal pass. In practice, we repeat this for 100
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permutations of the phenotype data. Then, we can proceed with FDR
correction by ranking all the nominal P values in increasing order and by
counting how many P values in the permuted data sets are smaller. This
immediately gives an FDR estimate: if we have 500 P values in the permuted
data sets being smaller than the 100th smallest nominal P value, we can
then assume that the FDR for the 100 first associations is around 5%
(¼ 500/(100� 100)).

(2) Approximate permutation scheme. To enable fast screening in trans, we also
designed an approximation of the method described just above based on what
we already do in cis. To make it possible, we assume that the phenotypes are
independent and normally distributed (which can be enforced in practice).
Then, we draw from the null by permuting only one randomly chosen
phenotype, testing for associations with all variants in trans and storing the
smallest P value. When we repeat this many times (typically 1,000 or 10,000
times), we effectively build a null distribution of the strongest associations for a
single phenotype. We then make it continuous by fitting a beta distribution as
we do in cis and use it to adjust every nominal P value coming from the initial
pass for the number of variants being tested. To correct for the number of
phenotypes being tested, we estimate FDR (using R/q value) again as we do in
cis; that is onto the best adjusted P values per phenotype (one per phenotype).
As a by-product, this also gives an adjusted P value threshold that we finally
use to identify all phenotype-variant pairs that are whole-genome significant.
In our experiments, this approach gives similar results to the full permutation
scheme both in term of FDR estimates and number of discoveries
(Supplementary Fig. 15).

Integrating molQTLs with functional annotations. QTLtools includes two
approaches to integrate molQTLs with functional annotations. First, it can measure
the density of functional annotations around the genomic positions of molQTLs.
To do so, we first enumerate all annotations within a given window around the
molQTLs (by default 1 Mb). Then, we split this window into small bins (default
1 kb) and count the number of functional annotations overlapping each bin.
This produces an annotation count per bin that can be then plotted to see if there is
any peak or depletion around the molQTLs (Fig. 2e). Complementary to this
density-based representation, QTLtools can also assess if the molQTLs overlap the
functional annotations more often than what we expect by chance. Here, we mean
by chance what is expected given the non-uniform distributions of molQTLs and
functional annotations around the genomic positions of the molecular phenotypes.
To do so, we first enumerate all the functional annotations located nearby (for
example, within 1 Mb) a given molecular phenotype. In practice, for X phenotypes
being quantified, we have X lists of annotations. And, for the subset Y of those
having a significant molQTL, we count how often the Y molQTLs overlap the
annotations in the corresponding lists: this gives the observed overlap frequency
fobs(Y) between molQTLs and functional annotations. Then, we permute randomly
many times (typically a 1,000 times) the lists of functional annotations across the
phenotypes (for example, phenotype A may be assigned the list of annotations
coming from phenotype B) and for each permuted data set, we count how often the
Y molQTLs do overlap the newly assigned functional annotations: this gives the
expected overlap frequency fexp(Y) between molQTLs and functional annotations.
By doing this permutation scheme, we keep unchanged the distribution of func-
tional annotations and molQTLs around molecular phenotypes. Now that we have
the observed and expected overlap frequencies, we use a fisher test to assess how
fobs(Y) and fexp(Y) differ. This gives an odd ratio estimate and a tow-sided P value
which basically tells us first if there is enrichment or depletion and second how
significant this is. Then, we typically plot these two quantities on a scatter plot
with the x axis and y axis being the odd ratio and the significance of the
enrichment/depletion, respectively (Fig. 2f). In our experiments, we use three types
of functional annotations generated by ENCODE12 for lymphoblastoid cell lines:
open chromatin regions given by DNAse footprinting, a union of all transcription
factor binding sites assayed by ChIP-seq and transcribed regions as predicted by
ChromHMM21.

Data availability. The Geuvadis RNA-seq data corresponds exactly to what has
been generated in the original Geuvadis study, so please consult the Supplementary
Materials of the paper1 for a more detailed description of the experimental protocol
used for RNA-seq data generation. In our experiments, we focus our attention on a
subset of 358 European samples for which we also have complete DNA sequence
data generated as part of the phase 3 of the 1,000 Genomes project22. All variant
sites with a minor allele frequency across all 358 samples below 5% or exhibiting
more than two possible alleles have been removed which resulted in a set of
6,241,929 single-nucleotide variants and 843,851 short insertion–deletions or
structural variants left for the analysis. All the raw sequence data can be
downloaded from http://www.ebi.ac.uk/arrayexpress/files/E-GEUV-1/processed/
(RNA-seq data) and ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
(for DNA-seq data)

The histone modification data set contains ChIP-seq across for 3 histone
modifications across 47 European samples: H3K4me1, H3K4me3 and H3K27ac
that are known to usually tag enhancers, promoters and active regions. Please
consult this paper7 for more detailed description of the experimental protocols
used for the ChIP-seq data generation. In this data set, the samples have been either

sequenced or imputed from an Illumina OMNI2.5 M as part of the phase 1 of the
1,000 Genomes project11. Again, all variant sites with a minor allele frequency
across the 47 samples below 5% or exhibiting more than two possible alleles have
been removed which resulted in a set of 6,085,881 single-nucleotide variants and
606,344 short insertion–deletions or structural variants. All the raw ChIP-seq
data can be downloaded from https://www.ebi.ac.uk/arrayexpress/experiments/
E-MTAB-3657/.

QTLtools is open source and available for download at https://qtltools.github.io/
qtltools/.
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