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Introduction

Following on the pioneering work of Medawar and colleagues 
more than 50 years ago, extensive data obtained in rodents and 
large animal experimental transplantation models have led to a 
better understanding of the mechanisms leading to graft rejec-
tion and transplantation tolerance.1,2 The advent of powerful 
immunosuppressive drugs that can control the rejection pro-
cess since the mid 1980s has allowed the development of clini-
cal transplantation with increasing success. Consequently, solid 
organ transplantation (SOT) has become the therapy of choice 
for end-stage organ diseases. Patient and allograft survival, 
as well as rates of acute allograft rejection episodes in the first 
year after transplantation have steadily improved. In contrast, 
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The major challenge in transplantation medicine remains 
long-term allograft acceptance, with preserved allograft 
function under minimal chronic immunosuppression. To safely 
achieve the goal of sustained donor-specific T and B cell non-
responsiveness, research efforts are now focusing on therapies 
based on cell subsets with regulatory properties. In particular 
the transfusion of human regulatory T cells (Treg) is currently 
being evaluated in phase I/II clinical trials for the treatment 
of graft versus host disease following hematopoietic stem 
cell transplantation, and is also under consideration for 
solid organ transplantation. The purpose of this review is to 
recapitulate current knowledge on naturally occurring as 
well as induced human Treg, with emphasis on their specific 
phenotype, suppressive function and how these cells can be 
manipulated in vitro and/or in vivo for therapeutic purposes 
in transplantation medicine. We highlight the potential but 
also possible limitations of Treg-based strategies to promote 
long-term allograft survival. It is evident that the bench-to-
beside translation of these protocols still requires further 
understanding of Treg biology. Nevertheless, current data 
already suggest that Treg therapy alone will not be sufficient 
and needs to be combined with other immunomodulatory 
approaches in order to induce allograft tolerance.
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concerns remain on the long-term outcome. Besides morbidity 
and mortality associated with chronic immune suppression and 
drug exposure, there is an inexorable loss of transplanted organs 
due to chronic allograft dysfunction.3,4 This process is mediated 
by both immunological (inadequate immunosuppression) and 
non-immunological (drug-related toxicity) factors.5 Thus, the 
ultimate goal in transplantation medicine remains the induction 
of specific tolerance to donor alloantigens and long-term graft 
acceptance with minimal immunosuppressive drug exposure. In 
this perspective, the development of tolerogenic protocols and in 
particular of regulatory cell-based therapies has stimulated much 
interest in recent years. In this review, we discuss the mecha-
nisms of immune tolerance to self-antigens and how they could 
be exploited in the transplantation setting. In particular we scru-
tinize current knowledge on regulatory T cells (Treg) and their 
potential for cell-based immunotherapy in SOT.

Central and Peripheral Tolerance

The recognition of the allograft major histocompatibility com-
plex (MHC)-mismatched antigens by circulating alloreactive T 
cells is the primary event that ultimately leads to graft rejection. 
T cells are therefore the main target of current immunomodu-
latory strategies. Transplantation tolerance is defined by a state 
of sustained donor-specific T and B cell non-responsiveness with 
preserved graft function, with no (operational tolerance) or only 
minimal (near-tolerance) chronic immunosuppressive drugs. The 
immune system is capable of distinguishing between self- and 
non-self antigens, leading to specific protective cell-mediated and 
humoral responses in the absence of autoimmunity. Several dif-
ferent experimental protocols were successful in inducing trans-
plant tolerance to in rodents and large animals, demonstrating 
the possibility to exploit the mechanisms that normally maintain 
immune homeostasis and tolerance to self-antigens to induce tol-
erance to alloantigens. Furthermore, clinical reports of occasional 
“tolerant” recipients who had stopped taking their immunosup-
pressive drugs but still experienced prolonged allograft survival, 
suggest that immunological tolerance may indeed be a goal that 
can be achieved in transplantation medicine.6-9

Immune tolerance is principally mediated via central and 
peripheral mechanisms. Central tolerance normally leads to the 
intrathymic deletion of T cells recognizing thymus-expressed 
autoantigens with high avidity, so that potentially deleterious 
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a new naïve host via the adoptive transfer of cells. In the 1970s, 
Gershon first described thymus-derived cells in mice that sup-
pressed the response to an antigenic challenge with the injec-
tion of sheep red blood cells. He then developed the concepts of 
“infectious tolerance” and “suppressor cells”.21 However, due to 
poor experimental reproducibility in vitro, the “suppressor cells” 
fell into disrepute, although transferable tolerance remained a 
robust concept in vivo.22 Convincing evidence for the existence 
of Treg came in the mid 1980s from experiments in rodent mod-
els of autoimmune disease.23-25 Further experiments by Sakaguchi 
and colleagues allowed the identification of a subset of naturally 
occurring CD4+ T cells with constitutive expression of the IL-2 
receptor α-chain (CD25) that was essential for the prevention of 
autoimmunity.26 Since these early data, a huge body of literature 
has accumulated showing that CD4+CD25+ Treg are involved 
in the control of a wide variety of immune responses. Besides 
the naturally occurring CD4+CD25+ Treg that have been iden-
tified in non-manipulated animals and humans, uncommitted 
naïve CD4+ T cells can be skewed towards T cells with regulatory 
functions in the peripheral immune system under specific in vitro 
or in vivo conditions.

Foxp3+ T Regulatory Cells

Naturally occurring CD4+CD25+Foxp3+ Treg (nTreg) derive 
from the thymus and constitute 3–10% of the naïve peripheral 
CD4+ T cell population in humans. As CD25 is also upregulated 
on the surface of activated effector T cells, other specific markers 
are needed to identify nTreg. To date, the best marker of nTreg 
is the intracellular expression of the transcription factor forkhead 
box P3 (Foxp3). Foxp3, the cytokine IL-2 as well as CD25 as a 
component of the IL-2 receptor, are essential for the development, 
function and survival of nTreg, because mutations or polymor-
phisms in the genes encoding these molecules predispose to auto-
immune or lymphoproliferative diseases.27-30 Furthermore, the 
specific role of Foxp3 in the function of nTreg was highlighted by 
the fact that retroviral transduction of Foxp3 into CD4+CD25- T 
cells converts them to functional Treg that are able to suppress 
proliferation of other T cells in vitro and inhibit the development 
of autoimmune diseases mediated by pathogenic effector T cells 
in in vivo experimental models.31 It was also shown that sustained 
Foxp3 expression is required to confer the suppressive capacity of 
Treg. While Foxp3 expression constitutes a lineage specification 
of bonafide nTreg in mice, human activated effector T cells can 
transiently express Foxp3.32,33 Thus, more specific markers for 
human nTreg are still sought-after and the precise molecular role 
of Foxp3 in nTreg remains to be fully understood.

Human naturally occurring Treg. As Foxp3 expression is 
not a reliable phenotype in human nTreg and cannot be used 
as a selection marker to isolate living cells due to its intracel-
lular expression, numerous surface markers have been identi-
fied to help discriminate between activated effector T cells and 
nTreg. These include CD127, CD45RA/RO, inducible costim-
ulatory protein (ICOS) and HLA class II. The IL-7 receptor 
α-chain (CD127) was shown to be downregulated on human 
peripheral nTreg and the combined use of CD4+, CD25+ and 

antigen-reactive T cells will not reach the periphery. Since the 
early observations by Medawar and colleagues,1,10 a large number 
of experimental as well as clinical studies have confirmed that 
central tolerance against alloantigens can be achieved in trans-
plant recipients by the induction of full (donor cells reconstitut-
ing recipient’s hematopoietic compartment) or mixed (donor cells 
coexisting with recipient cells) hematopoietic chimerism.11-16 In 
these settings, cells of donor origin, either spontaneously released 
by the allograft (liver transplantation) or infused in therapeu-
tic protocols (hematopoietic stem cells, HSCT or bone marrow 
transplantation, BMT), can migrate to the recipient’s thymus and 
induce clonal deletion of donor-reactive host T cells. However, to 
achieve donor cell engraftment and full or even mixed hemato-
poietic chimerism in recipients with a fully functional immune 
system, some degree of cytoreductive conditioning is needed, 
unless very high doses of donor stem cells or BM are adminis-
tered. Thus, these approaches are relatively toxic and not easily 
feasible, precluding their application in routine clinical practice. 
Furthermore, although encouraging data have been obtained in 
pre-clinical studies (non-human primates, pigs),17,18 and some 
small trials in humans,14-16 in most cases mixed chimerism-based 
strategies have been difficult to translate successfully to large ani-
mal models. This indicates that central deletion may not be the 
only mechanism involved in the induction of robust tolerance in 
humans.

As not all antigens are expressed in the thymus (for instance 
tissue-specific antigens) and therefore evade central tolerance, 
peripheral tolerance usually prevents auto-immunity by various 
mechanisms. Peripheral tolerance to self- and non-self antigens 
can be achieved by deletion of activated T cells, T cell anergy and 
active regulation.19 The encounter of naive T cells with antigen-
presenting cells (APC), mainly DC, modulates their differentia-
tion into various subsets of polarized effector and regulatory T 
cells and is a major component in the nature of T-cell responsive-
ness. In particular, the type of DC and the local cytokine micro-
environment determine the outcome of the immune response 
towards immunity or tolerance. Thus, alloreactive effector T cells 
could be either controlled by other cells with regulatory/suppres-
sive functions or by modulating the immunogenicity of APC and 
the local cytokine milieu.

Increasing evidence suggest the existence of interactions 
between central and peripheral mechanisms to promote the 
induction and maintenance of transplantation tolerance. Indeed, 
the thymus is not only responsible for clonal deletion of autoreac-
tive T cells but also for active peripheral regulation through the 
generation of natural Treg. Moreover, peripheral DC can migrate 
to the thymus to present donor-derived antigens and therefore 
participate in the education of the immune system towards allo-
antigens and the induction of central tolerance.20

Regulatory T Cells

Regulatory cells are defined by their functional ability to suppress 
immune responses. This concept was initially proposed follow-
ing the observation in experimental transplantation models that 
donor-specific transplantation tolerance could be transferred to 
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in oral tolerance protocols.48 Various positive and negative stim-
uli were reported to influence the induction of Foxp3 expression 
in CD4+ T cells (Table 1). However, in contrast to nTreg, Foxp3 
expression in iTreg seems to be less stable as reflected by their 
histone methylation, acetylation and microRNA status.49-51 The 
in vitro regulation of Foxp3 in iTreg as well as their dynamics 
after transfer in vivo has been analyzed.52 Removal of TGFβ in 
vitro led to a loss of Foxp3 expression after a few days and, after 
adoptive transfer into wild-type mice most iTreg downregulated 
Foxp3 within 2 days only. Some studies have suggested that while 
TCR stimulation of human CD4+CD25- T cells in the presence 
of TGFβ induces high levels of stable Foxp3 expression, these 
iTreg are neither anergic nor suppressive and produce effector 
cytokines. Furthermore, while the presence of regulatory cyto-
kines such as TGFβ and antigen-presentation by immature DC 
was shown to favor the generation of antigen-specific iTreg in 
vitro and in vivo, in a pro-inflammatory environment naïve T 
cells would rather differentiate into Th17 cells as suggested by 
recent data.53-56 Thus, in vitro differentiated human iTreg might 
not be stable phenotypically and functionally, implying that in 
vivo transfer of iTreg for therapeutic purposes may give unex-
pected results and should be considered with caution.

Mechanisms of Suppression

There are numerous mechanisms of nTreg-mediated suppression 
that can be mainly subdivided into two categories: dependent on 
cell-cell contact and/or mediated by cytokines. The respective 
relevance of theses mechanisms are still a matter of debate which 
might be explained by differences in the experimental systems 
(in vitro vs. in vivo, rodent vs. human cells) and disease models 
that have been used. In vitro, nTreg were shown to inhibit the 
activation of effector CD4+CD25- T cells predominantly by cell-
cell contact dependent mechanisms. Naturally occurring Treg 
constitutively express on their surface important molecules for 
their suppressive function such as cytotoxic T lymphocyte-asso-
ciated antigen-4 (CTLA-4), membrane-bound TGFβ latency-
associated peptide (LAP), glucocorticoid induced tumor necrosis 
factor receptor (GITR), CD4-related lymphocyte activation gene 
3 (LAG-3), galectin-1 and CD39.57-63 Moreover, after activa-
tion, human nTreg were shown to be able to directly kill CD4+ 
and CD8+ T cells via the secretion of perforin and granzyme 
B.64 The role of regulatory cytokines such as IL-10 a TGFβ and 
more recently IL-35 in nTreg-mediated suppression of immune 
pathologies has mainly been described in in vivo experimental 
models.58,65,66 While the effector mechanisms of nTreg is still 

CD127low markers results in a highly purified population of sup-
pressive cells, as opposed to CD4+CD25+CD127hi T cells that 
have been associated with pathogenic antigen-specific immune 
responses including chronic allograft rejection.34,35 It appears 
that human nTreg display at least two different states of activa-
tion: resting/naive (CD45RA+Foxp3low) and activated/differenti-
ated (CD45RA-CD45RO+Foxp3hi).36,37 The proportion of these 
subpopulations differs between cord blood and adult peripheral 
blood, and in patients with immunological diseases. Activated/
differentiated CD45RO+ nTreg have been described to be mainly 
ICOS positive whereas resting nTreg can be ICOS positive or 
negative. ICOS is a T cell costimulatory receptor and an acti-
vation marker and appears to define functionally distinct nTreg 
populations: ICOS+ nTreg produce IL-10 whereas ICOS- nTreg 
mediate suppression predominantly via transforming growth 
factorβ (TGFβ).38 While HLA class II expression on CD25hi 
nTreg doesn’t fully match ICOS or CD45RO, it was associated 
with a functionally distinct subset of “terminally activated” Treg. 
To date, the link between resting, activated, terminally activated 
and possibly memory nTreg remains unclear.39

Induced Treg. Induced or adaptive Treg (iTreg) can be gener-
ated from naive T cells in vitro or induced in the periphery in vivo 
independently from thymic selection.40,41 Two main subtypes of 
CD4+ iTreg have been described: Tr1 cells producing IL-10 and 
TGFβ induced Foxp3+ iTreg. Tr1 cells are defined by their sig-
nature suppressive cytokine IL-10 but can transiently upregulate 
Foxp3 expression upon activation. They can be generated in vitro 
or in vivo by repeated antigenic stimulation in the presence of 
IL-10 and IFNα. Tr1 cells exert suppression mainly via the pro-
duction of IL-10 and to a lesser degree by TGFβ secretion, as well 
as by modulating DC activation and cytokine production.42 Tr1 
and nTreg might synergize to control alloresponses as nTreg can 
induce naive T cells to differentiate into Tr1 cells in vitro in the 
presence of allogeneic DC.43 In the initial experiments by Groux 
et al. Tr1 cells were able to suppress the development of colitis in 
SCID mice when co-transferred with CD4+CD45RBhi T cells.44 
Subsequently, it was shown that Tr1 cells were also involved in 
the regulation of immune responses in transplantation, autoim-
munity, inflammation and tumor progression.42

In the presence of TGFβ, in vitro TCR-mediated stimulation 
of peripheral CD4+CD25- naive T cells was shown to generate 
CD4+CD25+Foxp3+ T cells with all the phenotypical and func-
tional characteristics of nTreg.45,46 In vivo, Foxp3+ iTreg could 
also be generated from naive T cells in the periphery with TGFβ 
playing a pivotal role.40,41,47 It is unclear at present whether Foxp3+ 
iTreg differ from TGFβ-secreting Th3 cells previously described 

Table 1. Generation of Foxp3+ iTreg

Positive factors Negative factors

Cytokines TGFβ,45 IL-2,95 leukemia inhibitoy factor (LIF)96 IL-4, IFNγ, IL-21, IL-6.96,97

Costimulation PD-1/PD-L1.98 OX40,99 T cell-immunoglobuline mucin protein-1 (Tim-1)100

Proliferation Rapamycin (mTOR inhibitor)101,102 PI3K-AKT pathway activation (mTOR activation)101,102

Others
Retinoic acid,103 IDO,104,105 activation of the aryl  

hydrocarbon receptor106

Superscript numbers are references.
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characterization of professional nTreg open the door to their ther-
apeutic application, either by enhancing their activity in autoim-
mune diseases, allograft rejection and graft versus host disease 
(GVHD), or by blocking their suppressive activity in tumor 
immunity and in vaccine development. In the transplantation 
setting, there is evidence that in many experimental protocols 
where robust peripheral tolerance can be achieved, immunoregu-
latory mechanisms dependent on donor-specific Treg are critical 
in the induction and maintenance of the tolerant state.

The possibility of using nTreg in immunotherapeutic pro-
tocols is however mainly limited by cell number. Indeed, the 
peripheral pool of nTreg only accounts for a small proportion of 
peripheral T cells in healthy individuals. For efficient suppres-
sion of alloreactive T cell responses, the pool of Treg needs to be 
expanded to obtain a peripheral Treg/T effector cells ratio that 
favors regulation.19

Expansion strategies. Currently, three main approaches are 
being explored for Treg expansion in the perspective of therapeu-
tic protocols: ex-vivo nTreg expansion, ex-vivo conversion of naïve 
T cells to iTreg and in vivo expansion of nTreg and/or induction 
of iTreg. The first method requires selection of highly purified 
nTreg prior to in vitro expansion for subsequent adoptive trans-
fer. Purity is a critical issue as even a few contaminating effec-
tor T cells might expand in vivo and cause unwanted immune 
pathologies. As discussed, different surface markers have to be 
combined to purify human nTreg from the peripheral blood, 
including CD25hi and CD127low expression, CD45RA+, CD27, 
CD39, CD49b, folate receptor 4 (FR4) or PD-1.88-91 Good manu-
facturing practice (GMP) accepted isolation strategies are based 
on CliniMACS (Miltenyi®) protocols, using antibody cocktails 
with magnetic microbeads and columns. However, these immu-
nomagnetic techniques do not allow the same broad multiparam-
eter selection as compared to flow cytometry cell sorting. Thus, 
these approaches may lead to poor nTreg purity and still need to 
be optimized. Once selected, nTreg have to be expanded to the 
yields needed for clinical application and transfer into patients. 
We and others have described robust protocols to expand nTreg 
in vitro in great numbers without loss of their suppressive func-
tion.92-94 In brief, these strategies are based on the use of donor-
derived APC, recipient-derived APC pulsed with donor antigens 
or surrogate APC (such as anti-CD3/CD28 coated beads) in the 
presence of high amounts of exogenous IL-2.

The second approach is based on the induction of iTreg in 
vitro from naïve CD4+ T cells as described in Table 1 or by forc-
ing Foxp3 expression by viral transduction.31,95-107 Finally, the 
third strategy consists in expanding nTreg and/or de novo gen-
eration of iTreg in vivo. This would alleviate the need for GMP 
cell isolation and cumbersome ex-vivo manipulations, thus ren-
dering the therapy more clinically applicable. Blocking the T 
cell costimulatory signaling pathways (CD28:CD80/CD86, 
CD154:CD40, OX40:OX40L, ICOS:ICOSL, CD27:CD70) 
at the time of transplantation and donor-antigen encounter has 
been shown to facilitate donor-specific iTreg conversion and/
or preferential proliferation of nTreg, while inducing anergy of 
alloantigen-specific effector T cells.108 Current studies suggest 
that effector T cells and nTreg have qualitative and quantitative 

debated, there is less controversy, at least in in vitro models, on 
the resulting effect on the responding co-cultured CD4+CD25- 
T cells, namely inhibition of the transcription of IL-2.67 IL-2 
is key in nTreg homeostasis as these cells are highly dependent 
on exogenous IL-2 for growth in vitro and in vivo. Experiments 
using transgenic mice have demonstrated that IL-2, although dis-
pensable for nTreg development, was essential for their peripheral 
maintenance and competitive fitness.68,69 Different groups have 
also highlighted that IL-2 production by activated effector T 
cells was responsible for the maintenance of the peripheral pool 
of nTreg in vivo.70,71 Moreover, there is evidence for IL-2 “seques-
tration” by nTreg in the regulation of T-cell responses in vivo, 
i.e., nTreg would compete with activated effector T cells for the 
available IL-2 to maintain their peripheral pool.72,73 Collectively 
these data suggest the presence of an autoregulatory loop dur-
ing immune responses where nTreg respond and expand via IL-2 
to the inflammation that they regulate.74 However, it remains 
unclear which stimuli trigger nTreg suppression in vivo. It was 
originally thought to be dependent on specific TCR activation75 
but recent in vitro experiments using cells from TCR-transgenic 
mice unravelled TCR-independent mediated suppression.76

Besides CD4+CD25- and CD8+ T cells, nTreg can modulate 
the effector function of other immune cells including DC, mono-
cytes and B cells as well as NK cells.77-80 By their constitutive 
surface expression of CTLA-4, nTreg can downregulate CD80/
CD86 on APC and induce the expression of indoleamine-2,3-di-
oxygenase (IDO) in DC. IDO exerts immunomodulatory effects 
through multiple mechanisms including depletion of tryptophan 
(which is required for normal T cell functions) and production of 
tryptophan-derived catabolites that promote T and NK cell pro-
liferative arrest and anergy. IDO-expressing immunoregulatory 
DC have been shown to promote immune tolerance, including 
in transplantation experimental models.81,82 Thus, by inhibiting 
the immunogenicity of other effector cells, nTreg could favor a 
tolerogenic environment that could promote the development 
of iTreg, contributing to the maintenance of tolerance (a phe-
nomenon referred to as “infectious tolerance”).83 Altogether, 
the crosstalk between nTreg and alloantigen-presenting DC is 
important in determining the outcome of the immune response, 
tipping the balance in favor of regulation rather than immunity  
(Fig. 1).84-86 Besides regulating APC function, previous in vitro 
and in vivo studies also reported a potential role of nTreg in 
inhibiting NK cell effector functions and innate immunity. This 
was mediated by nTreg membrane-bound TGFβ which down-
regulated NKG2D receptors on the NK cell surface.87

Treg-Based Immunotherapy in Transplantation

Approaches to treat autoimmunity and to prevent allograft 
rejection have focused historically on potent immunosuppres-
sive drugs that block the activation and expansion of pathogenic 
effector T cells. Although very potent, currently available drugs 
require chronic administration associated with toxicities and the 
impairment of protective immune responses against pathogens or 
tumors. The great progresses in our understanding of the basic 
processes that control immune tolerance as well as more recent 
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antibody.111-113 Although the underlying mechanisms need to 
be clarified, the induction of apoptotic cells in vivo (as would 
occur with cell-depleting agents) leads to TGFβ secretion by 
phagocytes (immature DC, macrophages) involved in clearing 
these cells, thus favoring iTreg generation and expansion. The 
uptake of apoptotic cells may also help to maintain DC in an 
immature state (low level of surface MHC II and costimulatory 
molecules), favoring tolerance.114-116 Besides induction therapies, 
maintenance immunosuppressive drugs such as mammalian 
target of rapamycin (mTOR) inhibitors (e.g., sirolimus, everoli-
mus), allow preferential expansion of nTreg and iTreg that pro-
mote antigen-specific transplantation tolerance.103,117-119 Finally, 
as stressed before, in vivo homeostasis and expansion of Treg 
is highly dependent on IL-2. Thus, the administration of IL-2 

differences in TCR stimulation and costimulatory molecules 
requirements, and thus could be differentially targeted.109,110 
Besides costimulatory blockade, T-cell depletion induction 
therapies (e.g., anti-CD3, anti-CD52 monoclonal antibodies 
or polyclonal anti-thymocyte globulins) are used in clinical 
SOT to prevent acute rejection. These therapies induce pro-
found and durable (weeks to months) reduction of circulating 
lymphocytes capable of mounting an alloresponse. Recent data 
suggest that T-cell depletion protocols allow preferential expan-
sion of Treg once lymphocytes gradually repopulate the host, 
thus skewing the Treg/effector T cell ratio towards tolerance. 
In these studies, the increased frequency of Treg was neither 
fully explained by their homeostatic proliferation in a lympho-
penic environment nor preferential sparing by the depleting 

Figure 1. Pathways of allorecognition, allograft rejection and mechanisms to induce transplantation tolerance.
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as donor-recipient full MHC-mismatch, in non-lymphopenic 
recipients or in regulating responses to more immunogenic skin 
instead of cardiac or islet allografts.92 In these situations, while the 
transfer of Treg prolonged allograft survival, it was not sufficient 
to induce robust tolerance on its own. This highlights the need 
for adjuvant immunomodulatory therapies to suppress strong 
immune activation and overcome the rapidly expanding pool 
of alloreactive T cells early after transplantation. As discussed, 
Treg transfer could be combined with drugs such as costimula-
tory blockade (e.g., belatacept) or mTOR inhibitors.19,120 Another 
option would be to combine robust central mechanisms of toler-
ance induction with peripheral transfer of Treg. Protocols based 
on hematopoietic mixed chimerism i.e., allogeneic BMT together 
with a solid organ from the same donor are robust experimen-
tal approaches for the induction of transplantation tolerance and 
were recently applied in kidney transplantation pilot clinical tri-
als.14-16 However, they imply toxic cytoreductive preconditioning 
of the recipient. Using a MHC-mismatched skin transplantation 
model in mice, Wekerle and colleagues recently reported that 
the infusion of recipient polyclonal Treg (both nTreg and iTreg) 
together with donor BM allowed the induction of long-term 
mixed chimerism and donor-specific transplantation tolerance. 
Interestingly, the recipient mice did not receive any cytotoxic 
drug and were conditioned only with a short-course of costimu-
lation blockers and rapamycin.134 Thus, Treg therapy may allow 
mixed chimerism-based strategies to be translated more easily 
and with fewer risks into clinical practice.

There is experimental and clinical evidence that an inflamma-
tory context such as post-operative ischemia-reperfusion injury 
of the graft or concomitant infections can trigger acute rejection 
episodes and prevent the induction of transplantation tolerance. 
Recent studies have highlighted the effect of the microenvi-
ronment in inhibiting or subverting nTreg function, as well as 
the plasticity of iTreg that could convert into pathogenic Th17 
cells.135 This would partly explain the reported resistance to Treg-
mediated suppression under some inflammatory conditions.136,137 
An alternative strategy to promote tolerance would therefore be 
to skew the immune response away from Th17 or Th1 cells and 
towards Treg by modifying the microenvironment, for example 
by blocking critical cytokines.138 Finally, in a recent experimen-
tal study, a fraction of mouse nTreg failed to maintain Foxp3 
expression in vivo, produced inflammatory cytokines and their 
adoptive transfer led to the rapid onset of autoimmunity.139 Thus, 
the in vivo homeostasis, lifespan and stability of nTreg and iTreg 
need to be clarified before clinical trials on Treg transfer can be 
considered.

Conclusion and Perspectives

Since the first description of suppressor cells in the 1970s, the 
field of immune regulation has become very complex, reflect-
ing various distinct mechanisms to maintain tolerance. So far, 
dominant peripheral transplantation tolerance has mostly been 
associated with Treg. However other T cell subsets have also been 
described to have immunosuppressive capacities. In particular, 
CD8+CD28- suppressor T cells, double negative CD4-CD8-  

could be combined to these immunomodulatory approaches 
and is under investigation in stringent experimental allotrans-
plantation models.120-122

Antigen specificity. Naturally occurring Treg have been shown 
to have a polyclonal TCR repertoire primarily driven against self-
antigens, but with cross-reactivity to transplantation antigens. 
We and others have shown that, on a cell-per-cell basis, antigen-
specific nTreg were more potent suppressors than polyclonal 
nTreg in organ-specific autoimmune diseases and transplantation 
experimental models.92,93,123 Moreover, antigen-specificity dic-
tates trafficking of Treg to the appropriate site i.e., the allograft. 
A potential benefit of donor-specific Treg in SOT is also sup-
ported by the fact that Treg-mediated tolerance was demon-
strated to be dependent on a continuous supply of donor-derived 
alloantigens.124 Furthermore, the adoptive transfer of polyclonal 
Treg carries the risk of deleterious non-specific immune suppres-
sion. One noteworthy exception would be the infusion of donor 
polyclonal Treg to prevent GVHD after allogeneic BMT, as the 
disease is systemic with muti-organ involvement. In line with 
this concept, in vitro expanded donor polyclonal nTreg have been 
successfully used in mouse models of BMT to prevent GVHD 
while allowing graft-versus-leukemia effect and phase I/II clini-
cal trials are underway.125-127 The benefit vs. risk ratio of infu-
sions of donor-derived iTreg (Tr1 cells) are also being evaluated 
in HSCT from haploidentical donors.128 Overall current available 
data indicate that the transfer of Treg (nTreg or iTreg) would be 
a feasible strategy in clinical transplantation with no apparent 
major side-effects.

Donor alloantigens are recognized by recipient CD4+ T cells 
either as intact MHC class II:peptide complex presented by donor 
APC (direct pathway of allorecognition) or after being processed 
and presented by recipient APC (indirect pathway) (Fig. 1). A 
series of experimental and clinical data indicate that the indi-
rect pathway alloresponse is the main driver for chronic allograft 
rejection.129 As current immunosuppressive regimens have little 
effect on preventing chronic rejection, the control of T cells with 
indirect alloreactivity would promote transplantation tolerance. 
Treg with indirect allospecificity can be generated in vitro and 
were indeed shown to prevent acute and chronic rejection of skin 
and cardiac allografts respectively in rodent models.92,130-132 We 
and others have also demonstrated that specificity to a single 
antigen was sufficient to convey protection for whole tissues 
expressing at least the same antigen together with other epitopes 
(a mechanism referred to as “linked suppression”).133 The use of 
antigen-specific Treg at the time of transplantation may be lim-
ited if the donor is cadaveric i.e., not known in advance, as time 
is required to generate and expand ex-vivo donor-specifc Treg. In 
the contrary, if a living donor is available (HSCT, kidney, liver 
transplantation), recipient (or donor in the case of HSCT) T cells 
could be isolated in advance and manipulated ex-vivo in the pres-
ence of donor-derived APC or peptides.

Limitations for clinical application. To date the efficacy 
of Treg immunotherapy to induce tolerance in SOT has been 
mainly demonstrated in experimental models of adoptive transfer 
into lymphopenic animals.92,130 Our data indicated several limita-
tions of donor-specific Treg under more stringent conditions such 
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human regulatory cells still need to be addressed. Moreover, before 
implementing any new tolerance-inducing strategy in clinical 
practice, it needs to favorably compare to current well established 
immunospuppressive protocols in terms of feasibility, efficacy (rate 
of acute rejection episodes, long-term graft survival) and toxicity.
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T regulatory cells and NKT cells have been shown to be involved 
in the maintenance of peripheral allo- and xenotransplantation 
tolerance.140 Besides T cells, tolerogenic DC, myeloid-derived 
suppressor cells, mesenchymal stem cells, embryonic stem cells 
and more recently B cells were reported to have intrinsic or 
inducible regulatory properties.141-143 The biology of all these cells 
as well as their potential in SOT need further investigation.

While therapies based on regulatory T or non-T cells proved 
promising in inhibiting donor-reactive T cell responses and pro-
moting long-term allograft survival in experimental models, the 
bench-to-beside translation for SOT is still to be tested. Indeed, 
most of our current knowledge on regulatory cells is based on ani-
mal studies or restricted to in vitro assays when analyzing human 
cells. Therefore, many issues on the homeostasis and function of 
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