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A new kind of quantum mechanics using inner products, matrix elements, and coefficients assuming values 
that are quaternionic (and thus noncommutative) instead of complex is developed. This is the most general 
kind of quantum mechanics possessing the same kind of calculus of assertions as conventional quantum 
mechanics. The role played by the new imaginaries is studied. The principal conceptual difficulty concerns 
the theory of composite systems where the ordinary tensor product fails due to noncommutativity. It is 
shown that the natural resolution of this difficulty introduces new degrees of freedom similar to isospin and 
hypercharge. The problem of the Schrodinger equation, "which i should appear?" is studied and a general­
ization of Stone's theorem is used to resolve this problem. 

1. WHY QUATERNION QUANTUM MECHANICS? 

I N conventional quantum mechanics propositions (the 
result of measurements) are represented as sub­

spaces in an infinite-dimensional Hilbert space X. In 
particular the pure states are the one-dimensional 
subspaces (rays) of X. The relation between measure­
ments of different kinds are expressed in the lattice 
structure of these subspaces. One of the most important 
features in this structure is the absence of the distribu­
tive law which characterizes the propositional calculus 
of classical systems. One might say, therefore, that the 
lattice structure of subspaces incorporates an essential 
ingredient of quantum systems, viz., that measure­
ments of different kinds may interfere leading to the 
well-known uncertainty relations and complementary 
properties. 

The representation of the propositional calculus of 
atomic systems as a lattice structure was given as long 
ago as 1936 by Birkhoff and von Neumann. l There it is 

shown that a propositional calculus exists that we can 
call general quantum mechanics (as distinguished from 
complex quantum mechanics) in as much as no number 
system or vector space at all is assumed in its formula­
tion.2 The relevance for the present work is found in 

appears in a footnote of this paper. C. N. Yang has also pointed 
out the interest of this possibility [Proceedings of the Seventh 
Rochester Conference on High-Energy Nuclear Physics 1957 (Inter­
science Publishers, Inc., New York, 1957), p. IX-26]. 

2 We can present the propositional calculus of general quantum 
mechanics as follows, if we consider finite-dimensional Hilbert 
spaces only, thus excluding systems with continuous variables 
except as limiting cases. The elements A, B, C, ... (which may 
indifferently be regarded as representative ensembles, propositions 
about a physical system, or "operational" rules for testing the 
truth of statements) are subject to the basic operation of negation 
A --> -A and the basic relation of implication ACB. In addition, 
unlike the classical propositional calculus, the propositions make 
up (are the points of) a topological space. The axioms are: 1. 
The axioms for a complemented lattice. Implication is reflexive, 
transitive, and antisymmetric (reversible only for equals). Any 
A, B, possess both a g.l.b. A(lB (A and B) and a l.u.b. AUB 
(A or B) with respect to implication. There exists an over-all 
g.l.b. 0 and l.u.b. I. Negation is an involutorya anti-automorphism 
of the lattice. 2. Axioms of cardinality. To each proposition A may 

1 G. Birkhoff and J. von Neumann, Ann. Math. 37, 823 be associated a non-negative integer IA I such that if ACB then 
(1936). The first suggestion of quaternion quantum mechanics IAI<IBI; if ACB and IAI=IBI then A=B; 101=0; and 
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the following remarkable result: 
It is always possible to represent the pure states of a 

system of "general quantum mechanics" by rays in a 
vector space in a one-to-one manner, and for this it is 
necessary and sufficient to employ orthogonal vector 
spaces (Hilbert spaces) over the following numl er 
systems: 

(ft, the real numbers, 
e, the complex numbers, and 
~, the quaternions.3 

I -A I = III-IA I. We assume, without loss of generality, that 
the least of the positive values assumed by this integer is normal­
ized to be 1; otherwise any positive integral multiple of A would 
also satisfy these requirements. 3. Axiom of superposition. If 
IA 1= IB! =1 then there exists a C with ICI =1 such that AUB 
=BUC=CUA. 4. Axiom of continuity. IA I is a continuous 
function of A. 

Evidently Axioms 1 and 2 are valid for the propositional 
calculus of a classical system with a finite nuniber of states. 
Axiom 3 is the very essence of quantum logic; the C whose 
existence it asserts is a superposition of A and B in the quantum 
sense. Were the classical distributive law of logic An (BUC) 
=(AnB)U(AnC) adjoined to Axiom 1, Axiom 3 would be 
inconsistent. Even without continuity (Axiom 4) it would follow 
from Axioms 1-3 that' the propositions correspond one-to-one to 
substances of some vector space over a skew field. Since e1Jery 
subspace of the vector space is utilized in this one-to-one realiza­
tion, there is no room for superselection principles in what we 
have called general quantum mechanics; but if Axiom 3 is simply 
dropped we find a "supersum" (direct sum with superselection 
rules between addends) of systems for each of which Axiom 3 
is satisfied. Thus it is not necessary to go beyond the quaternions 
until Axioms 1, 2, or 4 are weakened. 

We have consigned this matter to inferior print and omitted 
much mathematical beauty; it concerns mostly how one arrives 
at ~ quantum mechanics, and in the final analysis it is more 
important to know where a theoretical path leads than how one 
fell upon it. 

a We give here the algebra of quaternions. Every quaternion 
can be written in the form 

q = qo+qd, +q2i 2+qaia, 

where the four coefficients qk are real. The multiplication of 
quaternions is associative, distributive, and obeys 

ik~=-l k=1,2,3j 
id2ia=-1. 

In the last equation, the anticyclic order of factors might have 
been taken. Every quaternion q possesses an inverse q-'. 

In Hamilton's notation a quaternion is regarded as the sum of 
a "scalar" (real) part and a "vector" (imaginary) part: q=qo+q' i. 
The quaternions that commute with all other quaternions are 
just the reals. The quaternions that commute with a given nonreal 
quaternion form a subset isomorphic to the complex numbers. 
There exists an operation q -> qQ on the quaternions that is 
involutory (qQQ=q), Hermitian definite (qQg is real, and vanishes 
only when q=O), and anti-automorphic lP qQ= (gP)Q), and it is 
called the quaternion conjugate (~conjugate): ik = -ik. On the 
other hand, the automorphisms of the quaternions are all of the 
form q -> aqa-'. (The quaternion a associated with a particular 
automorphism is not uniquely defined by this equation; by 
requiring that the norm of a, meaning aQa, be unity, the ambiguity 
is reduced to an extremely important matter of sign.) 

It is sometimes convenient to represent quaternions by pairs 
of complex numbers (cO,c') according to 

q=cO+i.c' , 

where cO, cl commute with i" and are therefore essentially complex 
numbers. Treating these pairs as vectors in a two-dimensional 
complex vector space 0, we find that every linear transformation 
of ~ is represented by a linear transformation of 0, that is by a 
2X2 complex matrix. In particular the left multiplication q ->aq, 

Moreover it is always possible to represent these pure 
states by rays in a vector space over ~ (not every ray 
may be needed for this), but not so over (ft or e. 

This result suggests two things. First, inasmuch as 
the propositional calculus reflects empirical information, 
some of this information appears in the number system 
which is used for the construction of the Hilbert space. 
Secondly, it is not necessary to go beyond the three 
possibilities (ft, e, and ~for the representation of general 
quantum mechanics. 

We can thus formulate the following precise problem: 
Which of the three possibilities for the representation 
of general quantum mechanics is the one most suitable 
for the description of the actual physical world? 

A preliminary analysis of this problem might start 
with the question: Why has conventional quantum 
mechanics been developed with complex numbers 
instead of reals? The relation between complex and 
real quantum mechanics has been extensively inves­
tigated by Stueckelberg and collaborators and is now 
completely understood. Briefly stated the situation is 
as follows: Complex quantum mechanics is completely 
equivalent to real quantum mechanics plus a super­
selection rule: All observables in real quantum mechan­
ics must commute with a fixed linear operator J, which 
is antisymmetrical (JT= -J) and satisfies ]2= -1. 
The operator J is intimately related to the symmetry 
of time reversal. Indeed, the time-reversal transforma­
tions are precisely those symmetry transformations 
which anticommute with J. This result shows that 
there exists a connection between supersymmetries and 
the choice of the number field. 

While thus the difference between complex and real 
quantum mechanics is relatively simple, quaternion 
quantum mechanics has many new features which 
make it a much richer theory. It is perhaps surprising 
that such a promising possibility has not yet been 
more fully developed. There appear to be reasons for 
this. For example, the problem of how to write a 
SchrOdinger equation is not a trivial one in ~ quantum 
mechanics because of the appearance of a square root 
of minus one in the ordinary Schrodinger equation; and 
the description of interacting systems by a direct pro­
duct is made difficult by the noncommutativity of ~­
valued wave functions. 

In this paper we shall present the general features of 
a quaternion quantum mechanics. In a subsequent 
paper we shall show how these features can be utilized 

by a fixed quaternion a, is represented by a matrix ajj, the sym­
plectic representation of a. The symplectic representations of left 
multiplication by ilo i 2, i3 are just the Pauli spin operators (times 
i). But the symplectic representation of right multiplications by 
quaternions are sums of linear and antilinear operators. 

Computation yields that qQ=cO*-i2CI where Q denotes the 
quatemion, and the star the ordinary complex, conjugate. The 
"scalar product" of two quaternions p,q, (p,q)= pQq, then· 
becomes (with P=Ifl+i2b'

)pQq= (lfl*cO+b'*c' )+i2(lflcl -b1cO). We 
separated the quaternion with respect to i2 and identified i3 with 
the complex i. But, of course, we could have used any pair of anti­
commuting units as well. 
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for the description of the mUltiplicities of the strongly 
interacting particles, for a fundamental theory of 
electromagnetism, and for a possible unification of the 
theory of electromagnetic and Fermi interactions. 

2. GENERAL QUANTUM MECHANICS 

By a suitable choice of development it is possible to 
present three kinds of quantum mechanics to be called 
ffi, e, and ~ all at once. Therefore let 5' be one of these 
number systems (fields) in which there are defined the 
notions of continuity, addition, multiplication, inverse, 
and conjugate (*). We term the ensuing schema 5' 
quantum mechanics. We need the concept of a Hilbert 
space over 5', JC(5') and may define it by taking as 
fundamental the algebraic operations of vector addition, 
multiplication by 5' numbers, and conjugate (t). The 
vector addition requires no discussion. Because 5' 
may be noncommutative, multiplication of a vector 'It 
or I·> by a number a must be set up carefully.l We 
write 'Ita, or I . )a, and require the associative law 

('lta)b= 'It (ab) (1) 

and the distributive law. The conjugate 'Itt or (,1 of 
a vector 'It or I·) is in the dual Hilbert space JCt(5'), 
which means that it is a linear function on JC(5'): 

'ltt(~a) = ('ltt<I»a, 'ltt(~+~') ='ltt~+'ltt~'. 

The conjugate operation is to be Hermitian, wt~ 
= (~t'It)*; antilinear, ('lta)t= a*'ltt, ('It+~)t='ltt+~t; 
and definite, 

'ltf'lt=O if and only if 'It =0. 

Thus 'ltt~ has the properties of a scalar product.4 We 
use the distance 1'It-~1 = [('It-~)t('It_~)JI to define 
the topology of JC(5'). 

A linear manifold of JC(5') is a set of vectors closed 
under vector addition and multiplication by 5' numbers. 
A subspace is a closed linear manifold. The subspaces 
play a fundamental role in the interpretation. We 
assume that they are in one-to-one correspondence 
with the propositions about the physical system2 in 
the way that subsets of classical phase space are in 
one-to-one correspondence with propositions about the 
classical physical system. Momentarily we are excluding 
the important cases of quantum mechanics with super­
selection principles by this assumption. The notion of 
quantum mechanics defined in this manner, using such 
"unobservable" concepts as the Hilbert space vectors 
and their scalar products, coincides in the finite­
dimensional case with the general quantum mechanics 

• Usually it is the scalar product that is taken as fundamental, 
but except with the Dirac notation this leads to a doubling of 
symbols, and to an ambiguity about which factor is the linear one, 
which the antilinear. We shall find the Dirac notation extremely 
convenient for Ie quantum mechanics, since it manages automat­
ically certain rules of order that are not important in e quantum 
mechanics. Equivalent definitions of X(Ie) are given by von Neu­
mann and Birkhoff, (reference 3); E. H. Moore, General Analysis 
(American Philosophical Society, Philadelphia, Pennsylvania, 
1935); and O. Teichmuller, Z. Math. 174, 73 (1935). 

defined in terms of "observable" non-numerical concepts 
such as implication and negation.1,2 

3. THE SCHRODINGER EQUATION 

How do we link this structure to reality? Basic 
physical quantities such as energy and momentum are 
recognized by their relation to such symmetry proper­
ties of the physical system as time- and space-transla­
tional symmetry. We therefore consider groups of 
transformations acting on the system. 5 

For this end define a mapping Ton JC(5') into itself 
that has the property 

T('lta+~b)= (T'It)a'+ (T~)b' (1) 

to be colinear. Here a' is to be obtained from a, and b' 
from b, by an automorphism of 5' associated with T, 
independent of 'It and ~, and called the automorphism 
belonging to T; for 5' = ~, 

a'=qaq-l, 

b'=qbq-t, 

q independent of ~, 'It. The name colinear is suggested 
by the name used for the closely related concept of a 
collineation in projective geometry. Evidently colinear 
transformations (and indeed only such mappings of 
vectors) carry subspaces into subspaces. A colinear 
transformation for which the associated automorphism 
of 5' is the identity is termined linear. 

The elements of groups of transformations in 5'QM 
are going to be co-unitary transformations, which are 
defined to be colinear transformations U on JC(5') 
enjoying the additional property 

(U~)t(U'It)= (<I>t'lt)'=q(~f'It)q-t, (2) 

where the prime indicates that the automorphism of 
5' belonging to the colinear transformation U is applied 
to the 5' number ~t, 'It. If linear, a co-unitary trimsfor­
mation is called unitary. 

Let us now consider the passage of time. We shall 
suppose it is represented by a one-parameter group of 
unitary transformations U t on JC(5'). Requiring Ut to be 
unitary, amounts to nothing more or less than requiring 
the logical relations between propositions concerning 
the system to be independent of the time origin. 6 For 

6 Again two approaches present themselves, the "synthetic" 
and the "analytic"; just as the definition of "general quantum 
mechanics" in footnote 2 is the "synthetic" version of the 
"analytic" one given in the text of this section for :fQM. Again 
we relegate the "synthetic" formulation to a footnote: An auto­
morphism U on the propositional calculus of :fQM is a mapping 
of propositions to propositions, U:A -->A'=Au, that possesses an 
inverse and preserves the operation of negation and the relation 
of implication. It is then a theorem3 that every such mapping is 
effected by a mapping of vectors of the kind to be called co-unitary 
above. Likewise any mapping that preserves implication is 
represented by a colinear vector transformation. 

S Why unitary and not simply co-unitary? Since after all the 
essential requirements from the point of view of the propositional 
calculus are that implication and negation of propositions (linear 
dependence and orthogonality of vectors) be preserved by the 
passage of time, and this is a property of the co-unitary operators. 



210 FINKELSTEIN, JAUCH, SCHIMINOVICH, AND SPEISER 

example, suppose '1( is a vector representing the state 
prepared by some definite process performed on the 
system by an external apparatus. For the process to be 
a definite one, we mean in particular that the times of 
'">peration of the parts of the apparatus are specified. 
Then U t'1( represents the state that would be produced 
by the same apparatus operating at times retarded by 
the amount t. 

We now wish to make the passage to a Schrodinger 
equation. In e quantum mechanics Stone's theorem 
is the bridge from the unitary group U t to the Schro­
dinger equation for '1(t) = U _t'1(O), 

d'1(/dt= -iH'1(. (3) 

For (R and ~ quantum mechanics, this equation makes 
no sense; quite obviously so for (R quantum mechanics 
where there is no symbol i at all, but equally so for ~ 
quantum mechanics as well, since the various i's that 
appear there are not linear operators at all and their 
appearance on the left of a '1( is undefined. Therefore we 
require the following modification of Stone's theorem: 

Theorem: Every one-parameter unitary group U t on 
X(ff) is generated by an equation of the form 

d'1(/dt= -'T/Hw, (4) 

where H is Hermitian non-negative, "I is anti-Hermitian 
unitary, and both commute strongly with U t • H is 
unique, and "I is unique except on the null space of H 
within which it acts as an arbitrary anti-Hermitian 
unitary operator. 

Proof: See Appendix C. 
Since this decomposition results in a non-negative 

generator H, it is an appropriate one for the time 
translation but not for the other one-parameter groups, 
where reflection may be a physically possible process. 

The reason the unitary operators are sufficient varies slightly for 
the three cases (I'=<R, el, ~: 

For (I'=<R, the only automorphism of (I' is the identity a --> a; all 
col.inear operators are linear, and all co-unitary operators are 
umtary. 

For (I' = el, the automorphisms of (I' are the identity I and the 
complex conjugate C: a --> a*; all colinear operators are either 
linear, or if not, are called antilinear, the two classes being dis­
connected. Since a one-parameter group U, is connected and 
U 0= 1 is linear, all U, are necessarily linear. 

For (1'= !i:'., the automorphisms of (I' are the conjugations 
a --> aO = qaq-l; any colinear opera tor T can be expressed in 
terms of an associated (nonunique) linear operator L and a 
quaternion q according to 

N!=L'fFq. (*) 

Now we see that the linear operators (q real) are continuously 
connected to the other colinear operators (q not real). Thus the 
continuity argument does not work here. On the other hand the 
colinear T and the associated linear operator L of (*) define the 
same correspondence of propositions to propositions (subspaces 
to subspaces). Therefore, for Ii:', quantum mechanics every such 
correspondence, being representable by a colinear operator, is 
representable by a linear operator. By choosing the q in (*) to be 
of unit norm, it is readily seen, L is determined up to sign and is 
unitary if T is co-unitary. We thus obtain a unitary function of 
time U, obeying 

u,u,.=±u,+, .. 
By continuity, it is always possible to redefine U, so that the upper 
sign is chosen. 

This theorem gives us a way to construct the energy 
from the time translation group. How shall we construct 
the momentum from the space translations, etc.? Let 
us write A for the infinitesimal anti-Hermitian generator 
of time translation, so that 

dw /dt=Aw. 

Then the absolute value of A gives the non-negative 
energy operator of the theory and the phase of A gives 
a unitary square root of -1: 

H=IAI=(AtA)i, 

'T/=IAIA-l. 

For ordinary quantum mechanics ff=e and 'T/=i. 
The theorem shows exactly in what directions this 
case can be generalized. For instance we can assume 
that all the observables commute with the operator "I. 
If we do this, we obtain the following possibilities: 

ff = ffi: This case has been studied by Stueckelberg 
and it was shown by him that it is equivalent to 
ff=e, 'T/=i. 

ff = e : If 'T/ = i we obtain ordinary quantum mechanics 
without superselection rules. If 1/,ei, we obtain a more 
general case with superselection rules. 

ff = ~: This is the case we are especially concerned 
with in this paper. If we drop the assumption that all 
the observables commute with "I we obtain more general 
cases about which little is known. 

Only the case ff = ffi, which is equivalent to ff = e 
and antilinear observables, has been investigated in 
some detail by Stueckelberg, Guenin, and Piron 
(unpublished). 

At some points in the paper we shall thus make the 
following assumption: The operator 1/ associated with 
the time-translation operator U t by the above theorem 
is a superselection operator: All the observables 
commute with 1/. But it should be pointed out that in 
that case we are not very far from complex quantum 
mechanics. We state without proof the following 
reduction theorem. 

Theorem: The propositions of ~ quantum mechanics 
that commute with a fixed anti-Hermitian unitary 
operator are isomorphic (with respect to the logical 
operations of intersection, span, and orthocomplement) 
to the propositions of e quantum mechanics. 

Of course there is more to quantum mechanics than 
its propositional calculus. Even if the 1/ superselection 
principle is imposed, eliminating the new kinds of 
complementarity peculiar to ~ quantum mechanics, 
there will still remain new dynamical variables and 
symmetries. 

It will be observed that the points at which the 
operator 1/ appears in the formulation of each particular 
quantum theory and the points at which Planck's 
constant enters are the same. The operator "I can best 
be thought of as taking the place of the combination 
ilh in ordinary quantum mechanics. Therefore the 
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introduction of operators that fail to commute with 71, 
as when 71 is a quaternion, can be regarded as taking 
Planck's "constant" to be a dynamical variable of the 
theory. It will be interesting in particular to examine 
the consequences of quantum fluctuations in the 
quantum of action. The superselection principle on the 
other hand makes 71 a more classical variable by 
excluding interference between its different values. In 
principle this makes it consistent to "freeze" the value 
of 71 and therefore to suppress these new possibilities. 

4. COMPOSITE SYSTEMS 

The other extension of the Birkhofi'-von Neumann 
~ quantum mechanics that is needed concerns the 
description of composite systems. In e quantum 
mechanics we are accustomed to mUltiplying the wave 
functions of subsystems to get wave functions of 
composite systems. This multiplication is called the 
tensor product. Even in the quantum theory of fields, 
where other techniques are used to describe a system of 
several particles of the same kind, this process of 
multiplying wave functions is needed to set up a 
theory for the interaction of particles of different kinds 
(quanta of different fields). 

This multiplication procedure is acceptable in e 
quantum mechanics but not in ~ quantum mechanics. 
Suppose 11) and 12) are vectors describing states of 
distinct systems 1 and 2. Introducing bases in the 
corresponding Hilbert spaces Xl and X2, we are led to 
wave functions: 

where Xl, X2 enumerate the basis vectors for Xl and X2, 
respectively. In order to describe the state of the 
composite system lX2, we introduce a tensor product 
space XIXX:i by giving it a symbolic basis (/ XI,X2)}' 
Then the composite state is supposed to be represented 
by the wave function 

1/;(Xl,X2) = 1/; (Xl)1/; (X2)' 

In order for this coordinate-dependent method to be 
acceptable, it must be shown to be essentially coordinate 
independent. The intrinsic relations (intersection, span, 
orthogonality) between statements (subspaces) of the 
product space must depend only upon the intrinsic 
relations between the factors of which they are made. 

This coordinate independence is proven when one 
shows that a change of basis in either of the factor 
spaces (i.e., a co-unitary transformation in Xl or X2) 
results merely in a change of basis in the product 
space (i.e., a co-unitary transformation in X lXX2). 
The important formulas for this are the following: 

1/;' (YI,X2) = (Yl/l)(X2!2) = (Yl! Xl) «xl!1)(X2!2» 
=(Yll Xl)1/; (Xl,X2), 

1/;' (Xl,Y2) = (Xl!1)(Y2/2)= (Y21 X2)«Xt! 1)(x2!2» 
= (Y2! X2)1/; (Xl,X2). 

(2) 

The symbol (xII Yl) represents the matrix elements 
between two bases { I Xl)} and ( I Yl)} of Xl. A summation 
convention is used. Obviously these formulas are valid 
for (R and e Hilbert spaces, where the matrix elements, 
being (R or e numbers, commute with one another. 
Obviously the second formula is not valid in ~ quantum 
mechanics, where the matrix elements are quaternions 
and do not commute. 

Indeed there seems to be no satisfactory definition of 
the tensor product of vectors in ~ Hilbert spaces as an 
operation that is unique, commutative, and invariant 
under the entire unitary groups of the spaces being 
multiplied. 

As a result, the gap between ~ quantum mechanics 
and classical physics is greater than the gap between e 
quantum mechanics and classical physics. In classical 
physics there are no phase relations to be considered 
when systems are imbedded as subsystems in a: larger 
system, either by adding or mUltiplying theIr phase 
spaces. In e quantum mechanics there are phase 
relations between states that are important when sums 
are formed but not when products are formed. In ~ 
quantum mechanics the phase relations are important 
when states are either added or multiplied. 

This novel feature of ~ quantum mechanics is 
expressed in another way in terms of complementarity. 
In classical physics there are no complementarity 
relations. In (R and e quantum mechanics comple­
mentarity relations exist between physical properties 
of one physical system, but not between properties of 
different systems; the momentum of an electron and the 
position of a neutron, for example. In ~ quantum 
mechanics, there exists a complementarity between 
some properties of any two systems. There is no 
reasonable way of forming a composite system such 
that all the observables associated with one of the 
systems commute with all the observables associated 
with the other. 

What are we to make of this peculiar unitary nature 
of ~ quantum mechanics, that prevents one at the very 
start from speaking of absolutely independent systems? 
One point of view is that in nature, after all, there are 
no truly independent systems. In a unitary field theory 
of all the elementary particles, the problem of describing 
composite systems is to be solved without ever introduc­
ing such an artificial concept as a tensor prodUct. This 
possibility exists in ~ quantum mechanics as well as in 
e quantum mechanics. Yet we know that on occasion 
systems can be treated as if they were very nearly 
independent. Therefore we must approximate such 
independence in ~ quantum mechanics. 

S. NEW DEGREES OF FREEDOM 

In order to express composite systems in g: quantum 
mechanics (in particular in ~QM it is) necessary to 
understand the new degrees of freedom, that fail to 
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commute even when they refer to distinct and independ­
ent systems. Their physical meaning we will study later. 
Now we express them as follows. 

There exist continuous transformations acting on the 
5' numbers that leave invariant the intrinsic relations 
+, X, *. These are the automorphisms of 5'. For 5'=<R, 
e, ~ they are enumerated in footnote 6. Covariance of 
a law under these automorphisms is intended to mean 
that the form of the law does not depend on the choice 
of a realization of the number system 5'. In the case of 
eQM, it expresses equivalence of i with -i. In the 
case of ~QM it expresses the equivalence of ii, i 2, ia 
with any other like-handed set of anticommuting units. 
We shall make an assumption that simultaneously 
introduces new degrees of freedom associated with 
these automorphisms of the number system and 
guarantees a conservation law associated with these 
new degrees of freedom. 

For every automorphism A: a -t aA of the number field 
5', there is given a co-unitary transformation 'It -t 'lt A of 
the Hilbert space such that 

(1) 

All the laws of the system are covariant under this trans­
formation. This is the principle of covariance under 
automorphism of 5', or of 5' covariance for short. It 
permits the automorphisms of 5' to act on XF and 
requires covariance under them. Let us develop this 
somewhat elliptic expression before proceeding to 
deduce its consequences. 

There is a subset of the number system 5' that is 
invariant under all the automorphisms A, namely the 
reals. In parallel, let us call a state vector real if it is 
invariant under all the automorphisms A. It is readily 
shown there exist complete sets of real vectors. It is 
now customary to define the action of A on any operator 
X by decreeing that the two relations 

are to be equivalent, and we can speak of any operator 
X as real for which XA=X. These real operators are 
just those that are invariant under the automorphisms 
of 5'. 

Now it not to be inferred from the principle of 5' 
covariance that all physical quantities are invariant 
under all automorphisms, i.e., real. We remarked in 
the introduction that the most interesting new features 
of ~QM involve nonreal Hamiltonians, for example. 
Rather, it is the form of the laws relating them that is 
to be real. We suppose there is given a fundamental 
list of operators n in terms of which all observable 
physical statements (projections) can be expressed. 
By the laws of the system we mean a collection of 
algebraic relations F(n)=O among the operators n 
from which the intrinsic relations among the observable 
physical properties are to be deduced. Then 5' covariance 

of the physical laws is the requirement that the relations 

F(n)=O and F(nA)=o 

are equivalent. 
Let us examine the consequences for the three cases 

5' = <R, e, Ii. 
The principle of <R covariance is null; there are no 

automorphisms of <R other than the identity I. As an 
example of <RQM, take the following formulation of the 
linear harmonic oscillator, in which position, momen­
tum, and energy are taken as fundamental and." is 
the superselection operator discussed in Sec. 3: 

px-xp=-." 
Hp2+ X2)=H (2) 

.,,2= -1. 

It is obvious that this theory is real in name only as 
long as ." is taken to be a supers election operator. That 
is, its observables are isomorphic to the observables of 
the conventional theory of the oscillator. (Were 
operators that failed to commute with ." accepted as 
observables, this would correspond to accepting anti­
linear operators into the usual theory as observables 
and would be a significant change. We shall not consider 
this possibility.) A representation of the relations (2) 
is given by the usual differential operators for x and H, 
a 2X2 matrix for.", 

.,,=(~~ ~) (3) 

and a matric-differential operator for p, 

p= -.,,(ajax). (4) 

The principle of e covariance is not null. It requires 
the existence of an antilinear operation if! -t if!c corre­
sponding to the automorphism a-t aC=a* of the 
complex numbers. It further requires invariance of 
the dynamical relations under C. Thus, consider a set 
of relations defining a harmonic oscillator. Taking 
position, momentum, and energy as basic, they are 
usually 

Hf+ x2)=H, 

px-xp=-i, 
T/=i. 

(5) 

Evidently, these are not real relations; they are not 
satisfied by the complex conjugate quantities. They 
contain the symbol i explicitly. We may construct a e 
covariant harmonic oscillator by adjoining a real anti­
Hermitian ." commuting with the other operators of 
the theory and taking (2) instead of (5) for the basic 
relations. Now i no longer appears explicitly; but not x 
is not a complete set of commuting observables by 
itself. There is the additional Hermitian operator 

E=if/ 

that commutes with x and has the eigenvalues ± 1. 
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This operator is a superselection operator since 1'/ is 
one. 

To put it differently, the relations (2) establish a 
correlation between the sign of i and the sense of time, 
while e covariance implies that the sign of i has no 
physical correlate. H what we have called the <RQM 
theory of the oscillator coincides with the conventional 
theory (because of the superselection rule), what we 
have called the eQM theory of the oscillator corre­
sponds to one with an internal charge degree of freedom 
(because of the e covariance rule). This new degree of 
freedom is not made effective in the free oscillator, 
the levels with E= + 1 being degenerate with the levels 
with E= -1, but will be effective when the oscillator 
is coupled to other systems with forces that depend on E. 

N ow let us examine the consequences of ~ covariance. 
The colinear transformation iF ~iFA is not as convenient 
to work with as a linear transformation, especially for 
defining observables. However if A is the automorphism 
p ~ qpq-l, iFAq depends linearly on "\If since by (1) 

(iFa)Aq =iFAaAq =iFA (qaq-l)q = (iFAq)a. 

Let us designate this combination by qiF: 

cfI'=iFAq or iFA= cfI'q-l=iFq• 

Thus, ~ covariance permits us to identify the quater­
nions with linear operators on X(~). Henceforth they 
may act on vectors from the left, a license that is taken 
for granted for complex numbers. In particular the 
units iI, i 2, i3 are now defined linear operators when 
they are written on the left of a state vector.7 A quater­
nion acting in this capacity will be called a quaternion 
operator. It is easy to prove the existence of a basis for 
X(~) in which the quaternion operator q is represented 
by a diagonal matrix whose diagonal elements are q. 
This is the same thing as proving the existence of a real 
basis. By using a real basis it is easy to prove that 
every operator X can be uniquely expressed in terms of 
the operators i .. in the form 

X = }:03 X .. i .. , 

where the coefficients X .. are real linear operators. 
In complex quantum mechanics we are familiar 

with the decomposition of a general operator X into 
Hermitian and anti-Hermitian parts H, A: 

X=H+A 

H=!(X+Xt) 

A=!(X-Xt)· 

Of course the same decomposition exists in ~QM. We 
wish to mention here that the structure we have 
introduced in ~QM also makes possible a decomposition 
of the most general operator into 8 parts. 

7 Many of the properties of a system of three anticommuting, 
anti-Hermitian unitary operators on 3C(~) like ii, ii, i. have been 
discussed by Teichmiiller, reference 4. 

The general X can be expanded, we have pointed 
out, in the form 

X = }:03 Xaia, 

where the coefficients X .. commute with the quaternions 
ia (i.e., are real). It is natural to define the quaternion 
conjugate of an operator X by changing the sign of 
its imaginary terms: 

XQ= }:o3 Xaia Q. 

Further we introduce the transpose as an intrinsic 
operation according to 

XT=XtQ=XQt· 

Then any X is the sum of symmetric and skew-sym­
metric operators S, K according to 

X=S+K 

S=!(X+XT)=ST 
K=!(X_XT)=-KT. 

Finally the symmetric and skew-symmetric operators 
can be decomposed into four parts relative to the 
quaternion basis i: 

X = }:03 Sai .. + }:03 Kaia. 

H we merely seek a theory of the linear harmonic 
oscillator in ~QM, it is sufficient to replace the symbol 
i in the complex theory (5) by i 3, say. If we seek a ~ 
covariant theory, this is insufficient. However the 
relations (2) are ~ covariant. 

To define the theory we must somehow specify the 
nature of the operator 77. 

6. TENSOR PRODUCTS 

The additional structure given the quaternion 
Hilbert space by the principle of ~ covariance also 
makes possible a unique definition of tensor product. 
The group of the geometry, which is now to leave the 
quaternion operators fixed as well as the other Hilbert 
space concepts, is thereby reduced to a real unitary 
group. The problem of invariance is naturally easier 
when the group of the geometry is reduced. 

We choose real bases Xl, X2 in the two spaces Xl, X2 
to be multiplied. We take as a formal basis of XIXX2 
the syli!bolic products I Xl) I X2) = h) I Xl) = I Xl> X2). We 
define the tensor products of two vectors 11), 12} in 
either order by their matrix elements in the I Xl, X2) 
basis: 

(Xl, x211) 12)= (xII1)(x212) 

(Xl, x212) 11)= (x212)(XI11). 

Briefly, we mUltiply vectors by multiplying their 
matrix elements in real bases. Likewise we will form the 
tensor products of operators by mUltiplying their 
matrix elements in real bases: 

(Xl, x2IA I XA 2IxI', Xl)=(xt/Alj xt')(x2jA 2j xl), 

(Xl! x2IA 2XA l lxt', X2')=(X2IA2Ix2')(XIIAtlXl'). 
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Since the matrix elements do not commute, the tensor 
product does not commute in general. The projection 
in :K\XX2 corresponding to P l in Xl is taken to be 
PlX h where h is the identity in JC2• Likewise 

As the result of the noncommutativity we have the 
unusual circumstance that the projection in JClXJC2 

representing the logical conjunction of two propositions 
P l and P 2 may vanish when P l and P 2 do not. This 
conjunction is to be found as the intersection of the 
subspaces on which PlX 12 and P 2X it project, and it 
is easy to construct examples [lfl(xl)=exp(ilxl), 
~2(X2) = exp(i2x2) ] in which this intersection is zero 
although P l and P 2 are both one-dimensional projec­
tions. This anomaly does not occur for real pro jections. 

In ordinary quantum mechanics there are three 
different ways in which corresponding operators on 
different systems combine when the systems are 
composed. Unitary transformations are examples of 
operators that compose multiplicatively: U=Ul XU2• 

Infinitesimal generators therefore compose additively, 
as do many physical quantities. But the underlying 
field elements, which are also operators, are composed 
by identification; for example, the imaginary unit i 
has the property i(i1)i2»)=(ii1»i2)=i1)(ii2»). We 
have come as close as possible to this situation in our 
formulation of the tensor product in quaternion 
quantum mechanics. (Namely, the effect of multiplying 
a tensor product by a quaternion (from either side) 
may be computed by letting the quaternion multiply 
the factor in the tensor product it abuts.) This raises 
a certain conceptual problem of some importance. 
What can it mean physically to perform such an 
identifica tion? 

The elements of the number field represent logical 
relations between possible states of the physical system 
under consideration. (Indeed they may be represented 
by ordered triples of pure states.) It is evidently 
possible to say when two such relations are the "same" 
even for states of distinct physical systems without 
going beyond the concepts of pure logic. However this 
only defines the numbers up to automorphisms, 
evidently. For real quantum mechanics, this is sftfficient 
to define them completely. In complex quantum 
mechanics an ambiguity remains: the i of one physical 
system may be identified either with i or -i of another 
by this method. (It is possible to multiply the states 
of one system by the time-reversed states of the 
other and obtain a tensor product which meets all 
requirements of mere logic.) In quaternion quantum 
mechanics the corresponding ambiguity is infinitely 
greater. Yet it must be resolved in order to discuss 
composite systems. This requires us to introduce 
further elements of structure into the theory. 

The operator 1] also presents a problem in this regard. 
The anti-Hermitian infinitesimal generator of time is 

A = -'r]H and is composed additively for noninteracting 
systems because of its meaning. The Hamiltonian H 
should also be composed additively for noninteracting 
systems. These two requirements are enough to require 
that the operator 'r] be composed by identification, as is 
multiplication by i in complex quantum mechanics. 
Moreover it then follows that the relation between 1] 

and the quaternion operators must be a universal one, 
not involving specific dynamical features of the system 
under consideration. We shall pursue the hypothesis 
.that the operator 1] actually corresponds to a member of 
the underlying number field as in ordinary quantum 
mechanics. This reduces the problem to the one 
previously stated. 

This appears to destroy the !?l covariance of the theory 
by singling out one imaginary. To preserve!?l covariance 
we will have to formulate a dynamical theory of the 
operator 1J so that its value is determined by an initial 
condition. This will be considered in a subsequent 
paper. In the mean time we will speak of !?l covariance 
"modulo 'Y/": agreeing to transform 'Y/ as a quaternion 
when examining a theory for covariance. 

III general, we see that the quantum theories will 
possess less symmetry than their classical limits. The 
very process of quantization singles out an axis in the 
imaginary space. 

7. QUANTUM OSCILLATORS IN IeQM 

Any linear field may be regarded as an aggregate of 
harmonic oscillators. In the previous section we 
sketched the ffi, e, and !?l quantum mechanics of a 
one-dimensional oscillator. This is the kind of oscillator 
a real scalar field gives. In the decomposition of the 
field in terms of some appropriate complete set of real 
orthogonal functions, or modes, real expansion coeffi­
cients appear as amplitudes and become the dynamical 
variables. Each of these amplitudes can be thought of 
as the displacement or coordinate of an oscillator. The 
principle quantum number n of one oscillator then 
counts the number of quanta in one mode, and is 
called an occupation number. Such oscillators we will 
call quantum oscillators. According to the statistics we 
have boson or fermion oscillators. 

Sometimes it is convenient to express the field as an 
aggregate of two- or three-dimensional oscillators 
instead of a one-dimensional oscillator. If a complex 
field is expanded in terms of real orthogonal functions 
the amplitudes are complex numbers. Each amplitude 
can be regarded as the coordinate of an oscillator in 
the complex plane instead of as the coordinates of two 
real oscillators. This is useful when there is symmetry 
with respect to rotations in the complex plane. Instead 
of two separate occupation numbers nl, n2 the energy 
levels of the complex oscillator are most aptly described 
by a principal quantum number n and an angular 
momentum m about the origin of the complex plane. 
The number n is the number of quanta of that type and 



FOUNDATIONS OF QUATERNION QUANTUM MECHANICS 215 

the angular momentum m is the total charge that they 
carry: 

where n+ and n_ count positive and negative quanta. 
In decomposing an isovector field in terms of a real 

family of (isoscalar) functions, we get oscillator 
amplitudes which are themselves triples (isovectors) of 
real numbers. Then it is convenient to work with three­
dimensional oscillators. They possess a principal quan­
tum number n, an orbital angular momentum l, and a 
magnetic quantum number m. The number n is again 
the number of quanta present of that type. The angular 
momentum l~O measures the charge multiplicity of 
the level, which is 21+ 1. The number m according to 
isospin theory gives the total charge of that member of 
the charge multiplet: 

n=n++no+n_, 

where n+, no, n_ count positive, neutral, and negative 
quanta. 

Boson Oscillators 

In this section we will study the oscillators that will 
make up a field that is quaternionic instead of real 
or complex. We shall call the system we are describing 
the quaternionic oscillator (~oscillator), having already 
touched on (ft and e oscillators. (It is quite possible to 
consider an oscillator in the general field 5', developing 
all three cases in parallel. We shall not.) 

The quaternionic oscillators move in the four­
dimensional space ~. The invariance their Hamiltonians 
possess is called ~ covariance in Sec. S. If we call the 
coordinate of the oscillator g, 

q= Lo3 gaia, io= 1 

this means invariance under 

q -7 q"= aga-1 

or under 
go -7 go 

(1) 

q" -7 Ln rmnq.. (m, n= 1,2,3). (2) 

Here we are taking note that the automorphism q -7 q" 
leaves the real part of q invariant and subjects the 
imaginary part of q to a Euclidean rotation represented 
by a matrix r mn. The range of the variable q must be 
invariant under (2). There are just three non-null 
linear subspaces of ~ that are invariant under these 
automorphisms. The real axis is invariant: the three­
dimensional space of pure imaginaries is invariant; and 
of course the entire space ~ is also. There are therefore 
three kinds of ~-covariant linear oscillators in the space 
~; a real oscillator, an imaginary one, and a four­
dimensional system we will call the full ~ oscillator. 

The real oscillator has already been treated in Sec. 5 
and we will study the imaginary quaternionic oscillator 
now. (For a e oscillator the automorphism invariance, 
which is there e covariance, leads again to three kinds 
of oscillators, but the real axis and the imaginary axis 
are both one dimensional, and are not essentially 
diff eren 1. ) 

As a guide for the development we write the classical 
Lagrangian in the form 

(2) 

and take as classical coordinates the three real coeffi­
cients qm of the expansion 

(4) 

This leads to a classical Hamiltonian and Poisson 
brackets 

H = (pmpm+W2gmgm)/2 

[gm,qn]P= [pm,pn]P=O 

[Pm,q,,]P=Omn 

(5) 

where pm= rim. We replace these Poisson brackets by 
TJ times the quantum commutator. Since TJ is actually a 
particular quaternion in disguise this temporarily 
destroys the ~ covariance of the theory as a whole, as 
already mentioned. From the commutation relations 

[gm,qn]= [pm,Pn]=O 

[pm,qn] = -TJOmn, (6) 

it follows by use of Jacobi's identity that." commutes 
with qm and pm. The operators pm, qm are not completely 
defined yet. Their commutation relations with the 
quaternion units perpendicular to TJ are undetermined. 
For example we can suppose that the gm are represented 
by real symmetric operators. In that case the order of 
factors in the expansion (4) is irrelevant. The pm are 
then represented by imaginary operators. 

It is readily seen that the operators Hand Q = qX p 
are constants of the motion. The first is the energy or 
total occupation number of the three oscillators, the 
second the "angular momentum." Moreover the 
operators H, Q2, Qa form a complete commuting set of 
observables, in spite of the "extra degrees of freedom" 
associated with quaternions t, TJt that anticommute 
with TJ. t may be used to couple the oscillator to another 
system, but not to construct any Hermitian operator 
commuting with the three enumerated. 

The ground state is unique (nondegenerate) and is 
given by the usual real wave function of the three­
dimensional isotropic oscillator in the g representation. 
The possibility exists of multiplying this state by the 
quaternionic phase expi· 6, where 6 is composed of three 
arbitrary real numbers, without changing the energy, 
but this does not change the ray in Hilbert space JC(~). 

We notice that the group of the theory associated 
with its ~ covariance contains the transformation 
1] -7 -TJ usually called time reversal. 
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Now consider the full ~ oscillator. It is obvious that 
it is a composite of a real and an imaginary ~ oscillator, 
so that in principle no new behavior is to be expected. 
Nevertheless it possesses an additional symmetry (if 
all the frequencies are the same) that deserves special 
note: 

There is a definite sense in which neither the real nor 
imaginary ~ oscillators are linear. To illustrate this 
sense, consider the Lagrangian and equation of motion 
of the complex oscillator, a classical mechanical system: 

L=!(itz-w2ztz)z= -w2z. 

The equations of motion are invariant under the 
substitution 

z-t zc 

where c is any complex constant. It is the ~ analog of 
this linear transformation of the dynamical variables 
(not of the quantum state vector) that we now have in 
mind when we say that the real and imaginary oscillator 
are nonlinear: they will submit to the transformation 

q-t qk, 

not for any constant quaternion k, but only for real k. 
The full ~ oscillator can be a genuinely linear system 
in the sense of quaternions. It is therefore interesting; 
but not therefore fundamental. (The basic requirement 
we impose on all our mechanical systems is ~ covariance, 
not ~ linearity. All actual systems are at least a little 
nonlinear. ) 

With this forward we present the ~ linear oscillator. 
The classical Lagrangian is 

L=!(qtq-w2qtq), q=L03 qo.io.. (7) 

The quantum Hamiltonian and commutators are then 

H=! L 03 (Pa2+W2qo.2) (8) 

[Pa,qIlJ= -.,,8aP 

[Po.,PIlJ=O 
[qo.,qIlJ=O. 

1/ is again one of the unit imaginary quaternions. For 
simplicity we suppose here that the qo. are symmetric 
operators, as well as Hermitian. Let us be more explicit 
about the general definition of the generator designated 
in a special case by Q. The automorphism q-taqa-I, 
P -t apa-I (aE~) acting on the quaternion units 
induces a transformation of the real components qa, 
Po. that leaves invariant their commutation relations 
(8). Accordingly defining qm' by 

8 
aqa-1";' L qm'im 

",-=0 
(9) 

and defining Pm' similarly, we demand Q(a) such that 

q",'=Q(a)q ... Q(a)-l, 

Pm' =Q(a)PmQ(a)-t, 
rl =Q(a)'IJQ(a)-I=.". 

(10) 

The infinitesimal form of this relation deals with the 
three infinitesimal iI, i 2, i3 instead of the finite a, and 
seeks corresponding Hermitian operators Q1, Q2, Q3. 
The infinitesimal i ... rotation a=1+i ... 68/2 generates 
variations 

8".q= aqa-I= [i m,qJ68/2= L 8mq,.i,. (11) 

and analogously for 6 ... p and 6",p". We require Qm to 
be a Hermitian operator satisfying 

6",q"=."[Q,,,,q,,] (12) 

and analogously for 8",p". We also require 

[Q""."J=O. 
From this follows 

Q=qXP. (13) 

For the ~ linear oscillator, infinitesimal left multipli­
cation by a unit quaternion is also an invariant trans­
formation. We shall call its generator T, requiring that 
for infinitesimal left multiplications 

6",q= i m68qj2= La 6mqo.ia 
we have 

(14) 

This leads to an essentially unique real T which like 
Q can be expressed in terms of q and p: 

T= L tallqaPII, 

T= (T "'), (15) 

t=(t"'). 

Substituting (15) into (14) yields the following unique 
forms for the coefficient matrices t: 

tOil = -!, 
t231 = -to (15') 

The coefficients t are unchanged by cyclic permutations 
of (123) and are skew symnietric in the lower index 
pair. The coefficients whose values do not thereby 
follow from (15') are zero. The three real4X4 matrices 
tall generate certain orthogonal transformations in the 
space of the q. 

Infinitesimal right multiplication is also an invariant 
transformation of this oscillator. We call its real 
generator Y, requiring that for 8 ... q=qimM/2= L 6",qaio. 

O ... qa= [y ... ,qo.]08 

0= [Y ... ,."J. 
(16) 

This leads to an essentially unique real Y, which can be 
expressed in the form 

Y = YafjqaPfj. (17) 

Substituting (17) into (16) yields the following unique 
forms for the coefficient matrices y: 

YOIl=_!, 

Y231=!. (18) 
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The coefficients yare unchanged by cyclic permutations 
of (123) and are skew symmetric in the lower index 
pair. The coefficients whose values do not thereby 
follow from (18) are zero. The three real 4X4 matrices 
Ym"p generate certain orthogonal transformations in 
the space of the qa. Obviously 

Q=T+Y. (19) 

We will call T the isospin and Y the hyperckarge vectors 
of this quantum oscillator. However they do not have 
the universal significance of the charge vector Q, which 
always exists. T and Yare strictly definable as con­
served quantities only for ~ linear systems. The decom­
position (19) is closely related to the well-known 
decomposition of the orthogonal group 0 4 (of which 
Q generates a subgroup) into two groups Os. It is 
easy to verify the following commutation relations 
from the definitions (13), (14), and (16), without 
computations: 

[Qm,Q,,]='l/EmnpQp 

[T m,Tn]='l/EmnpTp 

[Y m, Y,,] = 'l/EmnpY p 

[T m,Y,,]=O. 

(20) 

For example the last relation holds because T generates 
a left multiplication and Y generates a right multiplica­
tion. Left and right multiplications always commute: 

a (qb) = (aq)b. 

The vector operators T and Y both have the algebraic 
properties of an angular momentum and commute with 
each other. Therefore it is possible to form commutative 
scalars Q, T, and Y in the familiar manner. 

QbQ(Q+l), 

T2=T(T+1), 

y2= Y(Y+1). 

It is convenient to introduce the operators 

obeying 

aa= (Pa+'l/wqa)/ (2w)i, 

aat= (p<>.-'l/Wqa)/(2w)', 

[aa,aIlJ=O, [aat,aIlJ=Oali' 

Except for a zero-point energy we have 

H=L, waataa. 

Because of the relation 

(21) 

(22) 

(23) 

(24) 

the operators aa reduce the number of quanta, and the 
operators aat increase the number of quanta. All the 
one-quantum states are of the form 

(25) 

where the Cm are ~ constants and "\}to is the real ground 
state. 

There exists a frame that makes the aa, aa t real 
instead of the qa. This reflects the arbitrariness men­
tioned in connection wi th the commu tation relations (6). 

Fermion Oscillators 

For the fermion oscillator we again start from the 
classical Poisson brackets (5), but now we replace them 
with anticommutators instead of commutators. We 
may just as well write the relations defining the full 
(linear) ~ oscillator, since the real or imaginary oscil­
lator can be extracted easily. They have been given 
essentially the following form by Gursey8: 

{pa,qll} =Oall= 1,2,3 

{pa,P13} =0 
{qa,qll} =0 

{pa,iIlJ=O 

[qa,ill ] = ° 
H = t'I/W L,a [pa,qa]. 

The ~ covariance of this system is clear, modulo '1/, and 
in addition it possesses T and Y invariance, which are 
defined as in (14,16) in terms of left and right multipli­
cation by quaternions. Where the boson oscillator 
possessed an infinity of distinct energy eigenvalues the 
fermion oscillator has but five in the linear case (two 
in the real case; four in the imaginary). These corre­
spond to N=O, 1,2,3,4. 

There is an essential difference between the fermion 
and boson symmetry properties. For the boson the 
Hamiltonian is se covariant but the anti-Hermitian time 
generator involves '1/. For the fermion the anti-Hermitian 
time generator is se covariant but the Hamiltonian 
involves '1/. 
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APPENDIX A. ~ IDLBERT SPACE 

Most of the statements in the theory of a complex 
Hilbert space can be taken over for a ~ Hilbert space. 
We will develop the elementary theory in a way that 
makes the analogy between the two obvious. The 
principle results of this Appendix are the Spectral 
theorem and our modification of Stone's theorem. 

A Hilbert space X over the field of the quaternions 
is a set of vectors cp, if;,. .. which have the foilowing 
property. 

1. H is a linear space: 

If cp, if;EX then cp+if;EX. 
If cpEX then cpqEH, qE~. 

(cp+if;)q= cpq+if;q 

cp(p+q)= cpp+cpq 

(cpp )q= cp(pq). 

2. In X a duality and therefore a scalar product are 
defined: To any vector cp is associated a dual vector 
CPt in the dual space, such that the scalar product 
cPt1/; is Hermitian symmetric, linear in the second factor, 
and antilinear in the first factor: 

cptif;= (if;tcp)Q 

CPt (if;1+1f2) = CPtif;l+ CPt1f2 

cpt(if;q) = (cptif;)q. 
We remark that 

Finally, if;tif; is definite: 

if;tif;~O, and if;tif;=O implies if;=0. 

This is consistent because qtq 2:: O. 
3. :fC is complete. 

Schwarz's Inequality 

Since in the theory of Hilbert space nearly every 
theorem depends on Schwarz's inequality, we will 
derive this relation as an example exhibiting the minor 
departure from complex Hilbert space. In fact, a careful 
handling of the scalars is all one needs. 

Consider 

Os (cpP-1fq)t( CPP-1fq) 
= pQ( cptcp)p- pQ( cptif;)q-qQ(if;tcp)P+qQ(if;tif;)q. 

Putting p= (if;tif;), q= (if;tcp), we have: 

Os if;tif;{ (if;tif;) (cpt cp) - (if;t cp) (cptif;)} 

or since (if;t!f) ~O, (cptcp)(if;tif;) 2:: (cpt,p)(if;tcp). In the 
usual way one then derives the triangle inequality, and 
the statements about continuity, continuous sequences, 
and convergence. 

Operators 

A linear operator L is a mapping of X into itself 
with the following properties 

L(cp+1f)=Lcp+Lif;; cp, if;, Lcp, L1fEX 

L(cpq) = (Lcp)q. 

(This definition is adequate for operators in finite­
dimensional spaces or for bounded operators. For 
unbounded operators a more precise specification of 
the domain of definition is necessary.) According to 
this definition of a linear operator, multiplication of a 
vector by a quaternion (from the right) is not a linear 
operator, for if we compute the effect of the transforma­
tion defined by 1f ~ 1f' =if;q upon a linear combination 

1f = CPIPI + CP2P2, 
we find 

1f ~ if;' =1fq= CPIPlq+ CP2P2q-;t. CPl' Pl+ CP2' P2. 

Instead if;'= cpj'(q-lPlq)+cp{(q-lP2q). We therefore de­
fine a colinear operator A as a correspondence of H into 
H such that 

A(cp+1f)=Acp+Aif;, 

A (if;q) = Aif;q', 

where q' is a quaternion associated with q and A. This 
just expresses the fact that A carries subspaces into 
subspaces. It may be shown that q' is a quaternion of 
the same class as q, and it will be written qA. 

Hermitian, anti-Hermitian, unitary, and normal oper­
tors are defined, respectively, through the equations 

cptHif;=(Hcp)tif;, cptAif;=-(Acp)tif; 

(U cp)t(Uif;) = cptif;, (N cp)t(Nif;) = (2Vtcp)t(Ntif;) 

for every cp, if;E3C, or 

H=Ht, A=-At, U-l=Ut, NNt=NtN. 

We note at this point an important difference in the 
relation between Hermitian and anti-Hermitian opera­
tors in the complex and the quaternionic case. In the 
former the imaginary unit i provides a unique transition 
from the Hermitian to the anti-Hermitian and vice 
versa: H =iA, A = -iH. (Moreover, in that case, 

1-iH 
U=--.) 

1+iH 

That an analogous relation in a ~ space cannot hold is 
easily seen from the fact that in an n-dimensional space 
H has 2n2 - n, but A has 2n2+n, independent ~ elements. 

However, 
U= (l-A)/(l+A) 

still holds. (In this case the numerator and the denom­
inator commute.) 
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As in a complex space, a unitary operator does not 
provide us with the most general norm-preserving 
transforma tion (isometry). 

This is given through a colinear operator Y with 

(Y cp)t(Yy,) = (cpty,V 

(cpty,)Y being a quaternion of the same class as (cpty,). 
Such an operator Y is termed co-unitary. 

Symplectic Representation 

Finally we mention (following Chevalley) a special 
representation of a ~ operator in a n-dimensional 
~ space :JC(~) through a e operator in a 2n-dimensional 
e space :JC(e). This is nothing but a straightforward 
generalization of the decomposition of a quaternion in 
an ordered pair of complex numbers. 

We introduce in both spaces an orthornormal system, 
and associate to every vector y, with components 
(Y,l" 'y,n) the vector y,. with components (Cl" 'Cn, 
d l • . ·dn ), where y,,,,= cm+i2d"" and [cm,ia]= [dm,ia]=O. 
For each operator L on :JC(~) we define L. on :JC(e) by 
L.y,.= (Ly,) •. One can easily show that the correspond­
ence y,~y,. is bi-unique, and that to every operator L 
in :JC(~) corresponds one and only one L. in :JC(e), the 
symplectic representative of L. In particular, to an 
isometry in :JC(~) corresponds an isometry in the :JC(e). 
We designate the isometry y, ---* y,i2 by K and its 
symplectic representative by K •. K. is anti-unitary. 

Let the operator J be defined so that Jy, has compo­
nents CiaY,l, i 3y,2, .. " iay",). The condition that an 
operator on :JC(~) be unitary, vt= V-I, is expressed 
for th e corresponding opera tor on :JC (e) through the 
two equations V.t=V.-l and V.TJ.Vs=J., where 
V.T means the transposed operator and J.T= -J., 
J.2= -1. This shows that the group of unitary trans­
formations in a ~ space is isomorphic to the so-called 
unitary-restricted symplectic group Sp(n) and therefore 
is simple. (The group of unitary transformations in a 
e space, as is well known, is not.) 

In order than an operator L' on:JC(e) be the symplectic 
representative of some L on :JC(~), L' = L s, it is necessary 
and sufficient that L' commute with the operator K.: 

L'K. = K.L'. (1) 

APPENDIX B. THE EIGENVALUE PROBLEM 

Defining an eigenvalue as a root of the secular 
determinant is not very convenient here, even in the 
finite dimensional case, because of noncommutativity. 
We will treat the diagonalization problems in the 
finite-dimensional case with the same means as the 
infinite dimensional, that is to say with spectral 
resolu tion techniques. The goal of this and the next 
chapter will be the theorem that every normal operator 
admits a spectral resolution. 

We give here only a short survey, concentrating on 
those points where the statements or the methods 

differ essentially from what one is used to in the complex 
case and referring the reader for the rest to the litera­
ture. We state the spectral theorems for bounded 
Hermitian, anti-Hermitian, and, finally, normal op­
erators. These theorems then will easily be extended to 
unbounded operators. 

We begin with some general theorems. 
We state without proof: The eigenvalues of a Hermi­

tian, anti-Hermitian, or unitary operator are real, pure 
imaginary, or have norm 1, respectively. Whereas 
in a e space, eigenvectors belonging to different eigen­
values are orthogonal, here we can assert only the 
following theorem: eigenvectors of normal operators be­
longing to different eigenclasses are orthogonal. 

Proof: If N cp= cpn and N cp'= cpn'(n, n' quaternions) 
and N is normal then Ntcp= cpn* and Ntcp' = cp'n*. Thus 

n*cpt(cp'n') = (cpn)t(cp'n') = cptNtN cp'= cptNNtcp' 
=ncptcp'n'. 

Thus n*qn'=nqn/* where q= cptcp'. It follows that if 
q~O, then nand n' (which can only vanish together 
then) belong to the same class. And on the other hand, 
from 

Lcp= cpa (L any linear operator) 
follows: 

Lcpq= cpaq= (cpq)q-1aq. 

Together with cp, cpr (where r is a real number) is an 
eigenvector belonging to the eigenvalue a; but cpq 
belongs to the eigenvalue q-1aq. In contrast to the 
complex case in general q-laq~a, but belongs to the 
same class. One expects, therefore, that only the class 
(i.e., the norm and the real part) of an eigenvalue might 
have an invariant meaning. We term the class of an 
eigenvalue an eigenclass. Every number in an eigenclass 
is an eigenvalue. 

If the eigenvectors belonging to the eigenclass {a} 
span a subspace ;m of dimension n, we call n the 
degeneracy of the eigenclass. It is always possible to 
span ;m with an orthogonal system of eigenvectors 
belonging to the same eigenvalue. Thi5 can be done with 
a construction analogous to the Schmidt orthogonaliza­
tion process. The choice of the orthogonal eigenvectors 
can even be made in such a way that their common 
eigenvalue involves only one arbitrarily selected 
imaginary quaternion, say ia: 

Lcpr= CP,(Xr 

(CPrtcp.)=5rs , ar=ar+bria 

ar and br real. br can even be made ;::: O. 
We now are able to state the needed spectral theorems, 

and to prove them where new features might appear. 

Hermitian Operators 

Theorem: If H is a bounded Hermitian operator, 
[that is, cptHy,=(Hcp)ty" I/Hy,I/:::;MIIy,I/J then 
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there exists a unique spectral family E>. such that 

This theorem is generalized to the quaternion case 
without any change in wording whatsoever. Even the 
proof can be literally transferred to the quaternion case. 
The numbers>.. occurring in the spectral resolution are 

. real and they commute with all quaternions. The 
essential noncommutative property of the quaternions 
has therefore no chance to make itself felt in this case. 
This is why the analogy to the case of complex spaces 
is complete. 

Anti-Hermitian Operators 

An anti-Hermitian operator A = - A t admits a 
unique spectral resolution: 

where E>. is a (unique) spectral family over the interval 
o ~>.., and J a unique operator with the properties: 

J+=-J, ]2=-E, [J,E>.] = [J,A]=O. 

In contrast to the complex case, the operator J, 
which is the appropriate generalization of i, appears 
and the integral is extended only from 0 to + 00 • 

[J,E(8)J=O, and ]2= -1 on its domain, and E(8) is 
a spectral family over the interval 0~8~1I'. 

APPENDIX C. STONE'S THEOREM IN A 
~ HILBERT SPACE 

A one-parameter group of unitary ~ operators U(t) 
can be written in the form: 

U(t)=eAt where A= lim [U(t)-EJ/t= -At. 
t-+O 

Furthermore (and here it is possible to go a step further 
than in a e Hilbert space) : 

A=7]H where [7],HJ=O, 7]2= -1, 7]t= -7], 

Ht=H, H ~O. 

This theorem can be proved with help of the symplectic 
representation. To every U (t) we can associate a 
symplectic representative U.(t) acting on JC(e), such 
that all group-relations are preserved. Stone's theorem 
(proved for e Hilbert spaces) then asserts the existence 
of 

such that 

But from 

follows 

A.= lim [U.(t)-EJlt= -A.t, 

[U.(t), K.]=O 

[A.,K.]=O. 

Therefore by (1) of Appendix A, there is an A of which 
Unitary Operators A. is the symplectic representative, and 

Every unitary transformation U in the quaternion A= lim [U(t)-E]lt. 
space admits a unique spectral resolution t-+O 

where J is a uniquely determined linear operator on 
E(1I')[1-E(+0)]V with the properties Jt= -J, 

Now: 

(Of course it is desirable to have a direct proof avoiding 
the complex.) 


