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Precise knowledge of the charge and rigidity dependence of the secondary cosmic ray fluxes and the
secondary-to-primary flux ratios is essential in the understanding of cosmic ray propagation. We report the
properties of heavy secondary cosmic ray fluorine F in the rigidity R range 2.15 GV to 2.9 TV based on
0.29 million events collected by the Alpha Magnetic Spectrometer experiment on the International Space
Station. The fluorine spectrum deviates from a single power law above 200 GV. The heavier secondary-to-
primary F/Si flux ratio rigidity dependence is distinctly different from the lighter B/O (or B/C) rigidity
dependence. In particular, above 10 GV, the F=Si

B=O ratio can be described by a power law Rδ with
δ ¼ 0.052� 0.007. This shows that the propagation properties of heavy cosmic rays, from F to Si, are
different from those of light cosmic rays, from He to O, and that the secondary cosmic rays have two classes.

DOI: 10.1103/PhysRevLett.126.081102

Fluorine nuclei in cosmic rays are thought to be
produced mostly by the collisions of heavy nuclei, such
as Ne, Mg, and Si, with the interstellar medium. Together
with the much more abundant Li, Be, and B cosmic rays,

they are called secondary cosmic rays [1]. Fluorine is the
only purely secondary cosmic ray between oxygen and
silicon [2]. Fluorine is the heaviest pure secondary cosmic
ray accurately measured by AMS.
Over the past 50 years, several experiments have

measured the fluorine flux in cosmic rays in kinetic
energy per nucleon [3–8] up to 100 GeV/n. The meas-
urement errors exceed 100% at ∼50 GeV=n (∼100 GV in
rigidity). There are no measurements of the F flux in
rigidity.
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The secondary-to-primary flux ratios of light nuclei in
cosmic rays, in particular, B/C or the more direct B/O, have
been traditionally used to study the propagation of cosmic
rays in the Galaxy [9]. In previous publications, AMS
has shown that all light secondary-to-primary ratios, Li/C,
Li/O, Be/C, Be/O, B/C, and B/O, deviate from a single
power law (harden) above 200 GV [10,11]. This strongly
favors that the hardening of all light cosmic rays is due to
propagation effects [2,9,12]. Recently, AMS has also studied
the properties of the heavy primary Ne, Mg, and Si fluxes
[13] and found that they form a separate class of primary
cosmic rays. Differences in the rigidity dependence of the F
flux and light secondary cosmic ray Li, Be, and B fluxes, as
well as differences in the rigidity dependence of light (B/O)
and heavy (F/Si) secondary-to-primary flux ratios, provide
new important insights on cosmic ray propagation.
In this Letter, we report the precise measurement of the F

flux in the rigidity range from 2.15 GV to 2.9 TV based on
0.29 million fluorine nuclei collected by AMS during the
first 8.5 years (May 19, 2011 to October 30, 2019) of
operation aboard the International Space Station (ISS). The
total flux error is 5.9% at 100 GV.
Detector.—The layout and description of the AMS

detector are presented in Refs. [11,14] and shown in
Fig. S1 of Supplemental Material [15]. The key elements
used in this measurement are the permanent magnet [16],
the nine layers, L1–L9, of silicon tracker [17–19], and the
four planes of time of flight (TOF) scintillation counters
[20]. Further information on the AMS layout, performance,
trigger, and the simulations [21,22] is detailed in
Supplemental Material [15].
Event selection.—In the first 8.5 years, AMS has

collected 1.50 × 1011 cosmic ray events. Fluorine events
are required to be downward going and to have a recon-
structed track in the inner tracker; see Fig. S2 in
Supplemental Material [15] for a reconstructed fluorine
event. Details of the event selection are contained in
Refs. [23–27] and in Supplemental Material [15].
With this selection, the background from charge-

adjacent noninteracting nuclei (O and Ne) due to the finite
AMS charge resolution is negligible, < 0.5% over the
whole rigidity range; see Fig. S3 in Supplemental Material
[15]. The main background comes from heavier nuclei,
such as Ne, Mg, and Si, which interact above tracker L2. It
has two sources. First, the background resulting from
interactions in the material between L1 and L2
(Transition Radiation Detector and upper TOF) is evaluated
by fitting the charge distribution of tracker L1 with charge
distribution templates of O, F, Ne, and Na. Then cuts are
applied on the L1 charge as shown in Fig. S4 in
Supplemental Material [15]. The charge distribution tem-
plates are obtained using L2. These templates contain only
noninteracting events by requiring that L1 and L3–L8
measure the same charge value. This background varies
from 4% to 15% depending on rigidity. Second, the

background from interactions in materials above L1 (thin
support structures made by carbon fiber and aluminum
honeycomb) has been estimated from simulation using
Monte Carlo samples generated according to AMS flux
measurements. The simulation of nuclear interactions has
been validated with data using nuclear charge changing
cross sections (Ne; Mg; Si;… → Fþ X) [22] measured by
AMS, as shown in Fig. S5 in Supplemental Material [15].
This background is estimated to be 14% at 2 GV, 18% at
100 GV, and 15% at 2.9 TV.
After all backgrounds are subtracted, we obtain

0.29 × 106 fluorine nuclei. The uncertainty due to back-
ground subtraction is 1.5% at 2 GV, 2% at 100 GV, and 6%
at 2.9 TV.
Data analysis.—The isotropic flux Φi in the ith rigidity

bin ðRi; Ri þ ΔRiÞ is given by

Φi ¼
Ni

AiϵiTiΔRi
; ð1Þ

where Ni is the number of events corrected for bin-to-bin
migration, Ai is the effective acceptance, ϵi is the trigger
efficiency, and Ti is the collection time. In this Letter, the
flux was measured in 49 bins from 2.15 GV to 2.9 TV, with
bin widths chosen according to the rigidity resolution and
available statistics.
The bin-to-bin migration of events was corrected using

the unfolding procedure described in Ref. [23]. These
corrections ðNi − ℵiÞ=ℵi, where ℵi is the number of
observed events in bin i, are þ18% at 3 GV, decreasing
smoothly to þ5% at 10 GV, −4% at 100 GV, −10% at
300 GV, and −20% at 2.9 TV.
Extensive studies were made of the systematic errors.

These errors include the uncertainties in the background
evaluation discussed above, the trigger efficiency, the
geomagnetic cutoff factor, the acceptance calculation, the
rigidity resolution function, and the absolute rigidity scale.
The systematic error on the fluxes associated with the

trigger efficiency measurement is < 1% over the entire
rigidity range.
The geomagnetic cutoff factor was varied from 1.0 to

1.4, resulting in a negligible systematic uncertainty
(< 0.1%) in the rigidity range below 30 GV.
The effective acceptances Ai were calculated using

Monte Carlo simulation and corrected for small differences
between the data and simulated events related to (a) event
reconstruction and selection, namely, in the efficiencies of
velocity vector determination, track finding, charge deter-
mination, and tracker quality cuts, and (b) the details of
inelastic interactions of nuclei in the AMS materials. The
systematic errors on the fluxes associated with the
reconstruction and selection are < 1% over the entire
rigidity range.
The material traversed by nuclei from the top of AMS

to L9 is composed primarily of carbon and aluminum.
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The survival probabilities of F nuclei due to interactions in
the materials were evaluated using cosmic ray data
collected by AMS as described in Ref. [22]. The systematic
error due to uncertainties in the evaluation of the inelastic
cross section is < 3% up to 100 GV. Above 100 GV, the
small rigidity dependence of the cross section from the
Glauber-Gribov model [21] was treated as an uncertainty
and added in quadrature to the uncertainties from the
measured interaction probabilities [22]. The corresponding
systematic error on the F flux is < 3% up to 100 GV and
rises smoothly to 4% at 2.9 TV.
The rigidity resolution function for F has a pronounced

Gaussian core characterized by width σ and non-Gaussian
tails more than 2.5 σ away from the center [24]. The
systematic error on the flux due to the rigidity resolution
function was obtained by repeating the unfolding procedure
while varying the width of the Gaussian core of the
resolution function by 5% and by independently varying
the amplitude of the non-Gaussian tails by 10% [24]. The
resulting systematic error on the flux is less than 1% below
200 GV and smoothly increasing to 7% at 2.9 TV.
There are two contributions to the systematic uncertainty

on the rigidity scale [23]. The first is due to residual tracker
misalignment. This error was estimated by comparing the
E=p ratio for electrons and positrons, where E is the energy
measured with the Electromagnetic Calorimeter and p is
the momentum measured with the tracker. It was found to
be 1=30 TV−1 [28]. The second systematic error on the
rigidity scale arises from the magnetic field map measure-
ment and its temperature corrections. The error on the F
flux due to uncertainty on the rigidity scale is < 1% up to
200 GV and increases smoothly to 6.5% at 2.9 TV.
Most importantly, several independent analyses were

performed on the same data sample by different study groups.
The results of those analyses are consistent with this Letter.
Results.—The measured F flux including statistical and

systematic errors is reported in Table SI in Supplemental
Material [15] as a function of the rigidity at the top of the
AMS detector. Figure 1(a) shows the F flux as a function of
rigidity R̃ with the total errors, the sum in quadrature of
statistical and systematic errors. In this and subsequent
figures, the data points are placed along the abscissa at R̃
calculated for a flux ∝ R−2.7 [29]. For comparison, Fig. 1(a)
also shows the AMS results on the boron flux [11]. As seen,
at high rigidities, the rigidity dependences of the F and B
fluxes are identical; at low rigidities, they are different. To
examine the rigidity dependence of the F flux, the variation
of the flux spectral index γ with rigidity was obtained in a
model-independent way from

γ ¼ d½logðΦÞ�=d½logðRÞ� ð2Þ

over nonoverlapping rigidity intervals bounded by 7.09,
12.0, 16.6, 28.8, 45.1, 175.0, and 2900.0 GV. The results are
presented in Fig. 1(b) together with the B spectral index [11].

As seen from Fig. 1(b), in the rigidity interval 175–2900 GV,
the F spectral index is similar to the B spectral index. In
particular, both fluxes harden above ∼200 GV.
To directly compare the rigidity dependence of the F flux

with that of the light secondary cosmic ray B flux [11], the
ratio of the F flux to the B flux, F/B, was computed and is
reported in Table SII in Supplemental Material [15]. To
establish the rigidity interval where the F and B fluxes may
have identical rigidity dependence, the F/B flux ratio above
7 GV has been fit with
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FIG. 1. (a) The AMS fluorine F flux multiplied by R̃2.7 with
total errors as a function of rigidity (left axis) together with the
AMS boron B flux [11] (right axis). (b) The AMS F spectral
index together with the B spectral index [11]. (c) The AMS F/B
flux ratio with total errors as a function of rigidity. The brown
curve shows the Eq. (3) fit results with χ2=d:o:f: ¼ 19=33. As
seen, above 150� 60 GV, the F/B flux ratio is compatible with a
constant.
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F=B ¼
�
κðR=R0ÞΔ; R ≤ R0;

κ; R > R0:
ð3Þ

The fit yields κ ¼ 0.078� 0.003, R0 ¼ 150� 60 GV, and
Δ ¼ 0.083� 0.007 with χ2=d:o:f: ¼ 19=33. Figure 1(c)
shows the AMS F/B flux ratio as a function of rigidity with
total errors together with the fit results. As seen, above
150� 60 GV, the rigidity dependences of the F and B
fluxes are identical, and at lower rigidities they are
different. As shown in Fig. S6 in Supplemental Material
[15], the F/B ratio does not change with time from 5 to
20 GV; i.e., solar modulation of the F/B flux ratio does
not affect the fit results with Eq. (3). Note that fitting
the F/B ratio with Eq. (3) above 20 GV does not
change the fit results. Above 20 GV, the fit yields
κ ¼ 0.078� 0.003, R0 ¼ 145� 65 GV, and Δ ¼ 0.084�
0.014 with χ2=d:o:f: ¼ 16=21.
Figure 2 shows the AMS fluorine flux as a function of

kinetic energy per nucleon EK together with earlier
measurements [3–7]. Data from other experiments have
been extracted using Ref. [30].
To compare the rigidity dependence of the F flux with

that of the Ne, Mg, and Si primary cosmic ray fluxes, which
have an identical rigidity dependence above 80.5 GV [13],
the ratio of the F flux to the characteristic heavy primary Si
flux, F/Si, was computed and is reported in Table SIII in
Supplemental Material [15]. Figure S7 in Supplemental
Material [15] shows the AMS F/Si flux ratio as a function
of kinetic energy per nucleon together with earlier
measurements [3–7]. Figure 3(a) shows the AMS F/Si flux
ratio as a function of rigidity together with the AMS B/O
flux ratio [11].

The variation with rigidity of the spectral index Δ of the
F/Si flux ratio was obtained by fitting it with

�
CðR=175 GVÞΔ1 ; R ≤ 175 GV;

CðR=175 GVÞΔ2 ; R > 175 GV:
ð4Þ

over the rigidity interval [28.8–2900] GV. The fit yields
CF=Si ¼ 0.044� 0.001, ΔF=Si

1 ¼ −0.34� 0.02, and
ΔF=Si

2 ¼ −0.19� 0.07 with χ2=d:o:f: ¼ 13=16. Above
175 GV, the spectral index ΔF=Si exhibits a hardening
(ΔF=Si

2 − ΔF=Si
1 ) of 0.15� 0.07, compatible with the AMS

result on the hardening of the Li/C, Be/C, B/C, Li/O, Be/O,
and B/O flux ratios by 0.140� 0.025 [10,11]. To ensure
that the choice of the inflection point of 175 GV does not
affect the fit results, we allowed the inflection point to
vary. The results are in complete agreement with results
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FIG. 3. (a) The AMS F/Si flux ratio (red dots) and AMS B/O
flux ratio (blue dots) as a function of rigidity with total errors. For
display purposes only, the F/Si and B/O flux ratios are multiplied
by R̃0.3 and the B/O flux ratio rescaled as indicated. The solid
brown and blue curves show the F/Si and B/O fit results with
Eq. (4), respectively. The dotted and dashed red curves show the
predictions of the F/Si ratio by the GALPROP model [31] and
the GALPROP-HELMOD model [2], respectively. (b) The AMS
½ðF=SiÞ=ðB=OÞ� ratio as a function of rigidity with total errors.
The solid blue curve shows the fit results of Eq. (5). As seen, the
rigidity dependence of the F/Si and B/O flux ratios are distinctly
different. Above 10 GV, the ½ðF=SiÞ=ðB=OÞ� ratio can be
described by a single power law ∝ Rδ with δ ¼ 0.052� 0.007
(a 7σ difference from zero).
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of Eq. (4); see Supplemental Material [15] for details.
Figure 3(a) also shows the AMS F/Si fit results with
Eq. (4) together with the predictions of the cosmic ray
propagation model GALPROP [31] and of the latest
GALPROP-HELMOD model [2] on the F/Si flux ratio and the
AMS B/O fit results with Eq. (4), CB=O ¼ 0.097� 0.003,
ΔB=O

1 ¼ −0.405� 0.005, and ΔB=O
2 ¼ −0.26� 0.03 with

χ2=d:o:f: ¼ 24=36.
To compare the rigidity dependence of the F/Si flux ratio

with the lighter secondary-to-primary B/O flux ratio in
detail, the ½ðF=SiÞ=ðB=OÞ� ratio was computed and shown
in Fig. 3(b). Over the entire rigidity range, ½ðF=SiÞ=ðB=OÞ�
can be fitted with

F=Si
B=O

¼
�
kðR=R0Þδl ; R ≤ R0;

kðR=R0Þδ; R > R0:
ð5Þ

The fit yields k ¼ 0.39� 0.01, R0 ¼ 9.8� 0.9 GV,
δl ¼ −0.055� 0.013, and δ ¼ 0.052� 0.007 with
χ2=d:o:f: ¼ 24=45. As seen, the rigidity dependences of
the F/Si and B/O flux ratios are distinctly different. Most
importantly, the latest AMS result shows that above 10 GV
the ½ðF=SiÞ=ðB=OÞ� ratio can be described by a single
power law ∝ Rδ with δ ¼ 0.052� 0.007 (a 7σ difference
from zero). This shows, unexpectedly, that the heavier
secondary-to-primary F/Si flux ratio rigidity dependence is
distinctly different from the lighter B/O (or B/C) rigidity
dependence, indicating that the propagation properties of
heavy cosmic rays, from F to Si, are different from those of
light cosmic rays, from He to O.
As shown in Fig. S8 in Supplemental Material [15], the

½ðF=SiÞ=ðB=OÞ� ratio does not change with time below
20 GV; i.e., solar modulation on the ½ðF=SiÞ=ðB=OÞ� ratio
does not affect the fit results with Eq. (5).
From the results of Eq. (5) and of the Si/O flux ratio

rigidity dependence above 86.5 GV [13], we expect F=B ¼
½ðF=SiÞ=ðB=OÞ� × ðSi=OÞ ∝ R0.012�0.013 or that F/B is
compatible with a constant at high rigidities, > 86.5 GV.
This is indeed what is observed, as shown in Fig. 1(c).
Figure 4 shows the rigidity dependence of the F flux

together with the rigidity dependence of the two primary
classes He, C, and O and Ne, Mg, and Si and the rigidity
dependence of the light secondary Li, Be, and B cosmic ray
fluxes above 30 GV [11]. As seen, the rigidity dependence
of the F flux is different from the rigidity dependence of Li,
Be, and B. This shows that the secondary cosmic rays also
have two classes but that the rigidity dependence of the two
secondary classes is distinctly different from the rigidity
dependence of the two primary classes.
In conclusion, we have presented the precision meas-

urement of the F flux as a function of rigidity from 2.15 GV
to 2.9 TV, with detailed studies of the systematic errors.
The fluorine spectrum deviates from a single power law
above 200 GV. The heavier secondary-to-primary F/Si flux
ratio rigidity dependence is distinctly different from the

lighter B/O (or B/C) rigidity dependence. In particular,
above 10 GV, the ½ðF=SiÞ=ðB=OÞ� ratio can be described by
a power law Rδ with δ ¼ 0.052� 0.007, revealing that the
propagation properties of heavy cosmic rays, from F to Si,
are different from those of light cosmic rays, from He to O.
This shows that the secondary cosmic rays also have two
classes but that the rigidity dependence of the two secon-
dary classes is distinctly different from the rigidity depend-
ence of the two primary classes. These are new and
unexpected properties of cosmic rays.
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