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1. INTRODUCTION

Modeling properties of chemical species and chemical reactions
requires usually the quantum-mechanical level of description.
Approximated methods to solve the electronic Schrödinger
equation are indispensable for obtaining data concerning
electronic states. Methods from the ever-growing toolbox of
quantum chemistry1,2 are used for this purpose. Due to
unfavorable scaling of quantum chemistry methods, a com-
promise must be made between the accuracy of the numerical
results and the size of the system described at the wavefunction
level. Chemistry rarely concerns small molecules in vacuum, i.e.,
systems for which the first-principles based quantum chemistry
methods are capable to predict molecular properties with
accuracy matching that of experimental measurements. The
size of systems, for which experiments are made (liquid phase,
surfaces, solids, biomolecules, supramolecular complexes, etc.),
excludes usually the straightforward use of the high-accuracy
quantum chemistry methods (see refs 3 and 4 for instance).
Frequently, it is known in advance that the properties of the
investigated system are mainly determined by a small part of the
whole system. The explicit quantum mechanical descriptors are,
therefore, needed only for the relevant part, whereas the rest of
the real system is considered as the source of a small
perturbation. It has been long recognized that it is inefficient
to apply quantum mechanical descriptors for the entire systems
in such cases. Alternatives to the use of wavefunction level of
description to the whole large systems have been developed over
the years. They are known under such names as QM/MM,
hybrid methods, embedding methods, etc. For an overview of
such methods in various fields, see the specialized reviews in the
present issue or past reviews such as the ones in refs 5−11. In
such methods, the environment is represented by means of
system specific parameters (electric charges, polarizabilities,
atomic potentials) or a polarizable continuum dielectric (PCM12

and COSMO13). Embedding methods are especially successful
in simulations of biomolecular systems as evidenced by the 2013
Nobel Prize in Chemistry for Martin Karplus, Michel Levitt, and
Arieh Warshel.
The key element in the embedding methods is the embedding

operator generated by the environment which affects the
embedded wavefunction. It provides coupling between the
quantum-mechanical descriptors (embedded orbitals or embed-

ded wavefunction, for instance) and the environment. This
operator comprises usually the classical component, i.e., the
electrostatic potential generated by the environment, and a
component due to the Fermion nature of electrons which has the
form of a nonlocal operator. In the pseudopotential theory by
Phillips and Kleinman,14 formulated originally for separating
core and valence electrons, the exact pseudopotential is
constructed using projector operators assuring orthogonality
between frozen and nonfrozen orbitals. The same strategy can be
extended for separating molecular fragments or molecules.
Nonlocal embedding operators based on either transferrable
pseudopotentials or frozen orbitals obtained from localization
procedures have been developed inmany groups.15−32Molecular
nonlocal pseudopotentials are frequently further approximated
by means of local potentials. The simplest approximation is to
neglect the nonelectrostatic component of the embedding
potential entirely. It is a common strategy in QM/MM
simulations for both molecular33 and solid state systems34

especially if the localized basis sets are used for the embedded
systems. The nonelectrostatic contributions to the energy of the
total system due to the environment are frequently added a
posteriori. This approximation breaks entirely with the increase
of the range of the used basis sets.34−37 The local embedding
potentials comprising also the nonelectrostatic contributions are
introduced based on various guiding principles (see refs 35 and
38−43 for instance). Local embedding potentials are usually
interpreted as approximations to the more accurate embedding
operator which is a nonlocal pseudopotential. The essential
feature of all such local potentials is that they comprise a
component which takes into account the intermolecular Pauli
repulsion. In the absence of such component, the embedding
operator is reduced to the electrostatic potential which results in
numerical instabilities.
A different perspective on the local embedding potentials was

given byWesolowski andWarshel44 in 1993, who formulated the
foundation of the exact theory of local embedding potentials
(frozen-density embedding theory, FDET).44−46 In FDET, the
local potential is not an approximated quantity, but it is the exact
potential associated with constrained optimization of the
electron density of the total system, whereas the embedded
wavefunction is rather an auxiliary quantity used to optimize the
density of the embedded subsystem. This represents the shift of
the target, from the embedded orbitals in the pseudopotential
theory to embedded density in FDET as well as the change of the
fundamental descriptor of the environment, from frozen orbitals
to frozen density. As a result, the exact pseudo wave-function and
the exact embedded wavefunction in FDET might differ as
demonstrated in the analytically solvable case studied in refs 47
and 48. The FDET embedding potential was given the form of a
universal functional of charge densities. The FDET embedding
potential is expressed using density functionals for the exchange-
correlation and noninteracting kinetic energies (Exc[ρ] and
Ts[ρ], respectively) known in the Kohn−Sham formulation49,50

of density functional theory (DFT).51 Casting the local
embedding potential into the form of a functional, which
depends on charge densities, made it possible to develop such
computational methods in which only charge-densities are used
as descriptors of the environment. Such formulation of the
embedding problem makes it possible to combine the quantum-
mechanical level of description for embedded system with any
model based on physical laws which yields the electron density.
Note that electron density is a well-defined quantity at any scale
(even macroscopic), and it can be measured experimentally.
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FDET is related to subsystem DFT52 and partition DFT,53,54

which are alternative formulations of DFT, i.e., they yield the
exact energy and electron density of a given quantum system.
The local embedding potential determined by electron densities
of individual subsystem is used in all of them. Seen as alternative
formulations of density functional theory, these formalisms form
a hierarchy. Partition DFT is the most general one. Besides the
capacity of reaching the exact electron density and energy of the
total system, it provides a meaningful partitioning of the total
density. Subsystem DFT is also designed to reach the exact
density and energy but lacks the capacity of partitioning the
density into meaningful components. Unique partitioning
obtained in practical simulations is the result of using
approximations used for the nonadditive kinetic energy func-
tional (defined in eq 12). Partition DFT and subsystem DFT
formalisms take as an input the external potential and the total
number of electrons and yield (a) exact ground-state energy, (b)
exact ground-state electron density, and (c) auxiliary quantities
such as orbitals for subsystems and their occupancies (integer in
case of subsystem DFT and fractional in case of partition DFT).
FDET on the other hand, concerns other situations. The input
quantities are the external potential, the number of electrons in
the selected subsystem (denoted as NA in the present review),
but also a non-negative function denoted with ρB(r)⃗ in the
present review. The output quantities, the optimal density of the
total system, the corresponding minimal energy, and auxiliary
quantity (embedded wavefunction), satisfy an additional
constraint (∀r ⃗ ρ(r)⃗) ≥ ρB(r)⃗). In this review, we refer to the
quantities obtained with these conditions as exact. FDET
equations (eqs 3-8 in the present work) hold for any arbitrarily
chosen ρB(r)⃗, but the FDET energy can lie above the ground-
state energy of the whole system. The quality of the obtained
results depend on the chosen ρB(r)⃗. One of possible choices is to
use optimized ρB(r)⃗. If the embedded subsystem is described by
means of the reference system of noninteracting electrons in
FDET and optimized ρB(r)⃗ is used, FDET and subsystem DFT
yield the same total energy and electron density. Such
minimization is usually performed by means of the freeze-and-
thaw procedure.55 It is worthwhile to point out that FDET is
formulated not only for the Kohn−Sham type of description of
the embedded subsystem44 but also for the explicitly interacting
Hamiltonians.45

As far as setting up a FDET based multiscale numerical
simulation is concerned, the situation is similar as in any method
of the QM/MM type. In both cases, choices must be made
concerning (a) the selection of the subsystem to be described by
means of the embedded wavefunction and (b) descriptors for the
environment. In QM/MM, descriptors such as electric multipole
moments, polarizabilities, pair potentials of atoms/molecules in
the environment, etc. are used, whereas it is ρB(r)⃗ in FDET. Any
observable quantity derived from the embedded wavefunction
obtained in FDET is a functional of the electron density
associated with the environment. In particular, the FDET energy
is an upper bound of the total energy. The quality and usefulness
of observable quantities derived from the embedded wave-
function depend on the user-decided choice made for ρB(r)⃗. This
dependence allows the user to verify the quality of the obtained
results through the analysis of their sensitivity to variations of
ρB(r)⃗.
The formal frameworks of subsystem DFT and partition DFT

can also be used as a basis for multilevel simulations if different
approximations of fundamental nature (density functionals) or
technical character (localization and quality of the basis sets) are

used for different subsystems. Such calculations involve never-
theles the wavefunction-level of description for each subsystem
including the environment. FDET concerns more general
situations in which wavefunction level of description for the
environment is not available at all. Besides models in which ρB(r)⃗
is obtained from some lower level quantum mechanical methods
as it is made in subsystem DFT or partition DFT, it makes it
possible to combine any model based on laws of physics, which
yields electron density, with a quantum-mechanical level of
description for the embedded species. In summary, subsystem
DFT or partition DFT are alternative formulations of quantum
many body problem within the Born−Oppenheimer approx-
imation, whereas FDET provides a universal formal framework
besides any empirical QM/MM type of method using local
embedding potential.
Another strategy to obtain a local, density-dependent

embedding potential follows the common scheme to compen-
sate errors in energy of approximate methods in quantum
chemistry, such as the ONIOM strategy known under the name
introduced by Morokuma and collaborators.56 Carter and
collaborators57,58 used the ONIOM strategy which resulted in
an ad hoc combination of the local embedding potential
introduced by Wesolowski and Warshel for multilevel simu-
lations with conventional methods of quantum chemistry (see ref
59 for the most recent overview). Such combination uses also
local, charge-density dependent embedding potential. It
corresponds, however, to the change of independent variables
for the whole system. In FDET it is the embedded wavefuncion
and ρB(r)⃗, whereas it is the embedded wavefunction and the
approximated wavefunction of the whole system in ONIOM.
The change of the independent variables puts such methods
beyond the scope of FDET because other descriptors for the
environment than just its density are used. The success of this
combination resulted in great interest in density based
embedding methods. Significant further developments by
many researchers followed. They concerned understanding the
underlying theory, the applicability of the approximations for the
density functionals in FDET, applications of FDET for
evaluation of properties, and efficient numerical implementa-
tions. Extensions going beyond FDET were proposed.
The aim of the present review is to overview these

developments. We use FDET as a common formal framework
for: (a) development of approximated methods, (b) interpreta-
tion of approximations made in practice, (c) interpretation of the
results obtained using approximated methods, and last but not
least, (d) beyond-FDET formalisms or related approaches using
also the embedding potential of the FDET form but requiring
other descriptors for the environment besides ρB(r)⃗.
In section 2, the formal framework of FDET approach to the

embedding problem is provided. The key quantities are defined
and discussed. Interpretation of some quantities closely related
to similar ones known in multilevel simulation methods is
provided. Section 3 concerns beyond-FDET formalisms which,
share with FDET the use of the FDET form of the embedding
potential. Approximations used in practical calculations are
overviewed in Section 4. Application of methods based on FDET
and/or its extensions for modeling spectroscopic properties of
embedded species (UV/vis, CD, ESR, NMR, etc.) as well as
properties of the potential energy surfaces (interaction energies,
geometries, transition states, and vibrational frequencies). Such
applications of FDET are overviewed in section 5. Although the
present review concerns principally the multilevel simulations
using the formal framework of FDET, i.e., methods in which the
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environment is described by means of some arbitrarily chosen
density ρB(r)⃗ and the embedded wavefunction is obtained from
the Euler−Lagrange equations featuring a charge-density
depended universal density functional, applications of other
subsystem based methods sharing with FDET the form of local
embedding potential are also included. The present review
complements the one made by one of us published in 200660 or
by others such as that by Neugebauer,61 Gomes and Jacob,62

Jacob and Neugebauer,63 and Bendavid and Carter.64 The
reviews authored by Neugebauer and Jacob, especially the recent
one,63 cover large class of methods sharing with FDET the use of
local embedding potentials approximated as density functionals.
The acronyms and abbreviations used for formalisms, approx-
imations, and numerical algorithms discussed in the present
review are collected in the Appendix.
Throughout the present review, we try to make a clear

distinction between the discussed formalisms (Kohn−Sham
DFT, subsystem DFT, partition DFT, and FDET) and
approximated methods based on these formalisms which are
used in computational practice. In the exact formulation, these
formalisms represent different strategies to obtain the ground-
state electron density and energy of the whole system (case of
Kohn−Sham DFT, subsystem DFT, and partition DFT) or the
optimal density and energy in the presence of a given constraint
imposed on the electron density (case of FDET). The quantities
used to optimize the total energies such as embedded
wavefunctions and the corresponding eigenvalues have different
interpretations in each of them. In numerical practice, on the
other hand, applying particular set of additional approximations
may lead to similar working equations. We hope that this
perspective will allow both the readers interested in foundations
and interpretation of quantities obtained in practical simulations
and the ones interested in applications and numerical
implementations to be able to find easily the sections covering
issues of their interest. In view of large amount of methods
developed in the recent years, which share with FDET the use of
a charge-density dependent universal embedding potential,
giving a full account on all possible approximations used in
such simulations seems impossible. For this reasons, the
description of the numerical implementation issues of the
discussed equations is also limited to the minimum.
Finally, we would like to specify what the reader cannot find in

the present review. All considerations (exact theory, approx-
imations, and applications) concern cases where the Born−
Oppenheimer approximation is applicable, the temperature of
electrons is 0 K, and approximations concern the Hamiltonian or
density functionals and do not involve modification of the
external potential. Such subsystem based approaches, which do
not use local charge-density dependent local potential to couple
subsystems but more complicated operators (see refs 65−68 for
instance), are not covered in the present review. The present
review focuses on methods in which the embedding operator is a
local potential and in which this potential is approximated by
some density functionals, i.e., methods which retain the basic
mathematical structure of FDET. For multilevel simulation
methods going beyond the scope of FDET, the reader may wish
to consult some of the recent reviews on fragmentation methods
such as the ones collected in a special issue of Accounts of
Chemical Research published in 2014 (vol. 47 issue 9), the
comprehensive review by Gordon et al.,69 or other articles in the
present issue of Chemical Reviews.

2. FROZEN-DENSITY EMBEDDING THEORY

2.1. Statement of the Problem: Basic Equations

Frozen-density embedding theory44,45,60 concerns the treatment
of a many-electron systems described within the Born−
Oppenheimer in the presence of a given in advance constraint
imposed on the total electron density (∀r ⃗ ρ(r)⃗ ≥ ρB(r)⃗). It is
rooted in Hohenberg−Kohn−Sham−Levy density functional
theory, from which it borrows the following elements: (a) the
two Hohenberg−Kohn theorems,51 (b) the constrained search
definition of density functionals for components of the total
energy,50 (c) the reference system of noninteracting electrons,49

and (d) effective potentials which are functionals of the electron
density.49 In density functional theory, the exact ground state
energy (Eo) for a quantum system comprisingNAB electrons in an
external potential vAB(r)⃗ is obtained from the Hohenberg−Kohn
variational principle for the density functional of the ground-state
energy (EvAB

HK[ρ]):

∫
ρ ρ= =

ρ ⃗ ⃗=
E E Emin [ ] [ ]

r r N
v vo

( )d

HK HK
o
AB

AB
AB AB

(1)

where ρo
AB(r)⃗ is the exact ground-state density.

In FDET, the optimization of the density is subject to an
additional constraint: ρ(r)⃗ ≥ ρB(r)⃗, where ρB(r)⃗ is an arbitrarily
chosen non-negative function integrating to less that NAB.

∫

ρ ρ ρ= =
ρ ρ

ρ
∀ ⃗ ⃗ ≥ ⃗

⃗ ⃗=

E E E[ ] min [ ] [ ]
r r r

r r N

v v
FDET

B ( ) ( )

( )d

HK HK
AB
FDET

B

AB

AB AB

(2)

Equations 1 and 2 show clearly that Eo and EFDET[ρB] can be
the same only for particular choices for ρB(r)⃗. On the virtue of the
second Hohenberg−Kohn theorem, the two energies can be the
same only if ρB(r)⃗ is never larger than the exact ground-state
electron density of the total system (ρo

AB(r)⃗). For formulations
related to FDET, which target the exact ground-state energy of
the total system, see section 3.1. The condition ∀r ⃗ ρ(r)⃗ ≥ ρB(r)⃗
can not be assured in practice, i.e., without knowing the exact
ground-state density of the whole system (ρo

AB(r)⃗). As a result,
ρAB
FDET(r)⃗ might differ from ρo

AB(r)⃗ and EFDET lies above Eo. FDET
is an approximate formulation of quantum many-body problem
conceived from the start to be used in combination with system-
dependent approximations as is any other embedding method
for multiscale simulations. Practical applicability of this
formulation hinges on the nature of the problem under
investigation restricting its use to such cases where some
information about electron density of the total system is known
in advance.
For the sake of further considerations, eq 2 can be equivalently

written as

∫

ρ ρ ρ ρ ρ= + = +
ρ

ρ
∀ ⃗ ⃗ ≥

⃗ ⃗=

E E E[ ] min [ ] [ ]
r r

r r N

v v
FDET

B ( ) 0

( )d

HK
A B

HK
A
opt

B
A

A A

AB AB

(3)

where NA = NAB − ∫ ρB(r)⃗ dr.⃗
In principle, various methods can be envisaged to perform the

search for the optimal density (ρA
opt(r)⃗). The straightforward

approach to optimize ρA(r)⃗ would follow the Thomas and Fermi
ideas,70,71 which lie at the origin of modern orbital-free DFT
methods (see the review by Wang and Carter72 and the recent
book edited by Wesolowski and Wang73). In view of limited
applicability of current orbital-free DFT methods, such an
approach to eq 2 will not be considered here. In FDET, following
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the spirit of density functional theory, an auxiliary quantity, the
embedded wavefunction (ΨA

emb), is used to perform the search
for ρA

opt(r)⃗. The search is performed not directly, i.e., among
densities, but among embedded wavefunctions, opening thus the
possibilities to use methods of modern quantum chemistry in
order to optimize ΨA

emb. For any trial embedded wavefunction,
the corresponding embedded density can be trivially obtained as
the expectation value of the density operator ρ̂(r)⃗

ρ ρ⃗ = Ψ | ̂|Ψr( )A A
emb

A
emb

(4)

In FDET, the optimal embedded wavefunction is obtained by
means of solving the Euler−Lagrange equation:

δ ρ

δ
λ

Ψ
Ψ

− Ψ =
E [ , ]

0AB
EWF

A
emb

B

A
emb A

emb

(5)

where EAB
EWF[ΨA

emb,ρB]is the total energy expressed as a functional
depending onΨA

emb and ρB(r)⃗, where λ is the Lagrange multiplier
associated with the normalization of the embedded wave-
function.
Below, the energy functional EAB

EWF[ΨA
emb,ρB] is given in the

form adopted for multilevel simulations. To this end, the total
external potential is partitioned into two components vAB(r)⃗ =
vA(r)⃗ + vB(r)⃗ corresponding to the embedded subsystem (A) and
the environment (B). Such partitioning defines a quantum
system of NA electrons in the external potential vA(r)⃗ with the
corresponding Hamiltonian (ĤA). FDET admits various treat-
ments of electron−electron interactions in ĤA: (a) interacting,
where the electron−electron repulsion is taken into account
explicitly as in conventional wavefunction based methods of
quantum chemistry, (b) noninteracting as in Kohn−Sham based
methods, or (c) partially interacting as in the ”beyond-Kohn−
Sham” formulations of DFT such as the ones based on adiabatic
connection74−76 or DFT formulation using multideterminantal
auxiliary wavefunctions.77 Using the density functionals
borrowed from the Kohn−Sham formulation of DFT:
exchange-correlation energy (Exc[ρ]) or kinetic energy in a
reference system of noninteracting electrons (Ts[ρ]) defined in
the Levy constrained search,50 the FDET functional for the total
energy reads:

∫ ∫ ∫

∫

ρ ρ

ρ
ρ ρ

ρ ρ ρ ρ

ρ ρ

Ψ = ⟨Ψ | ̂ |Ψ ⟩+Δ

+ ⃗ ⃗ ⃗ +
⃗ ′⃗

| ⃗ − ′⃗|
′⃗ ⃗

+ +

+ + ⃗ ⃗ ⃗

E H F

r v r r
r r

r r
r r

T E

E r v r r

[ , ] [ ]

( ) ( )d
( ) ( )

d d

[ , ] [ , ]

[ ] ( ) ( )dv

AB
EWF A

B
A

A
A SC

A

A B
A B

s
nad

A B xc
nad

A B

HK
B B AB (6)

where (a) Exc
nad[ρA,ρB] = Exc[ρA + ρB] − Exc[ρA] − Exc[ρB], (b)

Ts
nad[ρA,ρB] = Ts[ρA + ρB] − Ts[ρA] − Ts[ρB], and (c) ΔFSC[ρA]

denotes a contribution to the total energy which depends on the
form of the embedded wavefunction and the Hamiltonian ĤA
(see below).
Note that, despite the fact that ĤA might denote either the

interacting or noninteracting Hamiltonians, the functionals
defined for the noninteracting system (Kohn−Sham system)
are used in the above expression. Owing to this “step back” in
FDET, the embedding operator can be represented as a
multiplicative operator (embedding potential).
The necessary condition for ΨA

emb to satisfy eq 5 is

̂ + ̂ Ψ = ϵΨH v( ) b
A emb A

emb
A
em

(7)

where vêmb is an “embedding operator”.
Subject to the condition of v-representability of the optimal

density ρA
opt(r)⃗ (see section 2.2.5), FDET provides a system-

independent expression for the embedding operator as a
potential. The FDET embedding potential is a functional of
two electron densities (ρA(r)⃗, ρB(r)⃗) and the electron density
independent potential generated by the environment vB(r)⃗:
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It is worthwhile to notice the applied notation for the embedding
potential vemb. An equivalent notations for this functional could
read either vemb[ρA,ρB,ρB

pos](r)⃗, which reflects the fact that the
external potential is generated usually by positive charges of the
nuclei or just vemb[ρA,ρB;r]⃗(r)⃗ indicating its explicit position
dependence due to vB(r)⃗. For the sake of generality, we do not
use the shorthand notation vemb[ρA,ρB](r)⃗ which is used
frequently in the literature (including our own works). The
shorthand notation carries a silent assumption that all
considerations concern fixed partitioning of the total external
potential into its components vA(r)⃗ and vB(r)⃗. With the notation
used in the present review, eq 8 becomes an equation for
functionals and not for particular functions.
Throughout this work, we will refer to the formal framework

defined by eqs 3−8 as frozen-density embedding theory. The
formulas given so far are general. They hold for any variational
principle based method used to solve eq 7 including either the
Kohn−Sham framework, in which the Hamiltonian does not
comprise the explicit electron−electron interaction, or any
wavefunction-based method treating electron−electron inter-
action explicitly (Hartree−Fock, complete active space self-
consistent field78,79 (CASSCF), truncated or full configuration
interaction (CI) type of methods of quantum chemistry,3,4 for
instance). In fact, the extension for FDETwas formulated also for
the case of using embedded spin-less reduced one-particle
density matrix.46 In view of lack of practical applications of this
extension, it will not be discussed further here.
Turning back to the ΔFSC[ρA] functional, it is defined

differently depending on the treatment of electron−electron
correlation in ĤA. In the case of the embedded Kohn−Sham
system,49 i.e., implicit treatment of electron−electron correlation
by means of an effective potential, veff

KS[ρA](r)⃗, it is defined as

∫ ∫
∫

ρ ρ ρ ρ

ρ ρ

Δ = ⃗ ′⃗
| ⃗ − ′⃗|

′⃗ ⃗ +

− ⃗ ⃗ − ⃗ ⃗

F
r r

r r
r r E

r v r v r r

[ ]
1
2

( ) ( )
d d [ ]

( )( [ ]( ) ( ))d

SC(KS)
A xc A

A eff
KS

A A (9)

The functional derivative (δΔFSC(KS)[ρA]/δρA(r)⃗) disappears by
construction but the term ΔFSC(KS)[ρA] provides a nonzero
contribution to the total energy functional given in eq 6. As a
result, the expectation value of the noninteracting Hamiltonian
(Kohn−Sham) (⟨ΨA|ĤKS

A|ΨA⟩) is not equal to the energy
EvA

HK[ρA]. We introduced a descriptive term, Kohn−Sham
equations with constrained electron density (KSCED),55 for the
FDET equations in the case of embedding a noninteracting
system in a frozen density (eqs 20−21 in ref 44 or eqs 43−45 in
the present work). This acronym is also used in the literature (see
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refs 80−83). The approximate version of eq 43, in which the
exact functionals Ts

nad[ρA,ρB] and Exc[ρ] are replaced by their
approximated counterparts, for the use in simulations, is the same
as the ones in the method by Senatore and Subbaswamy.84 In the
approximated case, the obtained energy may obviously lie below
the exact ground-state energy. Moreover, the localization of the
embedded orbitals is not only the result of constrained
optimization of the total energy but reflects also errors in the
used approximation to Ts

nad[ρA,ρB] (see section 4.1). Note also a
possible confusion with the term constrained DFT coined by an
Voorhis et al.85,86 It also concerns constraints imposed on
Kohn−Sham density (enforcing a particular charge occupancy
on selected parts through a strong constraint C[ρ] = 0) with the
constraint in FDET which is soft (∀r ⃗ ρ(r)⃗) ≥ ρB(r)⃗).
In the case of explicit treatment of the electron−electron

correlation in ĤA as in traditional variational methods of
wavefunction based quantum chemistry methods (WFT), the
role of the ΔFSC[ρA]term is different.
The ΔFSC(WFT)[ρA] term is defined by means of the

constrained search:

ρΔ = ⟨Ψ | ̂ + ̂ |Ψ ⟩

− ⟨Ψ | ̂ + ̂ |Ψ ⟩

ρ

ρ

Ψ →

Ψ →

F T V

T V

[ ] min

min

N N

N N
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A A 2 2

ee
A

A
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2 2
ee

A
WF

A A
A A

A
WF

A
A A (10)

whereΨA
WF indicates a trial function used in the search procedure

of the form admissible in the used wavefunction based method,
whereas ΨA is a trial wavefunction from the wider class of
functions comprising all v-representable densities.50,87 ΨA

WF can
take any form used in variational-principle conventional
wavefunction methods of quantum chemistry (see the textbooks
by Szabo and Ostlund,3,4 and by Helgaker, Olsen, and
Jorgensen,4 for instance) starting from as simple as a single
determinant (ΨA

SD) in the Hartree−Fock method, through the
forms in CASSCF or truncated CI methods, until the one in full
(CI) calculations.
ΔFSC(WFT)[ρA] is nonpositive, and it is bound from below by

ρΔ = ⟨Ψ | ̂ + ̂ |Ψ ⟩

− ⟨Ψ | ̂ + ̂ |Ψ ⟩

ρ

ρ
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A
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A A
A A

A
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A
A A (11)

ΔFSC(SD)[ρA] is just the correlation functional as introduced by
Baroni and Tuncel88 for treatment of correlation in generalized
Kohn−Sham framework using exchange energy evaluated using
100% of exact exchange (the idea mentioned already in the
original Kohn−Sham publication49). The zero value is reached
only in the limit of the embedded wavefunction of the full CI
form. For truncated CI forms of the embedded wavefunction, the
numerical values of this functional lie between the two limits.
Since theΔFSC(WFT)[ρA] functional depends on ρA(r)⃗ only (no

contribution from either ρB(r)⃗ or vB(r)⃗), it is a matter of
convention to consider it as an error in correlation energy for
truncated CI type of methods or to relate it to embedding (see
the relevant discussion in ref 62). Numerical tests show that this
term can bemost likely neglected in practice because of the use of
other approximations leading to larger errors.89 It is worthwhile
to mention here the DFT formulation by Savin77 (for further
recent formal developments see ref 90), where the electron−
electron interactions are represented in ĤA in a hybrid way
(explicitly or implicitly depending on the range). Accurate
numerical data indicate that limiting the orbital space can be

efficiently compensated by a density functional.91 The
interpretation of the ΔFSC[ρ] functional lies between that in
two extreme model situations: that of Kohn−Sham formulation
where the search in orbital space is limited to single-determinants
andΔFSC[ρ] is needed to obtain exact energy expression and that
in a full CI) where such term is not needed at all.
Finally, we note that it is not the total energy, which is the

target of FDET based simulations, but the difference between the
total energy and the energy of the subsystem B. Once the external
potential is partitioned into its vA and vB components, the latter is
given as HvA

HK[ρB] which is constant if ρB(r)⃗ is frozen. If the
investigated process involves changes in the charge densities in
the environment, the corresponding changes in energy are not
derived from FDET but from the method chosen to describe the
environment: using atomic potentials in QM/MM methods,
energy obtained from lower quality quantum mechanical
method, using optimized orbitals obtained in subsystem DFT
calculations, for instance.

2.2. More on Key Features of FDET

In this section, the key quantities of FDET are discussed in more
detail. We focus on their interpretation and relations with
notions known in methods for multilevel simulations.

2.2.1. Nonadditivity of the Density Functional for the
Kinetic Energy. The bifunctional Ts

nad[ρA,ρB]is defined using
the constrained search procedure:

ρ ρ

ρ ρ ρ ρ

ρ ρ

ρ ρ
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(12)

where Ψs denotes an N-electron single-determinant trial
wavefunction.
The constrained search definition of Ts

nad[ρA,ρB] shows clearly
why this bifunctional can be nonzero despite the fact that, for
determinants constructed using a common set of orthogonal
orbitals, the kinetic energy is strictly additive. The three
constrained searches for the optimal wavefunctions used in the
definition ofTs

nad[ρA,ρB] are independent and lead to three sets of
orthogonal orbitals. The orbitals from different sets might,
however, be nonorthogonal.
For the pair ρA(r)⃗ and ρB(r)⃗, which are constants (uniform

electron gas), the density of the nonadditive kinetic energy
Ts
nad[ρA,ρB](r)⃗ can be evaluated analytically. It is non-negative

and reads

ρ ρ

ρ ρ ρ ρ

⃗

= ⃗ + ⃗ − ⃗ − ⃗

T r

C r r r r
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with CTF = 2.871 in atomic units.
The corresponding functional for Ts

nad[ρA,ρB] is obtained by
integration of Ts

nad[ρA,ρB](r)⃗

∫ρ ρ ρ ρ ρ ρ= + − − ⃗ ≥T C dr[ , ] (( ) ) 0s
nad(TF)

A B TF A B
5/3

A
5/3

B
5/3

(14)
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It diverges for uniform densities but it is one of the simplest
approximations for the molecular densities.
It has been shown that Ts

nad[ρA,ρB] is non-negative also for a
particular class of pairs of densities discussed in ref 92. The non-
negativity of Ts

nad[ρA,ρB] in these two examples is not an exact
property. Analytical examples where it can be negative can be
easily constructed by dividing a smooth four-electron density
into two rapidly varying two-electron components (see ref 48).
Finally, it is worthwhile to underline that the kinetic energy in

the noninteracting reference system (Ts) represented as a
functional of other quantities than the electron density (Ts[γ] for
one-particle spin-less density matrix γ orTs[{ϕi}] for the orbitals
{ϕi}, for instance) might be an additive quantity. The particular
role of the nonadditive kinetic energy in FDET is due to the fact
that it is represented as a functional of a pair of electron densities
and such functional is not additive (see section 2.2.6).
2.2.2. Relation between the FDET Embedding Poten-

tial and Projectors in the Pseudopotential Theory.
Equation 7 resembles the equation for pseudo wave-function
in approaches founded on the pseudopotential theory
formulated by Phillips and Kleinman.14 Pseudopotential theory
is the formal basis for commonly used methods to eliminate the
most-tightly bound electrons (core electrons) from explicit
considerations (see the overview byHeine93 or ref 94 for a recent
review). Nonlocal embedding operators for practical applications
are either transferable pseudpotentials (conventional strategy) or
system specific projectors obtained from localized frozen orbitals
(such methods trace their origin to the work of Husinaga and
Cantu30). Methods and formalisms using such nonlocal
embedding operators have been developed in several groups. A
nonrepresentative (but most likely not all-inclusive) list of
methods and formalisms using nonlocal embedding potential
developed in several groups comprises: ab initio model potential
by Barandiaran and Seijo,15 effective group potentials by
Katsuki,16 effective fragment potential by Morokuma and
collaborators,17,56 effective group potentials developed in the
Toulouse group,18 atomic and molecular pseudopotentials by
Simons and Mazziotti,19 and effective potentials developed by
von Arnim and Peyerimhoff,20 Colle and Salvetti,21 Whitten,22

Assfeld and Rivail,23 Duarte and Salahub,24 Beran and Hirata,25

Moriarty and Phillips,26 Stoll and collaborators,27 Mata et al.,28

and embedding theory by Henderson,29 Rajchel et al.31,95 For
most recent developments, see refs 32, 68, 96, and 97.
Concerning the relation between FDET and the pseudpoten-

tial theory, they target different quantities. The pseudopotential
theory aims at wavefunctions (orbitals) whereas FDET at
densities. In FDET, the embedding operator is just a potential.,
i.e., a multiplicative operator, whereas the exact Phillips-
Kleinman pseudopotential involves projectors which are intrinsi-
cally nonlocal operators. If the exact Phillips-Kleinman
pseudopotential is approximated by means of some local
potential (see the overviews given in refs 93 and 94 or examples
in refs 39, 43, and 98), it is an approximation in the
pseudopotential theory. The exact FDET embedding potential,
on the other hand, is local. In practical calculations, it is tempting
to correct the deficiencies of the used approximations for
Ts
nad[ρA,ρB] by addition to a nonlocal pseudopotential to given

approximation for δTs
nad[ρA,ρB]/δρA(r)⃗. Stefanovich and

Truong99 used such combination to correct the qualitatively
wrong results at short separations using an approximated FDET
embedding potential (collapse of the embedded density on the
cationic center in the environment). On the formal level, with
such combination the nonadditive contribution to Ts

nad[ρA,ρB] is

counted twice (see the constrained search definition of
Ts
nad[ρA,ρB] given in eq 12). Moreover, the subsequent studies

of the same system by Dulak and Wesolowski100 showed that
even conventional approximations for the functional
δTs

nad[ρA,ρB]/δρA(r)⃗ provide a sufficiently repulsive embedding
potential to stop the artificial collapse provided the correspond-
ing matrix elements are evaluated using an adequate integration
technique.
The originally considered case by Phillips and Kleinman,

separation of core and valence electrons, provides a good
example illustrating the difference between the pseudopotental
and the FDET embedding potential. In the pseudopotential
theory, the most tightly bound orbital is frozen, which
corresponds to freezing the corresponding orbital density and
using it as ρB(r)⃗ in FDET. For a model system consisting of four
noninteracting electrons in the −1/r potential,47,48 the exact
FDET solutions can be obtained analytically. They reveal the key
features, in which FDET and the pseudopotential theory differ.
The optimal FDET wavefunction obtained as the lowest energy
solution of eq 7 with the FDET embedding operator given in eq 8
is not the same as the exact pseudo wave-function even they both
yield the same electron density ρA(r)⃗. The difference is not due to
just a possible unitary transformation. Since the FDET
embedding operator is a potential, the lowest energy orbital
obtained as the solution of eq 7 with FDET embedding operator
given in eq 8 is nodeless whereas the exact Philips-Kleinman
pseudoorbital obtained using a nonlocal operator is not. It is the
hydrogenic 2s function which must be orthogonal to the 1s
orbital which is frozen. If the two strategies lead to the same total
density ρA

opt(r)⃗ defined in eq 3, the node-containing Phillips-
Kleinman pseudoorbital ΨA

pseudo must yield the same density as
ΨA

emb. This implies that ΨA
emb = |ΨA

pseudo|. The embedding
potential, for which ΨA

pseudo could be obtained from eqs 7 and 8
of FDET, does not exist. FDET on the other hand admits the
functionΨA

emb = |ΨA
pseudo| to be lowest-energy orbitals as solutions

of eq 7 with the embedding potential given in eq 8. Analytical
examples provided in refs 47 and 48 show that the corresponding
FDET embedding potential exists but it is not smooth (it
comprises Dirac’s δ-type of singularities). The target density
ρA
opt(r)⃗ and the corresponding embedded wavefunction ΨA

emb =
|ΨA

pseudo| can be, nevertheless, approached infinitely closely with a
series of smooth embedding potentials.
Another qualitative difference of the pseudopotential theory

and FDET is that the FDET embedding potential depends on
ρA(r)⃗. The exact FDET embedding potential cannot be,
therefore, transferable. It depends not only on the environment
but also on the state of the embedded species. Approximate
pseudopotentials, which are usually nonlocal, are constructed on
the other hand, to ensure their transferability. Transferability, is
the key feature of approximated pseudopotentials, whereas ρA-
dependence is the key feature of both exact and approximated
FDET embedding potential. The ρA-dependence of the FDET
embedding potential might be removed by further simplifications
such as its linearization (see section 4.1.3) in order to avoid this
undesired feature of FDET. The strategy introduced by Carter
and collaborators101 to construct ab initio local pseudopotentials
can be seen as a simplified (linearized) version of the FDET
embedding potential (see also section 4.1.4).

2.2.3. Polarization of the Environment by the
Embedded Species. All quantities obtained in FDET are
functionals of ρB(r)⃗ (see section 2.1). Choosing ρB(r)⃗ is,
therefore, an empirical element in any FDET based multilevel
simulations. The issue of dependence of the FDET results on
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ρB(r)⃗ is closely related to the strategies used in QM/MM
methods to account for the electronic polarization of the
environment by the embedded species. In QM/MM methods,
where usually the embedding potential includes only the
electrostatic component of the whole FDET potential, any
change in the charge distribution in the environment is expected
to affect the properties of the embedded species in a linear way.
This is due to the fact that the electrostatic potential, which is a
linear functional of ρB(r)⃗, provides the first-order contribution to
the intermolecular interaction energy.102 The higher order terms
are associated with such effects as electronic polarization of the
environment. In fact, the intermolecular interaction theory is
frequently used as a basis to construct embedding potential in
QM/MM methods (see refs 103−105 for example).
The situation is not the same in FDET. First of all, different

choices for ρB(r)⃗ are possible which yield the same total density
in eq 2. This leads to ambiguity in the definition of electric
polarization of each separated subsystem. Second, FDET energy
is obtained from variational calculations where, in contrast to the
first-order term in perturbation theory, the dependence of energy
on ρB(r)⃗ is not linear. Below, we look at this issue in more detail.
To this end, we introduce a well-defined quantity, ρB

(0)(r)⃗, the
ground-state electron density of the isolated environment. For
any ρB(r)⃗ used as an input for FDET, the quantity Δμ⃗B

∫μ ρ ρΔ ⃗ = ⃗ ⃗ − ⃗ ⃗r r r r( ( ) ( )) dB B B
(0)

(15)

might be interpreted as the dipole moment induced in the
environment by the embedded species. Such interpretation
might be misleading. Whereas ρB

(0)(r)⃗ is a well-defined quantity,
different choices for ρB(r)⃗ in eq 3 may lead to the same energy
and electron density of the whole system (see discussions of this
issue in refs 60, 106, and 107). For instance, two such choices for
ρB(r)⃗, ρB

(1)(r)⃗ and ρB
(2)(r)⃗, can be made that
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where ρA
opt(1)(r)⃗ and ρA

opt(2)(r)⃗ are the optimized densities of
subsystem A obtained for these two choices for ρB(r)⃗.
The quantities

∫μ ρ ρΔ ⃗ = ⃗ ⃗ − ⃗ ⃗r r r r( ( ) ( )) dB
(1)

B
(1)

B
(0)

(20)

and

∫μ ρ ρΔ ⃗ = ⃗ ⃗ − ⃗ ⃗r r r r( ( ) ( )) dB
(2)

B
(2)

B
(0)

(21)

might be, however, different. The fact that Δμ⃗B(1) and Δμ⃗B(2) are
not the same shows that FDET alone cannot deliver a unique
partitioning of the total density. Only the total dipole moment is
uniquely defined. The notion of the polarization of individual
subsystems is, therefore, not well-defined in FDET. The situation
is, however, different if approximations are used for the
functionals Ts

nad[ρA,ρB] and Exc
nad[ρA,ρB] (see eq 38 in section

4.1). Due to partitioning-dependent errors in the approximated
functionals the unique pair is the result of the optimization of the
densities of subsystems.
The numerical analyses show that the properties of the

embedded subsystem depend weakly on the choice made for
ρB(r)⃗ in the case of local excitations for electrically neutral but
polar chromophore embedded in a hydrogen bonded environ-
ment.107 The weak dependence is a manifestation of the
variational basis of FDET. We note that eq 3 admits the
possibility of several choices for ρB(r)⃗ leading to the same total
density. Moreover, the whole FDET embedding potential
depends on ρA(r)⃗ whereas its dependence on ρB(r)⃗ is not linear.
In this respect, FDET embedding potential differs from the case
where the environment is represented only by the electrostatic
potential. This electrostatic component of the FDET alone can
be expected to result in linear dependency of the environment
induced shifts on ρB(r)⃗.
It is important to underline that the above formal observations

provide only the justification for the weak dependence of the
FDET-derived properties of embedded species on the charge
distribution in the environment but not for the lack of such
dependence. The results obtained in practice, i.e., when
approximate density functionals are used to evaluate FDET
embedding potential, depend on ρB(r)⃗ for two reasons: (i) lack of
possibility to verify a priori whether the condition ∀r ⃗ ρ(r)⃗) ≥
ρB(r)⃗ is satisfied for a given ρB(r)⃗ and (ii) the effect of errors in
the used approximation for the nonadditive density functionals
(see the discussion in section 3.1). The numerical effect on the
FDET results of these two factors cannot be separated in
practice. Moreover, none of them relates directly to the
electronic polarization of the environment be the embedded
species.

2.2.4. Charge-Transfer between Subsystems. The
interpretation of the FDET results in terms of charge transfer
is not straightforward for the same reasons as interpretation of
polarization discussed in the previous section. There are multiple
pairs ρA(r)⃗ and ρB(r)⃗ adding to the same total density and, on the
virtue of the Hohenberg−Kohn theorem, to the same total
energy in FDET. In approximated methods, this degeneracy of
partitioning is lifted as the results of the use of approximated
functionals (see eq 38 in section 4.1). In practice, especially, in
multilevel simulations the densities ρA(r)⃗ and ρB(r)⃗ are subject to
some localization due to the use of limited number of centers for
atomic basis sets. For instance, the centers for the basis sets for
ρA(r)⃗ might coincide with the atoms defining vA(r)⃗ and the
centers for the basis sets for ρB(r)⃗ might coincide with the atoms
defining vB(r)⃗. We refer to such calculations as monomer
expansion for embedded orbitals.108 In ref 108, the numerical
significance of this approximation was analyzed in detail in the
case of hydrogen-bondend subsystems. Discussion of the
numerical effects of such localization of embedded orbitals on
calculated properties can be found in several publica-
tions.37,89,108−126 Most of the large-scale simulations using
FDET embedding potentials use the monomer expansion as an a
priori assumption. Dulak and Wesolowski introduced also an
automatic adaptive procedure to construct grid of the reduced
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size.127 In such a case, no charge-transfer between the embedded
species and the environment is possible even with the exact
density functionals in eqs 3−8 and optimization of ρB(r)⃗. Taking
into account the charge transfer and using monomer expansion
requires going beyond FDET or subsystem DFT and use such
methods as partition DFT53,54 (see section 3). If, however, the
number of centers used in the basis sets is not limited and
includes all centers (supermolecular expansion for embedded
orbitals), the redistribution of charges between subsystem can
take place in also within the framework of subsystem DFT, i.e.,
keeping the integer occupancies of subsystems. Subsystem DFT,
will not be able to provided the answer concerning the amount of
the charge transferred between subsystems. Dealing with charge-
transfer within FDET, it does not seem to be practical. One
would need to provide such ρB(r)⃗ which is either partially
localized on the embedded species (in the case of charge-transfer
from the environment) or leaves a “hole” for the density of the
embedded species localized in the environment (in the case of
charge-transfer from the embedded species to the environment).
The supermolecular expansion for embedded orbitals is,
however, indispensable for studies of the accuracy of the
approximations for the nonadditive kinetic energy func-
tionals,48,108,110,111,126,128−133 using the (freeze-and-thaw proce-
dure to optimize ρA(r)⃗ and ρB(r)⃗

55 (see section 4.1.1). It is also
very useful in assessment of the completeness of smaller basis
sets.134

2.2.5. v-Representability of the Optimal Embedded
Density ρA

opt(r)⃗. Although the total optimal densities obtained
from either eq 2 or 3 are v-representable (only for such densities
the Hohenberg−Kohn density functional for energy exists),
ρA
opt(r)⃗ defined in eq 3 may belong to a wide class of functions
called N-representable. Conditions of N-representability were
given by Gilbert135 and can be easily implemented in the search
procedure (eq 3). Performing the search for ρA

opt(r)⃗ by means of
the Euler−Lagrange equation (eq 5) restricts, however, the class
of the obtained functions to the v-representable ones, i.e.,
densities which are ground-state densities for some external
potential v. For a given descriptor used for ρA(r)⃗, the
corresponding FDET embedding potential given in eq 8 exists
only if ρA

opt(r)⃗ is v-representable.50,87 Equation 5 is, therefore, less
general than eq 3.
Concerning v-representability, we should distinguish among

descriptors. In the case of noninteracting embedded wave-
function, the Euler−Lagrange equation may lead only to pure-
state noninteracting v-representable136 densities as in any
Kohn−Sham DFT based computational method. If ρA

opt(r)⃗
defined in eq 3 does not belong to this class, it cannot be obtained
using such simple descriptor. The illustration of the practical
importance of the v-representability condition condition for
ρA(r)⃗ is given in refs 47 and 48 dealing with an analytically
solvable system. It is shown that a density ρA

opt(r)⃗, which is
evidently not pure-state noninteracting v-representable (the
density of valence electrons in a noninteracting four-electron
system in a spherical potential), can be approached infinitely
closely using FDET. The corresponding series of smooth FDET
embedding potentials for such densities approaching ρA

opt(r)⃗ was
constructed. The issue of v-representability of ρA

opt(r)⃗ defined in
eq 3 is crucial for methods using numerical inversion techniques
to approximate the FDET embedding potential (see section
4.1.4).
In the case of interacting Hamiltonians used for ĤA, a wider

class of densities can be obtained from the Euler−Lagrange
equation. They do not have to be pure-state noninteracting v-

representable. In practice, it means that they can have a
multideterminant form. Similarly as in the case of noninteracting
ĤA, the conditions of v-representability cannot, unfortunately, be
verified in advance. In summary, the situation of FDET is similar
as any density-functional-theory based computational method as
far as v-representability of the target density is concerned. As
shown in ref 137, even if the density is obtained in Kohn−Sham
calculations using a finite basis sets, there is no guarantee that it is
pure-state noninteracting v-representable.
It is worthwhile noting that the quantity ρA(target)(r)⃗ = ρo

AB(r)⃗−
ρB(r)⃗, where ρo

AB(r)⃗ is the exact ground-state density of the total
system, may not be obtainable even from eq 3, because it might
be negative for some choices for ρB(r)⃗. If ρo

AB(r)⃗ − ρB(r)⃗ is
negative, it is neither v-representable nor even N-representable
(see also the discussion in ref 106).

2.2.6. Exact Properties of the Nonadditive Density
Functionals.

ρ ρ• TUniform electron gas limit for [ , ]s
nad

A B

The analytical form of the functional Ts
nad[ρA,ρB] is known in

the particular case where ρA(r)⃗ = const and ρB(r)⃗ = const. It is
given in eq 14. A similar expression is available for the exchange
component of Exc

nad[ρA,ρB] which is trivially obtainable from the
Dirac expression for the exchange-energy of the uniform electron
gas.138

•Sufficient conditions for Ts
nad[ρA,ρB] = 0

ρ ρ ρ ρ=T [ , ] 0 for non overlapping ands
nad

A B A B (22)

For demonstration, we consider three sets of orbitals: {ϕi
A},

{ϕi
B}, and {ϕi

AB}, used to construct the determinants Ψs
A(opt),

Ψs
B(opt), andΨs

AB(opt) defined in eq 12.Within each set, the orbitals
are orthogonal. The orbitals from different sets, {ϕi

A} and {ϕi
B},

are also orthogonal due to the zero overlap between ρA(r)⃗ and
with ρB(r)⃗. An auxiliary determinant (Ψs

AB(antis)) constructed
using all orbitals from the two sets {ϕi

A} and {ϕi
B}, yields the

density ρA(r)⃗ + ρB(r)⃗. It belongs, therefore, to the set of trial
densities in the constrained search definition of Ts[ρA + ρB].
UsingΨs

AB(antis) as a trial function in the constrained search yields

ρ ρ

⟨Ψ | ̂|Ψ ⟩ ≥ ⟨Ψ | ̂|Ψ ⟩

= +

T T

T[ ]
s
AB(antis)

s
AB(antis)

s
AB(opt)

s
AB(opt)

s A B (23)

On the other hand, the expectation value of the kinetic energy
operator evaluated at Ψs

AB(antis) is known. It is the sum of orbital
kinetic energies for the orbitals of the two sets {ϕi

A} and {ϕi
B}, i.e.,

⟨Ψs
AB(antis)|T̂|Ψs

AB(antis)⟩ = Ts[ρA] + Ts[ρB]. This relation inserted
to eq 23, results in the inequality

ρ ρ ρ ρ+ ≥ +T T T[ ] [ ] [ ]s A s B s A B (24)

Now we continue with showing that the opposite inequality
holds as well. To this end, we consider two other auxiliary sets of
orbitals: {ϕi

A(proj)} and {ϕi
B(proj)}. Each of them is obtained by

means of projecting the orbitals {ϕi
AB} onto the one of the

localized basis sets {ϕi
A} or {ϕi

B}. The projected basis sets are,
therefore, also orthogonal. The determinants generated from
{ϕi

A(proj)} and {ϕi
B(proj)} yield ρA(r)⃗ and ρB(r)⃗, respectively. Each

of them belongs, therefore, to the set of trial densities in the
constrained search. As for any other trial function

ρ⟨Ψ | ̂|Ψ ⟩ ≥T T[ ]s
A(proj)

s
A(proj)

s A (25)

and
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ρ⟨Ψ | ̂|Ψ ⟩ ≥T T[ ]s
B(proj)

s
B(proj)

s B (26)

leads to the inequality

ρ ρ ρ ρ+ ≥ +T T T[ ] [ ] [ ]s A B s A s B (27)

The two inequalities hold only if Ts[ρA] + Ts[ρB] = Ts[ρA + ρB],
i.e., if Ts

nad[ρA,ρB] = 0. A similar relation for nonoverlapping
densities does not hold for Exc

nad[ρA,ρB]. It is worthwhile to
mention in this context that the exact Kohn−Sham formulation
of DFT is capable to describe long-range dispersion interactions
as illustrated by the success of the strategy developed by
Langreth, Lundqvist, and collaborators to dispersion in which the
exchange-correlation potential (a multiplicative operator in the
Kohn−Sham theory) is a nonlocal density functional.139−141 A
less trivial example of pairs, for which Ts

nad[ρA,ρB] = 0, was given
in ref 142. Ts

nad[ρA,ρB] = 0 if ρA and ρB are orbital densities in any
spin-compensated noninteracting four-electron system. Using eq
14 to approximate Ts

nad[ρA,ρB] violates the above condition.
•Sufficient conditions for Ts

nad[ρA,ρB] ≥ 0.
Ts
nad[ρA,ρB] is non-negative for particular pairs of densities

ρA(r)⃗ and ρB(r)⃗ (called vAB-representable pairs) which are
analyzed in ref 92. They are defined as pairs densities, which are
obtained form partitioning of any pure-state noninteracting v-
representable136 density, i.e., density obtained as a solution of
Kohn−Sham equations, into two components constructed from
a subset of orbital densities. An example of such a pair is the
density of the core and valence electrons. Another example of
pairs of electron densities, for which Ts

nad[ρA,ρB] is non-negative,
is given in ref 142. They are constructed using orbital densities
ρ1(r)⃗ and ρ2(r)⃗ in a spin-compensated noninteracting four-
electron system. For any pair ρA(r)⃗ =αρ1(r)⃗ + (1 − α)ρ2(r)⃗ and
ρB(r)⃗ = (1 − α)ρ1(r)⃗ + αρ2(r)⃗ with 0 < α < 1, Ts

nad[ρA,ρB] is
positive (it is zero if α = 1 or α = 0 as discussed above).
•Symmetry of Ts

nad[ρA,ρB].
Ts
nad[ρA,ρB] = Ts

nad[ρB,ρA] by construction (see eq 12). It is
worthwhile noting that the corresponding potentials cannot be
assumed to be symmetric.

δ ρ ρ
δρ

δ ρ ρ
δρ⃗

≠
⃗

ρ ρ ρ ρ= ⃗ = ⃗

T

r
T

r

[ , ]

( )

[ , ]

( )
r r

s
nad

B

( )

s
nad

A

( )A B (28)

•Asymptotic condition for the functional δTs
nad[ρ,ρB]/δρ(r)⃗ at

low overlaps.
The condition

δ ρ ρ
δρ

ρ
ρ

ρ
ρ⃗

=
|∇ |

−
∇

ρ ρ ρ= → ∫ ⃗=

T

r

[ , ]

( )
1
8

1
4

r

s
nad

B

0, d 2

B
2

B
2

2
B

B
A B

(29)

was discussed in detail in ref 131. Using eq 14 to approximate
Ts
nad[ρA,ρB] (see section 4.1) leads to a gross violation of this

condition and to the emergence of a singular well near the distant
nuclei in the environment. Gradient expansion based approx-
imations to Ts

nad[ρA,ρB] (see section 4.1) helps only partially by
filling only 1/9 of this well. The same concerns generalized
gradient expansion type of approximations to Ts

nad[ρA,ρB]. The
approximation for the functional δTs

nad[ρ,ρB]/δρ(r ⃗ introduced in
ref 131 enforces this condition.
•Asymptotics of the embedding potential at large separation.
Jacob et al.80 considered the asymptotic behavior of the FDET

embedding potential at large separations between the subsystems
A and B for ρB(r)⃗ approaching locally the exact ground-state

density of the total system. In such a case, the FDET embedding
potential is constant. A pragmatic approach to reach this constant
value was proposed by forcing the embedding potential to
disappear at large separations. The exact behavior of the
embedding potential was assured, therefore, without construct-
ing an approximation for either the functional Ts

nad[ρA,ρB] or the
functional δTs

nad[ρ,ρB]/δρ(r)⃗.
•Homogeneity of Ts

nad[ρA,ρB] (lack of it).
The functional Ts[ρ] is not order-one (λ = 1) homoge-

neous:136

∫ρ λ ρ
δ ρ
δρ

≠ ⃗
⃗

⃗T r
T

r
r[ ] ( )

[ ]
( )

ds
s

(30)

For recent numerical illustrations of the inhomogeneity see the
recent work by Borgoo and Tozer.143 Inhomogeneity of Ts[ρ]
results in the fact that the nonadditive kinetic potential
δTs

nad[ρA,ρB]/δρA(r)⃗ depends on ρA(r)⃗. Furthermore,
Ts
nad[ρA,ρB] is not order-one homogeneous in either ρA(r)⃗ or

ρB(r)⃗, which leads to the following inequalities:

∫

∫

∫

∫

ρ ρ ρ
δ ρ ρ

δρ

ρ ρ ρ
δ ρ ρ
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ρ ρ ρ
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ρ
δ ρ ρ
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A B A
s
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A
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s
nad

A B
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The inhomogeneity of the exchange-correlation energy density
functional Exc[ρ]

144 results from the similar inequalities for the
nonadditive exchange-correlation energy Exc

nad[ρA,ρB]. As a result
of the above inequalities, neither Ts

nad[ρA,ρB] nor Exc
nad[ρA,ρB] can

be obtained as the expectation value of the corresponding terms
in the FDET embedding potential (see section 4.1.3).

3. EXTENSIONS AND FORMALISMS RELATED TO FDET

3.1. Formalisms to Reach the Exact Ground-State Energy Eo
FDET leads to the exact results only if ρB(r)⃗ is chosen in such a
way that the difference ρo

AB(r)⃗ − ρB(r)⃗ is v-representable. Since
this condition cannot be verified in advance, FDET cannot,
therefore, be seen as an alternative formulation of DFT. It is
rather a formal framework for multilevel simulations which can
yield only approximate solutions (upper bound of the total
energy and the corresponding electron density) even if the exact
FDET embedding potential would be available. The target of
such simulations is the embedded species and the effect of the
environment on its properties assuming that an adequate density
ρB(r)⃗ can be constructed so that the variations δρB(r)⃗ around
ρB(r)⃗ affect the investigated property not significantly. An
estimation of the sensitivity of the results on the choice for ρB(r)⃗
is thus an indispensable preliminary stage of any large-scale
multilevel simulation.
Besides the Kohn−Sham formalism, alternative formulations

of DFT using subsystems, which are capable to yield exact total
density and energy were developed. They share with FDET
common elements (nonadditive kinetic energy and the local
embedding potential which is a functional of charge densities). In
exchange for introducing other-than-charge-density descriptors
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for the environment, they have the capacity of reaching the exact
ground-state energy with the exact functionals and not to an
upper limit as does FDET.
Cortona introduced an alternative formulation of DFT using

the noninteracting reference wavefunctions for each subsystem
into which the whole system was partitioned.52 We will refer to
this formalism as subsystem DFT. The model introduced in refs
145 and 146 and applied for solids147 is formally the same as the
Cortona formulation. This formalism is an alternative to the
Kohn−Sham formulation of DFT, but it is not an approximation
to it. It builds upon the ideas tracing their origin to various
approximate methods developed as ad hoc system specific
numerical procedures such as nonvariational Gordon−Kim
model for interacting molecules,148 the Senatore and Sub-
baswamymodel for rare gas crystals,84 and Ivanov andMaksimov
generalization of the Gordon−Kim model for phonons,149 for
instance.
The model and method introduced by Senatore and

Subbaswamy,84 actually predates the publication by Cortona.
Moreover, once the approximations are used, the working
equations are essentially the same as the ones of subsystem DFT.
The publication by Cortona provided interpretation of quantities
obtained in the such approximate calculations. The first
application of subsystem DFT based calculations reported in
the original publication52 concerned ionic solids. The subsystems
corresponded to ions. For molecular systems, subsystem DFT
was applied originally by Weber and Wesolowski55 for the
purpose of testing approximations for the nonadditive kinetic
energy functional needed to solve both FDET and subsystem
DFT equations in practice. The freeze-and-thaw iterative
procedure was applied to optimize both ρA(r)⃗ and ρB(r)⃗

55 as a
solution of the coupled Euler−Lagrange equations for different
subsystems (eq 43). Interestingly, the interaction energies
obtained using such fully variational calculations are frequently
better than the results of the Kohn−Sham based calculations
using corresponding approximations for the density functional
for the exchange-correlation and kinetic energy.150 Although
approximate methods based on this formulation proved very
successful especially in the evaluation of interaction energies and
geometries of hydrogen- and dipole bonded intermolecular
complexes (see refs 112 and 151), this formulation seems to
suffer from intrinsic incompleteness: if approximations are used
for nonadditive kinetic potential, the partitioning is the result of
the error in the used approximation (see eq 38 in section 4.1).
Subsystem DFT admits infinite number of pairs of densities

ρA(r)⃗ and ρB(r)⃗ adding up to the same total density.60 The
unique partitioning obtained in practice is the result of the fact
that the difference between the exact and approximated
bifunctional for the nonadditive kinetic energy depends on the
partitioning, whereas the exact kinetic energy of the total system
does not (see the disscusion in ref 107 or sections 2.2.3) and 4.1
in the present work). Despite this formal weakness, subsystem
DFT is also used as the basis for various formal extensions
concerning: LR-TDDFT treatment for excited states,152−154

frequency dependent responses of the subsystems,113 electron
transfer processes,155−157 generation of diabatic states in the
empirical valence bond (EVB)158,159 and Hamiltonian160,161 or
London-dispersion interactions,162 for instance.
The issue of lack of uniqueness of partitioning cannot be

solved without additional conditions/constraints. The partition
DFT introduced by Elliott et al.53,54 offers a way to achieve such
uniqueness by imposing that the embedding potential remains
the same upon exchanging the roles of subsystems A and B in eq

8. Such unique potential is called partition potential in partition
DFT. Compared to subsystem DFT, partition DFT admits an
additional degree of freedom: the number of electrons in each
subsystem is subject to optimization and the optimal values can
be fractional. For a recent overview of the state of methods based
on partition DFT see ref 163. Recently, Carter and collaborators
showed that the embedding potential, if it exists, is unique even if
the subsystems are occupied by integer number of elec-
trons.164,165 Della Sala and collaborators addressed formally
the issue of the uniqueness of partitioning in partition DFT in the
context of methods using approximate density functionals.166 To
this end, the functionals of FDET were generalized in order to
admit ensemble densities. As a result the optimization of the
subsystem densities might lead to fractional occupancies of
subsystems. Lifting the constraints of integer occupancies led to
noticeable improvement of the optimized densities even if
approximate density functionals were used.
Gritsenko and Visscher167 proposed a formal framework to go

over the intrinsic constraint of FDET, which is targeting an upper
bound to the total energy instead of the exact ground-state
energy and density. The introduced formalisms (density-orbital
embedding theory) admits the situation where the difference
between the exact density and the chosen ρB(r)⃗ is not v-
representable50,87 by means of using another descriptor for the
embedded subsystem density orbital. So far, no practical
implementation of this formalism was made.

3.2. Extension of Ground-State FDET to Excited States

Section 2.1 provides a complete formal framework to obtain an
upper bound of the ground-state energy and the corresponding
electron density of the total system. Additionally, an auxiliary
quantity, the embedded wavefunction corresponding the lowest-
energy solution of eq 7, can be used to evaluate other properties
than density and energy at the ground-state. Other than the
lowest-energy solutions of eqs 7 and 8 are usually also available
and can be used to evaluate properties of the same system at the
excited state. Three approaches that extend this framework for
excited states are outlined below.

3.2.1. High Symmetry Case. In the case of different
symmetries of the ground and excited states, FDET (eqs 3−8)
can be used to get information about the lowest-energy state of a
given symmetry. Restricting the search for the lowest energy to
densities of a given symmetry leads to an upper bound of the
lowest energy for the specific symmetry. The situation is similar
to that in density functional theory.75,168−170 In the FDET
context, it was used to study excited states of embedded rare-
earth elements.171,172 As in the ground-state case, the obtained
energies are upper bounds for the energy in each considered
state.

3.2.2. Other than the Lowest-Energy Solutions of the
Euler−Lagrange Equations. According to the Perdew−Levy
theorem,173 stationary states of a ground-state density functional
correspond to excited states. Although this theorem is known for
almost 30 years, it has not been exploited numerically in the DFT
context. Khait and Hoffmann174 proposed to use other-than-
ground-state solution of the FDET equations derived in ref 45 as
quantities corresponding to the excited state. Additionally, the
authors analyzed the effect of optimization of ρB(r)⃗ on the
obtained states. Daday et al.175 were the first to pick up on this
issue and investigated the effects of dependencies of the FDET
embedding potential on ρA(r)⃗ and ρB(r)⃗ in practice. The
numerical data on several embedded chromophores investigated
there show that changes of ρB(r)⃗ due to its optimization for a
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given electronic state of the embedded chromophore affects the
excitation energies significantly more than the direct effect
associated with changing only ρA(r)⃗ upon changing the
electronic state. Similar conclusions were drawn from the
subsequent studies of this issue.176

Concerning the practical use of the Perdew−Levy theorem in
the FDET based calculations,177 the ρA(r)⃗ dependency of the
embedding potential results inevitably in nonorthogonality of
embedded wavefunctions corresponding to different electronic
states even if ρB(r)⃗ is constant.177 Moreover, such use of the
FDET embedding potential merits separate discussion of the
cease of interacting and noninteracting Hamiltonians (ĤA in eq
6). In the noninteracting case, the situation is similar as in the
DFT context. All difficulties in constructing sufficiently accurate
density functionals to describe adequately both the energy of the
ground and excited state are carried on to embedding methods
based on FDET. The prospects for its use as a basis for generally
applicable methods are rather bleak because of the special
conditions required for the excited states (see the discussion in
ref 178). Not all excited states are extrema of the ground-state
density functional. Moreover, it yields the exact excited-state
density only if it is v-representable.
If, on the other hand, an interacting Hamiltonian is used for ĤA

in FDET, the perspectives for the practical usefulness of the
Perdew−Levy theorem seem promising. The ad hoc combina-
tions of the FDET embedding potential, which is usually subject
to further approximations such as its linearization (see section
4.1.3), with interacting Hamiltonians, were pioneered by Carter
and collaborators.57,58

Approaches combining various wavefunction theory based
methods from the quantum chemistry toolbox with the FDET
embedding potential have been developed including: Hartree−
Fock,58

Møller−Plesset perturbation theory (MPn),58 CASSCF,179

configuration interaction (CI),179 coupled cluster methods,180

etc. In addition to explicit construction of the embedded
wavefunction for the excited state, the burden of constructing an
approximation for the exchange-correlation density functional
describing the ground and excited states with comparable
accuracy is removed owing to explicit treatment of electronic
correlation for ρA(r)⃗ in such methods.
3.2.3. Time-Dependent Linear-Response Theory for

Noninteracting System Embedded in Frozen Density. In
the case of a noninteracting system embedded in the frozen
density,44,60 excitation energies and oscillator strengths for each
transition can be obtained following the linear-response time-
dependent DFT strategy (LR-TDDFT).181Within the neglect of
dynamic response of the environment (NDRE) approximation,
i.e., neglecting the frequency dependent response of ρB(r)⃗ to a
time-dependent perturbation (δρB(r,⃗ω) =0), the extension of the
LR-TDDFT framework to embedded system is straightfor-
ward.182 In the absence of the environment, the excitation
energies (ωA) are obtained from the basic equation of LR-
TDDFT (Casida equation):181

ωΩ̂ − ̂ =I 0A A
2

A (32)

where the matrix representation of Ω̂A reads
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with
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In the above equations, the Roman and Greek indices denote
space and spin respectively, and the ordering of indices is such
that f iσ > f jσ and f kτ > f lτ.
Within the NDRE approximation in the embedding case

introduced in ref 182, the Casida equation retains the form given
in eqs 32 and 33. The matrix Ω̂A is defined using the eigenvalues
(ϵ) and occupation numbers ( f) obtained not from the Kohn−
Sham equations for the isolated system but from the
corresponding FDET equations, Kohn−Sham equations with
constrained electron density (eqs 20 and 21 in ref 44 or eqs
43−45 in the present work), for the embedded system.
Compared to environment-free case, however, the matrix Kijσ,klτ

A

not evaluated using the kernel defined in eq 35 but the kernel
which is the functional derivative of the whole FDET effective
potential given in eq 45. This kernel can be conveniently
represented as

ρ ρ
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where the contribution to the kernel due to the embedding
potential reads:182
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Note that the electrostatic components of the FDET embedding
potential do not contribute to femb[ρA,ρB](r,⃗r’⃗) because they do
not depend on ρA(r)⃗.
The above extension of FDET is referred to in the present

work as FDET/LR-TDDFT. For an extension of FDET going
beyond NDRE see section 3.3.
3.3. Beyond Density Embedding for Coupled
Chromophores

The subsystem formulation of DFT by Cortona52 was
generalized for LR-TDDFT treatment of excited states by
Casida and Wesolowski.152 Such extension goes beyond FDET
for two reasons. Similarly to subsystem DFT, other descriptors
than density are used for the environment. The environment and
the embedded species are treated on on equal footing. Beyond-
density descriptors (embedded orbitals and the corresponding
eigenvalues) are used for the environment. NDRE approx-
imation can be expected to be adequate for modeling the
environment induced shifts in the excitation energies if they are
the result of electrostatic interactions and/or confinement.
Going beyond NDRE approximation is indispensable if the
environment and the embedded species absorb at the same
(dimers) or similar wavelengths. For dimers absorbing in the
same spectral range, a straightforward demonstration of the
failure of the NDRE approximation was provided in refs 123 and
153. Besides such easy-to-detect cases, NDRE can be also
expected to fail if a large number of weakly polarizable molecules
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couple weakly their electronic state with that of the embedded
species (the case of metal cluster in noble gases,183 for instance).
Numerical results reported in ref 123 for beta-cyclodextrin
indicate that NDRE lies at the origin of the discrepancies
between excitation energies obtained in embedding and
supermolecular calculations. In such a case, the use of explicit
polarizability of the molecules/atoms is probably the best
strategy.
Similarly as for the ground-state, the subsystem formulation of

LR-TDDFT suffers from the ambiguity the lack of uniqueness in
partitioning of the total density (see section 2.2.3), which
becomes unique due to approximations used for the nonadditive
functionals (see eq 38).
In the original work introducing this straightforward general-

ization of subsystem DFT for excited states,152 no numerical
implementations of this formalism was reported. A closer
analysis of this formulation and results obtained using
approximate functionals revealed that this formalism suffers
from numerical instabilities in case of the embedded system
comprising identical chromophores (benzaldehyde dimer).153

Neugebauer made a connection between the coupling term in
the phenomenological Hamiltonian used in the Förster,184

Dexter,185 or Marcus186 models and the Casida−Wesolowski
generalization of subsystem DFT. As a result, a general
subsystem-based formal framework for treating coupled
chromophores was developed.153 Following Neugebauer, we
will refer to this formalism as FDEc. Subsequently, this
framework was applied to obtain other response properties
besides the LR-TDDFT derived excitation energies. Reference
113 provides the outline of the formalism and numerical
illustrations.
Recently, Pavanello presented a new derivation of the

subsystem DFT for excited states linking them with Dyson
equation.154

4. APPROXIMATIONS IN FDET FOR MULTILEVEL
SIMULATIONS

FDET cannot be applied in practice without further approx-
imations. Exact solutions of eqs 3−8 available in only a few cases,
which are discussed in section 2. They are useful for construction
of approximations for the relevant density functionals and for
interpretations. In this section, the approximations made in
practice are discussed. They concern either the approximations
for universal density functionals (section 4.1) or the generation
of ρB(r)⃗ (section 4.2) which are system-dependent. In section
4.3, the group of approximate methods using also the
approximated FDET embedding potential, which are introduced
usually as variants of the ONIOM strategy,56 are overviewed.

4.1. Approximations for Density Functionals

The straightforward implementation of FDET for practical
simulation uses some approximate expressions (T̃s

nad[ρA,ρB] and
Ẽxc
nad[ρA,ρB]) for the bifunctionals Ts

nad[ρA,ρB] and Exc
nad[ρA,ρB]

and using them in eqs 3−8 instead of their exact counterparts.
Equations 3−8 remain unaffected by this substitution and the
variational principle basis, which lies at the origin of numerical
stability of the FDET results even in the approximate case,36,37

still applies. The variational principle does not apply to EFDET[ρB]
but to its approximated counterpart:

ρ ρ ρ ρ

ρ ρ

̃ = + Δ ̃

+ Δ ̃

E E T

E

[ ] [ ] [ , ]

[ , ]

FDET
B

FDET
B s

nad
A
opt

B

xc
nad

A
opt

B (38)

where ΔT̃s
nad[ρA

opt,ρB] and ΔẼxc
nad[ρA

opt,ρB] denote the difference
between the exact and the approximate functional (its error).
The above equations show clearly that, although the exact FDET
equations (eqs 3−8) lead to a upper bound of the exact energy,
the use of approximations for the nonadditive density functionals
might lead to the energies which are below the exact EFDET[ρB].
Another qualitative difference between the exact and

approximate FDET is the removal of degeneracy of partitioning
the total density (see section 2.2.3). In the exact theory, there are
multiple pairs of densities ρA(r)⃗ and ρB(r)⃗ which add up to the
optimal total density60 (see refs 47 and 48 for analytical
examples). In the approximated case, the optimization of ρA(r)⃗ is
affected by the partition-dependent terms T̃s

nad[ρA,ρB] and
Ẽxc
nad[ρA,ρB]. As a result, optimization of both ρA(r)⃗ and ρB(r)⃗

through the minimization of the total energy given in eq 38 leads
to a unique pair.
Equation 38 relates also to the issue of the state-specificity of

the FDET embedding potential in calculations targeting excited
states. State-specificity has a clear interpretation in FDET as its
ρA-dependence

177 for a given ρB(r)⃗. In the literature, the term
state-specificity is used as the dependence of the embedding
potential on ρB(r)⃗ obtained in freeze-and-thaw optimization
made for different electronic states of the embedded
species.175,176

The effect of optimization of ρB(r)⃗ on the obtained properties
of the embedded species in different electronic states cannot,
however, be attributed to the differential electronic polarization
of the environment. The differences in the optimized ρB(r)⃗ for
different electronic states are also affected by the errors in the
used approximation for the nonadditive functionals which might
be also state-dependent.

4.1.1. Explicit Approximations for Ts
nad[ρA,ρB] and

Exc
nad[ρA,ρB]. For approximating Ts

nad[ρA,ρB], the most common
strategy (decomposable approximations) is to apply one of
existing approximations for the functional Ts[ρ] (for a
comprehensive list of semilocal approximations to Ts[ρ] see ref
187) in the definition of Ts

nad[ρA,ρB]

ρ ρ ρ ρ ρ ρ

ρ ρ

≈ ̃ + − ̃ − ̃

= ̃

T T T T

T

[ , ] [ ] [ ] [ ]

[ , ]

s
nad

A B s A B s A s B

s
nad

A B (39)

In the case of gradient-dependent approximations for Ts[ρ],
which is the most commonly used in practice, the corresponding
expression reads

∫

∫ ∫
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(40)

where the function FT(x) with x = |∇ρ|/ρ4/3 (enhancement
factor) is specific for each gradient-dependent approximation.
FT(x) = 1 + (x2/72CTF) for the second order gradient expansion
approximation to Ts[ρ], for instance. The contribution to the
FDET embedding potential due to T̃s

nad(GGA)[ρA,ρB] can also be
obtained analytically as a functional derivative of the first two
terms in eq 40 using the following expression for each of them
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where D = ∑i = 1
3 ∑j = 1

3
∂iρ∂i∂jρ∂jρ.

For the enhancement factors used in the GGA approximations
for Ts[ρ], Lee, Lee, and Parr formulated a never-proven
conjointness conjecture188 concerning the relation between
explicit approximations for the exchange energy (Ex[ρ]) and
Ts[ρ]. The conjecture builds on previous observations made by
March and Santamaria concerning the exchange- and kinetic
energies in Hartree−Fock case,189 which is directly related to the
DFT functionals Ex[ρ] and Ts[ρ] defined in Levy constrained
search.50 Following this conjecture, for a given GGA
approximations for Ex[ρ] an approximation for Ts[ρ] can be
constructed. The conjoint approximations for Ex[ρ] and Ts[ρ]
shares the same analytical form of the enhancement factor which
represents the same physical approximation for the one-particle
reduced density matrix. As a result, the conjoint approximations
for Ex[ρ] and Ts[ρ] are expected to have the same quality.
Moreover, fine-tuning of the parameters in the enhancement
factor keeping its analytical form lies also within the assumptions
of the conjecture. Lee, Lee, and Parr used the enhancement
factor of the Becke’s (B88)190 to illustrate the usefulness of this
approach to construct approximations for Ts[ρ]. Investigations
by several authors provided further numerical confirmations of
the conjointness conjecture for several the enhancement factors
of the common GGA exchange functionals: Fuentealba and
Reyes191 for that of the Perdew−Wang (PW86),192 Lembarki
and Chermette193 for that of the Perdew−Wang (PW91),194

Tran and Wesolowski195 for that of Perdew−Burke−Ernzerhoff
(PBE),196 and Karasiev, Trickey, and Harris197 for that of the
modified PBE198 functional, for instance. The conjointness
conjecture strategy was recently applied by Constantin et
al.199,200 to construct two approximations for Ts[ρ] (APBEK
and revAPBEK) conjoint to the approximations to Ex[ρ]
obtained from semiclassical atom theory.
The decomposable strategy hinges on the assumption that the

errors in T̃s[ρ] do compensate for the three densities ρA(r)⃗ +
ρB(r)⃗, ρA(r)⃗, and ρB(r)⃗ in eq 39. In fact it is not the case for the
functionals originating in the regular gradient expansion for the
kinetic energy201 such as the Thomas−Fermi functional, second-
order gradient expansion, and the functionals of the GGA form.
Numerical results show that there is no correlation in errors in
decomposable approximations for T̃s

nad[ρA,ρB] with the errors in
the corresponding parent approximation for T̃s[ρ].

48,130 The
same concerns errors in δT̃s

nad[ρA
opt,ρB]/δρA(r)⃗.

48,129,130,160 A
closer look at the decomposable strategy shows that imbalance of
errors in the density of the kinetic energy ts̃[ρ](r)⃗ evaluated for
the three densities ρA(r)⃗ + ρB(r)⃗, ρA(r)⃗, and ρB(r)⃗. The imbalance
of errors has its origin in a different role, which the von
Weizsac̈ker functional202 plays near and far from the embedded
subsystem. This functional is the exact functional for one
electron and spin-compensated two-electron systems, but if
divided by 9 it is the second-order term in the gradient expansion.
We illustrate the imbalance of such approximations in the case of
twomolecules (say molecule A andmolecule B) and attribute the
role of the environment in FDET to the molecule B. Within B,
the gradient expansion can be expected to provide much better
approximation for ts[ρA + ρB](r)⃗ than for ts[ρA](r)⃗. In the

second-order gradient expansion, the Thomas−Fermi functional
enters entirely and the von Weizsac̈ker functional is divided by 9
in second-order gradient expression. Far from the molecule A,
the von Weizsac̈ker the density ρA(r)⃗ decays exponentially and is
dominated by one orbital. The exact functional for ts[ρA](r)⃗ is
given by the entire von Weizsac̈ker functional (not divided by 9)
without any contribution from the Thomas−Fermi functional.
These considerations explain the disappointing results

obtained using the second-order gradient expansion approx-
imation.44,129 The convergence problems reported in ref 110
originate probably from this flaw of the second-order gradient
expansion. Within the decomposable strategy, a pragmatic
solution was made to minimize the errors due to the above
imbalance of errors. Instead of using the second-order gradient-
expansion approximation, a specially chosen GGA functional is
used in which the second-order contribution to ts[ρ](r)⃗ is
smoothly damped by an appropriately chosen enhancement
factor (FT(x)) in eq 40.108,160 The desired enhancement factor
has the same analytical form as the one in the GGA functional for
the exchange energy introduced by Perdew and Wang194 and
parametrized for the kinetic energy193 by Lembarki and
Chermette. The origin of this approximation is reflected by a
nonhomogeneous nomenclature in the literature; it is called
differently by different authors depending on which quantity is
referred to the GGA97 label is used to specify approximation for
Ts
nad[ρA,ρB] (see refs 100 and 203−206), PW91K (in refs 80, 114,

and 207−211 for instance) or LC94 (see refs 200 and 212 for
instance) for Ts[ρ], or just PW91 for the enhancement factor
F(x).108,115,180,213

Damping the second order contribution at low densities cures
also another problem of the second-order gradient expansion. In
contrast to the zeroth-order term in Ts

nad[ρA,ρB], which is non-
negative (see eq 14), the second-order term in Ts

nad[ρA,ρB] is
nonpositive (see eq 27 in ref 44). Ts

nad[ρA,ρB] is non-negative for
a large class of electron densities (see section 3.1), but the
second-order gradient expansion provides always nonpositive
contribution to Ts

nad[ρA,ρB]. Damping this term reduces the
negative error in the total energy occurring when the second-
order gradient expansion is used to approximate
Ts
nad[ρA,ρB].

44,110

The desired features of the Perdew−Wang enhancement
factor are (a) FT(x = 0) =1, which assures the correct
homogeneous electron gas limit, (b) its quadratic growth at
low values of |∇ρ|/ρ4/3, and (c) the monotonic decrease to zero
at large values of |∇ρ|/ρ4/3 providing the desired damping factor
if one of the densities is small.
This deficiency of the decomposable strategy to approximate

Ts
nad[ρA,ρB] stems from the so-called λ vs γ controversy214

concerning the choice for the dominant contribution to the good
approximation for Ts[ρ], either the exact uniform electron gas
expression, which is exact for the uniform electron gas, or the von
Weizsac̈ker functional, which is exact expression for spin-
compensated two-electron systems. The two functionals have
completely different analytical forms. It is rather unlikely that the
corresponding potentials obtained from them as functional
derivatives have a similar error if evaluated at ρA(r)⃗ + ρB(r)⃗, ρA(r)⃗,
and ρB(r)⃗ at a given point in space. An alternative strategy was
proposed in ref 131 in which approximation for Ts

nad[ρA,ρB] is
constructed directly without approximating Ts[ρ], i.e., without
the intermediate step in eq 39. Targeting Ts

nad[ρA,ρB] directly and
not through approximations to ofTs[ρ] makes it possible to build
in the exact properties of this bifunctional in a straightforward
way. For instance, the non-decomposable approximation using
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second derivatives (NDSD) to Ts
nad[ρA,ρB] introduced in ref 131

assures satisfying the exact condition for the nonadditive kinetic
potential given in eq 29. The functional T̃s[ρ] corresponding to
NDSD as in eq 39 does not exist.

ρ ρ ρ ρ≈ ̃T T[ , ] [ , ]s
nad

A B s
nad

A B (42)

Dedicated studies of approximations for the nonadditive
kinetic energy functional108,128,129,215 indicate that the simple
GGA type of approximations are only applicably if the densities
ρA(r)⃗ and ρB(r)⃗ are weakly overlapping. Trying to apply them in
the case of covalent bonds using for any reasonably chosen ρB(r)⃗
(or ρB(r)⃗ optimized by means of the freeze-and-thaw procedure)
lead usually to failure.110,116,216 With increasing overlap between
ρA(r)⃗ and ρB(r)⃗, the exact and approximated nonadditive kinetic
potentials became qualitatively different if simple gradient-
dependent functionals are used for T̃s

nad[ρA,ρB] as shown in
model analytically solvable systems48 and partitioned molecular
densities.215

Compared to Ts
nad[ρA,ρB], much less work has been devoted to

approximations to the Exc
nad[ρA,ρB] functional. In the case of

embedded noninteracting reference system44 and semilocal
approximations for the exchange-correlation functional, a
separate approximation for Exc

nad[ρA,ρB] is, in principle, not
needed. The Euler−Lagrange equation for the embedded
wavefunction take the form of the Kohn−Sham equations for
constrained electron density (eqs 20 and 21 in the original work
of Wesolowski and Warshel44), which using the notation of the
present work read
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The effective potential in eq 43
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can be written equivalently as
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The functional for the exchange-correlation component of the
effective potential in eq 45 (vxc[ρA + ρB](r)⃗) is the same for any
pair of densities adding up to the same sum: ρA(r)⃗ + ρB(r)⃗. Also
the corresponding expression for the total exchange-correlation
energy depends on the total density ρA(r)⃗ + ρB(r)⃗ (Exc[ρA + ρB]).
Partitioning the total exchange-correlation energy in the exact
version of the FDET equations (eqs 3−8) as well in the case of
semilocal approximations for the exchange-correlation energy as
in

ρ ρ ρ ρ ρ ρ+ = + +E E E E[ ] [ ] [ ] [ , ]xc A B xc A xc B xc
nad

A B (46)

represents thus just rewriting them.

Different approximations for Exc[ρA] and Exc
nad[ρA,ρB] are

needed if the functional for the exchange-correlation energy is
not approximated by an explicit density functional but by an
orbital-dependent expression, the case of generalized Kohn−
Sham methods using orbital-dependent approximations.217 In
such a case the corresponding approximation for the total
exchange-correlation energy is not available. As a consequence,
different approximations for Exc[ρA] and Exc

nad[ρA,ρB] must be
used

ρ ρ ϕ ρ ρ

ρ ρ

+ ≈ ̃ + ̃

+ ̃

E E E

E

[ ] [{ [ ]}] [ ]

[ , ]

ixc A B xc
(a)

A xc
(b)

B

xc
nad(c)

A B (47)

The different approximations are indicated with (a), (b), and (c)
in the above formula. The superscript a denotes any
approximation for the exchange-correlation energy (including
the orbital-dependent expressions), whereas c is used for an
explicit expression for the nonadditive exchange-correlation
energy. The approximation used for Ẽxc

(b)[ρB] is not relevant for
the present considerations because this term is constant in
FDET.
The generalized version of eqs 43−45 for orbital-dependent

approximations for the exchange-correlation energy was
developed by Della Sala and collaborators.82,132,218 The
differential treatment of approximations for Exc[ρA]and
Exc
nad[ρA,ρB] can be also a pragmatic necessity even in the case

of using only semilocal exchange-correlation functionals. For
example, if the Exc[ρA] functional conjoint to the one used for
Ts
nad[ρA,ρB] (and/or the corresponding potentials) is not

adequate to describe the properties of the isolated subsystem A
or if the energy functional for the used potential does not exist as
it is the case of the SAOP potential219,220 (see ref 111).
The numerical evidence concerning environments of such

embedded systems, which are not linked to the environment by
covalent bonds but by weaker interactions, indicates that the
results of FDET calculations depend significantly less on the
choice made for the approximation to Exc

nad[ρA,ρB] than that for
Ts
nad[ρA,ρB].

175 It is worthwhile to underline that the proper
asymptotic behavior of the dispersion interactions can be assured
only by Exc

nad[ρA,ρB]. Even exact Ts
nad[ρA,ρB], not to mention the

semilocal approximations, does not contribute to the energy if
the overlap between ρA(r)⃗ and ρB(r)⃗ disappears (see section
2.2.6). In beyond-FDET embedding methods based on
projectors, approximation for Ts

nad[ρA,ρB] are not needed at all,
but Exc

nad[ρA,ρB] must still be approximated (see the formula for
the energy in section 2 of ref 96).
The quality of an approximation for T̃s

nad[ρA,ρB] can be easily
tested in practice using any implementation of eqs 43−45. The
procedure proposed by Wesolowski and Weber for this
purpose55 consists of the following elements: (a) the total
electron density ρ̃AB and energy Ẽo

KS obtained from reference
Kohn−Sham calculations with some approximation for the
exchange-correlation energy (Ẽxc[ρ]) and for a given basis set;
(b) a pair of optimized densities for the two subsystems ρ̃A

opt(r)⃗
and ρ̃B

opt(r)⃗ optimized by means of the freeze-and-thaw
optimization of electron densities of subsystems; (c) analysis
of the differences between quantities obtained from reference
Kohn−Sham- and subsystem DFT calculations. If technical
parameters (grids, basis sets, and common exchange-correlation
approximation) are the same in all calculations, any deviations
from the reference results can be attributed only to the
approximation used for the nonadditive kinetic energy.
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As far as stage (c) is concerned, various analyses are possible
for different purposes. The visual inspection of differences
between reference Kohn−Sham and subsystem DFT densities
(ΔρAB(r)⃗ = ρ̃A

opt(r)⃗ + ρ̃B
opt(r)⃗ − ρ̃AB(r)⃗) in 3D reveals region in

space where the tested approximation for the nonadditive kinetic
potential is most deficient.129 Differences of the dipole moments
associated with ρ̃A

opt(r)⃗ + ρ̃B
opt(r)⃗ and ρ̃AB(r)⃗ reveal artificial charge

flow between subsystems resulting from the errors in the
nonadditive kinetic potential.100 Differences between reference
the Kohn−Sham and subsystem DFT energies are of the greatest
practical interest and reflect both the errors in the used
approximation for the nonadditive kinetic functional directly as
well as the errors in the corresponding potential (its functional
derivative). Finally, using Euclidean metrics forΔρAB(r)⃗ makes it
possible to order the quality of approximations for the
nonadditive kinetic potentials.130 Other than Euclidean matrices
can be used as a measure for ΔρAB(r)⃗.

218,221

The freeze-and-thaw calculations converge quickly if ρA(r)⃗ and
ρB(r)⃗ exchange their roles in eq 43. They represent practical
realization of subsystem DFT.52 In contrast to the exact
subsystem DFT formulation, in which such a pair is not unique
(see the discussion in ref 60 or examples provided in refs 47 and
48), the use of approximations leads to an unique pair (see eq
38). If the same basis set (the same atomic basis functions and the
same number of atomic centers in all calculations) is used in the
reference Kohn−Sham calculations and in the freeze-and-thaw
optimization of subsystem densities, the difference between
ρ̃AB(r)⃗ and the sum ρ̃A

opt(r)⃗ + ρ̃B
opt(r)⃗ can be attributed to the

accuracy of the used ((δT̃s
nad[ρA,ρB])/(δρA(r)⃗)). Due to the fact

that the potential ((δT̃s
nad[ρA,ρB])/(δρA(r)⃗)) (and its error) is a

local property the errors in the potential are not related to global
properties such as energy, dipole moment, energy contributions,
or the norm |ρ̃AB(r)⃗− ρ̃A

opt(r)⃗− ρ̃B
opt(r)⃗|, for instance. The dipole

moments, the norm, or any total energy component besides the
kinetic energy are especially useful because the difference
between their deviations from the reference Kohn−Sham values
are due to the errors in ((δT̃s

nad[ρA,ρB])/(δρA(r)⃗)). The
difference between the total FDET energy evaluated at ρ̃A

opt(r)⃗
and ρ̃B

opt(r)⃗ and Ẽo
KS can be attributed to two sources of error: that

of ((δT̃s
nad[ρA,ρB])/(δρA(r)⃗)) which determines the quality of

the electron density and that of T̃s
nad[ρA,ρB] which determines the

errors in the energy.
The freeze-and-thaw optimization was subsequently used by

us in studies of the accuracy of various decomposable
approximations for T̃s

nad[ρA,ρB] of the GGA form48,108,128−130

and the nondecomposable approximation131 based on the
asymptotic condition given on eq 29. The freeze-and-thaw
optimization was performed to test approximations developed by
Della Sala and collaborators126,132,133 for Ts[ρ]. Jacob and
Visscher used it in the benchmarking studies of approximations
to Ts

nad[ρA,ρB].
110,111

4.1.2. Spin-Density Generalization of Ts
nad[ρA,ρB]. For any

considered kinetic-energy functional defined for spin-compen-
sated systems, the Oliver−Perdew spin-density generalization
can be applied:222

ρ ρ ρ ρ= +↑ ↓ ↑ ↓T T T[ , ]
1
2

( [2 ] [2 ])s s s (48)

The spin-density generalization of approximate functionals for
the nonadditive kinetic energy is, therefore, straightforward207

for any nondecomposable approximation for Ts
nad[ρA,ρB] in

order to obtain an approximate expression for Ts
nad[ρA

↑ ,ρA
↓ ,ρB]. In

principle, the same can be made for ρB(r)⃗. In practice, however,

the choices for subsystems A and B are made usually in such a
way that the environment is not spin-polarized.37,117,207,223

Reference 224 provides an example of simulations in which this
constraint on ρB(r)⃗ was removed leading to mutual spin-
polarization of subsystems.

4.1.3. Linearization of the Functionals Ts
nad[ρA,ρB] and

Exc
nad[ρA,ρB]. The dependence of the FDET embedding potential
(see eq 8) on ρA(r)⃗ is an essential feature of FDET. Despite the
simplicity of the embedding operator of the form of the FDET
embedding potential, the nonlinear dependence of energy on
ρA(r)⃗ may result in strong modification of the algorithms used to
solve eq 7, which were developed for methods where the external
potential is density-independent. This inconvenient feature can
be treated through expanding the functionals Ts

nad[ρA,ρB] and
Exc
nad[ρA,ρB] in ΔρA(r)⃗ = ρA(r)⃗ − ρA

ref(r)⃗ and retaining only the
linear term (linearization). Dulak and Wesolowski investigated
numerically the adequacy of such an approximation for
T̃s
nad[ρA,ρB]

225 and for T̃s
nad[ρA,ρB] and Ẽxc

nad[ρA,ρB] together
226

in the case of semilocal functionals. With linearized expression
for the energy components, the FDET embedding potential is
ρA(r)⃗-independent and reads

∫

ρ ρ ρ ρ
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where the functional vemb[ρA,ρB,vB(r)⃗] is evaluated at ρA
ref(r)⃗ and

not at the actual one ρA(r)⃗.
Linearization of Ts

nad[ρA,ρB] and Exc
nad[ρA,ρB]

177 involves
modification of the FDET expression for the total energy, into
which ρA

ref(r)⃗ enters in the way assuring self-consistency of the
embedding potential, energy, and the embedded wavefunction

∫

ρ ρ ρ ρ

ρ ρ
δ ρ ρ

δρ
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∫

ρ ρ ρ ρ

ρ ρ
δ ρ ρ
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We underline that, in most of the applications of FDET based
methods, the environment interacts weakly with the embedded
species. In such a case, the electrostatic terms, for which the
corresponding density functionals are known exactly, are already
linear in ρA(r)⃗. The nonelectrostatic terms are usually
approximated by means of semilocal approximations. The
approximated nonadditive kinetic term in the potential is usually
short-ranged and strongly repulsive if approximated using
gradient-expansion type of functionals (see section 4.1.1) due
to the overlap-dependent and strongly repulsive zeroth-order
term (eq 14). In such situations, linearization can be expected to
be a good practical solution.
In case of weakly bound intermolecular complexes, lineariza-

tion of semilocal approximations for the functionals Ts
nad[ρA,ρB]
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and Exc
nad[ρA,ρB] was shown to be a very efficient way of treating

ρA-dependence of the embedding potential.226 Fully self-
consistent solutions of the approximate (semilocal functionals
were used) version of eqs 3−8, were obtained using a quickly
converging double-SCF procedure based on linearization.
Approximation given in eq 49 is frequently used as an a priori

approximation in methods combining the FDET embedding
potential with interacting Hamiltonians ĤA used in eq
7.57,58,118,157,175,180,209−211,213 Making the embedding potential
ρA-independent simplifies greatly the numerical implementation.
For ground-state calculations, it is a fully controllable
approximation. The FDET embedding potential and the
embedded wavefunction corresponding to the optimized ρA(r)⃗
can be easily constructed by means of an iterative process,57

which was shown to converge quickly in the case of weak
interactions between the embedded species and the environ-
ment.226 For excited-state calculations, however, linearization
remains an approximation unless different ρA

ref(r)⃗ are used for
different electronic states (see section 3.2.2).
Finally, it is worthwhile to underline that in the case of

linearization of the approximated functionals used for
Ts
nad[ρA,ρB] and Exc

nad[ρA,ρB], the corresponding energy compo-
nents in eq 6 are given by neither

ρ ρ ρ ρ≈ ̃T T[ , ] [ , ]s
nad

A B s
nad

A B (52)

ρ ρ ρ ρ≈ ̃E E[ , ] [ , ]xc
nad

A B xc
nad

A B (53)

nor

ρ ρ ρ ρ≈ ̃T T[ , ] [ , ]s
nad

A B s
nad

A
ref

B (54)

ρ ρ ρ ρ≈ ̃E E[ , ] [ , ]xc
nad

A B xc
nad

A
ref

B (55)

because they are not consistent with the potential. The self-
consistent expressions for the energy are obtained using the
linearized approximations for the nonadditive functionals (eqs
50 and 51) in evaluation of the total energy (eq 6).
4.1.4. Embedding Potentials from Numerical Inversion

Procedures. If the Kohn−Sham calculations for the total system
using some approximate exchange-correlation functional are
doable, the approximated nonadditive kinetic potential or even
the whole FDET embedding potential can be obtained following
the inversion strategy. The strategy relies on the unique
correspondence between the Kohn−Sham potential (vs[ρ](r)⃗)
and the ground-state density:50

∑ρ ϕ ϕ ρ ϕ− ∇ + ⃗ = ϵ = | |
=

⎜ ⎟
⎛
⎝

⎞
⎠v r

1
2

[ ]( ) with 2i i i
i

N

i
2

s
1

2

(56)

where 2N is the number of electrons (the spin-compensated
version of Kohn−Sham equations is given here for the sake of
simplicity).
Note that vs[ρ](r)⃗ denotes the density functional (unique

correspondence) and not the explicit expression for the Kohn−
Sham effective potential. This correspondence can be applied for
ρA
opt(r)⃗, and for ρA

opt(r)⃗ + ρB(r)⃗ defined in eq 3, to obtain two
potentials vs[ρA

opt](r)⃗ and vs[ρA
opt + ρB](r)⃗. On the other hand,

Kohn−Sham formalism and FDET provide expressions for these
potentials for a given external potential. The potential
corresponding to ρA

opt(r)⃗ + ρB(r)⃗ is given in the Kohn−Sham
theory and reads

∫ ρ ρ

ρ ρ

⃗ = ⃗ +
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The functinal for the potential corresponding to ρA
opt(r)⃗ is given

in FDET and reads

ρ ρ ρ
δ ρ ρ

δρ
⃗ = + ⃗ +

⃗
v r v [ r
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r
[ ]( ) ]( )

[ , ]

( )s A
opt

s A
opt

B
s
nad

A B

A (58)

Note that eq 57 is an equation for functions and eq 58 is an
equation for functionals. Once the potentials given in eqs 57 and
58 are available numerically, it is possible to evaluate
δTs

nad[ρA,ρB]/δρA(r)⃗ numerically as a difference without
constructing approximations for the density functional
Ts
nad[ρA,ρB]. Such construction is analytically possible only for

some model systems.47,48 Exact potentials are also available
analytically for particularly partitioned (such that ρA(r)⃗ integrates
to 2) molecular densities obtained form Kohn−Sham calcu-
lations215 using approximated exchange-correlation potential.
Such constructions are useful for development of approximations
and interpretations. For a more general case, the numerical
inversion must be used in order to obtain at least one of the
potentials given in eqs 57 and 58 numerically.
Unfortunately, procedures for the numerical inversion are not

robust and do not lead to unique potentials if the finite basis sets
are used.227 Moreover, using a finite basis sets to obtain ρA

opt(r)⃗ +
ρB(r)⃗ does not guarantee that the obtained density is pure-state
noninteracting v-representable, i.e., whether the potential vs[ρA

opt

+ ρB](r)⃗ exists for this density.137 The first generation of
numerical inversion procedures such as the ones proposed by
Zhao, Morrisson, and Parr144 or by Gritsenko, van Leeuwen, and
Baerends228 were improved (see the methods by Wu and
Yang229 and by Jacob230).
With additional approximations (such as linearization, which

makes the embedding potentials ρA-independent), the numerical
inverted potentials can be used also for evaluation of the whole
FDET embedding potential. Carter and collaborators introduced
this strategy to develop local pseudopotentials for solids.101 The
numerical inversion methods for the FDET embedding
potentials were further refined and applied by others.81,116,231,232

The work of Fux et al.,116 for instance, demonstrated that the
numerical inversion strategy is much more efficient than using
simple approximations for δTs

nad[ρA,ρB]/δρA(r)⃗ for covalently
bound environments.
4.2. Generation of ρB(r)⃗

Most of the applications of FDET based simulation concern
embedded species which are not linked with the environment by
covalent bonds (molecules physisorbed at surfaces, molecules in
clusters, guest molecules in guest−host complexes, etc.). In such
cases, NA and vA(r)⃗ are determined in a straightforward manner.
As a consequence, NB and vB(r)⃗ cannot be chosen freely because
of the conditions NAB = NA + NB and vAB(r)⃗ = vA(r)⃗ + vB(r)⃗. The
case when choosing NA is ambiguous (if the charge-transfer
between subsystem is possible, for instance), lies rather outside
of the scope of FDET based methods, and will not be considered
here. Methods such as those based on partition DFT (see section
3.1) should be considered instead. In practical FDET based
calculations, even if NB is fixed, ρB(r)⃗ still must be generated.
Freezing ρB(r)⃗, which lies at the origin of the fact that FDET
cannot yield the ground-state energy but its upper bound, is an
additional approximation on top of the ones made in practice
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concerning Ts[ρA,ρB] and Exc[ρA,ρB], i.e., the universal
approximations discussed in the previous section, and the
treatment of correlation in ĤA. The strategy to generate ρB(r)⃗ can
be expected to be strongly system specific. As a consequence,
many system-specific strategies to generate the frozen density are
in use. Below we outline the major ones.
4.2.1. ρB(r)⃗ As a Ground-State Density from the

Quantum-Mechanical Calculations for the Whole Envi-
ronment.Themost straightforward strategy to generate ρB(r)⃗ is
to use some inexpensive quantum mechanical method to
generate the ground-state density of the isolated subsystem B.
Such strategy is especially suitable if the environment is not
significantly polarizable such as in the case of embedding a
species in a noble gas matrix.207 This strategy is also applicable for
polarizable environments due to the weak dependence of the
FDET derived properties of the embedded species on variations
of ρB(r)⃗ as discussed in section 2.2.3 (see the examples for local
excitations provided in ref 107). But generation of ρB(r)⃗ by
means of the quantum-mechanical calculations for the whole
environment has some drawbacks. In the case of large
environments, the computational effort to generate such ρB(r)⃗
might be prohibitive. Moreover, obtaining self-consistent
solutions using some inexpensive Kohn−Sham based calculation
might be difficult.233,234

4.2.2. Superposition of Densities of Fragments. This
method to generate ρB(r)⃗ seems a natural choice for cases where
conventional QM/MM type of calculations are applicable.
Instead of additive pair potentials in QM/MM, superpositions of
densities of fragments are used to generate ρB(r)⃗ for FDET
calculations. Such additive ρB(r)⃗ is obtained as

∑ρ ρ⃗ = ⃗
=

r r( ) ( )
i

i
B

1

NfragB

B
(59)

where NfragB is the number of fragments in the environment,
ρB
i (r)⃗ denotes the electron density of the isolated ith fragment.
The superposition strategy was used in our original applications
of FDET where the fragments were water molecules in the case
of solvatation160,235 or fragments of proteins.236 The fragments
in the above expression can be just atoms or ions (see refs 210
and 233, for instance), the whole molecules (see refs 114, 120,
180, 208, 209, 223, and 237 for instance), or parts of larger
molecules (see refs 119 and 234 for instance). Equation 59 leads
to linear scaling of the computational effort needed to generate
ρB(r)⃗ and can be expected to be a good approximation if the
environment comprises weakly interacting species. In the case of
chains formed by hydrogen-bonded molecules in the environ-
ment of the organic chromophore (7-hydroxyquinoline),
neglecting the mutual polarization of the molecules in the
chain (eq 59) affects the environment induced shifts in the
excitation energies by up to 20%.107,238 We notice that the
density of each fragment used in the superposition might
correspond not to the isolated fragment but to the fragment in a
condensed phase. For instance, the magnitude of the dipole
moment for the water molecule equals 1.85 D, whereas its liquid
phase counterpart is about 40% larger.239 Such effective densities
of fragments were considered the FDET studies of solvato-
chromism,240 in simulating dipole moment fluctuations in liquid
water,241 solvent effect on NMR shieldings,119 for instance.
4.2.3. Optimized ρB(r)⃗ from Subsystem DFT Calcula-

tions. Simultaneous optimization of ρA(r)⃗ and ρB(r)⃗ using the
freeze-and-thaw procedure55 leads to a unique optimized pair of
densities if approximations are used for the nonadditive density

functionals (see eq 38 in section 4.1). The uniqueness is the
artifact due to the use of approximations for the nonadditive
functionals in subsystem DFT.52 Optimization of ρB(r)⃗ in
procedures such as freeze-and-thaw affects the FDET results
through two indistinguishable factors: the physical effect of
electronic polarization of the environment by the embedded
species and maximization of the absolute error in the used
approximation for the nonadditive kinetic energy (see the
relevant discussion in section 4.1). Only in the extreme case of a
charged/polar embedded species and highly polarizable environ-
ment, the former effect clearly dominates.37,171 Optimization of
ρB(r)⃗ was shown to qualitatively improve results (bring them
closer to experimental ones) in such cases as a charged (+3e) the
embedded species (Ln3+) in anionic environment (six Cl−

anions). The polarization of ρB(r)⃗ by ρA(r)⃗ leads to the increase
of the environment induced property (the ligand-field splittings
of f-levels) by about factor two.171 In the case of biliverdin in
anionic enzymatic pocket,37 the use of not optimized ρB(r)⃗
(taken from Kohn−Sham calculations for isolated environment)
leads to qualitative wrong results. The effect of the environment
on g-tensor is properly described with freeze-and-thaw optimized
ρB(r)⃗.
Optimization of ρB(r)⃗ jeopardizes, however, the principal

advantage of the embedding strategy, reduction of the quantum
mechanical description level to only a small fragment of a larger
system. Nevertheless, the freeze-and-thaw algorithm although
introduced for the purpose of testing approximations to
Ts
nad[ρA,ρB] (see section 4.1) also can be useful in practical

simulations (see section 5.6). For instance, in a preliminary stage
of any large-scale simulation it can be applied to small model
system to test the procedure to generate ρB(r)⃗ or if optimization
of ρB(r)⃗ is doable.

4.2.4. Polarized ρB(r)⃗. In cases where the electron density is
expected to be strongly affected by the embedded species, taking
into account the electronic polarization of the environment by
the embedded species must be unavoidable despite the weak
dependence of the FDET results on variations in ρB(r)⃗.

107 Since
optimization of both ρA(r)⃗ and ρB(r)⃗ in subsystem DFT, which
can be achieved through the freeze-and-thaw iterations,55 lacks
clear physical interpretation (see section 2.2.3), it is rather more
appropriate to use simplified techniques to take into effect the
polarization of the environment by the embedded species. For
instance, by adding the dominant component of the external
electric field generated by the embedded species in the
generation of ρB(r)⃗.

171,172

4.2.5. Average ⟨ρB⟩(r)⃗ from Statistical Ensembles for
Structurally Flexible Environments. In the approximate
schemes based on FDET discussed so far, ρB(r)⃗ has a quantum-
mechanical origin. It was associated with some molecular system
at a given geometry. Equations 3−8 admit wider choices for
ρB(r)⃗. FDET might be used as a basis for a truly multilevel
strategy to evaluate the averaged effect of the solvent on
molecular properties in which ρB(r)⃗ is a statistically averaged
electron density (denoted here with ⟨ρB⟩(r)⃗). Equations 3−8
remain the same with ρB(r)⃗ being replaced by the statistical
ensemble averaged electron density, which is denoted with
⟨ρB⟩(r)⃗ throughout this work and with ⟨vB⟩(r)⃗ being the
ensemble averaged potential generated by the nuclei in the
environment. Such use of FDET was introduced by Kaminski et
al.240 for studies of solvatchromism. Similarly to commonly used
polarizable dielectric continuum models such as PCM12 or
COSMO,13 ⟨ρB⟩(r)⃗, it provides a continuum representation of

Chemical Reviews Review

DOI: 10.1021/cr500502v
Chem. Rev. 2015, 115, 5891−5928

5908

http://dx.doi.org/10.1021/cr500502v


the solvent. In contrast to dielectric models, it takes into account
the specific solvent−solute interactions in a statistical manner.
In principle, any method can be used to generate the average

quantities ⟨ρB⟩(r)⃗ and ⟨vB⟩(r)⃗. The most straightforward way is
to use explicit atomic level simulation of the solvated system and
average the needed quantities. Such an approach has been
applied to average the electrostatic potential generated by the
solvent242,243 which can be seen as an approximate FDET
method in which the last two terms of the FDET embedding
potential (eq 8) are completely neglected. Yet another procedure
to obtain these average quantities was applied in refs 240 and
244. The procedure is based on classical statistical mechanics
theory of liquids. In the first step, the 3D-RISM equations245 with
Hirata-Kovalenko closure246 are used to obtain the site
probabilities, i.e., the probability of finding a particular atom in
a given volume element which is a function in R3. In the next step,
⟨ρB⟩(r)⃗ is obtained as a sum of contributions due to each type of
atom in the system. ⟨ρB⟩(r)⃗ and eqs 3−8 are coupled in a self-
consistent manner. The 3D-RISM site probabilities depend on
the net charges on atoms of the embedded species, i.e., on ρA(r)⃗,
whereas the embedded density depends on ⟨ρB⟩(r)⃗ through the
ρB dependency of the embedding potential. In practical
calculations, assuring the self-consistency between these
quantities might be numerically unstable240 due to lack of
uniqueness in casting electron density of the solvated
chromophore in the form of atomic point charges. The problem
can be expected to aggravate in the case of emission due to large
charge delocalization of the electron density and possible large
solvent effect on the geometry of the chromophore in excited
state. Recently, we proposed a simplified treatment of self-
consistency of charge distribution.247

4.2.6. 3-FDE Scheme. Jacob and Visscher221 proposed a
pragmatic approach to handle the systems where the embedded
species is linked with the environment with covalent bonds. To
avoid using approximations for the nonadditive kinetic energy
functional at strongly overlapping pairs densities, a buffer zone
comprising capping atoms with the corresponding third
component of the total density was introduced. In the 3-FDE
calculations, the two weakly overlapping subsystem densities are
optimized by means of the conventional freeze-and-thaw
procedure while keeping the capping density fixed. The
advantages of such treatment of a covalently bonded environ-
ment were demonstrated in the case of proteins with sulfide
bonds and charged side chains.221,248

4.3. FDET-Like Approximate Methods Based on the ONIOM
Strategy

The ONIOM strategy introduced by Morokuma and collabo-
rators56 relies on the following Ansatz for the total energy of the
whole system using two different approximate methods

≈ = + −E E E E EAB AB
ONIOM

AB
method

A
method

A
methodI II I (60)

where the method of the lower quality (methodI) can be applied
to the whole system and that of the higher quality (methodII)
only to the embedded part.
Upon introducing the quantity EAB

int = EAB
methodI − EA

methodI −
EB
methodI, eq 60 takes an alternative form

= + +E E E EAB
ONIOM

A
method

AB
int

B
methodII I (61)

which shows that ideal systems for the ONIOM Ansatz are such
where the lower quality method provides adequate interaction
energies.

FDET embedding potential is sometimes introduced in the
literature as the functional derivative of the EAB

int in the ONIOM
expression for the total energy (see the recent review by Severo
Pereira Gomes and Jacob,62 for instance). In the original work by
Carter and collaborators,57 the ONIOM Ansatz was used to
introduce the first combination of the approximated FDET
embedding potential with interacting Hamiltonian for ĤA. Since
both FDET and ONIOM approaches to multilevel simulations
hinge on approximations, the differences between them might
appear to be of technical nature. In fact, the differences between
the ONIOM strategy and the methods based on FDET concern
the underlying principles and interpretation of the obtained
quantities.

4.3.1. Independent variables. The pair of densities ρA(r)⃗
and ρB(r)⃗ is needed to evaluate the FDET embedding potential
(eq 8). Equation 61 implies that only the density ρA(r)⃗ and the
total density ρAB(r)⃗ are available in ONIOM. This pair of
densities is considered as independent variables57,58 and not
ρA(r)⃗ and ρB(r)⃗ as in the FDET case. ρB(r)⃗ is not directly
available in ONIOM type of calculations. The quantities

ρ ρ ρ̃ ⃗ = ⃗ − ⃗r r r( ) ( ) ( )B AB
method

A
methodI I (62)

and

ρ ρ ρ̃ ⃗ = ⃗ − ⃗r r r( ) ( ) ( )B AB
method

A
methodI II (63)

might not be even N-representable. No constraint assures that
these functions are non-negative. So they cannot be used in eq 8
without additional approximations concerning either ρA(r)⃗ or
ρB(r)⃗. For instance, in the methods proposed in ref 57, the
embedding potential was calculated at a fixed total density
(obtained from Kohn−Sham calculations for the total system)
whereas ρA(r)⃗ varied during the optimization. The correspond-
ing ρB(r)⃗ was not available. Due to the fact that the three
quantities ρA(r)⃗, ρB(r)⃗, and ρAB(r)⃗ such that ρAB(r)⃗ = ρA(r)⃗ +
ρB(r)⃗ are not available in ONIOM calculations, further
approximations must be made concerning the densities used in
the evaluation of the embedding potential.

4.3.2. The total ONIOM electron density. Despite the
availability of the electron density ρA(r)⃗ obtained from the
higher-level calculations, the total density of the whole system
has the quality determined by of the low-level method ρAB

methodI(r)⃗.
TheONIOM Ansatz made for the total energy (eq 60) cannot be
applied for the total density. The quantity

ρ ρ ρ ρ̃ ⃗ = ⃗ + ⃗ − ⃗r r r r( ) ( ) ( ) ( )AB AB
method

A
method

A
methodI II I (64)

cannot be interpreted as the electron density of the total system
because it might not be N-representable.

4.3.3. The embedded wavefunction in FDET vs the
ONIOM wavefunction. In ONIOM calculations, the embed-
ding potential is usually made ρA-independent in the procedure
to obtain the embedded wavefunction (see point (a)). It is
evaluated at some fixed density ρA

ref(r)⃗ instead of using the actual
density ρA(r)⃗ corresponding to the embedded wavefunction

57,180

(see section 4.1.3). Such ρA-independent embedding potential is
just an addition to usual external potential for isolated subsystem
A. For each electronic state, the ONIOM wavefunction is,
therefore, a legitimate one for evaluation the expectation value of
any quantum operator. The use of the embedded FDET
wavefunction lacks such justification except for one-particle
operators. From the start, it is just an auxiliary object used to
optimize the embedded density.
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4.3.4. The total energy of the whole system in exact
case. In contrast to the issues discussed above, the exact FDET
(exact density functionals) and exact ONIOM (exact methodII)
are not available in practice. For the purpose of improving the
existing approximate methods, it is worthwhile to consider how
the two strategies behave at the exact limits. With the exact
functionals, FDET energy never falls below the exact total energy
regardless the choice of ρB(r)⃗. In the case of ONIOM, even if the
full CI calculations were used as methodII, the total energy given
in eq 60 might lie above or below the exact one depending on the
choice made for methodI. If the environment disappears, FDET
energy converges toward the exact energy of subsystem A
regardless the form of the embedded wavefunction whereas the
ONIOM energy reaches the same limit only if full CI is used as
methodII. In the absence of the environment, the FDET energy
expression represents just another formulation of DFT which
uses limited number of determinants to represent the reference
system (one in case of Kohn−Sham formulation of DFT and
more than one in formulations of DFT based on artificial
reference system constructed with a limited number of
determinants77). For this reason, the ΔFSC[ρA] term (see eq
10) of the FDET expression for the total energy functional is not
considered in ONIOM calculations using correlated methods as
methodII.
4.3.5. Variational principle. ONIOM calculations can

combine any pair of approximated methods. FDET, on the
other hand, is based on the Euler−Lagrange equations, and it is
formulated only for such methods where the embedded
wavefunction is obtained from variational calculations.

5. NUMERICAL SIMULATIONS USING APPROXIMATED
FDET EMBEDDING POTENTIALS

The present section provides an overview of numerical
simulations based on various formal frameworks sharing the
use of the local embedding potential of the FDET form (eq 8).
Most of the reviewed applications concern the straightforward
application of eqs 3−8 in their approximated version. In eqs 5−8,
the functionals Ts

nad[ρA,ρB] and Exc
nad[ρA,ρB] are replaced by their

approximated counterparts (T̃s
nad[ρA,ρB] and Ẽxc

nad[ρA,ρB]) and
are used for some ρB(r)⃗ generated in a procedure chosen by the
user. Besides such simulations, we include also applications of
several beyond-FDET formalisms sharing with FDET the used of
the local embedding potential of the form given in eq 8. They
include (a) extensions of FDET to evaluate properties beyond
energy and density using quantities obtained from eqs 5−8 (for
excitation energies182 and NMR chemical shifts,115 for instance);
(b) alternative formulations of DFT such as subsystem DFT52 or
partition DFT53,54), in which the environment density is also
optimized owing to the use of other descriptors than just ρB(r)⃗;
(c) alternative formulations of LR-TDDFT based on sub-
systems;113,152−154 and (d) approximate methods based on the
ONIOM Ansatz, in which the basic variables are not ρA(r)⃗ and
ρB(r)⃗ but ρA(r)⃗ and the total density.

57,58 The present section is
an attempt to summarize the current stage of applications of the
approximated FDET embedding potential in numerical
simulations. It focuses on properties rather than the used
methods and approximations.

5.1. Electronic Excitations

5.1.1. Solvatochromism. The computational advantages of
the embedding strategy manifest themselves most evidently in
modeling solvatochromism. The structural flexibility of the
solvent in a finite temperature results in fluctuations of the

instantaneous contribution of the solvent to the excitation energy
of the chromophore. Simulating the shape of the absorption or
emission bands and even calculation of solvatochromic shifts
involves thus repetitive calculations of excitation energies for a
statistical ensemble of structures.
Neugebauer et al. pioneered the use of the FDET embedding

potential in LR-TDDFT based simulations of solvated
chromophores.208 The solvatochromic shift in the lowest n →
π* transition in hydrated acetone was investigated. The
excitation energies were evaluated for hundreds of instantaneous
geometries taken from classical and Car−Parrinello249 molecular
dynamics simulations. Two principal computational advantages
of the FDET/LR-TDDFT calculations over the conventional
LR-TDDFT treatment of the whole system were demonstrated:
(a) a great reduction of the computational effort (the time-
consuming LR-TDDFT calculations are only carried in
embedded region) and (b) simplicity in the analysis and
interpretation of the results (the removal of spurious solvent−
solute charge-transfer excitations due the approximations in
exchange-correlation potential and the corresponding kernel).
The subsequent application of the same FDET/LR-TDDFT
method109 concerned the solvatochromism of aminocoumarin
C151 in polar (water) and nonpolar (n-hexane) solvents. The
shifts of the absorption maximum corresponding to the π→ π*
band shapes of UV−vis absorption spectra were evaluated using
up to 400 instantaneous geometries for largemodel of the solvent
consisting of up to 300 molecules. The experimental shift
between n-hexane and water as solvents (−0.22 eV) was
qualitatively reproduced (−0.08 eV) even using the simplest
approximation for ρB(r)⃗ (all solvent molecules were frozen and
mutual polarization among them were neglected). Changing the
partitioning of the cluster and including the nearest solvent
molecules into ρA(r)⃗ resulted in the improvement of the
calculated shift bringing it to −0.17 eV.
Concerning the comparison of FDET with other embedding

methods, Jacob et al.114 simulated the lowest excitation energy of
a water molecule in a cluster (up to 127 water molecules) using
both FDET/LR-TDDFT and discrete reaction field (DRF)
model.105,250,251 The results of the two types of embedding
calculations were compared with the ones of reference LR-
TDDFT calculations for the whole cluster. For water-cluster-
induced shift in the lowest excitation energy of the isolated water
molecule, the FDET/LR-TDDFT result (0.54 eV) was closer
than the DRF result (0.32 eV) to the reference one (0.67 eV).
Kaminski et al.240 introduced an alternative strategy to

simulate the solvatochromic shifts in absorption without
modeling explicitly the absorption band shapes. FDET/LR-
TDDFT calculations were solved using the ensemble averaged
solvent density ⟨ρB⟩(r)⃗ derived from classical statistical
mechanics based model of the solvent (see section 4.2.5). The
obtained numerical results for four chromophores (acetone,
aminocoumarin 151, acrolein, or benzophenone) in four solvents
(water, methanol, diethyl ether, or n-hexane) are very
encouraging. Most of the calculated shifts in lowest-lying
excitations and their experimental counterpart were in excellent
agreement (within 0.03 eV). Using the same methodology, Zhou
et al.244 modeled the shifts in the π → π* absorption band of
coumarin 153 in nine solvents of different polarity. The
deviations between the calculated and measured solvatochromic
shifts within a narrow range (0.02 eV) demonstrate the strength
of the proposed strategy to treat the solvent in FDET/LR-
TDDFT. Applications of the same strategy for solvatochromic
shifts in emission involves additional practical issue, coupling
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between the electronic state of the embedded species and the
averaged electron density of the environment ⟨ρB⟩(r)⃗. Whereas
the effect of ⟨ρB⟩(r)⃗ on ρA(r)⃗ is taken into account in the FDET
embedding potential explicitly, modeling the opposite effect
involves additional approximations which were analyzed by
Shedge and Wesolowski247 using coumarin 153 in various
solvents of different polarity as a test case. The quality of the
solvatochromic shifts in emission obtained using the proposed
approximations was very good but slightly worse than that found
for the solvatochromic shifts in absorption. The deviations of the
calculated solvatochromic shifts in emission from experimental
values were within 0.05 eV.
The environment induced shifts in excitation energies are

often calculated for smaller systems in order to test the
approximations and methods for use in full scale simulations.
In such cases, the quality of the obtained results is not discussed
using experimental data as a reference but the results of other
calculations. A number of such studies applying approximated
FDET embedding potentials were reported in the literature.
Daday et al.175,176 used several solvated systems (p-nitroaniline,
acrolein, methylenecyclopropene, or p-nitrophenolate in various
solvents). The optimization of ρB(r)⃗ for different electronic
states of the embedded chromophore was discussed in detail and
interpreted as “state-specificity”. We bring to the readers
attention that the state-specificity is an inherent feature of the
FDET embedding potential and it is associated with the ρA(r)⃗
-dependence (see eq 8). The authors estimated also the effect of
changing ρA(r)⃗ on the embedding potential and found it
negligible as compared with that due to optimization of ρB(r)⃗. In
view of the fact discussed in sections 2.2.3 and 2.2.4 indicating the
unphysical origin of partitioning of the total density obtained in
approximate subsystem DFT calculations, the relative impor-
tance of the ρA(r)⃗ and ρB(r)⃗ dependency cannot be interpreted in
the straightforward manner. The FDET/LR-TDDFT study by
Humbert-Droz et al.107 revealed a very weak dependence of the
excitation energy shifts on ρB(r)⃗ for various embedded
chromophores: keto-7-hydroxy-4-methylcoumarin in four
water molecules, P-nitro aniline solvated by six water molecules,
and 4-hydroxybenzylidene-2,3-dimethylimidazolinone anion in
50 water molecules. These studies indicate a need for more
dedicated studies on this issue.
Höfener et al.180,211,252 studied the solvatochromic shift in

hydrated uracil for testing the proposed method using coupled
cluster calculations combined with linearized FDET embedding
potential.
5.1.2. Chromophores in Biological Environments. The

simulation of chromophores in biological environments is
another area of applicability of multilevel simulations such as
the ones based on FDET. Even if the environment is static, i.e.,
represented by means of a fixed geometry, the huge size of
biological macromolecules makes supermolecular strategy
impractical. Wesolowski introduced the method for treatment
of local electronic excitations embedded in a frozen density
combining the FDET and LR-TDDFT framework. The
strengths of such combination (FDET/LR-TDDFT)182 were
demonstrated for the low lying local excitations in hydrogen-
bonded nucleobases in their classical Watson−Crick geometries.
The calculations showed that the complexation induced shifts in
the excitation energies is a result of a subtle balance between
long-range electrostatic effect and the short-ranged intermolec-
ular Pauli repulsion.
Neugebauer234 investigated a more complicated biological

system, the light-harvesting complex 2 of the purple bacterium

Rhodopseudomonas acidophila. The shift in site energy (the
excitation energies of individual pigments in their binding pocket
of a protein-pigment complex) of the chromophore in induced
by protein environment were evaluated using the FDET/LR-
TDDFT calculations (called “uncoupled FDE” or “FDEu”
there). Since the studied system comprises several chromo-
phores, treating each of them as one embedded system FDET/
LR-TDDFT is not adequate. The shifts in the absorption bands
due to chromophore−chromophore couplings were evaluated by
means of the beyond-FDET approach of Neugebauer (coupled
FDE or FDEc;153 see section 3.3).
Neugebauer et al.118 studied the spectroscopic properties

(absorption, circular dichroism, and nuclear magnetic resonance
spectra) of another biological system, carotenoid astaxanthin in
crustacyanin protein that occur in the shell of the lobster
Hommarus gammarus, using both FDET/LR-TDDFT calcu-
lations and FDEc methods. Several possible mechanisms
proposed in the literature for the observed bathochromic shift
(more than 0.5 eV) in the absorption spectrum of astaxanthin in
crustacyanin were analyzed.
Goez et al.253 calculated also the excitation energies of Fenna−

Matthews−Olson pigment−protein complex for testing the
performance of the 3-FDE scheme (see section 4.2.6) to deal
with deficiencies of the approximated FDET potentials in the
case of covalently bound environments.
Zhou et al.254 studied the lowest π→ π* excitations of retinal

in rhodopsin and three visual cone pigments by means of the
FDET/LR-TDDFT calculations. Based on the analysis of the
factors determining the spectral shifts, models of mutated
rhodopsin with fine-tunned spectral properties were proposed.

5.1.3. Local Excitations in Solid-State Environments.
Klüner et al.179,255 introduced the method combining the
approximated FDET embedding potential with interacting
Hamiltonians for embedded species and applied it to study
excited states of the carbon monoxide molecule adsorbed on a
Pd(111) surface. The CO/Pdn (for n = 3 or 6) cluster was treated
as embedded system, for which the interacting Hamiltonian was
used (either Hartree−Fock, MPn, CASSCF, or CI). A significant
effect of the crystal environment (about 5.1 eV) on the vertical
excitation energy of the 1(5σ/1π ⃗ 2π*) transition in CO was
found.
A single magnetic adatomCo on the Cu(111) surface, which is

a strongly correlated system exhibiting the Kondo effect, was
studied with similar methods for CO/Pd(111) by Huang et al.256

Although themain interest of this study was in the Kondo ground
state, the low-lying excited states of Co/Cun (for n = 3 or 7)
cluster embedded in periodic crystal environment were also
studied using methods combining either CASSCF or multi-
reference singles-and-doubles configuration interaction
(MRSDCI) levels of description with an approximated FDET
embedding potential. It was found that the embedding potential
affects the low-lying excited states of adsorbed Co atom by up to
1.42 eV.
Huang et al.257 also studied the excited states of this Co/

Cu(111) system, but the used methods were slightly different
from the ones used in previous studies.179,255,256 The applied
method uses nonlocal embedding operator which puts it beyond
the formal framework of FDET.
Kanan et al.258 investigated the excited states of MgO crystal

using cluster models MgnOn (n = 2 or 4) embedded in a MgO
supercell which generated an approximated FDET embedding
potential. For the ground state the cluster was described by
means of a CASSCF whereas CASSCF or other correlated
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methods (CASPT2 or MRSDCI) was used for the excited state.
It was found that the quality of the calculated band gap lies
between that from standard periodic DFT method and that from
more expensive Green’s function methods.
Libisch et al.259,260 studied the hot-electron-induced dissoci-

ation of H2 on gold surface, Au(111), by calculating the ground-
state and excitation-energy potential-energy surface using an
approximated FDET embedding potential for the H2/Au12
cluster carved from the (111) surface of Au. The embedded
cluster was described by means of CASSCF for ground state and
CIS for excited state. The dissociation barrier on the excited state
potential energy surface was found lower than that for the ground
state.
A simplified ligand-filed type of model using the FDET

embedding potential was used to calculate the ligand field
splitting energies for lanthanides (Ln3+) in octahedral environ-
ment by Zbiri et al.172,261 The calculated splittings agreed very
well with experiments: the splitting between the a2u−t2u levels
oscillated around experimental values for the whole lanthanide
series, whereas the splitting between the a2u−t1u levels were
systematically underestimated by about 25%. Moreover, the
calculations allowed to determine the role of different factors
affecting the splitting parameters such as electronic polarization
of the environment by the embedded cation, orbital localization,
and Pauli repulsion.
Gomes et al.209 investigated the f−f spectrum of a NpO2

2+

impurity in a Cs2UO2Cl4 crystal. The embedded region (NpO2
2+

or NpO2Cl4
2−) was described by means of the interacting

Hamiltonian of the intermediate Hamiltonian Fock-space
coupled-cluster method (IHFSCC).262−264 The effect of crystal
environment on the cluster was decomposed into two parts. A
intermediate region (20 UO2Cl4

2− and 90 Cs+) surrounding the
embedded cluster was described by the approximated FDET
embedding potential and the component due to the remaining
crystal was represented by means of a Madelung potential. The
method introduced in ref 209 was subsequently applied by
Tecmer et al.213 for the f−f transitions in the CUO molecule
embedded with noble gas matrices and Gomes et al.210 to study
the f−f transitions in UO2

2+ (uranyl cation) in a Cs2UO2Cl4
crystal, with embedded region also described by means of the
IHFSCC method.
Optical and ESR properties of Mn2+ impurity in doped cubic

fluoroperovskites AMF3 (for A = K or Rb and M = Mg, Zn, and
Cd) were investigated using the FDET embedding potential by
Garciá-Lastra et al.203 in order to determine the local structure of
the environment which is consistent with spectroscopic data.
5.1.4. Induced Circular Dichroism in Guest−Host

Complexes. Neugebauer and Baerends123 applied FDET/LR-
TDDFT calculations for simulation of induced circular
dichroism (ICD) spectra and optical rotatory strength of a
nonchiral molecule forming the complex with a chiral one,
benzoic acid-amphetamin complex for instance, ferrocenecar-
boxylic acid crown ether complexed with L-leucine and phenol in
β-cyclodextrin. ICD spectra obtained from FDET resembled
closely the reference ones which were obtained by means of
conventional Kohn−Sham calculations for the whole system.
The calculations showed that the FDET/LR-TDDFT methods
represent an efficient tool for modeling of ICD spectra of
nonchiral compounds due to their ability to treat large systems.
However, the FDET/LR-TDDFT calculations which neglect the
dynamic response of the environment (see section 3.2.3) are not
applicable if the embedded species and the environment absorb
in the same spectral range (coupled excitation; see sections 3.3

and 5.1.5). Such a situation was reported in the case of excitonic
coupling in the CD spectra and its intensities for the astraxanthin
dimer in β-crustacyanin proteins.118

5.1.5. Coupled Chromophores and Charge-Transfer
Excitations from Excited-State Subsystem DFT. In the
study case of the benzaldehyde dimer,153 Neugebauer presented
a clear case of failure of FDET/LR-TDDFT calculations and
proposed a solution through going beyond NDRE. This was
achieved by means of other then ρB(r)⃗ descriptors for the
environment, which was treated and the on the same footing as
the embedded species. The dynamic response of the environ-
ment is possible and results in couplings between excited states is
necessary. Such coupling is indispensable if the environment and
the embedded species absorb at similar frequencies. The
reported FDEc excitation energies for short distances between
the chromophores were qualitative better than the ones derived
within NDRE approximation (i.e., FDET/LR-TDDFT or
“uncoupled FDE” as they are referred to in the works by
Neugebauer). Many successful applications of FDEc followed.
Neugebauer and collaborators investigated excitonic coupling

in the CD spectra and its intensities for the astraxanthin dimer in
β-crustacyanin proteins.118 The astraxanthin molecule shows
bathochromic shift in absorption spectra on complexation with
crustacyanin protein. The prominent effects responsible for the
shift are a point of debate. Experimental observations indicate the
excitonic coupling, which show couplet like signatures in the CD
spectra. Thus, the aim of the study reported in ref 118 was to
investigate the role of these effects on observed shift. The
strength of the FDEc methods lies in its ability to take into
account the coupling effect and, at same time, to treat large
systems efficiently. The FDEc simulated CD spectra were
consistent with experiment observations.
König et al.204 calculated the absorption spectra of the Fenna−

Matthews−Olson pigment−protein complex, using FDET/LR-
TDDFT and FDEc calculations. The study concerned the
structural and environmental effects on the site energy, excitonic
couplings, and UV−vis absorption spectra. The largest model
constructed for the entire protein-pigment network contained
more than 7000 atoms. It was found that the site energies were
quite sensitive to structural and environmental changes in the
model setup, but excitonic couplings were more robust.
Neugebauer and Mennucci reported the first study using the

FDEc method to study charge-transfer excitation in a perylene
dimer in water.155 The comparison was made with the results
obtained using polarizable QM/MM calculations and demon-
strated that the both FDET and empirical QM/MM models
describe the long-range screening adequately.
Pavanello et al.157 used embedded wavefunctions obtained

form subsystem DFT calculations to evaluate the coupling terms
in empirical Hamiltonian describing charge-transfer states
excitation energies isolated molecular clusters (water dimer,
ethylene dimer, and π-stacked nucleobases). The obtained
excitation energies agreed very well with reference CASPT2
results. The developed methodology (referred to as FDE-ET)
was then applied for larger clusters used as the model of the
liquid. More recently, the developed methodology for charge-
transfer excitations was applied in the following complexes:
ethylene dimer, ethylene-tetrafluoroethylene, NH3−F2, and X-
tertacyanoethylene (for X = benzene, toluene, o-oxylene, and
naphtalene).265
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5.2. NMR

Jacob and Vischer115 extended the FDET framework for
evaluation of the nonrelativistic NMR shieldings. The use of
the FDET for this purpose is not straightforward because the
functional for the nonadditive kinetic energy depends not only
on the pair of electron densities but on the two components of
the total paramagnetic current. In the provided numerical
examples, however, this dependence was neglected. The
developed method was tested for calculation of the nitrogen
shielding of acetonitrile in several solvents: water, chloroform,
cyclohexane, and benzene, represented as clusters. The
calculated solvent induced shift of the sheldings were in good
agreement with the reference results obtained using Kohn−
Sham calculations for the whole cluster (the differences between
the shieldings obtained in embedding and supermolecular
calculations amounted to about 2 ppm). Bulo et al.120 applied
the method introduced by Jacob and Visscher for more realistic
models of the solvent (cyclohexane, chloroform, or water). The
large set of conformations for the solvated acetonitrile
represented by means of a molecular cluster was taken from
either classical molecular dynamic and Car−Parrinello molecular
dynamic simulations Car−Parrinello.249 The differential effect of
the two solvents (water and cyclohexane) observed exper-
imentally (19.7 ppm) was reasonably well reproduced (20.8
ppm). The differential solvent effect of cyclohexane and
chloroform was, however, underestimated in the simulations.
In the case of the chloroform, the average solvent effect was
shown to depend on the conformations used. Whereas using the
instantaneous geometries from classical simulations led to
underestimation of the effect of chloroform compared to
cyclohexane (3.5 ppm), using the structures from Car−
Parrinello trajectories for the averaging improved the result
(11.6 ppm) bringing it closer to the experimental value of 8.8
ppm. Implementation of new procedures to generate the density
ρB(r)⃗ for FDET calculations by Jacob et al.237 facilitated
treatment of large environment efficiently. The NMR shieldings
for water in the liquid phase were evaluated to test the new
procedures and the implementation.
Recently, the FDET based approach introduced for NMR

shieldings was generalized for calculation of nuclear spin−spin
coupling constants.119 In addition to approximations used in the
evaluation of NMR shieldings, the contribution of environment
to spin magnetization density was also neglected. The method
was applied to evaluate the environment induced effect on the
NMR coupling constants (ΔJ) in hydrogen bonded dimers,
water clusters, and complexes of Hg CH3X (for X = Cl, I, and Br)
with dimethyl sulfoxide. Several ways to obtain the frozen density
were considered. ρB(r)⃗ was the density of the isolated
environment, freeze-and-thaw optimized density of the entire
system, or superposition of densities of fragments (either isolated
or freeze-and-thaw optimized). FDET simulations reproduced
94% (for NH3−H2O) and 78% (for H2O) of the effect of the
environment on the shieldings obtained from reference Kohn−
Sham calculations for the whole system. Unlike the case of the
water dimer, the FDET calculations underestimated the
environment effect on the coupling constants for hydrogen
bonded hydrogen fluoride dimer (Δ1J(F,H) for hydrogen bond
donor subsystem, 5.7 Hz vs 17.9 Hz obtained from reference
Kohn−Sham calculations for the whole system. In case of
strongly interacting complexes of HgCH3X (for X =Cl, I, and Br)
with dimethyl sulfoxide, FDET calculations recovered only from
67% to 79% of the environment effect on the coupling constants.
This underestimation was attributed to the inability of the used

approximations in FDET to describe solvent-to-metal charge
donation. The tested approximations in FDET were applied to
evaluate the solvent effect on the coupling constants in larger
system consisting of 17 molecules. A good agreement with the
environment induced shifts in coupling constants obtained from
reference Kohn−Sham calculations for the whole cluster was
reported (Δ1J(O,H) and Δ1J(O,H′) is 14.4 Hz) even using
nonoptimized ρB(r)⃗ in FDET: −15.0 Hz and −14.2 Hz for
Δ1J(O,H) and Δ1J(O,H′), respectively. The freeze-and-thaw
optimization of ρB(r)⃗ improved the agreement even further.

5.3. ESR

Density functional theory based methods have been successfully
applied for deriving the hyperfine structure parameters (g-tensor
and isotropic hyperfine coupling constants) and hyperfine
structures of radicals (for review, see refs 266−268). Accurate
determination of the hyperfine coupling parameters require good
description of electronic correlation and sever criteria for the
basis set completeness. Compared to conventional post-SCF ab
initio methods, the DFT calculations make it possible to include
electron correlation effects on spin density at lower computa-
tional cost and rapid convergence with basis set. But for large
systems, even DFT based calculations for the whole system,
which are adequate for evaluation of ESR properties, are
practically impossible. In such cases embedding strategy is a
good alternative especially if the spin-density is known in advance
to be localized in a smaller part of a larger system. FDET based
embedding methods are particularly suitable for such applica-
tions due to the fact that the FDET embedding potential, which
determines the spin density of the embedded species, comprises
also the nonelectrostatic components.
The spin-polarized version of FDET was introduced in ref 207

and used to calculate isotropic hyperfine coupling constant
(hfcc), Aiso of Mg+ embedded in Ne or Ar matrices. In this
system, the electrostatic components of the embedding potential
are negligible (environment comprises noble gas atoms) and the
difference between Fermi contact terms Aiso of the hyperfine
tensor for Mg+ in the two matrices arises due to difference in the
Pauli repulsion between the close-shell ρB(r)⃗ and the spin density
of the Mg+ cation. A simple model of the matrix consisting only
of the nearest noble-gas atoms was used. Aiso([MgNe8]

+) and
Aiso([MgAr8]

+) are equal to −80 and −75 MHz, respectively.
These values compare very well with the corresponding
experimental values (−79 and −76 MHz).
FDETwas also applied for calculation of isotropic g-tensors for

model systems consisting of the biliverdin IXa radical and nearest
neighbor amino acids of the protein phycocynobilin to biliverdin
in the biliverdin-phycocynobilin complex,37 i.e., systems where
the electrostatic components of the embedding potential can be
expected to play a more important role. The study revealed that
the nonelectrostatic component of the embedding potential
must be included in order to get numerically stable results even in
such a case. To this end, the conventional Kohn−Sham
calculations were used as a reference. Using approximate
functional for nonelectrostatic component of embedding
potential could reproduce 50−90% of environment induced
shift in g-tensor obtained from the reference Kohn−Sham
calculations. Moreover, it was found that molecular ρB(r)⃗
corresponding to the isolated environment is an adequate choice
if it comprises neutral of cationic amino acids. In the presence of
negatively charged amino acid in the environment, better
agreement with reference results was obtained using optimized
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ρB(r)⃗. Nonoptimized ρB(r)⃗ leads even to a wrong direction of the
shift.
Besides purely electronic effects, the interactions with the

environment may affect the structure of the embedded species.
The environment effects on hfcc depend strongly on the
structure of the molecule of interest. In modeling solvated
radicals, additionally the environment must be treated as a
statistical ensemble of several structures. In practice it involves
repetitive calculations of hfcc for many geometries of the whole
systems. This leaves embedding strategy as the most efficient for
modeling. Neugebauer et al.117 applied FDET based methods to
theH2NO radical in clusters of H2O comprising two, four, and 75
molecules. This molecule is particularly suitable for such studies
because of a strong dependence of the hfcc on the out-of-plan
bending angle of the NO group from the H−N−H plane. The
values of the constant Aiso for hydrogen and nitrogen calculated
with the smallest cluster (H2NO−4H2O) equal to +11.85 and
−38.75 MHz, respectively. These numerical values compare well
with corresponding reference results from Kohn−Sham
calculations for the whole system (+12.78 MHz for N14 and
−38.75 MHz for H1). For more realistic modeling of solvent, the
Car−Parrinello dynamics was performed to generate an
ensemble of structures. The bulk effect of the solvent was
obtained by means of averaging the coupling constants derived
from FDET calculations for 200 instantaneous geometries. 75
water molecules were used to generate ρB(r)⃗ as a sum of densities
of molecular densities. The freeze-and-thaw optimization of
ρB(r)⃗ was estimated to affect the coupling constants by only 0.02
MHz.
More recently, Kevorkyants et al.223 applied FDET embedding

potential for calculation of isotropic hfcc for guanine radical
cation in the presence of one water and one chlorine or either of
the two molecules. The freeze-and-thaw optimized ρB(r)⃗ was
used. Larger models of the crystal environment consisting of 7
and 36 guanine molecules was also considered. A obtained with
the largest model (36 guanine) equals 15.5MHzwhich compares
well with the experimental result (16.8 MHz).

5.4. Multipole Moments and Polarizabilities

The dipole moment and polarizabilities are fundamental
properties of molecule. These properties are routinely calculated
with quantum chemical methods. Wesolowski and Warshel44

made the first attempt to calculate the dipole moment and its
fluctuations for a water molecule in liquid phase using
embedding strategy based on FDET. For the nearest solvent
molecules, the electron density ρB(r)⃗ was generated using
superposition of molecular fragments. The electrostatic potential
generated by more distant molecules was generated using net
atomic charges. Solvent density was kept frozen during the
calculation. It was found that the magnitude of the dipole
increases by only 0.2 D compared to the gas phase and does not
vary noticeably. The magnitude of this increase was under-
estimated compared to experimental observations (0.6 D). This
underestimation was attributed to the small basis set used for
calculation. Later, Jacob et al.114 calculated the dipole moment
and quadrupole moment of the solvated water molecule using
the triple-ζ quality basis set with diffuse functions. The properties
obtained from FDET calculations were compared with the DRF
results. The solvent induced increase of the dipole moment
derived from FDET calculations with not-optimized ρB(r)⃗ was
smaller (+0.65 D) than its DRF counterpart (+0.86 D).
Optimization of ρB(r)⃗ resulted in the further increase of the
effect (+0.91 D) in FDET calculations. More recently, Hodak et

al.241 took the dipole moment of the water molecule in the liquid
under scrutiny using also the approximated FDET embedding
potential to study its fluctuations along the molecular dynamics
trajectory. The reported value of the magnitude of the dipole
moment equals 2.85 D using the sum of fragments strategy for
generation of ρB(r)⃗ with fragments being the individual water
molecules of the dipole moment set to be equal to 3 D.
Both the total dipole moment or complexation induced dipole

moment are useful quantities to analyze the accuracy of the
densities obtained from subsystem DFT calculations. The
induced dipole moment related directly to the quality of the
approximations for the FDET embedding potential (see refs 44,
108, 111, 114, 131, and 216 for instance). With sufficiently large
basis set (supermolecular expansion, see section 2.2.4), the
induced dipole moment are very sensitive to the variations in the
embedding potential. Such study was reported in ref 225
concerning the linearization approximation (see section 4.1.3) to
the nonadditive kinetic energy component of the FDET
embedding potential by analyzing results of complexation
induced dipole moments for weakly bound intermolecular
complexes. The linearization scheme for the nonadditive-kinetic,
as well as exchange-correlation, components of the FDET
embedding potential was examined for the same set of complexes
in ref 226. Beyhan et al.216 analyzed dipole moments in weak
covalently bond complexes, such as NgAuF (for Ng = Ar, Kr, and
Xe) in the study of the accuracy of several approximations to the
density functional for the nonadditive kinetic energy. FDET
results were compared to that of conventional Kohn−Sham
calculations to the whole complex. It was found that none of the
considered functional could describe adequately a weak covalent
bond. Among the considered decomposable approximations for
Ts
nad[ρA,ρB], only the one introduced by Karasiev et al. in ref 269

for Ts[ρ](PBE2) could produce the induced dipole moment
close to the reference Kohn−Sham results if a nonrelaxed ρB(r)⃗
was used in FDET equations. The reported magnitudes of the
interaction induced dipole moment for Ar, Kr, and Xe complexes
are equal to 1.78, 2.26, and 2.88 D, respectively. The
corresponding supermolecular Kohn−Sham reference values
are 1.80, 2.15, and 2.67 D. The freeze-and-thaw optimization of
ρB(r)⃗ led to worse dipole moments. These results confirm the
conclusions from earlier studies of approximations for the
nonadditive kinetic energy functional108,128−130 which show that
the simple GGA type of approximations for Ts

nad[ρA,ρB] are
applicably only if the densities ρA(r)⃗ and ρB(r)⃗ are weakly
overlapping. In covalently bound environments, the ρA−ρB
overlaps for any reasonably chosen ρB(r)⃗ are too large and the
errors in the approximated functional for the FDET embedding
potential are unacceptable.
For the dipole-polarizabilities, the first application of FDET/

LR-TDDFT was reported in ref 114 concerning solvated water
molecules. FDET/LR-TDDFT polarizabilities were compared
with the results of the DRF calculations. It was found that the two
considered embedding methods (DFT and FDET based) lead to
opposite effects of the environment on the polarizability of the
embedded species. The DRF calculations yield increased mean
static polarizability due to the solvent from 9.40 a.u. (gas phase)
to 9.62 a.u. (solvent). The FDET shows an opposite solvent
effect, decrease from 9.40 a.u. (gas phase) to 8.77 a.u. in the
solvent. A similar trend was observed for frequency dependent
mean polarizability. On the other hand, although DRF can
account for the polarization of the solvent by the solute, it does
not take into account the Pauli repulsion in the embedding
potential as does FDET. To analyze the environment response
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contribution to static polarizability, the finite field calculations
were made in which the environment density was also optimized
by means of freeze-and-thaw procedure. The contribution to the
static polarizability obtained using the two embedding methods
was similar and equal to 0.30 a.u. and 0.40 a.u. for FDET and
DRF, respectively. (Note that interpreting the effect of the
optimization of ρB(r)⃗ as the electronic polarization of the solvent
by the solute is not straightforward in FDET; see eq 38 in section
4.1.) However, such analysis can be done only for static
polarizabilities. The authors attributed this qualitative difference
to the lack of coupling between excitations in the embedded
species and the environment which we refer to as the NDRE
approximation in the present work.
The qualitative differences between the polarizabilties

obtained from FDET and DRF calculations reported in ref 114
were attributed to neglecting of couplings between excited states
of the embedded species and the environment (i.e., to the NDRE
approximation). Indeed, the FDEc dynamic polarizabilities
where consistent with DRF.113

5.5. Density Analysis

In previous sections, we discussed assessment of results obtained
for molecular properties using density embeddingmethods along
with the performance for chosen approximation and limits of the
method. Accuracy of these properties depends upon a more
fundamental quantity such as electron density. FDET calcu-
lations make it possible to investigate the effect of the
environment described by a fixed ρB(r)⃗ on the electron density
of the embedded species. Subsystem DFT52 calculations such as
the ones using the freeze-and-thaw optimization of both ρA(r)⃗
and ρB(r)⃗

55 provide a unique pair of optimized densities if the
approximated functionals are used for Ts

nad[ρA,ρB] or Exc
nad[ρA,ρB]

(see eq 38 in section 4.1). Several studies were reported showing
that such a unique pair of densities are nevertheless meaningful.
References 121, 122, and 270, for instance, provide a

systematic analysis of electron densities and their topologies
obtained from subsystem DFT, and the corresponding Kohn−
Sham DFT calculations were reported. Such quantities as (a)
difference between the Kohn−Sham density of the whole system
and the sum of densities of isolated fragments, (b) the difference
between the Kohn−Sham density of the whole system and the
sum ρA(r)⃗ and ρB(r)⃗ obtained through the freeze-and-thaw
optimization, and (c) negative Laplacian of the optimized
densities in the subsystems were analyzed and discussed. Distinct
features of such densities in the bonding region were pointed out.
Kiewisch et al.122 studied systems with hydrogen bonds such as
HOH-F−, a strong hydrogen bond such as FH-F−, and nucleic
acid base pair. With the topology analysis it was reconfirmed that
freeze-and-thaw calculations lead to densities reflecting the
qualitative features of hydrogen bonds. Fux et al.121 extended this
study to weak dative bonds such as, for instance, H3N···BH3 and
compounds with ionic characters such as TiCl4. The densities
obtained in freeze-and-thaw calculations reflect the qualitative
features of the bonding these systems. For coordination
compounds with strong covalent bonds, however, the freeze-
and-thaw densities are less useful even in qualitative analyses.
Recently, Fabiano et al.166 discussed the results obtained using

an approach related to that of partition DFT, in which the
subsystem particle number can be noninteger. The effect of
allowing a fractional particle number of subsystems on the
density was analyzed in a representative set of noncovalent
complexes such as Ne−Ne, Ne−Ar, Ar−AuF, H2S−HCl, HF−
NCH, (NH3)2, NH3−ClF, and NaCl. The necessity to go

beyond the integer particle number was shown for NH3−ClF
and Ar−AuF. For Ar−Ne, H2S−HCl, and HF−NCH, on the
other hand, allowing for the fractional particle number appeared
not to be necessary. In the same work, the authors introduced the
definition of chemical descriptors such as Fukui functions271 and
global hardness for subsystems.
Solovyeva et al.224 analyzed the spin-density distributions

obtained in freeze-and-thaw calculations in several systems such
as the H2NO radical in a cluster consisting of 20 water molecules,
a guanine-thymine DNA base pair dimer radical cation, and a
radical cation in protein binding pocket represented either as
small cluster including only the nearest nighbors or a bigger
cluster comprising 750 atoms in total. It was found that the total
spin densities obtained from freeze-and-thaw calculations are
more localized than the ones obtained from the Kohn−Sham
calculations for the whole system.
The freeze-and-thaw optimized subsystem densities can

provide the essential information concerning the used
approximation for the functional derivatives of the nonadditive
kinetic energy functional (see the relevant part in section 4.1 or
ref 55). Such direct analyses of freeze-and-thaw optimized
subsystem densities were made subsequently for various systems
and approximations for the functional Ts

nad[ρA,ρB].
100,128−130

Della Sala and co-workers126,200 used the electron densities to
study the accuracy of several semilocal functionals for non-
additive kinetic energy component. The test calculations were
performed on 20 molecular systems with weak interactions,
dipole−dipole interactions, and hydrogen bonded interactions.
All considered approximations lead to almost the same global
error in the total density. The mean absolute error in density
varied by 5% from functional to functional, indicating that each of
them yields the embedding potential of the same quality. Larichia
et al.218 performed a similar study of the approximations for the
embedding potential within the framework of generalized
Kohn−Sham context, i.e., orbital-dependent approximations
for the exchange-correlation energy such as in commonly used
hybrid functionals B3LYP, BHLYP, and PBE0.196,272−276 The
test calculations were made for weakly bound systems such as
H2−NCH, HF−NCH, benzene−HCN, thymine with six water
molecules, and nucleic acid base pairs guanine−cytosine and
adenine−thymine.
Stefanovich and Truong99 reported the case of qualitative

wrong shape of the potential energy curve at short separations
between charged and neutral subsystems (F−−H2O and Li+−
H2O). This artificial behavior was attributed to unphysical
charge-transfer between subsystems caused by the violation of
orthogonality between embedded orbitals in different sub-
systems. Dulak and Wesolowski100 showed that the erroneous
behavior reported by Stefanovich and Truong for this systems
was due to the flaws in numerical implementation for the
evaluation of the FDET embedding potential. The density
obtained as a sum of freeze-and-thaw optimized subsystems
densities and the reference density from Kohn−Sham calcu-
lations for the whole complex did not show any artificial charge
transfer at short and intermediate separations between charged
and neutral subsystems.
Trail and Bird analyzed the conventional Kohn−Sham

densities and their FDET counterparts in aluminum.277 The
electron density on the [111] direction for fcc aluminum was
examined to test the approximation semilocal and nonlocal
approximations nonadditive kinetic energy functional. The
reference Kohn−Sham densities were reproduced reasonably
well using a nonlocal functional.
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Genova et al.212 analyzed recently the subsystem DFT
densities for periodic systems and compared them to the ones
obtained form conventional Kohn−Sham calculations. The
method was applied to model systems such as a water molecule
adsorbed on platinum surface and perylene diimide on gold
surface. Authors concluded that the method is successful to study
weakly interacting molecules adsorbed on a metal surface, and
accurate results can be obtained when there is no possible
hybridization between orbitals of adsorbed molecule and bands
of metal.

5.6. Properties of the Ground-State Potential Energy
Surface

In practical calculations, both Ts
nad[ρA,ρB] and Exc

nad[ρA,ρB] as well
as the corresponding terms in the embedding potential
δTs

nad[ρA,ρB]/δρA(r)⃗ and δExc
nad[ρA,ρB]/δρA(r)⃗ are replaced by

their approximated counterparts. The quality of the energies
obtained using approximated functionals is determined by the
errors in each of these four quantities. Unfortunately, the errors
in the energy components and in the corresponding potentials
are not related for simple approximations applicable in practical
calculations. This was demonstrated for Ts

nad[ρA,ρB] and
δTs

nad[ρA,ρB]/δρA(r)⃗
48,130 and originates from the inequality

given in eq 31. Moreover, the errors in Ts
nad[ρA,ρB] and

Exc
nad[ρA,ρB] are not related and should, therefore, be considered

as independent unless the approximated density functionals are
obtained from conjoint approximations (see section 4.1.1) for
the functionals Ts[ρ] and Exc[ρ]. The quality of the properties
discussed in the previous sections are determined by the used
approximated embedding potential and hence on the errors in
the used approximations for δTs

nad[ρA,ρB]/δρA(r)⃗ and
δExc

nad[ρA,ρB]/δρA(r)⃗ only. The quality of the energy is influenced
additionally by the errors in the used approximations for
Ts

nad[ρA,ρB] and Exc
nad[ρA,ρB]. Approximated functionals

T̃s
nad[ρA,ρB] and Ẽxc

nad[ρA,ρB] are used in the FDET functional
for the total energy (eq 6) to evaluate it at the density ρÃ which is
not equal to ρA

opt because of the approximations in the functional
for the embedding potential. It is, therefore, very difficult to
formulate general recommendations for the functionals to be
used for evaluation of the energy. In subsystemDFT calculations,
the errors of the energy are determined by the errors in four
quantities: T̃s

nad[ρA,ρB] and Ẽxc
nad[ρA,ρB] and the corresponding

functional derivatives. In FDET calculations, the difference
between the obtained energy and the exact one depends
additionally on ρB (as any other property derived from
FDET). These errors are unrelated and the used approximations
must be rather chosen on a case-by-case basis. Nevertheless, the
use of local density approximation for all approximated quantities
(T̃s

nad[ρA,ρB] and Ẽxc
nad[ρA,ρB] and the corresponding functional

derivatives) together with the freeze-and-thaw optimization of
ρB(r)⃗ leads to astonishingly good results in many cases and
should be considered as the starting point. Without using any
empirically adjusted parameters, it leads to excellent interaction
energies geometries for hydrogen-bonded and dipole bound
intermolecular complexes and even some weak dispersion bound
complexes. For hydrogen-bonded or dipole bound intermolec-
ular complexes, the quality of the interaction energies112,124 and
geometries151 exceeds that of the results of conventional Kohn−
Sham calculations. For small dispersion bound complexes, the
local density approximation in subsystem DFT calculations
results in relative errors in the interacting energy from 5% to
50%.150 Unfortunately, using even conjoint approximation for
Ts
nad[ρA,ρB] and Exc

nad[ρA,ρB] of the GGA type does not lead to a

systematic improvement of the interaction energy.125,150 At
another end of stronger interactions, local density approximation
as well as simple gradient-dependent approximations to
Ts
nad[ρA,ρB] lead to large errors.

110,216 Semilocal approximations
for the nonadditive kinetic potential known to good accuracy for
model systems116,215 are rather not to be expected to capture
even the qualitative features of the exact embedding potential in
such cases.
This section provides the overview of the applications of

various computational methods using the embedding potential
of the FDET form for evaluation of the energy of the embedded
species.

5.6.1. Chemical Reactions in Condensed Phase.Warshel
and collaborators studied reaction profiles and activation
energies of simple chemical reactions such as proton transfer in
model systems such as (FHF)− anion in liquid water,160 a water
dimer in cluster model (Im)3Zn

2+ of carbonic anhydrase
enzyme,236 autodissociation of water using an embedded cluster
consisting of 10 water molecules,161 and realistic model of such
large enzymes as DNA polymerase and itriptophosphate
isomerase.278 The approximated FDET embedding potential
was used to generate diabatic surfaces and to evaluate off-
diagonal elements in EVB Hamiltonian158,159 calculations for the
SN2 reactions in condensed phase.

279,280 Except for small model
systems, for which the tests of procedures to generate ρB(r)⃗ were
made such as that in ref 236, ρB(r)⃗ was not optimized in such
procedures and the calculations followed the approximate FDET
framework.
Olsson et al.281 evaluated the redox potentials for the blue

copper proteins plastocyanin and rusticyanin. The FDET
energies were used in a more general context of the applied
model for evaluating the free-energies differences based on linear
response approximation.282

Leopoldini et al.283 studied the oxidative half-reaction of
oxygen atom transfer from nitrate to MoIV in Desulfovibrio
desulfuricans nitrate reductase to compare the reaction barriers
on potential energy surfaces corresponding to singlet and triplet
configuration of molybdenum complex.

5.6.2. Intermolecular Complexes. Most of the results
reported in the literature on intermolecular complexes concerns
small systems, for which the reference results obtained from
accurate wavefunction based methods or experiments were
available. We start with the literature concerning benchmarking
and/or testing approximations for Ts

nad[ρA,ρB].
The first application of FDET to evaluate intermolecular

interaction energies concerned the H2O−Li+ complex.44 The
density of ρB(r)⃗ (water molecule) was not optimized and two
approximations to Ts

nad[ρA,ρB] (obtained from zeroth- and
second-order gradient expansion for Ts[ρ]) were tested. It was
found that including the second-order gradient expansion term
in the decomposable approximation for Ts

nad[ρA,ρB] instead of
improving the energies obtained using only the zeroth order term
(LDA) worsens the energy (overestimated depth of the
minimum on the potential energy surface). This was a puzzling
results because the optimization of ρB(r)⃗ could only worsen the
results further by deepening the minimum. This unexpected
behavior is the result of the different role the von Weizsac̈ker
functional plays in the interior and far from molecular centers
(see section 4.1.1). Subsequent studies by Wesolowski and
collaborators on various intermolecular complexes used freeze-
and-thaw optimized ρB(r)⃗ and included such systems as charged
complex H2O−Li+,

131,226 charge-transfer complexes NH3−
ClF,226 dipole bound complexes (H2S dimer, HCl dimer,
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CH3Cl−HCl, HCN−CH3SH, and HCl-CH3SH
151), hydrogen

bonded complexes (water dimer at equilibrium geome-
try108,128,226,235 and at other stationary points on the potential
energy surface,124 H2−NCH,

55 HF-NCH,108,128 HF dimer,108

HCl dimer,108 and NH3−H2O),
226 weaker intermolecular

complexes (C6H6-X (for X = O2, N2, and CO),284 benzene
dimer,285 carbazole-X (for X=Ne, Ar, CH4, CO, N2),

125 and
other typical dispersion bound complexes such as Ne−Ne, F2−
Ne, N2−N2, N2−Ar, Ar−Ar, F2−Ar,

150 Ne−Ne, CH4−CH4, and
C2H2−C2H2.

226 The potential energy curve for same set of van
der Waals complexes were recently reinvestigated using
subsystem DFT for three different conjoint approximations
LDA/TF, PW91/PW91k, and BP86/LLP91 for exchange and
nonadditive kinetic energy.286 The reported studies concerned
also larger sets of reference data including that of ref 287 (S22)
and that of ref 288 (S66). The results of comprehensive
benchmarking of energies and geometries obtained from
subsystem DFT, with freeze-and-thaw optimization of ρA(r)⃗
and ρB(r)⃗, can be found in refs 112 and 151.
In most cases, using the local density approximation for all

approximated density functionals leads to good or very good
interactions and energies competing in accuracy with that of
conventional MP2 calculations. In the case of π-stacking, the
tendency to compensate the errors in the local density
approximation functional breaks. Concerning testing the non-
additive kinetic functionals, these studies were complemented by
the results reported in ref 110 including also more strongly
bound complexes such as the coordination complexes.
Kevorkyants et al.162 reported a study of the LDA and GGA

approximations to Ts
nad[ρA,ρB] as well as their extension of

subsystem DFT including London dispersion forces for such
hydrogen-bonded and dispersion bonded intermolecular com-
plexes as (NH3)2, (H2O)2, (HCOOH)2, (CH4)2, (C2H4)2,
benzene dimer, benzene−HCN, benzene−amonia, benzene−
methane, and benzene−water.
Manby et al.96 tested the proposed beyond-FDET embedding

method that enforce Pauli exclusion via the projection technique
and not through the nonadditive kinetic potential to model
complexes including water clusters. In ref 231, the interactions
between H2 and a hydrogen chain were investigated using the
method applying inversion technique to generate the embedding
potential.
Subsystem DFT based calculations were applied also for larger

complexes not for testing purposes but to make actual
predictions of properties of the studied complexes. Tran et al.
studied dimers formed by nitrogen-containing planar polycyclic
aromatic hydrocarbons (C30H15N)2 and (C36H15N)2

289 and for
H2 molecule absorbed on polycyclic hydrocarbons.290 Either
studies concerned conformational preferences of the studied
complexes and estimation of barriers for transitions between
local minima.
To test the used approximations in FDET calculations for

modeling blue copper proteins (plastocyanin and rusticyanin),
Olsson et al.281 investigated potential energy surfaces in small
model complexes H2O−CH3OH and H2O−CH3SH which were
shown to compare favorably with the results of conventional
Kohn−Sham calculations.
5.6.3. Solids and Interfaces. The use of the approximated

FDET embedding potential for studies of molecules absorbed at
interfaces was pioneered by Carter and collaborators.57,58 The
applied method followed the ONIOM strategy and used
explicitly interacting Hamiltonian of the molecule absorbed at
the surface (CO on the Cu(111) surface). The performance of

the proposed method was tested on a model system (the
complex of Li2 andMg2) for which high-level wavefunction based
calculations of the full CI quality could be applied. The proposed
model was subsequently applied for absorption of CO adsorbed
on the Pd(111) surface using periodic DFT calculations to get
the total density and such interacting Hamiltonians for the
embedded species as that of CASSCF, CI, and MP4
methods.179,255 Further studies by Carter and collaborators
using improved version of the originally proposedmethod, which
made it possible to treat covalently bound adsorbated, concerned
binding energy of Co on Cu(111),256,257,291 CO on Cu(111),292

or dissociation of H2 on gold nano particles.259,260

Lahav and Kluner293 reported the absorption energies for CO
adsorbed on the Pd(111) surface calculated using a modified
version of the method used in the original publications.179,255

The modifications concerned approximations for the subsystem
densities and the used approximation for the nonadditive kinetic
potential functional.
Recently, Pavalone and collaborators212 reported studies of

methane on Pt(100), water on Pt(111), perylene diimide on
Au(111) using the implementation of the subsystem DFT
calculations for periodic systems.
Only a few studies reported using the FDET calculations to

evaluate vibrational properties of embedded species. They
include studies of embedded CO on metal oxide surfaces, CO
molecule physisorbed on the MgO(100) or ZnO(1010)
surfaces,294,295 or embedded clusters carved out from the ionic
solids: CO stretching frequency in the M+-CO (for M = Li, Na,
and K) complex embedded in the framework of the ZSM5 zeolite
or vibrational and optical properties of the (MnF6)

−4 complexes
in cubic fluoroperovskites.296

5.6.4. Simulations of Statistical Ensembles for Average
Structures and Thermochemistry. In the first FDET based
simulation of the free energy differences, the FDET energies
obtained at instantaneous geometries from the statistical
ensembles were used to determine the difference in the free
energy of hydratation for methane235 using a free-energy
perturbation scheme.
Iannuzzi et al.297 used the subsystem DFT calculations for

liquid water in NVT ensemble at 320 K. In contrast to freeze-
and-thaw algorithm, in which the subsystem densities obtained
from FDET are optimized in iterative process, the densities in all
subsystem (individual water molecules) were optimized
simultaneously.
Reference 298 reports the molecular dynamics simulation

performed for the CdSe using subsystem DFT calculations. The
calculations featured enormous size of the whole studied system
comprising more than 32 thousands of atoms.
Stefanovich and Truong99 studied the solid−liquid interfaces.

The test calculations are performed to generate potential energy
surface for several model systems He, Ar dimers, X−H2O
complexes for X = Li+, Na+, K+, F−, and Cl− and water absorbed
on the NaCl(001) surface. Both the approximated FDET
embedding potential as well as an embedding method using a
nonlocal embedding operator were used.
Hodak et al.241 used FDET embedding potential to represent

solvent effect using molecular dynamics simulations to model
binding of the copper ion to the prion protein. The embedded
system consisted five amino acids of prion protein (72 atoms)
and embedding solvent consisted 3101 water molecules.
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6. CONCLUDING REMARKS

In the present review, we overviewed both the applications of the
FDET formalism as an alternative to empirical QM/MM
methods for multilevel simulations as well as applications of
the approximated FDET embedding potential given in eq 8 in
several beyond FDET extensions. The provided examples show
that the area of applicability of universal density-dependent local
embedding potentials is vast.
Concerning first type of applications, due to limiting the

description to the environment by such simple quantity as ρB(r)⃗,
FDET can target not the total density but an upper bound to it
and the corresponding self-consistent embedded wavefunction
obtained from the Euler−Lagrange equations. Compared to
empirical QM/MM methods the modeler must make a system-
dependent decision concerning generation of the frozen density
instead of choosing or fitting empirical parameters. An additional
advantage of FDET facilitating this task is the sublinear
dependence of the environment induced shifts of the properties
of the embedded species on ρB(r)⃗

107 and the availability of a
freeze-and-thaw55 procedure which can be applied on model
systems to obtain optimized ρB(r)⃗.

6.1. Universal Applicability of the Density Embedding
Methods and Their Limitations

The present review shows that local embedding potentials of the
form given in FDET found very wide area of applications as far as
systems and properties are concerned. The approximated FDET
framework as well as related methods using an approximated
FDET embedding potential were applied in multilevel
simulations of systems such as molecular clusters, solvated
systems, interfaces, biomolecules, and solids. The number of
reports of successful simulations of the effect of environment on
electric moments, polarizabilities, electronic excitations, and
magnetic properties (NMR and EPR) is growing. Accurate
results were reported in the literature concerning the ground-
state potential energy surface (interaction energies, geometries,
barriers, and vibrational spectra). FDET is especially suited for
simulating properties rather than just the ground-state potential
energy surface. FDET provides a variational principle based self-
consistent energy and embedded wavefunction, which can be
used to evaluate other observables than just the energy. If the
ground-state potential energy is the target of the simulation and
not electronic structure related properties, empirical QM/MM
types of approaches might be more suitable. Owing to empirical
parametrization of the components of the total energy, QM/MM
methods yield accurate energies. The lack of self-consistency
between energy and the embedded wavefunction is acceptable.
The overviewed applications show clearly that methods

applying approximated FDET embedding potential are appli-
cable in many areas even if simple approximations for the
universal density functionals are used. The domain of
applicability of the current approximations is defined not by
systems or properties but rather by the type of interactions
between the embedded species and the environment. If the
environment generates noticeable electric fields as in the case of
hydrogen bonding between the embedded system and the
environment or if ions or polar species are present in the
environment, simple explicit density functionals for the FDET
embedding potential are usually adequate. Approximations for
the total kinetic energy functional, which are not accurate enough
to be used in orbital-free DFT calculations (see refs 72 and 73),
are quite successful if used for approximating the nonadditive

kinetic energy and potential in FDET, where they are used to
take into account the confinement effects (Pauli repulsion).
In the FDET embedding potential, the electrostatic field is

taken into account exactly, whereas the presence of approximate
terms representing the nonelectrostatic contributions eliminates
the possible artificial effects of overpolarization in most cases.
The applications of the FDET basedmethods revealed also the

limitations of the currently available approximations. In the
presence of covalent bonding between the environment and
embedded species, the commonly used approximations for the
nonadditive density functionals usually fail.110 The numerical
inversion procedure to generate the embedding potential, in
which the explicit functionals are not used, provides one of the
possible solutions.116 Similarly, if the attribution of the integral
number of electrons to the embedded species is not
straightforward, FDET probably should not be used. Approaches
based on partition DFT,53,54 which involves optimization of the
occupancy of each subsystem, are probably better suited for such
applications. Finally, going beyond FDET by means of the
optimization of ρB(r)⃗, as it is made in subsystem DFT52 or in
partition DFT,53,54 might be indispensable. The FDET is only
applicable if it is possible to generate such ρB(r)⃗ that the variation
of ρB(r)⃗ results in acceptable variations of the calculated
properties. If the dependence is strong, the optimization of
both ρA(r)⃗ and ρB(r)⃗, as it is made in subsystem DFT or partition
DFT, is probably a better solution. A closely related alternative to
subsystem DFT or partition DFT is to retain from FDET only
the form of the embedding potential in order to couple
subsystems described bymeans of traditional quantum chemistry
methods (see ref 180 for instance). Treating excited states then
by means of LR-TDDFT extension of FDET182 which neglects
the frequency dependent response of the environment, fails if the
environment and embedded species absorb in the same range.153

In such cases, methods based on the generalization of subsystem
DFT for excited states152 such as the ones developed in refs 113,
153, and 154 should rather be applied.

6.2. Beyond the FDET Embedding Potential

The embedding operator in FDET is a local potential and is a
universal functional of charge densities. This results in its system-
independence which is a desired feature but makes its
construction of universally applicable approximation for this
potential a difficult task.
Another undesired consequence of the ρA-dependence of the

FDET embedding potential relates to methods using interacting
Hamltonians as ĤA. Being ρA-dependent, the FDET embedding
potential cannot be combined in a straightforward manner with
traditional quantum-chemistry methods developed for linear
operators. Linearization of the FDET embedding potential, for
instance by means of evaluating it at some fixed ρA

ref(r)⃗226 which
makes it ρA-independent, is a pragmatic approximation. For the
ground-state calculations, this approximation is fully controllable
and the ρA-dependence of the FDET embedding potential can be
easily recovered through an iterative process,57 which was shown
to converge quickly to a self-consistent solution in the case of
weak interactions between the embedded species and the
environment.226 Such an iterative procedure has been applied
recently to obtain self-consistent solutions in the case of
embedding a system treated by means of density matrix
renormalization group methods (DMRG)299−302 in a frozen
environment.303 For excited-state calculations, however, lineari-
zation remains an approximation unless different ρA

ref(r)⃗ are used
for different electronic states (see discussion in ref 177).
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Abandoning the central idea of FDET, i.e., locality of the
embedding potential, and returning to embedding methods
applying the nonlocal potentials, which are linear operators,
might be more efficient for some cases. In view of the limits of the
currently available density-dependent approximations for the
FDET functional for the embedding potential, the use of orbitals
for the environment and enforcing the orthogonality between
the embedded orbitals and the orbitals of the environ-
ment83,96,257 might be a more efficient alternative especially in
the case of strong overlap between ρA(r)⃗ and ρB(r)⃗. For such
cases, the numerical inversion strategy to generate the FDET
embedding potential without the use of nonadditive density
functionals, which appears to be a promising strategy for dealing
with strongly overlapping ρA(r)⃗ and ρB(r)⃗,

116 also requires
constructing orbitals for more than just for the embedded
species. Also in the studies of solids, it is rather unlikely that
approximate FDET potentials would become competitive with
nonlocal pseudopotentials because transferable atomic/ionic
pseudopotentials are available.
Construction of a sufficiently accurate approximated FDET

embedding potential might be impractical for modeling the long-
range correlations effects occurring at dissociation of chemical
bonds or in metals, for instance. Neither the nonelectrostatic
components of the FDET embedding potential nor by nonlocal
molecular pseudopotentials provide a practical solution in such
cases. The recent work of Chan and collaborators on embedding
systems described by means of embedded density matrices66,67

within the density DMRG framework or the dynamic mean-field
theory by Georges, Kotliar, Krauth, and Rozenberg304 which uses
local Green’s functions should rather be used.

6.3. Frozen-Density Embedding Theory vs Frozen-Density
Embedding Approximations

The basic equations of FDET (eqs 3−8) are not used in practice
in their exact form. Approximations (T̃s

nad[ρA,ρB], Ẽxc
nad[ρA,ρB],

and ΔF̃SC[ρA]) are used for the exact functionals Ts
nad[ρA,ρB],

Exc
nad[ρA,ρB], andΔFSC[ρA]. Following terminology advocated by

Levy concerning density functional theory, we use the acronym
FDEA (frozen-density embedding approximations) in this
section referring to the approximated version of eqs 3−8. The
use of approximated density functionals in eqs 3−8 does not only
affects the obtained results but also leads to emergence of new
qualitative features of the approximated scheme.
(a) Removal of the degeneracy of the partitioning in

subsystem DFT due to the used approximations (see eq 38 in
section 4.1), which lead to unique partitioning of the optimal
total electron density. In FDEA the difference between electron
density of the isolated environment and the unique ρB(opt)(r)⃗
obtained in the freeze-and-thaw optimization cannot be
attributed only to the electronic polarization because the
uniqueness is the result of maximization of the absolute error
in the used approximations for the nonadditive functionals.
(b) The optimal embedded density ρA(opt)(r)⃗ and energy

EFDET[ρB] (defined in eq 2) can be obtained from the Euler−
Lagrange equations (eq 5) only if it is v-representable, i.e., if there
exists a local potential v(r)⃗ for which the ground-state density is
ρA(opt)(r)⃗. If the approximations for density functionals are used,
the solutions of the approximated Euler−Lagrange equations are
restricted to v-representable solutions by construction. In FDET,
the Euler−Lagrange equations associated with eq 2 might not
exist for some choices of ρB(r)⃗, whereas in FDEA they do.
(c) The FDET embedding potential exists only if both the

densities ρA(opt)(r)⃗ + ρB(r)⃗ and ρA(opt)(r)⃗ are v-representable.

However, the embedding potential in FDEA can be evaluated for
any density. The condition that ρA(opt)(r)⃗ + ρB(r)⃗ is v-
representable is not needed in FDEA. The density ρA(opt)(r)⃗ +
ρB(r)⃗ can even integrate to a number which is not an integer.
Equations 2 and 3 are thus equivalent in FDET but not in FDEA.
Equation 3 is more general than eq 2 in FDEA. Even densities
comprising a fractional number of electrons can be used as ρB(r)⃗
in the FDEA version of eq 3. As a result, FDEA can be used in
multilevel simulations where the considered levels are not limited
to quantum chemistry methods. Any other method based on law
of physics yielding electron density can be used to generate ρB(r)⃗
regardless if ρA(opt)(r)⃗ + ρB(r)⃗ is v-representable or not. An
example of such use of FDEA is the nonuniform continuum
model of the solvent.240

6.4. Challenges

The present overview shows that the development of multilevel
simulation methods based on using the local potential of the
FDET form is far from complete. Improvements are desired and
expected concerning the following issues.

6.4.1. Approximations for Nonadditive Density Func-
tionals. The difficulty to approximate Ts

nad[ρA,ρB] and the
corresponding potential at high overlaps between ρA(r)⃗ and
ρB(r)⃗

48,130,215 reported in dedicated studies on model systems
results in failure of semilocal approximations for Ts

nad[ρA,ρB] at
short distances between atoms of the embedded species and the
environment.108,128,129,215 More importantly, such applications
fail when the embedded species and the environment are linked
by covalent bonds.110,116,215,216 This limits the applicability of
such approximations to noncovalently bound environments.
However, even for such applications of approximated FDET

embedding potential, the universal criterion, i.e., independent of
the system and investigated property, of applicability of a
particular approximation would be useful. Concerning
Ts
nad[ρA,ρB], we advocate a simple criterion based on the

numerical value of T̃s
nad[ρA,ρB]. If the magnitude of T̃s

nad[ρA,ρB]
(approximate component of the interaction energy) is
comparable or larger than that of the electrostatic component
of the interaction energy (exact component of the interaction
energy), the FDET results might not be reliable.
At the other extreme of small overlap, the decomposable

approximations to Ts
nad[ρA,ρB] obtained from semilocal func-

tionals T̃s[ρ] do not ensure a proper behavior of the embedding
potential near the nuclei in the environment due to the imbalance
of errors in δT̃s[ρAB]/δρAB(r)⃗ and δT̃s[ρA]/δρ(r)⃗. This might
result in a wrong redistribution of charges between subsystem
(charge leak).80,100 A decomposable approximation for
Ts
nad[ρA,ρB] assuring the correct behavior of δT̃s

nad[ρA,ρB]/
δρ(r)⃗ near the nuclei in the environment such as the one
would built into the nondecomposable functional introduced in
ref 131 would be very useful and would make the link between
FDET and the orbital-free DFT methods.
Concerning approximations to Exc

nad[ρA,ρB] not much work on
them has been done so far. In the case of noninteracting ĤA (eqs
43−45), approximations are needed for the whole exchange-
correlation energy Exc[ρA + ρB]. The approximations to the
separated Exc

nad[ρA,ρB] component are needed only for interacting
ĤA, where usually other approximations affect the quality of the
results (linearization of the FDET embedding potential, source
of ρB(r)⃗, and the treatment of correlation). With the expected
progress in approximating Ts

nad[ρA,ρB] and advancements in
beyond-FDET embedding methods based on projections.68,96,97

In such methods there is no need to approximate Ts
nad[ρA,ρB]
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because of the use of nonlocal projector operators. A recent study
by Goodpaster et al.68 indicates that indeed approximating
Exc
nad[ρA,ρB] emerges as a new challenge because it determines the

overall quality of the results.
6.4.2. Conjointness Conjecture. The good quality of the

interaction energies obtained using the Gordon−Kim model for
noble gas dimers148 is a long-standing unresolved issue.
Subsystem DFT, which can be seen as a variational extension
of this model, leads to astonishingly good interaction energies
and geometries in hydrogen or dipole bonded intermolecular
complexes, if the nonadditive exchange and kinetic functionals
are approximated by conjoint density functionals (even in the
case of the simplest conjoint case, local-density approxima-
tion112,124,151). Apparent compensation of errors in the func-
tionals for energy and potential takes place. However, what is the
underlying source of this compensation is currently not well
understood.
6.4.3. Partitioning of Densities in Subsystem DFT. The

unique partitioning in approximate version of subsystem DFT is
the result of the use of approximations for Ts

nad[ρA,ρB], which
penalizes the overlap between the densities if it is evaluated using
decomposable approximations comprising the repulsive Tho-
mas−Fermi component eq 14. Among the multiple possible
solutions of the optimal pair of densities in the exact subsystem
DFT, the approximated version of subsystem DFT picks up the
one with the smallest overlap. Localized embedded wave-
functions have obvious computational advantages. More
importantly, the localized embedded wavefunctions are mean-
ingful.166 They were shown to be very useful in treatment of
coupled excitations,113,153 obtaining parameters in empirical
Hamiltonians.153,160,161 On the other hand the partition DFT in
the exact formulation leads also to unique partitioning although it
starts from a completely different assumption, the unique
embedding potential for all subsystems. The relation between the
two approaches to localization of the density merits further
investigation.
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APPENDIX ABBREVIATIONS AND ACRONYMS USED
FOR FORMALISMS, METHODS, AND ALGORITHMS

CASSCF:78,79 Complete Active Space Self-Con-
sistent Field

CASPT2:305−307 CASSCF with second-order per-
turbation theory

CI3,4 Configuration interaction
COSMO:13 COnductor-like screening Sol-

vent MOdel, continuum dielectric
model of the solvent for embed-
ding calculations

DFT:136 Density Functional Theory, for-
mulation of quantum many body
problem based on Hohenberg−
Kohn theorems51

DRF:105,250,251 Discrete Reaction Field, QM/
MM type of embedding method
taking into account the electronic
polarization of the environment

DMRG:299−302 Density Matrix Renormalization
Group

EVB:158,159 Empirical Valence Bond
FDET:44−46 Frozen-Density Embedding

Theory, formulation of the em-
bedding problem based on eqs
3−8 in the present work

FDET embedding potential: The embedding operator in
FDET (eq 8 in the present work)

FDEc:153 Coupled frozen-density embed-
ding, method based on subsystem
DFT for excited states152

FDE-ET:157 Subsystem DFT based method
for charge-transfer states excita-
tions

freeze-and-thaw:55 The procedure to optimize the
subsystem densities in subsystem
DFT using coupled equations of
FDET

GGA:188,308,309 Generalized Gradient Approxima-
tion, semilocal approximations in
DFT for exchange-, correlation-,
and kinetic-energy functionals, in
which the density of the energy is
expressed by means of a function
depending on electron density
and its gradients which differs
from that of gradient expansion
approximation

IHFSCC:262−264 Intermediate Hamiltonian Fock-
Space Coupled-Cluster method

KSCED: Kohn−Sham equations with Con-
strained Electron Density (eqs
20−21 in ref 44)

LDA:51 Local Density Approximation,
approximation in DFT for ex-
change-, correlation-, and ki-
netic-energy functionals, in
which the density of the energy
is expressed by means of a
function depending only on elec-
tron density derived from proper-
ties of uniform electron gas

LR-TDDFT:181 Linear-Response Time-Depend-
ent DFT, formulation of DFT
for excited states

NDRE:182 Neglect of the Dynamic Response
of the Environment, approxima-
tion in subsystemDFT for excited
states152

MPn:310 Møller−Plesset perturbation
theory (n denotes the order)

MRSDCI:311 Multireference Singles-and-Dou-
bles CI

ONIOM:56 Energy error compensation
scheme for approximate methods
(eq 60 in the present work)

orbital-free DFT:73 A class of simulation methods
being modern realizations of the
Thomas-Fermi model72

partition DFT:53,54 formulation of DFT
PCM:12 Polarizable Continuum Model of

the solvent for embedding calcu-
lations

subsystem DFT:52 Formulation of DFT
QM/MM: Quantum Mechanical/Molecular

Mechanics methods, generic term
used in the present work for
embedding methods using classi-
cal descriptors for the environ-
ment

WFT: WaveFunction Theory, generic
term used in the present work
for conventional methods of
quantum chemistry based on
approximations to the wavefunc-
tion and not on the Hamiltonian

3D-RISM:245 Classical statistical-mechanical
model for liquids

3-FDE:221 A scheme to compensate the
errors in approximations to
Ts
nad[ρA,ρB] in subsystem DFT

calculations by introducing cap-
ping atoms
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(211) Höfener, S. Coupled-Cluster Frozen-Density Embedding Using
Resolution of the Identity Methods. J. Comput. Chem. 2014, 35, 1716−
1724.
(212) Genova, A.; Ceresoli, D.; Pavanello, M. Periodic Subsystem
Density-Functional Theory. J. Chem. Phys. 2014, 141, 174101.
(213) Tecmer, P.; Van Lingen, H.; Gomes, A. S. P.; Visscher, L. The
Electronic Spectrum of CuONg4 (Ng= Ne, Ar, Kr, Xe): New Insights in
the Interaction of the CuOMolecule with Noble Gas Matrices. J. Chem.
Phys. 2012, 137, 084308.
(214) Ludena, E. V., Karasiev, V. Kinetic Energy Functionals: History,
Challeneges and Prospects in”Reviews of Modern Qunatum Chemistry.
In Reviews of Modern Quantum Chemistry; World Scientific: Singapore,
2002; Vol. 1, pp 612−665.
(215) de Silva, P.; Wesolowski, T. A. Exact Non-Additive Kinetic
Potentials in Realistic Chemical Systems. J. Chem. Phys. 2012, 137,
094110.
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