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Abstract. Motion mitigation strategies are crucial for scanned particle therapy of

mobile tumours in order to prevent geometrical target miss and interplay effects.

We developed a patient-specific respiratory motion model based on simultaneously

acquired time-resolved volumetric MRI and 2D abdominal ultrasound images. We

present its effects on 4D pencil beam scanned treatment planning and simulated dose

distributions. Given an ultrasound image of the liver and the diaphragm, principal

component analysis and Gaussian process regression were applied to infer dense motion

information of the lungs. 4D dose calculations for scanned proton therapy were

performed using the estimated and the corresponding ground truth respiratory motion;

the differences were compared by dose difference volume metrics. We performed

this simulation study on 10 combined CT and 4DMRI data sets where the motion

characteristics were extracted from 5 healthy volunteers and fused with the anatomical

CT data of two lung cancer patients. Median geometrical estimation errors below

2 mm for all data sets and maximum dose differences of Vdiff>5 % = 43.2 % and

Vdiff>10 % = 16.3 % were found. Moreover, it was shown that abdominal ultrasound

imaging allows to monitor organ drift. This study demonstrated the feasibility of the

proposed ultrasound-based motion modelling approach for its application in scanned

proton therapy of lung tumours.
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1. Introduction

In recent years, research has focused on understanding and mitigating the effects of

respiratory motion on scanned particle therapy. When moving targets such as lung or

liver tumours are treated with pencil beam scanned (PBS) proton therapy, geometrical

target miss can lead to underdosage at the lateral edge and thus reduce the conformity

of the field dose. The interference of the sequential delivery of the proton dose and

the motion of the tumour additionally leads to local hot and cold spots, known as the

interplay effect (Phillips et al. 1992, Bert & Durante 2011). Over- or underdosage at

the distal field occurs due to the sensitivity of the proton beam with respect to the

motion induced density variations. All those effects together may lead to a sub-optimal

treatment plan which requires detailed investigation for each patient specifically (Chang

et al. 2017, Zhang et al. 2018). Integral tools to study the aforementioned effects are 4D

dose calculations (4DDCs). These are expansions of conventional 3D dose calculations

that include both patient motion and delivery dynamics into the calculations. Various

4DDCs have been developed, see e.g. Bert & Rietzel (2007), Richter et al. (2013),

Ammazzalorso & Jelen (2014), Paganetti et al. (2005), Kang et al. (2005), Li et al.

(2014), Engwall et al. (2016), Boye, Lomax & Knopf (2013), Krieger et al. (2018),

Grassberger et al. (2015), in which patient-specific motion information is the prerequisite

for time-resolved dose estimation. Usually, this information is extracted from a pre-

treatment respiratory-correlated computed tomography (4DCT) assuming that this

average breathing cycle is repeated periodically during the plan delivery. Indeed, it is

clear that any single 4DCT cannot capture respiratory variations nor does it provide any

real-time information reflecting the real motion scenario during the treatment. However,

both above aspects are crucial inputs for accurately estimating or reconstructing the

actual dose that a patient receives.

Time-resolved volumetric magnetic resonance imaging (4DMRI) as e.g. developed

by von Siebenthal et al. (2007), Giger, Stadelmann, Preiswerk, Jud, De Luca, Celicanin,

Bieri, Salomir & Cattin (2018), or Jud et al. (2018) solves the issue of capturing

motion variabilities. However, to date no imaging modality can capture and process

full 3D lung information in real-time, meaning that some surrogate data is needed

in order to estimate the patient motion during dose delivery. An optimal surrogate

signal should capture internal motion information which is correlated to the organ

motion of interest, expose the patient to no additional radiation dose, and can

provide multidimensional surrogate signals. A candidate modality that fulfils all

mentioned requirements is abdominal ultrasound (US) imaging. The motion of the

liver and diaphragm can be captured in real-time and provides two-dimensional internal

information (Giger, Stadelmann, Preiswerk, Jud, De Luca, Celicanin, Bieri, Salomir &

Cattin 2018, Preiswerk et al. 2014). Due to physical constraints, direct US imaging

of lung tissue is not possible. However, with the help of respiratory motion models,

motion characteristics extracted from liver US can be used to estimate lung tumour

motion (Mostafaei et al. 2018) and lung deformation (Giger, Sandkühler, Jud, Bauman,
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Bieri, Salomir & Cattin 2018, Giger et al. 2019). While Mostafaei et al. (2018) have

demonstrated the correlation between diaphragm motion and lung tumour motion in

superior-inferior (SI) direction, Giger, Sandkühler, Jud, Bauman, Bieri, Salomir &

Cattin (2018) and Giger et al. (2019) have inferred dense lung motion information

from 2D abdominal US images. Since we aim to investigate respiratory motion and its

variabilities in the context of PBS proton treatment, monitoring 1D tumour motion only

is not sufficient as motion information of the surrounding tissue needs to be additionally

taken into account (Trnková et al. 2018, Bertholet et al. 2019). Moreover, in contrast

to our previous work (Giger et al. 2019), the motion model presented here is based on

non-linear methods and therefore potentially has better estimation power.

The aim of this study was to investigate the dosimetric impact of lung motion

estimation with the use of online abdominal US imaging and respiratory motion

modelling in PBS proton therapy, mainly for two reasons: (1) The performed 4DDCs,

when combined with temporal data provided by delivery log files (see e.g. Krieger et al.

(2018)), may be used to retrospectively estimate the dose delivered to a patient and,

if needed, to adapt the plans accordingly for future fractions (Meijers et al. 2019). (2)

The presented framework forms the basis for US-guided proton beam tracking deliveries

and, thus, should be understood as one of several steps towards this goal. We simulated

realistic treatment scenarios with intra-fractional respiratory motion variabilities on

synthetic 4DCT(MRI) data sets. Although similar studies have been performed on 4D

data of the liver (Zhang et al. 2013, Zhang et al. 2014, Zhang et al. 2015), this work is

the first focusing on the motion model application for lung tumour treatments and the

use of abdominal US imaging as a non-invasive and informative surrogate signal.

2. Methods

2.1. Data acquisition

Hybrid US and 4DMRI data sets of five healthy volunteers were acquired under

free respiration in a 1.5 T MRI scanner (MAGNETOM Aera, Siemens Healthineers,

Erlangen, Germany). Among those, two data sets were acquired with a navigator-

based slice-stacking approach (Celicanin et al. 2017) based on an ultra-fast balanced

steady-state free precession (ufbSSFP) pulse sequence (Bieri 2013). Multi-slice coronal

2D MR images were acquired in sequential order, alternating with coronal navigator

images at a fixed slice position. The remaining three data sets were acquired with

a recently presented spoiled gradient echo 4DMRI sequence where core and pseudo-

randomly sampled peripheral k-space patches are acquired alternately (Jud et al. 2018).

The core patches are used to estimate the spatial relative motion in order to correct

the peripheral patches for motion. These motion-corrected patches are subsequently

accumulated into a consistent k-space for each motion state. Detailed information about

the sequence parameters is listed in table 1. Hereinafter the two 4DMRI sequences are

referred to as slice stacking and patch registration approach, respectively.
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Motion Modelling for dose estimation in lung tumours 5

The frame rate of the two 4DMRI methods are fMRI = 1.25 Hz and 2.25 Hz,

respectively. Simultaneous abdominal US imaging was performed at fUS = 15 Hz

with an Acuson clinical scanner (Antares, Siemens Healthineers, Mountain View,

CA). The system was equipped with a specially designed MR-compatible US linear

array transducer consisting of 192 elements (Fraunhofer IBMT, Sulzbach, Germany),

equivalent to the Siemens’ VF7-3 probe, with central frequency 5 MHz, and bandwidth

4 MHz. The US imaging probe was strapped to the subjects’ abdomen and held in place

using a home-built casting, as shown in the report of (Santini et al. 2020). The probe

was operated in B-mode at 3.3 MHz and covered a maximum field depth of 16 cm and an

angular sector of up to 90◦. The transmitted acoustic power was adjusted in situ case-

specifically and was in the range of −11 to 8 dBm. No interference occurred between

the US and the MR acquisitions. Data acquisition was performed for a duration of up

to 11 min.

To ensure temporal correspondence between the two imaging modalities, two

different strategies were employed. For the 4DMRI based on slice stacking, a continuous

US video was acquired whose starting point coincided with the starting point of MR

data acquisition within 0.5 to 1.1 s. The synchronisation was achieved via the software

user interface of the two systems using a unique button signal sent at the beginning of

the acquisition. The two imaging modalities were further temporally aligned in a post-

processing step to correct for the residual offset caused by the dissimilar system response

times of their software interface command. To do so, both the US images and the MR

navigator slices were cropped to a region around the diaphragm based on which the

mean image intensity was computed. These respiratory surrogate signals were filtered

using a moving average filter before automatic peak detection was performed. Finally,

the offset was computed as the time difference between the first peaks associated with

end-inhalation for both signals. For the 4DMRI approach based on patch registration,

optical output triggers of the MRI scanner were used to automatically start the US

acquisitions using a fast hardware interface. One independent trigger signal was sent

after every 6.675 s, or 15 MR frames, yielding the record of an US video of 5 s, as

offered by the US system. Visual inspection of the extracted mean image intensity

signals, computed similarly as described above, revealed that the offset between the two

image modalities was negligible. Therefore, no post-processing was required in this case.

The time difference of 1.675 s between the MR and US recording windows was chosen

deliberately to take into account the US system latency while storing the US files. As

a consequence, some MR images have no corresponding US images and were excluded

from the motion modelling. Nevertheless, it happened that a trigger was issued before

the previous US video was stored resulting in a further loss of US data of up to 7 % as

shown in figure 1.

Due to the different frame rates of the 4DMRI and the US video, the sampling

points do not perfectly match. However, since the frame rate of the US stream fUS is

substantially higher than the one of the 4DMRI fMRI, corresponding image pairs were

assumed to represent the lungs in a sufficiently similar respiratory state.

Page 5 of 19 AUTHOR SUBMITTED MANUSCRIPT - PMB-110127.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Motion Modelling for dose estimation in lung tumours 6

Table 1: 4DMRI sequence parameters. The field of view and the image matrix are given

in SI × LR × AP direction.

Slice stacking Patch registration

(Celicanin et al. 2017) (Jud et al. 2018)

Contrast T2/T1 T1

Flip angle 35◦/28◦ 5◦

Echo time 0.86 ms 1.0 ms

Repetition time 1.91 ms 2.5 ms

Bandwidth 2365 Hz px−1 1560 Hz px−1

Field of view 400× 395.8× 174.2 mm3 400× 400× 275 mm3

Image matrix 192× 190× 32 px 128× 128× 88 px

Core/peripheral patch radii – 6 px/5 px

2.2. Deformable image registration

To extract motion information from the 4DMRI, volumetric deformable image

registration (DIR) between 3D motion ’frames’ was applied. For the slice stacking

approach, a 3D B-spline based registration method implemented in Plastimatch‡ was

used. The reconstructed image volumes were registered to a reference volume at end-

exhalation. Conversely, for the patch registration approach, DIR of the core patches

transformed to the spatial domain is required for the reconstruction of the 4DMRI in

the first place. The resulting deformation vector fields (DVF) were the primary focus

for this study and directly used as motion information for the subsequent step. In

this case, the image registration was performed using the image registration framework

AIRLab, a B-spline transformation model, an isotropic total variation regulariser, and

the mutual information similarity measure (Sandkühler et al. 2018). The registration

was performed for the lungs only by applying a semi-automatically extracted sliding-

organ mask (Vezhnevets & Konouchine 2005). Again, all respiratory states were

registered to a reference volume at end-exhalation.

2.3. 4DCT(MRI)

In order to conduct proton dose calculations, information on the relative proton stopping

power is needed. This information can be extracted from CT Hounsfield Units (HU)

with the use of a calibration curve. However, 4DCT, although capable of capturing

motion, only represents one averaged breathing cycle, and does not include motion

variability. Motion variabilities can be acquired using 4DMRI as described in the

previous subsection. In order to combine these two types of information, synthetic

4DCT(MRI) data sets as described by Boye, Samei, Schmidt, Székely & Tanner (2013),

Zhang et al. (2016) and Krieger et al. (2020) were generated.

DVFs extracted from the five 4DMRI data sets were matched to the full-exhale CT scans

‡ www.plastimatch.org, accessed: 13.01.2020
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Motion Modelling for dose estimation in lung tumours 7

of two lung cancer patients§ following the meshing approach described in detail by Boye,

Samei, Schmidt, Székely & Tanner (2013). Using this procedure, the two geometries

(volunteer MRI and patient CT) are brought to anatomical correspondence by definition

and thus the MRI DVFs can be readily transferred to the CT geometry. In order to

preserve the sliding boundaries between the lungs and the chest wall, the motion of the

chest wall is set to zero. By warping two CT geometries with five MRI motion patterns,

ten different geometry/motion combinations were generated, each including 99 to 159

full and variable breathing cycles.

The two CT geometries were deliberately chosen because of their significant difference in

size and position: geometry 1 shows a small tumour not attached to neighbouring tissues,

geometry 2 contains a larger tumour which is partially attached to the spine. Figure 1

shows the target motion patterns in SI direction for all data sets. For motion 5, a drift

of the clinical target volume (CTV) is observable in both CT geometries. A schematic

of the target amplitudes and periods is shown in figure 2.

2.4. Motion modelling

A motion model based on Gaussian process (GP) regression was employed in order to

estimate the respiratory motion during dose delivery (Williams & Rasmussen 2006).

Given the input US image, the model infers the corresponding DVF of the lungs. A

schematic overview of the motion model is given in figure 3.

Let xt ∈ Rmn denote the vectorised US image of dimension m × n at time t and

analogously yt ∈ R3pqr the vectorised DVF of dimension p×q×r×3. The factor of 3 in yt
is introduced since the voxel values of the DVF are 3-dimensional deformation vectors.

Principal component analysis (PCA) has been applied prior to fitting the motion model

in order to reduce the dimensionality of xt and yt and to remove co-linearities and

noise (McClelland et al. 2013). Let αt ∈ Ru and βt ∈ Rv represent the principal

components (PC) of the US image xt and the DVF yt, respectively. The number of PCs

u and v considered for motion modelling was chosen such that the explained variance is

greater than 50 %.

Given a set of M corresponding PCs, S = {(αt,βt) | t = 1, . . . ,M}, the regression

can now be formulated in the feature space. The objective is to find a function

f : Ru → Rv which maps the input PCs αt to the output PCs βt assuming noisy

observations:

βt = f(αt) + εt, εt ∼ N (0, σ2
nIv), (1)

where σ2
n denotes the noise variance and Iv the v-dimensional identity matrix. Let f(αt)

be a GP with zero mean and covariance function k : Ru × Ru → Rv×v, that is

f(αt) ∼ GP(0, k(αt,αt′)). (2)

Then, given the input α∗ and the measurements S, the estimate β∗ can be calculated

from the posterior distribution which is again a GP with mean µS ∈ Rv and covariance

§ Hugo et al. (2016), Hugo et al. (2017), Balik et al. (2013), Roman et al. (2012), Clark et al. (2013)
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(a) CT geometry 1
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(b) CT geometry 2

Figure 1: Motion patterns of the tumour in SI direction for all data sets. The grey

shaded areas depict MR motion states without corresponding US frames. The red curve

represents the motion for dose delivery and, therefore, the test set for motion modelling.

The remaining data (blue and black curve) was split into a training and validation set

for motion modelling while the blue curve was additionally used for ITV generation and

treatment planning. Solid line: median, shades: 10th to 90th percentile.
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Figure 2: Overview over the motion amplitudes in each motion direction (a), (b) and

motion periods (c), (d). The boxplots include all breathing cycles in the respective

data set. The whiskers extend to the most extreme values still within 1.5 time the

inter-quartile range (IQR). SI: superior-inferior, LR: left-right, AP: anterior-posterior.
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Figure 3: Schematic overview of the motion model.

kS ∈ Rv×v (Williams & Rasmussen 2006):

p(β∗|α∗,S) = GP(µS, kS). (3)

Let K ∈ RvM×vM represent a matrix of the covariance k(αi,αj) evaluated for all input

training point pairs, (αi,αj) with i, j ∈ {1, . . . ,M}. Similarly, let K∗ ∈ RvM×v denote

the matrix of the covariance between the test point α∗ and the M training points,

k(α∗,αi) with i ∈ {1, . . . ,M}. Finally, the output training points are collected in a

vector b =
[
βT

1 . . .β
T
M

]T ∈ RvM . The mean and covariance of the posterior can now be
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Motion Modelling for dose estimation in lung tumours 10

written in closed form using the vM -dimensional identity matrix IvM :

µS = KT
∗
(
K + σ2

nIvM
)−1

b, (4)

kS = k (α∗,α∗)−KT
∗
(
K + σ2

nIvM
)−1

K∗. (5)

Since the respiratory motion in the lungs is expected to be smooth, a Gaussian kernel

was chosen as covariance function,

k (αt,αt′) = θ2
0 exp

(
−‖αt −αt′‖2

2θ2
1

)
Iv, (6)

with scaling parameter θ0 and characteristic length-scale θ1. The mean of the posterior

distribution µS represents the best estimate of the GP regression. Moreover, the

posterior variance kS can be interpreted as estimation uncertainty and might serve

as a confidence value or quality measure (Williams & Rasmussen 2006).

The hyperparameters were manually optimised and set to θ0 = 30, θ1 = 35 and

σ2
n = 1 for all geometry/motion data sets. The motion data as shown in figure 1 was

split into a training, validation and test set. The size of the test set (red curve) was

defined as the minimum number of motion states needed for the dose delivery and is in

the range of 59 to 88 states for geometry 1 and 210 to 286 states for geometry 2. The

remaining data (blue and black curve) was further split into a constant validation set

consisting of the last 55 states and a training set of 425 to 913 states.

2.5. 4D treatment planning and dose calculation

As a planning target, we use a previously presented probabilistic ITV concept (Krieger

et al. 2020). The ITV50 of the first 20 breathing cycles of each geometry/motion case

was used as the target for optimisation. For this, conventional ITVs were first created

by unifying all CTV positions of one breathing cycle at a time. By summing up these

20 ITVs, a probability map of the tumour position was generated. The probabilistic

ITV50 was then defined as all voxels with a probability of 50 % of being within any ITV

calculated from any motion cycle. In order to achieve sufficient target coverage in the

static case, a 2 mm margin was added to the ITV50 to define the technical planning tar-

get volume (tech-PTV). In this study, the set-up uncertainties were neither considered

in the treatment planning nor simulated for the dynamic dose delivery. As planning

CT, the definition of Botas et al. (2018) was applied. The density values in the whole

CT minus the ITV50 were set to the average value within the first 20 breathing cycles,

whereas the density values within the ITV50 were defined as the maximum intensity

projection of the same 20 breathing cycles. Thus, every geometry/motion case had its

own planning CT and tech-PTV. For both CT geometries, a single field, uniform dose

(SFUD) plan with two fields was optimised on the tech-PTV and the planning CT of

the respective geometry/motion case due to SFUD’s superior stability in the presence

of motion (Gorgisyan et al. 2019). The field directions and CTV volumes are shown

in figure 4. For the optimisation and the consequent 4D dose calculations, the delivery

model of the PSI gantry 2 was used (Pedroni et al. 2004).

Page 10 of 19AUTHOR SUBMITTED MANUSCRIPT - PMB-110127.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Motion Modelling for dose estimation in lung tumours 11

Figure 4: Illustration of the two CT geometries and the beam directions of the treatment

plans. Left panel: CT geometry 1, right panel: CT geometry 2.

A ray casting based, deforming grid 4D dose calculation engine as described by Boye,

Lomax & Knopf (2013) and validated experimentally by Krieger et al. (2018) was used in

order to study the dosimetric effects of the motion estimation. 4DDCs were performed

using either the ground truth or the corresponding estimated motion states as input.

All motion states of the first delivery cycle were used as starting point for the simu-

lation since it is usually unknown in which respiratory state the delivery would start.

Depending on the motion pattern, the number of starting phases per field ranged from

5 to 13 (average: 9.2), resulting in 25 to 169 (average: 91.2) scenarios per two-field plan.

2.6. Evaluation

Geometrical error The geometrical estimation error et ∈ Rpqr for motion state t is

defined based on the voxel-wise difference between the ground truth and the estimated

DVFs. Let vit ∈ R3 denote the ground truth deformation vector at voxel i ∈ {1, . . . , pqr}.
Similarly, let ṽit ∈ R3 be the estimated deformation vector at voxel i. Then, the i-th

entry of the estimation error et is given as

eit = ‖vit − ṽit‖, (7)

where ‖ · ‖ denotes the Euclidean norm. Note that the term ground truth refers to the

target DVF used to train the model. Although the extracted DVFs do not necessarily

represent the real patient motion due to errors introduced by the registration and the

4DCT(MRI) generation, they do still represent a valid ground truth for the motion

model.

In order to get a qualitative overview of the error distributions in space, error maps

were generated using a colour wash to indicate the spatial distribution of the estimation

error, averaged over all motion states.

For a quantitative analysis, the 50th and 95th percentiles of the estimation error within

a given volume of interest VOIgeom were calculated for each respiratory state. Below,

the results are reported as a distribution of these percentiles over all motion states. The
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Motion Modelling for dose estimation in lung tumours 12

VOIgeom was defined as all voxels which receive any dose in the static dose calculation

and which lie within the lung or the ITV.

Drift analysis The geometrical estimation error was equivalently evaluated as described

above in order to investigate the influence of the organ drift on the performance of the

motion model. To do so, the training sets for motion 5 and both geometries were

divided into equally sized subsets consisting of 220 motion states or 97.9 s each. The

quantitative analysis was conducted using each of the 4 subsets for geometry 1 and 3

subsets for geometry 2 as training set while the test set remained unchanged. Subset 1

represents the training motion data from respiratory states 1 to 220, subset 2 from states

221 to 440, and so on. Consequently, there is a decreasing time gap between the training

set and the test set for an increasing number of the subset.

Dosimetric error The dose error was calculated as the voxel-wise absolute dose

difference between ground truth and estimated 4DDCs. Absolute dose difference volume

histograms (DDVHs) were calculated for the CTV and the volume of interest VOIdose

defined as all voxels within the CTV plus 20 mm margin, which lie within the lung.

Additionally, the median volume percentages for which the absolute dose difference was

more than 5 % or 10 % of the prescribed dose, respectively, were calculated (Vdiff>5 %,

Vdiff>10 %).

3. Results

3.1. Geometrical error

Figure 5 shows one sagittal slice through the CT geometries with an error map overlaid

for each geometry/motion case. It can be seen that the error tends to become larger

towards the edge of the lung. For all scenarios, the tumour lies partly within the high

error region and partly within the lower error region. Motions 1 and 2 tend to have

larger geometrical errors than motions 3–5. Boxplots of the geometrical estimation

error including all motion states are shown in figure 6. It is seen that the 50th and 95th

percentile error within the VOIgeom for one motion are similar for the two CT geometries.

Again, the largest errors of up to 8 mm (95th percentile) are found for motions 1 and 2

(geometries 1 and 2). For motion 3, geometries 1 and 2, the error stays below 4 mm and

2 mm respectively except for a few outlying motion states. Motion 4 and 5 show errors

below 2 mm for both CT geometries. When looking at the 50th percentile (median),

the errors stay below 3 mm for all cases except for a few outliers. For motions 3–5 it is

lower than 1 mm.

3.2. Drift analysis

The drift analysis in figure 7 indicates that the estimation error increases the greater

the time gap between the training data and the test data. For both CT geometries,
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Motion Modelling for dose estimation in lung tumours 13

(a) Motion 1 (b) Motion 2 (c) Motion 3 (d) Motion 4 (e) Motion 5

(f) Motion 1 (g) Motion 2 (h) Motion 3 (i) Motion 4 (j) Motion 5

Figure 5: Example sagittal slices to illustrate the spatial error distribution, averaged

over time. Top row: CT geometry 1, bottom row: CT geometry 2.
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(b) CT geometry 2

Figure 6: Motion estimation errors for all geometries and motions. The boxplots indicate

the error percentiles of all voxels within the VOIgeom. The whiskers include all values

within 1.5 IQR.

the estimation error is up to 4 times higher for subset 1 when compared to subset 4.

The performance of the motion model is similar when it was trained on the complete

training set or subset 4 only.

3.3. Dosimetric error

The influence of the estimation error on the dose distributions is shown in figure 8. The

absolute dose difference volume histograms within the CTV and the VOIdose are plotted

for each 4DCT(MRI) data set. The solid lines display the median values, whereas the
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(a) CT geometry 1, motion 5
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Figure 7: Drift analysis for motion 5 and different training subsets. The boxplots

indicate the error percentiles of all voxels within the VOIgeom. The whiskers include all

values within 1.5 IQR.

shaded bands include all possible starting phases (52 – 132 per two-field plan). It is

seen that for CT geometry 2, the dose differences are somewhat lower and the spread

due to different starting phases is less pronounced than for CT geometry 1. Motion 3

presents the highest dose differences, whereas the other motions present similar dose

differences. When looking at the volumes with a difference of more than 5 % or 10 %

(table 2), it is again seen that motion 3 leads to the highest percentages compared to

other motion patterns. Again, geometry 2 shows lower values than geometry 1, except

for the Vdiff>10 % of motion 4. All Vdiff>5 % values are below 44 %, and even below 30 %

if motion 3 is not considered. Similarly, the Vdiff>10 % percentages are below 17 % for all

cases and below 9 % when excluding motion motion 3.

4. Discussion

In this work, we have investigated the effects of respiratory motion estimation on the

dose distribution in PBS proton therapy of lung tumours. Dense motion information in

the lungs was estimated based on abdominal US imaging and patient-specific respiratory

motion modelling. Time-resolved 4DCT(MRI) were employed to simulate motion

variabilities over a comprehensive time duration of up to 11 min using two different

4DMRI approaches. To take these motion variabilities into account for treatment

planning, a recently presented probabilistic ITV definition was applied (Krieger

et al. 2020) and two-field SFUD plans were optimised on composite planning CTs.

Good geometrical and dosimetric agreement were achieved, however, with a

tendency of higher geometrical errors for the 4DMRI based on slice stacking when

compared to the patch registration approach. Due to the reconstruction properties

of the latter method, which is based on DIR of low spatial resolution core patch
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Figure 8: Absolute dose difference histograms for all geometries and motion cases,

evaluated in the CTV and in VOIdose.

reconstructions, the DVFs tend to be smoother and therefore potentially less prone to

estimation errors. Additionally, the higher temporal resolution and larger training data

sets available for this method may further influence the estimation accuracy positively.

With 50th and 95th percentiles estimation errors in the range of 2 mm and 4 mm,

respectively, for all geometry/motion cases, the presented respiratory motion model

achieves clinically relevant results. It was also demonstrated that higher geometrical

errors do not coincide with higher dosimetric errors. This suggests that the presented

analysis is robust against the chosen 4DMRI method and, therefore, allows for viable

conclusions regarding dosimetric errors. The dosimetric errors found in this study are

in a clinically acceptable range, especially because for treatment, a motion mitigation

technique such as rescanning can be combined. This has been shown to additionally

reduce dosimetric uncertainties due to motion (Krieger et al. 2018, Zhang et al. 2014).
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Motion Modelling for dose estimation in lung tumours 16

Table 2: Dose difference parameters, analysed in the VOIdose and the CTV.

(a) VOIdose

Motion 1 Motion 2 Motion 3 Motion 4 Motion 5

Vdiff>5 %
CT geom. 1 26.4 % 21.1 % 39.5 % 25.8 % 22.4 %

CT geom. 2 19.7 % 9.1 % 28.2 % 27.9 % 14.9 %

Vdiff>10 %
CT geom. 1 8.1 % 4.8 % 16.8 % 6.9 % 6.3 %

CT geom. 2 4.0 % 1.1 % 10.8 % 8.3 % 3.4 %

(b) CTV

Motion 1 Motion 2 Motion 3 Motion 4 Motion 5

Vdiff>5 %
CT geom. 1 19.4 % 27.8 % 43.2 % 22.0 % 29.9 %

CT geom. 2 11.6 % 3.7 % 32.5 % 19.5 % 6.0 %

Vdiff>10 %
CT geom. 1 2.1 % 4.8 % 16.3 % 2.8 % 5.7 %

CT geom. 2 1.3 % 0.2 % 11.8 % 4.1 % 0.6 %

Moreover, reasonable motion estimation performance was achieved for all

geometry/motion cases even though the same hyperparameter set was chosen for all

cases. This points to the conclusion that the presented motion model is robust with

respect to different patient geometries and motion patterns. The fact that no extensive

parameter tuning is required for every individual patient, makes this approach feasible

for clinical applications. The drift analysis in figure 6 further revealed that the internal

motion information provided by the abdominal US imaging was able to record organ

drift. That does not necessarily mean that the motion model is able to cope with this

long-term changes, however, it might still be used to monitor potential organ drift and

to trigger an intervention of the clinicians if needed. Further investigations on prolonged

data sets are required and the aim of future studies.

The 4DCT(MRI) data sets are synthetic in the sense that the respiratory motions

of healthy volunteers were combined with the geometries of two cancer patients. This

further implies that the motion of the CTV was simulated by healthy motion patterns

and might not ideally represent pathological motion characteristics. Also, the US images

used as motion surrogates do not match the anatomical geometry of the patients.

However, we do not expect our findings to change substantially if pathological motion

patterns and corresponding patient geometries were used for the analysis. Moreover,

the current approach to generate 4DCT(MRI) data sets required the lung volume to

be segmented. Consequently, the DVFs were applied to the lung tissue only while the

surrounding structures such as the ribs and the skin remained static. However, we are

working on a multi-organ numerical 4D phantom to fix this limitation.

For the motion model to be transferred to the clinics, it remains to be shown how the

proposed approach performs in the case of inter-fractional motion variabilities. Besides

anatomical changes on a day-to-day basis, this further implies dissimilar US imaging
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Motion Modelling for dose estimation in lung tumours 17

planes due to the required repositioning of the US probe on the patient’s abdominal

wall. In a first study we have demonstrated the ability of a similar motion model to

cope with US probe repositioning (Giger et al. 2019). However, the two data sets were

acquired on the same day with only a few minutes in between, therefore not representing

truly inter-fractional anatomical changes and motion variabilities.

Given the promising results of the presented study, further improvements are

planned for future works. The synchronisation procedure between US and 4DMRI

is currently being improved such that future data sets will not suffer from data loss as

was the case for the 4DMRI based on patch registration. Instead, we aim for continuous

US image acquisition as was the case for the 4DMRI based on slice stacking without,

however, the need for subsequent temporal alignment. Further, we aim to extend the

current analysis to the case where we simulate 3D tumour tracking by online proton

beam adaptions. In this context, we will evaluate the use of the posterior variance of

the GP regression as a quality measure for the motion estimation which could then

potentially be used to combine tumour tracking and uncertainty-correlated gating.

5. Conclusion

Patient-specific motion modelling based on GP regression and abdominal US surrogates

has shown to be a feasible and promising approach to estimate lung motion variabilities

and their effects on dose distributions. It offers a possibility to take into account motion

variabilities in 4D treatment planning, retrospective actual 4D dose reconstruction and

online PBS beam tracking in future.
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