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Abstract
Purpose Single-pass whole-body (WB) 18F-FDG PET/CT imaging is routinely employed for the clinical assessment of malig-
nant, infectious, and inflammatory diseases. Our aim in this study is the systematic clinical assessment of lesion detectability in
multi-pass WB parametric imaging enabling direct imaging of the highly quantitative 18F-FDG influx rate constant Ki, as a
complement to standard-of-care standardized uptake value (SUV) imaging for a range of oncologic studies.
Methods We compared SUVand Ki images of 18 clinical studies of different oncologic indications (lesion characterization and
staging) including standard-of-care SUVand dynamic WB PET protocols in a single session. The comparison involved both the
visual assessment and the quantitative evaluation of SUVmean, SUVmax, Kimean, Kimax, tumor-to-background ratio (TBRSUV,
TBRKi), and contrast-to-noise ratio (CNRSUV, CNRKi) quality metrics.
Results Overall, both methods provided good-quality images suitable for visual interpretation. A total of 118 lesions were
detected, including 40 malignant (proven) and 78 malignant (unproven) lesions. Of those, 111 were detected on SUVand 108
on Ki images. One proven malignant lesion was detected only on Ki images whereas none of the proven malignant lesions was
visible only on SUV images. The proven malignant lesions had overall higher Ki TBR and CNR scores. One unproven lesion,
which was later confirmed as benign, was detected only on the SUV images (false-positive). Overall, our results from 40 proven
malignant lesions suggested improved sensitivity (from 92.5 to 95%) and accuracy (from 90.24 to 95.12%) and potentially
enhanced specificity with Ki over SUV imaging.
Conclusion Oncologic WB Patlak Ki imaging may achieve equivalent or superior lesion detectability with reduced false-positive
rates when complementing standard-of-care SUV imaging.
Key Points
• The whole-body spatio-temporal distribution of 18F-FDG uptake may reveal clinically useful information on oncologic diseases
to complement the standard-of-care SUV metric.

• Parametric imaging resulted in less false-positive indications of non-specific 18F-FDG uptake relative to SUV.
• Parametric imaging may achieve equivalent or superior 18F-FDG lesion detectability than standard-of-care SUV imaging in
oncology.
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Abbreviations
18F-FDG 18F-Fluorodeoxyglucose
CT Computed tomography
FOV Field-of-view
IDIF Image-derived input function
LV Left ventricle
PET Positron emission tomography
PET/CT Positron emission

tomography/computed tomography
ROI Region of interest
SUV Standardized uptake value
TOF Time-of-flight
VOI Volume of interest
WB Whole-body

Introduction

Whole-body (WB) 18F-FDG PET/CT imaging is widely used
in clinical oncology for multiple indications, including lesion
characterization, staging, restaging, and therapy monitoring
[1, 2]. In current clinical practice, oncologic PET/CT exams
mainly consist of scans performed across multiple bed posi-
tions over a single time period or frame at late time points,
when equilibrium is reached. The acquired data are then av-
eraged over the acquisition time frame and reconstructed to
produce conventional (static) PET images. The images are
quantified in units of standardized uptake value (SUV), which
serve as a surrogate of static metabolic activity normalized to
the body weight and the administered tracer dosage [3]. Yet,
SUV remains a semi-quantitative index subject to a large var-
iability due to several factors related to the scanning procedure
or the patient’s physiology, such as patient’s body composi-
tion, plasma glucose level, time between injection and mea-
surement, and duration of the scan time frame [4]. Moreover,
static imaging is unable to provide information about the ki-
netics of 18F-FDG in the regions of interest [5].

The dynamic course of the 18F-FDG spatial distribution in
the targeted tissues may reveal highly useful clinical informa-
tion on tissue’s metabolic properties, such as the metabolic
rate of glucose uptake post 18F-FDG injection. These image
metrics could, in turn, facilitate tumor characterization and
therapy response assessment [6–9]. For this reason, dynamic
PET imaging techniques were also introduced allowing the
scanning of a limited axial field-of-view (single bed position)
over time to enable the extraction of important tracer kinetic
parameters, such as the uptake rate. The tracer kinetic param-
eters were initially estimated on a region level by averaging
the dynamic PET images within specific volumes of interest
(VOIs) [10, 11]. Later, larger computational resources allowed
for voxel-wise estimation of the tracer kinetic parameters at
the cost of higher noise levels, thus leading to parametric
imaging [12]. Despite the potential for better lesion

detectability and reduced rate of false positives [13], dynamic
and parametric imaging has hitherto been limited to research
setting and single-bed field-of-views (FOVs) [14–16].

Different strategies were developed for the generation of
parametric images, ranging from streamlined graphical analy-
sis, such as the Patlak method [17], to spectral analysis [18]
and to the most complex full compartmental modeling
methods [19]. Although the two latter techniques are more
informative, they can be unstable, sensitive to statistical noise,
and difficult to adopt in the clinic, due to the large number of
fitting parameters and the high order of the associated kinetic
models. In this regard, graphical analysis can be a simpler, yet
robust, alternative approach enabling the direct estimation of
the primary kinetic macro-components of the tracer uptake
across multiple-bed FOVs.

However, WB dynamic PET acquisitions present the addi-
tional challenge of segmenting a given dynamic scan period
across multiple bed positions, thereby inevitably introducing
time gaps in between the time frames, which reduce the
signal-to-noise ratio [20]. Nevertheless, recent technological
advances in commercial clinical PET scanners, such as the
use of longer axial FOVs [21], time-of-flight (TOF) information
[22], and resolution modeling [23], allowed significant en-
hancement of the noise-equivalent count rate and sensitivity.
In fact, the first introduced framework of WB dynamic 18F-
FDG PET/CT clinical imaging involved a 6-min dynamic ac-
quisition over the heart bed, followed by four or six dynamic
PET passes across multiple beds, and was successfully applied
on a pilot cohort of oncology cases demonstrating its clinical
feasibility [24–27]. The utilization of just two time frame ac-
quisitions (passes) per bed position has also been reported [28].
Nevertheless, the use of sixWB passes demonstrated improved
performance, in terms of noise and bias, for the WB parametric
images to enable the combined estimation of SUV and multi-
parametric PET images in a single scan session [29].

In this work, we systematically compare lesion detectabil-
ity between Patlak and SUV 18F-FDG WB clinical PET im-
ages, as extracted from the same cohort of oncologic patients.
Our ultimate aim is to assess any benefits in WB 18F-FDG
lesion detectability by utilizing Patlak-based glucose metabo-
lism metrics.

Materials and methods

Patient population

This is a prospective pilot study to facilitate the development
of a noninvasive quantitative assessment strategy for dynamic
whole-body 18F-FDG oncologic PET imaging. We included
adult patients who were referred for staging or restaging of
lung or abdominal lesions by 18F-FDG PET/CT. The
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institutional ethics committee approved this study and all pa-
tients gave informed consent.

Data acquisition and image reconstruction

PET/CT scans were performed on a Siemens Biograph™
mCT scanner following injection of a standard dose of
3.5 MBq/kg (3.71 ± 1.05 MBq/kg) of 18F-FDG. The patients
underwent a scanning protocol of about 80 min consisting of
the following (Fig. 1): (i) a low-dose CT for attenuation cor-
rection; (ii) a 6-min dynamic single-bed PET acquisition cen-
tered in the heart region for extrapolation of the input function
(IF), starting simultaneously with the 18F-FDG injection; (iii)
a subsequent set of 13 whole-body PET scans in continuous
bed motion (CBM) of about 3 min each; (iv) a subsequent
SUV WB CBM scan of about 20 min used as a reference for
comparison was acquired at the standard-of-care scan time
window for 18F-FDG studies (starting 60 min post-injection);
and (v) a contrast-enhanced CTscan (13/18 patients) or a non-
enhanced CT scan when contraindicated (i.e., renal failure).

All images were reconstructed using 3D iterative OSEM
algorithm and parameters used in the clinic (2 iterations and
21 subsets), including TOF and resolutionmodeling [30], with
a post-reconstruction Gaussian filter of 2 mm FWHM.

Methodology for whole-body parametric imaging

The Patlak graphical analysis utilized by the employed multi-
pass WB parametric imaging framework is based on an irrevers-
ible two-tissue compartment kinetic model: 18F-FDG in the
blood plasma is reversibly absorbed (intra-cellular) by specific
tissues in a free non-metabolized state (first tissue compartment)
and then, unlike standard glucose, is irreversibly metabolized or
phosphorylated (second compartment) into 18F-FDG6P [31].
The exchanges between the compartments are modeled by the
micro-parameters K1 (plasma to non-phosphorylated compart-
ment), k2 (non-phosphorylated to plasma compartment), and k3
(non-phosphorylated to phosphorylated compartment) rate con-
stants. A zero efflux (dephosphorylation) rate constant (k4 = 0)
between the phosphorylated and the non-phosphorylated com-
partments is assumed. FDG k4 parameter is widely assumed to be
negligible and can be considered to be zero for the majority of
tissues (k4 may be positive in some regions, such as the liver, but
its effect on the data is negligible for the early uptake phase). All
the exchanges between the different compartments can be re-
sumed in the 18F-FDG macro-parameter of Ki, denoting the net
uptake or influx rate constant:

Ki ¼ K1k3
k2 þ k3

ð1Þ

Fig. 1 Illustration of the whole-body PET/CTscanning protocol. The first
dynamic acquisition is centered in the heart region to obtain the image-
derived input function; the following 13WB passes are acquired in CBM
mode in the same axial FOV as the subsequent SUV acquisition. In a

standard static PET WB protocol, the patient has to wait in a quiet
place in order for the tracer uptake to be optimal for SUV imaging.
Here, we use this idle time to perform the dynamic passes
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In the assumption of irreversible trapping of the tracer, Ki

can be directly estimated using the standard Patlak analysis on
a voxel-by-voxel basis, resulting in Ki parametric maps [17].
We generated such Ki images by implementing an in-house
MATLAB code (MathWorks Inc.). The tissue activity, C(t), is
linked to blood plasma time-activity concentration or input
function (IF), Cp(t), via the standard Patlak model linear equa-
tion:

C tð Þ ¼ Ki∫t0Cp tð Þdt þ VCp tð Þ ð2Þ
where Ki and V are the uptake rate defined in Eq. 1 and the
total blood plasma distribution volume, respectively. The ac-
tivity in each tissue voxel C(t) and the Cp(t), as measured over
time t from the dynamic PET images, are then fitted to the
Patlak model equation to estimate via ordinary least squares
regression the Ki and V parameters at every voxel.

In this protocol,C(t) is sampled 13 times (once per pass) for
each voxel; the Cp(t) is determined using both the initial dy-
namic acquisition and the 13 passes. Finally, the parametricKi

images are normalized to the maximum SUVof the respective
static scan to display the images on the same scale, thus facil-
itating head-to-head clinical interpretation and image
comparison.

Derivation of the input function

The image-derived IF (IDIF)Cp(t) is obtained from a region of
interest (ROI) drawn in the left ventricle (LV) of the heart on
images from both scans (ii) and (iii): the former was sampled
in 12 frames of 10 s followed by 12 frames of 20 s, while a
single IDIF value was obtained from the cardiac bed frame of
each of the 13 WB passes.

A number of studies reported that the IDIF can also be
extracted from the aorta rather than the left ventricle [32].
Therefore, we evaluated the difference between LVand aortic
IDIF for two patients where arterial blood sampling was also
performed as the gold standard IF. Comparable LVand aortic
IDIFs were found, although both underestimated the gold
standard IF at the peak (Fig. 2, left panel) and overestimated
it at later times. However, the integral of the IF (Fig. 2, right
panel), which is the only IF metric considered in Patlak anal-
ysis, varied by less than 5% in between LV, aortic, and gold
standard IF resulting in minimal impact on the derived para-
metric images.

Image analysis

Visual interpretation SUVand Ki images were evaluated qual-
itatively on a dedicated workstation by two physicians (having
only access to the clinical indication) who independently an-
alyzed both images in two different and distant sessions
followed by consensus reading and the writing of a single

report for each set of images summarizing the findings. The
overall quality of PET images was rated using a 5-point scale
from 1 (inacceptable) to 5 (excellent) on the basis of the sub-
jective impression of the overall quality of the PET data fused
on the corresponding CT images, taking into account the im-
pression of smoothness, resolution, sharpness of contours,
noise, homogeneity, and presence of artifacts. A single con-
sensual score was assigned by expert physicians. Inter-
observer evaluation and comparison of different groups of
readers are beyond the scope of this work. Both reports were
then compared. Image quality was assessed as adequate/
inadequate for visual reading and all primary tumors and other
distant lesions, such as metastases, lymph nodes, or inflam-
matory uptake, were identified and quantitatively evaluated.
We also included malignant (biopsy proven)/malignant
(unproven) lesions that were not visible on either SUV or Ki

images, but only on the CT component of the PET/CT exam-
ination accounting for the probability that lesions seen on CT
but not on PET may be non-malignant. When possible, ma-
lignancy was confirmed by histology or other clinical indica-
tions provided in patient’s follow-up.

We analyzed separately biopsy-proven or previously
known lesions, which were classified as proven malignant,
from lesions considered as unprovenmalignant with high clin-
ical probability for malignancy (i.e., new lesions in a patient
with metastases or lesions confirmed on contrast-enhanced
CT in case of FDG-non avid lesions, such as hepatocellular
carcinoma (HCC)). In cases where a significant number of
lesions was identified in the same organ or anatomical region
(i.e., multiple abdominal lymph nodes), a maximum of 5 le-
sions were analyzed to reduce bias.

Quantitative analysis A 3D ROI was manually drawn on each
lesion to estimate at the same position the SUVmax and Kimax

metrics. When the lesions were non-metabolic, the ROIs were
drawn on the contrast-enhanced CT images. Background ROI
mean, BKGmean, and standard deviation, BKGsd, metrics were
extracted from the same positions, between SUV and Ki im-
ages, in healthy surrounding tissues. Tumor-to-background
ratio (TBR) and contrast-to-noise ratio (CNR) scores were
then calculated as defined in Eqs. 3 and 4.

TBR ¼ Tumor ROImax=Background ROImeanð Þ−1 ð3Þ
CNR ¼ TBR=Background ROISD ð4Þ

Finally, all identified lesions were regrouped in organs re-
gardless of the origin of the lesion (primary tumor, metastases,
malignant (unproven) lesion).

Statistical analysis

Spearman’s rank correlation coefficient (ρ) was used to assess
the correlation between SUVmax and Kimax of all lesions as
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well as between background values. A p value < 0.01 was
considered significant for this test. A Wilcoxon signed-rank
test was performed to assess the statistical significance of the
differences between TBRKi and TBRSUVand between CNRKi

and CNRSUV for the 40 malignant lesions. A p value < 0.05
was considered significant for this test.

Results

Eighteen patients originally scheduled for an oncologic
whole-body 18F-FDG PET/CT (6 females and 12males; mean
age = 58.8 ± 16.8 years) were enrolled. A description of the
cohort, including the indication for the study and the number
and location of detected lesions, is reported in Table 1. Both
modalities produced good-quality images adequate for visual
interpretation. The qualitative inspection of the PET images
by expert physicians suggested similar (or lower) image qual-
ity for the Ki (4.05), relative to SUV (4.2) images. However,
the Ki image quality absolute scores were acceptable, the only
discordant case being one patient with significant bulk motion
during the long dynamic WB scan. The most notable visual
difference, as illustrated in Fig. 3, was the suppression of the
blood compartment in Ki images, particularly for organs with
a non-negligible blood pool component, such as the liver, the
spleen, and the blood vessels (Table 2), resulting in a higher
contrast for individual lesions. This is in agreement with pre-
vious studies [24–27]. A total of 118 biopsy-proven malignant
(n = 40) or unproven malignant (n = 78) lesions were identi-
fied and analyzed.

Of the 40 confirmed malignant lesions, 37 (93%) were
detected on SUVand 38 (95%) on Ki images. The malignant
lesions have higher Ki TBR (p < 0.001) and CNR
(p < 0.001) scores. The 2 lesions not detected on both mo-
dalities were HCC nodules on the same patient (patient no.
18), appearing as non-hypermetabolic. Those two lesions
were not detected on Ki images despite their high TBR
and CNR scores, which may be attributed to the very low

Ki values, as discussed later. The only lesion detected with
Ki but not with SUV images was a hepatic lesion (patient
no. 1, Fig. 3), a 71-year-old male presenting a suspicious
liver mass, described as hypervascular on the contrast-
enhanced CT examination. The standard report of the SUV
images described the lesion as non-metabolic (SUVmax 4.45,
BKGmean 2.2, TBR 1.02, CNR 2.82), whereas it was de-
scribed as hypermetabolic in the report generated from the
Ki images (Kimax 1.43, BKGmean 0.24, TBR 5.37, CNR
29.17). Biopsy later confirmed the lesion to be a HCC.

Of the 78 unproven malignant lesions, 74 (95%) were de-
tected with SUV images whereas 70 (90%) of them were
detected on Ki images. The four lesions not detected on either
modality were non-hypermetabolic liver lesions (patient no. 2
and no. 12) suspected as HCC nodules on the basis of CT and
MR imaging, but never proven with a biopsy. The four lesions
not detected on Ki images only were the following: a hyper-
metabolic focal sigmoid activity (patient no. 10); a slightly
hypermetabolic lymph node (patient no. 14); a slightly hyper-
metabolic focal brain activity (patient no. 14); and a lung
lesion (patient no. 8, Fig. 4). The first three lesions were not
confirmed as either malignant or benign during the follow-up.
The last lesion was a false-positive case of a 54-year-old male
with a suspicious left lung lesion, confirmed as benign at
biopsy. The standard report of the SUV images described the
lesion as hypermetabolic (SUVmax 1.5, BKGmean 0.29, TBR
4.17, CNR 81.81), whereas it was not detected in the report
generated from the Ki images (Kimax 0.47, BKGmean 0.02,
TBR 22.5, CNR 2812.5).

Considering the biopsy results as our gold standard out-
come for assessing malignancy of lesions, we assessed the
sensitivity and accuracy for the 40 lesions proven as malig-
nant. In this group of lesions, the sensitivity in detecting
malignancy increased from 37 × 100 40 = 92.5%, in the
case of SUV, to 38 × 100 40 = 95%, in the case of Ki im-
aging. As we only had one biopsy-confirmed negative le-
sion, we cannot reliably compare the specificity performance
between SUVand Ki imaging. Nevertheless, we were able to

Fig. 2 Input functions obtained from image ROIs drawn on heart LV (green) and aorta (blue) ROIs, as well as from arterial blood sampling (red). The
inset in the left panel shows a zoom of the peak region. The right panel shows the cumulative integral of the IFs shown on the left
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correctly assess this single true-negative indication only with
Ki imaging, therefore suggesting improved specificity with
Ki imaging. As a result, our accuracy in detecting malignan-
cy was further improved from 37 × 100 41 = 90.24% with
SUV to 39 × 100 41 = 95.12% with Ki imaging.

PET metrics and statistical analysis

Spearman’s rank correlation coefficient (ρ), whichwas calculated
independently of the anatomical region, was 0.777 (p < 0.001)
forKimax-SUVmax of all lesions and 0.414 (p < 0.001) forKimean-

Table 1 Clinical characteristics of the patients’ population and summary of the lesions detected

Patient Age Sex Malignancy Detected lesions

1 71 M Hepatocellular carcinoma Liver (1)

2 70 M Pancreatic adenocarcinoma Pancreas (1), liver (2), lymph nodes (1)

3 69 M Pancreatic adenocarcinoma Pancreas (1), lymph nodes (4)

4 42 M Neuroendocrine carcinoma Lungs (1), subcutaneous tissue (1), lymph nodes (2)

5 59 M Hepatocellular carcinoma Liver (1), lymph nodes (3)

6 67 M Lung epidermoid carcinoma Lungs (1)

7 58 M Rectum adenocarcinoma Colon (3), lungs (2), subcutaneous tissue (5), peritoneum (5), lymph nodes (3), liver (3), muscles
(1)

8 54 M Suspicious lung lesion Lungs (1)

9 64 M Melanoma Lungs (1), liver (2)

10 56 F Lung carcinoid Lungs (1), colon (1)

11 42 F Lung adenocarcinoma Lungs (2), lymph nodes (3)

12 74 M Intrahepatic
cholangiocarcinoma

Liver (3), lymph nodes (5), brain (1)

13 45 F Hepatic adenocarcinoma Liver (6), lungs (2), colon (2), bones (5), lymph nodes (8)

14 45 F Gastric adenocarcinoma Stomach (1), lymph nodes (3), bones (2), brain (1)

15 62 F Lung adenocarcinoma Lungs (1), colon (1)

16 59 F Lung neuroendocrine
carcinoma

Lungs (1), adrenal gland (3), bones (1), lymph nodes (4)

17 60 M Lung Hodgkin lymphoma Lungs (1), bones (1), lymph nodes (11)

18 61 M Hepatocellular carcinoma Liver (2), parotid gland (1)

Fig. 3 Case of a hepatocellular
carcinoma (patient no. 1)
appearing as non-metabolic in the
SUV images and as
hypermetabolic in the Ki images,
later confirmed with biopsy as
hepatocellular carcinoma. a SUV
fused with non-contrast abdomen
CT, b Ki fused with non-contrast
abdomen CT, c SUV images, and
d Ki images. Note how the
surrounding, normal liver tissue is
less visible onKi images, but with
a noisier aspect
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SUVmean of all background regions. Table 3 and Fig. 6 show the
correlations for each anatomical region.

TBRSUV values ranged from 0.32 to 59.26, whereas TBRKi

values ranged from 2.6 to 9229. TBRKi values were higher
than TBRSUV values for 38 lesions out of 40 (95%). The
Wilcoxon signed-rank test showed statistically significant dif-
ferences between the two metrics (p < 0.001). CNRSUV values
ranged from 1.08 to 2693.78, whereas CNRKi values ranged
from 1.82 to 2,307,250. CNRKi values were higher than
CNRSUV values for 33 lesions out of 40 (82.5%). The
Wilcoxon signed-rank test showed statistically significant dif-
ferences between the two metrics (p < 0.001).

Multiple findings of muscle focal activity, non-suspicious
lymph nodes, digestive metabolism, or other similar foci pre-
sumably benign were visible on SUV images but negative on
Ki images. As an example of such findings, we report a case of
a 45-year-old female (patient no. 14, Supplementary Fig. 1)
presenting with a gastric adenocarcinoma. The SUV image
report described a non-suspicious thoracic lymph node
(SUVmax 3.34, BKGmean 2.6, TBR 0.28, CNR 0.31), which

was not documented on the Ki image report (Kimax 0.73,
BKGmean 0.55, TBR 0.33, CNR 0.64).

Discussion

This study demonstrated that multi-pass whole-body PET Ki

parametric imaging, utilizing robust Patlak graphical analysis,
may achieve equivalent or, potentially, superior lesion detectabil-
ity than standard-of-care SUV imaging with reduced false-
positive rates in routine oncology applications. The implemented
protocol generated both static SUVand parametricKi images in a
single session, thereby allowing for reliable and objective com-
parisons between the two modalities. In our study, all produced
images were of good quality with all biopsy proven malignant
lesions visible in SUV images also depicted in Ki images.
However, Ki images proved superior in three situations: one
proven malignant lesion only being detected on Ki images, as
well as one false-positive lesion and a benign lymph node being
positive only in SUV images. A major finding of our work is the

Table 2 Typical SUVand
normalized Ki values for normal
tissue in different organs

SUV range (mean ± SD) Ki (normalized) range (mean ± SD)

Thoracic vertebra 1.10–2.56 (1.88 ± 0.37) 0.11–2.63 (0.70 ± 0.55)

Lung 0.19–0.76 (0.38 ± 0.16) 4·10−3–0.43 (0.12 ± 0.15)

Blood pool 1.21–2.48 (1.75 ± 0.34) 0–0.45 (0.14 ± 0.16)

Liver 1.47–3.05 (2.15 ± 0.38) 0–2.88 (0.55 ± 0.70)

Muscle 0.10–0.91 (0.61 ± 0.17) 0.017–1.40 (0.31 ± 0.33)

Fig. 4 Case of an inflammatory
lung lesion (patient no. 8),
initially declared as malignant
(unproven) in the standard SUV
report, confirmed benign by
biopsy during the follow-up. This
lesion was declared as benign in
the Ki report. a SUV fused with
non-contrast abdomen CT, b Ki

fused with non-contrast abdomen
CT, c SUV images, and d Ki

images. Note the very different
aspect of the arch of the aorta
(dashed arrow) on bothmodalities
suggesting suppression of blood
pool signal in the Ki images
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suppression of the non-specific 18F-FDG signal in the blood
compartments allowing for a higher contrast in abnormal uptake
regions, thereby confirming observations made in previous stud-
ies [24–27, 33]. This observation suggests increased likelihood
of detecting metabolically active lesions surrounded by avid
background non-specific uptake, such as in the case of interme-
diate differentiated HCCs with 18F-FDG imaging.

The Patlak graphical approach is of low linear complexity,
thus allowing for fast computation and wide adoptability of
WB parametric PET imaging in clinical practice. On the other
hand, it assumes an irreversible 18F-FDG uptake, a condition
not always satisfied in normal liver, kidneys, and certain tu-
mors, such as HCCs [34], thereby leading to Ki underestima-
tion. Thus, an extended non-linear generalized Patlak model,
considering a mild degree of reversibility, had been previously
proposed [26] and could be easily integrated in our analysis.
However, the use of a standard linear graphical analysis model

is more preferable, thanks to its robustness to data noise, when
the kinetic parameters are indirectly estimated from the dy-
namic PET images, and higher lesion contrast, when Ki is
underestimated only in the background.

We found a strong positive correlation (ρ = 0.791) between
Kimax and SUVmax, and even stronger correlations when
looking separately at different organs. This suggests that Ki

images will identify hypermetabolic lesions if these are
depicted on SUV images. In background neighboring regions,
however, we found weak positive correlations (ρ = 0.392) be-
tween BKGmean-Ki and BKGmean-SUV, which is expected
owing to blood pool suppression within Ki images.

The TBR and CNR are almost always higher in Ki images
(Fig. 5). On a purely visual examination, most of the malignant
lesions were depicted on both modalities, except two HCC nod-
ules appearing as non-hypermetabolic on both modalities and
one HCC only depicted on Ki images. Thus, in the majority of
cases, the TBRSUV was largely sufficient to detect the lesions.

In the case of the lung lesions, for example, where the
highest TBR values were found, we observe that most lung
lesions are associated with a very lowmetabolism, resulting in
lung lesions being easily detected. Overall, a TBR value be-
tween 3 and 5 is generally adequate in differentiating the le-
sion from its background, if the lesion has sufficient metabolic
activity. Therefore, improving the TBR beyond this range
with parametric imaging will not further improve lesion de-
tectability, although it may improve quantification. On the
other hand, detectability may be challenging for lesions with
low TBRSUV scores especially within a highly vascularized
organ of high BKGmean uptake, such as the liver. Detectability
may then be improved by the higher TBRKi, due to suppres-
sion of the background signal. An example for such case is the

Table 3 Spearman’s correlation (ρ) and p values (Sig. 2-tailed) between
SUVandKi images, calculated for the maximum values of the lesions and
the mean values of the backgrounds. Correlation is deemed significant for
p < 0.01. All values are reported for the full dataset and for lesions
grouped by localization

Spearman’s ρ lesions Spearman’s ρ background

Total 0.777 (p < 0.001) 0.414 (p < 0.001)

Abdominal 0.796 (p < 0.001) 0.923 (p < 0.001)

Liver 0.890 (p < 0.001) − 0.324 (p = 0.164)

Lungs 0.780 (p = 0.001) 0.252 (p = 0.385)

Bones 0.950 (p < 0.001) 0.875 (p = 0.002)

Lymph nodes 0.657 (p < 0.001) − 0.018 (p = 0.904)

Other 0.806 (p = 0.005) 0.517 (p = 0.126)

Fig. 5 Whisker plots showing TBR and CNR for the SUV and Ki images, presented by organ. KiTBR values are always higher than SUVTBR values,
regardless of the anatomical region, although the difference is variable depending on the organ. The same finding is observed for CNR
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HCC (patient no. 1) appearing as non-metabolic in the SUV
images and as hypermetabolic in the Ki images (Fig. 3).

However, our findings suggest that the TBR and CNR
metrics may not always be sufficient for quantifying lesion
detectability. However, they can both indicate ability to distin-
guish focal lesions from their background and draw appropri-
ate regions of interest for further quantitative evaluations. In
the case of the two hepatic lesions that were negative in both
SUVand Ki images, the TBRSUV were 0.41 and 0.32 whereas
the respective TBRKi scores were 53.33 and 43.45, respective-
ly. Moreover, the CNRSUV values were 1.40 and 1.08 whereas
the CNRKi values were 364.55 and 296.99, respectively.
Despite the very high TBR and CNR scores of the Ki images,
the lesions were not detected, due to the very low target lesion
and nearly zero background Ki values. The same effect ex-
plains why the false-positive lung lesion was not detected on
Ki images (Fig. 4).

There was one interesting case (patient no. 8) of biopsy-
proved benign lung lesion which was erroneously depicted as
positive in SUV images (Fig. 4). There were also several find-
ings in the standard report of SUV images of muscle activity,
inflammation, or benign lymph nodes, which were not visible
on the Ki images. One example is the case of benign thoracic
lymph nodes depicted on SUV images (patient no. 14) but not
on Ki images (Supplementary Fig. 1). Overall, Ki images de-
tected less false-positive and less benign lesions than SUV
images, thereby improving specificity.

The most important limitation of this study is the relatively
low number of patients. Nevertheless, we identified a large
number of oncologic lesions with large histologic diversity
to form a large variety of malignancies in order to drive useful
conclusions for the clinical performance assessment of WB
Patlak Ki

18F-FDG PET imaging. Moreover, having neglected

the k4 parameter during the Patlak analysis may have resulted
in quantification errors, but only in the few regions, such as
the liver or specific malignant tumors where non-negligible
18F-FDG uptake reversibility was expected. Furthermore, the
manual ROI drawing for the IDIF calculation is user-
dependent and can be subject to variability, although the net
effect on the robust Patlak analysis was non-significant.

Although the proposed protocol requires approximately
50 min of patient’s involvement time, compared to 80 min
for a standard SUV examination, the patient has to lie on the
table during the whole 50-min examination. This may be chal-
lenging for patients and can impact throughput in clinical rou-
tine. We plan to continue this work with a prospective con-
trolled study of a larger cohort targeting specific tumor types.
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