s N\ -
7 \, UNIVER%ITE Archive ouverte UNIGE
DE GENEVE https://archive-ouverte.unige.ch

Article scientifique 1998 Published version

This is the published version of the publication, made available in accordance with the publisher’s policy.

Rotation, scale and translation invariant spread spectrum digital image
watermarking

O'Ruanaidh, Joséph John; Pun, Thierry

How to cite

O’RUANAIDH, Joséph John, PUN, Thierry. Rotation, scale and translation invariant spread spectrum
digital image watermarking. In: Signal processing, 1998, vol. 66, n° 3, p. 303—-317. doi: 10.1016/S0165-

1684(98)00012-7

This publication URL:  https://archive-ouverte.unige.ch/unige:47434

Publication DOI: 10.1016/S0165-1684(98)00012-7

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.



https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:47434
https://doi.org/10.1016/S0165-1684(98)00012-7

Rotation, Scale and Translation Invariant Digital Image
Watermarking

Joseph J.K. O Ruanaidh and Thierry Pun

Centre Universitaire d’Informatique, Université de Geneve, 24 rue Général
Dufour, CH-1211 Genéve 4, Switzerland

A digital watermark is an invisible mark embedded in a digital
image which may be used for Copyright Protection. This paper de-
scribes how Fourier-Mellin transform-based invariants can be used
for digital image watermarking. The embedded marks are designed
to be unaffected by any combination of rotation, scale and trans-
lation transformations. The original image is not required for ex-
tracting the embedded mark.

1 Introduction

Computers, printers and high rate digital transmission facilities are becom-
ing less expensive and more widespread. Digital networks provide an efficient
cost-effective means of distributing digital media. The popularity of the World
Wide Web has clearly demonstrated the commercial potential of the digital
multimedia market. Unfortunately however, digital networks and multimedia
also afford virtually unprecendented opportunities to pirate copyrighted mate-
rial. The idea of using a robust digital watermark to detect and trace copyright
violations has therefore stimulated significant interest among artists and pub-
lishers. As a result, digital image watermarking has recently become a very
active area of research. Techniques for hiding watermarks have grown steadily
more sophisticated and increasingly robust to lossy image compression and
standard image processing operations, as well as to cryptographic attack.

Many of the current techniques for embedding marks in digital images have
been inspired by methods of image coding and compression. Information has
been embedded using the Discrete Cosine Transform (DCT) [16,34,5,6] Dis-
crete Fourier Transform magnitude and phase [15], Wavelets [16], Linear Pre-
dictive Coding [13] and Fractals [9,22]. The key to making watermarks robust
has been the recognition that in order for a watermark to be robust it must be
embedded in the perceptually significant components of the image [16,5,6]. The
term “perceptually significant” is somewhat subjective but it suggests that a
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good watermark is one which takes account of the behaviour of human visual
system. Objective criteria for measuring the degree to which an image compo-
nent is significant in watermarking have gradually evolved from being based
purely on energy content [16,5,6] to statistical [20] and psychovisual [27,10]
criteria.

Digital watermarking is also fundamentally a problem in digital communica-
tions [16,25,5,6]. In parallel with the increasing sophistication in modelling
and explmtmg the propertles of the human visual system, there has been a
corresponding development in communication techniques. Farly methods of
encoding watermarks were primitive and consisted of no more than incre-
menting an image component to encode a binary 1’ and decrementing to
encode a '0’ [3,16]. Tirkel and Osborne [29] were the first to note the appli-
cability of spread spectrum techniques to digital image watermarking. Since
then there has been an increasing use of spread spectrum communications
in digital watermarking. It has several advantageous features such as crypto-
graphic security [29,30,6], and is capable of achieving error free transmission
of the watermark near or at the limits set by Shannon’s noisy channel coding
theorem [16,25].

Spread spectrum is an example of a symmetric key [24] cryptosystem. System
security is based on proprietary knowledge of the keys (or the seeds for pseudo-
random generators) which are required to embed, extract or remove an image
watermark. One proviso in the use of a spread spectrum system is that it is
important that the watermarking process incorporate some non-invertible step
which may depend on a private key or a hash function of the original image.
Only in this way can true ownership of the copyright material be resolved [8].

The ability of humans to perceive the salient features of an image regardless of
changes in the environment is something which humans take for granted [26,14].
We can recognize objects and patterns independently of changes in image con-
trast, shifts in the object or changes in orientation and scale. Gibson [12] makes
the hypothesis that the human visual system is strongly tied to the ability to
recognize invariants. It seems clear that an embedded watermark should have
the same invariance properties as the image it is intended to protect. In this
paper, we propose that an image watermark should be, so far as possible,
encoded to be invariant to image transformations. We shall also demonstrate
how image invariants can be used to construct watermarks that are unaltered
by some of the most basic operations encountered in image processing; namely
rotation, translation and changes of scale.

1.1 Nomenclature

This paper will make use of terms agreed during the 1996 Workshop on In-
formation Hiding [18]. The term “cover image” will be used to describe the
unmarked original image and “stegoimage” for an image with one or more
hidden embedded marks. One significant deviation from the recommended
steganographic nomenclature is the frequent use of the term “watermark”
to describe the embedded mark. The authors believe this usage is perfectly
acceptable because it has become the norm.
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Fig. 1. An example of a spread spectrum signal used as
a digital watermark.

2 Spread Spectrum

Pickholtz et al. [19] define spread spectrum communications as follows:

Spread spectrum is a means of transmission in which the signal occupies
a bandwidth in excess of the minimum necessary to send the information;
the band spread is accomplished by a code which is independent of the
data, and a synchronized reception with the code at the receiver is used for
despreading and subsequent data recovery.

Spread spectrum systems are also capable of approaching the Shannon limit
for reliable communication. The fundamental information theoretic limits to
reliable communication and its implications to digital watermarking have been
discussed by some authors [16,25]. Note that the smaller is the number of bits
of core information or “payload” contained in a watermark, the greater the
chance of it being communicated without error.

Cox et al [7,6] recover a watermark by explicitly computing the correlation
between the (noise corrupted) watermark recovered from the image with the
perfect watermarks stored in a database. This is a very robust technique for
watermark recovery but it is not very useful in practice because of the need
for access to the database of marks and the large amount of computation
required. In this paper the approach is similar to other spread spectrum ap-
proaches in that the watermark is embedded in the form of a pseudorandom
sequence. However the approach is different to that of Cox in that it does not
require access to a database of watermarks and is not particularly expensive
computationally. In common with other spread spectrum techniques, in order



to embed a mark or to extract it, it is important to have access to the key
which is simply the seed used to generate pseudo-random sequences. In the
case of a public watermarking scheme the key is generally available and may
even be contained in publically available software. In a private watermarking
scheme the key is proprietary. A mark may be embedded or extracted by the
key owner which in our model is the Copyright Holder. In this form spread
spectrum is a symmetric key cryptosystem. The infrastructure required to
generate, issue and store the keys is not described here.

From the point of view of embedding watermarks in documents given the
keys or seeds the sequences themselves can be generated with ease. A good
spread spectrum sequence is one which combines desirable statistical propeties
such as uniformly low cross correlation with cryptographic security. Examples
of sequences used in spread spectrum systems used in digital watermarking
include m-sequences, Gold codes, Kasami codes and Legendre sequences.

2.1 CDMA coding of digital watermarks

A method for encoding binary messages which can later be recovered given
knowledge of the key used is described here. Suppose we are given a message
which, without loss of generality, is in binary form by, b, - - - by, where b; are the
bits. This can be written in the form of a set of symbols sy, 85+ s37, most
generally by a change in a number base from 2 to B with L < ZWlog2 B. The
conversion from base 2 to a base which is a power of two is trivial. The next
stage 1s to encode each symbol s; in the form of a pseudorandom vector of
length N. To encode the first symbol a pseudorandom sequence @ of length
N + B — 1 is generated. To encode a symbol of values where 0 < s < B
the elements vs, vs11 -+ - Vg4 N are extracted as a vector 71 of length N. For the
next symbol another independent pseudorandom sequence is generated and
the symbol encoded as a random vector r5. Each successive symbol is encoded
in the same way. Note that even if the same symbol occurs in different positions
in the sequence that no collision is possible because the random sequences used
to encode them are different - in fact they are statistically independent. Finally
the entire sequence of symbols is encoded as the summation :

=2 _7;(t) (1)

i=1

The pseudo-random vector m is decoded by generating all of the random vec-
tors 7; in turn and recovering the symbols which the largest value of cross
correlation. In this example the pseudo-random generator (PRG) is an m-
sequence generator but this is not material to the issue since any “good” gen-
erator will do. In addition, one may use two dimensional or higher dimensional
arrays in place of the pseudorandom vectors described in the communications
system above. One interesting point is that for M sufficiently large the statis-
tical distribution of the message m should approach a Gaussian. This follows
from the Central Limit Theorem. A Gaussian distributed watermark has the
advantage that it is more difficult to detect. The variance increases with order
M - in other words, the expected peak excursion of the sequence is only order



M . One can expect that a message with M = 100 symbols will only have ten
times the ampliude of a message with M = 1 symbols. This is very good from
the point of view of minimising the visibility of the watermark

Figure 1 shows a spread spectrum signal s(¢) composed of a linear combination
of L random vectors r;(t) as given by equation 1. Each random vector is
specifically chosen to represent a particular symbol occupying a position in
the message. A symbol may be composed of any number of bits. In our case
each symbol is eight bits long and the number of random vectors L is nineteen.
This is a form of Direct Sequence Code Division Multiple Access (DS-CDMA)
spread spectrum communications. The encoded message in Figure 1 reads
“This is a watermark”.

This form of spread spectrum is resistant to cropping (providing it is resyn-
chronised), non-linear distortions of amplitude and additive noise. Also, if it
has good statistical properties it should be mistaken for noise and go un-
detected by an eavesdropper. The specific choice of method for generating
the pseudorandom sequence has direct implications for reliability and cryp-
tographic security of the embedded mark. Pseudorandom number generators
described in watermarking literature include Gold Codes, Kasami codes, m-
sequences [32,29,33,30] and perfect maps [31].

There are however some drawbacks to using direct sequence spread spectrum.
Although a spread spectrum signal as described above is extremely resistant to
non-linear distortion of its amplitude and additive noise it is also intolerant of
timing errors. Synchronization is of the utmost importance during watermark
extraction. If watermark extraction is carried out in the presence of the cover
image then synchronization is relatively trivial. The problem of synchronizing
the watermark signal is much more difficult to solve in the case where there
is no cover image. If the stegoimage is translated, rotated and scaled then
synchronization necessitates a search over a four dimensional parameter space
(X-offset, Y-offset, angle of rotation and scaling factor). The search space
grows even larger if one takes into account the possibility of shear and a
change of aspect ratio.

In this paper, the aim is to investigate the possibility of using invariant rep-
resentations of a digital watermark to help avoid the need to search for syn-
chronization during the watermark extraction process.

2.2  Error control codes

It is desirable to incorporate some form of error control coding into the above
scheme. The method is symbol based rather than binary bit based as in normal
error codes. Because in this implementation each symbol may be correctly
received or not, one finds that errors in the bit stream after despreading will
occur in bursts, where each burst is due to an incorrectly decoded symbol.
Reed Solomon (RS) codes [4,28,1] are powerful codes which are particularly
suited to this application. RS codes can correct both errors (the locations of
which are unknown) and erasures (the locations of which are exactly known).
The probability of a false detection is extremely low. Reed Solomon codes are



particularly suited to this application for the following reasons : RS codes
correct symbol errors rather than bit errors. RS codes can correct erasures as
well as errors. Erasures can be factored out of the key equation which means
that "erased symbols can be ignored. They do not play any role in the error
control mechanism - an erasure is useless redundancy. We recognise that this
property of being able to discard erased symbols has two advantages : If the
posterior probability of a received symbol is low then it may be ignored. RS
codes only come in standard sizes. For example a 255x8 bit code is common.
Most commonly used RS error control codes appear to be too large to be
used in watermarking. However, it is possible to make almost any RS code fit
a watermarking application by judiciously selecting symbols as being erased
(because they were never embedded in the document in the first place). For
a symbol length of eight bits the corresponding RS code (based on a Galois
extension field GF(2®%)) will be 255 symbols long. This is considerably longer
than a watermark (typically approximately 100 bits only). However, this is
not a problem since the unneeded symbols can be flagged as erasures and
they play no part in the decoding process.

3 Integral Transform Invariants

There are many different kinds of image invariant such as moment, algebraic
and projective invariants [23,26]. In this section we will briefly outline the
development of several integral transform based invariants [26].

The invariants described below depend on the properties of the Fourier trans-
form. There are a number of reasons for this. First, using integral transform-
based invariants is a a relatively simple generalization of transform domain
watermarking. Second, the number of robust invariant components is rela-
tively large which makes it suitable for spread spectrum techniques. Third, as
we shall see, mapping to and from the invariant domain to the spatial domain
is well-defined and it is in general not computationally expensive.

3.1  The Fourier Transform

Let the image be a real valued continuous function f(xy,x3) defined on an
integer-valued Cartesian grid 0 < 7 < Ny,0 < 29 < N,

The Discrete Fourier Transform (DFT) is defined as follows:

Nj—1 Nz-1

F(k17k2) = Z Z f(l'hJiz)e_jzm“kl/Nl—ﬂ”fzkfz/Nz (2)

n =0 no =0

The inverse transform is

1 Ni—1Ny-1

f($17$2) = — Z Z F(k17kz)ejQWkll’l/Nl-I-jQWle’g/NQ (3)
N1N2 k1=0 ko=0



The DFT of a real image is generally complex valued.

This leads to a

magnitude and phase representation for the image:
Ak, ko) = [F (kv k2] (4)
Ok, k2) = LF (ke k2) (5)

We now discuss the properties of the Fourier representation that are crucial
to the construction of translation, rotation and scaling invariants.

3.1.1 The Translation Property

Shifts in the spatial domain cause a linear shift in the phase component.

F(k1, ko) exp [—j(aky + bks)] <> f(a1 + a, 22+ b) (6)

Note that both F(ki,kz) and its dual f(xy,x2) are periodic functions so it is
implicitly assumed that translations cause the image to be “wrapped around”.
We shall refer to this as a circular translation.

3.1.2  Reciprocal Scaling

Scaling the axes in the spatial domain causes an inverse scaling in the fre-
quency domain.

1 ki ke
7F77 T1,PT2 7
; (p,p)Hf(p p2) (7)

An important example of this property is the Fourier transform of a delta
function (which is infinitely narrow) which has a uniformly flat amplitude
spectrum (and is infinitely wide).

3.1.3 The Rotation Property

Rotating the image through an angle § in the spatial domain causes the Fourier
representation to be rotated through the same angle.

F(kicos@ — kysin®, kysinf + kqy cos §)

< f(xycos @ — xgsinf, xysinf + x5 cos )



Note that the grid is rotated so the new grid points may not be defined.
The value of the image at the nearest valid grid point may be estimated by
interpolation.

3.2 Translation Invariance

From property 6 of the Fourier transform it is clear that spatial shifts affect
only the phase representation of an image. This leads to the well known re-
sult that the DFT magnitude is a circular translation invariant. An ordinary
translation can be represented as a cropped circular translation.

It is less well known that it is possible to derive invariants based on the phase
representation. To do this involves eliminating the translation dependent linear
term from the phase representation. Brandt and Lin [2] present two such
translation invariants, namely the Taylor invariant which removes the linear
phase term in the Taylor expansion of the phase and the Hessian invariant
which removes this linear phase term by double differentiation.

We shall see in section 3.3 that properties 7 and 8 allow one to extend the
basic translation invariants to cover changes of rotation and scale.

3.8 Rotation and Scale Invariance

The basic translation invariants described in section 3.2 may be converted to
rotation and scale invariants by means of a log-polar mapping.

Consider a point (z,y) € R? and define:

xz = et cos b
(9)

y = e¢'sinf

where 1 € f and 0 < 6 < 27. One can readily see that for every point (z,y)
there is a point (y,6) that uniquely corresponds to it.

The new coordinate system has the following properties:
Scaling is converted to a translation.

(p,py) > (1 + log p,0) (10)

Rotation is converted to a translation.

(xcos(0+0)—ysin(§+0),xsin (04 d)+ycos(f+9))
© (1,04 9)



At this stage one can implement a rotation and scale invariant by applying
a translation invariant in the log-polar coordinate system. Taking the Fourier
transform of a log-polar map is equivalent to computing the Fourier-Mellin
transform:

Fr(ky ka) = / /f(e“ cos B, e sin ) exp [i(k1p + k20)]dp db (12)

—o0 0

The modulus of the Fourier-Mellin transform is rotation and scale invariant.

Many useful invariants are derived by finding an alternative coordinate sys-
tem in which the effect of the transformation is replaced by a translation
and applying a translation invariant operator in the new coordinate syatem.
Squire [26] demonstrates how such invariants can be derived formally using
the methods of Lie Group algebra.

3.3.1 The Commutative Property
It is interesting to show that the single parameter group of rotation trans-

formations R(#) and the single parameter group of scale tranformations S(p)
commute.

R(0) 0 S(p) [(x,y) = R(0) f(px, py)

(px cos @ — pysin b, pxsin  + py cos )

( (13)
(

p) f(zcosf —ysinb,xsinf + ycos )

p) o R(0) f(x,y)

Similarly one can show [2] that the two parameter group of translation trans-
formations T (a, ) commutes neither with R(6), nor with S(p) nor with the
joint transformation RS(8, p).

f
S
S

3.4 Rotation, Scale and Translation Invariance

Consider two invariant operators: F which extracts the modulus of the Fourier
transform and Faq which extracts the modulus of the Fourier-Mellin trans-
form. Applying the hybrid operator Faq o F to an image f(x,y) we obtain:

Iy =[Fmo F] f(z,y) (14)

Let us also apply this operator to an image that has been translated, rotated
and scaled:

L=[FpmoFoR(0)oS(p)oT(a,3)] fla,y)



=[FrmoR(#) o FoS(p)oT(a,B3)] flz,y) (15)
— | FuoR(9) 05(%) o FoT(a, 3| fla,y) (16)
=[Fmo F] fla,y) (17)
— 1, (18)

Hence I; = I, and the represention is rotation, scale and translation invariant.
Steps 15 and 16 follow from properties 8 and 7 of the Fourier transform re-
spectively. The contraction in equation 17 is due to the invariance properties

of F and Fg.

The rotation, scale and translation (RST ) invariant just described is sufficient
to deal with any combination or permutation of rotation, scale and translation
in any order [2].

To give a concrete example of its application, consider a copy of a stegoimage
placed on a scanner from which we wish to extract an embedded mark. The
image may be reduced or increased in size and will be, more often than not,
at an angle of +¢, +90 4+ € or even 180 + € degrees where +e¢ is some small
random angle. The image is also likely to be translated. Using the invariants
derived above it should be possible to to extract an embedded mark regardless
of orientation, scale or position.

3.5 Complete and Strong invariants

Brandt and Lin [2] define the important concept of completeness. A complete
invariant represents “all the information contained in the image modulo the
given transformation”. In this sense a complete invariant is almost invertible.
If two images have the same complete translation invariant then, by the def-
inition of completeness, one must be a shifted version of the other. Such an
invariant cannot be inverted uniquely because the mapping to the invariant
domain is not a bijective function. Brandt and Lin [2] present an example
where a complete Hessian invariant is inverted to yield the original image,
albeit with the origin shifted and image wrapped around at the edges.

Ferraro and Caelli [11] in an earlier paper defined the related concept of strong
invariance. “An integral transform is defined to be invariant in the strong sense
if ...” the amplitude representation is constant for all states of the transfor-
mation and different states are uniquely encoded in the phase component. The
phase component may therefore be used to invert the invariant representation.

For convenience, the invariants used in this paper are strongly invariant. In
image watermarking it is more convenient to use strong invariants because the
last stage of the process of embedding a mark involves inverting the invariant
representation to obtain the (marked) stegoimage. Invertibility is of no concern
whatsoever during the extraction process.
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4 Watermark Implementations

In this section we describe two different prototype schemes for embedding
watermarks in digital images using RST invariants. Typically, the watermark
is embedded in a gray scale image or the luminance component of a colour
image.

4.1 General scheme

Figure 2 illustrates the process of obtaining the RST transformation invariant
from a digital image. The watermark takes the form of a two dimensional
spread spectrum signal in the RST transformation invariant domain. Note
that the size of the RST invariant representation depends on the resolution
of the log-polar map which can be kept the same for all images. This is a
convenient feature of this approach which helps to standardise the embedding
and detection algorithms.

4.1.1  Embedding a watermark

A Fourier transform (FFT) is first applied which is then followed by a Fourier-
Mellin transform (A log-polar mapping (LPM) followed by a Fourier transform
(FFT)). The invariant coefficients preselected for their robustness to image
processing are marked using a spread spectrum signal. The inverse mapping
is computed as an inverse FFT (IFFT) followed by an inverse Fourier-Mellin
transform (An inverse log-polar mapping (ILPM) followed by an inverse FFT)
Note that the inverse transformation from RST invariant domain to the image
domain uses the phase computed during the forward transformations from
image domain to the RST invariant domain.

4.1.2  FEztracting a watermark

A watermark may be extracted without or without a cover image. In the case
where there is no cover image the image is transformed to the RS7T invariant
domain and the watermark is decoded. This is similar in principle to the
scheme described by Smith and Comiskey [25] whose approach is to “treat
the image as noise” and overcome the interference from the stegoimage using
spread spectrum communication. When a cover image is available it should be
subtracted from the stegoimage and the difference transformed to the RS7T
invariant domain (since the operations in Figure 2 are linear with respect to
image amplitude). Subtracting the cover image improves the performance of
the detector because, as Smith and Comiskey point out, it eliminates the noise
interference due to the stegoimage [25]. In many cases, image contrast may
be distorted, for example by a scanner, in which case the effects of change
of contrast must be compensated for in some way. Cox et al. [5,6] describe a
method known as dynamic histogram warping [7] to carry this out.

11
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Fig. 2. A diagram of a prototype RST
invariant watermarking scheme.

4.1.8  Practical considerations

There are a number of complications in implementing the processing steps
depicted in Figure 2. The stegoimage must be real which in turn means that
its amplitude spectrum (A(k,[) where 0 <k < M and 0 <[ < N) as well as
being positive (A(k,l) > 0) must also be positively symmetric:

Ak, 1) = A(M — kN — ) (19)

The log-polar map of a positively symmetric matrix consists of two identical
halves. This follows from the fact that the positive symmetry condition in
equation 19 is written in polar coordinates as:

A(r,0) = A(r,m+9) (20)

where (M /2, N/2) is the centre of rotation. Since both halves of the log-polar
map are identical then only one half need be used in the upper FFT of Figure 2.
The spread spectrum signal is determined from the amplitude spectrum of this
FFT. Applying the above in reverse gives an embedding algorithm which yields
a real valued watermark.

The scheme described in Figure 2 works in principle but has some serious defi-
ciencies in practice. The first difficulty is that both the log-polar mapping and
the inverse log-polar mapping can cause a loss of image quality. The change
of coordinate system means that some form of interpolation should be used.

12



Two simple forms of interpolation, nearest neighbour and bilinear interpola-
tion [21], are in common use. Non-stationary low pass filtering can improve
the performance by eliminating frequency aliasing. In practice the resolution
of the log-polar map must be at least 512 x 512 for even a quite poor quality
image. The second difficulty is numerical. Interpolation only performs well if
neighbouring samples are of the same scale. This makes the computation of
the Fourier-Mellin transform of the modulus of a Fourier transform somewhat
problematic. A typical Fourier transform representation of an image is quite
badly behaved in this respect since there are generally a few components of
relatively large magnitude. This difficulty is resolved in the next section.

4.2 Cover Image Independent Scheme

The problems in embedding watermarks using the previous implementation
described in Figure 2 can be circumvented by using the method illustrated
in Figure 3. In this case the mark must be embedded in the RST invariant
domain independently of the original image. The advantage of using this ap-
proach is that the distortions caused by the inverse log-polar map are suffered
only by the embedded mark itself and do not affect the stegoimage. Figure 4
shows the corresponding detection process which is relatively straightforward.

Note that when embedding the mark there is no phase component available for
the first inverse Fourier transform. The first FF'T operates on a random phase
signal to keep the amplitude distribution of the inverse FFT reasonably flat.
This is beneficial to the inverse log-polar map which performs best when the
input is a smooth image. The second FFT uses the phase component directly
from the cover image. The advantage in doing this is that matching the phase
component of the embedded mark to that of the cover image helps to hide it
because the embedded mark resembles the cover image. This follows from the
research of Oppenheim and Lim [17] which demonstrates that image phase is
far more important to image structure than image amplitude.

5 Examples

Figure 5 depicts a standard image of a mandrill. Figure 6 is the log-polar map
of Figure 5. This image was computed using 600 grid points along the § (angle)
axis, 600 grid points along the p (log-radial) axis and bilinear interpolation.
Figure 7 is the inverted log-polar map computed using just 100 angular and
100 log-radial grid points and nearest neighbour interpolation. Note that the
restoration grows progressively poorer away from the centre.

Figure 5 is in fact a stegoimage which contains a 104 bit rotational and scale
invariant watermark. The watermark is encoded as a spread spectrum signal
which was embedded in the RS invariant domain. Figure 5 was rotated by
1439 and scaled by a factor of 75% along each axis to give the image shown in
Figure 8. The embedded mark which read “The watermark” in ASCII code was

recovered from this stegoimage. It was also found that the watermark survived

13
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Fig. 3. A method of embedding a mark
in an itmage which avoids mapping the
cover image into the RST invariant do-
main.

\ RST Invariant \

Amp

‘ Stegoimage ‘ ‘ Cover Image

Fig. 4. A scheme to extract a mark from
an vmage.

lossy image compression using JPEG at normal settings (75% quality factor).
Other methods exist that tolerate JPEG compression down to 5% quality
factor [7,6,16,15]; work is underway to combine these with this approach. In
addition, the mark is also reasonably resistant to cropping and could be re-
covered from a segment approximately 50% of the size of the original image.
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Fig. 5. A standard 500 x 480 image of
a mandrill.

Fig. 6. A log polar map of the image of
a mandrill. The log-polar map employs
bilinear interpolation and the log-polar
grid is 600 X 600 samples.

6 Conclusion

This paper has outlined the theory of integral transform invariants and showed
that this can be used to produce watermarks that are resistant to translation,

15



Fig. 7. The image of a mandrill recon-
structed from a log polar map of size
100 x 100 samples. This reconstruction
uses nearest neighbour interpolation.

Fig. 8. A watermarked image of a man-
drill that has been rotated by 143 de-
grees and scaled by 75%. The embedded
mark was recovered from this image.

rotation and scaling. The importance of invertibility of the invariant represen-
tation was emphasised. One of the significant points is the novel application
of the Fourier-Mellin transform to digital image watermarking.

16



There are several advantages in using integral transform domain marks. The
main advantage is that the transforms can be computed very qulckly (although
in practice it has been found that the inverse log-polar mapping is a compu-
tational bottleneck). In addition, transform space contains a large number of
samples which can be used to hide a spread spectrum signal.

An example of a rotation and scale invariant watermark was presented. As one
might expect, this proved to be robust to changes in scale and rotation. It was
also found to be weakly resistant to lossy image compression and cropping. The
robustness of the embedded mark to these attacks will be greatly improved
with future work.

On its own, the invariant watermark discussed in this paper cannot resist
changes in aspect ratio or shear transformations. There is no obvious means
of constructing an integral transform-based operator that is invariant to these
transformations. However, work is currently in progress to find a means of
searching for the most likely values of aspect ratio and shear factor, and then
to apply the necessary corrections during watermark extraction.

In addition to the above, we intend to investigate the possible use of phase-
based complete invariants. This would have some advantage over only marking
strong invariants, since a complete invariant presents a maximal number of po-
tential communications channels through which watermark information may
be transmitted.
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