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[1] Sensitivity analysis and uncertainty estimation are crucial to the validation and
calibration of numerical models. In this paper we present the application of sensitivity
analyses, parameter estimations and Monte-Carlo uncertainty analyses on TEPHRA, an
advection-diffusion model for the description of particle dispersion and sedimentation
from volcanic plumes. The model and the related sensitivity analysis are tested on two
sub-plinian eruptions: the 22 July 1998 eruption of Etna volcano (Italy) and the 17 June
1996 eruption of Ruapehu volcano (New Zealand). Sensitivity analyses are key to
(1) constrain crucial eruption parameters (e.g., total erupted mass) (2) reduce the number
of variables by eliminating non-influential parameters (e.g., particle density) and
(3) investigate the interactions among all input parameters (plume height, total grain-size
distribution, diffusion coefficient, fall-time threshold and mass-distribution parameter).
For the two test cases, we found that the total erupted mass significantly affects the model
outputs and, therefore, it can be accurately estimated from field data of the fallout deposit,
whereas the particle density can be fixed at its nominal value because it has negligible
effects on the model predictions.

Citation: Scollo, S., S. Tarantola, C. Bonadonna, M. Coltelli, and A. Saltelli (2008), Sensitivity analysis and uncertainty estimation

for tephra dispersal models, J. Geophys. Res., 113, B06202, doi:10.1029/2006JB004864.

1. Introduction

[2] Recent advances in particle dispersal models have
significantly improved our capability to describe the plume
dynamics and to compute the accumulation of tephra
deposits [Bursik et al., 1992a, 1992b; Searcy et al., 1998;
Koyaguchi and Ohno, 2001a, 2001b; Bonadonna et al.,
2005a; Costa et al., 2006]. Model calibration and validation
are usually carried out by comparing computed and ob-
served data of well known eruptions [e.g., Bonadonna et al.,
2002; Scollo et al., 2007]. Nevertheless, this process is often
complicated by the lack of comprehensive data sets (including
information on column height and field data collected in both
proximal and distal area) and by the use of various assump-
tions (e.g., constant mass eruption rate during the eruption)
required to parameterize volcanic processes.
[3] Another complication is given by the fact that some

input parameters of tephra dispersal models are typically
considered as ‘‘true values’’ even though they are affected
by uncertainty. These uncertainties might significantly
affect the model outputs. For example, the total erupted
mass is not easy to determine because of the non-linearity
of the function that describes the thickness or mass

variation with the distance from the eruptive vent. Several
techniques for extrapolation of tephra deposit thickness/
mass with distance from the vent have been suggested
[Pyle, 1989; Fierstein and Nathenson, 1992; Froggatt,
1982]. However, numerical simulations have shown that
curve-fitting techniques can be misleading when applied to
poor data sets and may generate large errors depending on
the extrapolation method considered because sedimentation
processes in proximal and distal areas are characterized by
different fallout regimes [Bonadonna and Houghton,
2005]. As a result, the total erupted mass derived from
even abundant field data might be affected by large
uncertainties.
[4] In this paper, we present an iterative approach based

on the sequential combination of sensitivity analysis
[Saltelli et al., 2008], parameter estimation procedure
[Beven and Binley, 1992], and Monte Carlo-based uncer-
tainty analysis, applied to the advection-diffusion model
TEPHRA [Bonadonna et al., 2005a]. For this model, the
input data necessary to simulate the dispersal of volcanic
clouds are: plume height, total mass, total grain-size distri-
bution, density of lithics and pumices, diffusion coefficient,
fall-time threshold and plume ratio (a factor describing the
mass distribution in the plume). Values of these data are not
often available during an eruption and increase the uncer-
tainty in forecasting the plume dispersal. Hence we use
sensitivity analysis to identify the input parameters that can
be fixed in order to simplify the model and those that have
a chance of being estimated. Subsequently, we estimate
input parameters through an uncertainty estimation proce-
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dure between model predictions and field data. Finally, we
use a Monte Carlo procedure to obtain the uncertainty
distribution of the total mass per unit area deposited on the
ground as predicted from the model. This approach has
been tested on two sub-plinian eruptions: the 22 July 1998
eruption of Etna volcano (Italy), and the 17 June 1996
eruption of Ruapehu volcano (New Zealand), where com-
prehensive data sets are available (i.e., information on
column height, wind profile, isomass maps covering both
proximal and distal areas and based on field data collected
within a few days after the eruption) [Andronico et al.,
1999; Bonadonna et al., 2005b]. Both eruptions had a well
characterized fallout pattern representative of typical ex-
plosive eruption styles of basaltic (Etna) and andesitic
(Ruapehu) magmas. As examples we used the well studied
basaltic eruption of Etna (22 July 1998), and the andesitic
eruption of Ruapehu (17 June 1996) that has a strongly
wind-skewed eruption cloud. These eruptions were charac-
terized by two typical plume styles: strong plume (i.e., with
a vertical convective phase) and weak plume (i.e., bent
over by the wind). In particular, the data sets include a
large number of locations sampled both for mass/area and
grain-size (35 and 114 samples for Etna and Ruapehu
respectively) and an observed height of the eruption
column, strategic information often not available for small
and medium size explosive eruptions.

2. The Proposed Approach

[5] The aim of sensitivity analysis is to quantify the
uncertainty contribution of input data and parameters (all
indicated here as input factors) to the overall uncertainty in
the model prediction. Whereas, uncertainty analysis prop-
agates the uncertainty of the input factors to the model
outputs [Helton, 1993]. We review the components of our
approach in the following sections.

2.1. Sensitivity Analysis

[6] Formal approaches of sensitivity analysis have been
applied in various fields where models are employed,
ranging from physics to economics [Saltelli et al., 2000]
and several methods are available, ranging from differential
to Monte Carlo analysis, from response surface methodol-
ogy to regression and correlation techniques [see Helton
[1993] and Saltelli et al. [2000] for a review]. The simplest
approach is when the input factors are varied ‘‘One At a
Time’’, better known as the OAT method. The OAT method
is easy to implement, computationally cheap, and has been
frequently applied to tephra dispersal models to extrapolate
the main features of sedimentation processes [Macedonio et
al., 1988; Hurst and Turner, 1999; Bonadonna et al., 2002;
Pfeiffer et al., 2005; Scollo et al., 2007]. However, the OAT
approach suffers a number of limitations which can lead to
inaccurate results especially when the numerical models are
highly non-linear, such as models of tephra dispersal used
for hazard studies.
[7] In this paper we focus on global sensitivity analysis

techniques, which allow the simultaneous exploration of the
space of the uncertain inputs over the whole domain of
uncertainty. In particular, we will adopt the class of vari-
ance-based techniques, which are based on the decomposi-
tion of the prediction variance into components that

quantify the importance of the single model input factors.
Therefore let us consider a mathematical model f whose
output variable Y is a nonlinear deterministic function of its
k input factors:

Y ¼ f x1; x2; . . . ; xkð Þ ¼ f xð Þ ð1Þ

where x = [x1, x2, . . .xk] are the uncertain input factors of the
model in the domain W 2 [0;1]k (e.g., diffusion coefficient,
grain-size or particle density) and f is the model, i.e., the set
of equations that links the input factors x to the model
prediction Y (e.g., the total mass of tephra accumulated on
the ground per unit area). We assume that the input factors
are independent and we treat them as if they were random
variables. We characterize the uncertainty of Y by its
variance. The expected value E(Y) and the variance V(Y) are
given by:

E Yð Þ ¼
Z
W

f x1; x2; . . . xkð Þdx ð2Þ

and

V Yð Þ ¼
Z
W

f x1; x2; . . . xkð Þ � E Yð Þ½ �2dx ð3Þ

while the expected value of Y conditional on xi is given by:

E Y jxið Þ ¼
Z
W

f x1; x2; . . . ; xkð Þ dx
dxi

ð4Þ

[8] The variance of this conditional expectation is
V[E(Yjxi)], and is called the ‘‘top marginal variance’’ (or
the explained variance) [Jansen et al., 1994]. Such condi-
tional variance is a measure of importance of factor xi
[Saltelli et al., 2000]. V[E(Yjxi)] is the expected reduction
of the variance of Y in the case that xi would become fully
known, whereas the other input factors remain as uncertain
as before. The top marginal variance is linked to the
unconditional variance V(Y) via the identity:

V Yð Þ ¼ V E Y jxið Þ½ � þ E V Y jxið Þ½ � ð5Þ

[9] The main effect (indicated by the first order sensitiv-
ity index Si) is the top marginal variance of factor xi divided o
by the total variance V(Y):

Si ¼
V E Y jxið Þ½ �

V Yð Þ ð6Þ

[10] Higher order sensitivity indices quantify the sensi-
tivity of the model predictions to interactions among pairs,
or groups, of input factors and are evaluated as:

Sij ¼ V E Y jxi; xj
� �� �

� V E Y jxið Þ½ � � V E Y jxj
� �� �� �

=V Yð Þ ð7Þ

[11] The calculation of all sensitivity indices would
require a relevant amount of computational work (in a
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model with k input factors, there are 2k-1 sensitivity indices)
and, due to the large number of combinations for higher
order sensitivity indices, the analysis is often stopped at the
indices of the second order.
[12] In our analysis we also use a compact characteriza-

tion of the factor importance, given by the total sensitivity
index STi, which embeds in one single number both the
main effect and the higher order effects for a given input
factor [Homma and Saltelli, 1996]. The STi for the factor xi
is defined as the sum of all the sensitivity indices (of any
order) that include xi. We can estimate the total sensitivity
index without needing to estimate each order index through
the formula:

STi ¼
E V Y jx�ið Þ½ �

V Yð Þ ð8Þ

where x�i represents the totality of input factors excluding
xi.
[13] The procedure to calculate Si and STi is illustrated by

Saltelli [2002]. Here, we just remind the reader that we need
to generate a random sample of N points for the input
factors and execute the simulation model N times:

Yj ¼ F xj1 ; xj2 ; . . . :; xjk
� �

j ¼ 1 . . .N : ð9Þ

[14] Using the results of the N simulations (N is generally
of the order of a few thousands), the computation of the
multidimensional integrals (6) and (8) is carried out effi-
ciently using SIMLAB, a software code designed for
uncertainty and sensitivity analysis.

2.2. SIMLAB Software

[15] SIMLAB is a free software package for global
uncertainty and sensitivity analysis developed at the Joint
Research Centre of Ispra (Italy) and distributed for free at
http://simlab.jrc.ec.europa.eu. This software allows the user
to specify the distributions for each input factor of a model
and generate a sample of elements of a given size N from a
distribution set up previously. The sample generation can be
made using a variety of methods, i.e., random sampling,
quasi-random sampling, replicated Latin Hypercube, classic
and extended FAST (Fourier Amplitude Sensitivity Test)
and the Morris design. The matrix of values with N rows
(each sample point) and k columns (the input factors) used
in our study as input for the TEPHRA model has been
generated using the Sobol’ method [Sobol’, 1990]. Then,
TEPHRA is run on the N sample points to provide the
predictions. Finally, SIMLAB is supplied with the sample
points and the corresponding predictions to execute the
sensitivity analysis. The sensitivity analysis can be carried
out by using different techniques, e.g., factor screening,
standardized regression, and variance-based analysis. In our
case the first order Si sensitivity indices and the total
sensitivity indices STi are obtained using the algorithm
proposed by Saltelli [2002].

2.3. Uncertainty Estimation Procedure

[16] The starting point of the uncertainty estimation
procedure is based on the assumption that any combination
of input factors can be considered as a possible simulator of
the system [Beven and Binley, 1992]. For simplicity, obser-
vations are considered to be true in the frame of this work,

even though both observations (e.g., mass/area collected at
each location), and model predictions (e.g., simulations
obtained from tephra dispersal models, on which the esti-
mations of input factors are based) are subject to errors. As a
result, the best fit values are determined as the closest values
to the collected field data. Several simulations are per-
formed on different combinations of these input factors
(that are the same used in the previous sensitivity analysis).
A measurement of how well the model simulations fit the
measurements is done by the following best fit function:

fb ¼ exp �
XNobs
l¼1

Y xj
� �

� Ol

� �2
=std Y � Olð Þ

 !
ð10Þ

where xj is the j-th element of the sample of the model input
factors, Ol is the vector of observations, Y(xj) is the j-th
model run and std(Y � Ol) is the standard deviation of the
model errors with respect to the observations.
[17] The best descriptor of the system is the input factor

set corresponding to the highest value of equation (10).
[18] The final step is a Monte Carlo-based uncertainty

analysis that selects probabilistically the input factor set
corresponding to the highest values of the equation (10) and
then uses the model results to evaluate the uncertainty. In
fact, a new sampling of these input factors using Monte
Carlo method will generate new model outputs, on which
the mean value and the relative uncertainty (standard
deviation/mean) will be evaluated. The method is compu-
tationally intensive, because a large number of runs are
needed. However, the computational time has become
feasible using parallel processing techniques implemented
in the TEPHRA model [Bonadonna et al., 2005a].

3. TEPHRA Model

[19] TEPHRA is a two dimensional advection-diffusion
model that describes sedimentation processes of particles
from volcanic plumes [Bonadonna et al., 2005a]. Such a
model is the result of the integration of several theories
and approaches including a grain-size dependent diffusion
[Suzuki, 1983], particle density variations [Bonadonna
and Phillips, 2003], a stratified atmosphere [Macedonio
et al., 1988; Connor et al., 2001; Bonadonna et al.,
2002], and terminal settling velocity that accounts for
the variation of particle Reynolds number [Bonadonna et
al., 1998]. The model has been recently applied to assess
the hazard of tephra dispersal at Tarawera volcano, New
Zealand [Bonadonna et al., 2005a]. One of the advantages
of TEPHRA is the parallelization of the code that allows for
a large number of fast simulations, critical in hazard assess-
ments. A comprehensive evaluation of the tephra hazard at
Tarawera volcano was hence obtained applying a probabi-
listic approach to both inputs (i.e., sampling of probability
density functions accurately describing input parameters)
and outputs (i.e., probability maps and hazard curves).
[20] The model solves the mass conservation equation:

@Cj

@t
þ wx

@Cj

@x
þ wy

@Cj

@y
� Vj;i

@Cj

@z
¼ Kx

@2Cj

@x2
þ Ky

@2Cj

@y2
þ Kz

@2Cj

@z2

ð11Þ

where x, y, z are the spatial coordinates (m), Cj is the particle
concentration (kg m�3), t is the time (s), wx and wy describe

B06202 SCOLLO ET AL.: SENSITIVITY ANALYSIS

3 of 17

B06202



the horizontal wind speed field (m s�1), Vj,i is the settling
velocity of volcanic particles (m s�1) and Kx, Ky, Kz are the
three components of the diffusion coefficient (m2 s�1).
Vertical diffusion coefficient Kz is assumed to be negligible
and horizontal diffusion is considered constant and isotropic
(K = Kx = Ky).
[21] Volcanic particles with dimension j are released

instantaneously from a point source i situated along a
hypothetical vertical line (the eruptive column) centered
on the volcanic vent. Particles are characterized by a
horizontal motion that depends on wind speed, atmospheric
turbulence and plume spreading, and by a vertical motion,
controlled by terminal settling velocities of volcanic par-
ticles Vj,i. Terminal settling velocity is function of Rey-
nolds’ number and is calculated, assuming particles of
spherical shape, using the analytical expression of Kunii
and Levenspiel [1969]. In addition, aggregation processes
are neglected for simplicity. In fact, even though aggrega-
tion processes significantly affect sedimentation of fine
particles [Bonadonna et al., 2002; Carey and Sigurdsson,
1982; Brazier et al., 1982], they can be neglected when
describing sedimentation of tephra characterized by coarse
grain-size distributions as shown by numerical simulations
[e.g., Bonadonna and Phillips, 2003]. For both Etna and
Ruapehu eruptions the sedimentation was not significantly
affected by aggregation processes.
[22] The computation domain is divided into Nl layers on

which the wind speed and the atmospheric diffusion coef-
ficient are assumed constant. Inside each horizontal layer,
the transport is described by a Gaussian distribution that
expands due to the turbulent diffusion, and translates due to
the wind for the time dtj spent by volcanic particles inside a
given layer. dtj is function of the layer thickness dz and the
terminal settling velocity Vj,i of the particle and it is equal to
dz/Vj,i. The center of the Gaussian distribution is shifted
layer by layer following dxj = wx dtj and dyj = wy dtj, on the
(x, y). The width of the Gaussian distribution is controlled
by the atmospheric diffusion.
[23] The total mass accumulated per unit area (kg m�2) is

the sum of the contribution of each point source i for each
particle grain-size class j:

M x; yð Þ ¼
XH
i

XFmax

Fmin

M0
ij

2ps2
ij

exp �
x� �xij
� �2þ y� �yij

� �2
2s2

ij

( )
ð12Þ

where H is the total height of the eruption column, Fmin and
Fmax (F = �log2(d) with d particle diameter in mm) are the
minimum and maximum diameters of the total grain-size
distribution, Mij

0 (kg) is the total mass fraction of a particle
size j that falls from the point source i at the height zi, sij

2 is
the distribution variance. The variance sij

2 is function of
both turbulent atmospheric diffusion and plume gravity. For
particles having small fall time tij, the diffusion can be
described by a linear function with t (Fick’s law):

s2
ij ¼ 2K tij þ t0i

� �
ð13Þ

where K (m2 s�1) is the Diffusion Coefficient and t 0i(s) is the
horizontal diffusion time in the vertical plume which

accounts for its change in width [Woods et al., 1995; Ernst
et al., 1996]. The horizontal diffusion time is given by the
integration of Morton et al. [1956] and Bonadonna and
Phillips [2003] models and by observations of plume
spreading [Sparks and Wilson, 1982]:

t0i ¼
0:0032z2i

K
ð14Þ

[24] For particle fall time of hours (for example, particles
with diameter < 1 mm falling from a 30 km high plume), the
variance sij

2 is described by a power law [Suzuki, 1983]:

s2
ij ¼

4C

5
tij þ t0i
� �2:5 ð15Þ

where C is an empirical constant [Suzuki, 1983]. The
combination of two diffusion laws can generate a break-in-
slope in the thinning trend which, as a result, depends on the
Fall Time Threshold (FTT). Large values of the FTT mean
that the diffusion of more particles can be described by the
linear function, resulting in a thick and narrow deposit in the
proximal area centered along the dispersal axis.
[25] The distribution of the mass inside the eruption

column is described by two different plume models. The
first considers a uniform mass distribution along the plume
where the top and the bottom of the particle-source area are
defined by the Plume Ratio (PR); the second model
describes the mass distribution in the plume as a lognormal
distribution depending on a geometrical parameter A. In our
study we use only the first model in which the PR factor is
varied. PR is a dimensionless parameter that specifies the
bottom of the particle-release region as a ratio of the total
height. For example, if PR is 0.8 and the Plume Height (H)
is 20 km, particles start being releases at 16 km.
[26] Input factors of TEPHRA that were considered in the

following sensitivity analysis are:
[27] . Plume Height (H): maximum height reached by the

eruption column. It can be constrained with direct ground-
based observations, satellite imagery and/or derived from
tephra deposit data [e.g., Carey and Sparks, 1986; Sparks,
1986; Wilson and Walker, 1987; Holasek and Self, 1995].
[28] . Total Mass (TM): the total erupted mass can be

empirically determined from an empirical power law func-
tion of H [Carey and Sigurdsson, 1982; Wilson and Walker,
1987] or from field data using curve-fitting techniques
[Pyle, 1989; Fierstein and Nathenson, 1992; Bonadonna
and Houghton, 2005].
[29] . Total Grain-Size distribution (TGS): the grain-size

distribution of the whole deposit can be determined using
various methods of integrations [see Bonadonna and
Houghton [2005] for a review]. TGS is used in TEPHRA
model as a Gaussian distribution characterized by a mode
and a standard deviation.
[30] . Density of Lithics and Pumices (DL, DP): the

density of volcanic particles released from the column.
The density of clasts varies widely from �500 kg m�3 in
highly vesicular clasts to �2700 kg m�3 in dense ones. The
density of lithics and pumices is typically measured in the
laboratory for fragments down to about 2 mm. Density of
smaller fragments can be described using the simple pa-
rameterization of Bonadonna and Phillips [2003], where
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density of pumices is assumed to decrease with increasing
size for particles having diameter <2 mm (�1 F) becoming
equal to the lithic density when the particle size is below
0.0078 mm (>7 F).
[31] . Diffusion Coefficient (K): this coefficient accounts

for atmospheric diffusion and for the gravitational spreading
of the volcanic cloud. Consequently, diffusion coefficients
of advection-diffusion models are typically larger than
standard atmospheric diffusion coefficients [e.g., Armienti
et al., 1988; Bonadonna et al., 2002; Pfeiffer et al., 2005].
[32] . Fall Time Threshold (FTT): empirical threshold

that defines the transition (expressed in particle-fall time)
between the two different laws of particle diffusion used in
the TEPHRA model [equations (13) and (15)].
[33] . Plume Ratio (PR): factor describing the mass

distribution in the plume.
[34] The model output is the mass per unit area (kg m�2)

deposited on grid points around the volcano. Bonadonna et
al. [2005a] calibrated the TEPHRA model on the pyroclas-
tic deposits produced by A.D. 1315 Kaharoa eruption and
17 June 1996 Ruapehu eruption (New Zealand) by varying
one at time K, FTT, and PR factors (OAT method). They
calculated a best fit function to evaluate the input factors
that give the best agreement between the computed and the
field data. Nevertheless, uncertainties of some input factors
were not analyzed because they were considered as true
values (i.e., the total erupted mass, the total grain-size
distribution and the density of volcanic particles).

4. Case Studies

4.1. 1998 Etna Eruption

[35] The 22 July 1998 eruption was one of the largest
explosive events at Etna volcano [Andronico et al., 1999;
Aloisi et al., 2002]. The eruption column reached an altitude
of 12 km (a.s.l.), as measured from rectified camera pic-
tures. A thin tephra fallout deposit blanketed the south-east
flank of the volcano. During the eruption, the wind blew
almost constantly to the SE for altitudes up to 10 km (about
140 degree from the north). Above 10 km, the wind
direction shifted to the NE (about 50 degree from the
north). Wind speed ranged between 4 and 6 m s�1 at about
1 km (a.s.l) and between 9 and 11 m s�1 at about 16 km
(a.s.l) [Aloisi et al., 2002].
[36] The 35 samples used in our study were collected a

few hours after the eruptive episode (Figure 1). Andronico
et al. [1999] estimated the total erupted mass of the tephra
deposit to be about 1.3 � 109 kg using the method of Pyle
[1989] and classified the eruption as sub-plinian following
the classification scheme of Walker [1973]. The total grain-
size distribution estimated using the Voronoi method
[Bonadonna and Houghton, 2005] is centered on 2.3 F
with a standard deviation equal to 1.5 F [Scollo, 2006].
Input data used by tephra dispersal models are summarized
in Table 1.

4.2. 1996 Ruapehu Eruption

[37] On 17 June 1996, Ruapehu volcano in New Zealand
produced an andesitic sub-plinian eruption [Hurst and
Turner, 1999; Cronin et al., 2003]. This eruption developed
two pulsating plume phases that were bent over by the
strong winds (maximum wind speed of 40 m s�1) and lasted

for about 8 h each. The maximum column height of 8.5 km
was constrained using satellite data [Prata and Grant,
2001]. The associated deposit on land was reconstructed
by the analysis of 114 locations around the volcano [B. F.
Houghton et al., unpublished data, 1996; Figure 1b]. The
deposit extended to the northeast coast of New Zealand
(i.e., 200 km from the vent) and showed a sinusoidal pattern
[Bonadonna et al., 2005b]. It was also characterized by a
typical bent-over-plume sedimentation, with a sharp thick-
ness decreasing in proximal area and a more gradual thinning
in the distal area. The deposit was thoroughly sampled within
a few days from the eruption, making this data set ideal for
modeling calibration and sensitivity analysis. The total
erupted mass of volcanic particles deposited on the ground
was estimated about 4.6 � 109 kg by both exponential
and power law method [Bonadonna and Houghton, 2005].
The total grain-size distribution, estimated by Voronoi
method, is centered on �0.8 F with 2.4 standard deviation
[Bonadonna and Houghton, 2005]. Input data used by
tephra dispersal models are summarized in Table 1.

5. Results

5.1. Prior Parameter Distributions

[38] We have considered as uncertain the eight input
factors of the TEPHRA model described in section 3. The
distributions and range over which the input factors were
sampled, were taken from the available literature based on
the typical features of sub-plinian eruptions (Table 2). We
have considered a logarithmic scale for the diffusion coef-
ficient (K) and the total erupted mass (TM) due to the wide
ranges of K values, between 0.0001 and 10000 m2 s�1, and
of TM values, between 108 and 1013 kg.
[39] We considered a Gaussian distribution for the total

grain-size distribution TGS:

p fð Þ ¼ 1

s
ffiffiffiffiffiffi
2p

p exp � 1

2

f� m
s

� �2
" #

ð16Þ

where m is the mean and s is the standard deviation. The
other input factors, the fall time threshold FTT, the density
of lithics and pumices DL and DP, the plume ratio PR, the
plume height H, were considered as uniform distributions
between the limits of the input factors.
[40] The sampling strategy is suited to the estimation of

the sensitivity indices considered in the Sobol’ method
[Sobol’, 1990]. The Computational Cost CC of this method,
in terms of model simulations, is proportional to the number
of input factors k. The proportionality coefficient N, called
base sample size, can be chosen in terms of the desired
accuracy of the sensitivity estimates. N is selected as a
power of two to guarantee uniform coverage of the sam-
pling space when we use the quasi-random number gener-
ator proposed by Sobol’ [Sobol’, 1967]. The algorithm
generates uniformly distributed quasi-random sequences
within the hypercube W = {[0;1] � [0;1]. . .} of unit volume.
The sample is formed by a quasi-regular grid of points and
has an extra uniformity condition known as Property A
[Sobol’, 1967]. Geometrically, if the hypercube W is divided
up by planes of equation xj = 1/2 into 2k equally sized cubes,
then, given a sequence of 2k points, each point belongs to
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one and only one cube. The prior distributions for the input
factors are obtained by applying a suitable transformation to
the uniformly distributed sample.

5.2. Sensitivity Analysis

[41] We applied a variance-based method of sensitivity
analysis to the TEPHRA model. In particular, we apply an
extension of the technique proposed by Sobol’ [1990] and
modified by Saltelli [2002].
[42] We have generated a sample in the input factor space

by selecting N = 64. This value of N was selected as first
guess with the hope that it guarantees statistically significant
estimates of sensitivity indices; whether N is sufficiently
large will be discovered later. The total computational cost
CC of sensitivity analysis is (2 � k + 2) � N, where k is
number of input factors (eight for both Etna and Ruapehu
tests). We have run the TEPHRA model to obtain the
corresponding 1152 outputs, i.e., the accumulated mass
per unit area was computed at the locations where tephra
samples were collected at Etna and Ruapehu tephra deposits
(Figure 1): 35 locations for Etna and 114 locations for
Ruapehu. At each location we calculated both the first order
and the total sensitivity indices (Si and STi).
[43] For some input factors we estimated negative values

of STi in several locations. This is an indication that the
initial value set for N should increase, as the total sensitivity
indices cannot be negative by definition. So, we decided to

increase N to 256 obtained by 64 � 2 � 2 (remembering
that N is a power of two necessary to guarantee uniform
coverage of the sampling space). Accordingly, the number
of simulations required to run the sensitivity analysis
increases to 4608.
[44] The results of sensitivity analysis are shown in

Figure 2 for Etna and Figure 3 for Ruapehu. For both Etna
and Ruapehu we observe that the total erupted mass (TM)
has the highest value of first order index at all measurement
points. When an input factor has a high value of Si and STi it
means that it is influent on the model output on its own but

Table 1. Input Data Used by Tephra Dispersal Models of the

22 July 1998 Eruption of Etna Volcano, Italy [Andronico et al.,

1999] and the 17 June 1996 Eruption of Ruapehu Volcano, New

Zealand [Bonadonna et al., 2005b], B. F. Houghton et al.

(unpublished data, 1996)

Input Data
Etna (Italy)
22 July 1998

Ruapehu
(New Zealand)
17 June 1996

Eruption style sub-plinian sub-plinian
Plume height 12 km (a.s.l) 8.5 km (a.s.l)
Total erupted mass 1.3 � 109 kg 4.6 � 109 kg
Total grain-size distribution (mean) 2.3 F �0.8 F
Lithic density 2600 kg m�3 2650 kg m�3

Pumice density 900 kg m�3 1100 kg m�3

Figure 1. (a) Data points and isomass curves (kg m�2) of the tephra deposit generated by the 22 July
1998 eruption of Etna volcano (Italy) [Andronico et al., 1999]; (b) Data points and isomass curves
(kg m�2) of the tephra deposit generated by the 17 June 1996 eruption of Ruapehu volcano (New
Zealand) [Bonadonna et al., 2005b; B. F. Houghton et al., unpublished data, 1996]. The triangle indicates
the position of the eruptive vent; the circles indicate the locations where tephra samples were collected.
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not through interactions with other parameters of the model.
As a result, the total erupted mass is responsible for most of
the variability of the model predictions implying that there
is very good chance that this input factor can be estimated
using field data of fallout deposits.
[45] We also observe that the value of STi for lithic density

(DL) and pumice density (DP) is quite small for all the 35
locations for Etna and at all the 114 locations for Ruapehu.
Consequently, the two densities are not influential and can
be fixed to a nominal value within their range of uncertainty
without any significant loss in accuracy of results computed
by the model.
[46] A detailed analysis of interactions between input

factors shows that the Fall Time Threshold (FTT) has high
values of the total order index and low values of the first

order for a number of Etna locations (Figure 2). This means
that it has several interactions with the other factors. For
example, for the location about 7 km away from the
volcanic vent there are strong interactions between FFT
and TM (at Etna location 18).
[47] Sensitivity analysis is an important tool to check the

reliability of a model. For example, in the case of Ruapehu,
we find that one of the total order indices is largely negative
(�1.07 at Ruapehu location 89) in the upwind position
about 2.5 km far from the vent (Figure 3). Given that the
total sensitivity index is theoretically greater than or equal to
zero, a large negative quantity indicates that the model is not
able to accurately describe the upwind sedimentation from
plumes bent over by strong winds. Finally, the sensitivity
analysis shows that far from the volcanic vent (>70 km) the

Figure 2. Plots showing the first and the total indices Si and STi obtained by the analysis with Simlab
software of 4068 simulations of the TEPHRA model for the 22 July 1998 eruption of Etna volcano.
Indices of each input factor are plotted in function of the distance from the volcanic vent (km). In the
legend TGS is the total grain-size distribution, H is the plume height, K is the diffusion coefficient, FTT is
the fall time threshold, DL is the density of lithics, DP is the density of pumices, PR is the plume ratio and
TM is the total mass.

Table 2. Input Factors of the TEPHRA Model Considered in the Sensitivity Analysis

Input Factors Prior Distribution Distribution Ranges

Total grain-size distribution TGS normal �7–9 F
Plume height H uniform 8000–25000 m
Diffusion coefficient K log-uniform 0.001–10000 m2 s�1

Fall time threshold FTT uniform 0–7200 s
Lithic density DL uniform 500–2300 kg m�3

Pumice density DP uniform 2300–2500 kg m�3

Plume ratio PR uniform 0.01–1
Total mass TM log-uniform 108–1013 kg
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total erupted mass does not interact significantly with the
other factors.
[48] The next step of the analysis is the estimation of the

total erupted mass using the field data for both volcanoes.

5.3. Total Erupted Mass Estimation

[49] The total erupted mass was estimated by the best fit
formula (10) comparing the field data and the model outputs
of the previous 4608 simulations. Figure 4 shows the
posterior distribution of the total erupted mass for Etna,
i.e., the pdf (probability distribution function) obtained after
applying the best fit function. Higher values of the best fit
function correspond to the combination of input factors that
give the best agreement with the field data. The posterior
distribution looks like a normal distribution slightly skewed
on the right side (on a log scale) with the mean value at
1.5 � 109 kg. The result is very similar to the total erupted
mass estimated using standard curve-fitting techniques
(Table 1). Note that the range of the posterior distribution
is much narrower than that of the prior distribution with
uncertainty ranging between 108 and 1013 kg (Table 2).
[50] Figure 4 shows also the posterior distribution of the

total erupted mass for Ruapehu. Although the distribution is
more dispersed than Etna, by fitting it with a Gaussian
distribution we obtained a mean value equal to 4.0 � 109

kg, which is also close to the value obtained using curve-
fitting of field data (Table 1).

5.4. Iteration of Sensitivity Analysis

[51] We iterated the sensitivity tests using the estimated
pdfs of the total erupted mass and setting the density of
lithic and pumice at constant values, given that these two
factors are non-influential. With this analysis we expected to
obtain more accurate posterior distribution of mass per unit
area computed by the model to see whether some further
estimations of the total erupted mass is feasible.
[52] In this second test, pumice and lithic densities were

fixed at 1080 and 2500 kg m�3 for Etna, and at 1000 and
2350 kg m�3 for Ruapehu. A new sample of 3584 points
was generated by selecting k = 6 (the actual number of input
factors) and N = 256.
[53] First and total sensitivity indices have been again

calculated for Etna (Figure 5). Unlike the previous tests, in
the Etna simulations all input factors have similar first order
indices at all measurement locations (Figure 5). Contrary to
the previous test in which the total erupted mass had a first
order around 0.8 for many locations (Figure 2), the first
order indices are all below 0.4, meaning that there is no
chance of estimating any order factor in the model.
[54] Total sensitivity indices show that the factor PR is

almost non-influential (associated total indices are below
0.1), and could be fixed in the subsequent analysis.
[55] On the other hand, FTT shows some peaks at the

locations between 10 and 16 km from the vent, meaning

Figure 3. Plots showing the first and the total indices Si and STi obtained by the analysis with Simlab
software of 4068 simulations of the TEPHRA model for the 17 June 1996 eruption of Ruapehu volcano.
Indices of each input factor are plotted in function of the distance from the volcanic vent (km). Refer to
Figure 2 for TGS, H, K, FTT, DL, DP, PR and TM.

B06202 SCOLLO ET AL.: SENSITIVITY ANALYSIS

8 of 17

B06202



that it contributes to uncertainty in model prediction within
this range.
[56] The factor TGS gains importance with distance from

the vent, meaning that at large distance it can be accurately
predicted.
[57] First and total sensitivity indices have also been

calculated for Ruapehu (Figure 6). Here, a relatively high
value of the first order index for TM shows that we could, in
principle, make an additional estimation of the total erupted
mass using the existing data. Factors K and PR have low
values of total sensitivity index, hence, they have minimal
influence on model outputs. Instead, the factor TGS
becomes more important beyond 100 km.
[58] We have also calculated the best fit function (10)

for each of the 3584 model predictions and shown the
scatterplots of the best fit function versus each input factor
(Figures 7 and 8). For both volcanoes, the new posterior
distributions of the total erupted mass are slightly updated

and have mean values at 1.3 � 109 kg (for Etna) and
4.16 � 109 kg (for Ruapehu). The estimated mean values
are closer to the estimates obtained with the classic approach
(Table 1).
[59] A new test was carried out for a better calibration of

the total erupted mass for the Ruapehu eruption. We used
the posterior distribution of the total erupted mass obtained
by the last test (Figure 8), while all the other factors
remained the same. 3584 runs were performed; however,
sensitivity analysis still showed high values of Si and STi for
the total erupted mass at almost all locations. It means that
the total erupted mass could be calibrated better because
both the total and the first index are still high. Nevertheless,
using the formula (10) by further iteration, we were not
able to reduce more the value of the total sensitivity index
STi, and, hence, to improve the calibration of the total
erupted mass.

5.5. Uncertainty Analysis

[60] A Monte-Carlo-based uncertainty analysis was per-
formed by simulating the total mass per unit area on the
ground over different locations from the volcanic vents of
both Etna and Ruapehu using the sample of 3584 points
obtained from the posterior distributions of the factors.
[61] For Etna case, we found that the mass per unit area

measured at the 35 locations falls inside the 5% and the
95% percentiles of the model predictions.
[62] For the Ruapehu test, almost all the mass per unit

area collected at the 114 locations falls inside the 5% and
the 95% percentiles of the model predictions, excluding
some locations very close to the vent or located at distances
between 100 km and 150 km far from the vent.
[63] In addition, the mean value and the standard devi-

ation of the simulations have been evaluated from the
3584 simulations available over different locations. For
Etna (Figure 9), the predictive uncertainty in terms of
coefficient variation (i.e., standard deviation/mean value)
of the mass per unit area is about 60% within 16 km from
the vent and increases with distance, reaching up to 80%
at about 50 km from the vent. On the basis of these data, a
given uncertainty can be found for each location. For
example, if 500 g m�2 of tephra deposit is computed at
Acireale we would expect 800 g m�2 as the worst case
scenario. Similarly, if 1000 g m�2 of tephra is computed
for Nicolosi and 300 g m�2 for Catania, we would expect
a maximum accumulation of 1600 g m�2 and 500 g m�2

respectively for Nicolosi and Catania.
[64] The predictive uncertainty associated with the

Ruapehu data set is instead higher than for Etna, being
150% beyond 60 km from the vent, 130% at 100 km,
decreasing down to 120% at 200 km. Predictive uncer-
tainty (standard deviation/mean value) is plotted in
Figure 10.

6. Discussion and Conclusions

[65] In this paper, a new approach is presented to perform
sensitivity analysis of input factors and uncertainty estima-
tion of critical parameters used in analytical and numerical
models. As an example, we present the results of sensitivity
analyses carried out on specific input factors and uncertainty
estimation of the total erupted mass computed on the ground

Figure 4. Plot of the best fit function (equation (10))
versus the total erupted mass ranging between 108 and
1013 kg obtained by comparing simulations of the TEPHRA
model and field data of 22 July 1998 Etna deposit and of
17 June 1996 Ruapehu deposit.
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using TEPHRA, an advection-diffusion model that describes
particle sedimentation from volcanic plumes [Bonadonna et
al., 2005a]. This approach is based on a combination of
sensitivity analysis and uncertainty estimation techniques
that can be applied to all numerical models in any scientific
field [Crosetto and Tarantola, 2001].

6.1. Sensitivity Analysis

[66] Sensitivity analysis enables us to classify model
input factors according to these three categories:
[67] (1) Factors influencing the model predictions signif-

icantly, but not through the interaction with the other input
factors.
[68] (2) Factors influencing the model predictions mainly

through the interaction with the other factors.
[69] (3) Factors having overall negligible effect on the

model predictions.
[70] The first category includes factors which have a high

likelihood of being calibrated accurately. The second cate-
gory includes factors that help us improve our knowledge of
the physical model. Factors of the third category can be
fixed at a nominal value within their range of uncertainty,
thus simplifying the model through the reduction of the
number of input factors.
[71] Sensitivity analysis carried out applying TEPHRA to

two sub-plinian deposits have shown that the total erupted
mass (TM) can be accurately estimated and falls in the first
category. As a result, sensitivity analyses represent a valu-
able alternative for the calculation of the total erupted mass,
whereas curve-fitting techniques of sparse field data can
produce very large errors [Bonadonna and Houghton,

2005]. Our evaluation of the total erupted mass calculated
by the second iteration of the sensitivity analysis is in good
agreement with the total mass calculated by standard
technique obtained by field data of the 22 July 1998 Etna
eruption and of the 17 June 1996 Ruapehu eruption. In fact,
for Etna we obtained the same value (1.3 � 109 kg), and for
Ruapehu we found a relative difference of only 9.6%
(4.16 � 109 kg respect to 4.6 � 109 kg obtained from field
data). It is important to stress here that the total erupted
mass calculated from field data both for Etna and Ruapehu
is to be considered close to the true value because of the
large area covered by the isomass maps and because the
deposit was sampled soon after the eruption allowing for a
good coverage of distal areas [Andronico et al., 1999;
Bonadonna et al., 2005b]. Finally the approach proposed
in this paper is more comprehensive and fast than the classic
approach based on curve fitting of field data, in that we can
obtain uncertainty bounds for the estimates, and we use an
automated process that does not involve manual work of the
operator. Similar promising results are also presented by
Connor and Connor [2006] with the application of inver-
sion techniques.
[72] We made some additional tests to check whether the

estimation of the total erupted mass could be influenced by
the number of field data. The results showed that the
estimation of the total erupted mass can be reached with
at least 10 locations in which the mass deposited is
measured without a particular correlation with the distance
of the locations from the volcanic vent (indeed, the sensi-
tivity analysis showed that the total erupted mass is the most

Figure 5. Plots showing the first and the total indices Si and STi resulting from the Simlab analysis of
3584 simulations obtained running TEPHRA for the 22 July 1998 eruption of Etna volcano. Indices of
each input factor are plotted as a function of the distance from the volcanic vent (km).
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Figure 7. Scatterplots of the best fit function (equation 10) versus the total grain-size distribution
(TGS), the plume height (H), the diffusion coefficient (K), the fall time threshold (FTT), the plume ratio
(PR) and the total erupted mass (TM). They are the result of comparisons between 3584 simulations
carried by the TEPHRA model and the field data of 22 July 1998 Etna eruption.

Figure 6. Plots showing the first and the total indices Si and STi resulting from the Simlab analysis of
3584 simulations obtained running TEPHRA for the 17 June 1996 eruption of Ruapehu volcano. Indices
of each input factor are plotted as a function of the distance from the volcanic vent (km).
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important factor at all locations). Hence this can be consid-
ered as the minimum number of locations required for a
reliable estimation of the total erupted mass. However,
sensitivity analyses on more case studies need to be ana-
lyzed to constrain the actual limits of applicability of the
method.
[73] The input factors describing the density of lithics and

pumices belong to the third category and can be fixed at
some nominal values. This enables the modeler to reduce
the dimensionality of the model to six input factors: total
grain-size (TGS), the plume height (H), the diffusion coef-
ficient (K), the fall time threshold (FTT), the plume ratio
(PR), the total erupted mass (TM).
[74] Except for the total erupted mass and the particle

density, the rest of the input factors belong to the second
category, i.e., factors influencing the model prediction
through the interaction with the other factors.
[75] In particular, the total grain-size distribution (TGS)

has high values of both first and total sensitivity indices,
especially at locations far from the volcanic vent (Figures 5
and 6). TGS shows also high values of best fit function that
are peaked on �1.14 F for Etna test (Figure 7) and �0.58 F
for Ruapehu test (Figure 8). This latter value is very close to
the total grain-size distribution (�0.8 F) obtained applying
the method of Voronoi to the same data set [Bonadonna and
Houghton, 2005]. This is not the case of Etna, where this
difference between the two approaches could be due to the
availability of grain-size distributions data mainly for loca-
tions located far from the vent and therefore being charac-
terized by a larger fraction of fines.
[76] Scatterplots of the best fit function versus plume

Height (H), Diffusion Coefficient (K), Fall Time Threshold

(FTT) and Plume Ratio (PR) show no pattern (Figures 7
and 8), confirming the results obtained by sensitivity
analysis in which their first sensitivity indices are smaller
than their total sensitivity indices and hence, they cannot
be well calibrated (Figures 5 and 6). Some interactions
between these input factors are expected due to the
difference between the total sensitivity index and the first
order index for the same factor. In addition, sensitivity
analyses of these case studies (Figures 5 and 6) show that
H controls the sedimentation near the volcanic vent (up to
10 and 20 km for Etna and Ruapehu respectively), whereas it
shows strong interactions with other factors for sedimenta-
tion far from the vent. For Ruapehu, K is important up to
50 km from the vent; after that distance the associated first
order index is below 0.1. This factor controls the diffusion of
particles in the atmosphere combining the complex plume
dynamics and atmospheric turbulent diffusion into a single
factor [Bonadonna et al., 2005a]. It could explain that
beyond a certain distance from the vent, which value
depends on the eruption, the effects of plume dynamics are
negligible and the importance of this factor reduces (low
total sensitivity order) compared to the other input factors. In
both studied cases, FTT is an important factor. In fact it
involves the terminal settling velocity of volcanic particles
that has a first order effect on results of tephra dispersal
models [Pfeiffer et al., 2005] and influences strongly the
volcanic particle deposition [Riley et al., 2003].
[77] Sensitivity analyses show that PR, that describes the

mass distribution along the eruptive column, does not
significantly affect the model outputs. However, the simple
parameterization used in this sensitivity analysis could
oversimplify the description of the ascending eruption

Figure 8. Scatterplots of the best fit function (equation 10) versus the total grain-size distribution
(TGS), the plume height (H), the diffusion coefficient (K), the fall time threshold (FTT), the plume ratio
(PR) and the total erupted mass (TM). They are the result of comparisons between 3584 simulations
carried by the TEPHRA model and the field data of 17 June 1996 Ruapehu eruption.
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columns. In such case, other algorithms describing the
complex mechanisms and thermodynamics of eruption
columns [Bursik, 2001; Woods, 1988] should be imple-
mented into the TEPHRA model and new sensitivity
analysis should be performed. On the other hand, any
modeling effort should be justified only if it yields better
predictions.

6.2. Uncertainty Analysis

[78] We have also applied uncertainty analysis to evaluate
uncertainty of the mass per unit area on the ground, due to
the uncertainty on input factors. The results show that the
coefficient of variation for Etna and Ruapehu ranges between
60% and 90% and between 100% and 150% respectively.
[79] For Ruapehu, we have noted that regions with larger

uncertainty are located near the volcanic vent and between
100 and 150 km from the vent. Near the vent, the computed
sedimentation clearly underestimates the sedimentation
from bent-over plumes, whereas the region between
100 km and 150 km from the vent is characterized by a
thickness double maximum and a sinusoidal pattern that
cannot be described by simple advection-diffusion models
[Bonadonna et al., 2005b]. These features of the deposit are

likely to be related to bent-over sedimentation structures and
convective instabilities [Bonadonna et al., 2005b].

6.3. Consideration on Our Case Studies (Etna and
Ruapehu)

[80] We have considered Etna and Ruapehu (both sub-
plinian eruptions) as case studies because they are both
characterized by comprehensive data sets [Andronico et al.,
1999; Bonadonna et al., 2005b]. Bonadonna et al. [2005a]
have shown that TEPHRA can both describe sedimentation
from sub-plinian and plinian plumes, and therefore we
expect the results to be similar for the sedimentation from
both strong and weak plumes. However, in order to test if
the model results are a function of the eruption style, more
tests should be run on smaller (e.g., Vulcanian) and larger
eruptions (e.g., Plinian). In addition, Bonadonna et al.
[2005a] had also shown that TEPHRA have difficulties
describing proximal fallout from weak plumes, as con-
firmed by our results. Different physical approaches, used
in models like FALL3D and VOLC-CALPUFF [Costa et
al., 2006; Barsotti et al., 2008], could give better results in
these cases. Sensitivity analysis and uncertainty estimations
should also be carried out for these models in which the

Figure 9. Predictive uncertainty (standard deviation/mean value) of the mass per unit area simulated for
22 July 1998 Etna eruption.
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meteorological data have an important effect on the model
outputs [Barsotti and Neri, 2008].

6.4. Considerations on the Model Used (TEPHRA)

[81] The type of sensitivity analysis and uncertainty
estimation presented in this paper can be applied to any
analytical and numerical model. We have decided to test
these analyses on the TEPHRA model as an example of a
model that can describe the transport and sedimentation of
volcanic particles. In fact, we were particularly interested in
the comparison with ground field data. However, in order to
fully understand the relevance of our results, it is also
important to highlight some important limitations of the
application of the TEPHRA model. First, TEPHRA is a
proved powerful model for the compilation of hazard
assessments but it cannot be used for the study of the
dynamics of particle sedimentation. In fact, in order to
allow for shorter computing times, the physical model is
mainly based on simplified parameterizations of important
processes, such as the spreading of the umbrella cloud,
atmospheric diffusion and wind advection. As a result, its
strength is on the probabilistic computation more than the
physical model. Hence all our outcomes can only be
considered as results related to this particular model for
tephra dispersal and cannot be generalized to all models for
particle sedimentation. Finally, TEPHRA does not account
for particle aggregation, which has been shown to signifi-
cantly affect sedimentation of fine particles [Brazier et al.,
1982; Sparks et al., 1997], and consequently, TEPHRA
should be used carefully when applied to fine deposits. As
an example, Bonadonna et al. [2002], Costa et al. [2006]
and Scollo et al. [2007] have assumed that aggregation

occurred inside the eruption column and then they modified
the input factor of the terminal settling velocity distribution.
[82] In addition, TEPHRA runs using an MPI interface on

a Beowulf cluster [Bonadonna et al., 2005a] and, therefore
it allows for thousands of simulations to be made in a
relative short time. Short computing time is crucial to
sensitivity analysis and uncertainty estimations because they
are based on probabilistic approaches. In fact, probabilistic
approaches have been mainly used to compute hazard
assessments [Cioni et al., 2003; Bonadonna et al., 2005a].
Moreover, we have shown that, thanks to the use of parallel
processing, we can also use probabilistic techniques to
perform sensitivity analysis and uncertainty estimations.
Ongoing research focused on the use of sensitivity analysis
with the aim to reduce the uncertainty of the mass per unit
area computed from tephra dispersal models is crucial to the
development of more reliable hazard maps.

Notation

Dimension of Each Term are Given in Brackets: L, Length;
T, Time; M, Mass.

A dimensionless parameter that
controls the shape of the mass
distribution of volcanic particles
in the plume.

C apparent eddy diffusivity empirically
determined (C = 0.04 m2 s�1

[Suzuki, 1983]) [L T�1];
equation (15).

Figure 10. Predictive uncertainty (standard deviation/mean value) of the mass per unit area simulated
for 17 June 1996 Ruapehu eruption.
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CC computational cost of the simulation
proportional to number of input
factors (CC = (2 � k + 2) � N) where
N is a value selected to guarantees
statistically significant estimates of
sensitivity indices

Cj particle concentration [M L�3];
equation (11)

d particle diameter [L]
DL density of lithics [M L�3]
DP density of pumices [M L�3]
E(Y) expected value of the output

variable Y; equation (2)
E(Yjxi) expected value of the output

variable Y conditional on xi;
equation (4)

f(x) mathematical model used in the
sensitivity analysis and
uncertainty estimation; equation (1)

fb best fit function used in the
parameter estimation procedure
and uncertainty estimation procedure;
equation (10)

FTT fall time threshold [T]; diffusion of
particles with fall times
h FTT is described by a linear law
(equation (13)), diffusion of particles
with fall times i FTT is described by
a power law (equation (15))

i indices indicating the input factors
of the model; indices of point
sources along the eruptive plume

j indices of the sample points; indices
of particles size

H total height of the eruption
column [L]

k number of the model input factors
K horizontal diffusion coefficient

(K = Kx = Ky) [L
2 T�1];

equation (13)
Kx component (horizontal) of the

diffusion coefficient [L2 T�1];
equation (11)

Ky component (horizontal) of the
diffusion coefficient [L2 T�1];
equation (11)

Kz component (vertical) of the
diffusion coefficient [L2 T�1];
equation (11)

M(x, y) mass accumulated on the
ground around a point of coordinates
(x, y) [M L�2]; equation (12)

Mij
0 total erupted mass of a given

grain-size fraction j released from
a point source i along the erupting
plume [M]; equation (13)

Nl number of horizontal layers in which
the computation domain of the
TEPHRA model is divided

p(f) total grain-size distribution
supposed in the sensitivity analysis;
equation (16)

Ol vector of the observations compared
with the results of simulations;
equation (10)

PR adimensional parameter that describes
the top and the bottom of the
particle-source area in which the
mass distribution is supposed
uniform

std(Y � Ol) standard deviation used in the best fit
function; equation (10).

Si first order sensitivity index;
equation (6)

Sij higher order sensitivity indices;
equation (7)

STi total sensitivity index; equation (8)
t time [T]
tij fall time of a particle of size j

released from a point source i
along the eruptive plume [T]

t0i horizontal diffusion time in the
volcanic plume at a point source
i [T]; equation (14)

TGS Total grain-size distribution of
volcanic particles inside the
eruption column

TM total erupted mass [M]
V(Y) variance of the model output Y;

equation (3)
V[E(Yjxi)] top marginal variance that measures

the importance of the factor xi;
equation (5)

Vj,i terminal settling velocity of
volcanic particles [L T�1]

Y output of the model
Yj output of the model related to the

sample point j
dxj wind transport of a particle of size j

along the x axis within an
atmospheric layer (dxj = wxdtj) [L]

dyj wind transport of a particle of size j
along the x axis within an
atmospheric layer (dyj = wy dtj) [L]

dz thickness of each atmospheric
layer [L]

dtj time spent by a particle of size j
within each atmospheric layer [T]

x = [x1, x2, . . .xk] the uncertain input factors of the
model in the domain W 2 [0;1]k

xj = [xj1, xj2, . . .xjk] j = 1. . .N matrix with N row
(sample point) and k column
(the input factors); equation (9)

(x, y) coordinates of a point on the
ground [L]

(x, y, z) coordinates of a point on the
space [L].

m median diameter of the total
grain-size distribution of volcanic
particles inside the eruption column

wx component of the wind speed along
the x axis [L T�1]

wy component of the wind speed along
the y axis [L T�1]
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s standard deviation of the input
factor TGS; equation (16)

sij
2 variance of the Gaussian mass

distribution on the ground of
particles of size j released from a
point source i [L2]; equation (12)

F granulometric unit: F = �log2(d)
with d particle diameter in mm

Fmin minimum particle diameter
Fmax maximum particle diameter
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