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HERMAN WOLD('~) and JEAN-LUC BERTHOLET (**) 

The PLS (Partial Least Squares) Approach to 
Multidimensional Contingency Tables 

CoNTEN"rs: 0. l1tlroduction. - 1. PLS s fl modeling: an overview of ends and means. 
- 2. onlingency tables in two dimensions. - 3. Conti ngency tables in three 
dimen ion-. - 4. Di cus. ion. Acknowledgements. Reference . Resume. 

0. INTRODUCTION. 

Background reference i made to tl1e PLS approach o path models 
wilh latent variables briefly called "oft modeling ' ; Wold (1975 1977, 
1979 1980, 1982). The pre ent paper how that the basic deign for PLS 
estimation. r sofl models allow traightforward adaptaLion to the ana­
Jy i · of lhe dichotomous items of multidimen ional contingency tables. 
The ensuing model defines one or more latent variables for each margin 
of the conlingency table; the ob erved items arc interpreted as indicator 
of the con:e ponding latent variable · ea h latent variab le i e Limated 
explicitly as a weighted aggregate of it indicator · the model has "outer 
relation between each latent variable and its ind icators, a11d "inner 
relations" between the latent variables · the inner and outer relation arc 
cal1 al-predictive; for Lhe indicator of a latent variable that is explained 
by an inner relation, ub titutive elimination of the latent variable from 
the outer relations gives causal-predictive relations for the indicators in 
terms of the explanatory latent variable of lhe inner relation; the predic­
li e relevance f any cau al-predictive relation of the model can be tested 
by S one-Geisser' te ·t (1974), giving R2 evaluated without Jo . of degrees 
of freedom. Several generalizations f the basic PLS estimation algo-
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Public education administration, Geneva. 



304 

rithm carry over to multidimensional contingency tables, including feed­
backs in the inner relations; hierarchic structure of the latent variables; 
and latent variables in two or more dimensions. 

Our paper has four sections: 

1. PLS soft modeling: an overview of ends and means. 

2. Contingency tables in two dimensions. 

3. Contingency tables in three dimensions. 

4. Further developments. 

Lawrence Kohlberg's classical theory on moral evolution and his rich 
data bank have been restructured by Kurt Bergling (1981) for analysis 
by statistical methods of the ML (Maximum Likelihood) family. Kohl­
berg's data having the form of multidimensional contingency tables, it 
was our study of Bergling (1981) that led to the idea of using PLS instead 
of ML, and thereby to the present paper. To carry over PLS from scalar 
variables to the dichotomous items of multidimensional contingency 
tables is immediate matter, since PLS is distributio11-free. What is new 
in the present paper, relative to PLS as applied to scalar variables, is the 
multiplicative combination of indicator items to form complex indicators 
of second or higher order. The reach and limitation of PLS in lhe ana­
lysis of complex indicators requires further comparative study of PLS 
versus other methods for the analysis of multidimensional contingency 
tables. We have every reason to expect that the following attractive fea­
tures of PLS carry over from the analysis of scalar observables to the ana­
lysis of multidimensional contingency tables: 

* Once the conceptual-theoretical design of the model is specified 
by an "arrow scheme", it is immediate matter to write down the 
formal model and the PLS estimation algorithm. 

* The PLS algorithm is an iterative sequence of OLS (Ordinary Least 
Squares) regressions, and is therefore easy and speedy on the com­
puter: "instant estimation". 

* Hence the PLS approach can cope with quite large and complex 
models, and with massive data banks. For purposes of substantive 
analysis it is often necessary to work with complex models and 
large data banks. 

* The PLS approach provides predictive inference, and the relevance 
of the predictions can be tested by Stone-Geisser's method. 
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In due course we plan to take up applied work with the PLS approach 

to multidimensional contingency tables, with emphasis on substantive 
analysis. It would be false modesty if we did not express the hope that 
the PLS approach will prove useful in the analysis of the classical theories 
and data banks of Jean Piaget and Lawrence Kohlberg. 

1. PLS SOFT MODELING: AN OVERVIEW OF ENDS AND MEANS. 

Soft modeling is primarily intended for multidisciplinary and other 
appljcations where the problems explored are complex and theoretical 
knowledge is scarce. fn this section we shall briefly review the basic 
design of soft modeling with scalar variables. With reference t"o Figure I 
for illustration it will suffice for our purpo e to consider a soft model with 
two blocks of manifest variables. 

1.1 Formal specification of' the model. 

1.1.1 Variables. The model has two blocks of manifest variables 
(MVs), observed over N cases, 

XJ.n , Ykn , Ji = 1 , H ; k = 1 , K ; /1. = 1 , N (1) 

and two latent variables (L Vs), 

~" , ·r,n , II = 1 , N (2) 

In what follows the ranges of the subscripts will usually not be spelled 
out. 

1.1.2 Outer relations. In each block the indicators are assumed to 
be linear in their L V: 

A in factor analysis the multiplicative coefficient. i.1,, it2;- are called the 

loadings of th.e indicator . Both 7ti/• and ~" being u11k11own ome stan­
dardization of scales in necessary to avoid ambiguity in the model, and 
itnilarly for 7t2~ and 'I),,. To achrcve SSU (Standardization for Scale 

Unambiguity) in soft modeling, all LVs are standardized so as to have 
unit variance. Hence in the present case: 
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1.1.3 Inner relations. The present model has one inner relation: 

'l) n = ~O + ~1 ~n + Un (5) 

1.1.4 Substitutive prediction gives Y1cn linearly in terms of ~" : 

Y kn = r:l..1.;o + 1'21.; ~1 ~n + 'l1m (6) 

with location parameters (7a) and residuals (7b), 

(7) 

1.1.5 Comments. 

(i) The MVs are grouped in blocks, which are the structural 
units of the model. 

(ii) In each block the MVs are assumed to be indicators of 
an LV. 

(iii) The grouping of the observables into blocks is instrumen­
tal in reducing the complexity of the model, and so is the 
introduction of LVs. 

(iv) The outer relations between each L V and its indicators, 
and the inner relations between the LVs constitute the 
formal definition of the model. 

(v) The arrow scheme illustrates the inner and outer relations 
by directed arrows. The arrows indicate channels of 
information in the model. 

(vi) All information between the blocks is assumed to be con­
veyed by the L Vs. Accordingly, the residual of any 
outer relation is assumed to be uncorrelated with the LVs 
as well as with the residual of any outer relation in the 
other block. 

(vii) The arrow scheme marks the residual of any inner or 
outer relation by an arrow head; the residuals are not 
illustrated otherwise in the arrow scheme of a soft model. 

1.2 PLS estimation. 

The PLS algorithm proceeds in three stages. 1n the two first stages 
each indicator is measured by the deviations from its mean, giving 

xh = 0 , Y1.; = 0 , h = 1 , H ; k = 1 , K (8) 

The third stage estimates the location parameters of the model. 
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1 N 

Fig. 1. - Arrow scheme for a soft model with two blocks of observables Xft, Xk and 
two latent variables ; , -I) • 

1.2.1. The first sta e of the PLS algorithm performs an explicit 
estimation of the LY each LY being estimated as a weighted aggregate 
of its indicators : 

Xn = est ~n =Ii 2:,. (w11i X1in) ; Yn = est Y/n = !2 ~k (Wzk Y1cn) (9) 

where (8) gives 

x = ~ ~" c wl,. x,.) = o ; (10) 

and J; , / 2 are scalars determined so as to give X,, and Yn unit variance, in 
accordance with (10): 

l },; 2 l ~ 2 N n (X,.) = l, N "-'n (Yn) = 1 (11) 

The weights w111 , w2.<: are determined by the weight relations: 

(12) 

In the first stage the PLS is iterative, alternating between (9) and 
(12), using the starting values: 

11111 = 11'21 = 1 and w1,, = w2k = 0 for h = 2, H; le= 2, K (13) 

For two-block, two-L V models the ilerative procedure co1werges al­
most certainly (unit probability); cf. Lyttkens Areskoug and Wold (1975). 

1.2.2 Tlte seco11d st<tge of the PLS algorithm estimates the inn.er and 
outer relation by corre ponding OLS regres ions, using the L Vs estimalecl 
in the fu'st stage. 

Outer relations: 

(14) 
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Inner relation: 

(15) 

Substitutive prediction of the indicators yk,. in terms of X,. : 

Ykn = P2t bi x,. -+ v,.,, ; Vkn = e2,. -+ P2k Un (16) 

Substitutive prediction of the indicators Ylcn in terms of the indica­

tors xh" : 

(17) 

1.2.3 The third stage of the PLS algorithm, cancelling the standar­
dization (8) to zero means, estimates the location parameters of the LVs 
and the relations. This is immediate matter, as always in OLS regres­
sions. Thus for (9b), (14b), (15) and (16a) the location parameters are 

(18) 

(19) 

1.3 Testing for predictive relevance. 

Using Stone-Geisser's test, Wold (1982) explains the procedure in 
detail for the outer and inner relations. Let us briefly restate the proce­
dure for the inner relation (15). 

The LVs are regarded as directly observed by their estimates X,., 
Y,. ; the test proceeds in G rounds, having chosen for G an integer in the 
range 10 < G < 15 ; in the g11• round (g = l, G) the LVs 

are removed from the data; we predict the removed LVs by 

pred Yu+rG = b2, + bz1 Xu+,.a ; r = 0 , 1 , 2 , .. ·. 

and form the sum of squares of the prediction errors, 

S S(g) = ~r. (Y0•1.,.a - pred Y0+ra)
2 

; 

comparing with the trivial predictions 

triv pred Y0 +,.a = N 
1 

1 
~n*o+ra (Y,.) 

(20) 

(21) 

(22) 

(23) 



and the corresponding square sum of errors, 

triv s s<u) = L., (Yy t- rG - triv pred Yu+ra)2 

we obtain Stone-Geisser's ttst criterion: 
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(24) 

(25) 

If the inner relation has predictive relevance, Q2 > 0 . Lack of pre­
dictive relevance is revealed by Q2 < 0 . In bordering cases, Q2 ,...., 0 , 
the decision is uncertain. 

2. CONTINGENCY TABLES IN TWO DIMENSIONS. 

We shall now set forth the PLS approach to contingency tables, be­
ginning with the special case of tables with two margins. Later in this 
section we shall give numerical examples, and adduce some comments . 

2. l Notation and statistical hypotheses. 

2.1.l Manifest and latent variables. With reference to Figure 2 for 
illuslration, let ~ denote a contingency table with H rows and K columns. 
D.1,k denotes the ab 'olute frequency of the h th characteristic of the first 
qualitative variable, and the k th of the second. Let N denote the total 
number of observations (cases): 

II J( 

N=- ~ ~ ~"" . (26) 
h=I k= I 

Each of the N observations takes the form of two column vectors: 

X1 ' Xz (27) 
HXI 1'Xl 

ln each vector all entries are zero except for a unit entry at the row 
that indicates the characteristic of the observation. For example, if an 
observation shows the third characteristic of x1 and the second of x2 , 

the vectors (27) when transformed to row vectors will read: 

x{ = II X111 II = (0 0 1 0 0 ... 0) ' h = 1 ' H ; Xz = II X2t II = (0 1 0 0 ... 0) ' k = I ' K (28) 

where the prime ( ' ) denotes transposition. 
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2.1.2 The arrow scheme. Again with reference to Figure 2, the arrow 
scheme constitutes the conceptual-theoretical model. In the present 
case the model has two L Vs: 

~1,. , ~211 n = l , N (29) 

The two margins in Figure 2 correspond to the two blocks of indi­
cators in Figure 1. Hence the PLS analysis of the arrow scheme in Fi­
gure 1 carries over directly to the arrow scheme in Figure 2. 

2.1.3 Outer relaNons. In the basic design of PLS soft modeling the 
outer relations are assumed to be linear, in the present case: 

Xjkn = TCjko + TCJk ~i" + f-fkl•, j = 1 , 2 ; k = 1 , Ki ; 11 = 1 , N (30) 

where K1 = H ; K 2 = K. 
The outer relations are subject to predictor specification: 

E (xj1, I ~i) = 1tjko + 7tik ~1 j = 1 , 2 (31) 

The predictor specification implies the corollaries (32 a-b); in words: 

* Each residual has conditional expectation zero; 

** Each residual 1s uncorrelated with the L V; 

E (:::i" I ~i) = 0, r (ei'" q = 0, j = 1 , 2 ; k = 1 , Ki (32) 

Fig. 2. - Arrow scheme for PLS modeling of a contingency table with two margins. 
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To achieve SSU in the outer relations (30), cf. (4), the scales of the 
L Vs are standardized to give the L Vs unit variance: 

var ~i = 1 , j = 1 , 2 (33) 

To repeat from 1.1.5 (vi), it is a fundamental principle in soft mode­
ling that the information between the blocks, and the ensuing causal­
predictive inference, is conveyed by the LVs. Accordingly, it is assumed 
that the LVs in general are intercorrelated, in the present case say 

whereas the residuals of any block are assumed to be uncorrelated with 
the residuals and the LV of the other block; that is, 

Here, the residuals are mutually correlated within the blocks because 
Ki 

of the restriction ~ xikn = 1 , for all j and n, cf. eq. (28). This gives 
k= l 

Eq. (35) does not interfere with PLS estimation algorithm but is of 
relevance of the dimensionality of the LVs; cf. Apel and Wold (1982). 

2.1.4 Inner relation. The present model has one inner relation, and 
this is assumed to be linear, 

~2n = ~o + ~1 ~in + u,. (36) 

and 1s subject to predictor specification, 

(37) 

2.1.5 Substitutive prediction. Eliminating ~2 from (30b) by means 
of (36) we obtain x2k linearly in terms of ~1 : 

(38) 

where 

(39) 
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2.2 PLS estimauon. 

Introducing the matrices Z1 , Z2 by 

(40) 

we obtain 

~ = Zl. Z 2 (41) 

The two first stages of PLS algorithm work with indicators, say x;,. , 
x2", that are standardized to zero mean, giving 

h=l,H; k=l,K 

The standardized indicators take the form 

xt = H Z1 , 
NxlI 

where H is the idempotent matrix defined by 

H = [JN -- N-1 L,y L~,] , (H = H 2
) 

(42) 

(43) 

(44) 

writing /,y for the unity matrix, and LN for a (N X 1) column vector 
of units. 

2.2.1 First stage of the PI.S estimation procedure. The LVs ~1 , ~2 
are estimated by weighted aggregates of their indica1ors, say X111 , X 2,.. 

Denoting the weights by 

wi = (l1'n, ... , wIH), w2 = (w21 , ... , Wzx) (45) 

the estimated LY s take the form 

X1 =est ~1 = J; H Z1 w1 ; X2 =est ~2 = f 2 H Z2 w2 (46) 

where J; , f 2 are scalars that standardize X1 and X 2 to unit variance, 

I' ( I I Hz )- 1/2 
Ji = wi zi j wi ' i = l, 2 (47) 

The weight relations given by 

(48) 
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serve to determine the weights. We can write (48) in a more compact 
form: 

(49) 

where 

D1 = (d11 , .•• , dw) ; D2 = (d21 , ••• , d21,) (50) 
N x ll Nx K 

* The first stage i iterative, say with teps s = 1 , 2, ... , and al­
ternates in each tep between (46) and (49). Jn the start, s = 1 , there 
is an almo t free choice of the weights, say wi = w2 = (I 0, 0 ... , 0) . 
Having obtained the weights for steps, (46) gives X1 and X2 in steps · then 
the imple OLS regressions (49) give the weight for step s + I . The 
procedure continues until the weight. stop changing between two tep 
according to omc tandard. criterion. 

2.2.2 Seco11d stage of tlie PLS es1i111otion procedure. U ing the 
LVs e timated in tbe fi.r t tage, the outer and inner relations are estimated 
by corresponding OLS regressions. Theoretical and estimated parameter 
and residuals are denoted by corre ponding Greek an I Roman letter . 

Outer relations, cf. eq. (30): 

(51) 

The loading!> p1,, p2k measure the relations between an LY and its 
indicators, and are thereby analogous to the loading of cla sical factor 
analy is. The PLS loadings are imple OLS regrc sion coefficient 

where 

(53) 

and similarly for p2,, . - We ec that the variou entries of the contingency 
table are not needed: the margins are sufficient. 

Inner relation, cf. eq. (36): 

The inner parameter b1 is equal to the correlation of Xi and X2 : 

b1 = r (Xi , X 2) 

(54) 

Nb1 = X{ X2 = wi Z1 H Z 2 w2 = wi [~ - ~1 ~2 N-11 w2 (55) 
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where 

(56) 

Substitutive prediction. The causal-predictive relations (6) - (7) carry 
over to contingency tables; to spell out the counterpart to (16): 

(57) 

2.2.3 The third stage of the PLS algorithm estimates the location 
parameters. 

Formulas (18) - (19) carry over; for example, the location parameters 
of X 2 and the outer relation (51 b) are given by 

2.3 Numerical illustrations. 

We shall briefly present and then discuss three simple examples of 
twodimerisional contingency tables. In all three examples the arrow 
scheme is of the same type as in Figure 2. A programme witten by Jan­
Bernd Lohmoller was used for all the following numerical examples. 

2.3.1 Example 1: See Table 1. This artificial example gives a one­
to-one correspondence between the rows and columns of a diagonal con­
tingency table. 

TABLE I 

PLS ANALYSIS OF DIAGONAL CONTINGENCY TABLES WITH TWO MARGINS 

DATA 

2 0 0 2 

0 4 0 4 

0 0 6 6 

2 4 6 12 

PLS estimates 

Block 

row 

column 

I Variable 

row J 

row 2 
row 3 

column 1 

column 2 

column 3 

I Weicht I Loading 

- .1 553 - .0630 

- 1.0243 - .4156 

1.1796 .4786 

- .1552 - .0629 

- 1.0244 - .4156 

1.1796 .4786 
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Since the table is diagonal, the PLS loadings are proportional to the 
PLS weights; b1 = r (X1 , X2) = 1.; and R2 = 1 for the inner relation. 

2.3.2 Example 2: A 3 X 2 contingency table; see Table 2. 
In, thi contingency able the first row is independent of the other 

one in the sense that it is proportional to the row margin. As a conse­
quence the corresponding weight is zero w11 = 0. 

TABLE 2 

PLS ANALYSIS OF A 3 X 2 CONTINGENCY TABLE 

PLS estimates 

DATA 
Block I Variable I Weight 

2 4 6 row row 1 .0000 

1 3 4 row 2 - 1.3172 

5 9 14 row 3 I. 3172 

8 16 24 column column 1 - 1.0607 

column 2 1. 0607 

The correlation between the two LVs is very low, 

r (X1 , X 2) = b1 = - . 078 

I Loading 

- . 1372 

- . 3110 

.4482 

- .4714 

.4714 

which shows that the two block of indicators are almost independent, 
and that the R2 of the inner relation i very small, R2 = .006. 

2.3.3 Example 3. A 2 X 2 contingency table based on real-world 
data; see Table 3. 

TABLE 3 

PLS ANALYSIS OF A 2 X 2 CONTINGENCY TABLE; DATA FROM STOUFFER ET AL. (1949) 

PLS estimates 

DATA 
Preference 

Block I Variable Weight I Loading (code) 

N s 

present N 1 18 6 24 

location S 22 33 55 

present North - 1 . 0872 - . 4599 

location South 1.0872 ,4599 

preference North - 1.0001 - .5000 
40 39 79 South 1.0001 .5000 

b1 = r (X1 , X2) = .322; R 2 = .1037 

21 
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This example draws from extensive data collected by Stouffer et al. 
(1949), and analyzed by many researchers. Our simple 2 X 2 table is 
a cross classification of the present location of the soldiers (North, South) 
and their preference as to camp location (North, South); the unit is 1,000 
soldiers. 

In the vertical margin we see that South dominates the present lo­
cation, whereas the horizontal margin shows that North and South ba­
lance in the preferred location. The degree of similarity between present 
and preferred location is measured by r (X1 , X2) = b1 = . 32 . 

2.4 Comments. 

(i) Model build ing with latent variabJ s, and thei r explicit PLS esti­
mation are key features in ofl modeling with calar variables, and 

are novel feature in the analy .is of muldidimensional contingenc}' 
tables. 

(ii) The inner and outer relations (3) - (5) and the ubstitutive predic­
tions (6) - (7) of a oft model with scalar variable carry over to the PLS 
approa h to multidimensional contingency tables, where they c nstitute 
novel modes of inference. 

(iii) The explicit PLS estimation of the latent variables of a soft model 
i deliberately approximate. The limiting PLS timate of the latent 
variables ar i11con istent (biased in tit large- ample sense) and so ai:e 

tbc en uing PLS parameter estimates of inner and outer relations and 
of substitutive prediction. 

(iv) Th PLS e rimates of latent variables and parameters arc c n­
istenl at large· tl1at i ' wilh inc[easing numbers or indicators for each 

latent variable the estimate wi ll under general condition of regularity 
tend to be consistent. 

v) or lhe estimation f soft model with two latent variables the 
iterative PLS estimation of the latent variable · will aim st certainly c 11-

verge (unit prnbability), and be invariant to tbe choice of starti ng value-; 
cf. 2.2.l'''. 

(vi) Than s to the explicit e timation of the latent variables, no iden­
tification problems arise in PLS soft modeling. 

(vi i) The zero correlation assumptions (35) imply that each latent 
variable has just one dimension. Whether or not the assumptions (35) 
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are fulfilled, the PLS estimation algorithm will give the first dimension 
of each latent variable. 

(vii) Jn PLS soft modeling with scalar variables the investigator has 
the option to choose between two types of weight relations, called Mode 
A and Mode B. The weight relations (12) and (38) are Mode A; the 
PLS approach to multidimensional contingency tables Mode B is not 
applied here. 

(ix) In the PLS approach to multidimensional contingency tables 
several features emerge that in general do not carry over to PLS soft mo­
deling with scalar variables. Among those: 

(59) 

in words: the weights of any latent variable sum up to zero, and the same 
for the loadings. For illustrations, see Tables 1-3, and Tables 5-6 in Sec­

tion 3. 

(x) In the present paper there are several loose ends to tie up. For 
one thing, we have carried through only the first two stages of the PLS 
estimation procedure; that is, we have ignored all location parameters. 

3. CONTINGENCY TARLES lN THREE DIMENSIONS. 

The PLS analysis of contingency tables with more than two dimen­
sions is in line with what we have seen in Sn. 2, and is a straightforward 
adaptation of corresponding soft models with scalar variables. The more 
dimensions in the contingency table, the more numerous are the available 
designs of the arrow scheme. 

3.1 Data and arrow schemes. Table 4 shows a three-dimensional 
contingency table that draws from Stouffer et al. (1949) to add a third 
dimension in the table analyzed in Example 3. 

Figure 3 shows two arrow schemes, called Models A and B, that we 
shall use in the PLS analysis of Table 4. Jn Model A the indicators x10 , 

x211 in two margin · define ~1 and ~2 , two L Vs that are a sumed lo influence 
the LY 3 that has it in.dicators Xa1.· in the third margin. .In Model 13 we 
take a counl of lhe possible interaction between the indicators. Xw and x21, 

thereby defining a latent variable, denoted ~12 which joins ~J and ~2 in 
influencing ~3 . As applied to the data in Table 4, preference for camp 

2.1 • 
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TADLE 4 

Origin Present location 
Origin x present Preference location 

North j South North I South code I freq. North I South 

* * NN 15 13 2 

* * NS 26 18 8 

* * SN 9 5 4 

* • SS 31 5 26 

41 I 40 l 24 I 57 I I I 41 I 40 I 81 I 

(8) 

(A) 

Fig. 3 A-B. - Two models for PLS analysis of a three-dimensional contingency table. 
A: The indicators of each margin define n latent variable; the two first 
latent variables, ~1 and ~. , influence the third ~a . - U: The interaction 
between indicators x19 and x,,, define a latent variable, denoted !;12 , which 
joins ;, and ;, in influencing ~ •. 
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localion is our predicted LY ~3 , while origin and present location are our 
explanatory LVs ~1 and ~2 • 

3.2 PLS Models A and B applied to Table 4. 

The ensuing PLS estimates are shown in Tables 5 and 6. 
All through lhe LY are estimated by weighted aggregates of type 

(46). As to the first stage of the PLS algorithm we spell out the weight 
relations for Model B: 

H Z1 = X3 w{ + D1 

H Z 2 = X3 w2 + D2 (60) 

H Z3 = (sa,1 X1 + sa,2 X 2 + S3, 12 X12) w:l + D3 

where s3 ,< i + I or - 1 according as r (X3 , Xe) is positive or negative. 
All outer relations take the form (51). For Model B the inner re­

lation reads: 

~3 = ~Jfl + ~31 ~1 + ~32 ~2 + ~3,12 ~12 + U3 (61) 

The inner relation for Model A is obtained by omitting the term 

r~a. 12 ~12. 
As always in PLS soft modeling the LVs are standardized to unit 

variance.; hence the structural parameters of Models A and B can be rea­
dily compared. In both models the present location has less influence 

latent variables, 
inner rela1iom 

origin - .468 

--> preference 
present 

- 244 
location · 

TABLE 5 

PLS ANALYSIS OF MODEL A 

' Block I Varinblo j Weight I Loading (code) 

origin North 1. 0001 .5000 

South - 1.0001 - .5000 

present North 1. 0950 .4566 

location South - 1.0950 - .4566 

preference North 1.0001 .5000 

South - 1.0001 - .5000 

R" = .314; r(X1 ,X~)= .154; r(X1 ,X3)= .506; 
r (X2 , X3) = .306 
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latent variables, 
inner relations 

origin 

present 

location 

- .208 

1 .148 
---> preference 

inleraction - . 307 

origin 

present location 

interaction 

preference 

Origin 

1 . 000 

TABLE 6 

PLS ANALYSIS OF MODEL B 

Block j Variable 
(codtE_) I Weight I Loading 

origin North 1. 0001 . 5000 

South - 1.0001 - . 5000 

present North 1. 0950 . 4566 

location South - 1.0950 - . 4566 

interaction NN .7326 . 1730 

NS .6556 . 2751 

SN .0602 . 0291 

SS - 1.4484 - . 4772 

preference North 1.0001 .5000 

South - 1. 0001 - . 5000 

R" = .324 

Correlations of la tent variables 

I Present I Interaction I Preference location 

.154 .896 .506 

1.000 .443 . 316 

1.000 .559 

1. 000 

on camp location than the soldier's ongm. Model B shows that the 
interaction effect of origin and present location (. 307) is even more impor­
tant than the two separate effects (. 208 and . 148). 

We clearly see in the data that present location has r latively . mall 
effect for oldiers who. e region or origin i North whi le it ha ub tantial 
influence for soldiers from the South. In the ame vein most of the sol­
diers with origin in the North still prefer North when they are in the South, 
but soldiers originating from the South often prefer the North when they 
are located there. That is, interaction of origin and present location 
must not be neglected in the analysis. 



32 l 

3.3 Validation of the model. 

3.3.1 The Stone-Geisser test was mentioned in the Introduction as 
a general test for predictive relevance in PLS soft modeling. We shall 
now present a specific validation technique for PLS analysis of contin­
gency tables which uses the Substitutive prediction (57) for direct confron­
tation of model v.s . data. The classical validation methods usually per­
form a comparison of two tables : one is the original data table (in the 

present case Li) , while the other is an approximation of t1 (denoted ~), 
which is constructed from the model and its hypotheses. The differences 
between the two tables are evaluated by some overall criterion, for exam­
ple the Chi-square test. 

3.3.2 To repeat, the PLS approach is prediction-oriented. By our 
Model A we try to predict prefecence for camp location by means of origin 
and present location. As specified in Table 7 these two explanatory va­
riables determine four rows where the model must allocate and separate 
soldiers with preference for North vs. South. 

Starting from raw data on (Z1 , Z 2 , Z3), the table Li is computed by 
summing rows of Z3 that correspond to the observations inside the cell ; 
the allocation of an observation to a cell depends on information con­

tained in Z1 and Z2 • The proxy table 3. will be computed in the same 

way; therefore we must first approximate Z3 by Z3 • This can easily be 
done by means of the outer and inner relations. 

TABLE 7 

NOTATION FOR CELL l'REQUENCIES IN PR EDICTIVE VALIDATION OF M ODEL A 

Explanatory variables Predicted variables 

Code Frequencies Observed frequencies Estimated frequencies 

l Present Origin Preferen ce Preference 
Origin location x 

I I present loc. North South North South 

A "' N N "11 . 11111 11112 n1u nu~ 
A A 

N s Ilg , 111:?.1 11122 11121 11 12~ 
A A s N 1121. 11:!.ll fl212 11211 11212 
A A s s 1122 . 11221 11222 11221 nzz2 

-
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The problem before us belongs under Substitutive prediction, namely 
to estimate Z3 in terms of X1 and X2 ; cf. (38) and (57). The outer and 
inner relations for the third L V of Model A are: 

H Z 3 = X3 p~ + e3 

Xa = ba1 X1 + baz X 2 + Ua 

(62a) 

(62b) 

Using Z3 instead of H Z3 by taking account of the location parameter, 
we obtain 

(63) 

where 

.6.3 = Z:l LN (64) 

Now for X3 in (63) we substitute its prediction from (62b); that is: 

Xa = ba1 Xi + baz Xz (65) 

which gives, denoting predicted Z 3 by Z3 

Za = (ba1 Xi + ba2 Xz) p3 + L,v N-
1 

.6.3 . (66) 

Recalling that X1 and X2 are aggregates of Z1 and Z 2 , respectively, 

eq. (66) implies that Z3 is a function of Z1 and Z 2 • 

Note that Z3 fulfils two important constraints of Z3 , namely: 
A 

Z3 £ 2 = LN, Za L2 =LN (67) 
A 

L;v Z3 = .6.3 , L,;, Z3 = .6.3 (68) 

Hence: 
A 

L~v Z 3 L 2 = N, L,;, Z3 L2 = N (69) 

"' "' Eqs. (67) - (69) are interesting in that when computing .6. from Z 3 

we are sure that the summations over each row and column of ~ will give 
the same sums as for .6. • 

3.3.3 Numerical example. PLS estimation of Model A has given 
the following results: 

X3 = .468 X1 + .244 X2 + Ua (70) 

H Za = X3 p3 + e3 , with pfi = (- .5000, + .5000) (71) 

H z3 = (. 468 x1 + . 244 x2) p3 (72) 
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The ensuing comparison of observed and estimated cell frequencies 
is set forth in Table 8. 

TABLE 8 

PREDICTIVE VALIDATION OF MODEL A: NUMERICAL RESULTS 

Explanatory variables Predicted variable 

Code FreQuencies Observed frequencies Estimated frequencies 

I Present Origin location 

N N 

N s 
s N 

s s 

4. DISCl.'SSION. 

Origin Preference 
x 

present loc. North I South 

15 

26 

9 

31 

Sums: 

13 

18 

5 

5 

2 

8 

4 

26 

nyh2 

40 

Preference 

North I South 

13.8810 1.1190 

17.1132 8.8868 

4.1166 4 . 8834 

5.8962 25.1038 

" llgh.l 

41.0060 39.9930 

4.1 With reference Lo lhe correspondence analysis of twodimen ional 
contingency tables introduced by .Benzecri (1973), it will be noted that 
predictive inference is a common denominator of corre pondence ana lysi 
and the PLS approach l.o co.ntingen.cy tables. 

Let D.1,L. an H X K contingency table with population data on origin 
(h = I , H ) versus prefened location (k = I, K). Benzecri transform. 
the data by 

(73) 

and computes the first principal component of !::..!.", giving 

(74) 

where p,, denote the loadings, and X,. the component scores. Thus (74) 

predicts !:::..,';" by /hi X" , with prediction error e1," • 

The first principal component is a special case of the PLS algorithm; 
cf. Wold (1966, 1982). In the PLS approach the first principal component 
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is conceived of a the estimate of a latenL variable. From Lhis point of 
iew (74) is a prediction formula for the entries of a twodimeu ional con­

tingency table, whereas Su. 2 of the pre.ent paper gives prediction for­
mulas in terms of two latent variables. 

4.2 The basic design of the PLS algorithm provides estimation ol' 
path models with latent variables and covers any de ign of the path of 
the (iuner) relations between the latent variables. A applie I to multi­
dimensional contingency tables the iuvestigator can choose between a 
variety of designs fo1· the inner relations. The model in Figure 3A ha 
the subsequent path (a) with ju t one inner relations, whereas the pa.tbs (b) 

and (c) have two inner relations. 
Combining the marginal indicators to form complex latent variables 

there is a rapid increase in the number of available designs, among those 

Figure 38 and many more, such as: 

4.3 The ba ic design of PLS soft modeling ha b en genera lized in 
several re peels, which give opportun ities for corre ponding develop­
ment of the mode ls in Sn. 4.2, incl uding: hierarchic tructure of the latent 
variabk Wold (1982) · latent variable in two or more dimension, Apel 
and Wold (1982); and multi way observation of !he in dicator , Lohmoller 
(1981), Lohmoller and Wol.d (1980). 

Clearl y, the P S approach to mul tidimensional contingency tables 
bristles with novel model ' to explore, to app ly, and to compare with other 
approaches. 
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RESUME 

L~ idees d6veloppees dan ce tcxtc "inspirent de l'approche de modclcs ii 
variables latentes par Les moindre carre partiel · (.l?LS) dite plus simplemenL «mo­
delisation soup le» (soft modeling), (Wold 1975, J977 I 979, I 980, 1981). 

Ce travail rnontre que la dernarche suivie dans cetlc modelisation s adapte facile­
menL a !'analyse de variables tlichotomiqucs formant unc table de contingc1we mul­
tiple. Le modele definit une (ou. pl11sieurs) variable laten(e pour chacune des margcs 
du tableau de contingence. Le variables ob ervl:cs s'interpretent comme des indica­
teurs dicllolomiqlles de la variable latcnte correspondante el chaquc variable latente 
sera d'ailleurs estimee comme un agreg l de scs indicateurs. 

Le mod,elc e t bati ur des relations extcrnes (outer relations) qui Jient chaquc 
variable latcnle a es indicateurs ainsi quc m· d,c. relations interncs (inner relatioru 
qui rncttenl en rappor. t !es var.iables latentes. Ces relations intcrncs ct cxlcmes jouent 
un role que l'on pcut qualifier de causal-predictif. En effet dans le cas des indica­
tcll[s d'une variable latente clle-memc explfquee par d'autre variables latentcs, de. 
substitutions simples permettent d'obtcnir. des relation lianl !es indicateurs aux va­
riables latcntcs explicatives de la re lation .interne. La qualitc predictive du model 
p ut ctre testce au moyen d un test (Stone et Geisser) qui fournit des R1 sans perte 
de degr6 de liberte. 

Plusieurs generalisations se laissent envisager: effets de feed-back, strncture hierar­
chique des variables latentes ainsi que la multidimensionnalit-e de celles-ci. 


