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HERMAN WOLD (*) and JEAN-LUC BERTHOLET (**)

The PLS (Partial Least Squares) Approach to
Multidimensional Contingency Tables

Contents: 0, Introduction. — 1. PLS soft modeling: an overview of ¢nds and means.
— 2. Contingency tables in two dimensions. — 3. Contingency tables in three
dimensions. — 4. Discussion. Acknowledgements. References. Resumé.

0. INTRODUCTION.

Background reference is made to the PLS approach to path models
with latent variables, briefly called “‘soft modeling™; Wold (1975, 1977,
1979, 1980, 1982). The present paper shows that the basic design for PLS
estimation of soft models allows straightforward adaptation to the ana-
lysis of the dichotomous items of multidimensional contingency tables.
The ensuing model defines one or more latent variables for each margin
ol the contingency table; the observed items are interpreted as indicators
of the corresponding latent variables; each latent variable is estimated
explicitly as a weighted aggregate of its indicators; the model has “‘outer
relations” between each latent variable and its indicators, and ‘‘inner
relations” between the latent variables; the inner and outer relations are
causal-predictive; for the indicators of a latent variable that is explained
by an inner relation, substitutive elimination of the latent variable from
the outer relations gives causal-predictive relations for the indicators in
terms of the explanatory latent variables of the inner relation; the predic-
tive relevance of any causal-predictive relation of the model can be tested
by Stone-Geisser's test (1974), giving R* evaluated without loss of degrees
of freedom. Several generalizations of the basic PLS estimation algo-

(*) Statistics Dept., University of Uppsala, and Econometrics Dept., Univ. of
Geneva.

(**) Econometrics Dept., University of Geneva, and Sociological research service,
Public education administration, Geneva.
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rithm carry over to multidimensional contingency tables, including feed-
backs in the inner relations; hierarchic structure of the latent variables;
and lafent variables in two or more dimensions.

Our paper has four sections:

PLS soft modeling: an overview of ends and means.
Contingency tables in two dimensions.
Contingency tables in three dimensions.

N

Further developments.

Lawrence Kohlberg’s classical theory on moral evolution and his rich
data bank have been restructured by Kurt Bergling (1981) for analysis
by statistical methods of the ML (Maximum Likelihood) family. Kohl-
berg’s data having the form of multidimensional contingency tables, it
was our study of Bergling (1981) that led to the idea of using PLS instead
of ML, and thereby to the present paper. To carry over PLS from scalar
variables to the dichotomous items of multidimensional contingency
tables is immediate matter, since PLS is distribution-free. What is new
in the present paper, relative to PLS as applied to scalar variables, is the
multiplicative combination of indicator items to form complex indicators
of second or higher order. The reach and limitation of PLS in the ana-
lysis of complex indicators requires further comparative study of PLS
versus other methods for the analysis of multidimensional contingency
tables. We have every reason to expect that the following attractive fea-
tures of PLS carry over from the analysis of scalar observables to the ana-
lysis of multidimensional contingency tables:

* Once the conceptual-theoretical design of the model is specified
by an “‘arrow scheme’, it is immediate matter to write down the
formal model and the PLS estimation algorithm.

* The PLS algorithm is an iterative sequence of OLS (Ordinary Least
Squares) regressions, and is therefore easy and speedy on the com-
puter: ‘“‘instant estimation’.

* Hence the PLS approach can cope with quite large and complex
models, and with massive data banks. For purposes of substantive
analysis it is often necessary to work with complex models and
large data banks.

* The PLS approach provides predictive inference, and the relevance
of the predictions can be tested by Stone-Geisser’s method.
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In due course we plan to take up applied work with the PLS approach
to multidimensional contingency tables, with emphasis on substantive
analysis. It would be false modesty if we did not express the hope that
the PLS approach will prove useful in the analysis of the classical theories
and data banks of Jean Piaget and Lawrence Kohlberg.

1. PLS SOFT MODELING: AN OVERVIEW OF ENDS AND MEANS.

Soft modeling is primarily intended for multidisciplinary and other
applications where the problems explored are complex and theoretical
knowledge is scarce. In this section we shall briefly review the basic
design of soft modeling with scalar variables. With reference to Figure |
for illustration it will suffice for our purpose to consider a soft model with
two blocks of manifest variables.

1.1 Formal specification of the model.

1.1.1 Variables. The model has two blocks of manifest variables
(MVs), observed over N cases,

XinsVin, h=1,H; k=1,K; n=1,N )
and two latent variables (LVs),
by B, n=1,N @

In what follows the ranges of the subscripts will usually not be spelled
out.

1.1.2 Outer relations. In each block the indicators are assumed to
be linear in their LV:

X = Toho + Th ‘in "‘!‘ St 3 Vien = T2ko '{_ Ty Nn ‘;" €2kn (3)

As in factor analysis the multiplicative coefficients vy, my, are called the
loadings of the indicators. Both =y, and £, being unknown, some stan-
dardization of scales in necessary to avoid ambiguity in the model, and
similarly for 7, and 7,. To achicve SSU (Standardization for Scale
Unambiguity) in soft modeling, all LVs are standardized so as to have
unit variance. Hence in the present case:

var§=E@E) —[E@F =1; varn =EM)—[E@PF=1 (4
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1.1.3 Inner relations. The present model has one inner relation:

=B+ B & + Un (5
1.1.4 Substitutive prediction gives y,, linearly in terms of &, :
Vin = Gpo 1 Togy Bl Er + Vi (6)

with location parameters (7a) and residuals (7b),
Opo = Togpo 1 o Bo s Vim = Ezpy + Ty Up (7)
1.1.5 Comments.

(i) The MVs are grouped in blocks, which are the structural
units of the model.

(i) In each block the MVs are assumed to be indicators of
an LV,

(iif) The grouping of the observables into blocks is instrumen-
tal in reducing the complexity of the model, and so is the
introduction of LVs.

(iv) The outer relations between each LV and its indicators,
and the inner relations between the LVs constitute the
formal definition of the model.

(v) The arrow scheme illustrates the inner and outer relations
by directed arrows. The arrows indicate channels of
information in the model.

(vi) All information between the blocks is assumed to be con-
veyed by the LVs. Accordingly, the residual of any
outer relation is assumed to be uncorrelated with the LVs
as well as with the residual of any outer relation in the
other block.

(vii) The arrow scheme marks the residual of any inner or
outer relation by an arrow head; the residuals are not
illustrated otherwise in the arrow scheme of a soft model.

1.2 PLS estimation.

The PLS algorithm proceeds in three stages. In the two first stages
each indicator is measured by the deviations from its mean, giving

=0, y3,=0, h=1,H; k=1,K @

The third stage estimates the location parameters of the model.
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Fig. 1. — Arrow scheme for a soft model with two blocks of observables x;,, x; and
two latent variables %, 4.

1.2.1. The first stage of the PLS algorithm performs an explicit
estimation of the LVs, each LV being estimated as a weighted aggregate
of its indicators:

X, =est&, = f1 2 (W Xi) 3 Yo = est 1 = fo 2, (Wap, Vin) )

where (8) gives

X = LAl, Siwpx)=0; Y= f;? 3, (W, ) =0 10)

and fj, f; are scalars determined so as to give X, and Y, unit variance, in
accordance with (10):

1 2 1 By
’IVE,L(X”)—I, TV-‘En (Yn)—l (11)

The weights wy, , ws, are determined by the weight relations:
Xin = Wi Yu + it s Yin = Wy Xu + dopy (12)

In the first stage the PLS is iterative, alternating between (9) and
(12), using the starting values:

Wy =1y =1 and wyp=1wy =0 for h=2,H; k=2,K (13)

For two-block, two-LV models the iterative procedure converges al-
most certainly (unit probability); cf. Lyttkens, Areskoug and Wold (1975).

1.2.2 The second stage of the PLS algorithm estimates the inner and
outer relations by corresponding OLS regressions, using the LVs estimated
in the first stage.

Quter relations:

Xin =P Xn 4 €5 Yin = Doy Yo - € (14)



3os

Inner relation:
Yn = b1 )(n -+ Un (15)
Substitutive prediction of the indicators y,, in terms of X, :
ylm = ka bl Xn _|" Vin 5 Vin = ezn + sz Un (16)

Substitutive prediction of the indicators y;, in terms of the indica-
tors Xxp, :

Yin = Pgy; blfl E’h (wlh th) + Vin (17)

1.2.3 The third stage of the PLS algorithm, cancelling the standar-
dization (8) to zero means, estimates the location parameters of the LVs
and the relations. This is immediate matter, as always in OLS regres-
sions. Thus for (9b), (14b), (15) and (16a) the location parameters are

Y = /s zk (way, }L) s Poro = )_’/.-, —po ¥ (18)

o

0= 17, b]_ Y; Ao = P20 + Par bU o (19)

1.3 Testing for predictive relevance.

Using Stone-Geisser’s test, Wold (1982) explains the procedure in
detail for the outer and inner relations. Let us briefly restate the proce-
dure for the inner relation (15).

The LVs are regarded as directly observed by their estimates X,
Y, ; the test proceeds in G rounds, having chosen for G an integer in the
range 10 < G <15; in the g round (g =1, G) the LVs

Yo, Yoies Yyuoas - - - 20)
are removed from the data; we predict the removed LVs by
pred Y,i.0 = by + b2yt Xyyvg; r=20,1,2,... @1
and form the sum of squares of the prediction errors,
S8P = %, (Yyire— pred Ypi0) ; 22
comparing with the trivial predictions

1

triv pl‘ed Yy+7'6 = N:_l

2n=&=g+r.(} (Yn) (23)
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and the corresponding square sum of errors,
triv S 89 = %, (¥, .0 — triv pred Y,,.9)° (29
we obtain Stone-Geisser’s test criterion:
Q*=1—3,(S859 3, (triv S $9) . (25)

If the inner relation has predictive relevance, Q% > 0. Lack of pre-
dictive relevance is revealed by Q% << 0. In bordering cases, Q% ~ 0,
the decision is uncertain.

2. CONTINGENCY TABLES IN TWO DIMENSIONS.

We shall now set forth the PLS approach to contingency tables, be-
ginning with the special case of tables with two margins. Later in this
section we shall give numerical examples, and adduce some comments.

2.1 Notation and statistical hypotheses.

2.1.1 Manifest and latent variables. With reference to Figure 2 for
illustration, let A denote a contingency table with H rows and K columns.
A;, denotes the absolute frequency of the /#th characteristic of the first
qualitative variable, and the kth of the second. Let N denote the total
number of observations (cases):

74 I
N B I Aus (26)

h=1 k=1

Each of the N observations takes the form ot two column vectors:
X v Xy 27

X1 Ax1

In each vector all entries are zero except for a unit entry at the row
that indicates the characteristic of the observation. For example, if an
observation shows the third characteristic of x; and the second of x,,
the vectors (27) when transformed to row vectors will read:

x{ = |xu| =(00100...0),h=1,H; xj=|xy]=(0100...0),k=1,K (28)

where the prime (') denotes transposition.
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2.1.2 The arrow scheme, Again with reference to Figure 2, the arrow
scheme constitutes the conceptual-theoretical model. In the present
case the model has two LVs:

Eln, azn n=1,N (29)
The two margins in Figure 2 correspond to the two blocks of indi-

cators in Figure 1. Hence the PLS analysis of the arrow scheme in Fi-
gure 1 carries over directly to the arrow scheme in Figure 2.

2.1.3 Outer relations. 1In the basic design of PLS soft modeling the
outer relations are assumed to be linear, in the present case:
Xjkn = Tko +T'-'/1;Erjn‘i‘5jkn: j= L2 k = I;Kj; n=1,N (30)
where Ky =H; K,=K.
The outer relations are subject to predictor specification:
E(xjklaj):njﬁo+n;kg7 j=1,2 (31)
The predictor specification implies the corollaries (32 a-b); in words:

* Each residual has conditional expectation zero;
** Fach residual is uncorrelated with the LV;

E(S]'lalaf):oa "(E;/'kaa}'):o’ .]:1923 k:]-sKj (32)

(5)

S

A Al'lk

Fig. 2. - Arrow scheme for PLS modeling of a contingency table with two margins.
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To achieve SSU in the outer relations (30), cf. (4), the scales of the
LVs are standardized to give the LVs unit variance:

var g =1, j=1,2 (33)

To repeat from 1.1.5 (vi), it is a fundamental principle in soft mode-
ling that the information between the blocks, and the ensuing causal-
predictive inference, is conveyed by the LVs. Accordingly, it is assumed
that the LVs in general are intercorrelated, in the present case say

r (&, ‘52) = P12

whereas the residuals of any block are assumed to be uncorrelated with
the residuals and the LV of the other block; that is,

rlemseay) =05 rlen, &) =0; r(sy,&) =0 (34)
Here, the residuals are mutually correlated within the blocks because
K,
J
of the restriction X xy, =1, for all j and n, cf. eq. (28). This gives
k=1

tlep; su) 0 h b =1, H; rlegocy)=0,k, & =1,K (35)

Eq. (35) does not interfere with PLS estimation algorithm but is of
relevance of the dimensionality of the LVs; cf. Apel and Wold (1982).

2.1.4 Inner relation. The present model has one inner relation, and
this is assumed to be linear,

E;Zn = Bo - Bl E.qn -+ va (36)
and is subject to predictor specification,

E (62 | El) =B+ B £1 (37

2.1.5 Substitutive prediction. Eliminating £, from (30b) by means
of (36) we obtain x,, linearly in terms of &; :

Xogy = Oogo + Ty {31 5171 + Vo (38)
where

Oopo == Teage - Ty Lo Yo = Eop - ooy Un (39)
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2.2 PLS estimation.

Introducing the matrices Z,, Z, by

X1y Xy
Z = - | 2= - (40)
Nt * N K .
Xl Xiy
we obtain
A =22z, (41

The two first stages of PLS algorithm work with indicators, say xi,
X3x, that are standardized to zero mean, giving

=0, x%=0, h=1,H; k=1,K (42)
The standardized indicators take the form

x = HZ;, x;s = HZy (43)

NxH NXK
where H is the idempotent matrix defined by
H=[ly—N"LyLy], (H=H (44

writing /y for the unity matrix, and Ly for a (¥ X 1) column vector
of units.

2.2.1 First stage of the PLS estimation procedure. The LVs £, &,
are estimated by weighted aggregates of their indicators, say Xju, Xou -
Denoting the weights by

Wi =0y, .., Wim), W= Wy,..., Wsr) 45)

the estimated 1.Vs take the form
Xo=estby=fHZ,w; Xy=estEy=fHZ,w, (46)

where f;, f, are scalars that standardize Xy and X, to unit variance,
fi=Ww Z HZ;w) ', j=1,2 Y
The weight relations given by

X = wia Xy + dy X3 = Wy, X; + dyy (48)
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serve to determine the weights. We can write (48) in a more compact
form:

HZ, =X,wi+D,; HZ,= X;w;+ D, (49)
where
D] e (dn, vy dll—[) y Dz = (d21 yer s dzlf) (50)
NxI XK

* The first stage is iterative, say with steps s = 1,2,..., and al-
ternates in each step between (46) and (49). In the start, s = 1, there
is an almost free choice of the weights, say w; = ws = (1,0,0,...,0).
Having obtained the weights for step s, (46) gives X, and X, in step s ; then
the simple OLS regressions (49) give the weights for step s + 1. The
procedure continues until the weights stop changing between two steps
according to some standard criterion.

2.2.2 Second stage of the PLS estimation procedure. Using the
LVs estimated in the first stage, the outer and inner relations are estimated
by corresponding OLS regressions. Theoretical and estimated parameters
and residuals are denoted by corresponding Greek and Roman letters.

Outer relations, cf. eq. (30):
Xty = pun Xy e e  Xop = Py Xy + ey, (1)

The loadings py.. p,, measure the relations between an LV and its
indicators, and are thereby analogous to the loadings of classical factor
analysis. The PLS loadings are simple OLS regression coefficients:

pin= X1 xh = f Wi Z{ H x5 = f; A [win — S (52)
where
Sy = N~ zlle (Ah- W]h) s (53)

and similarly for py, . — We see that the various entries of the contingency
table are not needed: the margins are sufficient.

Inner relation, cf. eq. (36):
Xo=5b X, +u (54)
The inner parameter b, is equal to the correlation of X; and X,:
by =r(X;, Xy)
Nby = X{ Xy =wi Zy H Zywy = wi [A— A, AS N "] w, (55)
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where
A=ALy; A,=A"Lyg (56)

Substitutive prediction. The causal-predictive relations (6) - (7) carry
over to contingency tables; to spell out the counterpart to (16):

Xotn = Doy by Xin 1 €o1s ~F Doy Un (57)

2.2.3 The third stage of the PLS algorithm estimates the location
parameters.

Formulas (18) - (19) carry over; for example, the location parameters
of X, and the outer relation (51 b) are given by

Yz = fawz ;2 = fo 2y (wy, ;2/,-) s Do = ;2;; — Do /\72 (58)

2.3 Numerical illustrations.

We shall briefly present and then discuss three simple examples of
twodimensional contingency tables. In all three examples the arrow
scheme is of the same type as in Figure 2. A programme witten by Jan-
Bernd Lohmoller was used for all the following numerical examples.

2.3.1 Example 1: See Table 1. This artificial example gives a one-
to-one correspondence between the rows and columns of a diagonal con-
tingency table.

TABLE 1

PLS ANALYSIS OF DIAGONAL CONTINGENCY TABLES WITH TWO MARGINS

PLS estimates

Block Variable Weight Loading |

DATA row row 1 — .1553 — .0630
2‘0 51 5 row 2| —1.0243 | — .4156
0 4 0 3 row 3 1.1796 .4786
0 @ 6g @ column | column 1| — .1552| — .0629
2 4 6|12 column 2| — 1.0244 | — .4156
column 3 1.1796 .4786
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Since the table is diagonal, the PLS loadings are proportional to the
PLS weights; b; = r (X;, X,) = 1 ; and R? =1 for the inner relation.

2.3.2 Example 2: A 3 X 2 contingency table; see Table 2.

In this contingency table the first row is independent of the other
ones in the sense that it is proportional to the row margin. As a conse-
quence, the corresponding weight is zero, wy; = 0.

TABLE 2
PLS ANALYSIS OF A 3 X 2 CONTINGENCY TABLE

PLS estimates

DATA Block Variable Weight Loading
2 4 6 row ToW 1 . 0000 — 1372
13 4 Trow 2| —1.3172 | — .3110
5 9|14 TOW 3 1:3172 L4482
8 16 | 24 column column 1| — 1.0607 | — .4714
column 2 1.0607 4714

The correlation between the two LVs is very low,
r(Xy,Xy) = b, =— .078
which shows that the two blocks of indicators are almost independent,

and that the R® of the inner relation is very small, R* = .006.

2.3.3 Example 3. A 2 X 2 contingency table based on real-world
data; see Table 3.

TABLE 3
PLS ANALYSIS OF A 2 X 2 CONTINGENCY TABLE; DATA FROM STOUFFER ET AL. (1949)

PLS estimates

Pr:?ef‘rz']‘m Block ‘{%gigg)‘e Weight | Loading

N present North —1.0872 | — .4599
present N | 18 6 [ 24 location South 1.0872 .4599
location S| 22 33 | 55

e preference North — 1.0001 —  .5000

40 38179 South 1.0001 .5000

by = r(Xy, Xp) = .322; R* = .1037
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This example draws from extensive data collected by Stouffer et al.
(1949), and analyzed by many researchers. Our simple 2 X 2 table is
a cross classification of the present location of the soldiers (North, South)
and their preference as to camp location (North, South); the unit is 1,000
soldiers.

In the vertical margin we see that South dominates the present lo-
cation, whereas the horizontal margin shows that North and South ba-
lance in the preferred location. The degree of similarity between present
and preferred location is measured by r (X}, X,) =b, = .32.

2.4 Comments.

(i) Model building with latent variables, and their explicit PLS esti-
mation, are key features in soft modeling with scalar variables, and
are novel features in the analysis of muldidimensional contingency
tables.

(ii) The inner and outer relations (3) - (5) and the substitutive predic-
tions (6) - (7) of a soft model with scalar variables carry over to the PLS
approach to multidimensional contingency tables, where they constitute
novel modes of inference.

(iii) The explicit PLS estimation of the latent variables of a soft model
is deliberately approximate. The limiting PLS estimates of the latent
variables are inconsistent (biased in the large-sample sense), and so are
the ensuing PLS parameter estimates of inner and outer relations and
of substitutive prediction.

(iv) The PLS estimates of latent variables and parameters are con-
sistent at large; that is, with increasing numbers of indicators for each
latent variable the estimates will under general conditions of regularity
tend to be consistent.

{v) For the estimation of soft models with two latent variables the
iterative PLS estimation of the latent variables will almost certainly con-
verge (unit probability), and be invariant to the choice of starting values;
ef. 2.2.1%,

(vi) Thanks to the explicit estimation of the latent variables, no iden-
tification problems arise in PLS soft modeling.

(vii) The zero correlation assumptions (35) imply that each latent
variable has just one dimension. Whether or not the assumptions (35)
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are fulfilled, the PLS estimation algorithm will give the first dimension
of each latent variable.

(vii) In PLS soft modeling with scalar variables the investigator has
the option to choose between two types of weight relations, called Mode
A and Mode B. The weight relations (12) and (38) are Mode A; the
PLS approach to multidimensional contingency tables Mode B is not
applied here.

(ix) In the PLS approach to multidimensional contingency tables
several features emerge that in general do not carry over to PLS soft mo-
deling with scalar variables. Among those:

Zpw = Zp Wy, =05 Zyupu=Z,py=0; (39)

in words: the weights of any latent variable sum up to zero, and the same
for the loadings. For illustrations, see Tables 1-3, and Tables 5-6 in Sec-
tion 3.

(x) In the present paper there are several loose ends to tie up. For
one thing, we have carried through only the first two stages of the PLS
estimation procedure; that is, we have ignored all location parameters.

3. CONTINGENCY TABLES IN THREE DIMENSIONS.

The PLS analysis of contingency tables with more than two dimen-
sions is in line with what we have seen in Sn. 2, and is a straightforward
adaptation of corresponding soft models with scalar variables. The more
dimensions in the contingency table, the more numerous are the available
designs of the arrow scheme.

3.1 Data and arrow schemes. Table 4 shows a three-dimensional
contingency table that draws from Stouffer et al. (1949) to add a third
dimension in the table analyzed in Example 3.

Figure 3 shows two arrow schemes, called Models A and B, that we
shall use in the PLS analysis of Table 4. In Model A the indicators xy,,
Xy in two margins define £; and £, , two LVs that are assumed to influence
the LV 3 that has its indicators xy, in the third margin. In Model B we
take account of the possible interaction between the indicators xy, and Xy,
thereby defining a latent variable, denoted Z,,, which joins £, and £, in
influencing £,. As applied to the data in Table 4, preference for camp

21*
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TADLE 4

Origin Present location Origi'gc:ﬁgr:sent Preference
North | South | North | South code freq. North South
* # NN 15 13 2
# ¥ NS 26 18 8
i # SN 9 5 4
* » SS 31 5 26

41 40 24 57 41 40 ‘ 81 l

(B)

Fig. 3 A-B. - Two models for PLS analysis of a three-dimensional contingency table.
A: The indicators of each margin define a latent variable; the two first
latent variables, £, and %,, influence the third, %,. — B: The interaction
between indicators x;; and xy, define a latent variable, denoted &,,, which
joins %, and %, in influencing &;.
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location is our predicted LV &;, while origin and present location are our
explanatory LVs & and &,.

3.2 PLS Models A and B applied to Table 4.

The ensuing PLS estimates are shown in Tables 5 and 6.

All through, the LVs are estimated by weighted aggregates of type
(46). As to the first stage of the PLS algorithm we spell out the weight
relations for Model B:

HZ = X;w + Dy
HZ, = X3 ws + D, (60)
HZ, = (33,1 Xy 4 53,2 Xg + 3,12 X12) ws + Dy

where s3,.1s 4 1 or — I according as r (X3, X,) is positive or negative.

All outer relations take the form (51). For Model B the inner re-
lation reads:

Ea = B + B Zl + Bss 22 + Bs,12 ‘212 + v (61)

The inner relation for Model A is obtained by omitting the term
BS,I‘J g]?_ =

As always in PLS soft modeling the LVs are standardized to unit
variance ; hence the structural parameters of Models A and B can be rea-
dily compared. In both models the present location has less influence

TABLE 5

PLS ANALYSIS OF MODEL A

! Block 7 V(‘(‘,[,'g},’)’:_ Weight Loading

latent variables, origin North 1.0001 . 5000
inner relations South — 1.0001 | — .5000
s present North 1.0950 .4566

origin — .468 :
location South — 1.0950 | — .4566

—— preference

present 244 preference | North 1.0001 . 5000
location South — 1.0001 | — .5000

R:= 314; r(Xy, Xo) = .154; r(Xy, X;) = .506;
I‘(Xg,Xa) = .306
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TABLE 6

PLS ANALYsIS OF MoDEL B

1 I e o
biock | Ve | et | Lowdin
origin North 1.0001 .5000
South — 1.0001 — .5000
origin :.208
present North 1.0950 4566
——, .148 location South — 1.0950 | — .4566
| i 4> preference ———— e
ocation interaction | NN .7326 1730
NS .6556 .2751
inleraction - ,307 SN -0602 <0291
SS — 1.4484 | — .4772
preference North 1.0001 . 5000
South — 1.0001 | — .5000
R* = 324
. N Correlations of latent variables 4
Origin 11:)2:%3}1 Interaction | Preference
origin 1.000 154 .896 .506
present location 1.000 .443 .316
interaction 1.000 .559
preference 1.000

on camp location than the soldier’s origin. Model B shows that the
interaction effect of origin and present location (.307) is even more impor-
tant than the two separate effects (.208 and .148).

We clearly see in the data that present location has relatively small
effect for soldiers whose region ol origin is North, while it has substantial
influence for soldiers from the South. In the same vein, most of the sol-
diers with origin in the North still prefer North when they are in the South,
but soldiers originating from the South often prefer the North when they
are located there. That is, interaction of origin and present location
must not be neglected in the analysis.



321

3.3 Validation of the model.

3.3.1 The Stone-Geisser test was mentioned in the Introduction as
a general test for predictive relevance in PLS soft modeling. We shall
now present a specific validation technique for PLS analysis of contin-
gency tables which uses the Substitutive prediction (57) for direct confron-
tation of model v.s. data. The classical validation methods usually per-
form a comparisoen of two tables: one is the original data table (in the
present case A), while the other is an approximation of A (denoted L/i) .
which is constructed from the model and its hypotheses. The differences
between the two tables are evaluated by some overall criterion, for exam-
ple the Chi-square test.

3.3.2 To repeat, the PLS approach is prediction-oriented. By our
Model A we try to predict prefecence for camp location by means of origin
and present location. As specified in Table 7 these two explanatory va-
riables determine four rows where the model must allocate and separate
soldiers with preference for North vs. South.

Starting from raw data on (Z,, Z,, Z3), the table A is computed by
summing rows of Z, that correspond to the observations inside the cell;
the allocation of an observation to a cell depends on information con-

tained in Z; and Z,. The proxy table A will be computed in the same

way; therefore we must first approximate Z; by 23 . This can easily be
done by means of the outer and inner relations.

TABLE 7

NOTATION FOR CELL FREQUENCIES IN PREDICTIVE VALIDATION OF MODEL A

Explanatory variables Predicted variables
Code Frequencies| Observed frequencies Estimated frequencies
Origin Preference Preference
ouigin | Prosent | 0 = —
present loc. North South North l South
~ ”~
N N P, i 19 111 O
AN ~
N s M, )2y ae Mo Mysy
~ ~
S N a1 211 Ho12 Mo 519
A ~
N s 39, Moy Pags Hoot Hage
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The problem before us belongs under Substitutive prediction, namely
to estimate Zz in terms of X and X,; cf. (38) and (57). The outer and
inner relations for the third LV of Model A are:

HZ, = X;pi + ¢ (62a)

Xy = by X7 + bgp Xy + 43 (62b)
Using Z, instead of H Z; by taking account of the location parameter,
we obtain

Zy=Xypi+ Ly N " A + ¢ (63)
where

Ay =Z; Ly (64)
Now for X; in (63) we substitute its prediction from (62b); that is:

Xy = by X, + by X, (65)
which gives, denoting predicted Z; by 23

Zy = (by Xy + by Xp) pi + Ly N™' 1. (66)

Recalling that X; and X, are aggregates of Z, and Z,, respectively,
eq. (66) implies that 23 is a function of Z; and Z,.
Note that 23 fulfils two important constraints of Z;, namely:

Zy Ly =Ly, ZyL, =Ly (67)
L Zy = A}, Ly Zy = B4 (68)

Hence:
Y ZyLy= N, LyZyLy=N (69)

Egs. (67) - (69) are interesting in that when computing A from 23

we are sure that the summations over each row and column of A will give
the same sums as for A.

3.3.3 Numerical example. PLS estimation of Model A has given
the following results:
Xy = 468 X; + .244 X, + u, (70)
HZ; = X, p; + e;, with p3 = (— .5000, - .5000) 71
H Z; = (468 X, + .244 X,) p} (72)
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The ensuing comparison of observed and estimated cell frequencies
is set forth in Table 8.

TABLE 8

PREDICTIVE VALIDATION OF MODEL A: NUMERICAL RESULTS

Explanatory variables Predicted variable
Code Frequencies| Observed frequencies Estimated frequencies
Origin Preference Preference
s Present
Ori ¥ b

remn location | \recent loc.| North South North South
N N 15 13 2 13.8810 1.1190
N S 26 18 8 171132 8.8868
S N 9 5 4 4.1166 4.8834
S S 31 5 26 5.8962 25.1038

Rgm Nyhe ;;gh-l Hgha
Sums: 4] 40 41.0060 39.9930

4, DISCLSSION,

4.1 With reference to the correspondence analysis of twodimensional
contingency tables introduced by Benzécri (1973), it will be noted that
predictive inference is a common denominator of correspondence analysis
and the PLS approach to contingency tables.

Let Ay an H X K contingency table with population data on origin
(h =1, H) versus preferred location (k =1, K). Benzécri transforms
the data by

A= Qi — N7 D A | (A A" (73)
and computes the first principal component of Af;, giving

Al = prn X, + e (74)
where p;, denotes the loadings, and X, the component scores. Thus (74)
predicts A%, by p, X, with prediction error e;;.

The first principal component is a special case of the PLS algorithm;
cf. Wold (1966, 1982). In the PLS approach the first principal component
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is conceived of as the estimate of a latent variable. From this point of
view (74) is a prediction formula for the entries of a twodimensional con-
tingency table, whereas Sn. 2 of the present paper gives prediction for-
mulas in terms of two latent variables.

4.2 The basic design of the PLS algorithm provides estimation of
path models with latent variables, and covers any design of the path of
the (inner) relations between the latent variables. As applied to multi-
dimensional contingency tables the investigator can choose between a
variety of designs for the inner relations. The model in Figure 3A has
the subsequent path (a) with just one inner relations, whereas the paths (b)

€, />
(B
~@

and (¢) have two inner relations.
Combining the marginal indicators to form complex latent variables
there is a rapid increase in the number of available designs, among those

Figure 3B and many more, such as:
73/ ®. N
4 >> >
® &
4.3 The basic design of PLS soft modeling has been generalized in
several respects, which gives opportunities for corresponding develop-

ments of the models in Sn. 4.2, including: hierarchic structure of the latent
variables, Wold (1982); latent variables in two or more dimensions, Apel
and Wold (1982); and multiway observation of the indicators, Lohmdlier
(1981), Lohmoller and Wold (1980).

Clearly, the PLS approach to multidimensional contingency tables
bristles with novel models to explore, to apply, and to compare with other
approaches.



325

ACKNOWLEDGEMENTS

It is gratefully acknowledged that the present paper belongs under a grant from
the Stiftung Volkswagenwerk in support of research on PLS soft modeling.

We are indebted to Jan-Bernd Lohméller, M.A., Hochschule der Bundeswehr,
Munich, and Professor Jack McArdle, University of Denver, for reading and comment-
ing on a draft for our paper.

REFERENCES

Aprer, H. and Worp, H. (1982). Higher dimensions for the latent variables in soft
modelling, and testing for predictive relevance. Chapter 10 in Wold (ed. 1982).

BENzECRI, J.-P. (1973). L’analyse des données, Vol. 2: L'analyse des correspondances,
Paris, Dunod.

BERGLING, K. (1981). Moral Development. The Validity of Kohlberg’s Theory. Acta
Universitatis Stockholmiensis, Stockholm Studies in Educational Psychology 23.

GEISSER, S. (1974). A predictive approach to the random effect model. Biometrika, 61,
101-107.

GoobpmaN, L.A. (1978). Analyzing Qualitative[Categorical Data. Log-Linear Models
and Latent Structure Analysis. Cambridge Mass., Abt Books.

KoHLBERG, L. (1968). Moral Development. Volume 10, pages 483-494 in International
Encyclopedia of the Social Sciences, ed. D.L. Sills. New York, MacMillan and
Free Press.

LoHMOLLER, J.-B. (1983). Path models with latent variables and Partial Least Squares
(PLS) estimation, Doctoral Thesis, Hochschule der Bundeswehr, Munich,

LoaMOLLER, J.-B. and WoLp H. (1980). Three-mode path models with latent variables
and PLS parameter estimation. Forschungsbericht 80: 3, Fachbereich Pidagogik*
Hochschule der Bundeswehr, Munich.

LyTTkENs, E., ARESKOUG, B. and Worp, H. (1975). The convergence of NIPALS
estimation procedures for six path models with one or two latent variables. Research
Report 1975 : 3, Department of Statistics, University of Goteborg.

PIAGET, J. (1932). The Moral Judgment of the Child. Glencoe, 11l: 1948. First published
in French.

StoNE, M. (1974). Cross-validatory choice and assessment of statistical predictions,
Journal of the Royal Statistical Society, Series B 38, 111-133.

STOUFFER, S.A. et al. (1949). The American Soldier. Studies in Social Psychology in
World War 11, Vols. 1 and 2. Princeton Univ. Press.

WoLp, H. (1966). Nonlinear estimation by iterative least squares procedures. Pp. 411-
444 in Research Papers in Statistics, Festschrift for J. Neyman, ed. F.N. David,
New York, Wiley.



326

Worp, H. (ed. 1975). Modeling in complex situations with soft information. Group
report at Third World Congress of Econometrics, 21-26 August, Toronto.

WoLp, H. (1977). On the transition from pattern recognition to model building. Pp.
536-549 in Mathematical Economics and Game Theory, Essays in Honor of
Oskar Morgenstern, eds. R. Henn and O. Moeschlin, Berlin, Springer.

Worp, H. (1979). Model construction and evaluation when theoretical knowledge is
scarce. Cahier 79.06, Dept. of Econometrics, University of Geneva.

Worp, H. (1980). Soft modeling: intermediate between traditional model building and
data analysis. Banach Publications, Vol. 6, Mathematical Statistics, 333-346,
Warsaw.

WoLp, H. (1982). Soft miodeling: the basic design, and some extension. Chapter 1 in
Wold (ed. 1982).

Worp, H. (ed. 1982). Systems Under Indirect Observations, Part II. Amsterdam,
North-Holland Publ.

RESUME

Les idées développées dans ce texte s'inspirent de I'approche des modéles a
variables latentes par les moindres carrés partiels (PLS) dite plus simplement « mo-
délisation souple» (soft modeling), (Wold 1975, 1977, 1979, 1980, 1981).

Ce travail montre que la démarche suivie dans cette modélisation s'adapte facile-
ment a lanalyse de variables dichotomiques formant une table de contingence mul-
tiple. Le modéle définit une (ou plusieurs) variable latente pour chacune des marges
du tableau de contingence. Les variables observées s'interprétent comme des indica-
teurs dichotomiques de la variable latente correspondante et chaque variable latente
sera dailleurs estimée comme un agrégat de ses indicateurs.

Le modele est bati sur des relations externes (outer relations) qui lient chaque
variable latente & ses indicateurs ainsi que sur des relations internes (inner relations)
qui mettent en rapport les variables latentes. Ces relations internes et externes jouent
un role que I'on peut qualifier de causal-prédictif. En effet, dans le cas des indica-
teurs d'une variable latente elle-méme expliquée par d’autres variables latentes, des
substitutions simples permettent d'obtenir des relations liant les indicateurs aux va-
riables latentes explicatives de la relation interne. La qualité prédictive du modéle-
peut étre testée au moyen d’un test (Stone et Geisser) qui fournit des R* sans perte
de degeé de liberté.

Plusieurs généralisations se laissent envisager: effets de feed-back, structure hiérar-
chique des variables latentes ainsi que la multidimensionnalité de celles-ci.



