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Optimal Data Gathering Paths and Energy Balance
Mechanisms in Wireless Networks

Aubin Jarry1, Pierre Leone1, Sotiris Nikoletseas2, and Jose Rolim1

1 Computer Science Department, University of Geneva, Battelle Batiment A, route de Drize 7,
1227 Geneva , Switzerland

2 Computer Technology Institute N. Kazantzaki Str 1, Patras University Campus, 26504 Rion,
Patras Greece

Abstract. This paper studies the data gathering problem in wireless networks, where
data generated at the nodes has to be collected at a single sink. We investigate the
relationship between routing optimality and fair resource management. In particular,
we prove that for energy balanced data propagation, Pareto optimal routing and flow
maximization are equivalent, and also prove that flow maximization is equivalent to
maximizing the network lifetime. We algebraically characterize the network structures
in which energy balanced data flows are maximal. Moreover, we algebraically charac-
terize communication links which are not used by an optimal flow. This leads to the
characterization of minimal network structures supporting the maximal flows.

We note that energy balance, although implying global optimality, is a local property
that can be computed efficiently and in a distributed manner. We suggest online
distributed algorithms for energy balance in different optimal network structures and
numerically show their stability in particular setting. We remark that although the
results obtained in this paper have a direct consequence in energy saving for wireless
networks they do not limit themselves to this type of networks neither to energy as a
resource. As a matter of fact, the results are much more general and can be used for
any type of network and different types of resources.3

1 Introduction, our contribution and related work

In full generality, this paper addresses the question and impact of fairly allocating resources
while routing messages in networks. Resources belong to the nodes composing the network
and the constraints emerging from resource limitation concern the traffic handled by nodes.
By fairly allocating the resources we mean that their use must be proportionally distributed
among the nodes in accordance to the node’s available resources. To exemplify, we consider
the particular, important case where the resource is the total energy available at the nodes for
transmitting data. We consider the data gathering problem, where the nodes generate data
that has to be collected by a unique sink. In this setting, nodes have generally many choices
for routing the data to the sink following a multiple-hop pattern. The energy consumption
of a node depends on the particular costs of the links chosen for transmitting the data.
Classically, we are interested in Pareto optimal routing schemes which are such that no node
can decrease its energy consumption without increasing the energy consumption of others.
Although Pareto optimality is classically used to solve multiobjective optimization problems,
this criterion usually does not define a routing scheme uniquely. However, we show that if
we consider energy-balanced routing schemes then Pareto optimal and maximal flows are
equivalent. This result is relevant because energy-balance is a local characteristic of flows and
is suitable to be efficiently and distributively computed. Moreover, we show that maximizing
the flow of data is equivalent to maximizing the lifetime of the network.

3 Contact author: Pierre Leone, E-mail: pierre.leone@unige.ch. Partially supported by the ICT
Program of the European Union under contract number ICT-2008-215270 (FRONTS).



Another novelty of the paper is to algebraically characterize network’s structure such that
energy-balanced flows of data are maximal. We call such networks energy-balance optimal.
This result is based on the equivalence between maximal flow and Pareto optimal solution
provided that the flow is energy-balanced. Moreover, we also consider communication graphs
Γ which contain an energy-balance optimal subgraph Λ and which are such that the maximal
energy-balance flow in Λ cannot be increased by adding edges in Γ to the communication
graph. In this case, we define that Λ is energy-balance optimal in Γ . As an application we
investigate a particular simple topology which is energy-balance optimal in the complete
graph and two realistic energy-balance optimal network structures.

To conclude the paper, we suggest an algorithm to online and distributively balance the
energy-consumption of the nodes on the top of energy-balance optimal network structures.
Numerical validations show that the algorithm is stable in the sense that the difference
between the maximal and minimal energy consumption is bounded. Although theoretical
works have still to be conducted to theoretically understand the conditions ensuring the
existence of energy-balance flows, this (partly) validates our assertion that the local character
of energy-balance flows is suitable for distributed online algorithms.

An important application of our work is the ability to maximize the flow (and also the
network lifetime) in any particular communication graph by generating an energy balanced
flow. This is an important generalization over previous work ([19, 23]). Interestingly, our
results here imply (a) energy balanced data propagation using only two transmission levels
(i.e. either to one hop neighbors or to the sink directly) is optimal, since they maximize the
flow (b) and, we show the conditions under which we can compute such an energy balanced
data propagation pattern.

To conclude this section, we review some relevant works dedicated to energy aware mech-
anisms, maximization of the network’s functioning time and appropriate network structures.

A general framework is proposed in [11] to define the data traffic flows that maximize the
lifetime of sensor networks. The authors provide explicit expressions of the lifetimes of the
sensors by considering a particular model of the energy consumption. They formulate the
problem as a multiobjective optimization problem. The optimal solutions are weak Pareto
optimum and are computed in a centralized way. The paper contains the result that energy-
balance consumption maximizes the lifetime of sensor networks.

Another general line of research consists in applying reinforcement learning theory to
develop energy-aware routing protocols [15, 16]. This approach is relevant in the situations
where no information is known about the structure of the network because the protocol learns
dynamically the structure. The development of efficient protocols depends on the use of a
suitable cost function. A natural extension of our present work would be to learn dynamically
the network structure and find optimal paths.

In [20] the authors consider the problem of gathering data to a single sink and the search
for flows that balance the energy consumption between sensors. This work is extended by
the same authors in [27] in which they divide the network into slices, composed of sensors
located at nearly equal distances to the sink and able to send the data to sensors belonging
to the next slice (toward the sink) or directly to the sink. They assume that the energy used
to send data directly to the sink is proportional to the square of the distance of transmission.
To balance the energy consumption between the sensors, they define two periodic epochs:
during the first the sensors send data to the sink and during the second the sensors send the
data to the next slice. The optimal ratios must be determined in order to balance the energy
consumptions of sensors. In their work, simulations are required to compute the optimal
ratios. Independently, in [14] a very similar setting is considered. However, to balance the
energy consumption the sensors transmit the data either directly to the sink or to the next
slice. The sensors choose randomly between the two routes. The authors provide an offline
algorithm to compute the optimal probabilities. We also mention [38] that is very close
in spirit to the articles already mentioned. They formulate the problem of balancing the
energy consumption as an allocation problem that is solved in a centralized way. Numerical
validations show that the algorithm performs well, in particular if the network is dense.
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We have extended this line of research by establishing formally the conditions ensuring
that such energy-balance strategy is realistic in [34]. By establishing the formal link between
the lifetime of the network and energy-balance mechanism, we provide a formal definition of
optimal routing strategies in [34]. Moreover, we provide a decentralized algorithm to compute
the probabilities with minimal assumptions and we establish formally that energy-balance
mechanisms are efficient. Indeed, such a strategy maximizes the flow in the network [23, 26].
The numerical simulations show that the division of the network in slices is not regular and
some sensors contribute more to the routing process than some others do. In [34], we propose
and we validate numerically an inter-slice spreading mechanism to overcome the impact of
these irregularities to the energy consumption. Our present work generalizes these results.

In [33], the authors consider the problem of network design and they assume that sensor
parameters can be set accordingly to the position of the sensors. More precisely, the ranges of
emissions vary depending on the slice in which the sensors belong. The network is decomposed
in slices of varying size and the aim is to find the appropriate values of the ranges of emission
in order to maximize the lifetime of the network. With this model they prove that in order to
minimize the total energy spent on routing the slices must have the same size, and they point
out that this result in not satisfactory since some critical nodes run out of energy and they
prevent the continuation of the global process. Hence, they specifically consider the problem
of balancing the energy among the slices. However, it turns out that in the situation where
the power attenuation factor is 2, energy depletion is intrinsic to the system and cannot be
avoided with this strategy. The impossibility result shows that energy-balance mechanisms
necessitate some kind of heterogeneity, i.e. different power transmissions, nodes with more
energy available, non-uniform distribution of the nodes, and so on

In [2], the authors consider a problem similar than in [33]. They show that a suitable
deployment of heterogeneous nodes can guarantee energy-balance consumption. The deploy-
ment strategy locates the nodes with the larger amount of energy close to the sink to support
the heavy data traffic. They also suggest a dissemination protocol that exploit the mobility
of the sink. Moreover, they show that by suitably choosing the ranges of the communications,
energy-balance depletion of energy is possible if the sensors are uniformly distributed.

The LEACH protocol (Low Energy Adaptive Clustering Hierarchy) is proposed in [21]
as a protocol to achieve good performances in terms of sensors’ lifetime. The constraints
imposed to the protocol are that the deployment of the network must be easy; the protocol
must increase the lifetime of the network and being respectful of the latency. Actually, the
protocol self-organizes the network into clusters with local cluster head election. In order
to consume energy evenly the cluster head changes with time. Recently, [32] uses clustering
techniques to balance energy as well as tasks in the network. In a sense the scope of appli-
cations of protocols like LEACH is broader than what we suggest in this paper. However,
this generality requires much more complex operations and more collaboration between the
nodes. Moreover, optimality results are hardly possible because of the generality of the ap-
plications. Nevertheless, broaden the scope of applications of our results is relevant and we
expect that our present work can be extended to more general situations like the optimal
routing of multicommodity flows for instance.

The mobility of the sink [29, 30, 28, 13] is another alternative to increase the lifetime of
sensor networks when gathering data is the issue. In [30], the authors consider different
approaches to mobility and they suggest a theoretical framework suitable to the formal
analysis of the protocol performances. Given the data flow, they formulate the problem as
a linear program. In [28] it is proved that the problem is NP-hard and they investigate
approximation algorithms in [30]. Notice that the optimal and decentralized coordination of
the motion of the sink is still a challenging problem.

The mobility of the sensors to convey data toward the sink received some attention. In
[5], a mobility index is proposed and used to evaluate the chance that a mobile sensor passes
close to the sink in the near future. They propose different mobility patterns that extend the
usual ray waypoint model and an index that measures the amount of distance covered by
the mobile sensor. Sensors with small mobility index try to send data to sensors with higher
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mobility index. Heuristically, this allows the reduction of the latency of delivering data.
Numerical validation of the protocol shows that the approach is relevant. In [3] we improve
the performances of the algorithm by recursively estimating the probability of delivering the
data to the sink.

There are various possible definition of the network lifetime. Usually, one assume that
all the sensors should function to implement the global function. However, one might also
assume that only part of the network should function. This leads to the concept of alpha-
lifetime which is the time duration of the network during which at least α percent of the
network functions. For instance, for region monitoring applications, solving this problem
amounts to schedule appropriately the sensors activity in order to maximize the lifetime of
the network and monitor at least α percent of the required area at any time [36, 37]. In
[36], the authors provide upper bound of alpha-lifetime for large sensor networks. In [37], a
centralized algorithm is suggested and numerically validated. In the same setting, in [1], the
authors suggest taking advantage of the overlap between the sensor monitored regions. They
propose an algorithm to schedule active and inactive periods while ensuring that sensors
monitor the entire region at any time. Alternate inactive and active period is a classic way
of reducing the energy consumption.

Another new metric accounting for network lifetime is the lifetime per unit cost [10] which
is the average network lifetime divided by the number of sensors enabled. The observation
that the lifetime of networks increases monotonically with the number of sensors involved
in the network justifies this definition. However, the lifetime per unit cost decreases for
large value of the total number of sensor after reaching a maximal value. This implies that
efficient network design must consider the optimal number of sensors to deploy. The optimal
placement of nodes is also discussed in the paper. The problem is to reduce the transmission
energy consumption to report data to running sensors.

Classical optimization methods are relevant for lifetime maximization. We mention here
an application of linear programming. In [18], it is assumed that sensors have to send data
periodically toward the sink and accordingly a linear program is solved in order to minimize
the energy required for each period. The constraints express the minimization of the energy
consumption and the preservation of the flow. They formulate solutions in closed form of the
linear program for various network topologies. In particular, they show that for the line model,
the routing strategy ensuring maximum lifetime consists only in choosing between sending a
data directly to the next node or directly to the sink (a result that we obtain independently
with different technical details). In [22], a similar linear programming approach is proposed.
The authors show that solving the original linear program is equivalent to solve a maximum-
flow problem. To proceed to the reduction, the authors assume that sensors transmit with
only one level of energy transmission. They propose and they validate numerically a heuristic
distributed solution to the maximum-flow problem.

Simultaneous transmissions lead to collisions, i.e. data are lost. An appropriate schedul-
ing of the transmissions avoids collision. In [35, 6, 8, 7], the authors discuss the problem of
determining the optimal scheduling. In [35], the quantity that is optimized is the energy con-
sumption. Energy-latency tradeoffs are formulated and an off-line algorithm that computes
the optimal solution to the problem is proposed. A heuristic on-line algorithm is proposed
and the simulations show the good performances of the algorithm. In [6, 8, 7], the quantity
that is optimized is the data latency. The authors compute tight bounds of the minimal num-
ber of rounds that are required for solving the problem. They propose an efficient algorithm
that computes the optimal scheduling in tree-like networks.

These considerations are relevant for real applications and should be part of the extensions
of our present work. In this paper, we do not consider interferences and focus on energy
management. This is possible in our setting. Indeed, we assume that we solve the data
gathering problem without aggregation. In this setting the rate of data generated by the
nodes is not necessarily large and it is likely that at most one node transmits at any time.
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2 Balancing the flow and maximizing the lifetime of a network

In this section, we first prove that maximizing the lifetime of a sensor network is equiva-
lent to solving a max-flow problem (Proposition 1). We then define energy-balanced flows
(Definition 2) and give sufficient conditions under which energy-balanced flows are optimal
(Proposition 2).

We do not consider interferences between nodes that transmit simultaneously. This is
justified with the argument that in the data gathering problem that we consider the rate
of data generated by the nodes is not necessarily large. Then, we can assume that at any
time at most one node transmits and focus on energy aware mechanisms. Further works
should include the consideration of the interferences due to simultaneous transmissions. For
real applications it is relevant to know if energy-balance mechanisms are compatible with
lowering the interferences.

We consider a finite set of nodes and label them i = 1, . . . , N . Nodes are able to com-
municate between each other only if they share a communication link. The set of nodes
and communication links has the structure of a graph, called the communication graph, and
they compose the network under study. In order to communicate, the nodes need to spend
resources and the total amount of available resources is a local property of the nodes. Specif-
ically, a node i may have to spend cij units of energy in order to transmit a message to node
j. In this instance, assuming that the total energy available per node is limited, the nodes
have to wisely use the available communications links in order to maximize the functional
lifetime of the network. When a wireless sensor network monitors an area, the events that are
detected near a sensor i must continuously be reported to the base station or sink, and this
generates a fraction gi of the total flow of information f . In other words, gi · f messages per
second are generated by sensor i and

∑N
i=1 gi = 1. We denote fij the flow of messages from

node i to node j with the convention that the sink is numbered 0, i.e. fi0 is the flow from
node i to the sink. By convention, we define fii = 0, i = 1, . . . , N and we do not repeat this
while we consider equations for flows. Finding the flow {fij} which maximizes the lifetime
of the sensor network amounts to solving the following problem:

Problem 1.

maximize T such that (1)

gi · f +
N∑
j=1

fji =
N∑
j=0

fij , i = 1, . . . , N (2)

T

N∑
j=0

fijcij ≤bi, i = 1, . . . , N (3)

T ≥ 0, fij ≥0, i, j = 1, . . . , N (4)

Equation (2) represents the constraints ensuring that {fij} is a flow and Equation (3) ensures
that in the duration T no sensor consumes more than its available energy bi.

In Problem 1 we use implicitly that

Definition 1. The lifetime of the network is the minimal lifetime of the nodes composing
the network, i.e.

min
i=1,...,N

bi∑N
j=0 fijcij

. (5)

To be precise, we mention that the units of bi are energy [J ], the units of flows fij are
[messages/second], the units of cij are [J/message]. With this choice of units, the lifetime is

given in seconds. If we proceed to the change of variables f̃ij = Tfij (f̃ij is the total amount

of messages sent from i to j in the duration T ), and f̃ = Tf , we get the following linear
program:
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Problem 2.

maximize f̃ such that (6)

gi · f̃ +
N∑
j=1

f̃ji =
N∑
j=0

f̃ij i = 1, . . . , N (7)

N∑
j=0

f̃ijcij ≤bi i = 1, . . . , N (8)

f̃ ≥ 0, f̃ij ≥0, i, j = 1, . . . , N (9)

We emphasize the fact that Problem 1 considers the rate of data measured in [messages/second]
while Problem 2 considers the total amount of data collected by the sink measured in
[messages]. Another difference is that in Problem 1 the total flow f is fixed while in Problem 2
f̃ is variable. This distinction appears again when we discuss a weak optimal Pareto approach
to the problem. We will now formally prove that maximizing T amounts to maximizing f̃ .

Proposition 1. Problem 1 is equivalent to Problem 2, which means that {fij}, T is an op-

timal solution to the first if and only if {f̃ij = Tfij}, f̃ = Tf is an optimal solution to the
second.

Proof. We proceed by contradiction. Let us assume that {fij}, T is an optimal solution to

Problem 1 and that {f̃ij = Tfij}, f̃ = Tf is not an optimal solution to Problem 2. Then, there

is solution {g̃ij}, g̃ to Problem 2 such that g̃ > f̃ . We consider T ′ > T such that g̃ = T ′f > f̃
and define {gij} = { 1

T ′ g̃ij}. We check directly that {gij}, T ′ is a feasible solution to Problem 1
with T ′ > T which contradicts the optimality of T . We proceed similarly to show the other
direction of the equivalence.

This proposition shows that maximizing the lifetime of the network is equivalent to maximiz-
ing the total number of messages gathered by the sink. Problem 2 corresponds to a max-flow
problem where constraints are placed on the nodes. We now define what an energy-balanced
flow is and propose a sufficient set of conditions ensuring that an energy-balanced flow max-
imizes the lifetime of the network.

Definition 2. A flow {fij} is called energy-balanced if there is a constant k such that for

all i = 1, . . . , N we have
∑N

j=0 fijcij = kbi.

Proposition 2. If for all i = 1, . . . , N there is λi such that

λi ≥ 0 and

−λici0 + λicij + λjcj0 ≥ 0,

and if there is an energy-balanced flow {fij} such that

fij ·
(
−λici0 + λicij + λjcj0

)
= 0 (10)

then there is a duration T such that {fij}, T is a solution to Problem 1.

Proof. We consider a path decomposition P of the flow {fij}, and a path i1, i2, . . . , ik of this
decomposition from a sensor i = i1 towards the sink ik = 0, we can see from Equation (10)
that

λi1ci10 = λi1ci1i2 + λi2ci2i3 + . . .+ λik−1
cik−1ik (11)

We want to compute the sum
∑

i λi

∑
j fijcij by decomposing the flow into the paths followed

by messages to the sink. For each such path p from i to the sink, Equation (11) shows that
the contribution to the sum is λifpci0 where fp is the number of messages per second flowing
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through the path p in the decomposition P . Since gi · f is equal to the sum
∑

p from i to 0 fp,
we get ∑

i

λi

∑
j

fijcij =
∑
i

λigifci0.

On the other hand, any other solution {f ′
ij}, T ′ to Equations (2) and (3) uses paths satisfying

the equation

λi1ci10 ≤ λi1ci1i2 + λi2i3ci2i3 + . . .+ λik−1
cik−1ik

which leads to ∑
i

λi

∑
j

f ′
ijcij ≥

∑
i

λigifci0

We conclude by using the assumption that the flow {fij} is energy-balanced and by calling

T = 1
bi

∑N
j=0 fijcij . Indeed,

f · T
∑
i

λigici0 = T
∑
i

λi

∑
j

fijcij =
∑
i

λibi ≥ T ′
∑
i

λi

∑
j

f ′
ijcij ≥ f ′ · T ′

∑
i

λigici0

which shows that T ≥ T ′.

Actually, what we have shown is that if a communication graph contains only edges (i, j)
such that −λici0+λicij+λjcj0 = 0, then any energy-balanced flow will maximize its lifetime.
In other words, our result shows that edges (i, j) such that −λici0 + λicij + λjcj0 > 0 are
useless to increase the efficiency of the network. In a former work [23], appropriate λi values
were computed in an ad-hoc way under the specific condition that the energy consumption
grows quadratically with the range of emission.

3 Weak Pareto optimality and energy-balanced flows

In this section, we introduce weak Pareto optimality (Definition 3) and prove that for energy-
balanced flows in sensor networks, weak Pareto optimality is equivalent to maximizing the
lifetime of the network (Proposition 3).

Assuming a flow {fij} of information towards the sink of a sensor network, the rate of
energy consumption of a sensor i is given by

∑
j fijcij and the lifetime of this sensor is

inversely proportional to this rate, i.e. given by bi/
∑

j fijcij . To maximize the lifetime of the
sensors we have to maximize all the lifetime simultaneously. This leads to study the following
multiobjective optimization problem:

Problem 3. Minimize {i :
∑

j fijcij} such that ∀i = 1, . . . , N

f · gi +
N∑
j=1

fji =
N∑
j=0

fij

The weak Pareto approach, proposed in [12], is particularly well suited to study such multi-
objective optimization problems.

Definition 3 (weak Pareto optimal flow). A flow {fij} is weak Pareto optimal if and
only if there does not exist any flow {f ′

ij} such that
∑

i f
′
i0 =

∑
i fi0 and

N∑
j=0

f ′
ijcij <

N∑
j=0

fijcij , ∀i = 1, . . . , N (12)
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Intuitively this means that given a weak Pareto optimal solution it is not possible to increase
the lifetime of a node without decreasing the lifetime of another. In [12], an algorithm is
suggested to compute a flow such that the lifetime of all the sensors is the same and which
produces a best approximation if no solution exists.

In the following, we prove that by looking only at energy-balanced flows, maximizing the
lifetime of the network (Problem 1) is equivalent to finding a weak Pareto optimal solution
to Problem 2. We emphasize that the equivalence is proved for energy-balanced propagation
scheme.

Proposition 3. An energy balanced flow (Definition 2) maximizes the lifetime of the net-
work (Problem 1) if and only if it is a weak Pareto optimal solution (Definition 3) to the
multiobjective optimization problem (Problem 3).

Proof. We first prove that an energy balanced flow {fij} that maximizes the lifetime T of
the network is a weak Pareto optimal solution to (3). Assume that {fij} is not weak Pareto
optimal: then there is a flow {f ′

ij}, such that
∑

i f
′
i0 =

∑
i fi0 and

N∑
j=0

f ′
ijcij <

N∑
j=0

fijcij , ∀i = 1, . . . , N (13)

The flow {fij} satisfies the energy constraints (3), hence using (13) we have

T
∑
j

f ′
ijcij < bi, i = 1, . . . , N.

Therefore there is T ′ > T such that {f ′
ij}, T ′ is a solution to Problem 1. This contradicts the

optimality of the flow {fij}.
We next show that an energy-balanced flow which is a weak Pareto optimal solution solves

Problem 1. We proceed by contradiction and assume that the flow {fij} is energy-balanced
and weak Pareto optimal but does not maximize the lifetime of the network. Then, there is
a solution {f ′

ij}, T ′ to Problem 1 such that T ′ > T . The energy constraints satisfied are

T
N∑
j=0

fijcij = bi, and T ′
N∑
j=0

f ′
ijcij ≤ bi, ∀i = 1, . . . , N.

Therefore, we have
N∑
j=0

f ′
ijcij ≤

T

T ′

N∑
j=0

fijcij

which shows that the flow {fij} is not weak Pareto optimal.

4 Optimal communication graphs

We have seen that the good structures of the communication graphs on which optimal energy-
balanced flows exist can be characterized (Proposition 2). In this section, we broaden this
characterization by using the fact that optimal energy-balanced flows are also weak Pareto
solutions to the multiobjective optimization problem (Problem 3.

Given a weak Pareto optimal solution of a multiobjective optimization problem, there is
a way to formulate the problem as a classical linear program such that the optimal solution
is the weak Pareto optimal solution [17, 4]. Precisely, given a weak Pareto optimal solution

to Problem 3 there is {λi}, such that
∑N

i=1 λi = 1, such that ∀i = 1, . . . , N , λi ≥ 0, and
such that the weak Pareto solution coincides with the optimal solution of the following linear
problem:
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Problem 4. Minimize
∑N

i=1 λi

∑N
j=0 fijcij such that ∀i = 1, . . . , N

f · gi +
N∑
j=1

fji =

N∑
j=0

fij (14)

fij ≥ 0 ∀j (15)

We can readily prove that any solution to Problem 4 is a weak optimal solution to Problem 3
for any λi ≥ 0. This linear problem is easier to study by making the {fij} independent. We
remove their dependency by replacing fi0 with f · gi +

∑
j fji −

∑
j fij ≥ 0. We can then

consider the following linear program:

Problem 5. Minimize
∑N

i=1 λi

[(
f · gi +

∑N
j=1 fji −

∑N
j=1 fij

)
ci0 +

∑N
j=1 fijcij

]
such that

f · gi +
N∑
j=1

fji −
N∑
j=1

fij ≥ 0, ∀i = 1, . . . , N.

The dual of Problem 5 is

Problem 6. Maximize
∑N

i=1

(
λigici0 − βigi

)
such that

−λici0 + λicij + λjcj0 − βj + βi ≥ 0, i, j = 1, . . . , N.

By classical duality theory [24], we have the following equation:∑
i

λi

[(
f · gi +

∑
j

fji −
∑
j

fij
)
ci0 +

∑
j

fijcij
]
≥ f

∑
i

(λigici0 − βigi) (16)

and the complementary slackness conditions are given by

fij
(
−λici0 + λicij + λjcj0 − βj + βi

)
= 0, i = 1, . . . , N. (17)

βi

(
f · gi +

∑
j

fji −
∑
j

fij
)
= 0, i = 1, . . . , N (18)

Definition 4. A communication graph Λ is energy-optimal if there exists constants λi ≥
0, i = 1, . . . , N and βi ≥ 0, i = 1, . . . , N such that −λici0 + λicij + λjcj0 − βj + βi = 0.

A subgraph Λ of Γ is energy-optimal in Γ if Λ is an energy-optimal path and −λici0 +
λicij + λjcj0 − βj + βi > 0 for all edges (i, j) ∈ Γ \ Λ.

Precisely, the complementary slackness conditions (17) and (18) say that

– An energy-balance flow on the top of an energy-optimal communication graph Λ is max-
imal.

– If Λ is energy-balance optimal in Γ then using edges in Γ \Λ cannot improve the flow of
data (optimal subgraph property).

– In any case, direct transmissions to the sink are possible and optimal only if βi = 0.

Proposition 4. The set of conditions defining an energy-balanced optimal communication
graph is a convex set.

Proof. Given {λi}, {βi} and {λ′
i}, {β′

i} satisfying the equations

−λici0 + λicij + λjcj0 − βj + βi = 0

and
−λ′

ici0 + λ′
icij + λ′

jcj0 − β′
j + β′

i = 0

it is readily checked that {λ̄i = pλi + (1 − p)λ′
i}, {β̄i = pβi + (1 − p)β′

i} with 0 < p < 1
satisfies the equation

−λ̄ici0 + λ̄icij + λ̄jcj0 − β̄j + β̄i = 0.

9



Energy-balance optimal communication graphs are algebraically characterized and have
the important property that energy-balance flows are also maximal. This property is neces-
sary and sufficient, as stated in the following proposition.

Proposition 5. An energy-balanced optimal flow determines an energy-balanced optimal
communication graph.

Proof. An energy-balanced optimal flow is equivalent to a Pareto optimal solution to Prob-
lem 3 or Problem 4 by Proposition 3. The complementary slackness conditions (17) and (18)
are then satisfied (for suitable λi, βi) and characterize an energy-balance optimal communi-
cation graph.

Proposition 6. If the optimal flow satisfies fi0 = f · gi +
∑

j fji −
∑

j fij > 0, then βi =
0, i = 1, . . . , N .

Proof. This is due to the slackness condition expressed in Equation (18).

Two remarks can be made to conclude this section. First, the conditions stated in Equa-
tion (17) restrict the set of non-vanishing fij in the optimal solutions. Then, the λi values
depend on the particular Pareto optimal solution we search for.

5 Examples of energy-balance optimal communication graphs

In this section, we present two examples of structures that allow for the existence of energy-
balance optimal flows.

We first expose simple sufficient conditions ensuring the optimality of energy-balance
flows. If we set βi = 0 in Equations (17) and (18), the optimal solution to both Problems 4
and 6 is equal to f ·

∑
i λigici0 (found by replacing fij with 0 in Problem 5) and the constraints

set in Problem 6 read

−λici0 + λicij + λjcj0 ≥ 0, i = 1, . . . , N. (19)

The complementary slackness conditions set in Equation (17) now read

fij
(
−λici0 + λicij + λjcj0

)
= 0, (20)

Thus, fij can be non-vanishing only if −λici0 + λicij + λjcij = 0. We summarize this in the
following proposition.

Proposition 7. Let us assume that there exist constants λi with
∑

i λi = 1 satisfying Equa-
tion (19) and a flow {fij}, f satisfying the complementary slackness conditions (20). Then,
the flow is a weak Pareto optimal solution to Problem 3.

Proof. Conditions set in Equation (20) imply that the value function of Problems 5 and 6 is
equal. Given any set of λi values, the solution to Problem 5 is always a weak Pareto optimal
solution to Problem 3.

5.1 A first energy-balance optimal topology

We now turn to the application of Proposition 7. We consider the complete graph on the
set of vertices. Each edge is assigned a weight cij which corresponds to the energy cost of
transmitting through that edge. We assume that we are able to compute λi constants such
that Equation (19) is satisfied. If we can generate an energy-balanced flow {fij} such that
the conditions (20) are satisfied then by Proposition 3 this flow is maximal. Moreover, by
the discussion of Section 2 this flow also maximizes the lifetime of the network.

This is used in an ad-hoc way in the papers [19, 23] where it is assumed that sensors can
transmit data to their nearest neighbor or directly to the sink. In these papers, the energy
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required to send data to neighbors at distance ≤ 1 is constant and the same for all the
sensors. Moreover, it is assumed that the energy needed for transmissions otherwise grows
like the square of the transmission distance. A directed acyclic graph is built to transmit
data from any sensor to a unique sink by decomposing the network in slices corresponding
to nodes distance from the sink to an equal number of hops, as shown in the left of Figure 1.
The nodes belonging all to any particular slice are identified as a super node. This leads
to the topology shown in the right of Figure 1. Normalizing the distances such that the
transmission power to the nearest neighbors is one, explicit values for the λi constants are
provided, i.e. λi =

1
i(i+1) . Proposition 7 (and the results contained in the cited papers) shows

that an energy-balanced flow using only one hop communications or direct transmissions to
the sink maximizes the flow of data.

5S
4S

3S
2S

1S

Sink

Fig. 1. An energy-balance optimal topology on the left, sensors transmit data to the next slice or
directly to the sink (not represented). A simple model of it on the right.

In fact, assuming that sensors use only two levels of energy in their transmissions, corre-
sponding to short range transmissions to close neighbors and to long range transmissions to
the sink, we prove that we can always compute λi satisfying the hypothesis on proposition
7.

Proposition 8. We assume that the sensors composing the network transmit with two levels
of energy, i.e. sensor i transmits with energy level ci to a close neighbor or with ci0 to the
sink with ci = cj and ci0 > ci, for all i = 2, . . . , N and j = 1, . . . , N (for sensors belonging to
the first slice ci = ci0). Then, there exists λi satisfying the hypothesis of proposition 7. The
transmission graph is directed to the sink and any sensors transmit either to the sink or to
sensors belonging to the next slice (see the left side of Figure 1). The λi’s values are equal
for sensors belonging to the same slice.

Proof. We first set arbitrarily λi = 1 for sensors belonging to the first slice. Using Equa-
tion (19) we recursively compute the values λj for sensors that are one more hop away from

the sink. Because ci0 > ci, we have λi > 0. At the end, we normalize to
∑N

i=1 λi = 1.

5.2 A second energy-balance optimal topology

We now present another energy-balance optimal topology. The network is again divided into
slices of width r. Sensors can transmit either to sensors belonging to the next slice or to
sensors belonging to the next slice following the next slice (two slices away towards the sink).
The energy costs are respectively c1 and c2, c2 > c1, independently of the slice the sensor
belongs to. Sensor belonging to the second slice away from the sink transmit to the first slice
with energy consumption c1 or directly to the sink with energy c2. Sensors belonging to the
first slice have no other choice than to transmit to the sink with energy consumption c1.
Figure 2 illustrates this energy-balance optimal topology.

Proposition 9. The topology described above and depicted on Figure 2 is energy-balance
optimal if ci0 ≥ c1 + ci−1,0(c2 − c1)/c1

11



Proof. The coefficients λ and β depend only on the slice number Si; we use λi and βi to
denote the coefficients of sensors belonging to the i−th slice. We have to prove that there
exist coefficients λi and βi such that the conditions stated in Definition 4 are satisfied. To
each sensor belonging to the first slice we assign a value λ1 ̸= 0 and β1 = 0. The value λ1

will be defined by normalizing the λi such that
∑

λ1 = 1. The value β1 = 0 is necessary
since sensors transmit data to the sink as stated by Proposition 6.

For sensors belonging to the second slice, we assign a value λ2 solution to the equation
−λ2c2 + λ2c1 + λ1c1 = 0 and β2 = 0. We have λ2 ≥ 0 since c2 > c1.

For sensors belonging to another slice we compute the parameters λi and βi recursively.
Let us assume that the coefficients are computed for all slices 1, 2, . . . , i − 1. We determine
λi and βi as solution to the system of equations

− λici0 + λic1 + λi−1c(i−1)0 − βi−1 + βi = 0 (21)

− λici0 + λic2 + λi−2c(i−2)0 − βi−2 + βi = 0 (22)

By subtracting equation (21) to (22) we get

λi (c2 − c1)︸ ︷︷ ︸
>0

+λi−2ci−2,0 − λi−1ci−1,0 + βi−1 − βi−2 = 0︸ ︷︷ ︸
=−λi−1c1<0

,

where the second underbraced term is −λi−1c1 by recurrence hypothesis (see Equation (21)
where i − 1 is substituted by i − 2 and i by i − 1) and leads to λi > 0. We then have
λi = c1/(c2 − c1)λi−1.

To see that βi ≥ 0 we use Equation (21) recursively. We know that β1 = 0 for sensors
in the first slice. We assume that βj ≥ 0 for j = 1, . . . , i − 1. Equation (21) states that
βi ≥ λici0 − λic1 − λi−1ci−1,0 which is positive by the assumption on ci0.

Fig. 2. An energy-balance optimal topology on the left, sensors transmit data to the next slice with
energy consumption c1 or two slices away with energy consumption c2.

6 On the existence of energy-balanced probabilistic mechanisms

We proposed in the previous section reasonable network structures which are energy-balance
optimal (Propositions 8 and 9). In this section, we discuss the existence of distributed energy-
balance routing schemes on these topologies. We take advantage of the fact that energy-
balance is a local property. Indeed, any node composing the network can check the balance
of energy by comparing its energy consumption to that of its neighboring nodes. We exploit
this local property to construct an energy-balanced flow while routing data in a distributed
manner.
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6.1 A first online distributed algorithm

We first consider the energy-balance optimal network structure defined in Proposition 8 with
the additional constraint that the energy to transmit to the next slice is the same for any slice,
i.e. in terms of Proposition 8 we have ci = c, ∀i. We also assume that the communication
channels are bidirectional and that while transmitting a message the nodes add information
about their current level of energy consumption to it. This mechanism ensures that any node
is aware of the level of energy consumption of its neighboring nodes. Moreover, we assume
that the initial level of available energy is the same for all the nodes.

Upon reception of a message, node i forwards the message to the neighboring node j
(i→ j) with probability pij or directly to the sink with probability pii. The probabilities are
computed online by using the following rule: If the energy consumption of node j is larger
than the average energy consumption of the neighboring nodes then node i decreases pij, else
pij is increased4, see Figure 3.

variables:
i: the identifier of the current node
pij : the probability of transmitting to node j, pii the probability of transmitting to the sink.
xi: the level of energy consumption of the current node.
xj : the level of energy consumption of a neighboring node j.
ti: counts the number of messages sent by the current node
Initialize pij = 1/degi, where degi is the degree of the current node and includes the node i itself.
upon reception of a message

pij ← pij +
1
ti
( 1
degi

∑
i→k xk − xj)

Normalize the pij so that 0 ≤ pij ≤ 1 and
∑

j pij = 1
ti ← ti + 1
select a node j such that i→ j with probability pij
forward the message to the selected node or transmit directly to the sink if the selected node is i

end upon

Fig. 3. Pseudo-code of the program executed by the nodes with the topology define by Proposition
8

This algorithm is an application of stochastic approximation where we compute online
the probability that the energy consumption of the neighboring nodes is higher than the
average. As such, it can be straightforwardly adapted to more general situations. A formal
analysis of the properties of the algorithm might be done in this framework and is left for
further work. Background material can be found in [9, 31, 25].

The numerical validation of the algorithm is presented on Figure 4. Messages are generated
successively and once routed to the sink we record the maximal and the minimal levels of
energy consumption among all the nodes. The plots show clearly that the energy growth is
linear and that the difference between the maximal and the minimal energy consumption is
bounded. The difference is also plotted. The plots represent the routing of 50′000 messages.

The particular communication graphs on the top of which the protocol was applied and
produce the numerical results discussed above are plotted on Figure 5.

6.2 A second online distributed algorithm

The second energy-balance optimal topology that we consider is the one defined by Proposi-
tion 9. The strategy to balance the energy consumption is the following: If the current level
of energy consumption of a node is larger than the average energy of its neighbors then it
decreases its energy consumption by increasing the number of messages sent to the next slice
(cost c1) and decreasing the number of messages sent two slices away (cost c2 > c1). In the

4 This is implemented by computing pij ← pij +
1
ti
( 1
degi

∑
i→k xk − xj)
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Fig. 4. Min-max energy consumption plots. From the left to the right the number of nodes is
30, 80, 130 (the maximal distance from a node to the sink is 1), the communication slice size are
0.3, 0.2, 0.1 and the nodes are scattered randomly.

Fig. 5. The communication graphs of the two networks on the top of which were conducted the
experiments. Only edges conveying more than 5% of the total traffic going out from a node are
represented. On the left there are 80 nodes with size slice of 0.3 and on the left 130 nodes with size
slice 0.1 (the maximal distance from the sink to a node is 1).
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Fig. 6. Min-max energy consumption plots. From the left to the right the number of nodes is
30, 80, 130 (the maximal distance from a node to the sink is 1), the communication slice size are
0.3, 0.2, 0.1 and the nodes are scattered randomly.

other case it proceeds by increasing the two slice away transmission (cost c2) and decrease
the transmission to the next slice (cost c1).

This mechanism is similar to the mechanism applied in the first proposed algorithm.
However, nodes now have to balance the energy among nodes belonging to a same slice.
For this purpose, each node computes the average energy consumption of the neighboring
nodes belonging to the next slice, mean1, and two slices away mean2. The inter-slice energy
consumption is balanced with a similar strategy, i.e. each node transmits more messages
to nodes whose energy consumption is smaller than the slice average (mean1 or mean2

depending on the position of the receiving node). More precisely, the probability that node
i forward a message to node j is updated in the following way if we assume that node j
belongs to the first slice

pij ← pij +
1

ti

(
(mean1 − xj)︸ ︷︷ ︸

inter-slice

+(xi −
1

degi

∑
i→k

xk)︸ ︷︷ ︸
neighbor−balance

)
.

The first underbraced term balances the energy consumption of node j with respect to the
others nodes belonging to the same slice. This is done by increasing/decreasing the probability
of transmission to j if its energy consumption is below/above the mean (mean1). The second
underbraced term balances the energy consumption of node i with its neighboring nodes
by increasing/decreasing the transmission to nodes belonging to the first slice (like j) if
the energy consumption of i is above/below the neighbor’s average energy consumption. It is
straightforward that increasing/decreasing the probability of transmission to nodes belonging
to the first slice implies that we decrease/increase the probability of transmission to nodes
belonging two slices away.

We point out that in this case it is no longer evident that a node can know at each time
the current energy consumption of nodes which are two slices away without requiring extra
transmissions. Indeed, in our scenario, the current level of energy consumption is attached to
messages sent by adding an extra field. Thus, a node can update the current level of energy
consumption of a two-slices away neighboring node only when it transmits with maximal

15



power. This corresponds to the case where the scheme is an asynchronous scheme as discussed
in [9].

The second set of numerical validation considers a network composed of 100 nodes and
sliced with slice size 0.25.Nodes transmit with two levels of energy consumption. Transmission
to nodes belonging to the next slice costs c1 = 10 and to two slices away costs c2 = 40. Only
nodes belonging to the last three slices (number 6, 5, 4) generate messages, whereas the others
nodes only act as relays. The quantity of generated messages is uniform among nodes of the
last three slices.

The pseudo-code of the program executed by the nodes is represented on Figure 7. We
denote i→1 j and i→2 k the transmissions such that node j belongs to the next slice from
i and k two slices away. N1

i =
∑

i→1j
1, N2

i =
∑

i→2
1 are the corresponding total number of

nodes. Notice that nodes belonging to the first slice have no choice and transmit directly to
the sink with energy cost c1 while the nodes belonging to the second slice use the program
on Figure 3 since they can transmit to the sink directly.

The results of the numerical validation are plotted on Figure 6. On the left side, the
communication graph is plotted and communications links which are not effectively used are
not displayed. We observe that nodes belonging to the last slices favor long range transmission
while nodes closer to the sink favor small range transmission. This is due to the fact that the
nodes closer to the sink have a larger number of messages to handle than the nodes belonging
to the last slices. In the right side of Figure 6 we observe that the energy consumption grows
linearly with time and that at any time the difference between the maximal and minimal
levels of energy consumed remains bounded. This numerically validates the stability of the
algorithm under the given conditions.

variables:
i: the identifier of the current node
pij : the probability of transmitting to node j.
xi: the level of energy consumption of the current node.
xj : the level of energy consumption of a neighboring node j.
ti: the number of message sent by the current node
Initialize pij = 1/degi, degi is the degree of the current node and includes the node i itself.
upon reception of a message

compute mean1 = 1
N1

i

∑
i→1j

xj , mean2 = 1
N2

i

∑
i→2j

xj

if j belongs to the next slice (i→1 j)
pij ← pij +

1
ti
((mean1 − xj) + (xi − 1

degi

∑
i→k xk))

else
pij ← pij +

1
ti
((mean2 − xj)− (xi − 1

degi

∑
i→k xk))

Normalize the pij so that 0 ≤ pij ≤ 1
ti ← ti + 1
select a node j such that i→ j with probability pij and forward the message

end upon

Fig. 7. Pseudo-code of the program executed by the nodes with the topology defined by Proposition
9

7 Conclusion

In this paper we have considered network lifetime maximization problems in the setting
of data gathering without aggregation. In this setting, we prove that balancing the energy
consumption among the nodes is a suitable strategy that maximizes both the network lifetime
and the flow of data that is transmitted to the sink. We have proved that this result is valid if

5 The maximal distance between two nodes is 1.
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the flow of data is constrained to network structures that are algebraically described, and have
provided examples of such network structures. Furthermore, considering energy-balanced
flows of data leads to the design of optimal distributed routing strategies. Indeed, the property
that a flow is energy-balanced is local and does not require any communication between the
nodes to be enforced. We have provided two examples of such distributed mechanisms and
the numerical validations of these mechanisms.

A natural extension of the results presented in this paper would consist in considering
multicommodity flows. In such a setting, the lifetime of the network should appropriately
be redefined because a subset of the network rather than the whole network would likely
be routing the data. This would lead to study of which nodes should participate in rout-
ing the data. Another relevant direction would be to consider interference minimization.
Indeed energy-balanced mechanisms naturally tend to reduce the collisions caused by simul-
taneous transmissions because such mechanisms favor different routes at different instants.
Implementing spatial awareness in the algorithms would further limit the interferences. To
generalize the results of the present paper to such a situation the description of the optimal
communication graphs would thus include spatial information.
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