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par

Dominik FRANCOEUR

de

Sherbrooke (Canada)
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Résumé

Les groupes branchés, une classe de groupes définis par leur action sur un arbre
enraciné, occupent une place importante dans la théorie des groupes, puisqu’ils
possèdent souvent des propriétés rares qui sont impossibles à trouver parmi les
groupes plus classiques. Ils sont ainsi une riche source d’exemples et de contre-
exemples à plusieurs questions notables. Malgré leur importance, de nombreux
aspects de ces groupes restent encore mal compris.

Dans cette thèse, nous étudions l’un de ces aspects en particulier, à savoir
l’indice des sous-groupes maximaux. Plus précisément, nous tentons de mieux
cerner les conditions sous lesquelles tous les sous-groupes maximaux d’un groupe
branché sont d’indice fini. Nous essayons notamment de déterminer s’il existe
un lien entre cette propriété et la croissance d’un groupe branché.

Comme l’étude de cette question requiert une bonne compréhension de la
croissance des groupes branchés, nous commençons par démontrer une version
plus forte d’un critère sur la croissance développé par Bartholdi et Pochon.
Nous utilisons ensuite ce critère pour obtenir de nouveaux exemples de groupes
à croissance intermédiaire.

Par la suite, nous cherchons à développer une méthode générale pour étudier
les sous-groupes maximaux des groupes branchés. À cette fin, inspiré par les
travaux pionniers de Pervova sur le sujet, nous démontrons que si un groupe
faiblement branché et auto-répliquant agit primitivement sur le premier niveau
d’un arbre enraciné, alors les projections de tout sous-groupe prodense et pro-
pre sont aussi des sous-groupes prodenses et propres. Comme l’existence de
sous-groupes maximaux d’indice infini est fortement liée à l’existence de sous-
groupes prodenses et propres, ce résultat technique nous fournit un moyen
d’exploiter l’autosimilarité et des arguments de réduction de longueur pour
étudier cette question dans de nombreux groupes branchés.

Muni de cet outil, nous étudions ensuite les sous-groupes maximaux d’une
classe particulière de groupes branchés, les groupes de Šunić agissant sur l’arbre
binaire et contenant un élément d’ordre infini. Cette partie de la thèse est issue
d’un travail en collaboration avec Alejandra Garrido. Nous démontrons d’abord
que tous ces groupes possèdent une propriété connue sous le nom de propriété
de congruence pour les groupes branchés. Grâce à ce résultat, l’étude des sous-
groupes prodenses est grandement simplifiée, ce qui nous permet de démontrer
l’existence de sous-groupes maximaux d’indice infini dans ces groupes. Ceci
montre entre autres qu’il est possible pour des groupes branchés à croissance
intermédiaire d’admettre de tels sous-groupes maximaux. Nous complétons
notre étude en obtenant une classification complète de tous les sous-groupes
maximaux de ces groupes. Nous prouvons en particulier que tous les sous-
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groupes maximaux d’indice infini sont conjugués au groupe qui les contient
par un automorphisme de l’arbre.

Toujours dans le cadre d’une collaboration avec Alejandra Garrido, nous
nous interrogeons ensuite sur l’existence d’un possible lien entre la présence
d’un élément d’ordre infini et celle d’un sous-groupe maximal d’indice infini
dans la famille des groupes de Šunić en général. Nous démontrons que la situ-
ation observée pour les groupes agissant sur l’arbre binaire est exceptionnelle
et que pour les arbres de degré plus élevé, il existe des groupes possédant un
élément d’ordre infini mais dont tous les sous-groupes maximaux sont d’indice
fini.

Par la suite, nous étudions encore le cas d’un dernier groupe, le groupe
Basilique. Ce groupe est très différent des autres groupes considérés dans cette
thèse sous plusieurs aspects. En particulier, il est faiblement branché mais pas
branché, il n’est pas juste infini, il est à croissance exponentielle et il est sans
torsion. Néanmoins, nous montrons que tous ses sous-groupes maximaux sont
d’indice fini, ce qui illustre la diversité des groupes possédant cette propriété.

Enfin, pour conclure cette thèse, nous élargissons notre étude des sous-
groupes des groupes branchés à une autre famille importante de sous-groupes,
les sous-groupes paraboliques. Bien qu’ils ne soient jamais maximaux, ces
derniers sont faiblement maximaux, ce qui fait de leur étude un prolongement
naturel de celle des sous-groupes maximaux. Nous démontrons que, sous cer-
taines conditions, ces sous-groupes ne sont jamais de type fini, et nous étudions
les conditions sous lesquelles ils sont isomorphes.



Abstract

Branch groups, a class of groups defined through their action on a rooted tree,
play an important role in group theory, since they often possess rare properties
that cannot be found in more classical groups. They are therefore a rich source
of examples and counterexamples to many notable questions. Despite their
importance, many aspects of these groups remain poorly understood.

In this thesis, we study one of those aspects in particular, namely the in-
dex of maximal subgroups. More precisely, we try to better understand the
conditions under which every maximal subgroup of a branch group is of finite
index. Among other things, we try to determine whether or not this property
is linked to the growth of the group.

As the study of this question requires a good understanding of the growth
of branch groups, we begin by establishing a strong version of a criterion on
growth developed by Bartholdi and Pochon. We then apply this criterion to
obtain new examples of groups of intermediate growth.

Afterwards, we aim to develop a general method to help in the study of
maximal subgroups of branch groups. To this end, inspired by the pioneering
work of Pervova on the subject, we prove that if a self-replicating weakly branch
group acts primitively on the first level of a rooted tree, then the projections
of every proper prodense subgroup are also proper prodense subgroups. As
the existence of maximal subgroups of infinite index is closely linked with the
existence of proper prodense subgroups, this technical result allows us to exploit
self-similarity and length reduction arguments to study this question in many
branch groups.

Equipped with this tool, we then turn our attention to the study of maxi-
mal subgroups of a particular class of branch groups, namely the Šunić groups
acting on the binary rooted tree and containing an element of infinite order.
The results in this part of the thesis were obtained in a joint work with Ale-
jandra Garrido. We first show that these groups all possess what is known as
the congruence subgroup property for branch groups. This property greatly
simplifies the study of prodense subgroups, which allows us to show that these
groups admit maximal subgroups of infinite index. In particular, this shows
that it is possible for a branch group of intermediate growth to contain such
maximal subgroups. We then complete our investigation by obtaining a com-
plete classification of every maximal subgroups of these groups. In particular,
we show that every maximal subgroup of infinite index is a conjugate of the
whole group by an automorphism of the rooted tree.

Also as part of a joint work with Alejandra Garrido, we then investigate
the possibility of a link between the existence of an element of infinite order
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and the existence of a maximal subgroup of infinite index in the entire family
of Šunić groups. However, we show that the behaviour observed for the binary
rooted tree is exceptional, and that for trees of higher degrees, there can exist
groups with elements of infinite order that contain only maximal subgroups of
finite index.

We then study maximal subgroups in one last group, the Basilica group.
This group is very different from the others considered in this thesis. Indeed,
among other things, it is weakly branch but not branch, it is not just-infinite, it
is of exponential growth, and it is torsion-free. Nevertheless, we show that all
of its maximal subgroups are of finite index, which illustrate the great diversity
of groups with this property.

Finally, we conclude this thesis by broadening our study of subgroups of
branch groups to another important family of subgroups, namely the parabolic
subgroups. Although they are never maximal, these subgroups are weakly
maximal, which makes studying them a natural continuation of our investiga-
tion of maximal subgroups. We show that, under certain conditions, parabolic
subgroups are never finitely generated. We also obtain conditions under which
they are all isomorphic.
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Finalement, merci à Caterina, pour tout.

v



Table of Contents
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2.9 Šunić groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Groups of intermediate growth 41
3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Incompressible elements and growth . . . . . . . . . . . . . . . 47
3.3 Growth of spinal groups . . . . . . . . . . . . . . . . . . . . . . 53
3.4 Open questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Congruence subgroup property 59
4.1 Definitions and basic properties . . . . . . . . . . . . . . . . . . 60
4.2 CSP and the LERF property . . . . . . . . . . . . . . . . . . . 62
4.3 Congruence subgroup property for Šunić groups . . . . . . . . . 63
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n Chapter 1 N

Introduction

The main goal of this thesis is to further our understanding of the structure of
groups acting on rooted trees. Such groups have attracted a significant amount
of attention in the last few decades, mostly thanks to the unusual properties
that they can possess.

This interest in groups acting on rooted trees can in large parts be traced
back to Grigorchuk’s discovery in 1980 [41] of a very important group, now
known as the first Grigorchuk group. It was originally introduced as an ad-
ditional answer to a famous question in group theory, known as the general
Burnside problem.

In 1902, William Burnside asked in [16] if a finitely generated group can
be infinite but periodici. Three years later, he proved in [17] that a finitely
generated subgroup of GL(n,C) where the order of every element is bounded
must be finite. In 1911, Schur improved on Burnside’s result and showed in
[79] that every finitely generated periodic subgroup of GL(n,C) must be finite.
This meant that, if they exist, infinite periodic groups can only be found outside
of the classical realm of groups of matrices.

Grigorchuk showed in [41] that the group that bears his name is an infinite
finitely generated periodic group. It was not the first example of such a group.
Indeed, the general Burnside problem was first solved in 1964 by Golod [39],
building up on his work with Shafarevich in [40]. Novikov and Adian had also
shown in 1968 [69, 70, 71] that there exist infinite finitely generated periodic
groups with bounded exponent, thus solving a question known as the restricted
Burnside problem. Nevertheless, the Grigorchuk group remained interesting,
as it was one of the few known examples of infinite finitely generated torsion
groups. It was also remarkably simple to define and study. For instance, it has
a solvable word problem (see [43]).

Were it confined to its role as an additional solution to Burnside’s problem,
the first Grigorchuk group would still have been notable, but this group also
turned out to play a crucial role in the theory of growth. The growth of a
finitely generated group is a quasi-isometry invariant that measures in some
sense how large an infinite group is. It was first studied by Švarc in 1955

iA periodic group is a group where every element has finite order. We will also use the
term torsion for the same notion.
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2 CHAPTER 1. INTRODUCTION

[84] and independently by Milnor in 1968 [61] in connection with volume and
curvature in Riemannian manifolds.

The growth of a finitely generated group can belong to one of three broad
classes: polynomial, exponential or intermediate. Whereas examples of groups
of polynomial or exponential growth are readily found, no example of a group
of intermediate growth was known at the time. This led Milnor to ask in 1968
[62] if it was true that every finitely generated group is either of polynomial or
of exponential growth. That same year, Milnor and Wolf proved in [86] and
[60] that this is true in the case of solvable groups. In conjunction with the
Tits alternative [82], their theorem also implies that the same holds for finitely
generated linear groups.

These partial results made it all the more surprising when, in 1983, Grig-
orchuk showed in [42, 43] that the group he studied in [41] was of intermediate
growth, thus finally solving Milnor’s question. This additionally had conse-
quences in the theory of amenabilityii. Indeed, being a group of intermediate
growth, Grigorchuk’s group is amenable, but it cannot be elementary amenable
by a theorem of Chou [20], thus settling an open question mentioned by Day
in 1957 [23].

Although it was first defined as a group of transformations of an interval, it
was soon realised that the best way to understand the Grigorchuk group was as
a group of automorphisms of a rooted tree, and the remarkable breakthroughs
of Grigorchuk led to a surge of interest in such groups. Very quickly, many
new examples of infinite finitely generated periodic groups, such as the Gupta-
Sidki p-groups [54], as well as new examples of groups of intermediate growth,
such as the Grigorchuk groups [43, 44], were discovered and studied. These
examples were later generalised to even larger families of groups, such as GGS
groups, spinal groups [13, 9] and multi-edge spinal groups [1, 58].

Another direction of generalisation of the Grigorchuk group was obtained
by trying to capture its structural properties. This led Grigorchuk to define
the notion of branch groups in 1997. However, branch groups had already
implicitly appeared earlier in a different context, namely in the work of Wilson
on just-infinite groups [85]. Indeed, they are one of three classes into which just-
infinite groups naturally split. Branch groups thus seem of great importance,
and in fact most of the interesting examples of groups acting on rooted trees
belong to this class.

Over the years, in addition to torsion and growth, various other aspects of
the Grigorchuk groups and its many generalisations were investigated, such as
width [6], automorphisms [50], abstract commensurators [78], subgroup separa-
bility [49] and spectral properties of quasi-regular representations [7], to name
but a few. All these results confirmed that automorphisms of rooted trees are
a fertile ground for groups with remarkable properties.

In this thesis, we will be mainly concerned with one specific aspect of groups
acting on rooted trees, namely maximal subgroups. As their study will form a
central part of this text, let us first give a definition.

Definition 1.0.1. Let G be a group. A proper subgroup M < G is a maximal
subgroup of G if it is a maximal element of the set of all proper subgroups of

iiWe will not discuss the notion of amenability in this text, but we refer the interested
reader to [72] (for example) for the definition.
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G, partially ordered by inclusion. In other words, M is maximal if for every
subgroup L such that M ≤ L ≤ G, we have either L =M or L = G. U

It is important to note that maximal subgroups do not always exist. For
instance, it is well-known that the group Q of rational numbers contains no
maximal subgroups. However, in a finitely generated group, every proper sub-
group is contained in a maximal oneiii [67]. Therefore, as we will mostly be
concerned with finitely generated groups, this needs not worry us.

The study of maximal subgroups can yield important information about
the structure of a group, since they sit at the top of the subgroup lattice. Fur-
thermore, they can also be used to compute the Frattini subgroup, which is
the set of all non-generators of the groupiv. Additionally, the study of max-
imal subgroups of a group is equivalent to the study of primitive actions of
this group. As primitive actions are in some sense the building blocks out of
which every action is constructed, maximal subgroups have attracted a lot of
attention, especially in the case of finite groups, where efforts have been made
to classify them (see for instance [2, 55]).

For infinite discrete groups, there is no hope of obtaining a general clas-
sification, but one can still try to understand maximal subgroups in different
classes of groups. One of the most basic question that one can ask in this
setting is whether or not a group contains maximal subgroups of infinite index.
This was solved for linear groups by Margulis and Sŏıfer in 1981 [59]. They
showed that a finitely generated linear group contains a maximal subgroup of
infinite index if and only if it is not virtually solvable, in which case it contains
in fact uncountably many such subgroups.

The result of Margulis and Soifer inspired Gelander and Glasner to study
maximal subgroups in different families of groups of geometric origin, such as
mapping class groups, hyperbolic groups and groups acting on (non-rooted)
trees. They obtained in [36] characterisations of groups containing maximal
subgroups with trivial normal core (and so, in particular, of infinite index) in
those settings.

In the context of branch groups, this question was first studied by Pervova in
2000. She showed in [73, 74] that every maximal subgroup of torsion Grigorchuk
2-groups, torsion GGS groups and torsion EGS groups is of finite index. In fact,
she even showed that the maximal subgroups of those groups are all normal. It
was then asked by Bartholdi, Grigorchuk and Šunić ([9], Question 14) if there
could exist a finitely generated branch group containing a maximal subgroup of
infinite index. This was settled by Bondarenko in 2010, when he constructed in
[14] finitely generated branch groups with maximal subgroups of infinite index.

Although Pervova’s and Bondarenko’s results showed that the class of finitely
generated branch groups can contain both groups with and without maximal
subgroups of infinite index, they also gave rise to many questions. Chief among
them is the question of the existence of an algebraic characterisation of branch
groups with maximal subgroups of infinite index, à la Margulis-Soifer.

One could also wonder if there exists a link between growth and the exis-
tence of maximal subgroups of infinite index. Indeed, it follows from Gromov’s
theorem on groups of polynomial growth [53] that a group of polynomial growth
cannot contain maximal subgroups of infinite index. The same is also true of

iiiIt is interesting to note that the proof of this result does not require the axiom of choice.
ivRecall that a non-generator is an element that is redundant in every generating set.
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every group of intermediate growth studied by Pervova. It is thus natural to
wonder if there can exist a finitely generated group of subexponential growth
with maximal subgroups of infinite index, and this question was explicitly asked
in [24] (Example 3.10 (8)). In complete generality, this was answered very re-
cently by Nekrashevych. Indeed, in his 2018 paper [66], he constructed a simple
group of intermediate growth. As it is simple, this group contains no proper
subgroup of finite index, so all its maximal subgroups must be of infinite index.
However, being simple, Nekrashevych’s group is far from being a branch group,
so one could still ask the same question in the more restricted class of branch
groups, or even in the larger class of groups acting on rooted trees.

Finally, one could also ask how far Pervova’s results and techniques can be
generalised. Alexoudas, Klopsch and Thillaisundaram [1], and later Klopsch
and Thillaisundaram [58], extended them to a large class of branch groups that
they call multi-edge spinal groups. However, like Pervova, they only manage to
obtain results for periodic groups in this family. It is thus natural to ask if there
is a deeper connection between torsion and the index of maximal subgroups
in those families, or if it is just a technical condition that could be removed
through a more careful analysis.

The main objective of this thesis is to study these questions and to, at least
partially, answer some of them. We begin in Chapter 2 by reviewing some of
the definitions, concepts and basic results that will appear in the rest of the
text. Included in this chapter are the basics of the theory of growth of groups,
of groups acting on rooted trees and more specifically of branch and weakly
branch groups. A special attention is given to spinal groups (Section 2.8) and
in particular to Šunić groups (Section 2.9), since we will heavily focus on those
at many points in the text.

In Chapter 3, as a prelude to our study of the link between growth and
the index of maximal subgroups, we study growth in finitely generated groups
acting on rooted trees. Although this is not strictly necessary, since the growth
of the groups whose maximal subgroups we study in the rest of this thesis
was either already known prior to our result or is still currently unknown, we
nevertheless think it worthwhile to include this work, as we believe that the
results contained in this chapter could be very useful in the study of growth
in groups acting on rooted trees. Furthermore, the techniques we use to study
growth also share many similarities with the ones we employ to study maximal
subgroups, although there are some key differences. The main result of this
chapter is Theorem 3.2.1, which links the growth of some groups to the growth
of what we call incompressible elements. This criterion is in fact a slightly
generalised version of the one developed by Bartholdi and Pochon in [10]. We
then apply this criterion to obtain Theorem 3.3.6, which states that many
spinal groups acting on the 3-regular rooted tree are of intermediate growth.
To the best of our knowledge, this was not known before for all but one of the
non-torsion groups, known as the Fabrykowski-Gupta group.

In Chapter 4, we study a property of groups acting on rooted trees, called
the congruence subgroup property (CSP, for short), which is of great importance
in the study of maximal subgroups of infinite index. After reviewing basic facts
and definitions in Section 4.1, we study in Section 4.2 a link between the CSP
and another well-known property of groups connected to maximal subgroups,
the LERF property. More precisely, we make the following observation.
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Proposition (4.2.2). Let G be a group acting on a rooted tree T of bounded
degree. If G has the congruence subgroup property and contains an element of
infinite order, then G is not LERF.

This proposition shows that torsion plays an important role for the LERF
property. By contrast, Grigorchuk and Wilson showed that the Grigorchuk
group is LERF [49], and Garrido obtained the same result for the Gupta-Sidki
3-group [34].

We then study in Section 4.3 the congruence subgroup property in the
special case of Šunić groups and show the following theorem.

Theorem (4.3.8). Let G be a Šunić group different from the infinite dihedral
group. Then, G has the congruence subgroup property.

As a corollary, we observe in Section 4.4 that every Šunić group is just-
infinite (Theorem 4.4.3). We then show that this is in fact true of every finitely
generated branch group with the congruence subgroup property.

Theorem (4.4.4). Let X be a finite alphabet, and let G be a finitely generated
branch group acting on X∗. If G has the congruence subgroup property, then
G is just-infinite.

In Chapter 5, we develop the technical tools that we will need in our study
of the index of maximal subgroups. In Section 5.1, we define the class MF of
groups containing no maximal subgroups of infinite index, and we prove that
this class is well-behaved with respect to extensions.

Theorem (5.1.2). Let G be a finitely generated group and N ⊴ G be a finitely
generated normal subgroup of G. If N and G/N are in MF , then G is also in
MF .

Then, in Section 5.2, we review the well-known link between the class MF
and profinite topology. In Section 5.3, we introduce pro-MF-dense subgroups
and their link with prodense subgroups and maximal subgroups of infinite
index. Finally, in Section 5.4, we prove the main result of this chapter, namely
Theorem 5.4.3. This theorem is a generalisation to a much larger class of
groups of a result of Pervova proved in [73, 74], and will be the main technical
tool upon which our investigation of maximal subgroups relies.

Our study of maximal subgroups in branch group begins properly in Chap-
ter 6, where we study maximal subgroups of non-torsion Šunić groups acting
on the binary rooted tree. The main results of this chapter can be summarised
in the following theorem, which is an amalgam of Theorem 6.2.7, Theorem
6.4.17 and Proposition 6.1.3.

Theorem 1.0.2. Let G be a non-torsion Šunić group acting on the binary
rooted tree. If G is different from the infinite dihedral group, then G contains
countably many maximal subgroups of infinite index, all isomorphic to G. In
particular, there exist branch groups of intermediate growth with maximal sub-
groups of infinite index.

Thus, we see that even in the class of branch group, having intermediate
growth is not sufficient to ensure that every maximal subgroup is of finite index.
The proof of Theorem 1.0.2 occupies Sections 6.1 to 6.4. In Section 6.5, we
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briefly describe, for completeness, the maximal subgroups of finite index of
Šunić groups, so that we have a complete description of all maximal subgroups
of those groups.

After Theorem 1.0.2 and Proposition 4.2.2, one might expect that a Šunić
group which is not periodic always contain a maximal subgroup of infinite in-
dex. However, in Chapter 7, we show that this is not the case. More precisely,
we show in Theorem 7.2.7 that a special class of non-torsion Šunić groups, that
we call the generalised Fabrykowski-Gupta groups, belong to the class MF . In
particular, this shows that there are branch groups of intermediate growth
which are in MF but are not periodic and not LERF. Thus, even in the class
of Šunić groups, the relationship between torsion and maximal subgroups of
infinite index seems to be more subtle.

In Chapter 8, in order to have a better idea of the range of behaviours that
groups in MF can exhibit, we investigate the maximal subgroups of a group
known as the Basilica group, which is in many respects quite different from
the groups that were considered up until now. The Basilica group was first
studied by Grigorchuk and Żuk in [52] as an interesting example of a group
generated by an automaton with three states and two letters. It was later
shown by Bartholdi and Virág [12] to be amenable, thus making it, thanks
to a result in [52], the first example of an amenable but not subexponentially
amenable group. In contrast to the branch groups that were shown to be in
MF , the Basilica group is torsion-free, of exponential growth, does not have
the congruence subgroup property, is not just-infinite, is not just-non-nilpotent
and is not branch, but only weakly branch. Nevertheless, we show in Theorem
8.4.12 that every maximal subgroup of the Basilica group is of finite index.
This shows that none of the above properties are necessary conditions for a
weakly branch group to belong to the class MF . Therefore, any algebraic
characterisation of weakly branch groups in this class, if it exists, must be
more subtle.

Finally, we conclude in Chapter 9 by expanding our investigations to a
different but no less important class of subgroups in groups acting on rooted
trees, namely parabolic subgroups. Parabolic subgroups are the stabilisers of
points on the boundary of the rooted tree. Although they can never be max-
imal, in branch groups they are weakly maximal [8], which makes their study
a natural generalisation of the study of maximal subgroups of infinite index.
Furthermore, parabolic subgroups also play an important role in the theory
of representations of branch groups (see for example [8, 26, 47]), so it seems
important to have a better understanding of them. In this chapter, we inves-
tigate various algebraic aspects of these subgroups. In Section 9.1, we study
the rank of parabolic subgroups. We show in Theorem 9.1.1 that parabolic
subgroups of weakly maximal groups are never finitely generated, as long as
the rigid stabilisers satisfy a technical uniformity condition.

In Sections 9.2 and 9.3, we study the isomorphism classes of parabolic sub-
groups and show that such subgroups are frequently isomorphic. The following
theorem summarises some of the main results of these sections.

Theorem 1.0.3. Let G be a finitely generated self-similar regular branch group,
and let P1, P2 ≤ G be two parabolic subgroups. If both P1 and P2 have trivial
groups of germs, then they are isomorphic. On the other hand, if the groups of
germs of P1 and P2 are not isomorphic, then P1 and P2 are not isomorphic.
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Note that although we stated the result here for self-similar regular branch
groups, some of the results in Sections 9.2 and 9.3 hold for much larger classes
of groups. Interestingly, we also apply them to Thompson’s group F in Proposi-
tion 9.2.14. Although the result we obtain in this case is not new, this suggests
that these techniques could be used to study stabilisers in a large class of
groups, even if they do not necessarily act on a rooted tree.

In the last section, Section 9.4, we study the index of parabolic subgroups in
groups acting on rooted trees. It is easy to construct examples of infinite groups
acting on rooted trees in such a way that all of their parabolic subgroups are of
finite index. It is thus natural to ask under which conditions the existence of
a parabolic subgroup of infinite index is guaranteed. In the case of automata
groups, it was asked by D’Angeli, Rodaro and Wächter ([22], Open Problem
4.3) if the existence of a parabolic subgroup of infinite index is equivalent to
the infiniteness of the group. In Theorem 9.4.8, we show that this is indeed
the case.

A note about previously published results

We should note that the results of Chapter 3 were already published in [31] and
that most of this chapter was taken from this article with minor modifications.
Similarly, the results of Section 4.3 and Chapter 6 come from a joint work with
Alejandra Garrido and were already published in [32]. Again, large parts of
the text were borrowed from that article and modified or expanded upon as
necessary.

Lastly, we would like to mention that parts of the results of Chapter 7 were
obtained by working in collaboration with Alejandra Garrido, although they
have not (at least at the time of writing) been written up and submitted for
publication.
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Background

In this chapter, we collect various basic definitions and results which we will
assume to be known throughout this text. We try to keep everything as self-
contained as possible, but proofs will frequently be omitted when they are
simple or present little interest.

2.1 Primitive actions

In this section, we give the definition of a primitive action, a notion that is
closely linked with maximal subgroups, as we will explain.

Let us first define the notion of a block for a group action.

Definition 2.1.1. Let X be a set and let G be a group acting on X. A non-
empty subset B ⊆ X is called a block if for all g ∈ G, we have either gB = B
or gB ∩B = ∅. U

Remark 2.1.2. Obviously, for any set X and any group G acting on X, we
always have that the whole set X and singletons {x} are blocks. We will call
these trivial blocks. Y

A primitive action is an action that admits no non-trivial blocks.

Definition 2.1.3. Let X be a set of cardinality at least two and let G be a
group acting on X. We say that the action of G on X is primitive if G acts
transitively on X and admits no non-trivial blocks. U

In other words, a primitive action is an action that does not preserve any
non-trivial partition.

Remark 2.1.4. Note that the hypothesis of transitivity is only required for the
case where |X| = 2. Indeed, if |X| ≥ 3, then the non-existence of non-trivial
blocks implies transitivity. Y

Let us see a few examples of primitive actions.

Example 2.1.5. Let m ≥ 2 be an integer and let X = G = Z/mZ. Then, G
acts naturally on X by left-multiplication. It is easy to show that this action
is primitive if and only if m is a prime number. X

9
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Example 2.1.6. Let X be a set and let G be a group acting on X. If the
action of G onX is 2-transitive (meaning that it is transitive on pairs of distinct
points), then it is primitive. X

Primitive actions are closely linked with maximal subgroupsi, since the
latter are exactly the stabilisers of points of primitive actions, as the next
proposition shows.

Proposition 2.1.7. Let G be a group and let M < G be a proper subgroup.
Then, M is maximal if and only if the action of G on G/M is primitive.

2.2 Permutational wreath product

In this section, we will briefly define the restricted permutational wreath prod-
uct of two groups and discuss its order in the finite case. This construction is
of great importance in the theory of group acting on rooted trees and will thus
make regular appearances throughout this text.

We begin by giving the definition.

Definition 2.2.1. Let H be a group, let X be a set and let G be a group
acting on X on the left. The restricted permutational wreath product of H by
G with respect to X, denoted by H ≀X G, is the group

H ≀X G = G⋉K,

where K is the group of finitely supported maps from X to H and the (right)
action of G on K is given by

(f · g)(x) = f(g · x).

Thus, for (g, f), (g′, f ′) ∈ H ≀X G, we have

(g, f)(g′, f ′) = (gg′, (f · g′)f ′).

U

Remark 2.2.2. The definition of the permutational wreath product is often
given in terms of right action, but we give here the definition in terms of
left actions, as in general, throughout this text, we will mainly consider left
actions. Y

Notation 2.2.3. If the space X on which the group G acts is clear from the
context, we will often write simply H ≀G instead of H ≀X G.

Moreover, we will frequently drop the words restricted and permutational
and only write wreath product to talk about H ≀X G. L

Given a group G acting on a set X, one can in particular take the wreath
product of G with itself. One can then take the wreath product of this wreath
product with G, and so on. This gives rise to the notion of an iterated wreath
product.

isee Definition 1.0.1 for the definition of a maximal subgroup
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Definition 2.2.4. Let X be a set, and let G be a group acting on X. For
n ∈ N, the nth iterated wreath product of G is the group

≀nG = (≀n−1G) ≀X G,

where ≀0G = {1} (and thus ≀1G = G). U

The notion of iterated wreath product will be especially important later
when we discuss groups acting on regular rooted trees.

If G is a finite group acting on a finite set X, and if H is also a finite group,
then the wreath product H ≀X G is also finite and its order is easily determined
in terms of the sizes of G, H and X.

Proposition 2.2.5. Let X be a finite set, let G be a finite group acting on X
and H be a finite group. Then, we have

|H ≀X G| = |H||X||G|.

In particular, assuming that |X| ≥ 2, we have

| ≀n G| = |G|
|X|n−1
|X|−1 .

2.3 Alphabets and words

In this section, we will define the notion of words over a finite alphabet, which
will be used throughout this text.

Definition 2.3.1. An alphabet is a finite set X. A letter is an element of an
alphabet. A word over the alphabet X is a finite sequence w = a1a2 . . . an of
letters in X, and its length, which we will denote by |w|, is the length of the
sequence. The word of length 0 will be called the empty word and be denoted
by ε. U

Notation 2.3.2. Let X be a finite set and let n ∈ N be an integer. We will
denote by Xn the set of words of length n over the alphabet X. We will denote
by X∗ =

⋃︁∞
n=0X

n the set of all words in the alphabet X. L

There is a natural operation on words, called concatenation.

Definition 2.3.3. Let X be an alphabet and w = a1 . . . an, v = b1 . . . bm be
two words in X∗. The word wv = a1 . . . anb1 . . . bm is called the concatenation
of w and v. U

Proposition 2.3.4. Let X be a finite set. Then, X∗ with the operation of
concatenation is a monoid, called the free monoid on X.

Using the notion of concatenation, we can define the notion of prefix. This
induces a partial order on the set of words over an alphabet.

Definition 2.3.5. Let X be an alphabet and let v, w ∈ X∗ be two words over
X. We say that v is a prefix of w, and we write v ≤ w, if there exists w′ ∈ X∗

such that w = vw′. U
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Proposition 2.3.6. Let X be an alphabet. Then, ≤ defines a partial order on
the set X∗.

In addition to finite words, one can also define right-infinite words over the
alphabet X.

Definition 2.3.7. Let X be an alphabet. A (right-)infinite word over X is a
right-infinite sequence w = a1a2a3 . . . of elements of X. We will denote the set
of all right-infinite words by X∞. U

We cannot concatenate two infinite word, but we can still define an opera-
tion of concatenation between a finite word and an infinite word.

Definition 2.3.8. Let X be an alphabet, w = a1 . . . an ∈ X∗ be a word over
X and ξ = b1b2 . . . ∈ X∞ be an infinite word over X. The concatenation of w
and ξ, written wξ, is the infinite word wξ = a1 . . . anb1b2 . . . ∈ X∞. U

Remark 2.3.9. Let X be an alphabet. Concatenation between finite and
infinite words over X is associative, in the sense that if v, w ∈ X∗ are two finite
words and ξ ∈ X∞ is an infinite word, we have v(wξ) = (vw)ξ. Y

Thanks to this concatenation, the notion of prefix still makes sense for
infinite words.

Definition 2.3.10. Let X be an alphabet, w ∈ X∗ be a word over X and
ξ ∈ X∞ be an infinite word over X. We say that w is a prefix of ξ, and write
w ≤ ξ, if there exists ξ′ ∈ X∞ such that ξ = wξ′. U

This allows us to define a topology on X∗ ⊔X∞ that makes it a compact
space.

Proposition 2.3.11. Let X be an alphabet and let T be the topology on X∗ ⊔
X∞ defined by the basis of open sets {{w} | w ∈ X∗} ∪ {Cw | w ∈ X∗}, where

Cw = {ζ ∈ X∗ ⊔X∞ | w ≤ ζ} .

Then, X∗ ⊔ X∞ with the topology T is a compact space. Furthermore, if the
cardinality of X is at least two, then X∞, equipped with the subspace topology,
is a Cantor space (i.e. homeomorphic to the Cantor set).

In this topology, a sequence (wi)i∈N converges to an infinite word ξ ∈ X∞

if and only if wi and ξ share larger and larger common prefixes as i goes to
infinity.

2.4 Graphs

In this section, we will briefly recall a few basic notions related to graphs.
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Definition of a graph

There are various definitions of the notion of a graph. Here, we will use the
one given by Jean-Pierre Serre in his book [80].

Definition 2.4.1. A graph is a tuple Γ = (V,E,̄ , o, t), where V and E are sets
called respectively the set of vertices and the set of (oriented) edges, o, t : E →
V are maps from the set of edges to the set of vertices and :̄ E → E is an
involution without fixed points such that o(ē) = t(e) for all e ∈ E. The vertex
o(e) is called the origin of e and the vertex t(e) is called the terminus of e.
The edge ē is called the inverse edge. An unoriented edge is a subset of E of
the form {e, ē}.

An orientation of the graph Γ is a subset E+ ⊂ E such that E+ ∩ E− = ∅
and E+∪Ē+ = E. An oriented graph is a graph Γ together with an orientation.

U

Notation 2.4.2. In what follows, we will frequently omit the maps ,̄ o and t
from the notation and write simply Γ = (V,E). L

Remark 2.4.3. While the definition of a graph given above is very general, it is
sometimes cumbersome to define graphs using this formalism. For this reason,
we will frequently define graphs by giving only a set V and a set E whose
elements are subsets of V of size 1 or 2. This is an abuse of notation, since the
set E in this case is not really the set of edges, but the set of unoriented edges,
but this should significantly simplify the presentation without introducing any
confusion. Y

Graphs are frequently represented diagrammatically as points connected
by lines, such as in Figure 2.4. An edge in such a diagram corresponds to
an unoriented edge in the graph. One can also represent oriented graphs by
adding arrows pointing from the origin to the terminus of each edge according
to the orientation of the graph.

Figure 2.1: A pictorial representation of a graph.

To each vertex of a graph, one can associate a (potentially infinite) number
called the degree of the vertex.

Definition 2.4.4. Let Γ = (V,E) be a graph and let v ∈ V be a vertex. The
degree of v is deg(v) = |{e ∈ E | o(e) = v}|. The graph Γ is said to be locally
finite if deg(v) <∞ for all v ∈ V , and is said to be k-regular if deg(v) = k for
all v ∈ V . U
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Morphisms

There is a natural definition of morphism between graphs.

Definition 2.4.5. Let Γ1 = (V1, E1 ,̄ , o1, t1) and Γ2 = (V2, E2 ,̃ , o2, t2) be two
graphs. A morphism f : Γ1 → Γ2 between Γ1 and Γ2 is a pair of maps (fV , fE),
where fV : V1 → V2 and fE : E1 → E2, such that for all e ∈ E1, we have

(i) fE(ē) = ˜︂fE(e),

(ii) fV (o(e)) = o(fE(e)).

If Γ2 = Γ1, f is said to be an endomorphism.
The morphism f is said to be injective if both fV and fE are injective. U

Notice that if f = (fV , fE) is a morphism from Γ1 to Γ2 and g = (gV , gE)
is a morphism from Γ2 to Γ3, their composition g ◦ f := (gV ◦ fV , gE ◦ fE) is a
morphism from Γ1 to Γ3.

Definition 2.4.6. Let Γ1 = (V1, E1 ,̄ , o1, t1) and Γ2 = (V2, E2 ,̃ , o2, t2) be two
graphs and f : Γ1 → Γ2 be a morphism. If there exists a morphism g : Γ2 → Γ1

such that g ◦ f = idΓ1
and f ◦ g = idΓ2

, where idΓ is the identity morphism
of the graph Γ, then f is an isomorphism. In the case where Γ1 = Γ2, the
isomorphism f is called an automorphism. U

Using morphisms, we can define the notion of subgraphs.

Definition 2.4.7. Let Γ1 = (V1, E1 ,̄ , o1, t1) and Γ2 = (V2, E2 ,̃ , o2, t2) be two
graphs. We say that Γ1 is a subgraph of Γ2 if there exists an injective morphism
f : Γ1 → Γ2. U

Paths and connectedness

Given a graph, one can define define the notion of a path.

Definition 2.4.8. Let Γ = (V,E) be a graph and n ∈ N be an integer. For
n ≥ 1, a (finite) path (of length n) is a finite sequence p = (e1, . . . , en) of edges
such that t(ei) = o(ei+1) for all 1 ≤ i < n. The vertex o(p) := o(e1) is called
the origin of p, the vertex t(p) := t(en) is called the terminus of p and we say
that p is a path from o(p) to t(p).

If n = 0, for every v ∈ V , we define the path of length 0 at v, or empty path
at v, as the empty sequence of edges p = () where we set o(p) = t(p) = v.

A (right-)infinite path is a right-infinite sequence of edges p = (e1, e2, . . . )
such that t(ei) = o(ei+1) for all i ≥ 1. In this case, we define the origin of p as
o(e1).

A bi-infinite path is a bi-infinite sequence of edges p = (. . . , e−1, e0, e1, . . . )
such that t(ei) = o(ei+1) for all i ∈ Z.

Let (ei, ei+1) be a subsequence of length 2 of a (possibly infinite) path p.
If ei+1 = eī, this subsequence is called a backtracking. A path is said to be
reduced if it contains no backtrackings. U

Notation 2.4.9. In what follows, if p is a finite path in a graph Γ, we will
denote the length of p by |p|. L
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Remark 2.4.10. If p = (e1, . . . , en) is a finite path from v to w, there also
exists a (possibly empty) reduced path between the same two vertices, since
removing a backtracking from a path gives us a shorter path between the same
vertices. Y

Using the notion of a path, we can define the connected components of a
graph.

Definition 2.4.11. Let Γ = (V,E) be a graph and v ∈ V be a vertex. The
connected component of v is the set of all w ∈ V such that there exists a path
p from v to w. U

Proposition 2.4.12. The relation on V given by v ∼ w if there exists a path
p such that o(p) = v and t(p) = w is an equivalence relation. Therefore, the
set V can be partitioned into connected components.

Definition 2.4.13. A graph Γ = (V,E) is connected if V consists of only one
connected component. In other words, Γ is connected if for all v, w ∈ V , there
exists a path p from v to w. U

Paths and strong connectedness for oriented graphs

In the case of oriented graphs, one usually wants paths to consist of edges that
are oriented consistently with the given orientation of the graph. This then
gives rise to the notion of strongly connected components.

Definition 2.4.14. Let Γ = (V,E) be a graph with a given orientation E+.
A path p is said to respect the orientation if ei ∈ E+ for every edge ei in the
path p.

For every v ∈ V , the strongly connected component of v is the set of all
w ∈ V such that there exist paths p and q from v to w and w to v, respectively,
respecting the orientation.

The oriented graph Γ is said to be strongly connected if all the vertices of
V belong to the same strongly connected component. U

Metric

Paths allow us to define a natural metric on the vertex set of connected graph.

Definition 2.4.15. Let Γ = (V,E) be a connected graph, and for v, w ∈ V ,
let Pv,w be the set of paths from v to w. The distance between v and w is

dΓ(v, w) = min {|p| ∈ N | p ∈ Pv,w} .

A path p ∈ Pv,w such that |p| = dΓ(v, w) is called a geodesic. U

Notice that dΓ : V × V → N is a metric on V .
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Cycles and trees

Cycles are paths in a graph that begin and end with the same vertex.

Definition 2.4.16. Let Γ = (V,E) be a graph. A cycle in Γ is a path c of
length n ≥ 1 such that o(c) = t(c). If c is of length 1, then it is called a loop.

A reduced cycle is a cycle c without backtrackings. U

Graphs without reduced cycles form a special class of graphs.

Definition 2.4.17. Let Γ = (V,E) be a graph without reduced cycles. If Γ is
connected, it is called a tree. If Γ is not connected, it is called a forest. U

Figure 2.2: A tree.

Trees possess many interesting properties. Here, we present a few that will
be useful later on.

Proposition 2.4.18. In a tree, there exists a unique reduced path between two
vertices. In particular, geodesics in trees are unique.

Proposition 2.4.19. Every connected subgraph of a tree is also a tree.

2.5 Growth of groups

In this section, we will introduce a very important asymptotic invariant in
geometric group theory called the growth of a group. According to [53] and
[46], this concept was first studied by Švarc in [84] and was also independently
studied by Milnor in [61].
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Growth type of non-decreasing functions

Before we define growth in groups, we first need to define the notion of growth
type for non-decreasing functions.

Definition 2.5.1. Given two non-decreasing functions f, g : N → N, we say
that g dominates f , and write f ≲ g, if there exist C,D ∈ N∗ such that
f(n) ≤ Cg(Dn) for all n ∈ N∗. The functions f and g are said to be equivalent
or of the same growth type, written f ∼ g, if f ≲ g and g ≲ f . We say that

• f is of polynomial growth if there exists d ∈ N such that f ≲ nd

• f is of superpolynomial growth if nd ⋦ f for all d ∈ N

• f is of exponential growth if f ∼ en

• f is of subexponential growth if f ⋦ en

• f is of intermediate growth if f is of superpolynomial growth and of
subexponential growth.

U

We will call the equivalence class of a non-decreasing function under this
equivalence relation its growth type.

Word metric

Given a finite and symmetric (i.e. closed under the operation of taking the
inverse) generating set of a group, one can construct a natural metric on the
group called the word metric.

Definition 2.5.2. Let G be a finitely generated group and S be a symmetric
finite generating set. The word norm on G (with respect to S) is the map

| · |S : G→ N
g ↦→ min {k ∈ N | g = s1 . . . sk, si ∈ S} .

The word metric on G (with respect to S) is the metric

dS : G×G→ N
(g, h) ↦→ |g−1h|S

induced by the word norm on G. U

There is a nice geometric interpretation to this metric. Indeed, to any group
G with a given finite symmetric generating set S, one can associate a graph
called the Cayley graph of G.

Definition 2.5.3. Let G be a group and let S be a finite symmetric gener-
ating set of G. The (right) Cayley graph of G with respect to S is the graph
Cay(G,S) = (G,E), where

E = {{g, gs} ⊂ G | g ∈ G, s ∈ S} .

U

It is easy to see that the word metric is simply the metric coming from the
Cayley graph of G with the generating set S (see Definition 2.4.15).
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Growth of groups

Given a group G with a finite symmetric generating set S, it is clear that for
each n ∈ N, there is only a finite number of elements at distance at most n
from the identity. The growth function of G can then be defined as the function
counting the number of elements in balls centred at the identity.

Definition 2.5.4. Let G be a group generated by a finite and symmetric set
S. The map

γG,S : N → N
n ↦→ |BG,S(n)| ,

where BG,S(n) is the ball of radius n centred at the identity in the word metric
of G with respect to S, is the growth function of G (with respect to S). U

The growth function of a group depends on the generating set we choose.
However, as we will see below, the growth type of the growth function does not
depend on the choice of generating set.

Proposition 2.5.5. Let G be a finitely generated group and S, T be two finite
symmetric generating set. Then, γG,S ∼ γG,T .

Proof. Let
C = max

t∈T
{|t|S}.

Then, clearly, for all g ∈ G, we have |g|S ≤ C|g|T . Hence,

γG,T (n) ≤ γG,S(Cn),

so γG,T ≲ γG,S . The result follows from the symmetry of the argument.

Thanks to proposition 2.5.5, we see that the growth type of the growth
function is independent of the choice of generating set and is thus a property
of the group. This allows us to define the growth of a group.

Definition 2.5.6. Let G be a finitely generated group. The growth of G is the
growth type of the growth function γG,S for any finite symmetric generating
set S.

The group G is said to be of polynomial, superpolynomial, exponential,
subexponential or intermediate growth if γG,S is of polynomial, superpolyno-
mial, exponential, subexponential or intermediate growth, respectively. U

Notation 2.5.7. In what follows, for a group G with a finite symmetric gen-
erating set S, we will frequently drop the S from the notation and write simply
γG for the growth function of G with respect to S. Furthermore, we will gen-
erally not make any distinction between the growth of the group G and the
growth function associated to a specific generating set and rely on context to
distinguish between the two. L

As one would expect, the growth of subgroups and quotients is bounded
from above by the growth of the group.

Proposition 2.5.8. Let G be a finitely generated group, H ≤ G be a finitely
generated subgroup and N ⊴ G be a normal subgroup of G. Then,
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(i) γH ≲ γG,

(ii) γG/N ≲ γG.

By the above proposition, since the growth of a non-abelian free group is
exponential, a finitely generated group cannot have a growth faster than expo-
nential. Therefore, the growth of a finitely generated group must belong to one
of three broad classes: polynomial, intermediate or exponential. Thanks to a
result of Gromov, we have an algebraic characterisation of groups of polynomial
growth.

Theorem 2.5.9 (Gromov’s Theorem, [53]). A finitely generated group G is of
polynomial growth if and only if it is virtually nilpotent.

Exponential growth rate

In what follows, we will be mainly interested in distinguishing between groups of
exponential and subexponential growth. For this purpose, it will be convenient
to study a quantity called the exponential growth rate of the group.

Proposition 2.5.10. Let G be a finitely generated group and S be a finite
symmetric generating set. The limit

κG,S = lim
n→∞

γG,S(n)
1
n

exists.

Proof. It follows easily from the definition that for all n,m ∈ N,

γG,S(n+m) ≤ γG,S(n)γG,S(m).

Hence, ln γG,S is a subadditive function, so according to Fekete’s subadditive
lemma (see [76], Problem 98), the limit

lim
n→∞

ln γG,S(n)

n

exists. The result follows.

Definition 2.5.11. The limit

κG,S = lim
n→∞

γG,S(n)
1
n

is the exponential growth rate of the group G with respect to the generating
set S. U

The exponential growth rate of a group depends on the choice of generating
set. However, whether it is equal to 1 or strictly greater than 1 depends only
on whether the group is of subexponential or of exponential growth.

Proposition 2.5.12. Let G be a finitely generated group with a finite sym-
metric generating set S. Then, κG,S > 1 if and only if G is of exponential
growth.
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It will sometimes be more convenient to consider the growth of spheres
instead of the growth of balls. In the case of infinite finitely generated groups,
the exponential growth rate can also be calculated from the size of spheres.

Proposition 2.5.13. Let G be an infinite finitely generated group with finite
symmetric generating set S. Then,

κG,S = lim
n→∞

|ΩG,S(n)|
1
n ,

where ΩG,S(n) is the sphere of radius n in the word metric on G with respect
to S.

Proof. It follows from the definition of the word metric that ΩG,S(n +m) ≤
ΩG,S(n)ΩG,S(m), so by Fekete’s subadditive lemma (see [76], Problem 98), the
limit exists.

Since ΩG,S(n) ≤ γG,S(n), we have limn→∞ |ΩG,S(n)|
1
n ≤ κG,S . On the

other hand, we have

γG,S(n) =

n∑︂
i=0

|ΩG,S(i)|.

If there exists M ∈ N such that |ΩG,S(n)| ≤M for all n ∈ N, then we have

γG,S(n) ≤ (n+ 1)M,

so that
1 ≤ lim

n→∞
|ΩG,S(n)|

1
n ≤ κG,S ≤ lim

n→∞
((n+ 1)M)

1
n = 1.

If |ΩG,S(n)| is not bounded, then there exists a subsequence (in)n∈N such that
|ΩG,S(in)| ≥ |ΩG,S(j)| for all j ≤ in. We then have

κG,S = lim
n→∞

γG,S(in)
1
in = lim

n→∞

⎛⎝ in∑︂
j=0

|ΩG,S(j)|

⎞⎠ 1
in

≤ lim
n→∞

((in + 1)|ΩG,S(in)|)
1
in

= lim
n→∞

|ΩG,S(in)|
1
in = lim

n→∞
|ΩG,S(n)|

1
n .

In both cases, we have κG,S ≤ limn→∞ |ΩG,S(n)|
1
n ≤ κG,S , which concludes

the proof.

2.6 Rooted trees and their automorphisms

We will now define rooted trees and their automorphisms, which are central
objects of study of this thesis.

Rooted trees

Definition 2.6.1. A rooted tree is a tree T = (V,E) along with a distinguished
vertex v0 ∈ V called the root.

A vertex v ∈ V different from v0 is called a leaf if deg(v) = 1. U
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Notation 2.6.2. Let T = (V,E, v0) be a rooted tree. We will frequently abuse
the notation and write v ∈ T instead of v ∈ V for a vertex of the tree. L

Notation 2.6.3. Let T = (V,E, v0) be a rooted tree. For any vertex v ∈ V ,
we will denote by |v| the distance dT (v, v0) between v and the root v0 and call
it the length of the vertex v. L

Length of vertices partition the vertex set of a rooted tree into levels.

Definition 2.6.4. Let T = (V,E, v0) be a rooted tree and n ∈ N be an integer.
The nth-level of the tree is the set

Ln = {v ∈ V | |v| = n} .

U

The fact that every vertex is connected to the root by a unique geodesic
allows us to define a partial order on the set of vertices of a rooted tree.

Definition 2.6.5. Let T = (V,E, v0) be a rooted tree and v, w ∈ V be two
vertices. If the unique geodesic from v0 to w passes through v, we will say that
w is a descendant of v and write v ≤ w. If furthermore we have |w| = |v|+ 1,
we will say that w is a child of v and that v is a parent of w. U

Proposition 2.6.6. The descendance relation forms a partial order on the set
of vertices of a rooted tree.

In what follows, we will be interested in studying the automorphisms of
rooted trees, and therefore will mostly want to restrict our attention to highly
symmetric trees. This leads us to the definition of spherically homogeneous
and regular rooted trees.

Definition 2.6.7. Let T = (V,E, v0) be a rooted tree. We will say that T
is spherically homogeneous if it has no leavesii and if for all n ∈ N, we have
deg(v) = deg(w) for all v, w ∈ Ln.

If there exists k ≥ 1 such that deg(v0) = k and deg(v) = k + 1 for all
v ∈ V \ {v0}, the rooted tree T is said to be k-regular. U

Notice that a k-regular rooted tree is not a k-regular tree in the usual sense
of the word.

Subtrees

There exists a natural notion of rooted subtrees of a rooted tree.

Definition 2.6.8. Let T = (V,E, v0) and T ′ = (V ′, E′, v′0) be rooted trees.
We say that T ′ is a rooted subtree of T if there exists an injective morphism of
graphs f : (V ′, E′) → (V,E) such that f(v′0) ≤ f(v′) for all v′ ∈ V ′. U

To any vertex of a rooted tree T , one can associate a natural subtree of T
rooted at v.

iiPlease note that the notion of spherically homogeneous rooted trees could also make
sense for trees with leaves. However, such a tree would necessarily be finite. As we will
mainly be concerned with infinite trees in this text, we choose for convenience to exclude the
finite case from the definition.
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Figure 2.3: The binary (2-ary) rooted tree.

Proposition 2.6.9. Let T = (V,E, v0) be a rooted tree and let v ∈ V be a
vertex. Let

Vv = {w ∈ V | v ≤ w}

and let

Ev = {e ∈ E | o(e) ∈ Vv and t(e) ∈ Vv} .

Then, Tv = (Vv, Ev, v) is a rooted subtree of T .

Proof. It is sufficient to show that Tv is a rooted tree, but this follows from the
fact that it is connected and Proposition 2.4.19.

Definition 2.6.10. Let T be a rooted tree and v ∈ T be a vertex. The rooted
subtree Tv of T described in Proposition 2.6.9 is called the subtree rooted at
v. U

Automorphisms

We will now introduce the group of automorphisms of a rooted tree and some
of its important subgroups. We begin by defining an automorphism of rooted
trees.

Definition 2.6.11. Let T = (V,E, v0) be a rooted tree. An automorphism of
T is an automorphism of graphs f : (V,E) → (V,E) such that f(v0) = v0. U

Clearly, the set of all automorphisms of a rooted tree T with the operation
of composition forms a group.

Notation 2.6.12. If T is a rooted tree, we will denote the group of automor-
phisms of T by Aut(T ). For g ∈ Aut(T ) and v ∈ T , we will denote the image
of v by g by g · v, or simply by gv when no confusion is possible. L
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Note that, as there is at most one edge between two vertices of a rooted
tree T = (V,E, v0), an automorphism f : T → T is uniquely determined by the
way it acts on the set of vertices V . Therefore, we will sometimes abuse the
notation and refer to maps fV : V → V as automorphisms of T and vice-versa.

Using this slight abuse of notation, automorphisms of rooted trees can be
characterised as bijections on the vertex set that preserve length and the partial
order on vertices.

Proposition 2.6.13. Let T = (V,E, v0) be a rooted tree. A map f : V → V is
an automorphism of T if and only if it satisfies the following conditions:

(i) f is bijective,

(ii) |f(v)| = |v| for all v ∈ V ,

(iii) for all v, w ∈ V , we have v ≤ w if and only if f(v) ≤ f(w).

We now introduce a few important subgroups of groups of automorphisms
of a rooted tree.

Definition 2.6.14. Let T be a rooted tree and let G ≤ Aut(T ) be a group of
automorphisms of T .

(i) For v ∈ T a vertex, the subgroup StG(v) = {g ∈ G | gv = v} is called the
stabiliser of v.

(ii) For n ∈ N, the subgroup StG(n) =
⋂︁
v∈Ln

StG(v) is called the stabiliser
of level n.

(iii) For v ∈ T , the subgroup RistG(v) = {g ∈ G | gw = w ∀w /∈ Tv} is
called the rigid stabiliser of v.

(iv) For n ∈ N, the subgroup RistG(n) =
∏︁
v∈Ln

RistG(v) is called the rigid
stabiliser of level n.

U

Remark 2.6.15. If v, w ∈ Ln are such that v ̸= w, then RistG(v)∩RistG(w) =
1 and it is easy to check that the elements of RistG(v) commute with the
elements of RistG(w). Therefore, RistG(n) is a well-defined subgroup of G. Y

Notation 2.6.16. Let T be a rooted tree, v ∈ T be a vertex and n ∈ N be
an integer. We will write St(v), St(n), Rist(v) and Rist(n) for StAut(T )(v),
StAut(T )(n), RistAut(T )(v) and RistAut(T )(n), respectively. L

Proposition 2.6.17. Let T be a rooted tree and G ≤ Aut(T ) be a group of
automorphisms of T . For all n ∈ N, the subgroups StG(n) and RistG(n) are
normal in G.

Regular rooted trees and their automorphisms

We will now consider in more details the special case of regular rooted trees
and their automorphisms. Most of what we present here can be generalised in
some form to spherically homogeneous rooted trees, but we will not need such
generality here.
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Words over alphabets and regular rooted trees

We will see that every regular rooted tree can be represented by the set of
words over a finite alphabet.

Proposition 2.6.18. Let k ∈ N be an integer with k ≥ 1 and let X be a set
of cardinality k. Let X∗ be the set of words over X (see Section 2.3) and let

E = {{v, w} ⊂ X | v ≤ w, |w| = |v|+ 1}.

Then, T = (X∗, E, ε) is a k-regular rooted tree, and every k-regular rooted tree
is isomorphic to T .

Notation 2.6.19. If X is a finite set, we will frequently denote the rooted tree
(X∗, E, ε) defined above simply by X∗. Note, therefore, that depending on the
context, X∗ could mean one of three things: the set of words over the alphabet
X, the free monoid on X, or the |X|-regular rooted tree. We will usually
rely on context to differentiate between those three different uses. Note that
in what follows, unless otherwise specified, when we write Aut(X∗), we will
always mean the group of automorphisms of the rooted tree X∗, not the group
of automorphisms of the free monoid X∗. L

Let X be a finite alphabet. In Section 2.3, we defined a partial order on X∗.
Now, if we view X∗ as a |X|-regular rooted tree, Proposition 2.6.6 also gives
us a partial order on X∗. It is easy to see that these two relations coincide.

For any v ∈ X∗, the subtree Tv rooted at v is simply the subtree whose
vertex set is the set of words having v as a prefix. It is easy to see that the map
from Tv to X

∗ that simply deletes the prefix v gives us a canonical isomorphism
between Tv and X∗.

Proposition 2.6.20. Let X be a finite set and let T = X∗ be the |X|-regular
rooted tree. For v ∈ X∗, the map

Tv → T

vw ↦→ w

is an isomorphism of rooted trees.

Projection to a vertex

Let X be a finite set of cardinality d ∈ N, and let us consider the d-regular
rooted tree X∗. Let us choose g ∈ Aut(X∗). As g is an automorphism of the
rooted tree X∗, its action must be compatible with prefixes, meaning that if
u, v ∈ X∗ are such that u ≤ v, then g · u ≤ g · v. In particular, this means that
for all v, w ∈ X∗, there exists wv ∈ X∗ such that

g · (vw) = (g · v)wv.

Therefore, for all v ∈ X∗, we can define the map

g|v : X∗ → X∗

w ↦→ wv.
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Proposition 2.6.21. Let X be a finite alphabet and let g ∈ Aut(X∗) be
an automorphism of the rooted tree X∗. Then, for every v ∈ X∗, the map
g|v : X∗ → X∗ defined above is an automorphism of X∗.

Proof. It is easy to see that g|v must preserve length and the partial order, since
g does. Therefore, it follows from Proposition 2.6.13 that g|v ∈ Aut(X∗).

This allows us to define, for any v ∈ X∗, a map from Aut(X∗) to itself.

Definition 2.6.22. Let X be a finite set. For any v ∈ X∗, we define the
projection to v as the map

φv : Aut(X∗) → Aut(X∗)

g ↦→ g|v.

For g ∈ Aut(X∗), we will call φ(g) = g|v the projection of g at v. U

Remark 2.6.23. Note that the projection of an element is sometimes called
by other names in the literature, such as section or restriction. Y

Notice that the projection map to a vertex v is in general not a homo-
morphism, unless v = ε, in which case it is simply the identity. However, it
becomes a homomorphism when restricted to the stabiliser of v.

Proposition 2.6.24. Let X be a finite set and let v ∈ X∗ be a vertex in the
rooted tree X∗. Then, for any G ≤ Aut(X∗), the restriction of φv to StG(v),
which we will also denote by φv, is a homomorphism.

Proof. Clearly, φv sends the identity to the identity. Furthermore, if g, h ∈
StG(v), then for all w ∈ X∗, we have

v(gh)|vw = (gh)vw = g(hvw) = gvh|vw = vg|vh|vw,

so φv(gh) = φv(g)φv(h).

This allows us to define the projection of a group on a vertex.

Definition 2.6.25. Let X be a finite set, let G ≤ Aut(X∗) be a group of
automorphisms of the rooted tree X∗ and let v ∈ X∗ be a vertex. The group
φv(StG(v)) ≤ Aut(X∗) is called the projection of G at v, and we will denote it
by Gv. U

Remark 2.6.26. Notice that Gv is not the image of G under φv, but the
image of the stabiliser of v. This is necessary in order to ensure that Gv is a
group. Y

Rooted and finitary automorphisms

We will now define a special class of automorphisms of a regular rooted tree:
those whose projections to all but a finite number of vertices are the identity.

Definition 2.6.27. Let X be a finite set and let g ∈ Aut(X∗) be an automor-
phism of the rooted tree X∗. We say that g is finitary if there exists a finite
set F ⊂ X∗ such that φv(g) = 1 for all v ∈ X∗ \ F . If F = {ε}, then g is said
to be a rooted automorphism. U
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As we will see in Proposition 2.6.29, finitary automorphisms form a locally
finite subgroup of Aut(T ) and should be thought of as coming from automor-
phisms of finite rooted trees. In order to better understand this subgroup, we
first need to introduce a bit of notation.

For a finite set X, recall from Definition 2.2.4 that

≀n Sym(X) =
(︁
≀n−1 Sym(X)

)︁
≀ Sym(X),

where the wreath product is taken over the setX. If we writeX = {a1, a2, . . . , ak},
we have that every element τ ∈ ≀n Sym(X) can be uniquely written as

τ = σ(τa1 , τa2 , . . . , τak),

where σ ∈ Sym(X) and τai ∈ ≀n−1 Sym(X) for every i ∈ {1, 2, . . . , k}. We can
inductively define an action of ≀n Sym(X) on Xn by

τ(v1 . . . vn) = σ(v1)τv1(v2 . . . vn),

and it is easy to check that this action is faithful. Thus, we can consider
≀n Sym(X) as a subgroup of Sym(Xn), which we will do from now on. This
subgroup is exactly the subgroups of permutations of Xn coming from auto-
morphisms of the rooted tree X∗.

Proposition 2.6.28. Let X be a finite set and n ∈ N be a natural number. For
every g ∈ Aut(X∗), the permutation of Xn given by (v ↦→ gv) is an element of
≀n Sym(X).

We can now better describe the structure of finitary automorphisms.

Proposition 2.6.29. Let X be a finite set, let FAut(X∗) be the set of finitary
automorphisms of X∗ and let us define

FAutn(X
∗) = {g ∈ FAut(X∗) | φv(g) = 1 for all v ∈ X∗ with |v| ≥ n}

for all n ∈ N. Then, we have that FAut(X∗) =
⋃︁
n≥0 FAutn(X

∗) is a locally
finite subgroup of Aut(X∗) and that, for all n ∈ N, the map

FAutn(X
∗) → ≀n Sym(X) ≤ Sym(Xn)

g ↦→ (v ↦→ gv)

is an isomorphism. In particular, for the subgroup of rooted isomorphisms
FAut1(X

∗), we have FAut1(X
∗) ∼= Sym(X).

In what follows, we will frequently identify ≀n Sym(X) and FAutn(X
∗)

thanks to the canonical isomorphism given in the above proposition.

Wreath decomposition

To any automorphism of a regular rooted tree, we can associate a unique fini-
tary automorphism which has the same action up to a specific level.

Proposition 2.6.30. Let X be a finite set, let n ∈ N be an integer and let g ∈
Aut(X∗) be an automorphism. Then, there exists a unique τg,n ∈ FAutn(X

∗)
such that τ−1

g,ng ∈ St(n).
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Proof. It follows from Proposition 2.6.29 that there is a unique τg,n ∈ FAutn(X
∗)

such that τgnv = gv for all v ∈ Xn.

Using this finitary automorphism, we can define what is known as the wreath
decomposition of an automorphism.

Proposition 2.6.31. Let X be a finite set. For every n ∈ N, the map

ψn : Aut(X∗) → Aut(X∗) ≀ (≀n Sym(X))

g ↦→ τg,n
(︁
g|v1 , g|v2 , . . . , g|v|X|n

)︁
is an isomorphism, where the wreath product is taken over the set Xn =
{v1, v2, . . . , v|X|n} and where

(︁
g|v1 , g|v2 , . . . , g|v|X|n

)︁
should be understood as

the map from Xn to Aut(X∗) sending v to g|v. The image of g by ψn is called
the wreath decomposition of g on the nth level.

Notation 2.6.32. Strictly speaking, an element of Aut(X∗) ≀ (≀n Sym(X))
should be written as τf , where τ ∈ ≀n Sym(X) and f : Xn → Aut(X∗). How-
ever, in what follows, we will always implicitly assume that we have a canonical
order on the elements of X (which can then be extended to Xn by the lexico-
graphic order), which means that we can unambiguously write functions from
Xn to Aut(X∗) simply as a |X|n-tuple of elements of Aut(X∗), as we have
done above. L

Notation 2.6.33. In what follows, we will frequently omit the ψn from the
notation. This is harmless, since this map is an isomorphism. Therefore, if
ψn(g) = τ(g1, . . . , g|X|n) for some τ ∈ ≀n Sym(X) and g1, . . . , g|X|n ∈ Aut(X∗),
we will often simply write

g = τ
(︁
g1, g2, . . . , g|X|n

)︁
.

Furthermore, if g ∈ St(n), or in other words, if τ is the trivial permutation, we
will omit τ from the notation and write simply

g =
(︁
g1, g2, . . . , g|X|n

)︁
.

L

Self-similar groups

We will now introduce a special class of groups acting on regular rooted trees,
called self-similar groups. These groups will be one of the central object of
study of this thesis. Briefly, a group is self-similar if the projections of each of
its elements belong to the same group.

Definition 2.6.34. Let X be a finite alphabet and let G ≤ Aut(X∗) be a
group of automorphisms of the rooted tree X∗. We say that G is self-similar
if for all g ∈ G and all v ∈ X∗, we have gv ∈ G.

If, furthermore, we have that Gv = G for all v ∈ X∗ (see Definition 2.6.25),
we then say that G is self-replicating. U

Remark 2.6.35. For G to be self-similar, it is sufficient that ga ∈ G for all
a ∈ X. Likewise, it suffices to check that Ga = G for all a ∈ X to prove that
G is self-replicating. Y
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More generally, following Bartholdi [3] one can also define a self-similar
family of groups.

Definition 2.6.36. Let X be a finite alphabet, let Ω be a set and let σ : Ω → Ω
be a map from this set to itself. For each ω ∈ Ω, let Gω ≤ Aut(X∗) be a group
of automorphisms of the rooted tree X∗. The family (Gω)ω∈Ω is called a self-
similar family of groups if for every ω ∈ Ω, for every g ∈ Gω and for every
a ∈ X, we have ga ∈ Gσ(ω). U

Remark 2.6.37. If σ(ω) = ω, then Gω is a self-similar group. Y

We refer the reader to Section 2.8 for examples of self-similar groups and
self-similar families of groups.

Boundary of rooted trees

Given a rooted tree T , one can consider its vertex set as a discrete topological
space. The tree structure then gives us a natural way to compactify this space
by adding a boundary. The action of a group on the tree T naturally extends
to this boundary ∂T , a fact that will be useful in several instances. Let us first
begin by defining this boundary.

Definition 2.6.38. Let T = (V,E, v0) be a rooted tree without leaves and
where the degree of every vertex is finite, and let ∂T be the set of right-infinite
paths in T starting at the root v0 and without backtracking. For ξ ∈ ∂T and
v ∈ V , we will write v ≤ ξ if the path ξ passes through v. We will call the tree
compactification of V the space V ⊔ ∂T equipped with the topology defined by
the basis

{{v} | v ∈ V (T )} ∪ {Cv | v ∈ V } ,

where

Cv = {w ∈ V (T ) ⊔ ∂T | v ≤ w} .

We will call ∂T equipped with the subspace topology the boundary of T . U

What we called the tree compactification of the vertex set is in fact a
compactification, and under some mild conditions, the boundary of a rooted
tree is a Cantor space.

Proposition 2.6.39. Let T = (V,E, v0) be a rooted tree without leaves and
where every vertex has finite degree. Then, V ⊔ ∂T is a compact metrisable
space. Furthermore, if for every v ∈ V , there exists a vertex w ≥ v of degree
greater than 2, then ∂T is a Cantor space.

It will sometimes be convenient to have an explicit metric on V ⊔∂T gener-
ating the topology on this set. We give such a metric in the next proposition.

Proposition 2.6.40. Let T = (V,E, v0) be a rooted tree without leaves and
where every vertex has finite degree. For ξ, ζ ∈ V ⊔∂T with ξ ̸= ζ, let gcp(ξ, ζ) ∈
N be the length of the greatest common prefix of ξ and ζ. In other words,
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gcp(ξ, ζ) is the length of the maximal element w (with respect to the prefix
relation ≤) satisfying both w ≤ ξ and w ≤ ζ. Then, the map

dist : V ⊔ ∂V × V ⊔ ∂V → R≥0

(ξ, ζ) ↦→

{︄
2−gcp(ξ,ζ) if ξ ̸= ζ

0 if ξ = ζ

is a metric (in fact, even an ultrametric) inducing the topology of Definition
2.6.38 on V ⊔ ∂T .

This metric makes it easy to see that in this topology, a sequence (wn)n∈N
of vertices of T converges to an element ξ ∈ ∂T if and only if for every m ∈ N,
there exists N ∈ N such that for all n ≥ N , the path from the root v0 to wn
coincides with ξ on the first m edges.

Remark 2.6.41. Let X be a finite set and let X∗ be the regular rooted tree
over the alphabetX. Then, ∂X∗ = X∞, with the topology given in Proposition
2.3.11. Y

Any automorphism of a rooted tree can be naturally extended to a homeo-
morphism (in fact, even an isometry) on the boundary by passing to the limit.

Proposition 2.6.42. Let T = (V,E, v0) be a rooted tree without leaves and
where every vertex has finite degree, and let g ∈ Aut(T ) be an automorphism
of T . If we equip V ⊔∂V with the metric of Proposition 2.6.40 then there exists
a unique isometry g̃ : V ⊔ ∂T → V ⊔ ∂T such that g̃(v) = g(v) for all v ∈ V .
In particular, g̃ restricts to an isometry of ∂T .

Proof. It is clear from the definition of the metric on V ⊔∂T that every ξ ∈ ∂T is
the limit of a sequence (ξn)n∈N with ξ0 = v0, ξn ≤ ξn+1 and |ξn+1| = |ξn|+ 1,
and that every such sequence defines a unique element of ∂T . As g is an
automorphism of T , we have that (g(ξn))n∈N is a sequence satisfying g(ξ0) = v0,
g(ξn) ≤ g(ξn+1) and |g(ξn+1)| = |g(ξn)|+ 1. Thus, this sequence converges to
a unique element of ∂T that we will denote g̃(ξ). As g preserves prefixes, it is
easy to check that this gives us a well-defined isometry of V ⊔ ∂T .

2.7 Branch and weakly branch groups

We now introduce an important class of groups acting on spherically homoge-
neous rooted trees, called branch groups.

Definition 2.7.1. Let T be a spherically homogeneous tree and let G ≤
Aut(T ) be a group of automorphisms of T . We say that G is a weakly branch
group if

(i) for every n ∈ N, G acts transitively on Ln, the n
th level of T ,

(ii) RistG(v) ̸= {1} for every v ∈ T .

If, furthermore, we have

(iii) RistG(n) is of finite index in G for all n ∈ N,
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then we say that G is a branch group. U

Remark 2.7.2. Notice that if RistG(v) ̸= {1} for every v ∈ T , then |RistG(v)| =
∞, since RistG(w) ≤ RistG(v) for all w ≥ v. Y

In the case of self-similar group, one can introduce a stronger notion of
branch groups by requiring the existence of a subgroup that contains a direct
product of copies of itself.

Definition 2.7.3. Let X be a finite set and let G ≤ Aut(X∗) be a self-
similar group of automorphisms of the regular rooted treeX∗ acting transitively
on Xn for all n ∈ N. If there exists a non-trivial subgroup K ≤ G such
that K |X| ≤ ψ1(K), then we say that G is regular weakly branch over K. If,
furthermore, K is of finite index in G, we say that G is regular branch over
K. U

Notice that in particular, regular (weakly) branch groups are (weakly)
branch.

The classical example of a branch group is the Grigorchuk group, which we
will define in Example 2.8.3. More generally, we will see in Section 2.9 that
every Šunić group except the infinite dihedral group is a regular branch group
(see Proposition 2.9.18).

Branch groups were first introduced by Grigorchuk at the Group St-Andrews
conference in 1997 (see [45]), but they appeared implicitly in prior work. In
particular, they appear in Wilson’s classification of just-infinite groups [85] as
one of the three classes into which just-infinite groups naturally split, as was
observed by Grigorchuk in [45].

Due to their large rigid stabilisers, branch and weakly branch groups pos-
sess a very particular subgroup structure. This has important algebraic con-
sequences, as we will see below. We begin by a lemma regarding subnormal
subgroups and rigid stabilisers. This is a generalised version of a very important
lemma first proved by Grigorchuk in [45].

Lemma 2.7.4. Let G be a group acting on a rooted tree T , and let H ≤ G be
a k-subnormal subgroup of G, for some k ∈ N. For all v ∈ T , if H ̸≤ StG(v),

then Rist
(k)
G (v) ≤ H, where Rist

(k)
G (v) is the kth derived subgroup of RistG(v).

Proof. We will proceed by induction on k. If k = 0, then H = G and the result
is obvious. Let us now assume that it is true for some k ∈ N and let us prove
it for k + 1.

If H is a (k + 1)-subnormal subgroup of G, then by definition, there exists
a k-subnormal subgroup H1 ≤ G such that H ⊴ H1. If v ∈ T is such that
H ̸≤ StG(v), then as H ≤ H1, we also have that H1 ̸≤ StG(v). Therefore, by

the induction hypothesis, we have Rist
(k)
G (v) ≤ H1.

Let us choose h ∈ H such that hv ̸= v, and let us consider two arbitrary

elements r, s ∈ Rist
(k)
G (v). We have hr−1h−1 ∈ Rist

(k)
G (hv) ≤ H1. As hv ̸= v,

this implies that hr−1h−1 commutes with any element in Rist
(k)
G (v). Hence,

[hr−1h−1r, s] = [r, s].

On the other hand, since H is normal in H1, we have h(r−1h−1r) ∈ H and

thus [hr−1h−1r, s] ∈ H. We conclude that Rist
(k+1)
G (v) ≤ H.
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As a corollary, we obtain the following lemma concerning rigid stabilisers
and normal subgroups. This is essentially the same as Lemma 5.3 in [9], which
itself was a slight generalisation of Grigorchuk’s lemma in [45]. We give a proof
here for completeness.

Lemma 2.7.5. Let G be a group acting transitively on each level of a spher-
ically homogeneous rooted tree T , and let N ⊴ G be a non-trivial normal sub-
group of G. Then, there exists n ∈ N such that Rist′G(n) ≤ N , where Rist′G(n)
is the derived subgroup of RistG(n).

Proof. Since N is non-trivial, there exists g ∈ N such that g ̸= 1. In particular,
there must exist v ∈ T such that gv ̸= v. By Lemma 2.7.4, we have that
Rist′G(v) ≤ N . Let n ∈ N be the level to which v belongs. Since G acts
transitively on the nth level Ln, we get by conjugating that

Rist′G(n) =
∏︂
w∈Ln

Rist′G(w) ≤ N.

Of course, the preceding lemma is only interesting if we know that Rist′G(n)
is non-trivial for every n ∈ N. This turns out to be the case for weakly branch
groups.

Lemma 2.7.6. Let G be a weakly branch group acting on a spherically ho-
mogeneous rooted tree T . Then, for every v ∈ T and k ∈ N, the subgroup

Rist
(k)
G (v) is non-trivial. In other words, RistG(v) is not solvable.

Proof. We will proceed by induction on k. For k = 0, we need to prove that
for all v ∈ T , we have that RistG(v) is non-trivial. This follows directly from
the the fact that G is a weakly branch group. Let us now assume that for some

k ∈ N, we have that Rist(k)G (v) is non-trivial for all v ∈ T , and let us show that
the same must thus be true for k + 1.

Let us fix v ∈ T . By assumption, we know that Rist
(k)
G (v) is non-trivial. In

particular, there exists g ∈ Rist
(k)
G (v) and w ∈ T such that gw ̸= w. Given that

g ∈ Rist
(k)
G (v) ≤ RistG(v), it is clear that we must have w ≥ v. Therefore, we

have RistG(w) ≤ RistG(v), and consequently Rist
(k)
G (w) ≤ Rist

(k)
G (v). Again

using our assumption, let us choose a non-trivial h ∈ Rist
(k)
G (w). Since gw ̸= w,

we get that Rist
(k)
G (gw) ∩ Rist

(k)
G (w) = 1. Thus, as ghg−1 ∈ Rist

(k)
G (gw), we

conclude that
ghg−1h−1 ̸= 1.

Since g, h ∈ Rist
(k)
G (v), we have ghg−1h−1 ∈ Rist

(k+1)
G (v), which concludes the

proof.

As an immediate consequence of the previous lemmas, we get that a non-
trivial subnormal subgroup of a weakly branch group is always infinite.

Lemma 2.7.7. Let G be a weakly branch group acting on a spherically homo-
geneous rooted tree T and let H ≤ G be a subnormal subgroup of G. If H is
non-trivial, then H is infinite.
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Proof. By Lemma 2.7.4, there exists k ∈ N and v ∈ T such that Rist
(k)
G (v) ≤ H.

It follows from Lemma 2.7.6 that Rist
(k)
G (v) is infinite. Indeed, we have that

Rist
(k)
G (w) ≤ Rist

(k)
G (v) for all w ≤ v, and as there are infinitely many such

w, all of which are non-trivial according to Lemma 2.7.6, it is easy to see that

Rist
(k)
G (v) must be infinite.

Let us now study some structural consequences of the previous lemmas.
One immediate result is that two non-trivial normal subgroups of a weakly
branch group always have a non-trivial intersection. In fact, we prove here a
more general result.

Proposition 2.7.8. Let G be a weakly branch group acting on a spherically
homogeneous rooted tree T , let H1, H2 ≤ G be two subnormal subgroups of
G acting spherically transitively on T , and let L1 ⊴ H1, L2 ⊴ H2 be non-
trivial normal subgroups of H1 and H2, respectively. Then, L1 ∩ L2 ̸= {1}. In
particular, if N1, N2 ⊴ G are two non-trivial normal subgroups, then N1∩N2 ̸=
{1}.

Proof. As L1 and L2 are non-trivial subnormal subgroups of G, it follows from

Lemma 2.7.4 that there exist k1, k2 ∈ N and v1, v2 ∈ T such that Rist
(ki)
G (vi) ≤

Li for i = 1, 2. As Li is normal in Hi, which acts spherically transitively

on T , we get that Rist
(ki)
G (ni) ≤ Li, where ni = |vi|. Let n = max{n1, n2}

and let k = max{k1, k2}. We then have Rist
(k)
G (n) ≤ Rist

(ki)
G (ni) for i = 1, 2.

Therefore, Rist
(k)
G (n) ≤ L1 ∩ L2. The conclusion then follows from Lemma

2.7.6.

Another important consequence is that subnormal subgroups of weakly
branch groups are never solvable.

Proposition 2.7.9. Let G be a weakly branch group acting on a spherically
homogeneous rooted tree T and let H ≤ G be a non-trivial subnormal subgroup
of G. Then, H is not solvable.

Proof. By Lemma 2.7.4, there exists k ∈ N and v ∈ T such that Rist
(k)
G (v) ≤ H,

and by Lemma 2.7.6, we have that RistG(v) is not solvable, which implies that

Rist
(k)
G (v) is not solvable. Consequently, H is not solvable.

As a corollary, we get that subnormal subgroups of branch groups are never
of polynomial growth (see Section 2.5 for the definition of growth).

Corollary 2.7.10. Let G be a weakly branch group and let H ≤ G be a non-
trivial finitely generated subnormal subgroup. Then, H is not of polynomial
growth. In particular, G is not of polynomial growth.

Proof. Suppose that H is of polynomial growth. Then, by Gromov’s theorem
[53], there exists a nilpotent subgroup L ≤ H of finite index in H. Let K ≤ L
be the normal core of L in H. As L is of finite index in H, we have that
K is of finite index in H. In particular, K is non-trivial, since H must be
infinite by Lemma 2.7.7. Therefore, K is a non-trivial subnormal subgroup of
G. However, K is contained in L and must thus be nilpotent, a contradiction
to Proposition 2.7.9.
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2.8 Spinal groups

In this section, we introduce a family of groups acting on rooted trees, called
spinal groups, that will be very important in what follows. Indeed, many of the
branch groups and groups of intermediate growth that we know belong to this
family. Spinal groups were first formally introduced and studied by Bartholdi
and Šunić in [13] in an effort to generalise the Grigorchuk groups. A more
general version was later introduced by Bartholdi, Grigorchuk and Šunić in [9].

Spinal groups acting on regular rooted trees

To simplify matters, we will only consider spinal groups acting on regular rooted
trees. Therefore, the definition we give here is not as general as the one given
by Bartholdi, Grigorchuk and Šunić in [9]. However, it will be sufficient for our
purposes.

Let X be a finite set of cardinality d. Let B be a finite group and let

Ω =

⎧⎨⎩{ωij}i∈N,1≤j≤d−1

⃓⃓⃓⃓
ωij ∈ Hom(B, Sym(X)),

⋂︂
i≥k

d−1⋂︂
j=1

kerωij = {1}∀k ∈ N

⎫⎬⎭
be the set of sequences of (d−1)-tuples of homomorphisms from B to Sym(X)
such that the intersection of the kernels is trivial no matter how far into the
sequence we start. Let

σ : Ω → Ω

ω = {ωij}i∈N,1≤j≤d−1 ↦→ σ(ω) = {ω(i+1)j}i∈N,1≤j≤d−1

be the shift (with respect to the first index), which is well-defined thanks to
the way the condition on the kernels was formulated.

For each ω = {ωij}i∈N,j∈{1,2,...,d−1} ∈ Ω, we can recursively define a homo-
morphism

ιω : B → Aut(X∗)

b ↦→ (ω01(b), ω02(b), . . . , ω0(d−1)(b), ισ(ω)(b))

where we identify Sym(X) with rooted automorphisms of X∗ thanks to Propo-
sition 2.6.29 ( see Figure 2.8 for a representation of this automorphism). The
condition on the kernels of sequences in Ω ensures that this homomorphism is
injective. Let us write Bω = ιω(B) ≤ Aut(X∗).

For a fixed ω = {ωij} ∈ Ω, let Aω ≤ Sym(X) be any subgroup of Sym(X).
For any k ∈ N∗, we then define

Aσk(ω) =

⟨︄
d−1⋃︂
j=1

ωkj(B)

⟩︄
.

Definition 2.8.1. Using the notation above, the group Gω = ⟨Aω, Bω⟩ for
some ω ∈ Ω and Aω ≤ Sym(X) is called a spinal group if Aσk(ω) acts transi-
tively on X for all k ∈ N. U

Remark 2.8.2. For ω ∈ Ω and Aω ≤ Sym(X), if Gω = ⟨Aω, Bω⟩ is a spinal
group, then so is Gσk(ω) = ⟨Aσk(ω), Bσk(ω)⟩ for all k ∈ N. Y
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ω01(b) ω02(b)

ω11(b) ω12(b)

Figure 2.4: The automorphism ιω(b).

Examples

We present here a few important examples of spinal groups. As we will see,
many of the groups acting on rooted trees that were studied before belong to
this family.

Example 2.8.3 (The first Grigorchuk group). Letiii X = {0,1}, A =
Sym(X) ∼= Z/2Z and B = (Z/2Z)2. Let a be the non-trivial element of A and
b, c, d be the non-trivial elements of B. For x ∈ {b, c, d}, let ωx : B → A be the
epimorphism that sends x to 1 and the other two non-trivial letters to a. For
all i ∈ N, let

ωi =

⎧⎪⎨⎪⎩
ωd if i ≡ 0 mod 3

ωc if i ≡ 1 mod 3

ωb if i ≡ 2 mod 3.

The group Gω with ω = {ωi}i∈N = ωdωcωbωdωcωb . . . (here, since |X| − 1 = 1,
we write only one index) and Aω = A is known as the first Grigorchuk group.

Although it is not readily apparent from the way we defined it, this group
is self-similar. Indeed, the actions of b, c and d on X∗ are given by

b = (a, c), c = (a, d), d = (1, b).

This group, which was first introduced in [41], is very important in the the-
ory of groups acting on rooted trees. Indeed, it was the first example of a group
of intermediate growth [42], and spinal groups were defined as a generalisation
of it. X

iiiNotice that the elements of the alphabet X are bold numbers. This is to avoid any
possible confusion between elements of X and numbers in other contexts. We will follow the
same convention throughout this thesis.
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Example 2.8.4 (Grigorchuk groups). Let X = {0,1, . . . ,p− 1}, where p
is a prime number, A = ⟨(0 1 . . . p− 1)⟩ ∼= Z/pZ and B = (Z/pZ)2. Let

ϕk : (Z/pZ)2 → Z/pZ
(x, y) ↦→ x+ ky

for 0 ≤ k ≤ p− 1 and let

ϕp : (Z/pZ)2 → Z/pZ
(x, y) ↦→ y.

The groups Gω with Aω = A and ω = {ωij}i∈N,1≤j≤p−1 ∈ Ω such that, for all
i ∈ N, we have ωij = 1 if j ̸= 1 and ωi1 = ϕki for some 0 ≤ ki ≤ p − 1 are
called Grigorchuk groups. They were introduced and studied by Grigorchuk in
[44] as a generalisation of his first group of intermediate growth. X

Example 2.8.5 (The Fabrykowski-Gupta group). Let X = {1,2,3}, A =
⟨(1 2 3)⟩ ∼= Z/3Z and B = Z/3Z. Let b ∈ B be a non-trivial element and let
a = (1 2 3) ∈ A. For all i ∈ N, let ωi1 : B → A be the unique homomorphism
sending b to a and let ωi2 : B → A be the trivial map. The group Gω with
Aω = A and ω = {ωij}i∈N,j=1,2 is called the Fabrykowski-Gupta group.

This group is self-similar, since ω is a constant sequence. It is generated by
a and b, with a cyclically permuting the first level and

b = (a, 1, b).

It was first introduced by Fabrykowksi and Gupta in [28] in order to produce
a new example of a group of intermediate growth. Its growth was also studied
by Bartholdi and Pochon in [10]. X

Example 2.8.6 (GGS groups). Finally, let us introduce another important
family of examples of spinal groups, known as GGS groups. These are a gen-
eralization of the second Grigorchuk group (introduced in [41]) and the groups
introduced by Gupta and Sidki in [54], hence the name GGS. We present here
the definition of GGS groups that was given in [9].

Let X = {1,2, . . . ,d}, A = ⟨(1 2 . . . d)⟩ ∼= Z/dZ, B = Z/dZ and ϵ =
(ϵ1, ϵ2, . . . , ϵd−1) ∈ (Z/dZ)d such that ϵ ̸= 0. Let ω = {ωij} ∈ Ω, where

ωij(x) = axϵj

for x ∈ B and a = (1 2 . . . d) ∈ A. Let Aω = A. If gcd(ϵ1, ϵ2, . . . , ϵd−1, d) = 1,
then Gω is called a GGS group. X

2.9 Šunić groups

In this section, we define yet another family of groups acting on rooted trees,
that we will call Šunić groups. These groups were introduced by Šunić in [83]
as close siblings to the first Grigorchuk group. They are a special class of self-
similar spinal groups, but we devote an entire section to them as their study
will form an important part of this thesis, in particular in Chapters 3, 4, 6 and
7.

Please note that most of the text this section was taken directly from Section
2 of the article [32] by the author and Alejandra Garrido, with a few minor
modifications where necessary, and that, unless otherwise specified, the results
are due to Šunić and were originally proved in [83].
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Definition and examples

For the rest of this section, let p be a prime number and m ≥ 1 be an integer.
Let us set X = {0,1, . . . ,p− 1}, A = ⟨(0 1 . . . p− 1)⟩ ∼= Z/pZ and B =
(Z/pZ)m. As p is prime, we can see A and B not only as groups, but also as
vector spaces over the finite field Z/pZ. Let a = (0 1 . . . p− 1) ∈ A and
b0, . . . , bm−1 ∈ B be the vectors of the standard bases of A and B, respectively.

Let ω : B → A be the epimorphism whose matrix in the bases {b0, . . . , bm−1}
and {a} is

Mω =
(︁
0 0 . . . 0 1

)︁
and let ρ : B → B be an automorphism whose matrix in the basis {b0, . . . , bm−1}
is

Mρ =

⎛⎜⎜⎜⎜⎜⎝
0 0 . . . 0 −a0
1 0 . . . 0 −a1
0 1 . . . 0 −a2
...

...
. . .

...
...

0 0 . . . 1 −am−1

⎞⎟⎟⎟⎟⎟⎠
for some a0, . . . , am−1 ∈ Z/pZ with a0 ̸= 0. We see that Mρ is the companion
matrix to the polynomial f(x) = xm + am−1x

m−1 + · · · + a1x + a0. Thus, ρ
is uniquely determined by a polynomial of degree m whose constant term is
non-zero.

Definition 2.9.1. Let f(x) = xm + am−1x
m−1 + · · · + a1x + a0 be a monic

polynomial with coefficients in Z/pZ such that a0 ̸= 0. We will call the auto-
morphism ρ : B → B whose matrix in the basis {b0, . . . , bm−1} is the companion
matrix to f the automorphism associated to f . U

The group A acts naturally on the rooted tree X∗ as a group of rooted
automorphisms. Thanks to ω and ρ, we can recursively define an action of B
on X∗ by

b = (ω(b), 1, . . . , 1, ρ(b))

for all b ∈ B. It was shown by Šunić in [83] that this action is faithful, which
allows us to see B as a group of automorphisms of the rooted tree X∗.

Proposition 2.9.2 (see Proposition 2 of [83]). Using the notation above, we
have

(i) the action of B on X∗ is faithful,

(ii) no non-trivial orbit of ρ is contained in ker(ω),

From now on, when ρ is specified, we will thus frequently consider B as a
group of automorphisms of X∗.

Definition 2.9.3 (Šunić group). Let p be a prime number, m ≥ 1 be an
integer and f(x) = xm + am−1x

m−1 + · · · + a1x + a0 be a polynomial with
coefficients in Z/pZ such that a0 ̸= 0. Using the notation above, let ρ : B → B
be the automorphism associated to f . We will call the group Gp,f = ⟨A∪B⟩ ≤
Aut(X∗) the Šunić group associated to m and f , where the action of B on X∗

is given by ω and ρ as above. U
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Remark 2.9.4. It is immediate from the definition that Šunić groups are
self-similar. Furthermore, it is also easy to check that they are spinal groups.
Unfortunately, our usage of ω as an epimorphism in this section (which comes
from our desire to keep the same notation as in [83]) clashes with the usage
of ω as a sequence of epimorphisms in Section 2.8. We will always keep those
notations separate from each other, so there should hopefully be no confusion
between the two. Y

Notation 2.9.5. As in [83], for all i ∈ Z, we will set Bi = ρi(ker(ω)). Notice
that, as we have chosen to denote elements of the alphabet X as bold num-
bers, there should be no confusion between this notation and the notation of
Definition 2.6.25. L

Remark 2.9.6. Notice that, from the definition of {b0, . . . , bm−1} and from
the form of ω and ρ given above, we have

b0 =(1, . . . , 1, b1), . . . , bm−2 = (1, . . . , 1, bm−1),

bm−1 = (a, . . . , 1, ρ(bm−1)).

In particular, we have B0 = ker(ω) = ⟨b0, . . . , bm−2⟩ and B1 = ⟨b1, . . . , bm−1⟩.
Y

Let us now see a few important examples of Šunić group.

Example 2.9.7. The group G2,x+1 is the infinite dihedral group. Indeed, in
this case, we have m = 1, so A ∼= B ∼= Z/2Z and the matrices for ω and ρ
in the canonical bases are both the identity matrix of dimension 1. By the
convention above, the non-trivial element of A is denoted by a, and since B
also contains only one non-trivial element, we will denote it by b, so that we
have b = (a, b). We thus have that G2,x+1 = ⟨a, b⟩, with a2 = b2 = 1. To see
that G2,x+1 is indeed the infinite dihedral group, it thus remains to show that
ab is an element of infinite order. This can easily be done by noticing that for
all n ∈ N, we have that (ab)2n+1 is non-trivial (it acts non-trivially on X) and
that (ab)2n = ((ba)n, (ab)n). We can then conclude by induction. X

Example 2.9.8. The group G2,x2+x+1 is the first Grigorchuk group (see Ex-
ample 2.8.3). X

Example 2.9.9. The group G2,x2+1 is the only other self-similar group in the
uncountable family defined in [43] (see Example 2.8.4). Its growth was studied
by Erschler in ([27], Corollary 2’), which is why this group is sometimes referred
to as the Grigorchuk-Erschler group. Unlike the Grigorchuk group, this group
is not torsion.

It is generated by a, b0 = (1, b1) and b1 = (a, b0). Notice that

b0b1 = (1, b1)(a, b0) = (a, b1b0) = (a, b0b1)

(using the fact that B is an abelian group). Therefore, ⟨a, b0b1⟩ is isomorphic
to the infinite dihedral group, as we will see in Corollary 2.9.15. X

Example 2.9.10. The group G3,x−1 is the Fabrykowski–Gupta group (see
Example 2.8.5), generated by a and b = (a, 1, b). X
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Basic properties

For convenience, we will now collect here a few useful results about Šunić
groups that were proved by Šunić in [83].

Notation 2.9.11. In what follows, we will denote by Gp,m the family of Šunić
groups Gp,f where f has degree m and by G the family of all Šunić groups. L

We begin by a simple but very useful contraction property of Šunić groups.
This property is trivially established and was noticed by Šunić in equation (11)
of [83].

Proposition 2.9.12. Let G ∈ G be a Šunić group and let | · | : G → N be
the word norm with respect to the generating set A ∪B (see Definition 2.5.2).
Then, for all v ∈ X and for all g ∈ G, we have

|φv(g)| ≤
|g|+ 1

2
,

where φv(g) is the projection of g to v (see Definition 2.6.22).

We will make extensive use of this property later on.
Next, let us mention that divisors of polynomials correspond to subgroups

of Šunić groups.

Proposition 2.9.13 (Proposition 3 of [83]). Let f be a monic polynomial with
coefficients in Z/pZ and non-zero constant coefficient. If f = f1f2 for some
non-constant monic polynomials f1, f2, then Gp,fi ≤ Gp,f for i = 1, 2.

The following proposition gives us a useful criterion to determine when a
Šunić group is torsion.

Proposition 2.9.14 (Proposition 9 of [83]). Let G be a group in Gp,m with
m ≥ 2. The following are equivalent:

(i) G is torsion,

(ii) G is a p-group,

(iii) there exists r such that B0 ∪B1 ∪ · · · ∪Br−1 = B,

(iv) every non-trivial ρ-orbit intersects B0.

Corollary 2.9.15. Let f be a monic polynomial with coefficients in Z/2Z
and non-zero constant coefficient, and let us set G = G2,f . The following are
equivalent :

(i) G contains an element of infinite order,

(ii) there exists b ∈ B such that b = (a, b),

(iii) f is divisible by x+ 1,

(iv) G contains a copy of the infinite dihedral group.
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Proof. (i) implies (ii): By Proposition 2.9.14, since G contains an element of
infinite order, there exists an element b ∈ B such that the ρ-orbit of b does not
intersect B0 = ker(ω). Hence, ω(ρk(bρ(b))) = ω(ρk(b))ω(ρk+1(b)) = a2 = 1 for
all k ∈ N. By (ii) of Proposition 2.9.2, we get that ρ(b) = b, so b = (a, b).

(ii) implies (iii): Since b = (a, b), we have ρ(b) = b, so b is an eigenvector of
ρ with eigenvalue 1. It follows that f , the minimal polynomial of ρ, is divisible
by x+ 1.

(iii) implies (iv) is a direct consequence of Proposition 2.9.13 and Example
2.9.7 while (iv) trivially implies (i).

The following proposition describes the abelianisation of a Šunić group. It
is equivalent to Proposition 4 of [83], but we give a different proof here.

Proposition 2.9.16. Let G ∈ G, let us set Γ := A ∗ B, and let π : Γ → G be
the canonical projection map. Let N ⊴ Γ be the kernel of π. Then, N is a
subgroup of Γ′, the commutator subgroup of Γ. Therefore, the map π projects
to an isomorphism G/G′ ∼= Γ/Γ′ ∼= A×B.

Proof. First note that π−1(G′) = Γ′N and that

G/G′ ∼= (Γ/N)/(Γ′N/N) ∼= Γ/(Γ′N),

so it suffices to show that N ≤ Γ′ to prove that G/G′ ∼= A×B.
Consider the subgroup S of index p in Γ generated by {aixa−i | x ∈ B, i ∈

Z/pZ}. Since π(a) /∈ StG(1), the kernel N is contained in S and S is the preim-
age of StG(1) in Γ. Let Ψ: S → Γ× · · · × Γ (p factors) be the homomorphism
defined by

Ψ(x) = (ω(x), 1, . . . , 1, ρ(x))

Ψ(a−1xa) = (1, . . . , 1, ρ(x), ω(x))

· · ·
Ψ(axa−1) = (ρ(x), ω(x), 1, . . . , 1)

for all x ∈ B. Defining πG×···×G := π× · · · ×π, we have πG×···×G ◦Ψ = ψ1 ◦π,
as the images of the generators of S by each of the maps coincide.

To show thatN ≤ Γ′, suppose that γ ∈ N\Γ′, then γ = aiβz with i ∈ Z/pZ,
β ∈ B, (not both trivial) and z ∈ Γ′. Since γ ∈ N and βz ∈ S, we must have
i = 0. Now,

Ψ(γ) = (ω(β)z0, z1, . . . , ρ(β)zp−1) where Ψ(z) = (z0, . . . , zp−1).

Since z ∈ Γ′, it is easily seen (by considering [a, x] for x ∈ B) that z0z1 · · · zp−1 ∈
Γ′. Thus the product of all entries in Ψ(γ) is congruent to ω(β)ρ(β) modulo
Γ′. Since πG×···×G ◦ Ψ = ψ1 ◦ π, this product must be in N and so ω(β) = 1.
Repeating the above argument, we obtain that ω(ρn(β)) = 1 for all n ∈ N,
which implies that β = 1. Thus, γ = z ∈ Γ′, as required.

The next proposition implies that every Šunić group is a self-replicating
group (see Definition 2.6.34).

Proposition 2.9.17 (Proposition 5 of [83]). Let G ∈ G. Then, the map ψ1

induces a subdirect embedding of StG(1) in G× · · · ×G. Consequently, G acts
spherically transitively and is self-replicating.
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The following proposition tells us that all Šunić groups, with the exception
of the infinite dihedral group, are regular branch groups.

Proposition 2.9.18 (Lemmas 1 and 6 of [83]).

(i) Let G ∈ Gp,m be a Šunić group, where p ≥ 3. Then, G is regular branch
over its commutator subgroup G′.

(ii) Let G ∈ G2,m be a Šunić group, where m ≥ 2. Then, G is regular branch
over the subgroup

K = ⟨[a, b] | b ∈ B1⟩G,

where ⟨[a, b] | b ∈ B1⟩G denotes the normal closure in G of the subgroup
⟨[a, b] | b ∈ B1⟩.

The next lemma shows that the subgroup over which a Šunić group is
branch always contain a level stabiliser. This will be crucial in Chapter 4 when
we discuss the congruence subgroup property.

Lemma 2.9.19 (Lemma 9 of [83]). Let G ∈ Gp,m be a Šunić group. Then,
StG(m + 1) ≤ G′. Furthermore, if p = 2 and m ≥ 2, then StG(m + 1) ≤ K,
where K is the subgroup from Proposition 2.9.18.

Finally, the following lemma, which is a collection of a few lemmas from
[83], tells us the structure of Šunić groups acting on the binary tree (with the
exception of the infinite dihedral group). It will be useful at various points
throughout this text.

Lemma 2.9.20 (See Lemmas 3, 5 and 7 of [83]). Let G ∈ G2,m be a Šunić
group with m ≥ 2 and let B1 be the normal closure of B1 in G.

(i) For any element d ∈ B0 \B1, we have

G = ⟨a, d⟩⋉B1 = ⟨a, d⟩⋉ (B1 ⋉K) (2.1)

(ii) There exist elements c ∈ B−1 \ B0 and d ∈ B0 \ B1 such that c = (a, d)
and

ψ1(StG(1)) = Ĉ ⋉ (B1 ×B1) (2.2)

where Ĉ = ⟨(a, d), (d, a)⟩ is a diagonal subgroup of ⟨a, d⟩×⟨a, d⟩, meaning
that one component is trivial if and only if the other one is.

In particular, if g ∈ StG(1) is such that ψ(g) = (h, 1) or ψ(g) = (1, h)
with h ∈ ⟨a, d⟩ ≤ G then, g = 1.
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Groups of intermediate growth

In this chapter, we investigate the growth of groups acting on rooted trees,
with the aim of discovering new groups of intermediate growth.

The existence of groups of intermediate growth was first established by
Grigorchuk in 1983 [42]. In that article, he used self-similarity and an argu-
ment of length contraction to show that the Grigorchuk group has intermediate
growth. It was soon realised that this technique could be generalised and ap-
plied to many other groups. This was done by Grigorchuk in [44] for the family
of p-groups known as Grigorchuk p-groups, and later by Bartholdi and Šunić
for many of the torsion spinal groups [13].

However, not all groups of intermediate growth acting on a rooted tree
possess this property of length contraction. For example, some elements of the
non-torsion Grigorchuk groups acting on the binary rooted tree do not reduce
in length, but Grigorchuk showed in [43] that such elements are rare enough
that the growth of those groups is still intermediate. In 2006, Bux and Pérez
generalised these ideas and showed that in general, as long as the proportion
of elements reducing in length is large enough, a group acting on a rooted tree
has subexponential growth [18]. They then used this result to prove that the
iterated monodromy groupi of the polynomial z2 + i has intermediate growth.

In a similar vein, Bartholdi and Pochon showed in 2009 that for a certain
class of self-similar groups, if the set of elements whose length does not contract
up to a fixed level is of subexponential growth, then the entire group is of
subexponential growth. They also obtained a precise bound on the growth of
the group when the growth of this set is linear. They then used their results
to study the growth of the Fabrykowski-Gupta group, which was first studied
by Fabrykowski and Gupta in [28, 29].

Although already quite powerful, Bartholdi and Pochon’s criterion is some-
what limiting, since to apply it, one needs to understand not only elements
with no length contraction, but also elements whose length contraction only
appears after a significant number of steps. It is thus natural to ask if it would
be sufficient to consider only the growth of elements with no length contraction
at all. After some preliminaries in Section 3.1, we show that this is indeed the

iAlthough they are a very interesting class of groups acting on rooted trees, we will not
discuss iterated monodromy groups in this thesis. We refer the interested reader to [65] for
the definition and a survey of the topic.
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case in Section 3.2 (Theorem 3.2.1). We then apply this criterion in Section
3.3, where we show in Theorem 3.3.6 that a large family of spinal groups (see
Section 2.8) acting on the 3-regular rooted tree are of subexponential growth.
Finally, in Section 3.4, we discuss a few natural questions that remain open.

The results of this chapter were already published in [31], and most of the
text of this chapter comes from this article, with minor adjustments where
necessary.

3.1 Preliminaries

Word pseudometrics and growth

In Section 2.5, we defined the word metric of a group (with respect to a given
generating set) and the associated growth function. However, instead of work-
ing with a word metric, it is sometimes more convenient to work with what we
will call a word pseudometric.

Definition 3.1.1. Let G be a finitely generated group and S be a symmetric
finite generating set for G. A map | · | : S → {0, 1} that associates to every
generator a length of 0 or 1 will be called a pseudolength on S. A pseudolength
can be extended to a map

| · | : G→ N

g ↦→ min

{︄
k∑︂
i=1

|si|

⃓⃓⃓⃓
⃓ g = s1 . . . sk, si ∈ S

}︄
called the word pseudonorm of G (associated to (S, | · |)). We will call the
corresponding pseudometric

d : G×G→ N
(g, h) ↦→ |g−1h|

the word pseudometric of G (associated to (S, | · |)). U

Remark 3.1.2. If every generator is assigned a length of 1, then we obtain
the word metric associated to S. Y

If there is only a finite number of elements with length 0 in G, one can
define a growth function for the group with respect to the given pseudometric.
The growth function thus obtained is in fact equivalent to the usual growth
function defined in Definition 2.5.4.

Proposition 3.1.3. Let G be a group generated by a finite symmetric set S
and | · | : S → {0, 1} be a pseudolength on S. Let

G0 = ⟨{s ∈ S | |s| = 0}⟩

be the subgroup of G generated by elements of S of length 0. If G0 is finite,
then the growth function

γG,|·| : N → N
n ↦→

⃓⃓
BG,|·|(n)

⃓⃓
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is well-defined, where BG,|·|(n) = {g ∈ G | |g| ≤ n}, and γG,|·| ∼ γG,S, where
γG,S is the usual growth function (see Definition 2.5.4).

Proof. To show that γG,|·| is well-defined, we need to show that⃓⃓
BG,|·|(n)

⃓⃓
<∞

for every n ∈ N. Let S1 = {s ∈ S | |s| = 1} be the set of generators of length 1.
For g ∈ G with |g| = n, it follows from the definition of the word pseudonorm
that there exist s1, . . . , sn ∈ S1, g0, . . . , gn ∈ G0 such that

g = g0s1g1 . . . sngn.

Hence, ⃓⃓
BG,|·|(n)

⃓⃓
≤

n∑︂
k=0

|G0|k+1|S1|k <∞.

We must now show that the growth function with respect to the word
pseudometric is equivalent to the growth function with respect to the word
metric. As in Section 2.5, we will denote by | · |S the word norm in G with
respect to S. Let

M = max{|g|S | g ∈ G0}.

Then, the decomposition
g = g0s1g1 . . . sngn

implies that

|g|S ≤ (n+ 1)M + n

= (|g|+ 1)M + |g|
= |g|(M + 1) +M

≤ (2M + 1)|g|

if |g| ≥ 1. Hence, if n ≥ 1,

γG,|·|(n) ≤ γG,S((2M + 1)n)

so γG,|·| ≲ γG,S . Since it is clear from the definition that γG,S ≲ γG,|·|, we have
γG,|·| ∼ γG,S .

Definition 3.1.4. Using the notation of Proposition 3.1.3, a word pseudomet-
ric such that G0 is finite will be called a proper word pseudometric. U

Since the growth function coming from a proper word pseudometric is equiv-
alent to the growth function coming from a word metric, we can study growth
using whichever is more convenient. We will frequently make use of this fact
in what follows.

In this chapter, we will be interested mainly in distinguishing between
groups of exponential or subexponential growth. As we saw in Section 2.5,
when we have a word metric, this can be done using the exponential growth
rate of the group. It is straightforward to generalise this to proper word pseu-
dometrics.
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Proposition 3.1.5. Let G be a finitely generated group, S be a finite symmetric
generating set and | · | : G→ N be a proper word pseudonorm. The limit

κG,|·| = lim
n→∞

γG,|·|(n)
1
n

exists and is called the exponential growth rate of the group G (with respect to
the generating set S and the pseudonorm | · |). Furthermore, if we denote by
ΩG,|·|(n) the sphere of radius n in the word pseudometric | · |, we have

κG,|·| = lim
n→∞

|ΩG,|·|(n)|
1
n

as long as G is infinite.

The exponential growth rate depends on the pseudometric. However, as
with the usual word metric, whether it is greater than 1 or not depends only
on the growth type of the group.

Proposition 3.1.6. Let G be a finitely generated group with a finite symmetric
generating set S and a proper word pseudonorm | · |. Then, κG,|·| > 1 if and
only if G is of exponential growth.

Non-ℓ1-expanding self-similar families of groups acting on
rooted trees

A classical way of showing that a group acting on a rooted tree is of subexpo-
nential growth is to show that the projection of elements to some level induces
a significant amount of length reduction. We introduce here a class of groups
that seem well suited to this kind of argument, non-ℓ1-expanding self-similar
families of groups acting on rooted trees. This is a special case of self-similar
families of groups, as defined in Definition 2.6.36.

Note that instead of considering self-similar families over a set Ω as in
Definition 2.6.36, we will restrict ourselves to self-similar families over N, where
the map σ : N → N is simply the addition by 1. This has the advantage
of simplifying the notation without causing any significant loss in generality,
since if (Gω)ω∈Ω is a self-similar family, then for any ω ∈ Ω, (Gν)ν∈N is also a
self-similar family, where Gν = Gσν(ω).

Definition 3.1.7. Let X be a finite alphabet of size d, and let (Gν)ν∈N be a
self-similar family of groups of automorphisms of the rooted tree X∗. For each
ν ∈ N, let Sν be a finite symmetric generating set for Gν and let |·|ν be a proper
word pseudonorm on Gν with respect to Sν . The family (Gν , Sν , | · |ν)ν∈N is
said to be a non-ℓ1-expanding self-similar family of groups of automorphisms
of X∗ if for all ν ∈ N and all g ∈ Gν , we have

d∑︂
i=1

|gi|ν+1 ≤ |g|ν ,

where (using the notation mentioned in Notation 2.6.33)

g = τ(g1, g2, . . . , gd)

with g1, g2, . . . , gd ∈ Gσ(ω), τ ∈ Sym(X).
If Gv = G, Sν = S and | · |ν = | · | for all ν ∈ N, we say that G is a

non-ℓ1-expanding self-similar group (with respect to S and | · |). U



3.1. PRELIMINARIES 45

To show that a self-similar family of groups is non-ℓ1-expanding, it is suffi-
cient to look at the generators.

Proposition 3.1.8. Let (Gν , Sν , | · |ν)ν∈N be a self-similar family of groups. It
is non-ℓ1-expanding if and only if, for all ν ∈ N and s = τ(s1, s2, . . . , sd) ∈ Sν ,
we have

d∑︂
i=1

|si|ν+1 ≤ |s|ν .

Proof. This follows directly from the subadditivity of the word pseudonorm.

In particular, we see that if s = τ(s1, s2, . . . , sd) ∈ Sν , there is at most one
si with positive length, and none if |s|ν = 0.

Notation 3.1.9. In order to keep the notation simple, if (Gν , Sν , | · |ν)ν∈N is a
non-ℓ1-expanding self-similar family of groups, for ν ∈ N, we will write γν for
the growth function and κν for the exponential growth rate of Gν with respect
to the pseudonorm | · |ν . L

The exponential growth rates of a non-ℓ1-expanding self-similar family of
groups form a non-decreasing sequence, a fact that will be useful later.

Proposition 3.1.10. Let (Gν , Sν , | · |ν)ν∈N be a non-ℓ1-expanding self-similar
family of groups of automorphisms of X∗, where X is an alphabet of cardinality
d. For any ν ∈ N,

κν ≤ κν+1.

Proof. Let n ∈ N be greater than d and let g ∈ Gν be such that |g|ν ≤ n. We
have

g = τ(g1, g2, . . . , gd)

with g1, g2, . . . , gd ∈ Gν+1, τ ∈ Sym(X) and

d∑︂
i=1

|gi|ν+1 ≤ |g|ν ≤ n.

Since g is determined by g1, g2, . . . , gd and τ , we have

γν(n) ≤ d!
∑︂

r1+r2+···+rd≤n

γν+1(r1)γν+1(r2) . . . γν+1(rd).

Let C(k) = γν+1(k)

κk
ν+1

for any k ∈ N.We have

γν(n) ≤ d!
∑︂

r1+r2+···+rd≤n

C(r1)κ
r1
ν+1C(r2)κ

r2
ν+1 . . . C(rd)κ

rd
ν+1

= d!κnν+1

∑︂
r1+r2+···+rd≤n

C(r1)C(r2) . . . C(rd).
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Let s(n) ∈ {1, . . . , n} be such that C(s(n)) ≥ C(r) for all 1 ≤ r ≤ n. We then
have

γν(n) ≤ d!κnν+1

∑︂
r1+r2+···+rd≤n

C(s(n))d

≤ d!κnν+1C(s(n))
dnd

It is clear from the definition that the sequence s(n) is non-decreasing. There-

fore, either it stabilises or it goes to infinity. Since limk→∞ C(k)
1
k = 1, in both

cases we have limn→∞ C(s(n))
1
n = 1. Hence,

κν = lim
n→∞

γν(n)
1
n

≤ κν+1 lim
n→∞

d!
1
nC(s(n))

d
nn

d
n

= κν+1.

Let us now see a few examples of non-ℓ1-expanding self-similar families of
groups. This list is by no means exhaustive, but serves to illustrate that many
previously studied groups fall into this class.

Example 3.1.11 (Spinal groups). Using the notation of Section 2.8, let Gω =
⟨Aω, Bω⟩ be a spinal group. For all ν ∈ N, let us set Gν = Gσν(ω), Aν = Aσν(ω),
Bν = Bσν(ω) and Sν = Aν ∪ Bν . Let | · |ν : Gν → N be the pseudonorm
induced by setting |a|ν = 0 for all a ∈ Aν and |b|ν = 1 for all b ∈ Bν \ {1}.
Then, (Gν , Sν , | · |ν)ν∈N is a non-ℓ1-expanding self-similar family of groups.

Indeed, for a ∈ Aν , we have a = τ(1, 1, . . . , 1), so 0 = |a|ν =
∑︁d
i=0 |1|ν+1. For

b ∈ Bν \ {1}, we have b = τ(a1, . . . , ad−1, c) with a1, . . . , ad−1 ∈ Bν+1 and
c ∈ Bν+1. Therefore,

1 = |a1|+ · · ·+ |ad−1|+ |c| = |b|.

We conclude thanks to Proposition 3.1.8. X

Example 3.1.12 (Nekrashevych’s family of groups Dω). Let {0, 1}∞ be the
set of right-infinite sequences of 0 and 1 and

σ : {0, 1}∞ → {0, 1}∞

ω0ω1ω2 . . . ↦→ ω1ω2ω3 . . .

be the shift. LetX be an alphabet of two letters. For ω = ω0ω1ω2 · · · ∈ {0, 1}∞,
we can recursively define automorphisms βω, γω ∈ Aut(X∗) by

βω = (α, γσ(ω))

γω =

{︄
(βσ(ω), 1) if ω0 = 0

(1, βσ(ω)) if ω0 = 1

where α ∈ Aut(X∗) is the non-trivial rooted automorphism of X∗. We can
then define the group Dω = ⟨α, βω, γω⟩. This family of groups was first studied
by Nekrashevych in [63].



3.2. INCOMPRESSIBLE ELEMENTS AND GROWTH 47

It follows from the definition that α2 = β2
ω = γ2ω = 1. Hence, the set Sω =

{α, βω, γω} is a finite symmetric generating set of Dω. Let | · |ω : Dω → N be the
word pseudometric defined by |α|ω = 0, |βω|ω = |γω|ω = 1. Then, the family
(Gν , Sν , | · |ν)ν∈N is a non-ℓ1-expanding self-similar family of automorphisms of
T2, where Gν = Dσν(ω), Sν = Sσν(ω) and | · |ν = | · |σν(ω). X

Example 3.1.13 (Peter Neumann’s example). We present here a group that
first appeared as an example in Neumann’s paper [68]. The description we use
here is based on [9].

Let X = {1,2, . . . ,6} and A = Alt(X). For every couple (a, x) ∈ A × X
such that x is a fixed point of a, we can recursively define an automorphism of
Aut(X∗) by

b(a,x) = a(1, . . . , b(a,x), . . . , 1)

where the b(a,x) is in the xth position. Let

S =
{︁
b(a,x) ∈ Aut(X∗) | (a, x) ∈ A×X and ax = x

}︁
,

G = ⟨S⟩ and | · | : G → N be the word norm associated to S. Then, it is clear
from the definition that (Gν , Sν , | · |ν)ν∈N is a non-ℓ1-expanding self-similar
family of automorphisms of X∗, where Gν = G, Sν = S and | · |ν = | · | for all
ν ∈ N. Hence, G is a non-ℓ1-expanding self-similar group. X

Incompressible elements

In non-ℓ1-expanding self-similar families of group, there are elements that never
reduce in length no matter how many time we take their projections. We will
call those incompressible elements.

Definition 3.1.14. LetX be a finite alphabet of size d and let (Gν , Sν , |·|ν)ν∈N
be a non-ℓ1-expanding self-similar family of groups of automorphisms of X∗.
For any k ∈ N∗, we recursively define the sets Iνk of elements of Gν which have
no length reduction up to level k as

Iνk =

{︄
g = τ(g1, g2, . . . , gd) ∈ Gν

⃓⃓⃓⃓
g1, g2, . . . , gd ∈ Iν+1

k−1 ,

d∑︂
i=1

|gi|ν+1 = |g|ν

}︄

where Iν0 = Gν for all ν ∈ N.
We will call the set

Iν∞ =

∞⋂︂
k=1

Iνk

the set of incompressible elements of Gν . This is the set of elements which
have no length reduction on any level. U

3.2 Incompressible elements and growth

The standard technique used to show that a self-similar family of groups acting
on a rooted tree is of subexponential growth, pioneered by Grigorchuk [42],
relies on the existence of significant length contraction when we look at the
wreath decomposition of elements of the groups. Consequently, this method
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cannot be applied to groups containing incompressible elements. However, as
we will see, as long as the incompressible elements do not grow too quickly, the
groups still have subexponential growth.

More precisely, we will show that if every group in a non-ℓ1-expanding self-
similar family of groups of automorphisms of a regular rooted tree is generated
by incompressible elements and the sets of incompressible elements grow uni-
formly subexponentially, then the groups themselves are also of subexponential
growth. This result is a generalization of the first part of Proposition 5 proved
by Bartholdi and Pochon in [10]. The main difference is that we show here
that under our assumptions, it is sufficient to look at the growth of the set
Iν∞ of incompressible elements instead of the set Iνk of elements that have no
reduction up to level k for some k ∈ N.

Theorem 3.2.1. Let A ∈ N be an integer, X = {1,2, . . . ,d} be an alphabet
of size d ≥ 2, (Gν , Sν , | · |ν)ν∈N be a non-ℓ1-expanding self-similar family of
automorphisms of X∗ such that Sν ⊆ Iν∞ and |Sν | ≤ A for every ν ∈ N, and
let Ων(n) be the sphere of radius n ∈ N in Gν with respect to the pseudometric
| · |ν . If there exists a subexponential function δ : N → N with ln(δ) concave
such that for infinitely many ν ∈ N, Iν∞ ∩Ων(n) ≤ δ(n) for all n ∈ N, then the
groups Gν are of subexponential growth for every ν ∈ N.

Proof. The proof is inspired by the one found in [10], with a few key modifica-
tions. The idea is to split the set Ων(n) in two, the set of elements which can be
written as a product of a few incompressible elements and the set of elements
which can only be written as a product of a large number of incompressible
elements. The first set grows slowly because there are few incompressible ele-
ments, and the second set grows slowly because there is a significant amount
of length reduction.

Let us fix ν ∈ N such that Iν∞∩Ων(n) ≤ δ(n) for all n ∈ N. In what follows,
we will show that κν = 1. By Proposition 3.1.10, this will show that κν′ = 1
for all ν′ ≤ ν.

Since Sν ⊆ Iν∞, we have that for every g ∈ Gν , the set{︄
N ∈ N | g = g1g2 . . . gN , gi ∈ Iν∞,

N∑︂
i=1

|gi|ν = |g|ν

}︄

is not empty. Hence, we can define

N(g) = min

{︄
N ∈ N | g = g1g2 . . . gN , gi ∈ Iν∞,

N∑︂
i=1

|gi|ν = |g|ν

}︄
.

For any 0 < ϵ < 1 and any n ∈ N, the sphere Ων(n) of radius n in Gν can
be partitioned in two by the subsets

Ω>ν (n, ϵ) = {g ∈ Ων(n) | N(g) > ϵn}
Ω<ν (n, ϵ) = {g ∈ Ων(n) | N(g) ≤ ϵn}.

Let us assume that there are infinitely many values of n such that Ω>ν (n, ϵ) ̸=
∅ (otherwise, we can simply ignore this set and consider only Ω<ν (n, ϵ)). For
such an n, let g ∈ Ω>ν (n, ϵ). By definition ofN(g), there exists g1, g2, . . . , gN(g) ∈
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Iν∞ such that g = g1g2 . . . gN(g) and
∑︁N(g)
i=1 |gi|ν = |g|ν . Let hi = g2i−1g2i for

1 ≤ i ≤ ⌊N(g)
2 ⌋. Then,

g =

{︄
h1h2 . . . hN(g)−1

2
gN(g) if N(g) is odd

h1h2 . . . hN(g)
2

if N(g) is even.

Notice that since

|g|ν =

N(g)∑︂
i=1

|gi|ν ,

we must have |hi|ν = |g2i−1|ν + |g2i|ν . Hence, no hi can be in Iν∞ (otherwise,
this would contradict the minimality of N(g)).

Let

S(g) =

{︃
i

⃓⃓⃓⃓
|hi|ν ≤ 6

ϵ

}︃
be the set of ”small” factors of g and

L(g) =

{︃
i

⃓⃓⃓⃓
|hi|ν >

6

ϵ

}︃
be the set of ”large” factors. Clearly, |S(g)| + |L(g)| = ⌊N(g)

2 ⌋. Since g ∈
Ω>ν (n, ϵ), N(g) is not too small compared to n, which implies that as long as
n is large enough, more than half of the factors of g must be small. More

precisely, if n > 3
ϵ , then |S(g)| ≥ 1

2⌊
N(g)
2 ⌋. Indeed, it that were not the case,

then we would have |L(g)| > 1
2⌊

N(g)
2 ⌋, so

n ≥
⌊N(g)

2 ⌋∑︂
i=1

|hi|ν ≥
∑︂
i∈L(g)

|hi|ν

>
1

2

⌊︃
N(g)

2

⌋︃
6

ϵ
≥ (N(g)− 1)

4

6

ϵ

>
3

2
n− 3

2ϵ
> n

which is a contradiction. Therefore, if n > 3
ϵ ,

|S(g)| ≥ 1

2

⌊︃
N(g)

2

⌋︃
≥ N(g)− 1

4

>
ϵ

4
n− 1

4

>
ϵ

8
n.

This means that the number of small factors is comparable with n. This is
important because, as we will see, every small factor gives us some length
reduction on a fixed level (fixed in the sense that it does not depend on n, but
only on ϵ). Hence, on this level, we will see a large amount of length reduction.
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For r ∈ R, let

lν(r) = min{k ∈ N | (Gν \ Iν∞) ∩Bν(r) ∩ Iνk = ∅}

where Bν(r) is the ball of radius r in Gν . Notice that since (Gν \ Iν∞)∩Bν(r)
is a finite set whose intersection with Iν∞ =

⋂︁∞
k=1 Iνk is empty, lν(r) is well-

defined. It is the first level on which every element of (Gν \ Iν∞) ∩ Bν(r) has
seen some length contraction.

Let us consider the lν(
6
ϵ )

th-level decomposition of g,

g = τ(g11...1, g11...2, . . . , gdd...d)

with τ ∈ ≀lν( 6
ϵ ) Sym(X) and g11...1, . . . , gdd...d ∈ Gν+lν( 6

ϵ )
. Since

g =

{︄
h1h2 . . . hN(g)−1

2
gN(g) if N(g) is odd

h1h2 . . . hN(g)
2

if N(g) is even,

we have

∑︂
j∈Xlν ( 6

ϵ
)

|gj |ν+lν( 6
ϵ )

≤

⎛⎜⎝N(g)−1
2∑︂
i=1

∑︂
j∈Xlν ( 6

ϵ
)

|hi,j |ν+lν( 6
ϵ )

⎞⎟⎠+
∑︂

j∈Xlν ( 6
ϵ
)

|gN(g),j |ν+lν( 6
ϵ )

if N(g) is odd and

∑︂
j∈Xlν ( 6

ϵ
)

|gj |ν+lν( 6
ϵ )

≤

N(g)
2∑︂
i=1

∑︂
j∈Xlν ( 6

ϵ
)

|hi,j |ν+lν( 6
ϵ )

if N(g) is even, where X lν(
6
ϵ ) is the set of words of length lν(

6
ϵ ) in the alphabet

X = {1,2, . . . ,d},

hi = τi(hi,11...1, hi,11...2, . . . , hi,dd...d)

is the lν(
6
ϵ )

th-level decomposition of hi and

gN(g) = τN(g)(gN(g),11...1, gN(g),11...2, . . . , gN(g),dd...d)

is the lν(
6
ϵ )

th-level decomposition of gN(g).

It follows from the definition of lν(
6
ϵ ) that hi /∈ Iν

lν(
6
ϵ )

for all i ∈ S(g).

Hence, for all i ∈ S(g), ∑︂
j∈Xlν ( 6

ϵ
)

|hi,j |ν+lν( 6
ϵ )

≤ |hi|ν − 1.

Therefore, as long as n > 3
ϵ ,∑︂

j∈Xlν ( 6
ϵ
)

|gj |ν+lν( 6
ϵ )

≤ n− |S(g)|

< n− ϵ

8
n

=
8− ϵ

8
n.
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Hence, by summing over every possible lengths of the factors in the lν(
6
ϵ )

th-level
decomposition, we get that for n > 3

ϵ ,

|Ω>ν (n, ϵ)| ≤
∑︂

k1+···+k
d
lν ( 6

ϵ
)
≤ 8−ϵ

8 n

C|Ων+lν( 6
ϵ )
(k1)| . . . |Ων+lν( 6

ϵ )
(k
dlν ( 6

ϵ
))|

≤
(︃
8− ϵ

8
n

)︃dlν ( 6
ϵ
)

K(n)κ
8−ϵ
8 n

ν+lν(
6
ϵ )

where C =
[︁
Gν : StGν

(︁
lν
(︁
6
ϵ

)︁)︁]︁
and K(n) is a function such that

lim
n→∞

K(n)
1
n = 1.

We conclude that, for a fixed ϵ between 0 and 1,

lim sup
n→∞

|Ω>ν (n, ϵ)|
1
n ≤ κ

8−ϵ
8

ν+lν(
6
ϵ )
.

On the other hand,

|Ω<ν (n, ϵ)| ≤
ϵn∑︂
i=1

∑︂
k1+···+ki=n

i∏︂
j=1

δ(kj)

≤
ϵn∑︂
i=1

∑︂
k1+···+ki=n

δ
(︂n
i

)︂i
by Lemma 6 of [10], since ln(δ) is concave. Hence, assuming that ϵ < 1

2 , we
have

|Ω<ν (n, ϵ)| ≤
ϵn∑︂
i=1

(︃
n

i− 1

)︃
max

1≤i≤ϵn

{︃
δ
(︂n
i

)︂i}︃
≤ ϵn

(︃
n

ϵn

)︃
max

1≤i≤ϵn

{︃
δ
(︂n
i

)︂i}︃
.

Using the fact that
(︁
n
ϵn

)︁
≤ nϵn

(ϵn)! and Stirling’s approximation, we get

|Ω<ν (n, ϵ)| ≤ ϵn
(︂e
ϵ

)︂ϵn C(n)√
2πϵn

max
1≤i≤ϵn

{︃
δ
(︂n
i

)︂i}︃
where limn→∞ C(n) = 1. Therefore,

lim sup
n→∞

|Ω<ν (n, ϵ)|
1
n ≤

(︂e
ϵ

)︂ϵ
lim sup
n→∞

δ

(︃
n

in

)︃ in
n

where 1 ≤ in ≤ ϵn maximises δ
(︁
n
i

)︁i
. Let kn = n

in
. Then, 1

ϵ ≤ kn ≤ n.

Since limk→∞ δ(k)
1
k = 1, there must exist N ∈ N such that sup 1

ϵ≤k
{δ(k) 1

k } =

sup 1
ϵ≤k≤N

{δ(k) 1
k }. Hence, there exists some Kϵ ∈ N such that Kϵ ≥ 1

ϵ and

lim supn→∞ δ
(︂
n
in

)︂ in
n

= δ(Kϵ)
1

Kϵ . We conclude that

lim sup
n→∞

|Ω<ν (n, ϵ)| ≤
(︂e
ϵ

)︂ϵ
δ(Kϵ)

1
Kϵ
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for some Kϵ ≥ 1
ϵ .

Since, for any 0 < ϵ < 1
2 , we have |Ων(n)| = |Ω>ν (n, ϵ)|+ |Ω<ν (n, ϵ)|,

κν = lim
n→∞

|Ων(n)|
1
n = lim

n→∞

(︁
|Ω>ν (n, ϵ)|+ |Ω<ν (n, ϵ)|

)︁ 1
n

≤ lim sup
n→∞

(︁
2max

{︁
|Ω>ν (n, ϵ)|, |Ω<ν (n, ϵ)|

}︁)︁ 1
n

= max

{︃
lim sup
n→∞

|Ω>ν (n, ϵ)|
1
n , lim sup

n→∞
|Ω<ν (n, ϵ)|

1
n

}︃
≤ max

{︃
κ

8−ϵ
8

ν+lν(
6
ϵ )
, eϵ

(︃
1

ϵ

)︃ϵ
δ (Kϵ)

1
Kϵ

}︃
.

Let us now fix 0 < ϵ < 1
2 . There must exist a k ∈ N such that

κν+k ≤ eϵ
(︃
1

ϵ

)︃ϵ
δ (Kϵ)

1
Kϵ .

Indeed, otherwise we would have κν+i > eϵ
(︁
1
ϵ

)︁ϵ
δ (Kϵ)

1
Kϵ for all i ∈ N. In

particular, this would imply that

κν ≤ κ
8−ϵ
8

ν+lν(
6
ϵ )
.

Let ν′ ∈ N be such that ν′ ≥ ν + lν(
6
ϵ ) and Iν′

∞ ∩ Ων′(n) ≤ δ(n) for all n ∈ N
(such a ν′ exist by hypothesis). Then, we would also have

κν′ ≤ κ
8−ϵ
8

ν′+lν′ ( 6
ϵ )
,

and so, using the fact that by Proposition 3.1.10, κν+lν( 6
ϵ )

≤ κν′ , we would
have

κν ≤ κ
( 8−ϵ

8 )
2

ν′+lν′ ( 6
ϵ )
.

By induction, we conclude that for any m ∈ N∗, there exists km ∈ N such that

κν ≤ κ
( 8−ϵ

8 )
m

ν+km
.

Since |Si| ≤ A for every i ∈ N, we have that κi ≤ A for every i ∈ N. Hence,

we get that κν ≤ A(
8−ϵ
8 )

m

for every m ∈ N∗, which implies that κν = 1. This

contradicts the hypothesis that κν > eϵ
(︁
1
ϵ

)︁ϵ
δ (Kϵ)

1
Kϵ .

Therefore, there must exist some i ∈ N such that κν+i ≤ eϵ
(︁
1
ϵ

)︁ϵ
δ (Kϵ)

1
Kϵ .

By Proposition 3.1.10, we must have

κν ≤ eϵ
(︃
1

ϵ

)︃ϵ
δ (Kϵ)

1
Kϵ .

As the above inequality is valid for any 0 < ϵ < 1
2 and

lim
ϵ→0

eϵ
(︃
1

ϵ

)︃ϵ
δ (Kϵ)

1
Kϵ = 1

we must have κν = 1, and so Gν is of subexponential growth.



3.3. GROWTH OF SPINAL GROUPS 53

3.3 Growth of spinal groups

Using the techniques developed by Grigorchuk in [43], one can show that every
spinal group acting on the binary rooted tree is of subexponential growth. The
next natural step would then be to study the growth of spinal groups acting
on the 3-regular rooted tree.

In this section, we will apply the criterion given in Theorem 3.2.1 to study
the growth of some spinal groups acting on the 3-regular rooted tree. We will
be able to prove that the growth is subexponential in several new cases. In
particular, our results will imply that all the groups in Šunić’s family acting
on the ternary tree (see Section 2.9) are of subexponential growth. While this
was already known for torsion groups, this was previously unknown for groups
with elements of infinite order, except in the case of the Fabrykowski-Gupta
group.

Unfortunately, we were unable for now to obtain similar results for spinal
groups acting on rooted trees of higher degrees, as the methods used here do
not seem to have obvious generalizations in those settings.

Growth of spinal groups acting on the 3-regular rooted tree

Let X = {1,2,3}, m ∈ N, Z/3Z ∼= A = ⟨(1 2 3)⟩ ≤ Sym(X) and B =
(Z/3Z)m. Let

Ω =

⎧⎨⎩{ωij}i∈N,1≤j≤2

⃓⃓⃓⃓
ωi,1 ∈ Epi(B,A), ωi,2 = 1,

⋂︂
i≥k

ker(ωi,1) = 1∀k ∈ N

⎫⎬⎭
be a set of sequences of pairs of homomorphisms of B into A and σ : Ω → Ω
be the shift (see Section 2.8). For any ω ∈ Ω, let us define Aω = A. Using
the notation of Section 2.8, we get spinal groups Gω = ⟨A,Bω⟩ acting on X∗

which naturally come equipped with a word pseudonorm | · |ω assigning length
0 to elements of A and length 1 to non-trivial elements of Bω.

Notation 3.3.1. In order to streamline the notation, we will drop the indices
ω wherever it is convenient and rely on context to keep track of which group
we are working in. We will also drop the second index in the sequences of Ω
and write ω = ω0ω1 · · · ∈ Ω, which is a minor abuse of notation.

The set of incompressible elements of Gω will be denoted by Iω∞, and we
will write Iω∞(n) for the set of incompressible elements of length n.

We will write a = (1 2 3) ∈ A, and for any b ∈ Bω, we will write ba
i

=
aiba−i where i ∈ Z/3Z. L

Remark 3.3.2. We have that for every ω ∈ Ω, the group Gω is a quotient of
A ∗Bω. Hence, every element of Gω can be written as an alternating product
of elements of A and Bω.

It follows that every g ∈ Gω of length n can be written as

g = asιω(β1)
ac1 ιω(β2)

ac2 . . . ιω(βn)
acn

for some s ∈ Z/3Z, β : {1, 2, . . . , n} → B and c : {1, 2, . . . , n} → Z/3Z, where
ιω : B → Bω is the isomorphism described in Section 2.8, and where we use in-
dices to denote the arguments of some functions. In order to further streamline
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the notation, we will sometimes drop the iω and write simply

g = asβa
c1

1 βa
c2

2 . . . βa
cn

n .

Although this is an abuse of notation, the group to which βi belongs should
always be clear from the context. Y

Notation 3.3.3. For any n ∈ N at least 2 and c : {1, 2, . . . , n} → Z/3Z, we
will denote by ∂c : {1, 2, . . . n− 1} → Z/3Z the discrete derivative of c, that is,

∂c(k) = ck+1 − ck.

L

Lemma 3.3.4. Let ω ∈ Ω and g ∈ Gω with |g| = n ≥ 2. Writing

g = asβa
c1

1 βa
c2

2 . . . βa
cn

n

for some s ∈ Z/3Z, β : {1, 2, . . . , n} → B and c : {1, 2, . . . , n} → Z/3Z, if
g ∈ Iω∞(n), then there exists mc ∈ {1, 2, . . . , n} such that

∂c(k) =

{︄
2 if k < mc

1 if k ≥ mc.

Proof. If there exists k ∈ {1, 2, . . . , n− 1} such that ∂c(k) = 0, then ck = ck+1,
which means that

|g| = |asβa
c1

1 βa
c2

2 . . . (βkβk+1)
ack . . . βa

cn

n | ≤ n− 1

a contradiction. Hence, ∂c(k) ̸= 0 for all k ∈ {1, 2, . . . , n− 1}.
Therefore, to conclude, we only need to show that if ∂c(k) = 1 for some

k ∈ {1, 2, . . . , n − 2}, then ∂c(k + 1) ̸= 2. For the sake of contradiction, let
us assume that ∂c(k) = 1 and ∂c(k + 1) = 2 for some k ∈ {1, 2, . . . , n − 2}.
Without loss of generality, we can assume that ck = 0 (indeed, it suffices to
conjugate by the appropriate power of a to recover the other cases). We have

βkβ
a
k+1βk+2 = (αk, 1, βk)(βk+1, αk+1, 1)(αk+2, 1, βk+2)

= (αkβk+1αk+2, αk+1, βkβk+2)

for some αk, αk+1, αk+2 ∈ A. Since

|αkβk+1αk+2|+ |αk+1|+ |βkβk+2| = 2 < 3 = |βkβak+1βk+2|,

there is some length reduction on the first level, so g /∈ Iω∞.

It follows from Lemma 3.3.4 that an element

g = asβa
c1

1 βa
c2

2 . . . βa
cn

n ∈ Iω∞

is uniquely determined by the data (β, s, c1,mc), where β : {1, 2, . . . , n} → B,
s, c1 ∈ Z/3Z and mc ∈ {1, 2, . . . , n}. Of course, not every possible choice
corresponds to an element of Iω∞. In what follows, we will bound the number
of good choices for (β, s, c1,mc).
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Proposition 3.3.5. Let ω = ω0ω1ω2 · · · ∈ Ω and let l ∈ N be the smallest
integer such that ∩li=0 ker(ωi) = 1. Then, there exists a constant Cl ∈ N such
that

|Iω∞(n)| ≤ Cln
3l+2−1

2

for all n ∈ N.

Proof. Let us fix n ∈ N, s, c1 ∈ Z/3Z andmc ∈ {1, 2, . . . , n}, and let c : {1, 2, . . . , n} →
Z/3Z be the unique sequence such that c(1) = c1 and

∂c(k) =

{︄
2 if k < mc

1 if k ≥ mc

for all k ∈ {1, 2, . . . n − 1}. For each map β : {1, 2, . . . , n} → B \ {1}, let us
define

g(β) = asιω (β1)
ac1

ιω (β2)
ac2

. . . ιω (βn)
acn ∈ Gω.

We will try to bound the number of maps β : {1, 2, . . . , n} → B \ {1} such that
g(β) ∈ Iω∞(n).

Let us look at the first-level decomposition of g(β),

g(β) = as(g
(β)
1 , g

(β)
2 , g

(β)
3 ).

If g(β) ∈ Iω∞(n), we must have n = |g(β)1 |+ |g(β)2 |+ |g(β)3 |. On the other hand,
using the fact that

ιω(βk)
ack =

⎧⎪⎨⎪⎩
(ισ(ω)(βk), ω0(βk), 1) if ck = 1

(1, ισ(ω)(βk), ω0(βk)) if ck = 2

(ω0(βk), 1, ισ(ω)(βk)) if ck = 3

(⋆)

for all k ∈ {1, 2, . . . , n}, we see that |g(β)i | ≤ ni, where ni = |{j ∈ {1, 2, . . . , n} |
cj = i}|. Note that here and in what follows, we slightly abuse the notation
and make no distinction between an integer and its equivalence class in Z/3Z.
Since n = n1 + n2 + n3, we must have |g(β)i | = ni for i = 1, 2, 3. In particular,

the values of |g(β)i | are independent of β.

For every i ∈ {1, 2, 3} and every k ∈ {1, 2, . . . , ni}, let µ(i)
k be the kth element

of the set {j ∈ {1, 2, . . . , n} | cj = i}. Using once again the decomposition (⋆),
we see (dropping the ιω from the notation) that

g
(β)
i = α

(i,β)
1 β

(i)
1 α

(i,β)
2 β

(i)
2 . . . α(i,β)

ni
β(i)
ni
α
(i,β)
ni+1

where β
(i)
k = β

µ
(i)
k

and

α
(i,β)
k =

∏︂
µ
(i)
k−1<j<µ

(i)
k

cj=i−1

ω0(βj)

(where we set µ
(i)
0 = µ

(i)
1 − 3 and µ

(i)
ni+1 = µ

(i)
ni + 3). Now, by hypothesis, the

map c : {1, 2, . . . , n} → Z/3Z satisfies

∂c(k) =

{︄
2 if k < mc

1 if k ≥ mc.
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Therefore, c is a subsequence of one of the three sequences

. . . 021021021012012012 . . .

. . . 102102102120120120 . . .

. . . 210210210201201201 . . . ,

where the numbers in bold are the points where the discrete derivative of the
sequence changes from 2 to 1 and thus correspond tomc. Using these sequences,

it is easy to see that if µ
(i)
k ̸= mc + 2, we must have

α
(i,β)
k =

⎧⎨⎩ω0(βµ(i)
k −2

) if µ
(i)
k ≤ mc

ω0(βµ(i)
k −1

) if µ
(i)
k > mc

(where we define βj = 1 if j /∈ {1, 2, . . . , n}). In the case where µ
(i)
k = mc + 2,

we instead have α
(i,β)
k = ω0(βmc−1)ω0(βmc+1).

Now, since g(β) ∈ Iω∞, we must also have that g
(β)
1 , g

(β)
2 , g

(β)
3 ∈ Iω∞. Hence,

by Lemma 3.3.4, for all i ∈ {1, 2, 3}, there must exist s(i,β), c
(i,β)
1 ∈ Z/3Z

and m
(i,β)
c ∈ {1, 2, . . . , ni} such that the maps α(i,β) : {1, 2, . . . , ni} → A are

uniquely determined by s(i,β), c
(i,β)
1 and m

(i,β)
c . Consequently, we see that the

values of s(i,β), c
(i,β)
1 and m

(i,β)
c uniquely determine the values of ω0(βj) for all

j ∈ {1, 2, . . . , n}, except for j = mc − 1 and j = mc + 1, where instead it is
the product ω0(βmc−1)ω0(βmc+1) that is determined. It follows that by speci-

fying the values of s(i,β), c
(i,β)
1 , m

(i,β)
c and ω0(βmc−1), we completely determine

ω0(βj) for all j ∈ {1, 2, . . . , n}.
Since every βj appears in one of g

(β)
1 , g

(β)
2 and g

(β)
3 , by repeating this

procedure on g
(β)
1 , g

(β)
2 and g

(β)
3 , we will determine the values of ω1(βj) for all

j ∈ {1, 2, . . . , n}. By induction, the choice of s(x,β), c
(x,β)
1 ,m

(x,β)
c for all words

x of length at most l+ 1 in the alphabet X (that is, for all vertices of the tree

up to level l + 1) and of ω|y|(β
(y)

m
(y,β)
c −1

) for all words y of length at most l in

the alphabet X determines ωi(βj) for all 0 ≤ i ≤ l and all j ∈ {1, 2, . . . , n}.
Since ∩li=0 kerωi = {1}, for each j, there is at most one βj ∈ B having the
prescribed images ωi(βj) for all 0 ≤ i ≤ l.

Since there are 3l+2−1
2 vertices in the tree up to level l+1, we have 3

3l+2−1
2

choices for s(x,β) and 3
3l+2−1

2 choices for c
(x,β)
1 . Since m

(x,β)
c satisfies 1 ≤

m
(x,β)
c ≤ n, there are at most n

3l+2−1
2 choices for m

(x,β)
c . Finally, there are at

most 3l+1−1
2 instances where we must choose the value of ω|y|(β

(y)

m
(y)
c −1

), which

means that we must make at most 3
3l+1−1

2 choices. Once all these choices are
made, there is at most one β satisfying all the required conditions. Hence,
there are at most

Cln
3l+2−1

2

elements in Iω∞(n), where

Cl = 3
7·3l+1−3

2 .
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With this, we can prove that many spinal groups are of subexponential
growth.

Theorem 3.3.6. Let ω ∈ Ω and Gω be the associated spinal group of auto-
morphisms of the 3-regular rooted tree X∗. If there exists l ∈ N such that
∩k+li=k ker(ωi) = 1 for infinitely many k ∈ N, then Gω is of subexponential
growth.

Proof. According to Proposition 3.3.5, there exist infinitely many k ∈ N such
that

|Iσ
k(ω)

∞ (n)| ≤ Cln
3l+2−1

2

for some Cl ∈ N. Since ln(Cln
3l+2−1

2 ) is concave, the result follows from Theo-
rem 3.2.1.

Remark 3.3.7. It is easy to check that all of the groups considered in Theorem
3.3.6 are regular branch over their commutator subgroup. Therefore, according
to Corollary 2.7.10, they are not of polynomial growth. Thus, they are in fact of
intermediate growth. In particular, every Šunić group acting on the 3-regular
rooted tree is of intermediate growth. Y

3.4 Open questions

Theorem 3.3.6 gives us many new examples of groups of intermediate growth,
but it still leaves many questions open. In this short section, we will discuss a
few of those.

To begin with, one can wonder if the hypothesis of Theorem 3.3.6 on the se-
quence ω is necessary. Although we need this assumption for technical reasons,
it seems likely that it could be relaxed.

Question 3.4.1. In Theorem 3.3.6, is the condition that there exists l ∈ N
such that ∩k+li=k ker(ωi) = 1 for infinitely many k ∈ N necessary? What is the
growth of the groups not satisfying this condition?

In particular, one might wonder what happens to the growth if one takes
sequences converging to a constant sequence. A similar question was studied
for a different family of groups by Nekrashevych in [64], where he found a nice
example of a group of non-uniform exponential growth.

In a related question, one might wonder if the hypotheses of Theorem 3.2.1
could be relaxed.

Question 3.4.2. In Theorem 3.2.1, could the hypotheses on the growth of
incompressible elements be relaxed? More precisely, could the condition that
Iν∞ ∩Ων(n) ≤ δ(n) for all n ∈ N be replaced by the condition that there exists
Nν ∈ N such that Iν∞ ∩ Ων(n) ≤ δ(n) for all n ≥ Nν?

A positive answer to this question would help to answer Question 3.4.1 and
would make the criterion more powerful. However, it seems that a more careful
analysis would be needed to achieve such a result.

Another very natural question that one might ask is if Theorem 3.3.6 gen-
eralises to groups acting on trees of higher degree.
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Question 3.4.3. Do all Šunić groups (with the exception of the infinite di-
hedral group) have intermediate growth? More generally, do all spinal groups
with a cyclic action on the first level have subexponential growth?

We would expect the answer to both questions to be positive. In principle,
Theorem 3.2.1 could be used to study the growth of those groups. However,
the difficulty is in counting the number of incompressible elements. Starting
with trees of degree 4, due to commuting elements, there are exponentially
many words representing the same element, which makes the combinatorics
much harder to analyse.

So far, we have only considered spinal groups with a cyclic action on the
first level. One might also ask if these conditions could be relaxed.

Question 3.4.4. Do all spinal groups have subexponential growth?

Once again, Theorem 3.2.1 could be used to attack this question, but the
problem of estimating the number of incompressible elements seems out of
reach of our current methods.



n Chapter 4 N

Congruence subgroup property

In this chapter, we will study a property of groups acting on rooted trees known
as the congruence subgroup property. Our interest in this property comes from
the fact that in order to understand every finite quotient of a group possessing
it, it is sufficient to understand quotients by level stabilisers. As the latter
are often well-understood, this makes the study of finite quotients much easier,
a fact that will prove invaluable in Chapter 6, where we will study maximal
subgroups of some Šunić groupsi.

The congruence subgroup property for groups acting on rooted tree is an
analogue of the property of the same name for linear groups. Briefly, a group
acting on a rooted tree is said to have this property if every subgroup of finite
index contains the stabiliser of some level of the tree. This property was shown
to hold for many well-known examples of groups acting on rooted trees, such as
the Grigorchuk group [8] and GGS groups with non-constant defining vectors
[45, 75, 30]. However, not all groups have this property, not even among the
more restricted class of finitely generated branch groups, as was shown by
Pervova in [75].

A general investigation of the congruence subgroup property for branch
groups was carried out by Bartholdi, Siegenthaler and Zalesskii in [11], where
they obtained structural results about the congruence kernel of branch groups
and computed this kernel for various examples, such as the Hanoi tower group.
In the same paper, they asked if the congruence subgroup property for branch
groups is a property of the group, or if it depends on the action. This was
answered by Garrido, who showed in [35] that it is a property of the group.

In spite of all this research, there are still many branch groups for which it is
not known whether they possess the congruence subgroup property or not. For
instance, there is no general result concerning this property in the class of spinal
groupsii, or even in the smaller class of Šunić groups. In this chapter, we prove
in Section 4.3 (Theorem 4.3.8) that every Šunić group, with the exception of the
infinite dihedral group, possess the congruence subgroup property. Before we
do this, however, we first give some definitions and basic properties in Section
4.1, and then study a link between the congruence subgroup property and what
is known as the LERF property in Section 4.2. Finally, as an aside, we use in

iSee Section 2.9 for the definition of Šunić groups.
iiSee Section 2.8 for the definition of spinal groups.
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Section 4.4 the results of Section 4.3 to prove that every Šunić group is just-
infinite. We then show in Theorem 4.4.4 that this is not mere happenstance
and that in fact, every finitely generated branch group with the congruence
subgroup property must be just-infinite.

The results of Section 4.3 come from a joint work with Alejandra Garrido
and were already published in [32]. Large parts of that section were taken from
this article with some minor modifications.

4.1 Definitions and basic properties

In this section, we will give the definition of the congruence subgroup property
for groups acting on rooted trees.

We begin by defining what is known as the profinite topology on a group.

Definition 4.1.1. Let G be a group. The profinite topology on G is the
topology obtained by the basis of open sets

{gH | g ∈ G, H ≤ G of finite index} .

U

Remark 4.1.2. We can also take the cosets of normal subgroups of finite
index as a basis for the profinite topology, since every subgroup of finite index
contains a normal subgroup of finite index. This is often more convenient. In
both cases, it is easy to check that the conditions for being a basis are satisfied
and that the topologies thus defined are the same. Y

In groups acting on rooted trees, there is a very natural family of normal
subgroups of finite index, namely the level stabilisers (see Definition 2.6.14
(ii)). We can thus define on those groups a coarser topology than the profinite
topology by looking only at cosets of level stabilisers.

Definition 4.1.3. Let T be a rooted tree and let G ≤ Aut(T ) be a group of
automorphisms of T . The congruence topology on G is the topology defined by
the basis of open sets

{g StG(n) | g ∈ G, n ∈ N} .

U

Clearly, an open set in the congruence topology is also open in the profinite
topology, but the converse is not necessarily true. Groups for which this holds
are said to possess the congruence subgroup property.

Definition 4.1.4. Let T be a rooted tree and let G ≤ Aut(T ) be a group of
automorphisms of T . We say that G possesses the congruence subgroup prop-
erty, or CSP for short, if the profinite topology and the congruence topology on
G are equal. In other words, G has the CSP if every open set in the profinite
topology is also open in the congruence topology. U

It is easy to see that a group has the CSP if and only if every finite index
subgroup contains a level stabiliser.
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Proposition 4.1.5. Let G ≤ Aut(T ) be a group of automorphisms of a rooted
tree T . Then, G has the congruence subgroup property if and only if for every
finite index subgroup H, there exists n ∈ N such that StG(n) ≤ H.

Proof. (⇒) If G has the CSP and H is a subgroup of G of finite index, then
there exists g ∈ G and n ∈ N such that g StG(n) ⊆ H. As g must belong
to H and H is a subgroup, we have StG(n) ≤ H.

(⇐) If for H ≤ G of finite index, we have n ∈ N such that StG(n) ≤ H, then
for all h ∈ H, we have hStG(n) ⊆ H, so H is open in the congruence
topology. As multiplication is continuous, every coset of H must also be
open.

In general, it can be rather difficult to check that every finite index subgroup
contains a level stabiliser. However, in the case of branch groups (see Definition
2.7.1), it can suffice to consider the derived subgroups of rigid stabilisers, as
the next proposition shows.

Proposition 4.1.6. Let G be a branch group acting on a rooted tree T . If for
all n ∈ N, there exists m ∈ N such that StG(m) ≤ Rist′G(n), then G has the
congruence subgroup property.

Proof. Let H ≤ G be a subgroup of finite index. Then, by Lemma 2.7.5, there
exists n ∈ N such that Rist′G(n) ≤ H. Therefore, there exists m ∈ N such that
StG(m) ≤ H. The result then follows from Proposition 4.1.5.

To apply this criterion, one must still look at an infinite number of sub-
groups. However, in the case of regular branch groups (see Definition 2.7.3), it
suffices to look at one subgroup.

Proposition 4.1.7. Let X be a finite alphabet of size d and let G ≤ Aut(X∗)
be a regular branch group over a subgroup K ≤ G. If there exists m ∈ N such
that StG(m) ≤ K ′, then for all n ∈ N, we have StG(m + n) ≤ Rist′G(n). In
particular, G has the congruence subgroup property.

Proof. Let us fix n ∈ N. We have that Kdn ≤ ψn(RistG(n)). Therefore, we
have (K ′)d

n ≤ ψn(Rist
′
G(n)). It follows that

StG(m)d
n

≤ ψn(Rist
′
G(n)).

Let us considerH = ψ−1
n (StG(m)d

n

). AsH ≤ StG(n) and ψn(H) = (StG(m))d
n

,
we must have that H ≤ StG(m + n). On the other hand, ψn(StG(m + n)) ≤
(StG(m))d

n

, which implies that H = StG(m+n). Since the map ψn is injective,
we conclude that StG(m+n) ≤ Rist′G(n). The fact that G has the congruence
subgroup property then follows directly from Proposition 4.1.6.

This idea was used to study the congruence subgroup property in many
groups. For instance, it was used by Grigorchuk in [45] to prove that the
Grigorchuk group has the congruence subgroup property, and was also used
by Fernández-Alcober, Garrido and Uria-Albizuri [30] to show that all GGS
groups with non-constant defining vectors (see Example 2.8.6) have the CSP.
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4.2 CSP and the LERF property

As the congruence subgroup property allows us to reduce questions about finite
index subgroups to questions about level stabilisers, it is very useful in the study
of the LERF property. In this short section, we remark that a non-torsion group
with the CSP acting on a tree of bounded degree cannot be LERF.

Let us first recall the definition of the LERF property.

Definition 4.2.1. A group G is said to be locally extended residually finite,
or LERF, if every finitely generated subgroup of G is closed in the profinite
topology. In other words, G is LERF if every finitely generated subgroup is
the intersection of subgroups of finite index. U

In groups possessing the congruence subgroup property, being a closed sub-
group in the profinite topology is the same as being a closed subgroup in the
congruence topology, which is a very restrictive condition. Indeed, if such a
group contains a subgroup isomorphic to Z, then it must contain a subgroup
that is never closed in this topology, which implies that non-torsion groups
with the CSP are not LERF.

Proposition 4.2.2. Let G be a group acting on a rooted tree T of bounded
degree. If G has the congruence subgroup property and contains an element of
infinite order, then G is not LERF.

Proof. Let us suppose that G has the CSP and contains an element g ∈ G of
infinite order. Let M ∈ N be a bound on the degree of every vertex of T , and
let p ∈ N be a number coprime with M !. We will show that H = ⟨gp⟩ is not
closed in the profinite topology on G.

Let us first notice that for all n ∈ N, we have H StG(n) = ⟨g⟩StG(n).
Indeed, since every vertex of T has degree bounded by M , one can easily check
that we must have

G/StG(n) ≤ ≀n Sym(M).

As ≀n Sym(M) is a group of order (M !)k by Proposition 2.2.5, where k = Mn−1
M−1 ,

we get that the order of G/StG(n) divides (M !)k. As p is coprime with M !, it
must also be coprime with (M !)k, which means by Bézout’s theorem that there
exists r, t ∈ Z such that rp + t(M !)k = 1. As the order of G/StG(n) divides

(M !)k, we must have gt(M !)k ∈ StG(n), which implies that

(gp)r StG(n) = g StG(n).

Consequently, we have H StG(n) = ⟨g⟩StG(n).
This implies that H is not closed. Indeed, let us suppose for the sake of

contradiction that H is closed in the profinite topology. Then, there exists a
sequence of finite index subgroups {Hi}i∈N such that

H =
⋂︂
i∈N

Hi.

As G has the congruence subgroup property, there exists a sequence of numbers
{ni}i∈N such that StG(ni) ≤ Hi. Since we must also have H ≤ Hi, we get that
H StG(ni) ≤ Hi. Since H StG(ni) = ⟨g⟩StG(ni), this implies that ⟨g⟩ ≤ Hi for
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all i ∈ N. We conclude that ⟨g⟩ ≤ H, which is absurd, since g is of infinite
order. Therefore, we conclude that H is not closed in the profinite topology,
and so G is not LERF.

Notice that in the above proposition, the existence of an element of infinite
order is crucial. Indeed, Grigorchuk and Wilson showed in [49] that the first
Grigorchuk group (see Example 2.8.3), which has the congruence subgroup
property, is LERF.

4.3 Congruence subgroup property for Šunić groups

In this section, we will show that every Šunić group, with the exception of the
infinite dihedral group, possesses the congruence subgroup property. In fact,
we could extend this result to a larger class of spinal groups with a cyclic action
on the first level, since we do not really need the fact that the degree of the
tree is a prime number, and we do not really need self-similarity either, as long
as the groups belong to a well-behaved self-similar family. However, this would
complicate the notation, and since we will not require this greater generality in
what follows, we restrict ourselves to the setting of Šunić groups. In any case,
the ideas involved are exactly the same.

Throughout this section, we will use the notation of Section 2.9. Recall that
for a prime p and an integer n ≥ 1, we set X = {0,1, . . . ,p− 1}, A = Z/pZ
and B = (Z/pZ)m. Given a polynomial f with coefficients in Z/pZ and non-
zero constant coefficient, we can define faithful actions of A and B on X∗. The
Šunić group Gp,f is then the group of automorphisms of the regular rooted tree
X∗ generated by A and B.

As in Section 2.9, we will denote by Gp,m the set of all Šunić groups Gp,f
with f of degree m. We will need to consider two different cases: the case
where p is an odd prime and the case where p = 2.

Notation 4.3.1. Although we are working with left actions, to stay consistent
with standard group theoretic notation, we will write gh = h−1gh and [g, h] =
g−1h−1gh. L

The case where p is an odd prime

In this subsection, we will show that the second derived subgroup of a Šunić
group acting on a rooted tree of odd prime degree must contain some level
stabiliser. This will then imply that the group has the congruence subgroup
property thanks to Proposition 4.1.7 and Proposition 2.9.18.

Lemma 4.3.2. Let G ∈ Gp,m be a Šunić group, where p is an odd prime.
Then,

ψ1(G
′′) ≥ γ3(G)× p. . .× γ3(G),

where γ3(G) is the third term in the lower central series of G and ψ1 is the
map defined in Proposition 2.6.31.

Proof. Let us first show that ψ1(G
′) ≤ G× p. . .×G is subdirect. For any b ∈ B,

we have
ψ1([a

−1, b]) = (ρ(b−1)ω(b), ω(b−1), 1, . . . , 1, ρ(b)).
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Since ρ is an automorphism of B, we can obtain all generators of B in the last
coordinate of ψ1(G

′). Also, since there exists b ∈ B such that ω(b) = a−1,

we can obtain a in the last coordinate of ψ1(G
′) by taking [a−1, b]a

2

. Thus
ψ1(G

′) ≤ G × p. . . × G maps onto G in the last coordinate. As G′ is normal
and the action of G on the first level is transitive, we conclude that ψ1(G

′) is
subdirect in G× p. . .×G.

Now, by Proposition 2.9.18, we have that ψ1(G
′) ≥ G′× p. . .×G′. It follows

that ψ1(G
′′) ≥ γ3(G)× p. . .× γ3(G).

Lemma 4.3.3. Let G ∈ Gp,m be a Šunić group, where p is an odd prime.
Then, the second derived subgroup G′′ of G contains the stabiliser StG(m+3).

Proof. Let us first show that ψ1(γ3(G)) ≥ G′ × p. . . × G′. Let b ∈ B be any
element and let c ∈ B be such that ω(c) = a. Let us set x = [[c, a], ρ−1(b)] ∈
γ3(G). Using classical commutator identities and the fact that B is an abelian
group, we have

x = [c−1a−1ca, ρ−1(b)]

= [c−1, ρ−1(b)]a
−1ca[a−1ca, ρ−1(b)]

= [a−1ca, ρ−1(b)].

Therefore,

ψ1(x) = ψ1([a
−1ca, ρ−1(b)])

= ([1, ω(ρ−1(b))], 1, . . . , 1, [ρ(c), 1], [ω(c), b])

= (1, . . . , 1, 1, [a, b]).

Using the fact that G′ is normally generated by {[a, b] | b ∈ B}, that G is
self-replicating (by Proposition 2.9.17) and that γ3(G) is a normal subgroup of
G, we see that γ3(G) ≥ 1 × · · · × 1 × G′. As G acts transitively on the first
level, using once again the normality of γ3(G), we conclude that ψ1(γ3(G)) ≥
G′ × p. . .×G′.

Now, by Lemma 2.9.19, we have that G′ contains StG(m + 1). Therefore,
by Lemma 4.3.2, we have

ψ2(G
′′) ≥ ψ1(γ3(G))× p. . .× ψ1(γ3(G))

≥ G′ × p2. . .×G′

≥ StG(m+ 1)× p2. . .× StG(m+ 1)

= ψ2(StG(m+ 3)).

Since ψ2 is injective, the claim follows.

Theorem 4.3.4. Let G ∈ Gp,m be a Šunić group, where p is an odd prime.
Then, G has the congruence subgroup property.

Proof. This follows directly from Proposition 4.1.7, Proposition 2.9.18 and
Lemma 4.3.3.



4.3. CSP FOR SUNIC GROUPS 65

The case where p = 2

We will now turn our attention to Šunić groups acting on the binary rooted
tree. If G is such a group, we see that for n ∈ N,

G/StG(n) ≤ ≀n(Z/2Z).

Consequently, G/StG(n) is a 2-group.
Using that fact, it is easy to see that the infinite dihedral group (which

is a Šunić group, see Example 2.9.7) cannot possess the congruence subgroup
property. Indeed, if that were the case, we would have that every finite quotient
of the infinite dihedral group is a quotient of a 2-group, and thus a 2-group.
This is of course absurd, since the infinite dihedral group admits every finite
dihedral group as a quotient. Alternatively, one can also use Proposition 4.2.2
and the fact that the infinite dihedral group is LERFiii.

However, we will show here that every other Šunić group acting on the
binary rooted tree has the congruence subgroup property. The strategy will
be the same as in the previous section. More precisely, we will show that for
a group G ∈ G2,m with m ≥ 2, the subgroup K ′ contains some level stabiliser,
where K = ⟨[a, b] | b ∈ B1⟩G is the subgroup defined in Proposition 2.9.18.

Recall that according to the notation established in Definition 2.6.25, for
v ∈ X∗, we denote Kv = φv(StK(v)).

Lemma 4.3.5. Let G ∈ G2,m be a Šunić group, where m ≥ 2. Then, there
exists n ∈ N such that Kv ≥ ⟨a,B0⟩, where v = 1n.

Proof. Recall from Section 2.9 that {b0, . . . , bm−1} is the standard basis for
B = (Z/2Z)m, that B1 = ⟨b1, . . . , bm−1⟩ and that K is normally generated by
[a, b1], . . . , [a, bm−1]. There are two cases to consider: the case where m > 2
and the case where m = 2.

Case m > 2: We have

φ1([a, bi]) =

{︄
ρ(bi) if i = 1, . . . ,m− 2

aρ(bm−1) if i = m− 1.

Hence, we have
φ11([a, bi]) = ρ2(bi)

if 1 ≤ i ≤ m− 2. Furthermore, as

φ11([a, bm−1]
2) = ω(ρ(bm−1))ρ

2(bm−1),

we have that K11 contains ρ2(b1), . . . , ρ
2(bm−2), ω(ρ(bm−1))ρ

2(bm−1).
Let us set x = [a, bm−2]

[a,bm−1]. A direct computation shows that

φ11(x
a) = a.

Hence, K11 contains a, ρ2(b1), . . . , ρ
2(bm−1) and therefore contains ⟨a, ρ3(B0)⟩.

If ρ3(B0) = B0, then we are done. If not, then as φ1(ρ
3(B0)) = ρ4(B0), we have

iiiTo see this, one can use the fact that the infinite dihedral group contains a subgroup of
finite index isomorphic to Z, which is easily seen to be LERF. One can then conclude using
the fact that a group containing a LERF subgroup of finite index is also LERF.
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ρ4(B0) ∈ K111. Now, since ρ3(B0) ̸= B0, there is some y ∈ ρ3(B0) \ B0. By
conjugating y by a, we obtain that a ∈ K111 and therefore ⟨a, ρ4(B0)⟩ ≤ K111.
Since ρ is cyclic, we may repeat the above procedure until we reach the first n
such that ρn(B0) = B0 at which point we have ⟨a, ρn(B0)⟩ = ⟨a,B0⟩ ≤ K1n−1 .

Case m = 2: This case includes only the Grigorchuk–Erschler (with polyno-
mial x2 + 1) and Grigorchuk (with polynomial x2 + x+ 1) groups. First note
that K = ⟨[a, b1]⟩G. For all n ≥ 1 and for all b ∈ B \ B0 (in other words, for
b = b1 or b = b0b1), we have φ1([a, b]

2n) = [a, ρ(b)]n. Let k be the smallest
integer such that ρk(b1) = b0 (such an integer exists, since b1 = ρ(b0) and ρ is
of finite order). Then, by induction, we get

φ1k([a, b1]
2k) = [a, b0].

Hence,

φ1k+1([a, b1]
2k) = φ1([a, b0]) = b1.

It follows that b0 = φv([a, b1]
2k) where v = 12k+1.

Now, suppose there exists g ∈ G which maps u = 12k0 to v and such

that φv(g) = 1. Then, since a = φu([a, b1]
2k), writing h = [a, b1]

2k , we have
φv(h

g) = φu(h)
φv(g) = a. As K is normal in G, we conclude that Kv ≥ ⟨a, b0⟩.

It only remains to show that such a g exists. For the Grigorchuk–Erschler

group, k = 1 and we may take g = b
ba1
0 . For the Grigorchuk group, k = 2 and

we take g = b
bf0
1 , where f = b

ba1
1 .

Lemma 4.3.6. Let G ∈ G2,m be a Šunić group, with m ≥ 2. Then, the derived
subgroup K ′ of K ≤ G contains StG(n+m+2), where n is as in Lemma 4.3.5.

Proof. We begin by showing that ψ1([K, ⟨a,B0⟩]) ≥ K ×K. Let b ∈ B1 be an
arbitrary element. Then, setting

x = [[bm−1, a], ρ
−1(b)] ∈ [K, ⟨a,B0⟩],

we have

ψ1(x) = [ψ1([bm−1, a]), ψ1(ρ
−1(b))]

= ([aρ(bm−1), 1], [ρ(bm−1)a, b])

= (1, aρ(bm−1)bρ(bm−1)ab)

= (1, [a, b]).

Since G is self-replicating, we conclude that

ψ1([K, ⟨a,B0⟩]) ≥ 1×K.

By the transitivity of the action ofG on the first level, we then have ψ1([K, ⟨a,B0⟩]) ≥
K ×K.

Now, by Lemma 4.3.5, there exists n such that Kv ≥ ⟨a,B0⟩, where v = 1n.
The fact that G is regular branch over K implies that

ψn(K ∩ StG(n)) ≥ 1× · · · × 1×K
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where there are 2n factors in the direct product. Thus,

ψn(K
′ ∩ StG(n)) ≥ 1× · · · × 1× [K, ⟨a,B0⟩].

This, together with the first claim, implies that

ψn+1(K
′ ∩ StG(n+ 1)) ≥ 1× · · · × 1×K ×K

where there are 2n+1 factors in the product. Since K ′ ∩ StG(n + 1) is normal
in G, which acts transitively on the (n+ 1)th level, we obtain that ψn+1(K

′ ∩
StG(n+ 1)) contains a direct product of 2n+1 copies of K. By Lemma 2.9.19,
we have that StG(m+ 1) ≤ K, so

ψn+1(K
′ ∩ StG(n+ 1)) ≥ StG(m+ 1)× · · · × StG(m+ 1)

= ψn+1(StG(n+m+ 2)).

This yields that K ′ ≥ StG(n+m+ 2), since ψn+1 is injective.

As a direct consequence of the previous lemma and Propositions 4.1.7 and
2.9.18, we immediately get the following theorem.

Theorem 4.3.7. Let G ∈ G2,m be a Šunić group, with m ≥ 2. Then, G has
the congruence subgroup property.

For convenience, let us now group the results of Theorems 4.3.4 and 4.3.7
into one theorem.

Theorem 4.3.8. Let G ∈ G \ G2,1. Then, G has the congruence subgroup
property.

4.4 Just-infiniteness and the congruence subgroup
property

The results of Section 4.3 not only tell us that every Šunić group (with the
exception of the infinite dihedral group) possesses the congruence subgroup
property, but also allow us to conclude almost immediately that every Šunić
group is just-infinite.

Let us first give a reminder of the definition of a just-infinite group, or more
generally of a just-non-P group.

Definition 4.4.1. Let G be a group. We say that G is just-infinite if G is
infinite, but every proper quotient of G is finite. More generally, if P is a
property of groups, we say that G is just-non-P if G does not possess the
property P, but every proper quotient of G does. U

To prove that every Šunić group is just-infinite, we can simply use Lemma
4.3.3 and Lemma 4.3.6, along with Proposition 4.1.7, to conclude that there
exists m ∈ N such that for every n ∈ N, we have StG(m+n) ≤ Rist′G(n). Now,
by Lemma 2.7.5, every non-trivial subgroup N ⊴ G contains Rist′G(n) for some
n ∈ N, which means that StG(m + n) ≤ N . As StG(n +m) is a subgroup of
finite index, we conclude that every non-trivial normal subgroup of G must be
of finite index.
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However, although simple and direct, this proof does not make immedi-
ately obvious the fact that it sits in a more general framework for studying
properties of quotients of regular branch groups. Therefore, before proving
just-infiniteness of Šunić groups, we would first like to introduce the following
result about quotients of regular weakly branch groups, which has the advan-
tage of suggesting a general technique to attack this kind of questions. This
will be useful in Chapter 8 to study quotients of the Basilica group. Although
we would expect this result to be known, we do not know of any reference for
it and thus give a complete proof.

Recall that for a property P, a group is said to be virtually P if it contains
a subgroup of finite index that has P.

Theorem 4.4.2. Let X be a finite alphabet of size d, let G be a regular weakly
branch group over a normal subgroup K acting on the rooted tree X∗, and let
P be a property of groups that is preserved under taking finite direct products,
quotients and subgroups. Then, every proper quotient of G is virtually P if and
only if G/K ′ is virtually P.

Proof. AsK cannot be abelian by Proposition 2.7.9, G/K ′ is a proper quotient,
so the necessity is obvious. Let us show that if G/K ′ is virtually P, then so
must every proper quotient of G.

Let N ⊴ G be a non-trivial normal subgroup of G. According to Lemma
2.7.5, there exists n ∈ N such that Rist′G(n) ≤ N . Now, by definition of a
regular weakly branch group over K, we have that there exists a subgroup
Kn ≤ K such that Kdn = ψn(Kn). In particular, we see that Kn ≤ RistG(n).
Consequently, we have that K ′

n ≤ Rist′G(n) ≤ N .
As K is normal in G and as G is self-similar, it follows from its definition

that Kn must also be a normal subgroup of G. Consequently, as K ′
n is a

characteristic subgroup of Kn, we have that K ′
n is a normal subgroup of G.

Hence, we can take the quotient G/K ′
n.

If we can prove that G/K ′
n is virtually P, then this will imply that G/N is

also virtually P. Indeed, as K ′
n ≤ N ≤ G, we have that

G/N ∼= (G/K ′
n)

/︃
(N/K ′

n) .

IfG/K ′
n is virtually P, then by the correspondence theorem, there existsH ≤ G

of finite index such that K ′
n ≤ H and such that H/K ′

n has P. Since P is
preserved by taking quotients, we have that

HN/N ∼= (H/K ′
n)

/︃
(N/K ′

n) ∩ (H/K ′
n)

has P. It is also of finite index in G/N , since H is of finite index in G.
Thus, it suffices to prove that G/K ′

n is virtually P. In fact, since K ′
n ≤

StG(n) and since StG(n) is of finite index in G, it suffices to prove that
StG(n)/K

′
n is virtually P.

Now, since G is self-similar, we have ψn(StG(n)) ≤ (G)
dn
. Hence,

ψn(StG(n))/ψn(K
′
n) ≤ (G)

dn
/(K ′)d

n

= (G/K ′)
dn
.



4.4. JUST-INFINITENESS AND THE CSP 69

As G/K ′ is virtually P, there exists a finite index subgroup H ≤ G con-
taining K ′ such that H/K ′ has property P. Since property P is preserved by

finite direct products, (H/K ′)
dn

is a finite index subgroup of (G/K ′)
dn

with
property P. Let us set L = ψ−1

n (Hdn ∩ ψn(StG(n))). As K ′ ≤ H, we clearly
have that K ′

n ≤ L. We claim that L is a finite index subgroup of StG(n) such
that L/K ′

n has P.
To see that L is of finite index in StG(n), it suffices to notice that since Hdn

is of finite index in Gd
n

, we have that Hdn ∩ ψn(StG(n)) is of finite index in
ψn(StG(n)). Since ψn restricted to StG(n) is an isomorphism onto its image,
we conclude that L is of finite index in StG(n). To see that L/K ′

n has P, it
suffices to notice that ψn gives us an isomorphism between L/K ′

n and

(Hdn ∩ ψn(StG(n)))/(K ′)d
n

≤ (H/K ′)d
n

.

Since (H/K ′)d
n

has P and since P is inherited by subgroups, we conclude that
L/K ′ has P. This proves that G/K ′

n is virtually P and thus concludes the
proof.

Thanks to this theorem, we can prove that every Šunić group is just-infinite.

Theorem 4.4.3. Every Šunić group is just-infinite.

Proof. Every Šunić group acts spherically transitively on a regular rooted tree
and is thus infinite. Therefore, it remains to show that every proper quotient
of a Šunić group is finite.

Let G ∈ Gp,m be a Šunić group. If p > 2, then by Lemma 4.3.3, we have
StG(m + 3) ≤ G′′. In particular, this implies that G′′ is a subgroup of finite
index of G. Therefore, G/G′′ is finite. As G is regular weakly branch over G′ by
Proposition 2.9.18, we conclude by Theorem 4.4.2 that every proper quotient
of G is finite.

Likewise, if G ∈ G2,m is a Šunić group with m ≥ 2, then by Lemma 4.3.6,
we have that K ′ is of finite index, where K is the normal subgroup over which
G is regular branch, as stated in Proposition 2.9.18. We once again conclude
by Theorem 4.4.2.

The last remaining case is the infinite dihedral group, which is well-known
to be just-infinite.

As was made clear in this section, using Proposition 4.1.7 to prove that a
regular branch group has the congruence subgroup property also immediately
yields that the group is just-infinite. Since this proposition is the main method
by which the CSP is proved, it is natural to ask if the congruence subgroup
property implies just-infiniteness. In fact, this question was asked explicitly
by Rachel Skipper in her thesis ([81], Question 5.3). In the following theorem,
we show that this is indeed the case, thus yielding a different proof of the
just-infiniteness of Šunić groups.

Theorem 4.4.4. Let X be a finite alphabet, and let G be a finitely generated
branch group acting on the rooted tree X∗. If G has the congruence subgroup
property, then G is just-infinite.
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Proof. Suppose on the contrary that G is not a just-infinite group. Then,
there exists a non-trivial normal subgroup N ⊴ G such that G/N is infinite.
By Lemma 2.7.5, there exists some n ∈ N such that Rist′G(n) ≤ N , where
Rist′G(n) is the derived subgroup of RistG(n). It follows that G/Rist′G(n) is
infinite. Since we have that Rist′G(n) is non-trivial by Lemma 2.7.6, we can
thus suppose without loss of generality that N = Rist′G(n).

As G is a finitely generated branch group, we have that RistG(n) is a finitely
generated subgroup of finite index of G, which implies that RistG(n)/Rist

′
G(n)

is a finitely generated abelian subgroup of finite index of G/Rist′G(n). As
G/Rist′G(n) is infinite, this implies that RistG(n)/Rist

′
G(n) is an infinite finitely

generated abelian group.
Let p ∈ N be a natural number that is coprime with |X|!. As RistG(n)/Rist

′
G(n)

is an infinite finitely generated abelian group, it is well-known that it must
contain a subgroup of index p. By the correspondence theorem, there exists a
subgroup L ≤ RistG(n) such that Rist′G(n) ≤ L and [RistG(n) : L] = p. Let
K ⊴ G be the normal core of L in G. Since RistG(n) is of finite index in G,
this implies that L is also of finite index in G. Therefore, K is also a subgroup
of finite index of G. We have

K ≤ L ≤ RistG(n) ≤ G.

Therefore, we have

[G : K] = [G : RistG(n)][RistG(n) : L][L : K].

Since [RistG(n) : L] = p, we see that p divides the order of G/K.
On the other hand, for any m ∈ N, we have that G/StG(m) is a subgroup

of ≀m Sym(|X|). It follows from Proposition 2.2.5 that the order of G/StG(m)

must divide (|X|!)k for k = |X|m−1
|X|−1 , and so the same must be true of any

quotient of G/StG(m). If G had the congruence subgroup property, this would
then imply that the order of every finite quotient of G divides (|X|!)k for some
k ∈ N. However, we have constructed above a quotient of G whose order
is divisible by p, with p coprime with |X|!. It follows that the order of this
quotient cannot divide (|X|!)k for any k ∈ N. This proves that G cannot have
the congruence subgroup property. We have thus shown that a group that is
not just-infinite cannot possess the CSP.

Theorem 4.4.4 gives us a simple way to show that a finitely generated
branch group does not possess the congruence subgroup property. For example,
using the fact that the Hanoi tower group is not just-infinite (see [11]), we
immediately obtain that it does not have the congruence subgroup property, a
fact that was first proved by Bartholdi, Siegenthaler and Zalesskii in [11].

However, Theorem 4.4.4 does not allow us to conclude anything about
weakly branch groups that are not branch. Thus, one might ask if there can
exist a weakly branch group that is not branch but still possesses the CSP.

Question 4.4.5. Must a weakly branch group with the congruence subgroup
property necessarily be branch?



n Chapter 5 N

The class MF and dense subgroups

In this chapter, we study the class MF of groups such that every maximal
subgroup is of finite index. More precisely, we study the link between this
class, profinite topology and various notions of dense subgroups. The main
result of this chapter is Theorem 5.4.3, which is a technical result concerning
the projection proper dense subgroups of self-replicating weakly branch group.
It is in fact a broad generalisation of a theorem first proved by Pervova in
[73, 74] for Grigorchuk 2-groups, GGS and EGS groups, and later extended
by the author and Alejandra Garrido in [32] to just-infinite branch groups.
This is a crucial tool that will allow us, in the following chapters, to exploit
length contraction and inductive arguments to study maximal subgroups of
various branch and weakly branch groups.

We begin in Section 5.1 by giving a few important general facts about the
class MF . Then, in Section 5.2, we review the well-known link between this
class and the existence of dense subgroups in the profinite topology. In Sec-
tion 5.3, we investigate two other related notions of dense subgroups, namely
pro-MF-dense and prodense subgroups, and how they relate to maximal sub-
groups of infinite index. Finally, in Section 5.4, we prove Theorem 5.4.3 and
its corollary, Corollary 5.4.4, which will form one of our main technical tools
in Chapters 6, 7 and 8.

5.1 The class MF

Let MF be the class of groups containing no maximal subgroups of infinite
index. In this section, we collect a few facts about this class.

We first begin by observing that the class MF is well-behaved with respect
to taking quotients, a fact that is well-known and easily established.

Proposition 5.1.1. Let G be a group in MF and let N ⊴ G. Then, G/N is
in MF .

Proof. Let M̄ be a maximal subgroup of G/N . By the correspondence theorem,
there exists a maximal subgroup M ≤ G of the same index. As G ∈ MF , the
result follows.

71
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The class MF is also well-behaved with respect to taking extensions of
finitely generated groups.

Theorem 5.1.2. Let G be a finitely generated group and N ⊴ G be a finitely
generated normal subgroup of G. If N and G/N are in MF , then G is also in
MF .

Proof. Let M ≤ G be a maximal subgroup of G. We will show that M is of
finite index in G.

If N ≤M , thenM/N is a maximal subgroup of G/N and therefore of finite
index. It follows that M is of finite index in G.

If N ≰M , let H = N ∩M . By assumption, H is a proper subgroup of N .
As N is finitely generated, there exists a maximal subgroup K ≤ N such that
H ≤ K. Since N is in MF , K is of finite index in N .

Let L ≤ N be the characteristic core of K in N . As K is a finite index
subgroup of a finitely generated group, L is of finite index in N . Furthermore,
as L is characteristic in a normal subgroup of G, it is normal in G.

Let M ′ =ML. Since L ≤ N , we have

M ′ ∩N = (M ∩N)L = HL.

As both H and L are subgroups of K, we haveM ′∩N ≤ K ̸= N , which implies
that M ′ ̸= G. By the maximality of M , this means that M ′ = M . Therefore,
L ≤M .

As L is of finite index in N , we have that H is of finite index in N . Since
N ≰M , the maximality ofM yieldsMN = G. This implies thatM is of finite
index in G, since

[MN :M ] = [N :M ∩N ].

As a corollary, we get that a group which is virtually in MF must be in
MF , thus recovering a result proved by Grigorchuk and Wilson in [49].

Corollary 5.1.3. Let G be a finitely generated group. If there exists a finite
index subgroup H ≤ G such that H ∈ MF , then G ∈ MF . In particular, any
finitely generated virtually nilpotent group belongs to MF .

Proof. This follows immediately from Theorem 5.1.2 and from the fact that
every maximal subgroup of a finitely generated nilpotent group is normal (see
for instance [77], 12.1.5), since any finite group is obviously in MF .

5.2 The class MF and profinite topology

There is a nice and well-known characterisation of groups belonging to MF
in terms of the profinite topology (see Definition 4.1.1), namely that a finitely
generated group contains a maximal subgroup of infinite index if and only if
it contains a dense subgroup in the profinite topology. In this section, we give
a proof of this fact. To begin, we recall a useful characterisation of dense
subgroups in the profinite topology.
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Proposition 5.2.1. Let G be a group. A subgroup H ≤ G is dense in the
profinite topology if and only if, for all normal subgroups of finite index N ⊴ G,
we have HN = G.

Proof. (⇒) If H is dense in the profinite topology, then for every normal
subgroup of finite index N ⊴ G and every g ∈ G, we have H ∩ gN ̸= ∅.
Therefore, HN = G.

(⇐) If H is such that for all normal subgroups of finite index N ⊴ G, we have
HN = G, then for every g ∈ G, we have H ∩ gN ̸= ∅. As the cosets
of normal subgroups of finite index of G form a basis for the profinite
topology (see Remark 4.1.2), we conclude that H is dense.

We can now characterise the existence of maximal subgroups of infinite
index in terms of profinite topology.

Proposition 5.2.2. Let G be a finitely generated group. Then, G contains a
maximal subgroup of infinite index if and only if it contains a proper subgroup
that is dense in the profinite topology. Furthermore, any maximal subgroup of
infinite index of G must be dense in the profinite topology.

Proof. (⇒) Let M < G be a maximal subgroup of infinite index. Then, for
every normal subgroup of finite index N ⊴ G, we must have MN =
G. Indeed, otherwise, we would have MN = M by the maximality of
M , which would imply that M is of finite index in G. Therefore, by
Proposition 5.2.1, M is dense.

(⇐) Let H < G be a proper dense subgroup in the profinite topology. As G is
finitely generated, H must be contained in a maximal subgroup M < G.
Since H ≤ M , we have that M is also dense. We conclude by using the
fact that a proper dense subgroup must be of infinite index, since every
subgroup of finite index is closed in the profinite topology.

5.3 Pro-MF-dense and prodense subgroups

We saw in Proposition 5.2.2 that the existence of maximal subgroups of finite
index in finitely generated groups is equivalent to the existence of dense sub-
groups in the profinite topology. In this section, we introduce the notion of a
pro-MF-dense subgroup, which is often more convenient for the study of the
index of maximal subgroups. We then show that being pro-MF-dense is in
fact equivalent to being dense in the profinite topology, even though the un-
derlying topologies might be different. Finally, we show that if every proper
quotient is in MF , then being pro-MF-dense is equivalent to being prodense,
which is yet another notion of density.

Let us begin by introducing the notion of prodense and pro-MF-dense
subgroups. In Proposition 5.2.1, we saw that for a subgroup H of a group G,
being dense in the profinite topology is the same as satisfying HN = G for
all normal subgroups N ⊴ G of finite index. Using this characterisation of
a dense subgroup, one could naturally generalise this notion by changing the
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class of normal subgroups that are considered. For instance, by asking that
HN = G for all non-trivial normal subgroup N ⊴ G, one arrives at the notion
of a prodense subgroup, as is done in [36].

Definition 5.3.1. Let G be a group. A subgroup H ≤ G is said to be a
prodense subgroup of G if we have HN = G for all non-trivial normal subgroups
N ⊴ G. U

If one takes instead every normal subgroup such that the quotient by this
normal subgroup belongs to MF , one then arrives at the notion of what we
will call a pro-MF-dense subgroup.

Definition 5.3.2. Let G be a group. We will call a subgroup H ≤ G a pro-
MF-dense subgroup of G if we have HN = G for all normal subgroups N ⊴ G
such that G/N ∈ MF . U

Remark 5.3.3. If the intersection of every pair of non-trivial normal sub-
groups is non-trivial (which is the case, for example, in the class of weakly
branch groups by Proposition 2.7.8), one can define a topology on G whose
basis of open set is

{gN | g ∈ G, N ⊴ G, N ̸= {1}} .

For more on this subject, see [36, 37], where this topology is called the pro-
normal topology. Likewise, if for every normal subgroups N1, N2 ⊴ G such
that G/N1, G/N2 ∈ MF , we have G/(N1 ∩N2) ∈ MF , then one can define a
topology on G whose basis of open sets is

{gN | g ∈ G, N ⊴ G, G/N ∈ MF} .

We will call this topology, when it exists, the pro-MF topology.
Note that, in general, those topologies are not well-defined. Indeed, it is

easy to construct, for example, groups where N1 ∩ N2 = {1} and G is not
in MF . However, when G ∈ MF , the pro-MF topology is well-defined by
Proposition 5.1.1 and is in fact equal to the discrete topology on G. Y

In the cases where the pro-MF topology is defined, the pro-MF-dense
subgroups are exactly the dense subgroups in the pro-MF topology.

Proposition 5.3.4. Let G be a group such that for every pair of normal sub-
groups N1, N2 ⊴ G with G/N1, G/N2 ∈ MF , we also have G/(N1∩N2) ∈ MF ,
so that the pro-MF topology on G is well-defined (see Remark 5.3.3). Then, a
subgroup H ≤ G is dense in the pro-MF topology if and only if it is pro-MF-
dense.

Proof. The proof is the same as the proof of Proposition 5.2.1, replacing normal
subgroups of finite index with normal subgroups such that the quotient is in
MF .

Of course, a similar result holds for prodense subgroups and the pro-normal
topology. However, for the moment, we will mainly focus on pro-MF-dense
subgroups and the pro-MF topology, since these are more directly related to
the study of the index of maximal subgroups.

In general, when it exists, the pro-MF topology can be finer than the
profinite topology, as the following example illustrates.
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Example 5.3.5. Let

G = H3(Z) =

⎧⎨⎩
⎛⎝1 a c
0 1 b
0 0 1

⎞⎠ ⃓⃓⃓⃓
a, b, c ∈ Z

⎫⎬⎭
be the discrete Heisenberg group. As G is a finitely generated nilpotent group,
it is inMF by the theorem of Margulis-Soifer [59], and so are all of its quotients.
It follows that the pro-MF topology on G is well-defined and that every normal
subgroup of G is open in this topology. In particular, the trivial subgroup is
open in the pro-MF topology. However, the trivial subgroup cannot be open
in the profinite topology, since every open subgroup in the profinite topology
must be of finite index, whereas G is infinite. X

As the pro-MF topology can be finer than the profinite topology, one might
expect that the notion of a pro-MF-dense subgroup could be stronger than
the notion of a dense subgroup in the profinite topology. However, as the next
proposition shows, the two are in fact equivalent for finitely generated groups.

Proposition 5.3.6. Let G be a finitely generated group and let H ≤ G be a
subgroup. Then, H is dense in the profinite topology on G if and only if H is
pro-MF-dense.

Proof. (⇒) Let us suppose that H is dense in the profinite topology on G
and let N ⊴ G be a normal subgroup of G such that G/N ∈ MF .
By Proposition 5.2.1, we have that HF = G for all normal subgroup
F ⊴ G of finite index. Therefore, we have that (HN)(FN)/N = G/N
for all normal subgroup F ⊴ G of finite index. It thus follows from the
correspondence theorem and Proposition 5.2.1 that HN/N is a dense
subgroup of G/N in the profinite topology. As G/N does not contain
any maximal subgroup of infinite index by hypothesis, it follows from
Proposition 5.2.2 that HN/N = G/N . Therefore, once again by the
correspondence theorem, we have that HN = G, which shows that H is
pro-MF-dense.

(⇐) Let us assume that H is pro-MF-dense. Since every finite group is in
MF , we have HN = G for all normal subgroup N ⊴ G of finite index.
Therefore, H is dense in the profinite topology by Proposition 5.2.1.

As a corollary, we get that a finitely generated group is in MF if and only
if it does not contain a proper pro-MF-dense subgroup.

Corollary 5.3.7. Let G be a finitely generated group. Then, G contains a
maximal subgroup of infinite index if and only if it contains a proper pro-MF-
dense subgroup. Furthermore, any maximal subgroup of infinite index of G
must be pro-MF-dense.

Proof. This follows directly from Propositions 5.3.6 and 5.2.1.

Although we have just shown that they are equivalent for finitely generated
groups, formulating everything in terms of pro-MF-dense subgroups instead
of dense subgroups in the profinite topology can often be more convenient for
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studying groups in MF , since this formulation allows us to consider normal
subgroups of infinite index (something that is not obvious when working with
the profinite topology, as they are never open in this setting).

In fact, in what follows, this approach will allow us to consider every non-
trivial normal subgroup. Indeed, we will primarily be interested in determining
whether a given group G belongs to the class MF or not. If G admits a normal
subgroup N ⊴ G such that G/N is not in MF , then G itself cannot be in MF
by Proposition 5.1.1. Therefore, the question of knowing if G is in MF is only
interesting if G is infinite and if we know that every proper quotient of G is in
MF . In that case, the existence of a pro-MF-dense subgroup is equivalent to
the existence of a prodense subgroup.

Proposition 5.3.8. Let G be an infinite finitely generated group such that for
every non-trivial normal subgroup N ⊴ G, we have G/N ∈ MF . Then, a
subgroup H ≤ G is prodense if and only if it is pro-MF-dense.

Proof. (⇒) Suppose that H ≤ G is prodense. Then, for every non-trivial
normal subgroup N ≤ G, we have HN = G. To show that H is pro-
MF-dense, it thus only remains to show that if G ∈ MF , then H = G.
Assume for the sake of contradiction that G is in MF but that H is a
proper subgroup. Then, since G is finitely generated, H is contained in
a maximal subgroup M < G of finite index. Let N ⊴ G be the normal
core of M . We have that N is of finite index in G, which means that
it is non-trivial, since G is infinite. Therefore, using the fact that H is
prodense, we find HN = G, which is absurd, since HN ≤M ⪇ G.

(⇐) Suppose thatH is pro-MF-dense. For every non-trivial normal subgroup
N ⊴ G, we have G/N ∈ MF by assumption, so that HN = G. Thus, H
is prodense.

Thus, for groups satisfying the hypotheses of Proposition 5.3.8, studying
pro-MF-dense subgroups is equivalent to studying prodense subgroups.

It is interesting to note that, for finitely generated branch groupsi, the
assumptions of Proposition 5.3.8 are always verified.

Proposition 5.3.9. Let G be a finitely generated branch group. Then, the pro-
MF topology is well-defined on G and for every non-trivial normal subgroup
N ⊴ G, N is open in this topology. In particular, every proper quotient of G
is in MF .

Proof. Recall from Section 2.7 that a branch group is always infinite. If G ∈
MF , then the result is true by Remark 5.3.3 and Proposition 5.1.1. Let us
now suppose that G is not in MF . By Proposition 2.7.8, the intersection of
two non-trivial normal subgroups is non-trivial. Thus, to prove the result, it
suffices to show that for every non-trivial normal subgroup N ⊴ G, we have
G/N ∈ MF . It follows from Lemma 2.7.5 that G/N is a finitely generated
virtually abelian group. As abelian and finite groups are in MF , Theorem
5.1.2 implies that G/N ∈ MF .

iSee Section 2.7 for the definition of branch groups.
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Thus, a finitely generated branch group G is inMF if and only if it contains
no prodense subgroups. This is a fact that we will rely on in the following chap-
ters. This also has consequences for the Frattiniii subgroup, as the following
simple proposition shows.

Proposition 5.3.10. Let G be a finitely generated group that is just-non-MF ,
meaning that G is not in MF but every proper quotient of G is in MF . Then,
the Frattini subgroup of G is trivial. In particular, any finitely generated branch
group that is not in MF has a trivial Frattini subgroup.

Proof. Let F ⊴ G be the Frattini subgroup of G (which is always characteristic,
so in particular normal). Since G is a finitely generated group that is not
in MF , it must contain a maximal subgroup M < G of infinite index. By
definition, we have F ≤ M . Thus, by the correspondence theorem, we have
that M/F is maximal in G/F . If F were non-trivial, we would have that
G/F ∈ MF , which would imply thatM is of finite index in G, a contradiction.
Thus, F must be trivial.

The statement about branch groups follows directly from Proposition 5.3.9.

5.4 Weakly branch groups and proper prodense
subgroups

In this section, we study prodense subgroups of self-replicating weakly branch
groups. As was mentioned in Section 5.3, under the assumption that every
proper quotient is in MF , the study of prodense subgroups is equivalent to
the study of pro-MF-dense subgroups, which itself is equivalent to the study
of maximal subgroups of infinite index. The main result of this section is that
under some technical and somewhat restrictive conditions, the projection to
any vertex of a proper prodense subgroup is also a proper prodense subgroup
(Theorem 5.4.3).

A restricted version of this result was first proved by Pervova in [73] and
[74]. This was later generalised to a larger class of groups by Alejandra Garrido
and the author in [32]. The version we present here is far more general and can
also be applied to weakly branch groups, whereas the previous versions could
only be applied to just-infinite branch groups. To our knowledge, this is the
most general existing version of this criterion.

Although the hypotheses are somewhat restrictive, the main result of this
section is still very useful in the study of maximal subgroups of weakly branch
groups, as will become apparent in Chapters 6, 7 and 8. This is thanks to
the fact that it allows us to exploit the phenomenon of length contraction that
exists in many groups to simplify the analysis.

Let us first prove that under some suitable conditions, a prodense subgroup
of a self-replicating weakly branch group projects to a prodense subgroup.

Proposition 5.4.1. Let X be an alphabet of size d, let G be a self-replicating
weakly branch group acting on the d-regular rooted tree X∗, let H ≤ G be a

iiRecall that the Frattini subgroup of a group is the intersection of every maximal sub-
group.
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prodense subgroup and let u ∈ X∗ be any vertex of the tree. Then, Hu is a
prodense subgroup of G, where Hu = φu (H ∩ StG(u)).

Proof. It suffices to show that HuRist
′
G(n) = G for all n ∈ N. Indeed, since G

is weakly branch, for every non-trivial normal subgroup N ⊴ G, there exists
n ∈ N such that Rist′G(n) ≤ N by Lemma 2.7.5. Furthermore, by Lemma
2.7.6, Rist′G(n) is non-trivial for every n ∈ N.

Let us suppose that u is on level m, and let n ∈ N be any natural number.
Clearly, RistG(m+ n) ≤ StG(m) ≤ StG(u), and

φu(RistG(n+m)) ≤ RistG(n).

Therefore, φu(Rist
′
G(n+m)) ≤ Rist′G(n).

As Rist′G(n+m) is a non-trivial normal subgroup of G, we have by hypoth-
esis

H Rist′G(n+m) = G.

As G is self-replicating, for every g ∈ G, there exists g̃ ∈ StG(u) such that
φu(g̃) = g. Since H Rist′G(n+m) = G, there exist h ∈ H and r ∈ Rist′G(n+m)
such that hr = g̃. Since g̃, r ∈ StG(u), we must have h ∈ StG(u). Therefore,
we get

φu(h)φu(r) = g,

with φu(h) ∈ Hu and φu(r) ∈ Rist′G(n). This shows thatHuRist
′
G(n) = G.

As we have seen above, for self-replicating weakly branch group, the projec-
tion of any prodense subgroup to a vertex is still a prodense subgroup. However,
to determine whether a group belongs to MF or not, we need to study proper
prodense subgroups. The next theorem tells us that the projections of proper
prodense subgroups stay proper if the action of the group on the first level
is primitiveiii. In order to prove it, though, we will first need a small lemma
regarding the action of self-similar groups.

Lemma 5.4.2. Let X be a finite alphabet and let G be a self-replicating group
acting spherically transitively on the rooted tree X∗. If the action of G on X
is primitive, then φv(StG(1)) acts spherically transitively on X∗ for all v ∈ X.

Proof. Let us fix a letter x ∈ X. We will begin by showing that StG(n) acts
transitively on the set xnX for all n ∈ N.

Suppose on the contrary that there exists n ∈ N such that the action of
StG(n) on x

nX is not transitive. We claim that it must therefore be trivial. In-
deed, let us consider the subgroup φxn(StG(n)) ≤ G. Since G is self-replicating,
we must have φxn(StG(x

n)) = G. Therefore, as StG(n) is normal in StG(x
n),

we obtain by applying φxn that φxn(StG(n)) is normal in G. Furthermore,
since the action of StG(n) on xnX is not transitive, we see that the action
of φxn(StG(n)) on X is not transitive. It must therefore be trivial, since G
acts primitively on X and φxn(StG(n)) is normal in G. Indeed, otherwise, the
orbits of this action would form a non-trivial partition of X preserved by the
action of G.

We thus have that StG(n) acts trivially on xnX. As StG(n) is normal in G,
and since G acts spherically transitively on X∗, this implies that StG(n) acts

iiiSee Definition 2.1.3 for the definition of a primitive action.
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trivially on vX for all v ∈ Xn. In other words, StG(n) acts trivially on Xn+1.
Consequently, we have that StG(n) ≤ StG(n + 1). As the other inclusion is
trivially true, we conclude that StG(n) = StG(n+ 1).

Let g ∈ StG(n) be an arbitrary element. As we have seen above, we have
also g ∈ StG(n + 1). Let y ∈ X be an arbitrary letter, and let us consider
φy(g). Since G is self-similar, we have φy(g) ∈ G, and since g ∈ StG(n +
1), we must have φy(g) ∈ StG(n). However, using once again the fact that
StG(n) = StG(n + 1), we have that φy(g) ∈ StG(n + 1). This implies that
StG(n) = StG(n+2). By induction, we conclude that StG(n) = StG(n+m) for
all m ∈ N, which implies that StG(n) = {1}. This is absurd, since StG(n) is a
subgroup of finite index of G, and G must be infinite, since it acts spherically
transitively on X∗.

We have thus shown that StG(n) acts transitively on xnX for all n ∈ N.
As StG(n+1) ≤ StG(1) for all n ∈ N, this shows in particular that StG(1) acts
transitively on xn+1X for all n ∈ N. By induction, we see that this implies
that StG(1) acts transitively on xXn for all n ∈ N, and thus that φx(StG(1))
acts spherically transitively on X∗.

We can now prove the announced theorem.

Theorem 5.4.3. Let X be a finite alphabet of size d, let G be a finitely gen-
erated self-replicating weakly branch group acting on the d-regular rooted tree
X∗, let H ≤ G be a prodense subgroup and let u ∈ X∗ be any vertex. If the
action of G on X is primitive, then H ̸= G if and only if Hu ̸= G, where
Hu = φu(StH(u)).

Proof. Since G is self-replicating, we have Gu = G, so if Hu ̸= G, then clearly
H ̸= G.

Let us now assume that H ̸= G and let us show that Hu ̸= G. It suffices to
prove this fact for u ∈ X. Indeed, if this property holds on the first level of the
rooted tree, we can then use induction to prove it for u on any level thanks to
Proposition 5.4.1.

Therefore, let u ∈ X be a vertex on the first level of the tree and let us
assume for the sake of contradiction that H ̸= G but Hu = G.

The rigid stabiliser of the vertex u in H, RistH(u) = RistG(u) ∩ H, is
a normal subgroup of StH(u). Since Hu = G, it is also a normal subgroup
of StG(u). Indeed, for any g ∈ StG(u), there exists h ∈ StH(u) such that
φu(g) = φu(h). Hence, since any r ∈ RistH(u) acts trivially outside of uX∗,
the subtree of vertices prefixed by u, we have

grg−1 = hrh−1 ∈ RistH(u).

Since StG(1) ≤ StG(u), we have that RistH(u) ⊴ StG(1).

Now, since G acts transitively on X and since H StG(1) = G, we conclude
that H must also act transitively on X. Therefore, for any v ∈ X, there exists
h ∈ H such that StH(v) = hStH(u)h−1. Hence, Hv = φv(StH(v)) = G for all
v ∈ X. It follows that RistH(v) ⊴ StG(1) for all v ∈ X. Therefore,

RistH(1) =
∏︂
v∈X

RistH(v) ⊴ StG(1).
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Since RistH(1) ⊴ H and H StG(1) = G, we conclude that

RistH(1) ⊴ G.

This implies that RistH(1) = {1}. Indeed, otherwise, by hypothesis, we would
have H RistH(1) = G, which is absurd since H RistH(1) = H and H ̸= G.

Let us show that, as a consequence of this fact, we must have

H ∩
∏︂
v∈U

RistAut(X∗)(v) = {1}

for all proper subset U ⊊ X. We will proceed by induction on the cardinality
of U . If |U | = 1, then H∩RistAut(X∗)(v) = RistH(v) = {1} by what was shown
above. Let us now assume that the result holds if |U | ≤ n for some n < d− 1,
and let us show that it must then also hold for |U | = n+ 1.

Let U ⊂ X be such that |U | = n + 1 and let us assume for the sake of
contradiction that

K = H ∩
∏︂
v∈U

RistAut(X∗)(v) ̸= {1}.

In that case, there must exist some v ∈ U such that Kv = φv(K) ̸= {1}, and
so, by the induction hypothesis, Kv ̸= {1} for all v ∈ U .

Clearly,K is normal in StH(1). This implies thatKv is normal in φv(StH(1))
for all v ∈ U . We will prove that φv(StH(1)) is a normal subgroup of G acting
spherically transitively on X∗.

Let us first begin by showing that φv(StH(1)) is a normal subgroup of G
for all v ∈ X. Since Hv = G, for all g ∈ G, there exists h ∈ StH(v) such that
φv(h) = g. Now, since StH(1) is normal in H, we have that hStH(1)h−1 =
StH(1). Therefore, by applying φv, we get gφv(StH(1))g−1 = φv(StH(1)),
which proves that φv(StH(1)) is normal in G.

By the transitivity of the action of H on X and the normality of φv(StH(1))
in G, we see that φv(StH(1)) = φw(StH(1)) for all v, w ∈ X. Let us denote
this subgroup by S1.

Let us now show that S1 acts spherically transitively on X∗. This is equiv-
alent to showing that for one (and hence for all, by transitivity) v ∈ X and
for all n ∈ N, the group StH(1) acts transitively on the set vXn. Let us fix
v ∈ X and n ∈ N. It follows from Lemma 5.4.2 that StG(1) acts transitively
on vXn. As StG(n+1) is a normal subgroup of G, we have by hypothesis that
H StG(n + 1) = G. This implies that StH(1) also acts transitively on vXn.
Indeed, let w1, w2 ∈ Xn be two arbitrary elements. By transitivity, there ex-
ists g ∈ StG(1) such that g(vw1) = vw2. Since H StG(n + 1) = G, there exist
h ∈ H and s ∈ StG(n+ 1) such that hs = g. We then have

h = gs−1 ∈ StG(1) ∩H = StH(1),

and since s ∈ StG(n + 1), we must have h(vw1) = vw2. We conclude that
S1 = φv(StH(1)) is a normal subgroup of G acting transitively on X∗.

Now, since the action of H on X is primitive, there exists h ∈ H such that
0 < |U ∩ hU | < |U |. We have hKh−1 = H ∩

∏︁
v∈hU RistAut(X∗)(v). Hence,

[K,hKh−1] ≤ H ∩
∏︂

v∈U∩hU

RistAut(X∗)(v) = {1}
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by the induction hypothesis.
Let us choose v ∈ U ∩ hU . Since K and hKh−1 commute, we must have

that Kv and
(︁
hKh−1

)︁
v
commute. As hKh−1 is also normal in StH(1), we see

that Kv and (hKh−1)v are both normal in S1. Therefore, L = Kv ∩ (hKh−1)v
is an abelian normal subgroup of S1. As S1 is normal in G, this means that
L is an abelian subnormal subgroup of G. Therefore, by Proposition 2.7.9, we
must have that L = {1}. On the other hand, since S1 ⊴ G acts transitively
on X∗ and since Kv and (hKh−1)v are non-trivial by assumption, we have
from Proposition 2.7.8 that L is non-trivial, which is a contradiction. Hence,
K must be trivial and we have shown that

H ∩
∏︂
v∈U

RistAut(X∗)(v) = {1}

for all proper subset U ⊊ X.
This implies that there exist isomorphisms α2, . . . , αd : S1 → S1 such that

for all h ∈ StH(1),
ψ1(h) = (h1, α2(h1), . . . , αd(h1))

for some h1 ∈ S1. Indeed, let us write X = {1,2, . . . ,d}. We have shown that
for all v ∈ X, the map φv is injective when restricted to StH(1). It is thus an
isomorphism onto its image, S1. We can then define αi = φi ◦ φ−1

1 .
Let r ∈ RistG(d) be any non-trivial element, and let us consider φd(r) ∈ G.

AsG acts faithfully on a rooted tree of finite degree, we have thatG is residually
finite. Therefore, there exists a normal subgroup L ⊴ G of finite index such
that φd(r) /∈ L.

Let us consider L∩S1, which is a normal subgroup of S1 of finite index. Let
πL∩S1

: S1 → S1/(L∩S1) be the standard projection onto the quotient, and let
K ⊴ S1 be the kernel of the map πL∩S1 ◦ αd. As S1/(L ∩ S1) is a finite group,
we have that K is a normal subgroup of finite index of S1. It follows that
K∩L is a normal subgroup of finite index of S1. In particular, it is non-trivial.
Therefore, it follows from Lemma 2.7.4 that there exists v ∈ X∗ such that
Rist′′G(v) ≤ K ∩ L. Since S1 acts spherically transitively on X∗, we conclude
that Rist′′G(|v|) ≤ K ∩ L, and as Rist′′G(|v|) is a normal subgroup of G, we use
Lemma 2.7.5 to conclude that there exists m ∈ N such that Rist′G(m) ≤ K∩L.

Let us set N = Rist′G(m+ 1). It is clear that N is a normal subgroup of G
and that φv(N) ≤ Rist′G(m) for all v ∈ X. Since H is a prodense subgroup, we
have HN = G. In particular, for the r ∈ RistG(d) chosen above, there must
exist h ∈ H and n ∈ N such that hn = r. As both n and r belong to StG(1),
we must have h ∈ StH(1). By our choice of r, we have

ψ1(r) = (1, 1, . . . , 1, φd(r)).

It follows from the fact that N = Rist′G(m+ 1) that

ψ1(n) = (n1, n2, . . . , nd)

with ni ∈ Rist′G(m) for i = 1, 2, . . . d. Finally, since h ∈ StH(1), we have

ψ1(h) = (h1, α2(h1), . . . , αd(h1)).

Consequently, we have

(1, 1, . . . , φd(r)) = (h1n1, α2(h1)n2, . . . , αd(h1)nd).
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In particular, this means that h1 ∈ Rist′G(m) ≤ K ∩L ≤ K. As K was defined
as the kernel of the map πL∩S1

◦ αd, this implies that αd(h1) ∈ L. Since we
also have that nd ∈ Rist′G(m) ≤ L, we must have φd(r) ∈ L. This is absurd,
since we chose L such that φd(r) /∈ L.

Hence, our assumption that Hu = G led us to a contradiction, so we must
have Hu ̸= G.

Let us now state a direct corollary of this theorem and of a few other results
in this chapter that will be useful in applications later on.

Corollary 5.4.4. Let X be a finite alphabet and let G be a finitely generated
self-replicating weakly branch group acting on X∗. Let us suppose that the
action of G on X is primitive, and suppose that every proper quotient of G is
in MF (this is the case, for instance, if G is branch, by Proposition 5.3.9). Let
H ≤ G be a subgroup that is dense in the profinite topology (respectively, pro-
MF-dense) and let v ∈ X∗ be any vertex. Then, Hv is dense in the profinite
topology (respectively, pro-MF-dense), and H ̸= G if and only if Hv ̸= G.

Proof. The result follows immediately from Propositions 5.4.1, 5.3.8, 5.3.4 and
Theorem 5.4.3.

Corollary 5.4.4 states that when every proper quotient belongs to MF , the
projections of proper prodense subgroups are also proper prodense subgroups.
In particular, by Corollary 5.3.7, the projections of maximal subgroups of in-
finite index (if they exist) are proper prodense subgroups. However, Corollary
5.4.4 tells us nothing about the maximality of these projections. It is thus nat-
ural to wonder if the projections of maximal subgroups of infinite index must
necessarily be maximal. The next proposition shows that this is always the
case, under the assumptions of Corollary 5.4.4.

Proposition 5.4.5. Let X be a finite alphabet and let G be a self-replicating
weakly branch group acting on X∗ in such a way that the action of G on X is
primitive. Suppose that every proper quotient of G is in MF . If M < G is a
maximal subgroup of G of infinite index, then Mv is also a maximal subgroup
of infinite index of G for any v ∈ X∗.

Proof. By Corollary 5.4.4, we have that Mv is a proper prodense subgroup of
G. Thus, to show that it is a maximal subgroup of infinite index, we only need
to show that it is maximal.

Without loss of generality, we can assume that v ∈ X. Indeed, if the result
is true for all v ∈ X, then we immediately get that it is true for all v ∈ X∗ by
induction.

For the sake of contradiction, let us assume that Mv is not maximal in G.
Then, there exists g ∈ G such that

Mv ⪇ ⟨Mv, g⟩ ⪇ G.

As G is self-replicating, there exists g̃ ∈ G such that g̃ ∈ StG(v) and φv(g̃) = g.
Since M is prodense in G, we have that M StG(1) = G. Therefore, there exists
m̃ ∈M and s̃ ∈ StG(1) such that g̃ = m̃s̃. Since both g̃ and s̃ belong to StG(v),
we must have that m̃ ∈ StG(v). Therefore, we have

φv(s̃) = φv(m̃
−1g̃) = φv(m̃

−1)g.
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Since m̃ ∈ M , we have that φv(m̃
−1) ∈ Mv. We conclude that ⟨Mv, g⟩ =

⟨Mv, φv(m̃
−1)g⟩. Thus, replacing g by φv(m̃

−1)g and g̃ by s̃ if necessary, we
can assume that g̃ ∈ StG(1).

Now, let w ∈ X be any element of X different from v. Since G is self-
replicating, and since RistG(w) is a normal subgroup of StG(w), we have that
φw(RistG(w)) is a normal subgroup of G. By Corollary 5.4.4, we know thatMw

is a proper prodense subgroup ofG. Therefore, we have thatMwφw(RistG(w)) =
G. Consequently, there exists mw ∈ Mw and rw ∈ RistG(w) such that
mwφw(rw) = φw(g̃).

Let
ĝ = g̃

∏︂
w∈X\{v}

r−1
w ∈ StG(1).

Then, for every w ∈ X \ {v}, we have

φw(ĝ) = φw(g̃)
∏︂

w′∈X\{v}

φw′(rw′)−1

= φw(g̃)φw(rw)
−1

= mw ∈Mw

where the second equality comes from the fact that rw′ ∈ RistG(w
′), so φw(rw′) =

1 if w ̸= w′. Furthermore, by a similar computation, we have that φv(ĝ) = g.
Since g /∈ Mv by construction, we must have that ĝ /∈ M . Let us write

H = ⟨M, ĝ⟩. By the maximality of M , we must have that H = G. However,
we will now prove that

Hv = ⟨Mv, g⟩ ⪇ G,

which will contradict the fact that ⟨M, ĝ⟩ = G, since Gv = G. Thus, to finish
the proof, we only need to prove the above claim.

Let h ∈ StH(v) be an arbitrary element of H stabilising v. Since h ∈ H =
⟨M, ĝ⟩, there exist n ∈ N, i1, . . . , in ∈ Z and µ1, . . . , µn+1 ∈M such that

h = µ1ĝ
i1µ−1

1 µ2ĝ
i2µ−1

2 . . . µnĝ
inµ−1

n µn+1.

Notice that since ĝ ∈ StG(1), we must have that µjg
ijµ−1

j ∈ StG(1) for all
1 ≤ j ≤ n, and since h ∈ StG(v), this implies that µn+1 ∈ StG(v).

We will now see that for all 1 ≤ j ≤ n, we must have

φv(µj ĝ
ijµ−1

j ) ∈ ⟨Mv, g⟩.

Indeed, if µj ∈ StG(v), then we have

φv(µj ĝ
ijµ−1

j ) = φv(µj)g
ijφv(µj)

−1 ∈ ⟨Mv, g⟩.

If µj /∈ StG(v), then we have µ−1
j · v ̸= v. Let us set w = µ−1

j · v. We have that

φv(µj ĝ
ijµ−1

j ) = φw(µj)m
ij
wφw(µj)

−1.

Now, since m
ij
w ∈ Mw, there exists some ν ∈ StM (w) such that φw(ν) = m

ij
w .

It follows that
φv(µj ĝ

ijµ−1
j ) = φv(µjνµ

−1
j ).
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Since ν ∈ StM (w) and since µj ∈M , we have that φv(µjνµ
−1
j ) ∈ StG(µj ·w) =

StM (v). Therefore, we conclude that φv(µj ĝ
ijµ−1

j ) ∈Mv.
Finally, since µn+1 ∈Mv, we have that φv(µn+1) ∈Mv. Thus, we see that

φv(h) ∈ ⟨Mv, g⟩. This concludes the proof.

The hypotheses of Theorem 5.4.3 and its corollaries are rather strong. In-
deed, requiring the group be self-replicating seems somewhat restrictive. One
might wonder if the result remains true under weaker assumptions.

Question 5.4.6. Is it true that, under the assumption that every proper quo-
tient is in MF , the projections of any proper prodense subgroup in a weakly
branch group G is always a proper prodense subgroup of the projection of G?
If not, is it true at least for weakly branch groups acting primitively on the
first level of the rooted tree?



n Chapter 6 N

Groups of intermediate growth not

in MF

In this chapter, we study the maximal subgroups of Šunić groups acting on
the binary rooted tree. More precisely, we show that if such a Šunić group
contains an element of infinite order, then it must admit exactly countably
many maximal subgroups of infinite index. We then give a complete description
of these maximal subgroups.

The existence of maximal subgroups of infinite index among Šunić groups
acting on the binary rooted tree is interesting, since they are branch groups
(Proposition 2.9.18) of intermediate growth (as mentioned in Section 3.3). Al-
though these groups are neither the first examples of branch groups admitting
maximal subgroups of infinite index (the first examples of such groups were
given by Bondarenko in [14]) nor the first examples of groups of intermediate
growth with the same property (the existence of such groups followed easily
from Nekrashevych’s discovery of simple groups of intermediate growth [66]),
they are, to the best of our knowledge, the first examples of branch groups of
intermediate growth that do not belong to the class MF . This shows that
unlike in linear groups, subexponential growth is not a sufficient condition for
a branch group to belong to the class MF .

It is also interesting to note that these groups are very close to the groups
studied by Pervova in [73, 74]. In those articles, Pervova studied torsion Grig-
orchuk groups acting on the binary rooted tree. It follows from our work that
the self-similar non-torsion Grigorchuk group sometimes called the Grigorchuk-
Erschler group in the literature (due to the fact that the growth of this group
was studied by Erschler in [27]) contains maximal subgroups of infinite index.
Thus, our results show that, at least in this case, the assumption of periodicity
was necessary.

In Section 6.1, we define for each Šunić group a family of dense subgroups
in the profinite topology. We show in Section 6.2 that in the case of non-
torsion Šunić groups acting on the binary rooted tree, these dense subgroups
are proper, thus showing that these groups admit maximal subgroups of infi-
nite index. Then, in Section 6.3, we show that some of the subgroups of this
family (the ones corresponding to prime numbers) are in fact maximal. In Sec-
tion 6.4, we show that these are in fact, up to conjugation, the only maximal

85
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subgroups of infinite index in those groups. To complete our investigation of
maximal subgroups, we briefly describe in Section 6.5 the maximal subgroups
of finite index of every Šunić group. We then conclude by discussing some open
questions in Section 6.6.

The results in this chapter are part of a joint work with Alejandra Garrido
and were already published in [32]. Most of text in Sections 6.1 to 6.4 was
taken from this article, with minor modifications where required.

For this entire chapter, we will adopt the notation of Section 2.9. Recall
that given a prime number p and a monic polynomial f with coefficients in
Z/pZ and non-zero constant coefficient, one can define the Šunić group Gp,f
acting on the regular rooted tree X∗, where X = {0,1, . . . ,p− 1}. This group
is generated by

A = ⟨a = (0 1 . . . p− 1)⟩ ∼= Z/pZ

and B = ⟨b0, b1, . . . , bm−1⟩ ∼= (Z/pZ)m, wherem is the degree of the polynomial
f . The action of A on X∗ is by rooted automorphisms, and the action of B on
X∗ is given by the recurrence

b = (ω(b), 1, . . . , 1, ρ(b))

where ω : B → A is a particular epimorphism and ρ : B → B is an automor-
phism of B uniquely defined by f , as explained in Section 2.9.

Recall from Notation 2.9.11 that we denote by G the set of all Šunić groups
and by Gp,m the set of Šunić groups with acting on the p-regular rooted tree
and with defining polynomial of degree m. Throughout this chapter, we will be
only interested in G2,m, the set of Šunić groups for acting on the binary rooted
tree. We will also restrict our attention mainly to Šunić groups containing an
element of infinite order. Recall that by Corollary 2.9.15, this happens if and
only if the defining polynomial is divisible by x+ 1.

Notice that the set G2,1 contains only one element, namely the infinite
dihedral group. As this group is of a very different nature from the other Šunić
groups (it is the only group in this family that is not a branch group), we will
frequently omit it from our considerations.

6.1 Dense subgroups

In this section, we define a family of subgroups of Šunić groups acting on the
binary rooted tree that are dense in the profinite topology. This is an important
step towards the goal of finding maximal subgroups of infinite index, as was
discussed in Chapter 5. We begin by giving a method to find dense subgroups in
the congruence topology (see Chapter 4 for the definition of these topologies).
The general version that we give here is due to Paul-Henry Leemann.

Proposition 6.1.1. Let T be the d-regular rooted tree for some d ≥ 2 and let
G ≤ AutT be a group countably generated by S = {g1, g2, . . . }. Ifm1,m2, . . . ,∈
N are numbers coprime with |G/StG(n)| for all n ∈ N, then H = ⟨gm1

1 , gm2
2 , . . . ⟩

is a dense subgroup of G with respect to the congruence topology.

Proof. Recall from Definition 4.1.3 that the basic open sets of the congru-
ence topology for G are the cosets of StG(n) for n ∈ N. Let us write fn =
|G/StG(n)|. By assumption, we have that mi and fn are coprime for all i
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and for all n ∈ N. Therefore, for each n ∈ N, the Euclidean algorithm yields
x, y ∈ Z such that xmi+ yfn = 1. We can thus write gi = (gmi

i )x(gfni )y. Since

gfni ∈ StG(n), we have gi StG(n) = (gmi
i )x StG(n) and therefore ⟨gi⟩StG(n) =

⟨gmi
i ⟩StG(n). This implies that

G = ⟨g1, g2, . . . ⟩StG(n) = H StG(n)

for every n. In other words, H intersects every non-empty open set and is thus
dense in G with respect to the congruence topology.

With the above proposition, it is simple to find subgroups of Šunić groups
acting on the regular rooted tree X∗ that are dense in the profinite topology.

Corollary 6.1.2. Let G = ⟨a,B⟩ ∈ G \ G2,1 be a Šunić group (different from
the infinite dihedral group) acting on the p-regular rooted tree X∗ for some
prime p. Then, for any q ∈ N coprime to p and any b ∈ B, the subgroup
H(q) = ⟨(ab)q, B⟩ is dense in G with respect to the profinite topology.

Proof. Since b ∈ B, we clearly have G = ⟨ab,B⟩. As G/StG(n) is a p-group for
all n ∈ N (this follows directly, for instance, from Proposition 2.2.5), it follows
immediately from Proposition 6.1.1 that H is dense in G with respect to the
congruence topology. The result then follows from the fact that, according to
Theorem 4.3.8, G has the congruence subgroup property, so the congruence
topology is the same as the profinite topology.

Of course, the existence of the dense subgroups H(q) does not tell us any-
thing about the existence of maximal subgroups of infinite index, since those
subgroups could very well not be proper. In fact, it is easy to see that if G is
torsion, and thus a p-group (see Proposition 2.9.14), then H(q) = G.

However, we will show in the next section that in the case where G ∈ G2,m \
G2,1 is a non-torsion Šunić group acting on the binary rooted tree (and different
from the infinite dihedral group), each H(q) is in fact a proper subgroup of G
when we take b to be the generator such that b = (a, b), whose existence is
guaranteed by Corollary 2.9.15. In particular, this will imply that such a G
contains maximal subgroups of infinite index.

Before we go on to prove that they are proper, let us first notice an inter-
esting fact about these subgroups H(q) < G. It turns out that they are in fact
conjugate to the group G in the automorphism group of the tree.

Proposition 6.1.3. Let G ∈ G2,m be a non-torsion Šunić group acting on the
binary rooted tree X∗ and q ≥ 3 be an odd number. Let b ∈ B be the element
such that ψ1(b) = (a, b). Then, the subgroup H(q) = ⟨(ab)q, B⟩ is conjugate to
G in Aut(X∗).

Proof. Notice that the existence of b as in the statement is ensured by Corollary

2.9.15. Let g ∈ Aut(X∗) be defined by ψ1(g) = ((ba)
q−1
2 g, g). We have

g−1(ab)qbg = g−1(ab)q−1agaa

and

ψ1(g
−1(ab)q−1aga) = ψ1(g

−1)ψ1((abab)
q−1
2 )ψ1(aga)

= (g−1(ab)
q−1
2 , g−1)((ba)

q−1
2 , (ab)

q−1
2 )(g, (ba)

q−1
2 g)

= (1, 1).



88 CHAPTER 6. GROUPS NOT IN MF

Since ψ1 is injective, this means that g−1(ab)qbg = a.
Now, let x ∈ B be any element. Then,

ψ1(g
−1xg) = (g−1(ab)

q−1
2 , g−1)(ω(x), ρ(x))((ba)

q−1
2 g, g)

= (g−1(ab)
q−1
2 ω(x)(ba)

q−1
2 g, g−1ρ(x)g)

= (ω(x), g−1ρ(x)g).

Indeed, if ω(x) = 1, then g−1(ab)
q−1
2 ω(x)(ba)

q−1
2 g = 1, and if ω(x) = a, then

g−1(ab)
q−1
2 ω(x)(ba)

q−1
2 g = g−1(ab)qbg = a = ω(x).

This implies that g−1xg = x. Since H(q) is generated by (ab)qb and B, we
conclude that g−1H(q)g = G.

As a corollary, we get that for all odd q ≥ 3, the subgroup H(q) defined in
the above proposition is isomorphic to G.

In fact, we could also use this proposition to show that H(q) is dense in
G. Indeed, this proposition implies that H(q) StG(n)/ StG(n) is isomorphic to
G/StG(n) for all n ∈ N. On the other hand, we have

H(q) StG(n)/StG(n) ≤ G/StG(n).

Since G/StG(n) is finite, it cannot contain a proper subgroup isomorphic to
itself, so we must have H(q) StG(n) = G for all n ∈ N.

6.2 Proper dense subgroups

In this section, we will prove that for non-torsion Šunić groups acting on the
binary rooted tree, the dense subgroups H(q) defined in Proposition 6.1.3 are
in fact proper for every odd number q ≥ 3. Let us first introduce some notation
that we will use throughout the rest of this chapter.

Notation 6.2.1. We will denote by ˜︁G2,m the non-torsion groups in G2,m. For

G ∈ ˜︁G2,m, we will denote by b ∈ B the element such that b = (a, b) whose ex-
istence is guaranteed by Corollary 2.9.15. Notice that ⟨a, b⟩ ≤ G is isomorphic
to the infinite dihedral group. For q ∈ N, we will denote by H(q) = ⟨(ab)q, B⟩
the subgroup of G generated by (ab)q and the elements of B. L

The main goal of this section will be to prove that for G ∈ ˜︁G2,m and q ≥ 3
odd, the subgroup H(q) is a proper subgroup of G. Since we have already
shown in the previous section that this subgroup is also dense, we get that G
does not belong to the class MF of groups whose maximal subgroups are all
of finite index (see Proposition 5.2.2).

In order to show that the subgroup H(q) is proper, we will compare its
action with the action of G on the boundary X∞ of the rooted tree X∗ (see
Proposition 2.6.42). More precisely, we will show that the orbit of 1∞ ∈ X∞

under the action of H(q) is strictly smaller than the orbit of the same point
under the action of G. This will immediately imply that H(q) is a proper
subgroup of G.

To do this, let us study the actions of G and H(q) on X∞. To describe the
action of G, it is sufficient to look at the action of its generators, namely a and
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the elements of B. In order to more easily achieve this, let us first notice that
we can define a natural operation of addition on the set X = {0,1}, namely
the addition modulo 2. With this operation, for ξ = ξ0ξ1ξ2 · · · ∈ X∞, the
action of a ∈ G on ξ is given by

a · ξ0ξ1ξ2 · · · = (ξ0 + 1)ξ1ξ2 . . . ,

and the action of x ∈ B on ξ is given recursively by

x · ξ0ξ1ξ2 · · · =

⎧⎪⎨⎪⎩
0ξ1ξ2 . . . if ξ0 = 0 and ω(x) = 1

0(ξ1 + 1)ξ2 . . . if ξ0 = 0 and ω(x) = a

1ρ(x) · (ξ1ξ2 . . . ) if ξ0 = 1

where ω and ρ are the maps associated to G, as in Section 2.9.
Let us make a couple of simple yet very useful remarks regarding the action

of G on X∞.

Remark 6.2.2. Let ξ = ξ0ξ1ξ2 · · · ∈ X∞ be any point on the boundary. Since
we have b = (a, b), it follows from the formulas for the action above that b · ξ
is the sequence obtained by adding 1 (modulo 2) to the element immediately
following the first 0 in the sequence. For example, we have b · 10∞ = 110∞.
In particular, this implies that 1∞ is a fixed point of b. Y

Remark 6.2.3. For x ∈ B and ξ ∈ X∞, it follows again from the formulas
for the action that either x · ξ = ξ or x · ξ is the sequence obtained by adding
1 (modulo 2) to the element immediately following the first 0 in the sequence.
Thus, either ξ is fixed by x or x · ξ = b · ξ. It follows that for any ξ ∈ X∞, the
orbit of ξ under the action of G is the same as the orbit of ξ under the action
of ⟨a, b⟩ ≤ G. Y

Let us study the action of G on the orbit of 1̃ = 1∞ ∈ X∞. According
to Remark 6.2.3, this orbit is the same as the orbit of 1̃ under ⟨a, b⟩ ∼= D∞.
We will therefore restrict our attention to the action of this subgroup for the
moment.

We will begin by describing the orbital graph of this action with respect to
the generating set {a, b}. Let us first briefly recall the definition of an orbital
graph.

Definition 6.2.4. Let G be a group with a symmetric generating set S acting
on a space V . The orbital graph of the action of G on V (with respect to S) is
the labelled graph whose vertex set is V and where two vertices v, w ∈ V are
connected by an edge labelled s ∈ S whose origin is v and whose terminus is
w if and only if w = sv. U

Proposition 6.2.5. The orbital graph of the action of ⟨a, b⟩ on the orbit of 1̃
is a half-line with a loop labeled by b at 1̃.

. . .

1̃

a

01̃

b

001̃

a

101̃

b

1001̃

a

0001̃

b

0101̃

a

1101̃

b
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Proof. Since ⟨a, b⟩ is generated by two elements of order 2, the orbital graph
must be a connected graph where every vertex has degree 2 (where a loop adds
only 1 to the degree of the vertex). Hence, there are only four possibilities :
the graph is either a circle, a line, a segment or a half-line.

It follows from Remark 6.2.2 that b ·ξ ̸= ξ for all ξ ∈ X∞ containing at least
one 0, and clearly, we have that a · ξ ̸= ξ for all ξ ∈ X∞. Hence, b has exactly
one fixed point, 1̃, and a has none. Therefore, by degree considerations, the
only possible orbital graph of the action of ⟨a, b⟩ on the orbit of 1̃ must be a
half-line with a loop at 1̃ labelled by b.

Thanks to Proposition 6.2.5, we can define a bijection between the orbit of
1̃ and Z.

Proposition 6.2.6. The map ζ : Z → G · 1̃ given by ζ(n) = (ab)n · 1̃ is a
bijection between Z and the orbit G · 1̃ of 1̃ under G.

Proof. According to Remark 6.2.3, for every ξ ∈ G · 1̃, there exists g ∈ ⟨a, b⟩
such that ξ = g · 1̃. Since ⟨a, b⟩ is isomorphic to the infinite dihedral group,
there exists n ∈ Z, m ∈ {0, 1} such that g = (ab)nbm. Since b · 1̃ = 1̃, we
conclude that ζ is surjective.

Injectivity follows from Proposition 6.2.5. Indeed, it follows from the struc-
ture of the orbital graph (see the figure in that proposition) that (ab)n · 1̃ is
the vertex at distance 2n− 1 from 1̃ if n > 0 and at distance 2n if n ≤ 0.

The bijection ζ allows us to define an action of G on Z. It turns out that
the restriction of this action to ⟨a, b⟩ is the standard action of D∞ on Z. This
will allow us to prove the main theorem of this section.

Theorem 6.2.7. Let us consider G ∈ ˜︁G2,m with m ≥ 2. Then, for each odd
number q ≥ 3, the subgroup H(q) = ⟨(ab)q, B⟩ is proper and dense in the
profinite topology.

Proof. It suffices to show that H(q) is proper, since the density was shown in
Corollary 6.1.2. Let ζ : Z → G · 1̃ be the map from Proposition 6.2.6. Then, G
acts on Z by

g · n = ζ−1(g · ζ(n))

for all g ∈ G and n ∈ N. In particular,

(ab)q · n = ζ−1((ab)q+n · 1̃) = q + n

and

b · n = ζ−1(b(ab)n · 1̃) = ζ−1((ab)−nb · 1̃) = ζ−1((ab)−n · 1̃) = −n

for all n ∈ Z. According to Remark 6.2.3, for x ∈ B, we also have x · n = ±n,
depending on the value of n.

Since H(q) is generated by (ab)q and B, it follows that H(q) · 0 = qZ ⊊
Z = G · 0. Therefore, H(q) ̸= G.
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Notice that if two odd numbers q1, q2 ∈ N are relatively prime, then H(q1)
and H(q2) are contained in different maximal subgroups (necessarily of infinite
index, since H(q1) and H(q2) are dense). Indeed, if they were contained in the
same maximal subgroup M , this M would contain ab and B, so we would have
M = G, a contradiction.

Thus, Theorem 6.2.7 immediately implies the following corollary.

Corollary 6.2.8. Let G ∈ ˜︁G2,m with m ≥ 2. Then, G contains at least
countably many maximal subgroups of infinite index.

Another immediate corollary is that the Frattini subgroup of non-torsion
Šunić groups is trivial.

Corollary 6.2.9. Let G ∈ ˜︁G2,m with m ≥ 2. Then, the Frattini subgroup of G
is trivial.

Proof. This follows directly from Proposition 5.3.10.

6.3 Maximal subgroups of infinite index

Let G ∈ ˜︁G2,m be a non-torsion Šunić group acting on the binary rooted tree,
with m ≥ 2. In Section 6.2, we showed that the subgroups H(q) defined in
Proposition 6.1.3 are proper dense subgroups of G with respect to the profinite
topology. It follows from the proof of Proposition 5.2.2 that H(q) is contained
in a maximal subgroup of infinite index of G. In this section, we will show that
in fact, if q is prime, then H(q) is already a maximal subgroup of infinite index
of G.

The proof uses a similar strategy to the one developed by Pervova in [73]
and [74] to study maximal subgroups of the Grigorchuk group, even though
the conclusion we reach here is the opposite of the one she obtained. More
precisely, the idea of the proof is to use an argument of length reduction to
show that for any g /∈ H(q), there exists a vertex v such that the projection
of ⟨H(q), g⟩ to v is not proper. This will then imply that ⟨H(q), g⟩ cannot be
proper by Theorem 5.4.3.

Before we can begin the proof, we will need a few auxiliary results. we
begin by constructing a homomorphism that is a lift of φ1, the projection onto
the second coordinate.

A lift of φ1

If G ∈ G2,m \ G2,1 is a Šunić group acting on the binary rooted tree X∗, with
X = {0,1}, then we have a projection map φ1 : G→ G (see Definition 2.6.22).
As G is self-replicating (see Proposition 2.9.17), this map is surjective. In this
subsection, we will define a homomorphism ϕ : G→ StG(1) that is a lift of the
projection φ1, meaning that φ1 ◦ ϕ = idG. Of course, in a similar fashion, we
could also define a lift for φ0, and the same could also be done for Šunić groups
acting on trees of higher degree, but we shall not need such generality here.

Before we begin, let us set some notation.

Notation 6.3.1. Let G ∈ G2,m \ G2,1 be a Šunić group acting on the binary
rooted tree. Recall from Notation 2.9.5 that for all i ∈ Z, we write Bi =
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ρi(ker(ω)). For the rest of this chapter, we will denote by c ∈ B−1 \ B0 and
d ∈ B0 \ B1 two fixed elements such that c = (a, d). The existence of those
elements is stated in Lemma 2.9.20. L

We are now ready to define a lift for φ1.

Proposition 6.3.2. Let G ∈ G2,m be a Šunić group with m ≥ 2 and let
c, d ∈ G be as in Lemma 2.9.20. Then, there exists a unique homomorphism
ϕ : G→ StG(1) such that

ϕ(a) = aca

ϕ(x) = ρ−1(x)

for all x ∈ B.

Proof. If such a homomorphism exists, then it is clearly unique. Thus, it
suffices to show that the above yields a well-defined homomorphism. Let us
write Γ = A ∗ B and consider the homomorphisms π,Ψ, πG×G defined in the
proof of Proposition 2.9.16. As in the proof of Proposition 2.9.16, let S be the
subgroup of index 2 of Γ generated by {x, axa | x ∈ B}.

Let Φ: A ∗B → S be the unique homomorphism such that

Φ(a) = aca

Φ(x) = ρ−1(x)

for all x ∈ B. Defining ϕ = π ◦Φ◦π−1, we obtain the following diagram, where
the bottom square commutes.

A ∗B G

S StG(1)

(A ∗B)× (A ∗B) G×G

π

Φ ϕ

π

Ψ ψ1

πG×G

Let N ≤ A ∗ B be the kernel of π. To show that ϕ is a well-defined
homomorphism, it suffices to show that Φ(N) ≤ N . A direct computation
shows that every element w of A or B in Γ = A∗B satisfies Ψ(Φ(w)) = (w′, w)
with w′ ∈ ⟨a, d⟩ ≤ Γ. Therefore, the same is true for every element w of
Γ. Consequently, if w ∈ N , then there exists w′ ∈ ⟨a, d⟩ ≤ Γ such that
Ψ(Φ(w)) = (w′, w). Hence,

πG×G(Ψ(Φ(w))) = (π(w′), 1)

with π(w′) ∈ ⟨a, d⟩ ≤ G. Since πG×G ◦Ψ = ψ1 ◦ π, we get

ψ1(π(Φ(w))) = (π(w′), 1)

with π(w′) ∈ ⟨a, d⟩ ≤ G. It follows from Lemma 2.9.20 that π(Φ(w)) = 1.

Remark 6.3.3. With the notation of the previous proposition, for all g ∈ G,
we have ψ1(ϕ(g)) = (g′, g) for some g′ ∈ ⟨a, d⟩ ≤ G. In particular, ϕ is a right
inverse of the projection φ1 on the second coordinate. Y
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A nice property of this this is that it becomes an inverse of φ1 when we
restrict ourselves to the rigid stabiliser of the vertex 1, as the next proposition
shows.

Proposition 6.3.4. Using the notation of the previous proposition, let g ∈ G
be an arbitrary element. If there exists h ∈ StG(1) such that ψ1(h) = (1, g),
then h = ϕ(g).

Proof. We have ψ1(ϕ(g)) = (x, g), with x ∈ ⟨a, d⟩. Therefore, ψ1(ϕ(g)h
−1) =

(x, 1). It follows from Lemma 2.9.20 that ϕ(g) = h.

The structure of H(q)

Before we can show that they are maximal, we will use the homomorphism ϕ
defined in Proposition 6.3.2 to prove a few auxiliary results about the structure
of the subgroups H(q). Let us first fix a few more notational conventions.

Notation 6.3.5. Since we will be mainly concerned with non-torsion Šunić
groups, for the rest of this chapter, unless otherwise specified, we will denote
by G a group in ˜︁G2,m \ G2,1. As before, we will denote by b ∈ B the element
such that b = (a, b), and recall that we also have elements c ∈ B−1 \ B0 and
d ∈ B0 \B1 such that c = (a, d).

Also, unless stated otherwise, q ≥ 3 will be a fixed odd integer (not nec-
essarily prime), and when q is understood from the context we will denote
H(q) = ⟨(ab)q, B⟩ simply by H. L

Our main goal in this subsection will be to understand the projections of
the subgroup H.

Lemma 6.3.6. Consider the following subgroups of G:

∆b = ⟨a, d(ab)
q−1
2 ⟩, ∆d = ⟨a, d(ad)

q−1
2 ⟩.

There is a unique isomorphism f : ∆b → ∆d such that f(a) = a and f(d(ab)
q−1
2 ) =

d(ad)
q−1
2 .

Proof. Let D4 = ⟨s, t | s2 = t2 = (st)4 = 1⟩ be the dihedral group of order 8.
For all g ∈ G, we have

a2 = (dg)
2
= 1

and

ψ1((ad
g)4) = ψ1(ad

gadg)2

= (ρ(d)g
′
, ρ(d)g

′
)2

= (1, 1)
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(for some g′ ∈ G), which means that (adg)4 = 1. It follows that there are
unique homomorphisms gb : D4 → ∆b and gd : D4 → ∆d such that

gb(s) = a

gb(t) = d(ab)
q−1
2

gd(s) = a

gd(t) = d(ad)
q−1
2 .

These homomorphisms are clearly surjective, and a direct computation shows
that they are injective. Therefore, we have the isomorphism f = gd ◦ g−1

b .

Lemma 6.3.7. The stabiliser StH(1) is generated by {x, xa(ba)q−1 | x ∈ B}.

Proof. Clearly, {x, xa(ba)q−1 | x ∈ B} generates a subgroup of StH(1). On the
other hand, if h ∈ StH(1), then it can be written as a product h = h1h2 . . . hn,
with hi ∈ {a(ba)q−1} ∪ B (since this set generates H). To act trivially on the
first level, this product must contain an even number of a, and therefore an
even number of a(ba)q−1. Since (a(ba)q−1)−1 = a(ba)q−1, this implies that h

is indeed in the subgroup generated by {x, xa(ba)q−1 | x ∈ B}.

Proposition 6.3.8. We have ψ1(StH(1)) ≤ H(ab)
q−1
2 × H. Furthermore,

ψ1(StH(1)) is subdirect, or in other words, the projection of ψ1(StH(1)) on
each factor is surjective.

Proof. For all x ∈ B, we have

ψ1(x) = (ω(x), ρ(x)).

If ω(x) = 1, then ω(x) is clearly in H(ab)
q−1
2 . Otherwise,

ω(x) = a = (ba)
q−1
2 (ab)qb(ab)

q−1
2 ∈ H(ab)

q−1
2 .

Moreover, ρ(x) ∈ B ⊂ H, so ψ1(x) ∈ H(ab)
q−1
2 ×H. Similarly,

ψ1(x
a(ba)q−1

) = (ρ(x)(ab)
q−1
2 , ω(x)(ba)

q−1
2 ) ∈ H(ab)

q−1
2 ×H.

The first result then follows from the fact that by Lemma 6.3.7, StH(1) is
generated by the elements of B and their conjugates by a(ba)q−1.

Now, for all x ∈ B, we have ρ−1(x) ∈ StH(1) with ψ1(ρ
−1(x)) = (ω(ρ−1(x)), x).

Since we also have (ab)2q ∈ StH(1) with ψ1((ab)
2q) = ((ba)q, (ab)q), we see

that the projection of ψ1(StH(1)) on the second factor is surjective. To see
that the projection on the first factor is also surjective, it suffices to notice
that for all h ∈ StH(1) with ψ1(h) = (h1, h2), we have ha(ba)

q−1 ∈ StH(1) with

ψ1(h
a(ba)q−1

) = (h
(ab)

q−1
2

2 , h
(ba)

q−1
2

1 ).

The next proposition and its corollary roughly tell us that any element of
G that projects to H must in fact belong to H. This will be crucial to prove
the maximality of H.
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Proposition 6.3.9. If there exists g ∈ StG(1) such that ψ1(g) = (1, h) for
some h ∈ H, then g ∈ StH(1).

Proof. Since h ∈ H, there exist h1, h2 . . . , hn ∈ {a(ba)q−1} ∪B such that

h = h1h2 . . . hn.

For 1 ≤ i ≤ n, define

h̃i :=

{︄
ρ−1(hi) if hi ∈ B

ca(ba)
q−1

if hi = a(ba)q−1

and h̃ = h̃1h̃2 . . . h̃n. Each of the terms in the product is in StH(1), therefore

so is h̃. Notice that ψ1(hĩ) = (xi, hi), for 1 ≤ i ≤ n, where xi ∈ {1, a, d(ab)
q−1
2 }.

Therefore, writing x = x1x2 . . . xn, we have

ψ1(h̃) = (x, h).

On the other hand, by direct computation, we see that ψ1(ϕ(hi)) = (f(xi), hi),
where f is the isomorphism of Lemma 6.3.6 and ϕ is the homomorphism of
Proposition 6.3.2. Since ϕ is a homomorphism, we have ϕ(h) = ϕ(h1)ϕ(h2) . . . ϕ(hn).
Hence,

ψ1(ϕ(h)) = (f(x), h).

However, by Proposition 6.3.4, since ψ1(g) = (1, h), we must have g = ϕ(h).
Hence, f(x) = 1. Since f is an isomorphism, this means that x = 1. Therefore,

ψ1(h̃) = (1, h) = ψ1(g).

By the injectivity of ψ1, we get that g = h̃ ∈ StH(1).

Corollary 6.3.10. If g ∈ StG(1) is such that ψ1(g) = (g0, g1) with g0 ∈
H(ab)

q−1
2 and g1 ∈ H, then g ∈ StH(1).

Proof. By Proposition 6.3.8, there exists h ∈ StH(1) such that ψ1(h) = (g0, h1)
for some h1 ∈ H. Hence,

ψ1(gh
−1) = (1, g1h

−1
1 ).

By Proposition 6.3.9, this means that gh−1 ∈ StH(1), so g ∈ StH(1).

Maximality of H(q)

We are now almost ready to show that if q is an odd prime, then H(q) is max-
imal in G. The argument will rely heavily on the length contraction property
of Šunić groups (see Proposition 2.9.12).

To prove maximality, we will also need to study another quantity associated
to elements of StG(1). It is essentially the length of elements obtained by
ignoring prefixes and suffixes in ⟨a, b⟩.
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Notation 6.3.11. For any g ∈ G, we will write l(g) for the word norm of g with
respect to the generating set A ∪ B. The reason for this somewhat unusual
notation is that we will later need to consider the word pseudonorm on G
defined in Example 3.1.11, so we will need to have clearly different notation for
both norms. L

Definition 6.3.12. For any g ∈ StG(1), we define the essential length of g as

λ(g) = min
{︁
l(g′) | g = γg′δ, γ, δ ∈ St⟨a,b⟩(1), g

′ ∈ StG(1)
}︁
.

U

Lemma 6.3.13. If a subgroup Q ≤ G contains H = H(q) properly, then there
exist n ∈ N and s ∈ StG(1) \H with λ(s) ≤ 3 such that ⟨s,H⟩ ≤ Q1n (recall
that by Definition 2.6.25, Q1n = φ1n(StQ(1

n))).

Proof. By assumption, Q ̸= H, so there exists some g ∈ Q \ H. Replacing g
by g(ab)q if necessary, we may assume that g ∈ StQ(1).

Let γ, δ ∈ St⟨a,b⟩(1) and g
′ ∈ StG(1) be such that g = γg′δ and λ(g) = l(g′).

We have
ψ1(g) = (γ0g

′
0δ0, γ1g

′
1δ1)

where ψ1(γ) = (γ0, γ1), ψ1(g
′) = (g′0, g

′
1), ψ1(δ) = (δ0, δ1). Note that γ0, γ1, δ0, δ1 ∈

⟨a, b⟩ as δ, γ ∈ St⟨a,b⟩(1).

If γ1g
′
1δ1 ∈ H then, Corollary 6.3.10 implies that (ab)

q−1
2 γ0g

′
0δ0(ba)

q−1
2 /∈

H. Thus, replacing g by g(ab)
qb if necessary, we may assume that φ1(g) =

γ1g
′
1δ1 /∈ H.
If φ1(g) /∈ StG(1) then φ1(g(ab)

2q) = φ1(g)(ab)
q ∈ StG(1) so, replacing g

by g(ab)2q we can suppose that φ1(g) = γ1g
′
1δ1 ∈ StG(1).

If γ1 /∈ St(1) then φ1((ab)
2qg(ba)2q) = (ab)qγ1g

′
1δ1(ba)

q with (ab)qγ1 ∈
St⟨a,b⟩(1). So, replacing g by (ab)2qg(ba)2q if needed, we have

φ1(g) = γ1g
′
1δ1 ∈ StG(1) \H with γ1, δ1 ∈ ⟨a, b⟩, and γ1 ∈ St(1).

Now, if δ1 ∈ St(1) then λ(φ1(g)) ≤ l(g′1). Otherwise, g′1a ∈ StG(1) and
aδ1 ∈ St⟨a,b⟩(1) so λ(φ1(g)) ≤ l(g′1) + 1. By Proposition 2.9.12, we have that

l(g′1) ≤
l(g′)+1

2 , and l(g′) = λ(g) by construction. Hence

λ(φ1(g)) ≤
λ(g) + 3

2
.

By repeating this procedure (which we can do thanks to Proposition 6.3.8), we
conclude by induction that there exist some n ∈ N and y ∈ StQ(1

n) such that
s = φ1n(y) /∈ H and λ(s) ≤ 3.

Lemma 6.3.14. If a subgroup Q ≤ G contains H = H(q) properly, then there
exists m ∈ N such that Q1m ≥ ⟨(ab)r, B⟩ = H(r) for some proper divisor r of
q.

Proof. By Lemma 6.3.13, there exist n ∈ N and s ∈ StG(1) \H with λ(s) ≤ 3
such that ⟨s,H⟩ ≤ Q1n . Thus, it suffices to show the result for Q = ⟨g,H⟩ for
some g ∈ StG(1) such that λ(g) ≤ 3, which we do below in several cases.
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The case λ(g) = 0. In this case, g ∈ ⟨a, b⟩. We can therefore assume
that g = (ab)k for some k ∈ Z (multiplying on the left or on the right by
b ∈ H if necessary). Since k cannot be a multiple of q, there exist i, j ∈ Z such
that ik + jq = r, where r is the greatest common divisor of k and q. Hence
(ab)r = (ab)ik(ab)jq ∈ ⟨g,H⟩ and so Q = ⟨g,H⟩ ≥ H(r).

The case g = (ab)−kx(ab)k for x ∈ B\{1, b} and k ∈ Z. Conjugating by
an appropriate power of (ab)q if necessary, we can assume that k is a positive
odd number. Note that k cannot be a multiple of q as g /∈ H.

Then

ψ1(g) = ((ab)
k−1
2 aρ(x)a(ba)

k−1
2 , (ba)

k−1
2 bω(x)b(ab)

k−1
2 ).

If ω(x) = a, then the second coordinate in the above expression is (ba)kb. Since
H ≤ Q1 by Proposition 6.3.8, we have that Q1 contains (ab)k and therefore
also H(r), where r < q is the greatest common divisor of q and k, by the
same argument as in the previous case. If ω(x) = 1, then consider (ba)qg(ab)q

instead of g. Its image under φ1 is (ba)
q+k
2 ρ(x)(ab)

q+k
2 where q+k

2 cannot be
a multiple of q (this is guaranteed by Corollary 6.3.10). Since H1 = H by

Proposition 6.3.8, we may take (ba)
q+k
2 ρ(x)(ab)

q+k
2 as our new g and repeat

this case. By Proposition 2.9.2, there exists some minimal m ∈ N∗ such that
ω(ρm−1(x)) = a. Therefore, by repeating the above procedure m− 1 times, we
get that Q1m ≥ H(r) for some proper divisor r of q.

The case λ(g) = 1. The fact that g = γg′δ with γ, δ ∈ St⟨a,b⟩(1) and

g′ ∈ StG(1) with l(g′) = 1 immediately implies that g′ ∈ B, γ = [a](ba)k
′
1 [b]

and δ = [b](ab)k
′
2 [a] for some k′1, k

′
2 ∈ N (where the square brackets mean that

an element might not be present). Multiplying γ by b on the left and δ by b
on the right if necessary and using the fact that γ, δ ∈ StG(1), we can assume
that γ = (ba)2k1 [b] and δ = [b](ab)2k2 for some k1, k2 ∈ N. Therefore,

g = (ba)2k1 [b]g′[b](ab)2k2 = (ba)2k1x(ab)2k2 (6.1)

for some x ∈ B \ {1, b}.
If ω(x) = a then consider (ba)qg(ab)q ∈ Q:

φ1((ba)
qg(ab)q) = (ba)

q−1
2 +k1bω(x)b(ab)

q−1
2 +k2

= (ba)
q−1
2 +k1bab(ab)

q−1
2 +k2

= (ba)
q+1
2 +k1(ba)

q−1
2 +k2b = (ba)q+k1+k2b.

As H ≤ Q1 by Proposition 6.3.8, we get that Q1 contains (ba)k1+k2 .
If k1+k2 is not a multiple of q, then Q1 ≥ H(r) by a previously considered

case, where r is the greatest common divisor of q and k1 + k2.
If k1 + k2 = nq for some n ∈ N then g = (ba)2nq−2k2x(ab)2k2 . Hence

b(ba)−2nqg = b(ba)−2k2x(ab)2k2

= b(ab)2k2x(ab)2k2

= (ba)2k2(bx)(ab)2k2 .
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As bx ∈ B \ {1, b}, this is a previously considered case, so we know that there
exists m ∈ N such that Q1m ≥ H(r) for some proper divisor r of q.

If ω(x) = 1, then φ1(g) = (ba)k1ρ(x)(ab)k2 /∈ H can be made of the same
form as (6.1) by multiplying on the left and right by an appropriate power
of (ab)q. We can therefore repeat the argument explained above. This will
terminate after a finite number of steps as there is some j ∈ N such that
ω(ρj(x)) = a. This concludes the case λ(g) = 1.

The case λ(g) = 2. Elements in G of length 2 are of the form ax or xa
for some x ∈ B. None of these elements are in StG(1), so this case does not
arise.

The case λ(g) = 3. If l(g′) = 3 in the minimal decomposition g = γg′δ,
then g′ = axa or g′ = yaz for some x, y, z ∈ B \ {1, b}. However, yaz /∈ StG(1),
so this case is impossible. Hence, g′ = axa, so g = γaxaδ with γ, δ ∈ St⟨a,b⟩(1).
We have

(ab)−qg(ab)q = (ab)−qγaxaδ(ab)q

= ((ab)−qγa)x(aδ(ab)q)

= γ′xδ′

with γ′ = (ab)−qγa and δ′ = aδ(ab)q ∈ St⟨a,b⟩(1). This means that λ((ab)−qg(ab)q) ≤
1, so from what we have already shown, we conclude that there exist m ∈ N
and a proper divisor r of q such that Q1m ≥ H(r).

Lemma 6.3.15. If a subgroup Q ≤ G contains H = H(q) properly then there
exists n ∈ N such that Q1n = H(t) for some proper divisor t of q.

Proof. By Lemma 6.3.14, there exist m ∈ N and a proper divisor r of q such
that Q1m ≥ H(r). If Q1m = H(r), then we are done. Otherwise, by applying
Lemma 6.3.14 to Q1m , we find m′ ∈ N and a proper divisor s of r such that
Q1m+m′ ≥ H(s).

As q only has a finite number of divisors, repeating this procedure as often
as necessary, we will find some n ∈ N such that either Q1n = H(t) for some
proper divisor t ≥ 3 of q, or Q1n ≥ H(1). Since H(1) = G and Q1n ≤ G, the
latter case yields Q1n = H(1).

We are now ready to prove the main theorem of this section.

Theorem 6.3.16. For every odd prime q, the subgroup H(q) < G is maximal.

Proof. We know that G is a self-replicating branch group (see Proposition
2.9.17 and 2.9.18), and its action onX is clearly primitive (see Example 2.9.18).
Therefore, by Corollary 5.4.4, for any proper subgroup M < G that is dense in
the profinite topology and for any v ∈ X∗, we must have that Mv is a proper
dense subgroup of G.

Let us fix an odd prime q and denote H(q) by H. By Theorem 6.2.7, we
have that H is proper and dense in the profinite topology. Since H is dense,
the same must be true of ⟨g,H⟩ for any g ∈ G \H.

Let us fix an arbitrary element g ∈ G \H. By Lemma 6.3.15, there exists
n ∈ N such that (⟨g,H⟩)1n = H(t), where t is a proper divisor of q. Since
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q is prime, we get (⟨g,H⟩)1n = H(1) = G. Hence, by Corollary 5.4.4, ⟨g,H⟩
cannot be proper. As this is valid for every g ∈ G \H, we conclude that H is
maximal.

6.4 Finding all maximal subgroups of infinite index

In this section, we will show that for any G ∈ ˜︁G2,m and any odd prime q,
the subgroups H(q) = ⟨(ab)q, B⟩, which were shown to be maximal in Section
6.3, are the only maximal subgroups of infinite index, up to conjugation. We
will then briefly describe maximal subgroups of finite index and thus obtain a
complete description of every maximal subgroup of G.

In order to prove that every maximal subgroup of infinite index is a con-
jugate of some H(q), we will need many auxiliary results regarding maximal
subgroups of infinite index of Šunić groups. Please note that we use here the
same notation as in the previous section.

We begin by showing that maximal subgroups of infinite index are uniquely
determined by their projections on some level.

Lemma 6.4.1. Let M < G be a maximal subgroup of infinite index. Then,
for all n ∈ N, we have

StM (n) =
⋂︂

w∈Xn

φ−1
w (Mw)

where we see φw as a map from StG(w) to G, so that φ−1
w (Mw) ≤ StG(w).

Proof. Let us fix n ∈ N and write J =
⋂︁
w∈Xn φ−1

w (Mw). Then, we clearly have
StM (n) ≤ J ≤ StG(n). Suppose for a contradiction that J ̸= StM (n). This
means that there must exist g ∈ J \StM (n). Notice that we must have g /∈M ,
since g ∈ StG(n). Therefore, by the maximality of M , we have ⟨M, g⟩ = G.
As G is self-replicating, this implies that (⟨M, g⟩)w = G for all w ∈ Xn. We
will obtain a contradiction by showing that φw(α) ∈ Mw for all w ∈ Xn and
all α ∈ St(w) ∩ ⟨M, g⟩. Let us fix such w and α. As α ∈ ⟨M, g⟩, we can write

α = m1g
ϵ1m2 · · ·mkg

ϵk = (µ1g
ϵ1µ−1

1 )(µ2g
ϵ2µ−1

2 ) · · · (µkgϵkµ−1
k )µk

for some k ∈ N, mi ∈ M and ϵi ∈ {−1, 0, 1}, where µi = m1 · · ·mi for i =
1, . . . , k. Notice that since α ∈ St(w) and g ∈ St(n), we must have µk ∈
StM (w). As µk ∈ M , this implies that φw(µk) ∈ Mw. If we can prove that
φw(m

−1gm) ∈ Mw for all m ∈ Mw, then we will get that φw(α) is a product
of elements of Mw, as required.

To show this, let us fix m ∈ M and let us write u = m−1 · w. It follows
from the definition of J that there exists h ∈ StM (u) such that φu(g) = φu(h).
If we write m = τµ for some τ ∈ ≀n Sym(X) and µ ∈ St(n), we see that
mgm−1 = τµgµ−1τ−1. As τ−1w = u, we have

φw(mgm
−1) = φu(µ)φu(g)φu(µ)

−1 = φu(µ)φu(h)φu(µ)
−1 = φw(mhm

−1).

Notice that since h ∈ StM (u) and (StM (u))m = StM (w), we getφw(m
−1hm) ∈

Mw.
We have thus proved that (⟨M, g⟩)w = Mw. As mentioned above, by the

maximality of M , we have ⟨M, g⟩ = G, which implies that Mw = Gw = G.
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This is a contradiction, since M must be a proper subgroup of G that is dense
in the profinite topology by Proposition 5.2.2, and it follows from Theorem
5.4.3 (or, more precisely, from Corollary 5.4.4) that Mw must then be a proper
subgroup of G.

Lemma 6.4.2. Let L,M < G be two maximal subgroups of infinite index. If
there exists n ∈ N such that Lw =Mw for all w ∈ Xn, then L =M .

Proof. Let us set S =
⋂︁
w∈Xn φ−1

w (Mw), where once again, we restrict φw to
a map between StG(w) and G, so that the φw(Mw) ≤ StG(w). By Lemma
6.4.1, we have that S = StL(n) = StM (n). In particular, this implies that
S is normal both in L and M . However, it cannot be normal in G, since G
is just infinite and L,M are subgroups of infinite index. This means that the
normaliser NG(S) of S in G must be a proper subgroup of G containing both L
and M . As these subgroups are maximal, we must have L = NG(S) =M .

By Proposition 6.3.8, all projections of H(q) are conjugates of H(q). We
will now show that conversely, given a collection of conjugates of H(q), there
is a conjugate of H(q) whose projections are precisely this collection.

Lemma 6.4.3. For any odd prime q and any g ∈ G, there exist s ∈ StG(1)
and h0, h1 ∈ H(q) such that s = (gh0, h1).

Proof. For any g ∈ G, we can find s1 ∈ StG(1) such that s1 = (g, y) with
y ∈ ⟨a, b⟩ by writing g as a word in a ∪B \ {1} and replacing each instance of
a by b and each x ∈ B \ {1} by aρ−1(x)a.

Since ⟨a, b⟩ ∼= D∞, there exists l ∈ Z such that either y = (ab)l or y =
(ab)la. Because q is coprime to 4, there exist m,n ∈ Z such that 4m+ l = qn.
Let us set

s2 =

{︄
(acab)4m = ((da)4m, (ab)4m) = (1, (ab)4m) if y = (ab)l

aba(acab)4m = (b, a(ab)4m) if y = (ab)la
.

We then have s = s1s2 =

{︄
(g, y(ab)4m) = (g, (ab)qn) if y = (ab)l

(gb, ya(ab)4m) = (gb, (ab)qn) if y = (ab)la.

Lemma 6.4.4. Let q be an odd prime and let us write H = H(q). Then, for
any g0, g1 ∈ G, there exists s ∈ G such that

φ0(StHs(1)) = Hg0 and φ1(StHs(1)) = Hg1 .

Proof. Since G is self-replicating, there exist s1 ∈ StG(1) and y ∈ G such

that s1 = (y, g1). Proposition 6.3.8 states that φ0(StH(1)) = H(ab)(q−1)/2

and
φ1(StH(1)) = H. Applying Lemma 6.4.3 to (ba)(q−1)/2 and to yg−1

0 , we obtain
s2, s3 ∈ StG(1) and h0, h1, k0, k1 ∈ H such that s2 = ((ba)(q−1)/2h0, h1) and
s3 = (yg−1

0 k0, k1). Let us set

s4 = s2s
−1
3 = ((ba)(q−1)/2h0k

−1
0 g0y

−1, h1k
−1
1 )

and
s = s4s1 = ((ba)(q−1)/2h0k

−1
0 g0, h1k

−1
1 g1).
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We then have
φ0(StHs(1)) = Hh0k

−1
0 g0 = Hg0

and
φ1(StHs(1)) = Hh1k

−1
1 g1 = Hg1

since h0, h1, k0, k1 ∈ H, which concludes the proof.

Lemma 6.4.5. Let q be an odd prime and let us write H = H(q). Then,
for every n ∈ N and any set {gv}v∈Xn ⊂ G, there exists s ∈ G such that
(Hs)v = Hgv .

Proof. We will proceed by induction on n. The case n = 0 is trivial, and the
case n = 1 was proved in Lemma 6.4.4. Let us now suppose that the claim
true for some n ≥ 1 and let us show that it must then also hold for n+ 1.

Let {gv}v∈Xn+1 ⊂ G be a subset of G, and let us write each v ∈ Xn+1 as
v = iw with i ∈ X and w ∈ Xn. For each i ∈ X, the inductive hypothesis
implies that there exists ti ∈ G such that for each w ∈ Xn, (Hti)w = Hgiw .
Lemma 6.4.4 then yields some s ∈ G such that (Hs)i = Hti for each i ∈ X.
Thus, for each v ∈ Xn+1, we obtain, (Hs)v = ((Hs)i)w = (Hti)w = Hgiw =
Hgv .

Now, the last remaining step in proving that every maximal subgroup of
infinite index is a conjugate of some H(q) is to show that such a subgroup
must necessarily project to some H(q). In order to do this, we will show in
Proposition 6.4.15 that for any proper and dense subgroupM < G, there exists
v ∈ X∗ and an odd l > 1 such that the projection Mv is equal to H(l). The
proof of this result uses similar techniques to the ones used by Pervova to study
maximal subgroups of the Grigorchuk group in [74]. More precisely, we will
study the length of φ1n((baz)2

n

) for some z ∈ G′ and show that it generally
reduces as n grows. However, unlike in the case of the Grigorchuk group, this
sequence might eventually stabilise to something that is not a generator of G,
for example if we started with (ab)k (see Lemma 6.4.13). However, we will
show in Lemma 6.4.10 that this is essentially the only possibility. Thus, we
will be able to show in Lemma 6.4.11 that any dense subgroup must project to
(ab)k for some odd k. From there, once again using contraction properties of G,
we will manage to show in Proposition 6.4.15 that any proper dense subgroup
must project to some H(l) for some odd l. We will then finally show in Lemma
6.4.16 that if the proper dense subgroup M is maximal, then this q is prime.

Lemma 6.4.6. If z ∈ G′, then φ0(z) ≡ φ1(z) ≡ y modulo G′, where y ∈
B1 ∪ abB1.

Proof. As G′ is generated by conjugates of [a, x] with x ∈ B, and since

ψ1([a, x]) = (ρ(x)ω(x), ω(x)ρ(x)),

we have φ0([a, x]) ≡ φ1([a, x]) modulo G′. If x ∈ B0, then φ1([a, x]) = ρ(x) ∈
B1. If x /∈ B0, then x

′ = bx ∈ B0 and x = bx′, so φ1([a, x]) = φ1([a, bx
′]) =

abρ(x′) ∈ abB1.
Since conjugating [a, x] by an element of G conjugates and possibly per-

mutes the projections φ0([a, x]) and φ1([a, x]), the result is true for the gener-
ators of G′. Hence, since (B1 ∪ abB1)G

′ is a subgroup of G/G′, the result is
also true for any z ∈ G′.
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Definition 6.4.7. We define Θ: G′ → G′ by Θ(z) = aφ0(z)aφ1(z). This is
well-defined by the previous lemma. U

Notation 6.4.8. For g ∈ G, we will denote by |g| the word pseudonorm on G
defined in Example 3.1.11, which assigns length 0 to a and length 1 to every
non-trivial element of B. L

Remark 6.4.9. The advantage of considering this word pseudonorm is that
with this pseudonorm, G is a non-ℓ1-expanding self-similar group (see Defini-
tion 3.1.7). In other words, we have |g| ≥ |φ0(g)| + |φ1(g)| for all g ∈ G. In
particular, for all z ∈ G′, we have |Θ(z)| ≤ |z|. Y

Lemma 6.4.10. Let z ∈ G′ be such that |Θn(z)| = |z| for all n ∈ N. If |z| ≥ 3,
then there exist l ∈ N and x ∈ B such that

z = axa(ba)2lx.

Otherwise, either z = 1 or |z| = 2 and there exists x ∈ B \ {1} such that
z = axax or z = xaxa.

Proof. If |z| = 0 then z = 1, because z ∈ G′. Proposition 2.9.16 implies that
|z| = 1 cannot hold and that if |z| = 2 there must exist x ∈ B \ {1} with
z = axax or z = xaxa.

Assume that |z| = k with k ≥ 3. Then, there exist x1, . . . xk ∈ B \ {1} such
that z can be written in one of four forms:

(1) x1a . . . axk or (2) ax1 . . . xka if k is odd,
(3) ax1 . . . axk or (4) x1a . . . xka if k is even.

If z is of form (1) then

ψ1(z) = (ω(x1)ρ(x2) . . . ω(xk), ρ(x1)ω(x2) . . . ρ(xk))

so
Θ(z) = aω(x1)ρ(x2) . . . ω(xk)aρ(x1)ω(x2) . . . ρ(xk).

Since |Θ(z)| = |z|, no cancellation occurs in the expression for Θ(z), except
possibly the term aω(x1). This means that ω(xk) = 1 and ω(xi) = a for
1 < i < k. But then aω(x1) = 1 because Θ(z) ∈ StG(1) and so a must occur
an even number of times in the expression for Θ(z). Hence Θ(z) is of the
same form as z, with last letter ρ(xk). Then, since |Θn(z)| = |z| for all n,
by induction we obtain that ρn(xk) ∈ kerω for all n, which implies that xk is
trivial. So form (1) cannot occur.

If z is of form (2), noticing that this is a conjugate of form (1) by a, we
obtain that

Θ(z) = aρ(x1)ω(x2) . . . ρ(xk)aω(x1)ρ(x2) . . . ω(xk).

Similar arguments as in case (1) show that x1 is trivial, another contradiction.
Form (3) yields

Θ(z) = aρ(x1)ω(x2) . . . ω(xk)aω(x1)ρ(x2) . . . ρ(xk).

Again, |Θ(z)| = |z| implies that there is no cancellation. Therefore, ω(xk) =
ω(x1) and ω(xi) = a for all 1 < i < k. Notice that Θ(z) is of the same
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form as z with first letter ρ(x1) and last letter ρ(xk). Since |Θn(z)| = |z|
for all n ∈ N, we obtain by induction that ω(ρn(xi)) = a for 1 < i < k and
ω(ρn(x1)) = ω(ρn(xk)) for all n ∈ N. This means that xi = b for 1 < i < k
and that x1 = xk = x ∈ B \ {1}. So z = axa(ba)2lx where 2l = k− 2, for some
x ∈ B \ {1}.

If z is of form (4) then

Θ(z) = aω(x1)ρ(x2) . . . ρ(xk)aρ(x1)ω(x2) . . . ω(xk).

To avoid length reduction and cancellation we must have ω(xi) = a for 1 < i <
k. This then implies, since Θ(z) ∈ StG(1), that we must have ω(x1) = ω(xk).
If ω(x1) = ω(xk) = 1 then Θ(z) is of form (3). The same argument as in the
case (3) then implies that ρ(x1) = b and thus ω(x1) = a, a contradiction. So
ω(x1) = ω(xk) = a and therefore Θ(z) has the same form as z. Repeating the
argument for Θ(z) instead of z, we obtain that ω(ρ(x2)) = ω(ρ(xk−1)) = a and
ω(ρ(xi)) = a also for all the other i. Hence, by induction, ω(ρn(xi)) = a for
1 ≤ i ≤ k and all n ∈ N. In other words, z = (ba)2l where k = 2l.

Lemma 6.4.11. Let M ≤ G be a dense subgroup in the profinite topology.
Then, there exist an odd k ∈ Z and a vertex v ∈ X∗ such that the projection
Mv contains (ab)k.

Proof. SinceM is dense in the profinite topology and since G′ is of finite index
in G, we must have MG′ = G. Therefore, there exists z ∈ G′ such that
baz ∈M . We have

φ1((baz)
2) = bφ0(z)aφ1(z) = baΘ(z),

so by induction φ1n((baz)2
n

) = baΘn(z) for all n ∈ N. Since {|Θn(z)|}n∈N is a
non-increasing sequence by Remark 6.4.9, it must eventually become constant.
Hence, it follows from Lemma 6.4.10 that there exist l ∈ N, x ∈ B and a
vertex v ∈ X∗ such that the projection Mv contains either ba(axa(ba)2lx) or
ba(xaxa). In the former case, we have

φ0((baaxa(ba)
2lx)2) = φ0(x(ba)

4l+2x)

= ω(x)(ab)2l+1ω(x) =

{︄
(ba)2l+1 if ω(x) = a

(ab)2l+1 if ω(x) = 1.

If instead ba(xaxa) ∈ Mv, then either x = b, in which case we obtain the
desired result, or x ̸= b. In the latter case, we can assume without loss of gener-
ality that ω(x) = 1. Indeed, if ω(x) = a, then φ1((baxaxa)

2) = baρ(x)aρ(x)a so
we can repeat this until ρi(x) ∈ kerω, at which point φ0((baρ

i(x)aρi(x)a)2) =
ab.

Lemma 6.4.12. Let M ≤ G be a dense subgroup in the profinite topology.
Then, there exist β ∈ B \ {1} and a vertex v ∈ X∗ such that β ∈Mv.

Proof. We will show that for all x ∈ B \ {1} and all z ∈ G′, there exist some
vertex v ∈ X∗ and some element β ∈ B \ {1} such that β ∈ ⟨xz⟩v. The
result will then follow, since by the density of M , for any x ∈ B \ {1}, there
exists some z ∈ G′ such that xz ∈ M . Recall from Proposition 2.9.12 that
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l(φv(g)) ≤ (l(g)+1)/2 for g ∈ StG(1) and v ∈ X, where l is the standard word
metric for the generating set A ∪B.

For x ∈ B \ {1} and z ∈ G′, we have

ψ1(xz) = (ω(x)φ0(z), ρ(x)φ1(z)).

By Lemma 6.4.6, there exists y ∈ B1 such that φ0(z) ≡G′ φ1(z) are both
congruent modulo G′ to y or aby. There are thus four cases:

(1)(i) x /∈ B0, φ0(z) ≡G′ y (1)(ii) x /∈ B0, φ0(z) ≡G′ aby
(2)(i) x ∈ B0, φ0(z) ≡G′ y (2)(ii) x ∈ B0, φ0(z) ≡G′ aby

Case (1)(i). Setting x′ = ρ(x)y, we have x′ ̸= 1, since ρ(x) /∈ B1 and
y ∈ B1. Thus, there exists z′ ∈ G′ such that φ1(xz) = x′z′ and l(x′z′) =

l(φ1(xz)) ≤ l(xz)+1
2 .

Case (1)(ii). We have ω(x) = a by assumption. Furthermore, note that
b /∈ B1, since b = (a, b), which means that by ̸= 1. Consequently, there exists
z′ ∈ G′ such that φ0(xz) = x′z′, where x′ = ω(x)aby = by ∈ B \ {1}, and we

have l(x′z′) = l(φ0(xz)) ≤ l(xz)+1
2 .

Case (2)(i). We have φ0(xz) = yz′ and φ1(xz) = ρ(x)yz′′ for some
z′, z′′ ∈ G′. If y ̸= 1, take the former, and take the latter otherwise. Either

way, l(φv(xz)) ≤ l(xz)+1
2 for v ∈ X.

Case (2)(ii). We have φ0(xz) ≡G′ aby and φ1(xz) ≡G′ abyρ(x). If
y ̸= 1, take the former, and take the latter otherwise. In both cases, we have
φw(xz) = aby′z2 for some w ∈ X, y′ ∈ B1 \ {1} and z2 ∈ G′. If k is the

smallest integer such that ρk(y′) /∈ B1, then φ0k(φw(xz)
2k) = bρk(y′)z′ for

some z′ ∈ G′. Indeed, we have

φ0((aby
′z2)

2) = bρ(y′)φ1(z2)aω(y
′)φ0(z2) = aω(y′)bρ(y′)z3

for some z3 ∈ G′ (noting that φ1(z2)φ0(z2) ∈ G′). If ρ(y′) /∈ B1, then y
′ /∈ B0,

which means that ω(y′) = a. Thus, φ0((aby
′z2)

2) = bρ(y′)z3. Otherwise,
we have φ0((aby

′z2)
2) = abρ(y′)z3 with ρ(y′) ∈ B1 \ {1} and we can repeat

this process. Thus, eventually, we will obtain φ0k(φw(xz)
2k) = x′z′, where

x′ = bρk(y′) ∈ B \ {1}.
Notice that l(φ0(g

2)) ≤ 2l(g)+1
2 ≤ l(g) for all g ∈ G (since l takes integer

values). Thus, we get by induction that l(φ0k(g2
k

)) ≤ l(g). Therefore, l(x′z′) ≤
l(φw(xz)) ≤ l(xz)+1

2 .
Thus, in all cases, there is a vertex v ∈ X∗ and elements x′ ∈ B \ {1},

z′ ∈ G′ such that x′z′ belongs to ⟨xz⟩v, with l(x′z′) ≤ l(xz)+1
2 . By repeating

this process as necessary, we can assume that l(x′z′) ≤ 1, which is equivalent
to saying that x′z′ ∈ B. Since x′ ̸= 1, we must have that x′z′ = x′ ̸= 1 by
Proposition 2.9.16, so x′ is our desired β.

Lemma 6.4.13. Let M ≤ G be a subgroup that contains (ab)k for some k ∈ Z.
Then, (ab)k ∈Mv for all v ∈ X∗.
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Proof. Because ψ1((ab)
2k) = ((ba)k, (ab)k), the result is true for the vertices of

the first level, and hence for any vertex by induction.

Lemma 6.4.14. Let M ≤ G be a dense subgroup in the profinite topology.
Then, there exist a vertex v ∈ X∗ and an odd k ∈ N such that Mv contains b
and (ab)k.

Proof. It follows from Lemma 6.4.11 that there exist a vertex w ∈ X∗ and an
odd k ∈ N such that (ab)k ∈Mw. By Proposition 5.4.1, since M is dense in G,
we have thatMw is also dense in G. Lemma 6.4.12 then implies that there exist
a vertex w′ ∈ X∗ and an element β ∈ B \ {1} such that β ∈ (Mw)w′ = Mww′ .
Since φ1(β) = ρ(β), we see by induction that there exist some l ∈ N and
x ∈ B \B0 such that x ∈Mu, where u = ww′1l.

As (ab)k ∈ Mw, Lemma 6.4.13, guarantees that (ab)k ∈ Mu. Then , we
have

φ1((ab)
kx(ab)k) = (ab)

k−1
2 aab(ab)

k−1
2 = (ab)

k−1
2 (ba)

k−1
2 b = b.

Hence, b, (ab)k ∈Mv, where v = u1.

Proposition 6.4.15. Let M < G be a dense subgroup in the profinite topology.
Then, there exist a vertex v ∈ X∗ and an odd l ∈ N such that Mv = ⟨(ab)l, B⟩.

Proof. According to Lemma 6.4.14, there exist a vertex w ∈ X∗ and an odd
k ∈ N such that b, (ab)k ∈Mw.

Let us write B = {1, β1, β2, . . . β2m−1}. By Proposition 5.4.1,Mw is dense in
G, sinceM is dense in G. Therefore, for every βi ∈ B, there exists zi ∈ G′ such
that βiazi ∈Mw. This implies that ρ(βi)aΘ(zi) ∈Mw1 for all 1 ≤ i ≤ 2m − 1.
Indeed, we have

ρ(βi)aΘ(zi) = ρ(βi)φ0(zi)aφ1(zi) =

{︄
φ1((βiazi)

2) if βi /∈ kerω

φ1(βiazibβiazi) if βi ∈ kerω.

Since b ∈ Mw1, and |Θ(z)| ≤ |z| for all z ∈ G′, we can repeat the above
procedure until we reach some N ∈ N such that |Θn(zi)| = |ΘN (zi)| for all
n ≥ N and all i ∈ {1, . . . , 2m − 1}. Lemma 6.4.10 then yields, for each i ∈
{1, . . . , 2m − 1}, elements xi ∈ B and li ∈ N such that βiaz

′
i ∈ Mw1N where

z′i = axia(ba)
2lixi or xiaxia.

Since

ψ1(z
′
i) = (ρ(xi)(ab)

lω(xi), ω(xi)(ba)
lρ(xi)) or (ω(xi)ρ(xi), ρ(xi)ω(xi)),

we have

ρ(βi) = ρ(βi)ρ(xi)(ab)
lω(xi)ω(xi)(ba)

lρ(xi) or ρ(βi)ω(xi)ρ(xi)ρ(xi)ω(xi)

= ρ(βi)φ0(z
′
i)φ1(z

′
i) =

{︄
φ1((βiaz

′
i)

2) if βi ∈ kerω

φ1(βiaz
′
ibβiaz

′
i) if βi /∈ kerω.

Thus B ≤Mu where u = w1N+1. Moreover, (ab)k ∈Mu by Lemma 6.4.13.
Lemma 6.3.15 then implies that there exist a vertex v ∈ X∗ and an odd l ∈ N
such that Mv = ⟨(ab)l, B⟩.
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Lemma 6.4.16. Let M < G be a maximal subgroup of infinite index. Then,
there exist v ∈ X∗ and an odd prime q ∈ N such that Mv = ⟨(ab)q, B⟩ = H(q).

Proof. Since a maximal subgroup of infinite index is dense in the profinite
topology (see Proposition 5.2.2), by Proposition 6.4.15 there exist v ∈ X∗ and
l ∈ N odd such that Mv = ⟨(ab)l, B⟩. Furthermore, since M is maximal,
Mv must also be maximal by Proposition 5.4.5. This implies that l is prime.
Indeed, it is clear that if l′ divides l, we have H(l) ≤ H(l′), so we must have l
prime (and we know that H(l) is maximal if l is prime by Theorem 6.3.16).

We are now finally ready to prove the main theorem of this section, which
states that every maximal subgroup of infinite index is conjugate to some H(q).

Theorem 6.4.17. Let G ∈ ˜︁G2,m \ G2,1 and let M < G be a maximal subgroup
of infinite index. Then, there exist an odd prime q and an element g ∈ G such
that M = H(q)g.

Proof. By Lemma 6.4.16, there exist n ∈ N, v ∈ Xn and an odd prime q such
that Mv = H(q). To simplify the notation, let us write H = H(q).

Since M is a maximal subgroup of infinite index, it is dense. As G acts
spherically transitively on X∗, this implies that M also acts spherically tran-
sitively on X∗. In particular, M acts transitively on Xn. This means that,
for each w ∈ Xn, there exists m ∈ M taking w to v. Writing m = τµ with
τ ∈ ≀n Sym(X) and µ ∈ St(n), we have

Mw = φw(StM (w)) = φw(m
−1 StM (v)m) = µ−1

w Mvµw = Hµw

where µw = φw(µ) ∈ G by the self-similarity of G. By Lemma 6.4.5, there
exists some g ∈ G such that (Hg)w = Hµw for each w ∈ Xn. Since Hg is also
a maximal subgroup of infinite index of G, we must have M = Hg by Lemma
6.4.2.

6.5 Maximal subgroups of finite index

Thanks to Theorem 6.4.17, we now have a complete description of the maximal
subgroups of infinite index of non-torsion Šunić groups acting on the binary
rooted tree. In particular, thanks to Proposition 6.1.3, we see that they are
all isomorphic to G. To complete our description of all maximal subgroups of
G, it remains only to describe the maximal subgroups of finite index. This is
the main purpose of this short section. Note that unlike maximal subgroups
of infinite index, maximal subgroups of finite index are easy to describe for all
Šunić groups. Therefore, in this section, we will once again consider general
Šunić groups.

As the next proposition shows, except in the case of the infinite dihedral
groups, maximal subgroups of Šunić groups are in bijection with subgroups of
index p in (Z/pZ)m+1.

Proposition 6.5.1. Let us fix a prime p and some m ≥ 1, and let G ∈
Gp,m be a Šunić group different from the infinite dihedral group. Let πab : A×
B ∼= (Z/pZ)m+1 the the canonical projection from G to its abelianisation (see
Proposition 2.9.16). Then, a proper subgroup M < G is a maximal subgroup
of finite index of G if and only if G′ ≤M and πab(M) is of index p in A×B.
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In particular, there are exactly pm+1−1
p−1 maximal subgroups of finite index in

G.

Proof. If M is a proper subgroup containing G′ and such that πab(M) is of
index p in A× B, then it follows from the correspondence theorem that M is
a maximal subgroup of finite index of G.

On the other hand, if M is a maximal subgroup of finite index, then it
contains a normal subgroup N ⊴ G of finite index, which in turns contains
StG(n) for some n ∈ N by Proposition 4.1.7 and Lemma 2.7.5. Since G/StG(n)
is a finite p-group, every maximal subgroup of G/StG(n) must be normal and
thus of index p. Therefore, by the correspondence theorem, M is a normal
subgroup of G of index p, and it follows that G′ ≤ M and πab(M) is of index
p in A×B.

To count the number of maximal subgroups of finite index of G, then, it
suffices to count the number of subgroups of index p of (Z/pZ)m+1. Notice that
we can see (Z/pZ)m+1 as a vector space over the field Z/pZ. A subgroup of
index p then corresponds to a codimension 1 subspace. If we fix an inner prod-
uct on this vector space, we can associate to each non-trivial g ∈ (Z/pZ)m+1 a
unique subgroup of index p, namely the orthogonal complement to g. Notice
that given two non-trivial elements g1, g2 ∈ (Z/pZ)m+1, the orthogonal com-
plement of g1 is the same as the orthogonal complement of g2 if and only if g1
and g2 are colinear, or in other words, if and only if g2 belongs to the subgroup
generated by g1. As there are pm+1 − 1 non-trivial elements in this group and
since each cyclic subgroup contains p − 1 non-trivial elements, there must be
pm+1−1
p−1 different subgroups of index p.

We have thus described every maximal subgroups of finite index of every
Šunić group, with the exception of the infinite dihedral group, whose subgroups
are very well-understood.

6.6 Open questions

In this section, we briefly describe a few open questions that follow naturally
from what was discussed in this chapter.

In the proof of Theorem 6.2.7, we have shown that the subgroups H(q) of

a Šunić group G ∈ ˜︁G2,m with m ≥ 2 are proper for any odd q ≥ 3 by showing
that the orbit H(q) · 1̃ of the point 1̃ under the action of H(q) is a proper
subset of the orbit of the same point under the action of G. In particular,
this implies that H(q) is contained in the stabiliser of the set H(q) · 1̃. Now,
when q is prime, we have shown in Theorem 6.3.16 that H(q) is maximal. This
immediately implies that H(q) is the stabiliser of the set H(q) · 1̃. Next, in
Theorem 6.4.17, we showed that every maximal subgroup of infinite index of
G is a conjugate of some H(q), which means, in conjunction with our previous
observation, that every maximal subgroup of infinite index of G is in fact the
stabiliser of some subset of the boundary of the tree. One might wonder if this
must necessarily be the case for any branch group.

Question 6.6.1. Is every maximal subgroup of infinite index of a branch group
the stabiliser of some set on the boundary? If not in general, are there some
classes of branch groups for which this holds?
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A positive answer to this question would be very interesting, as it would
suggest more geometric approaches to the study of maximal subgroups of infi-
nite index in branch groups.

One might also wonder about the index of the maximal subgroups of the
torsion Šunić groups. The only group in this class which was covered by Per-
vova’s theorem is the Grigorchuk group. We expect every torsion Šunić group
to belong to the class MF , but so far, a proof remains out of reach.

Question 6.6.2. Does every periodic Šunić group belong to the class MF?

More generally, one might ask if being a p-group is a sufficient condition for
a branch group to belong to MF .

Question 6.6.3. Does there exist a branch p-group with maximal subgroups
of infinite index?



n Chapter 7 N

Non-torsion branch groups in MF

In Chapter 6, we showed that every non-torsion Šunić group acting on the
binary rooted tree contains maximal subgroups of infinite index and therefore
does not belong to the class MF (with the exception of the infinite dihedral
group, which is not a branch group). It is thus natural to ask if the same is
true of Šunić groups acting on trees of higher degree.

Our results in Chapter 6 also show that the assumption of periodicity was
essential in Pervova’s result on the index of maximal subgroups of torsion
Grigorchuk 2-groups [73, 74]. One might naturally wonder if the same is true
for the other families of groups studied in those papers, namely GGS and EGS
groups, or for the generalisations given in [1] and [58]. In fact, as far as we
are aware, every known examples of branch groups in MF are torsion. Thus,
one could even wonder if a branch group belonging to the class MF must
necessarily be periodic.

In this chapter, we provide a negative answer to those questions by showing
that the generalised Fabrykowski-Gupta groups, a special family of non-torsion
branch groups that are both Šunić groups and GGS groups, belong to the class
MF . To our knowledge, these are the first examples of non-torsion branch
groups in MF . They are also interesting as examples of branch groups that
are not LERF (by Proposition 4.2.2) yet do not contain maximal subgroups of
infinite index.

In Section 7.1, we give the definition of generalised Fabrykowski-Gupta
groups and remark on some of their properties. Then, in Section 7.2, we prove
that every maximal subgroup of these groups is of finite index. Finally, in
Section 7.3, we discuss a few open questions.

Part of the results in this chapter were obtained in collaboration with Ale-
jandra Garrido.

7.1 Generalised Fabrykowski-Gupta groups

The main goal of this chapter is to show that every Šunić group in a special
family, that we will call generalised Fabrykowski-Gupta groups, belongs to the
classMF of groups such that every maximal subgroup is of finite index. Before
we go on to prove this result, let us first introduce generalised Fabrykowski-
Gupta groups and the notation that we will use throughout this section.

109
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LetX = {1,2,3} be a finite alphabet with three letters. Recall from Section
2.8 that the Fabrykowski-Gupta group is the group G = ⟨a, b⟩ ≤ Aut(X∗) of
automorphisms of the rooted tree X∗ generated by two automorphisms a and
b, where a = (1 2 3) is the rooted automorphism cyclically permuting the first
level, and where b is recursively defined by

b = (a, 1, b).

Let us set A = ⟨a⟩ and B = ⟨b⟩. It is easy to see that A ∼= B ∼= Z/3Z.
Let ω : B → B be the unique homomorphism sending b to a and let ρ : B → B
be the identity map. We then have that b = (ω(b), 1, ρ(b)), so G is the Šunić
group associated with the maps ω and ρ. Under the notation of Section 2.9,
the Fabrykowski-Gupta group is the group G3,x−1.

This suggests a natural generalisation. We will call generalised Fabrykowski-
Gupta groups the Šunić groups whose defining polynomial is x − 1. However,
we will exclude the case of the binary rooted tree, since the group G2,x−1 is
the infinite dihedral group, which is not a branch group.

Definition 7.1.1. Let p be an odd prime and let X = {1,2, . . . ,p} be an
alphabet with p letters. We will call the Šunić group Gp,x−1 (see Definition
2.9.3) the generalised Fabrykowski-Gupta group acting on X∗, or the gener-
alised Fabrykowski-Gupta group of degree p. More explicitly, the generalised
Fabrykowski-Gupta group of degree p is the subgroup of Aut(X∗) generated
by a and b, where a = (1 2 . . . p) is the rooted automorphism acting cyclically
on the first level, and where b is recursively defined as

b = (a, 1, . . . , 1, b).

U

As generalised Fabrykowski-Gupta groups are a special class of Šunić groups,
all the results of Section 2.9 hold for them. In particular, they are self-
replicating regular branch groups over their commutator subgroup.

Let us set some notation for these groups.

Notation 7.1.2. For the rest of this section, unless otherwise specified, p
will denote an odd prime, X will denote the alphabet X = {1,2, . . . ,p} and
G = ⟨a, b⟩ will denote the generalised Fabrykowski-Gupta group of degree p,
where a and b are as in Definition 7.1.1.

Notice that unlike in Section 2.9, our alphabet goes from 1 to p instead of
going from 0 to p− 1. The reason for this difference is that for i ∈ Z, we will
use the notation bi = aiba−i. Thanks to our choice, we then have φi(bi) = b.
Please note that by convention, for i ∈ Z, we will denote in bold the unique
element i ∈ X of X that is equal to i modulo p.

We will denote by | · | : G → N the word pseudonorm of Example 3.1.11.
More concretely, | · | is the pseudonorm induced by giving length 0 to a and
length 1 to every non-trivial power of b.

If N ⊴ G is a normal subgroup of G and if g1, g2 ∈ G are two elements
belonging to the same coset by N , we will write g1 ≡N g2. L

Remark 7.1.3. For every g ∈ G with |g| = n, there exist i, i1, i2, . . . , in ∈
{0, 1, . . . , p− 1} with ik ̸= ik+1 and j1, . . . , jn ∈ {1, 2, . . . , p− 1} such that

g = aibj1i1 b
j2
i2
. . . bjnin .
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Y

Let us also make a very important remark about the contracting properties
of the word pseudonorm.

Remark 7.1.4. SinceG is non-ℓ1-expanding, we know that if g = τ(g1, . . . , gp),
then

∑︁p
i=1 |gi| ≤ |g|. It is also follows easily from Remark 7.1.3 that we have

|gk| ≤
|g|+ 1

2

for all 1 ≤ k ≤ p. Indeed, if |g| = n, we can write g = aibj1i1 b
j2
i2
. . . bjnin as in

Remark 7.1.3, and the fact that ik ̸= ik+1 for all k implies that each projection
cannot be longer than (n + 1)/2. Thus, the equivalent of Proposition 2.9.12
holds for this word pseudonorm. Y

Please note that Remarks 7.1.3 and 7.1.4 hold more generally for any Šunić
groups or even for any spinal groups. We just state them here in the context
of generalised Fabrykowski-Gupta groups for convenience.

7.2 Maximal subgroups of generalised
Fabrykowski-Gupta groups

Now that we have defined generalised Fabrykowski-Gupta groups and set the
notation that we will use throughout this section, we can begin to prove that
every maximal subgroup of a generalised Fabrykowski-Gupta group must be
of finite index. The general strategy of the proof is similar to the one used by
Pervova in [73] and [74] to study maximal subgroups of the Grigorchuk groups.
More explicitly, we will show that no dense subgroup can be proper by exploit-
ing Proposition 5.4.1, Theorem 5.4.3 and the length contraction properties
stated in Remark 7.1.4.

In order to prove the result, we will first need several lemmas.

Lemma 7.2.1. Let g ∈ G′ be an element of the derived subgroup of G and let
g1, g2, . . . , gp be such that ψ1(g) = (g1, g2, . . . , gp). Then, we have g1g2 · · · gn ∈
G′.

Proof. As g ∈ G′, it follows from Proposition 2.9.16 that we can write g =
bj1i1 b

j2
i2
· · · bjnin with

∑︁n
k=1 jk ≡ 0 mod p. For each 1 ≤ k ≤ n, we have that

bjkik adds bjk to gik and ajk to bik+1 (where the indices are taken modulo p).
Therefore, we have that

g1g2 · · · gp ≡G′ a
∑︁n

k=1 jkb
∑︁n

k=1 jk = 1.

Lemma 7.2.2. Let g ∈ G be such that g ≡G′ aibj, with i, j ̸≡ 0 mod p, and let
g1, g2, . . . , gp ∈ G be such that ψ1(g) = ai(g1, g2, . . . , gp). Then, for all u ∈ X,
we have φu(g

p) ≡G′ ajbj, with |φu(gp)| ≤
∑︁p
k=1 |gk| ≤ |g|.
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Proof. By hypothesis, we can write g = aibjz for some z ∈ G′. Let us write
x = bjz, and let z1, z2, . . . , zp ∈ G be such that ψ1(z) = (z1, z2, . . . , zp). Then,
we have ψ1(x) = (g1, . . . , gp) = (ajz1, z2, . . . , b

jzp). Now, let us consider

gp = (aix)p = (aixa−i)(a2ixa−2i) · · · (apixa−pi).

As i is different from 0 and p is prime, we have that every conjugate of x by
a power of a appears exactly once in this product. Thus, for u ∈ X, we have
that φu(g

p) ≡G′ g1g2 · · · gp. It follows from Lemma 7.2.1 that φu(g
p) ≡G′ ajbj .

Furthermore, since φu(g
p) can be written as a product (in some specified order

depending on i and u) of the elements gi, we have

|φu(gp)| ≤
n∑︂
k=1

|gk| ≤ |g|.

Lemma 7.2.3. Let g ∈ G be such that g ≡G′ bi0 for some i0 ̸≡ 0 mod p.
Then, exactly one of the two following cases is true.

1. There exists some u ∈ X and some j0 ̸≡ 0 mod p such that φu(g) ≡G′

bj0 .

2. For all u ∈ X, there exist iu, ju ̸≡ 0 mod p such that φu(g) ≡G′ aiubju .
Furthermore, there exists at least one u ∈ X such that iu ̸≡ ju mod p.

Proof. As g ≡G′ bi0 , it follows from Proposition 2.9.16 that we can write

g = bj1l1 b
j2
l2
· · · bjnln

with
∑︁n
k=1 jk ≡ i0 mod p. For every l ∈ {1, 2, . . . , p}, we have

φu(bl) =

⎧⎪⎨⎪⎩
b if u = l

a if u = l+ 1

1 otherwise.

Thus, we have that φu(g) ≡G′ amu−1bmu , where

mu ≡
∑︂

k s.t. lk=u

jk mod p

and all the indices are taken modulo p.
It is clear that cases 1 and 2 are mutually exclusive. Thus, we only need to

show that if case 1 does not hold, then case 2 does. Let us now assume that
case 1 does not hold.

This means that we have φu(g) ̸≡G′ bj0 for every j0 ̸≡ 0 mod p and for
every u ∈ X. As φu(g) ≡G′ amu−1bmu , this is equivalent to saying that for
every u ∈ X, if mu−1 ≡ 0 mod p, then the same is true of mu (where again,
the indices are taken modulo p). This, in turn, implies that mu ̸≡ 0 mod p
for every u ∈ X. Indeed, if there existed one u ∈ X such that mu ≡ 0 mod p,
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then we would have mu+1 ≡ 0 mod p. By induction, this would imply that
mu ≡ 0 mod p for all u ∈ X. However, we have that

∑︂
u∈X

mu ≡
n∑︂
k=1

jk ≡ i0 ̸≡ 0 mod p,

which means that we cannot have mu ≡ 0 mod p for every u ∈ X.
Thus, we have shown that for all u ∈ X, we have φu(g) ≡G′ amu−1bmu with

mu−1,mu ̸≡ 0 mod p. To show that we are in case 2, we now only need to
show that there exists u ∈ X such that mu−1 ̸≡ mu mod p. Let us assume
that it is not the case. Then, we have mu−1 ≡ mu mod p for all u ∈ X, which
means that mu ≡ mv mod p for all u, v ∈ X. Thus, we have∑︂

u∈X
mu ≡ |X|mu ≡ 0 mod p,

a contradiction. This concludes the proof.

The next proposition will show that for any dense subgroup H ≤ G, we can
find a vertex such that the projection of H to this vertex contains b.

Proposition 7.2.4. Let H ≤ G be a dense subgroup with respect to the profi-
nite topology on G. Then, there exists v0 ∈ X∗ such that b ∈ Hv0 , where, as in
Definition 2.6.25, Hv0 = φv0(StH(v0)).

Proof. Let us consider the set

U =

{︄
g ∈

⨆︂
v∈X∗

Hv | g ≡G′ aibi for some i ̸≡ 0 mod p

}︄
.

Since H is a dense subgroup of G and G′ is a normal subgroup of finite index
of G, this set is not empty. Let y ∈ U be an element of minimal length in
U , meaning that for any g ∈ U , we have |y| ≤ |g| (as the length function
takes values in N, such an element exists). Let w ∈ X∗ be such that y ∈ Hw.
By Proposition 5.4.1 (or, more precisely, by Corollary 5.4.4), Hw is a dense
subgroup of G, and if we prove the result for Hw, we will also have proved it
for H. Thus, without loss of generality, we can assume that w is the root of
the rooted tree X∗, so that Hw = H, which we will do in order to simplify the
notation.

Let us now consider the set

V =

{︄
g ∈

⨆︂
v∈X∗

Hv | g ≡G′ bi for some i ̸≡ 0 mod p

}︄

and let x ∈ V be an element of minimal length in V . Again, such an element
exists as V is not empty by the density of H. Let v ∈ X∗ be such that x ∈ Hv.
It follows from Lemma 7.2.2 and by the minimality of y that there exists
y′ ∈ Hv such that y′ ≡G′ y and |y′| = |y|. Thus, without loss of generality, we
can assume that x ∈ H, replacing H by Hv and y by y′ if necessary.

If |x| = 1, then x = ajbia−j with i ̸≡ 0 mod p. Thus, we have that
φj(x) = bi. As i is invertible modulo p, we conclude that b ∈ Hj .
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We will now show that |x| must be equal to 1. The case |x| = 0 is of course
impossible by Proposition 2.9.16, since that would imply that x ∈ A = ⟨a⟩, but
we have x ≡G′ bi for some i ̸≡ 0 mod p. Let us now assume that |x| > 1. In
this case, there can exist no u ∈ X such that φu(x) ≡G′ bj with j ̸≡ 0 mod p.
Indeed, if such a u existed, we would have φu(x) ∈ V , and by Remark 7.1.4,
we would have

|φu(x)| ≤
|x|+ 1

2
< |x|

which would contradict the minimality of x. Thus, according to Lemma 7.2.3,
for all u ∈ X, there exist iu, ju ̸≡ 0 mod p such that φu(x) ≡G′ aiubju .
Furthermore, there exists u0 ∈ X such that iu0 ̸≡ ju0 mod p.

For u ∈ X, let us write xu = φu(x). By Lemma 7.2.2, we have φv(x
p
u) ∈ U

for all v ∈ X, with |φv(xpu)| ≤ |xu|. Thus, by the minimality of y, we must
have |xu| ≥ |y| for all u ∈ X.

Let us write x′ = xu0
(φu0

(yp))k0 , where k0 ∈ Z is the unique integer such
that 1−p

2 ≤ k0 ≤ p−1
2 and (φu0

(yp))k0 ≡G′ a−iub−iu . We then have x′ ≡G′

bju−iu . As iu ̸≡ ju mod p, this means that x′ ∈ V . Thus, by the minimality
of x, we must have |x′| ≥ |x|.

On the other hand, since x′ = xu0(φu0(y
p))k0 , we have

|x′| ≤ |xu0
|+ |k0||φu0

(yp)| ≤ |xu0
|+ p− 1

2
|y|.

Furthermore, as mentioned in Remark 7.1.4, we have
∑︁
u∈X |xu| ≤ |x|, so

|xu0 | ≤ |x| −
∑︂

u∈X\{u0}

|xu|.

As |xu| ≥ |y| for all u ∈ X, we get |xu0
| ≤ |x| − (p− 1)|y|. Therefore, we have

|x′| ≤ |x| − (p− 1)|y|+ p− 1

2
|y| = |x| − p− 1

2
|y| < |x|

which is a contradiction to the minimality of x. We conclude that |x| must be
equal to 1 and the result is then proved.

Now that we have shown that any dense subgroup admits a projection
that contains b, we only need to show that we can also obtain a in the same
projection to obtain G. This is what we will do in the next two lemmas.

Lemma 7.2.5. Let x ∈ G be an element of G. If there exist u, v ∈ X such
that |φu(x)|+ |φv(x)| = |x|, then |x| ≤ 3.

Proof. We can write x = aj0bj1i1 · · · b
jn
in
, where n = |x|. Since |φu(x)|+ |φv(x)| =

|x|, we must have either ik = u if k is odd and ik = v if k is even, or ik = v
if k is odd and ik = u if k is even. Indeed, otherwise, we could express u and
v as products such that the number of b appearing in both of these products
is less than n. Without loss of generality, we may assume that ik = u if k
is odd and ik = v if k is even. For the rest of this proof, to simplify the
notation, we will write bu and bv for bi1 and bi2 , respectively, so that we can
write x = aj0bj1u b

j2
v b

j3
u . . . b

jn
in
.

If n ≥ 4, then we have that x = aj0x′x′′, where x′ = bj1u b
j2
v b

j3
u b

j4
v and x′′ =

bj5i5 · · · b
jn
in
. We have that φu(x) = φu(x

′)φu(x
′′) and φv(x) = φv(x

′)φv(x
′′).
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Thus, if we can show that |φu(x′)|+|φv(x′)| < |x′|, this will imply that |φu(x)|+
|φv(x)| < |x|. Indeed, we would then have

|φu(x)|+ |φv(x)| ≤ |φu(x′)|+ |φu(x′′)|+ |φv(x′)|+ |φv(x′′)|
< |x′|+ |x′′| = n = |x|.

Without loss of generality, let us assume that u = 1. If v ̸= p, then
φ1(bv) = 1 and thus φu(x

′) = bj1+j3 . Therefore, we have |φu(x′)| ≤ 1. As
|φv(x′)| ≤ 2, we get that |φu(x′)| + |φv(x′)| ≤ 3 < 4 = |x′|. If, on the other
hand, we have v = p, then we have φp(bu) = 1 and by the same argument,
we find that |φu(x′)| + |φv(x′)| ≤ 3 < |x′|. We conclude that if |x| ≥ 4, it is
impossible to have |φu(x)|+ |φv(x)| = |x|.

Lemma 7.2.6. Let H ≤ G be a dense subgroup of G with respect to the
profinite topology. Then, there exists v ∈ X∗ such that Hv = G.

Proof. Let us set

U =

{︄
g ∈

⨆︂
u∈X∗

Hu | g ≡G′ aibi for some i ̸≡ 0 mod p

}︄

and let y ∈ U be an element of minimal length among the elements of U . Let
u ∈ X be such that y ∈ Hu. As Hu is dense in G by Proposition 5.4.1, we can
assume without loss of generality (replacing H by Hu if necessary) that y ∈ H.

By Lemma 7.2.2 and the minimality of y, we conclude that for every u in
T , there exists some yu ∈ Hu such that yu ∈ U and yu is of minimal length
among the elements of U .

By Proposition 7.2.4, there exists v0 ∈ T such that b ∈ Hv0 . Again, without
loss of generality, we can assume that b ∈ H, replacing H by Hv0 if necessary.

Let us now consider H1. As ψ1(b) = (a, 1, . . . , 1, b), we have that a ∈ H1.
We also have y1 ∈ H1 such that y1 ∈ U and is minimal. Let x ∈ G and i ∈ N
be such that y1 = aix with x ≡G′ bi. Notice that since a ∈ H1, we also have
that x ∈ H1. If |y1| = 1, then we also have |x| = 1, and we see that we must
therefore have a, b ∈ H1. In other words, we have G = H1 and the result holds
in this case.

Let us now assume that |y1| > 1. As in the proof of Lemma 7.2.3, for each
u ∈ X there is mu ∈ N such that xu := φu(x) ≡ amu−1bmu (where we define
addition and subtraction on X modulo p).

There can exist no u ∈ X such that mu−1,mu ̸≡ 0 mod p. Indeed, if such
a u existed, we would have, by Lemma 7.2.2, φ1(x

p
u) ∈ U with

|φ1(x
p
u)| ≤ |xu| ≤

|x|+ 1

2
=

|y1|+ 1

2
< |y1|,

a contradiction to the minimality of y1. However, by Lemma 7.2.3, there must
exist some u0 ∈ X such that mu0

̸≡ 0 mod p. We conclude that xu0
≡G′ bmu0

and xu0+1 ≡G′ amu0 .
As a ∈ H1, we have that xu0

, xu0+1 ∈ H11. Thus, xu0
xu0+1 ∈ U . As G is

non-ℓ1-expanding, we must have

|xu0
xu0+1| ≤ |xu0

|+ |xu0+1| ≤ |x| = |y1|,
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but by the minimality of |y1|, we must have |xu0
xu0+1| ≥ |y1|, which implies

that |xu0
|+ |xu0+1| = |x|. By Lemma 7.2.5, this forces |x| ≤ 3.

It thus follows from Remark 7.1.4 that we must have |xu0+1| ≤ 2. The case
|xu0+1| = 0 is impossible, since this would imply that |xu0 | = |x|, which is only
possible if |x| = 1. As xu0+1 ≡G′ am0 , it follows from Proposition 2.9.16 that
the case |xu0+1| = 1 is also impossible, since |xu0+1| must be an even number.

Thus, the only remaining case is the case where |xu0+1| = 2. In this case,
we must also have |xu0

| = 1 and |x| = 3. With these conditions, we must have
that

x = bj1u0+1b
mu0
u0 b−j1u0+1

for some j1 ∈ N such that j1 ̸≡ 0 mod p. In particular, we have xu0
= bmu0

and xu0+1 = bj1amu0 b−j1 . As xu0
, xu0+1 ∈ H11, we conclude that a, b ∈ H11

and thus that G = H11.

Theorem 7.2.7. Let G be a generalised Fabrykowski-Gupta group of degree p,
where p is an odd prime. Then, every maximal subgroup of G is of finite index
in G, so G belongs to the class MF .

Proof. It follows from Lemma 7.2.6 and Theorem 5.4.3 (or, more precisely, from
Corollary 5.4.4) that there are no proper dense subgroups of G in the profinite
topology. Thus, by Proposition 5.2.2, G contains no maximal subgroup of
infinite index.

7.3 Open questions

In this chapter, we have shown that, in contrast with the case of the binary
rooted tree, there are Šunić groups that are branch, not torsion, but still belong
to the class MF . One might wonder if the same is true of every Šunić group.

Question 7.3.1. Is every non-torsion Šunić group acting on a p-regular rooted
tree necessarily in MF if p is an odd prime?

One might notice that for the binary rooted tree, the Šunić group corre-
sponding to the polynomial x − 1 is the infinite dihedral group, which does
belong to the class MF . Thus, one might think that groups corresponding to
the polynomial x − 1 are somewhat exceptional in the family of Šunić groups
and that their behaviour might not be representative of the other groups in
the family. However, the infinite dihedral group is of a very different nature
from the generalised Fabrykowski-Gupta groups, since it is not a branch group.
Furthermore, it contains maximal subgroups of every prime index, whereas
the generalised Fabrykowski-Gupta group acting on the p-regular rooted tree
only contains maximal subgroups of index p. As it seems that these maximal
subgroups of odd index in the infinite dihedral group are responsible for the
existence of maximal subgroups of infinite index in Šunić groups acting on the
binary rooted tree, we suspect that the same phenomenon will not happen for
trees of higher degree.

As mentioned at the beginning of this chapter, generalised Fabrykowski-
Gupta groups also belong to another important family of groups acting on
rooted trees, namely GGS groups. It is thus natural to ask if every GGS
group belongs to the class MF .
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Question 7.3.2. Does every GGS group belong to the class MF?

This question was already mentioned by Alexoudas, Klopsch and Thillaisun-
daram in [1], where they wonder if every group in a larger family, that they call
multi-edge spinal groups, belong to the class MF . The results in this chapter
form the first evidence supporting a positive answer to this question.

Lastly, notice that in the same way as we have done here, one could define a
generalised Fabrykowski-Gupta group acting on a d-regular tree for any d ≥ 2,
not necessarily only for trees of prime degree. However, in that case, the
action of the group on the first level would not be primitive (see Example
2.1.5). Therefore, in that case, one could not use Theorem 5.4.3, which was
crucial in the proof. It would thus be interesting to see if the result still holds
in this case, or if the primitivity of the action on the first level is essential for
the absence of maximal subgroups of infinite index.

Question 7.3.3. Do generalised Fabrykowski-Gupta groups acting on a rooted
tree of non-prime degree belong to the class MF?





n Chapter 8 N

Maximal subgroups of the Basilica

group

In Chapter 7, we saw the first examples of non-torsion branch groups belonging
to the class MF of groups containing no maximal subgroup of infinite index.
This showed that torsion is not a necessary condition for branch groups to
belong to this class.

However, the generalised Fabrykowski-Gupta groups studied in Chapter 7
still share many properties with the Grigorchuk group and other branch groups
known to be in MF . For instance, they are just-infinite, and every proper
quotient is a finite p-group. One could wonder if these or other properties are
necessary for a branch group to belong to MF .

In this Chapter, we will make some partial progress towards an answer to
these questions by showing that a group known as the Basilica group belongs to
MF . The Basilica group was first studied by Grigorchuk and Żuk as an inter-
esting example of an automaton group on three states and two letters in [52].
In that article, they showed that this group is not subexponentially amenable,
meaning that it cannot be built from groups of subexponential growth by tak-
ing subgroups, quotients, extensions and direct limits. The amenability of
the Basilica group was later shown by Bartholdi and Virág [12], thus proving
that the class of amenable groups is larger than the class of subexponentially
amenable groups. The Basilica group is also important in the theory of iterated
monodromy groups, as it is the iterated monodromy group of the polynomial
z2 − 1 (see [5]).

The Basilica group is quite different in many respect from other known
examples of groups in MF . For instance, it is torsion-free, and it admits
quotients which are not p-groups, or not even nilpotent. It also contains a free
subsemigroup, which means that it is of exponential growth. However, as we
will show, this group is not a branch group, but only a weakly branch group.
Nevertheless, it remains an interesting example to help us understand what
kind of groups can belong to the class MF .

In Section 8.1, we give the definition of the Basilica group and list some
of its properties. In Section 8.2, we find a minimal system of generators for
the commutator subgroup of the Basilica group. Although it is not strictly
necessary, it makes our study of its quotients in Section 8.3 slightly easier.

119
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The main result of that section is Proposition 8.3.6, which implies that every
proper quotient of the Basilica group is in MF , but we also take the time to
investigate other properties of these quotients. Finally, in Section 8.4, we show
(Theorem 8.4.12) that every maximal subgroup of the Basilica group is of finite
index.

8.1 The Basilica group

In this section, we give the definition of the Basilica group and list a few of its
basic properties.

For the rest of this chapter, we will write X = {0,1}. Let σ ∈ Sym(X) be
the non-trivial permutation ofX. We can recursively define two automorphisms
a, b ∈ Aut(X∗) of the rooted tree X∗ by the formulas

a = (1, b) b = σ(a, 1).

We can then define the Basilica group as the group generated by those two
automorphisms.

Definition 8.1.1. The Basilica group is the group G = ⟨a, b⟩ ≤ Aut(X∗) of
automorphisms of the binary rooted tree X∗ generated by a and b. U

Remark 8.1.2. In their original article [52], Grigochuk and Zuk defined the
Basilica group as the group generated by a and b = (1, a)σ acting on the right
on X∗, whereas we use a left action here. However, the resulting group is the
same, since we can easily pass from the left to the right action with the formula
x · g = g−1 · x. Y

Let us now look at a few important properties of the Basilica group. The
following theorem is a collection of results about this group that were shown
in [52].

Theorem 8.1.3. Let G = ⟨a, b⟩ be the Basilica group. Then,

(i) G is a self-replicating,

(ii) G is regular weakly branch group over the commutator subgroup G′,

(iii) G is torsion-free,

(iv) the semigroup generated by a and b is free (so in particular, G is of
exponential growth),

(v) G/G′ ∼= ⟨a⟩ × ⟨b⟩ ∼= Z2,

(vi) G is just non-solvable.

Grigorchuk and Zuk also gave a presentation for the Basilica group, which
can be useful in studying its quotients. The presentation we give here is the
one given in Propostion 9 of [52].
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Theorem 8.1.4. The Basilica group G has the presentation

G = ⟨a, b | λk(τm),m = 2l + 1, k ∈ N, l ∈ N⟩

where
τm = [b−mabm, a]

and

λ :

{︄
a ↦→ b2

b ↦→ a.

8.2 The commutator subgroup of the Basilica group

By Theorem 8.1.3, the Basilica group is regular weakly branch over its com-
mutator subgroup. Therefore, having a good understanding of this subgroup is
of great importance in the study of the Basilica group. In this section, we give
a minimal generating set for the commutator subgroup and study its abelian-
isation. These results will be helpful to study the quotients of the Basilica
group later on, and we believe that they may also be of independent interest
to anyone working with this group.

Let us first introduce a convenient notation for the generators of the com-
mutator subgroup, in order to keep the notation slightly more manageable.

Notation 8.2.1. Let G = ⟨a, b⟩ be the Basilica group, with a and b as in the
previous section. In what follows, for all s, t ∈ Z, we will write

αs,t = [as, bt],

where [as, bt] = a−sb−tasbt. L

Let us now establish some relations between these commutators.

Proposition 8.2.2. For all s, t ∈ Z, we have the following relations in the
Basilica group G:

αs,2t+1 =
(︁
α1,1(α

−1
1,−1α1,1)

t
)︁s

αs,2t = αs−1
1,1

(︁
αt1,2α

−1
1,1

)︁s−1
αt1,2

Proof. The proof is mainly a direct computation, using the map ψ1 defined in
Proposition 2.6.31. We will make frequent use of the fact that

ψ1(α1,1) = (a−1ba, b−1)

ψ1(α1,−1) = (b, b−1)

ψ1(α1,2) = (1, b−1a−1ba) = (1, α−1
1,1).

By direct computation, we find

ψ1(αs,2t+1) = (a−t−1bsat+1, b−s).

Therefore, it follows from the injectivity of ψ1 that we have

αs,2t+1 = αs1,2t+1.
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Using this fact and a bit more direct computation, we see that

ψ1((α
−1
1,−1α1,1)

t) = (b−1a−1ba, 1)t

= (α−1
1,1, 1)

t

= (α−1
t,1 , 1).

It follows, once again with the help of some more direct computations, that

ψ1

(︂(︁
α1,1(α

−1
1,−1α1,1)

t
)︁s)︂

= (a−1baα−1
t,1 , b

−1)s

= (a−1bab−1a−tbat, b−1)s

= (α1,−1a
−tbat, b−1)s

= (α1,−1a
−tα−1

1,−1a
−1bat+1, b−1)s

= ((α1,−1a
−tα−1

1,−1a
t)(a−t−1bat+1), b−1)s

= ([α−1
1,−1, a

t](a−t−1bat+1), b−1)s.

Now, using the fact that ψ1(α
−1
1,−1) = (b−1, b) and ψ1(a

t) = (1, bt), we see that

α−1
1,−1 and at commute. Therefore, we have

ψ1

(︂(︁
α1,1(α

−1
1,−1α1,1)

t
)︁s)︂

= ((a−t−1bat+1)s, b−s)

= ψ1(αs,2t+1).

The first relation then immediately follows from the injectivity of ψ1.
To prove the second relation, let us notice that from direct computation,

we immediately get
ψ1(αs,2t) = (1, α−1

t,s ).

Hence, we have

ψ1((α
t
1,2α

−1
1,1)

s−1) = (a−1b−1a, α−t
1,1b)

s−1

= (a−1b1−sa, (α−1
t,1 b)

s−1),

so we see that

ψ1(α
s−1
1,1

(︁
αt1,2α

−1
1,1

)︁s−1
αt1,2) = (1, b1−s(α−1

t,1 b)
s−1α−1

t,1 )

= (1, b−s+1(α−1
t,1 b)

sb−1)

= (1, b−s+1([b, at]b)sb−1)

= (1, b−s+1(b−1a−tbatb)sb−1)

= (1, b−sa−tbsat)

= ψ1(αs,2t).

This proves the second relation.

The previous proposition implies that the commutator subgroup of Basilica
is generated by only three elements.

Proposition 8.2.3. The commutator subgroup G′ of the Basilica group G is
generated by α1,1 = [a, b], α1,−1 = [a, b−1] and α1,2 = [a, b2].
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Proof. Since the Basilica group is generated by two elements, a and b, its
commutator subgroup, G′, is generated by the set

{αs,t = [as, bt]|s, t ∈ Z}.

Therefore, it follows from Proposition 8.2.2 that G′ is generated by α1,1, α1,−1

and α1,2.

In the next section, we will show that G′/G′′ is isomorphic to Z3. This will
imply that this system of generators is minimal.

8.3 Quotients of the Basilica group

As we are interested in the index of maximal subgroups of the Basilica group G,
it is of great importance to understand its quotients. Indeed, from Proposition
5.1.1, we know that if G admits a quotient which is not in MF , then G is not
in MF . On the other hand, if every quotient of G is in MF , then we know
that being prodense is equivalent to being pro-MF-dense (Proposition 5.3.8),
which means that we can use Theorem 5.4.3 to study maximal subgroups.

In this section, we will investigate the properties of proper quotients of the
Basilica group. Although strictly speaking, we only require Proposition 8.3.6
in our study of maximal subgroups, we also investigate other properties of
quotients, since they point out some important difference between the Basilica
group and every other known examples of weakly branch groups belonging to
MF .

Virtually nilpotent quotients

We know from Theorem 8.1.3 that the Basilica group G is just non-solvable,
meaning that every proper quotient of G is solvable. One could wonder if those
quotients are in fact nilpotent, but it is not hard to show, using the presentation
given in Theorem 8.1.4, that this is not the case.

Proposition 8.3.1. The Baumslag-Solitar group BS(1,−1) (or, in other words,
the fundamental group of the Klein bottle) is a quotient of the Basilica group.

Proof. Let G be the Basilica group and let N = ⟨b−1aba⟩G be the smallest
normal subgroup of G containing b−1aba. If follows from Theorem 8.1.4 that

G/N = ⟨a, b | b−1aba, λk(τm),m ∈ 2N+ 1, k ∈ N⟩

where

τm = [b−mabm, a]

and

λ :

{︄
a ↦→ b2

b ↦→ a.

This implies that G/N has the presentation

G/N = ⟨a, b | b−1aba⟩,
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which is the presentation of the Baumslag-Solitar groupBS(1,−1). Indeed, it is
easy to see that τm is a consequence of the relation b−1aba for any m ∈ 2N+1.
Furthermore, since b−2ab2a−1 is also a consequence of b−1aba, we see that
λk(τm) must be a consequence of this relation for all k ∈ N andm ∈ 2N+1.

As an immediate corollary, we get that the Basilica group maps surjectively
onto the infinite dihedral group.

Corollary 8.3.2. The infinite dihedral group is a quotient of the Basilica
group.

Proof. The infinite dihedral group is a quotient of BS(1,-1).

Those results immediately imply that the Basilica group admits quotients
that are not nilpotent, in contrast with Šunić groups, where every proper quo-
tient was a finite p-group.

Corollary 8.3.3. The Basilica group is not just non-nilpotent.

Proof. The fundamental group of the Klein bottle is not nilpotent (and neither
is the infinite dihedral group).

Although some quotients are not nilpotent, we will show that every proper
quotient of the Basilica group is virtually nilpotent. To prove this, we will rely
on the following lemma, which was proved by Grigorchuk and Zuk in ([52],
Lemma 9). However, we present here a different proof.

Lemma 8.3.4 (Lemma 9 of [52]). Let G be the Basilica group, let G′ be
its derived subgroup, let G′′ = [G′, G′] be its second derived subgroup and let
γ3(G) = [G′, G] be the third term in the lower central series of G. Then, we
have

ψ1(G
′′) = γ3(G)× γ3(G).

Proof. Let us first show that ψ1(G
′′) ≤ γ3(G)×γ3(G). It follows from Proposi-

tion 8.2.3 thatG′′ is generated by the conjugates inG′ of [α1,1, α1,−1], [α1,1, α1,2]
and [α1,−1, α1,2]. We find

ψ1([α1,1, α1,−1]) = [(a−1ba, b−1), (b, b−1)]

= (a−1b−1ab−1a−1bab, 1)

= ([[b, a], b], 1) ∈ γ3(G)× γ3(G),

ψ1([α1,1, α1,2]) = [(a−1ba, b−1), (1, [b, a])]

= (1, [b−1, [b, a]])

= (1, [[b, a], b−1]−1) ∈ γ3(G)× γ3(G),

ψ1([α1,−1, α1,2]) = [(b, b−1), (1, [b, a])]

= (1, [b−1, [b, a]])

= (1, [[b, a], b−1]−1) ∈ γ3(G)× γ3(G).
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Since γ3(G) is a normal subgroup of G, any conjugate of these elements will
also belong to γ3(G)× γ3(G). Therefore, G

′′ ≤ γ3(G)× γ3(G).
Now, let us show that γ3(G)× γ3(G) ≤ ψ1(G

′′). Since G is generated by a
and b, we have that γ3(G) is normally generated in G by [[b, a], a] and [[b, a], b].
Since

[[b, a], a] = [(a−1b−1a, b), (1, b)] = 1,

we conclude that γ3(G) is normally generated by [[b, a], b]. We have computed
above that

ψ1([α1,1, α1,−1]) = ([[b, a], b], 1) ∈ γ3(B)× 1.

SinceG′′ is normal inG and sinceG is self-replicating, we conclude that γ3(G)×
1 ≤ ψ1(G

′′). Conjugating by b, we then get that 1 × γ3(G) ≤ ψ1(G
′′), from

which we conclude that γ3(G)× γ3(G) ≤ ψ1(G
′′).

Using this, we can show that G/G′′ is virtually nilpotent.

Lemma 8.3.5. The group G/G′′ is virtually nilpotent.

Proof. Thanks to Lemma 8.3.4, we have

ψ1(StG(1))/ψ1(G
′′) ≤ (G/γ3(G))× (G/γ3(G)) .

As the group (G/γ3(G))× (G/γ3(G)) is clearly nilpotent, ψ1(StG(1))/ψ1(G
′′)

is nilpotent. Since ψ1 is injective, we have

ψ1(StG(1))/ψ1(G
′′) ∼= StG(1)/G

′′.

As StG(1) is of finite index in G, StG(1)/G
′′ is of finite index in G/G′′. Hence,

we found a nilpotent subgroup of finite index in G/G′′.

From this, we can see that every proper quotient of the Basilica group is
virtually nilpotent.

Proposition 8.3.6. The Basilica group G is just non-(virtually nilpotent). In
particular, every proper quotient of G is of polynomial growth.

Proof. The fact that every proper quotient of Basilica is virtually nilpotent
follows from Theorem 4.4.2, Lemma 8.3.5 and the fact that G is regular weakly
branch over G′. Thanks to Gromov’s theorem (see [53]), this means that every
proper quotient is of polynomial growth, and the same theorem tells us that
G itself is not virtually nilpotent, since it is of exponential growth. Thus, G is
just non-(virtually nilpotent).

Non-virtually abelian quotients

Although every proper quotient of the Basilica group is virtually nilpotent, we
will see that there exist some quotients which are not virtually abelian. In
particular, this will imply that the Basilica group is not a branch group.

Proposition 8.3.7. Let G be the Basilica group, G′ = [G,G] be its derived
subgroup, γ3(G) = [G′, G] be the third term in its lower central series, and
H3(Z) be the discrete Heisenberg group. Then, G/γ3(G) ∼= H3(Z). In particu-
lar, G/γ3(G) is not virtually abelian.
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Proof. Let F (x, y) be the free group on x and y. Then, for all m,n ∈ Z, we
have

[x−mynxm, yn] = y−nynx−my−nxmy−nx−mynxmy−nynyn

= y−n[y−n, xm]y−n[xm, y−n]ynyn

= y−n[[xm, y−n], yn]yn

∈ γ3(F (x, y)),

where γ3(F (x, y)) is the third term in the lower central series of F (x, y).
By Theorem 8.1.4 and the fact that γ3(G) is normally generated by [[a, b], a]

and [a, b], b], we have

G/γ3(G) = ⟨a, b | [[a, b], a], [[a, b], b], λk(τm),m ∈ 2N+ 1, k ∈ N⟩

with
τm = [b−mabm, a]

and

λ :

{︄
a ↦→ b2

b ↦→ a.

However, since γ3(F (a, b)) is normally generated by [[a, b], a] and [[a, b], b], we
have by the above that λk(τm) is a consequence of these two relations for all
k ∈ N and m ∈ 2N+ 1. Therefore, we have

G/γ3(G) = ⟨a, b | [[a, b], a], [[a, b], b]⟩

which is the presentation of the discrete Heisenberg group H3(Z). It is well-
known that this group is not virtually abelian.

A direct consequence of this fact is that the Basilica group is not a branch
group.

Corollary 8.3.8. The Basilica group is not a branch group.

Proof. It follows from Lemma 2.7.5 that every proper quotient of a branch
group is virtually abelian.

We can also use this result to understand the quotient G′/G′′.

Proposition 8.3.9. Let G be the Basilica group, G′ be its derived subgroup and
G′′ be its second derived subgroup. The map Z3 → G′/G′′ defined by sending
the canonical generators of Z3 to α1,1, α1,−1 and α1,2 is an isomorphism. In
particular, α1,1, α1,−1 and α1,2 form a minimal set of generators for G′.

Proof. Since ψ1 is an injective map, we have that

G′/G′′ ∼= ψ1(G
′)/ψ1(G

′′).

Now, by Lemma 8.3.4, we have that ψ1(G
′′) = γ3(G)× γ3(G), where γ3(G) =

[G′, G]. Thus, it follows from Proposition 8.3.7 that ψ1(G
′)/ψ1(G

′′) ≤ H3(Z)×
H3(Z), where H3(Z) is the discrete Heisenberg group.
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Let f : Z3 → G′/G′′ be the homomorphism sending (1, 0, 0) to α1,1, (0, 1, 0)
to α1,−1 and (0, 0, 1) to α1,2, and let g : G′/G′′ → H3(Z) × H3(Z) be the
homomorphism implied above. To prove the result, it suffices to show that the
kernel of g ◦ f is trivial.

By direct computation, we see that

g(α1,1) = (bc−1, b−1), g(α1,−1) = (b, b−1), g(α1,2) = (1, c−1)

where H3(Z) = ⟨a, b | [[a, b], a], [[a, b], b]⟩ and c = [a, b]. Now, let (l,m, n) ∈
ker(g ◦ f) be an arbitrary element of the kernel of g ◦ f . It follows from the
above computations that

g ◦ f(l,m, n) = (bl+mc−l, b−l−mc−n)

and we quickly see that this is trivial if and only if l = m = n = 0. Thus, g ◦ f
is injective, which implies that f is injective. By Proposition 8.2.3, it is also
surjective and is thus an isomorphism.

8.4 Maximal subgroups of the Basilica group

In this section, we will show that every maximal subgroup of the Basilica group
is of finite index. The general strategy of the proof is similar to the one used
by Pervova to study maximal subgroups of the Grigorchuk group, albeit with
extensive modifications due to the fact that the Basilica group is very different.
Before we delve into the proof, let us give an outline of the argument.

By Proposition 8.3.6, we know that every proper quotient of the Basilica
group G is virtually nilpotent, and therefore in MF . It follows from Propo-
sition 5.3.8 and Corollary 5.3.7 that it admits maximal subgroups of infinite
index if and only if it admits a proper subgroup H < G such that HN = G for
all non-trivial normal subgroup N ⊴ G. We will show that such subgroups do
not exist by showing that any subgroup satisfying this property must project
to G on some vertex, and therefore cannot be proper, according to Theorem
5.4.3.

To achieve this, we will require several intermediate steps. We will start
with a few lemmas about the length of the projection of elements in the Basilica
group, but before that, let us first fix some notation and terminology.

Notation 8.4.1. As in the rest of this chapter, unless otherwise specified, G
will denote the Basilica group. We will denote by | · | : G → N the word norm
(see Definition 2.5.2) with respect to the generating set S = {a, a−1, b, b−1}.
In what follows, we will generally make no distinction in the notation between
a word in the generating set S and the element it represents in the group G
and rely on the context to distinguish between the two cases. In particular, if
w ∈ S∗ is a word in the alphabet S, we will denote by |w| the length of the
corresponding element in G. A word w = s1 . . . sn ∈ S∗ will be called a word
of minimal length or a geodesic word if |s1 . . . sn| = n. L

We begin by showing that with the standard word metric, the Basilica group
is a non-ℓ1-expanding self-similar group (see Definition 3.1.7).

Lemma 8.4.2. Let g = σϵ(g1, g2) ∈ G, where ϵ ∈ {0, 1}, be an arbitrary
element of G. Then, |g1|+ |g2| ≤ |g|. In other words, G is non-ℓ1-expanding.
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Proof. As a = (1, b), b = (1, a)σ, a−1 = (1, b−1) and b−1 = (a−1, 1)σ, we see
that the given inequality is true for the generating set S = {a, b, a−1, b−1}.
Therefore, by Proposition 3.1.8, G is non-ℓ1-expanding.

In the next lemmas, we will show a few technical length contraction prop-
erties.

Lemma 8.4.3. Let g = σ(g1, g2) /∈ StG(1) be an element that does not belong
to the stabiliser of the first level, and let α, β ∈ G be such that g2 = (α, β).
Then, |α|, |β| ≤ |g|.

Proof. We have g2 = σ(g1, g2)σ(g1, g2) = (g2g1, g1g2). Hence, thanks to
Lemma 8.4.2, we have |α| ≤ |g2|+ |g1| ≤ |g|, and likewise, |β| ≤ |g|.

Lemma 8.4.4. Let g = σϵ(g1, g2) ∈ G be an arbitrary element, where ϵ ∈
{0, 1}, and let x1x2 . . . xn ∈ S∗ be a word of minimal length representing g,
where S = {a, b, a−1, b−1}. If there exist 1 ≤ i < j ≤ n such that xi = b,
xj = b−1, then |g1|+ |g2| < |g| = n.

Proof. As the word x1x2 . . . xn is reduced (otherwise, it would not be of minimal
length), it follows from the hypothesis that it must contain a subword of the
form bakb−1 for some k ∈ Z∗. Seen as an element of G, we have that

bakb−1 = σ(a, 1)(1, bk)(a−1, 1)σ = (bk, 1).

Since bakb−1 is a subword of a geodesic word, we must have |bakb−1| = |k|+2,
since otherwise, we could replace it by a shorter word representing the same
element. On the other hand, |bk| ≤ |k|. Thus, there is a difference of at least
2 between the length of bakb−1 and the sum of the length of its children. By
using subadditivity and the fact that every subword of a geodesic must again
be a geodesic, we can conclude that |g1|+ |g2| ≤ |g| − 2 < |g|.

Lemma 8.4.5. Let g = σϵ(g1, g2) ∈ G, be an arbitrary element, where ϵ ∈
{0, 1}, and let x1x2 . . . xn ∈ S∗ be a word in the alphabet S = {a, b, a−1, b−1}
of minimal length representing g. If x1x2 . . . xn contains a subword of the form
b−2akb2, then |g1|+ |g2| < |g| = n.

Proof. In G, we have

b−2akb2 = (a−1, a−1)(1, bk)(a, a) = (1, a−1bka).

As in the proof of Lemma 8.4.4, we observe that |b−2akb2| = |k| + 4 and
|a−1bka| ≤ k + 2 and thus conclude that |g1|+ |g2| ≤ n− 2 < n = |g|.

In addition to these facts regarding length contraction of elements of G,
we will also need to know the equivalence classes of the projections of some
elements modulo the commutator subgroup G′.

Notation 8.4.6. Let g1, g2 ∈ G be two arbitrary elements. We will write
g1 ≡G′ g2 if g1G

′ = g2G
′. L
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Lemma 8.4.7. Let g /∈ StG(1) and g
2 = (g1, g2). Then,

g ≡G′ ab⇒ g1 ≡G′ g2 ≡G′ ab

g ≡G′ ab−1 ⇒ g1 ≡G′ g2 ≡G′ a−1b

g ≡G′ a−1b⇒ g1 ≡G′ g2 ≡G′ ab−1.

Proof. If g = abz for some z ∈ G′ with z = (z1, z2), then

g2 = (1, b)σ(a, 1)(z1, z2)(1, b)σ(a, 1)(z1, z2) = (z2baz1, baz1z2).

According to Lemma 5 of [52], we have z1 ≡G′ z−1
2 , so the result follows.

Similarly, if g = ab−1z, we have

g2 = (1, b)(a−1, 1)σ(z1, z2)(1, b)(a
−1, 1)σ(z1, z2) = (a−1z2bz1, bz1a

−1z2),

and if g = a−1bz, we have

g2 = (1, b−1)σ(a, 1)(z1, z2)(1, b
−1)σ(a, 1)(z1, z2) = (z2b

−1az1, b
−1az1z2).

We are now in position to prove, in the next few results, that any subgroup
of G that is prodense must project to G on some vertex.

Proposition 8.4.8. Let g ∈ G be such that g ≡G′ ab. Then, there exist a
vertex u ∈ X∗ in the rooted tree X∗ and an element g′ ∈ StG(u)∩⟨g⟩ such that
φu(g

′) = ab.

Proof. Let us proceed by induction on the length of g.
By definition, the elements of length 1 of G are a, b, a−1, b−1, none of which

are congruent to ab modulo G′ by Theorem 8.1.3, so the case |g| = 1 is impos-
sible. For |g| = 2, by the same theorem, the only possibilities are g = ab or
g = ba. The case g = ab is trivial. If g = ba, we have g2 = baba = (ba, ab), and
so φ1(g

2) = ab.
Now, let us assume that the result is true for any h ∈ G such that h ≡G′ ab

and |h| < n for some n ∈ N, and let g ∈ G be such that g ≡G′ ab and |g| = n.
Since g ≡G′ ab, we must have g /∈ StG(1), so g = σ(g1, g2). Therefore, we

have g2 = (g2g1, g1g2). By Lemma 8.4.7, g2g1 ≡G′ g1g2 ≡G′ ab, and by Lemma
8.4.3, |g2g1|, |g1g2| ≤ |g| = n. If |g2g1| < n or |g1g2| < n, we can then conclude
by induction. Otherwise, we must have |g2g1| = |g1g2| = n. Therefore, the
words representing g1 and g2 obtained from a geodesic of g by the substitution
a ↦→ (1, b) and b ↦→ σ(a, 1) must be geodesics, and so must their concatenations
g2g1 and g1g2 (since the sum of the length of the words for g1 and g2, before
any reduction, is exactly n).

Let us write g1g2 = σ(α, β). If the geodesic word for g1 discussed above
contains b and the one for g2 contains b−1, then by Lemma 8.4.4, |α|+ |β| < n.
Therefore, (g1g2)

2 = (βα, αβ) with |αβ| < n, αβ ≡G′ ab. Hence, we can
conclude by induction. Likewise, if g2 contains b and g1 contains b−1, we can
conclude by induction by using the projections of (g2g1)

2.
Since it follows from Theorem 8.1.3 that the sum of the exponents of a in

any word representing g is 1, the exponents of b in g1 and g2 must sum up
to 1. Hence, if g1 and g2 both contain some b, one of them must also contain



130 CHAPTER 8. MAXIMAL SUBGROUPS OF BASILICA

b−1. Likewise, if both contain some b−1, then one of them must contain b.
Hence, the only remaining case is if g1 = ak or g2 = ak for some k ∈ Z, with
|g1g2| = |g2g1| = |g|. We will show that this can only occur if g = ab or g = ba.

Let us notice that ak1b2l+1ak2 = σ(bk1al+1, albk2). Hence, if g contains a
subword of the form ak1b2l+1ak2 with k1, k2 ∈ Z∗ and l ∈ Z, then both g1 and
g2 contain some non-trivial power of b. Hence, if g1 = ak or g2 = ak, then we
must have

g = b2l1+1ak1b2l2ak2 . . . b2liaki

or

g = ak1b2l1ak2b2l2 . . . akib2li+1

with
∑︁i
j=1 lj = 0 and

∑︁i
j=1 kj = 1. Indeed, we just saw that in a geodesic word

representing g, odd powers of b cannot be sandwiched between non-zero powers
of a. This means that odd powers of b must be either at the very beginning
or at the very end of the word. Hence, there are only two possible positions,
which implies that there are at most two odd powers of b. As the sum of the
powers of b must be 1, we conclude that the word for g must contain exactly
one b with an odd power, either at the beginning or at the end, thus obtaining
the two possibilities above.

If g = b2l1+1ak1b2l2ak2 . . . bliaki , it follows from Lemmas 8.4.4 and 8.4.5 that
g = ba or g = b−1ak1b2ak2 with k1+k2 = 1. Indeed, otherwise, g would contain
a subword of the form bakb−1 or b−2akb2, which contradicts the hypothesis that
|g1g2| = |g2g1| = n. If g = b−1ak1b2ak2 , we have g2 = (a−1bk1abk2a, bk1abk2),
and |bk1abk2 | ≤ |k1| + |k2| + 1 < |k1| + |k2| + 3 = |g|, a contradiction. Hence,
the only possible case is g = ba.

Similarly, if g = ak1bl1ak2bl2 . . . akib2li+1, then unless g = ab, g must contain
a subword of the form bakb−1 or b−2akb2, which is impossible according to
Lemmas 8.4.4 and 8.4.5.

This concludes the proof.

Proposition 8.4.9. Let g ∈ G be such that g ≡G′ ab−1. Then, there exist a
vertex u ∈ X∗ and an element g′ ∈ StG(u) ∩ ⟨g⟩ such that φu(g

′) = b−1a.

Proof. We again proceed by induction on |g|.
The case |g| = 1 is impossible. If |g| = 2, we have g = b−1a or g = ab−1.

Since (ab−1)2 = (1, b)(a−1, 1)σ(1, b)(a−1, 1)σ = (a−1b, ba−1) and (a−1b)−1 =
b−1a, the result is true in those cases.

Let us now assume that the result is true for elements of length smaller
than n ∈ N and let g ∈ G be such that g ≡G′ ab−1 and |g| = n. Writing
g = σ(g1, g2), g1g2 = (α, β) and g2g1 = (α′, β′), if |α|, |β|, |α′| or |β′| is smaller
than n, we find that the result is true by induction thanks to Lemma 8.4.7 and
Lemma 8.4.3.

Notice that once again, unless g1 = ak or g2 = ak for some k ∈ Z, then one
of |α|, |β|, |α′| or |β′| must be smaller than n, thanks to Lemma 8.4.4 and the
fact that the exponents of b in g1 and g2 must sum to 1.

As in the proof of Proposition 8.4.8, this means that g cannot contain a
subword of the form ak1b2l+1ak2 with k1, k2 ∈ Z∗. Therefore, we must have

g = b2l1−1ak1b2l2ak2 . . . bliaki
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or

g = ak1bl1ak2bl2 . . . akib2li−1

with
∑︁i
j=1 lj = 0 and

∑︁i
j=1 kj = 1.

If g = b2l1−1ak1b2l2ak2 . . . bliaki , then unless g = b−1a, g must contain
a subword of the form bakb−1 or b−2akb2, which is impossible according to
Lemmas 8.4.4 and 8.4.5.

If g = ak1bl1ak2bl2 . . . akib2li−1, then for the same reasons, we must have
g = ab−1 or g = ak1b−2ak2b with k1 + k2 = 1. However, (ak1b−2ak2b)2 =
(a−1bk1a−1bk2a, bk1a−1bk2), and |bk1a−1bk2 | ≤ |k1|+ |k2|+ 1 < |g|.

Hence, unless g = ab−1 or g = b−1a, we always have that one of α, β, α′, β′

is of length smaller than |g|. We can therefore conclude by induction thanks
to Lemma 8.4.7.

Lemma 8.4.10. Let u be a vertex of the rooted tree X∗. Then, there exists
g ∈ ⟨ab⟩ ∩ StG(u) such that φu(g) = ab or φu(g) = ba.

Proof. We have (ab)2 = (ba, ba) and (ba)2 = (ba, ab). The result follows by
induction.

Proposition 8.4.11. Let H ≤ G be a subgroup such that HN = G for all
non-trivial normal subgroups N ⊴ G (in other words, H is prodense). Then,
there exists a vertex u ∈ X∗ such that Hu = G, where, as in Definition 2.6.25,
Hu = φu(StH(u)).

Proof. Since HG′ = G, there exists g ∈ H such that g ≡G′ ab. Hence, it
follows from Proposition 8.4.8 that there exists v ∈ X∗ such that ab ∈ Hv.
Now, it follows from Proposition 5.4.1 that HvG

′ = G. Hence, there exists
h ∈ Hv such that h ≡G′ ab−1. Therefore, according to Proposition 8.4.9, there
exists v′ such that b−1a ∈ (Hv)v′ = Hvv′ . From Lemma 8.4.10, we also have
that either ab ∈ Hvv′ or ba ∈ Hvv′ .

If ab, b−1a ∈ Hvv′ , then a
2 ∈ Hvv′ . Since a

2 = (1, b2) and b2 = (a, a), if we
set u = vv′11 ∈ X∗, we have that a and either ab or ba are in Hu. Since G is
generated by a and b, we get Hu = G.

Likewise, if ba, b−1a ∈ Hvv′ , then b
2 ∈ Hvv′ , and since b2 = (a, a), by setting

u = vv′1 ∈ X∗, we get that a, b ∈ Hu, so Hu = G.

We can now finally prove that every maximal subgroup of the Basilica group
is of finite index.

Theorem 8.4.12. Every maximal subgroup of the Basilica group G is of finite
index.

Proof. Suppose that there exists a maximal subgroup M < G of infinite index.
Since Proposition 8.3.6 implies that every proper quotient of G is in MF , by
Corollary 5.3.7, we must have MN = G for every non-trivial normal subgroup
N ⊴ G. According to Proposition 8.4.11, there exists u ∈ X∗ such that
Mu = G. Theorem 5.4.3 then says that M = G, which is a contradiction.
Hence, G admits no maximal subgroup of infinite index.
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We thus have a new example of a weakly branch (but not branch, as we
have shown in Corollary 8.3.8) group belonging to MF . This group is quite
different from the other known examples of weakly branch groups in MF ,
since it is torsion-free and admits non-nilpotent quotients. Also, unlike these
other examples, the Basilica group possesses maximal subgroups which are not
normal. This can easily be seen from the fact that it admits as a quotient
(see Corollary 8.3.2) the infinite dihedral group, which contains non-normal
maximal subgroups.



n Chapter 9 N

Parabolic subgroups

As was explained in Section 2.6, a group acting on a regular rooted tree also
acts naturally on the boundary of this tree, which is homeomorphic to a Can-
tor space. In this chapter, we depart from the study of maximal subgroups
in groups acting on rooted trees to study another very important class of sub-
groups, namely the stabilisers of points in the boundary of the tree. Such
subgroups are called parabolic subgroups.

Parabolic subgroups are of great importance in the theory of groups acting
on rooted trees. Indeed, the Schreier graphs of parabolic subgroups correspond
to the orbital graphs of the action on the boundary, which are the subject of
intensive research. For instance, these graphs have been used to compute the
spectrum of some operators on self-similar groups (for example, in [8, 26, 47]).
In particular, these ideas were used by Grigorchuk and Żuk to compute the
spectrum of the Markov operator of the Lamplighter group [51], which led to
a counter-example to a strong version of the Atiyah conjecture on L2-Betti
numbers [48]. These graphs can also be used to find bounds on the growth of
the group (see [66] and [4]).

Additionally, parabolic subgroups also appear naturally in the study of
weakly maximal subgroups of groups acting on rooted trees. Recall that a
subgroup is weakly maximal if it is a maximal element of the partially ordered
set of subgroups of infinite index (ordered by inclusion). As maximal subgroups
of infinite index are obviously weakly maximal, the study of weakly maximal
subgroups can be seen as a natural generalisation of the study of the class MF .
Although they are never maximal, parabolic subgroups of branch groups are
always weakly maximal (see [8], Proposition 3.16) and thus play an important
role in the theory of weakly maximal subgroups (although they are far from
the only weakly maximal subgroups, as is shown in [15]).

In this chapter, we will investigate various algebraic properties of parabolic
subgroups of weakly branch groups. We begin in Section 9.1 by showing
that under some suitable conditions, these subgroups are never finitely gen-
erated. Then, in Sections 9.2 and 9.3, we study the isomorphism classes of
these parabolic subgroups. More precisely, in Section 9.2, we will show that,
under suitable conditions, the stabilisers of points which are called regular are
all isomorphic (Theorem 9.2.10 and Corollary 9.2.11). It is interesting to note
that some of these ideas are not only valid for groups acting on rooted trees,

133
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but also for larger classes of groups acting on a topological space. Then, in Sec-
tion 9.3, we show that under suitable conditions, points with different groups
of germs cannot have isomorphic stabilisers (Theorem 9.3.3). In particular, the
stabiliser of a singular point cannot be isomorphic to the stabiliser of a regu-
lar point. Finally, in Section 9.4, we study the index of parabolic subgroups
and show that an infinite automaton group must necessarily admit a parabolic
subgroup of infinite index (Theorem 9.4.8).

9.1 Infinitely generated parabolic subgroups

In this section, we will show that under suitable conditions, parabolic subgroups
of weakly branch groups are never finitely generated. The proof is inspired by
the proof of Mal’cev’s theorem (see [25], III.19), which states that finitely
generated residually finite groups are hopfian.

Theorem 9.1.1. Let X be a finite alphabet of cardinality d ≥ 2 and let G be
a weakly branch group acting on the rooted tree X∗. If there exists N ∈ N such
that for any v ∈ X∗, RistGv

(1) acts non-trivially on level N , then StG(ξ) is
not finitely generated for any ξ ∈ X∞.

Proof. Let ξ = v0v1v2 · · · ∈ X∞ be any point on the boundary of the tree and
let

σ : X∞ → X∞

v0v1v2 . . . ↦→ v1v2 . . .

be the shift map.
For any n ∈ N, we have StG(ξ) ≤ StG(v0v1 . . . vn). The restriction of the

map φv0v1...vn (see Definition 2.6.22) to StG(ξ) gives us a homomorphism

φv0v1...vn : StG(ξ) → StGv0v1...vn
(σn+1(ξ)).

This homomorphism is clearly surjective.
For n ∈ N, let

πn : Gv0v1...vn → Gv0v1...vn/StGv0v1...vn
(N)

be the quotient map by the stabiliser of level N . As Gv0v1...vn/ StGv0v1...vn
(N)

is isomorphic to a subgroup of

Aut(X∗)/St(N) ∼= ≀N Sym(X),

there exists for all n ∈ N a monomorphism in : Gv0v1...vn/ StGv0v1...vn
(N) →

≀N Sym(X).
Hence, for all n ∈ N, we have a homomorphism

αn : StG(ξ) → ≀N Sym(X)

given by
αn = in ◦ πn ◦ φv0v1...vn .

We will see that these maps are all different. For this, it suffices to show that
for any n ∈ N and m ∈ N∗, the maps αn and αn+m are different.
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By hypothesis, for any n ∈ N, there exists an element of RistGv0v1...vn
(1)

that acts non-trivially on level N . Therefore, by the spherical transitivity of
the action of G on X∗ (and thus of the action of Gv0v1...vn on X∗), there
exists for any v ∈ X an element of RistGv0v1...vn

(v) acting non-trivially on
level N . Let v ∈ X be different from vn+1 and let g ∈ RistGv0v1...vn

(v) be an
element acting non-trivially on level N . Then, we have g /∈ StGv0v1...vn

(N), so
πn(g) ̸= 1. As v ̸= vn+1, we have that RistGv0v1...vn

(v) ≤ StGv0v1...vn
(σn(ξ)).

Hence, by the surjectivity of φv0v1...vn , there must exist some h ∈ StG(ξ) such
that φv0v1...vn(h) = g. Therefore, αn(h) ̸= 1.

Let m ∈ N∗. Then,

πn+m(φv0v1...vn+m
(h)) = πn+m(φvn+2...vn+m

(φvn+1
(φv0v1...vn(h))))

= πn+m(φvn+2...vn+m
(φvn+1

(g)))

= πn+m(φvn+2...vn+m
(1))

= 1

since g ∈ RistGv0v1...vn
(v) with v ̸= vn+1. It follows that αn+m(h) = 1. There-

fore, αn ̸= αn+m.
We have thus found an infinite number of different homomorphisms

αn : StG(ξ) → ≀N Sym(X).

Since ≀N Sym(X) is a finite group, this implies that StG(ξ) is not finitely gen-
erated (as a finitely generated group only admits a finite number of homomor-
phisms to a finite group).

Notice that in particular, Theorem 9.1.1 applies to any self-replicating
weakly branch group, which includes the vast majority of groups studied in
this thesis.

9.2 Stabilisers of regular points

If a group G acts on a rooted tree T , the stabilisers of two points of the
boundary ∂T in the same orbit under G are obviously isomorphic. However,
if G is finitely generated, then its action on ∂T can never be transitive, since
∂T is uncountable. Therefore, it is natural to ask which parabolic subgroups
are isomorphic and which ones are not. In this section, we provide a partial
answer to this question. In order to do this, we will first study stabilisers in
the general setting of groups acting by homeomorphisms on a topological space
and then specialise our results to the case of groups acting on rooted trees.

Before we begin, let us discuss a few different notions of stabilisers for
groups acting by homeomorphism on topological spaces.

Definition 9.2.1. Let X be a topological space and let G be a group acting
on X by homeomorphisms. For x ∈ X , the neighbourhood stabiliser of x is the
subgroup

St0G(x) = {g ∈ G | ∃U ⊆ X open such that x ∈ U and g|U = id |U}

of all elements of G that act trivially on some neighbourhood of x. U
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It is clear that the neighbourhood stabiliser of a point is a subgroup of the
stabiliser of the same point. In fact, it is even a normal subgroup.

Proposition 9.2.2. Let X be a topological space and let G be a group acting
on X by homeomorphisms. For every x ∈ X , we have

St0G(x) ⊴ StG(x).

Proof. Let g ∈ St0G(x) be an element fixing a neighbourhood U of x pointwise,
and let h ∈ StG(x) be an element fixing x. Then, h(U) is also a neighbourhood
of x and we have that hgh−1 fixes h(U) pointwise.

As the neighbourhood stabiliser is a normal subgroup of the stabiliser, one
can consider the quotient group. This group is known as the group of germs.

Definition 9.2.3. Let X be a topological space, let G be a group acting on X
by homeomorphisms and let x ∈ X be a point. The group of germs of G at x
is the group

StG(x)/St
0
G(x).

U

One can then distinguish two classes of points, depending on whether this
group is trivial or not.

Definition 9.2.4. Let X be a topological space and let G be a group acting
on X by homeomorphisms. A point x ∈ X is said to be regular if its group of
germs is trivial, and singular if it is non-trivial. In other words, x is a regular
point if St0G(x) = StG(x) and singular if St0G(x) < StG(x). U

Just as in the case of groups acting on rooted tree, it is also possible to
define a notion of rigid stabilisers for groups acting by homeomorphisms on a
topological space.

Definition 9.2.5. Let X be a topological space, let G be a group acting on X
by homeomorphisms, and let U ⊆ X be an open set. The rigid stabiliser of U
in G is the subgroup

RistG(U) = {g ∈ G | g|X\U = id |X\U}

of elements acting trivially outside of U . U

Notice that in the case of a group acting on a rooted tree T , this definition
coincides with Definition 2.6.14 if we set RistG(v) = RistG(Tv), where Tv is the
subtree of T rooted at the vertex v, which is an open set.

Notation 9.2.6. Let X be a topological space and U ⊆ X be an open set. We
will denote by Rist(U) the rigid stabiliser of U in the group of all homeomor-
phisms of X . L

We will now study conditions under which the neighbourhood stabilisers of
any two points are isomorphic. In particular, this will imply that the stabilisers
of regular points are all isomorphic. We begin by a simple but very general
lemma.
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Lemma 9.2.7. Let X be a topological space, let G be a group acting on X by
homeomorphisms, and let x, y ∈ X be two points. If there exists a homeomor-
phism f : X → X such that

(i) f(x) = y,

(ii) for any neighbourhood U of x, there exists gU ∈ G such that g−1
U f ∈

Rist(U),

then f St0G(x)f
−1 = St0G(y). In particular, St0G(x) and St0G(y) are isomorphic.

Proof. Let g ∈ St0G(x) be an arbitrary element. We need to show that fgf−1 ∈
St0G(y). Since g is in the neighbourhood stabiliser of x, there must exist a
neighbourhood U of x such that g acts trivially on U . By condition (ii), we
know that there exists gU ∈ G such that g−1

U f ∈ Rist(U). Let us show that
gUgg

−1
U = fgf−1.

Let us first notice that by definition, we have g(U) = U , and therefore
g(X \ U) = X \ U . Now, let z ∈ X \ U be any point outside of U . Since
g−1
U f ∈ Rist(U), we have g−1

U f(z) = z, so f(z) = gU (z). This immediately
implies that f(U) = gU (U) and that f−1(z) = g−1

U (z) for all z ∈ X \ f(U).
Therefore, for z ∈ X \ f(U), we have

(gUgg
−1
U )(z) = gU (g(f

−1(z))) = f(g(f−1(z))) = (fgf−1)(z),

where the second equality comes from the fact that g(f−1(z)) ∈ X \ U . Now,
for z ∈ f(U), we have f−1(z) ∈ U and

g−1
U (z) ∈ g−1

U f(U) = U.

Since g acts trivially on U , we get that

gUgg
−1
U (z) = z = fgf−1(z).

We have thus proved that gUgg
−1
U (z) = fgf−1(z) for all z ∈ X , which means

that gUgg
−1
U = fgf−1. As gUgg

−1
U ∈ G, we thus get that fgf−1 ∈ G, and since

g is in the neighbourhood stabiliser of x, we must have that fgf−1 is in the
neighbourhood stabiliser of f(x) = y. Thus, we have shown that f St0G(x)f

−1 ≤
St0G(y).

To show the other inclusion, we will simply use the same argument with
f−1. However, in order to do that, we first need to show that f−1 satisfies
condition (ii).

Let V be a neighbourhood of y and let us set U = f−1(V ). Then, U is
a neighbourhood of x, Therefore, by condition (ii), there exists gU such that
g−1
U f ∈ Rist(U). As f(U) = V , we have

fg−1
U = f(g−1

U f)f−1 ∈ f Rist(U)f−1 = Rist(f(U)) = Rist(V ).

By taking the inverse, we get gUf
−1 ∈ Rist(V ). We conclude that f−1 also sat-

isfies condition (ii). Therefore, by symmetry, we have f−1 St0G(y)f ≤ St0G(x).
We conclude that f St0G(x)f

−1 = St0G(y).

In order to use Lemma 9.2.7 to prove that neighbourhood stabilisers are iso-
morphic, we first need to construct a homeomorphism satisfying the hypotheses
of that lemma. To this end, we will need the following lemma.
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Lemma 9.2.8. Let X be a Hausdorff topological space, let G be a group act-
ing on X by homeomorphisms, and let x, y ∈ X be two points of X . Suppose
that there exist decreasing (with respect to inclusion) bases of neighbourhoods
{Ui}i∈N and {Vi}i∈N of x and y, respectively, and a sequence {gi}i∈N of ele-
ments of G such that

(i) gi(Ui) = Vi

(ii) gi+1(z) = gi(z) for all z ∈ X \ Ui

for all i ∈ N. Then, the sequence {gi}i∈N converges to a homeomorphism
f : X → X such that f(x) = y. Furthermore, we have f St0G(x)f

−1 = St0G(y),
so St0G(x) and St0G(y) are isomorphic.

Proof. Let us first show that the sequence {gi}i∈N converges. Notice that since
X is Hausdorff, if the limit exists, it must be unique.

For all i ∈ N, we have gi(x) ∈ Vi, since x ∈ Ui and gi(Ui) = Vi by hypothesis.
As {Vi}i∈N is a decreasing a basis of neighbourhoods of y, we conclude that for
every neighbourhood V of y, there exists N ∈ N such that gi(x) ∈ V for all
i ≥ N . Thus, we have limi→∞ gi(x) = y.

Now, for z ∈ X with z ̸= x, since X is Hausdorff, we know that there must
exist N ∈ N such that z /∈ UN , and thus z /∈ Ui for all i ≥ N, since the sequence
is decreasing. Consequently, for every m ∈ N, we have by hypothesis

gN+m+1(z) = gN+m(z).

Thus, by induction, we get that gi(z) = gN (z) for all i ≥ N . Therefore, we
have limi→∞ gi(z) = gN (z).

We have just shown that the sequence {gi}i∈N converges to a map f : X →
X such that f(x) = y. It remains to show that this map is a homeomorphism.

To see this, let us first notice that the sequence {g−1
i }i∈N satisfies conditions

(i) an (ii) if we exchange Ui and Vi. Indeed, we clearly have g−1
i (Vi) = Ui. This

implies that if z ∈ X \Vi, then we have that g−1
i (z) ∈ X \Ui. Now, by condition

(ii), we have that
gi+1(g

−1
i (z)) = gi(g

−1
i (z)) = z.

It follows that g−1
i+1(z) = g−1

i (z) for all z ∈ X \ Vi.
Therefore, the arguments above also apply to the sequence {g−1

i }i∈N, which
must then converge to a map h : X → X satisfying h(y) = x. We will show
that h is the inverse of f . We already have h(f(x)) = x. Now, let z ∈ X be
different from x. Then, as above, there exists N ∈ N such that z ∈ X \ UN ,
and therefore f(z) = gN (z). Since z /∈ UN , we must have that gN (z) /∈ Vn,
since gN (UN ) = VN . Therefore, by a similar argument to the one above, we
must have

h(gN (z)) = g−1
N (gN (z)) = z.

This shows that h ◦ f is the identity map on X . By a symmetric argument, we
find that f ◦ h is also the identity, so h = f−1.

To prove that f is a homeomorphism, we still need to prove that f and f−1

are both continuous. Let us prove that f is an open map. To see this, it suffices
to show that for every open set U ⊆ X and for every z ∈ U , there exists some
open subset U ′ ⊆ U containing z and such that f(U ′) is open. Now, if z ̸= x,
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we can choose U ′ such that U ′ ∩ UN = ∅ for some N ∈ N large enough, since
X is Hausdorff. In that case, by the above argument, we have f(U ′) = gN (U ′).
As gN is a homeomorphism, we find that f(U ′) is open.

In the case where z = x, since {Ui}i∈N is a basis of neighbourhoods, there
exists N ∈ N such that UN ⊆ U . We can thus choose U ′ = UN . The result will
then follow as soon as we show that f(UN ) = VN . We have seen above that
f(w) = gN (w) for all w ∈ X \ UN . As gN (UN ) = VN , this means that

f(X \ UN ) = gN (X \ UN ) = X \ VN .

It follows from the fact that f is a bijection that f(UN ) = VN .
We have thus shown that f is an open map. By symmetry, we must also

have that f−1 is an open map, which means that f is a homeomorphism.
Finally, the fact that f St0G(x)f

−1 = St0G(y) follows directly from Lemma
9.2.7. Indeed, the map f : X → X is a homeomorphism that clearly satisfies
condition (i) of Lemma 9.2.7. To see that it also satisfies condition (ii) of that
same lemma, let U ⊂ X be a neighbourhood of x. Then, as {Ui}i∈N is a basis
of neighbourhoods of x, there exists N ∈ N such that UN ⊆ U . By what we
have seen above, we have f(z) = gN (z) for all z ∈ X \UN . Therefore, we have
g−1
N (f(z)) = z for all z ∈ X \ UN , which means that g−1

N f ∈ Rist(UN ). As
UN ⊆ U , we have Rist(UN ) ≤ Rist(U), which concludes the proof.

We can now formulate a condition under which the neighbourhood stabilis-
ers of points are all isomorphic. This condition is slightly technical, but we
hope that by stating it in this generality, it can be used to study not only
groups acting on rooted trees, but also other interesting examples of groups
acting on topological spaces.

Before we state this condition, let us first recall the definition of a minimal
action.

Definition 9.2.9. Let G be a group acting on a topological space X by home-
omorphisms. The action of G on X is said to be minimal if for every x ∈ X ,
the orbit G · x is a dense subset of X . U

We will now see that if a group acts by isometries in such a way that every
rigid stabiliser acts minimally on some subset, then the stabilisers of regular
points are all isomorphic.

Theorem 9.2.10. Let X be a metric space and let G be a group acting on
X by isometries. Suppose that the action of G on X is minimal and that for
every open set U ⊆ X and every element x ∈ U , there exists an open subset
W ⊆ U containing x and such that the action of RistG(U) on W is minimal
(in the sense that for every y ∈W , the set (RistG(U) ·y)∩W is a dense subset
of W ). Then, for all x, y ∈ X , we have St0G(x)

∼= St0G(y). In particular, if x
and y are both regular, then StG(x) ∼= StG(y).

Proof. Let x, y ∈ X be two arbitrary elements of X . Let us assume that
for some n ∈ N, we have two decreasing (with respect to inclusion) families
{Ui}0≤i≤n, {Wi}0≤i≤n of neighbourhoods of x and a family {gi}0≤i≤n of ele-
ments of G with the following properties:

(i) Ui ⊆ B(x, 1i ), where B(x, 1i ) denotes the ball of radius 1
i centred at x,

with the convention that B(x, 10 ) = X
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(ii) Wi ⊆ Ui and RistG(Ui) acts minimally on Wi

(iii) y ∈ gi(Wi)

(iv) gi(z) = gi−1(z) for all z ∈ X \ Ui−1

for all 0 ≤ i ≤ n (where we define g−1 as the identity on X and U−1 = X ).
We will now show that we can construct two neighbourhoods Un+1, Wn+1 of
x and an element gn+1 ∈ G such that the families {Ui}0≤i≤n+1, {Wi}0≤i≤n+1

and {gi}0≤i≤n+1 satisfy conditions (i), (ii), (iii) and (iv).
As Wn is a neighbourhood of x, there exists some m ∈ N such that

B(x, 1
m ) ⊆ Wn. Let us set M = max{m,n + 1} and Un+1 = B(x,M), so

that we have Un+1 ⊆ Wn and Un+1 ⊆ B(x, 1
n+1 ). By hypothesis, there exists

some open set Wn+1 ⊆ Un+1 containing x and such that RistG(Un+1) acts
minimally on Wn+1. Therefore, Un+1 and Wn+1 satisfy conditions (i) and (ii).
We now only need to find gn+1 ∈ G such that conditions (iii) and (iv) are
satisfied.

By condition (iii), we have that y ∈ gn(Wn). Therefore, we have g−1
n (y) ∈

Wn. As RistG(Un) acts minimally on Wn by condition (ii), and since we
have Wn+1 ⊆ Un+1 ⊆ Wn, there must exist some h ∈ RistG(Un) such that
h(g−1

n (y)) ∈ Wn+1. Let us set gn+1 = gnh
−1. We then have that y ∈

gn+1(Wn+1), so condition (iii) is satisfied. To see that condition (iv) is also
satisfied, let us pick z ∈ X \ Un. We then have

gn+1(z) = gn(h
−1(z)) = gn(z),

since h ∈ RistG(Un).
Therefore, starting with U0 =W0 = X and g0 the identity map on X , we can

construct by induction infinite families {Ui}i∈N, {Wi}i∈N of neighbourhoods of
x and a family {gi}i∈N of elements of G such that conditions (i), (ii), (iii) and
(iv) are satisfied for all i ∈ N.

It follows from condition (i) that {Ui}i∈N is a basis of neighbourhoods of
x. For all i ∈ N, let us set Vi = gi(Ui). It follows from conditions (ii) and
(iii) that Vi is a neighbourhood of y. Since gi is an isometry, we have that
Vi ⊆ B(gi(x),

1
i ), and since y ∈ Vi, it follows that Vi ⊆ B(y, 2i ). Therefore,

{Vi}i∈N is a basis of neighbourhoods of y.
To conclude the proof, we simply apply Lemma 9.2.8 with the families

{Ui}i∈N, {Vi}i∈N and {gi}i∈N, which, as we have shown, satisfy the hypotheses
of that lemma.

Using this result, we can conclude that for many weakly branch groups, the
stabilisers of regular points are isomorphic.

Corollary 9.2.11. Let G be a weakly branch group acting on a spherically
homogeneous rooted tree T (see Section 2.7 for definitions). If, for every v ∈ T ,
there exists w ≥ v such that RistG(v) acts spherically transitively on Tw (where
Tw is the subtree rooted at w, see Definition 2.6.10), then the neighbourhood
stabilisers of every points on the boundary ∂T are isomorphic. In particular,
all parabolic subgroups of regular points on the boundary ∂T are isomorphic.

Proof. As we have seen in Proposition 2.6.42, G acts by isometries on ∂T .
Using the metric on ∂T , it is straightforward to show that if G acts spherically
transitively on T , then its action on ∂T is minimal.
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Now, let U ⊆ ∂T be an open subset of the boundary and let ξ ∈ U be an
arbitrary element. It follows from the definition of the topology on ∂T (see
Definition 2.6.38) that there exists some v ∈ T such that v ≤ ξ and ∂Tv ⊆ U ,
where

∂Tv = {ζ ∈ ∂T | v ≤ ζ}.
By assumption, there exists w ≥ v such that RistG(v)(= RistG(∂Tv)) acts

spherically transitively on Tw. Without loss of generality, we can assume that
w ≤ ξ. Indeed, for every g ∈ StG(v), we have that RistG(v) acts spherically
transitively on Tg·w, since

RistG(v) = RistG(g · v) = gRistG(v)g
−1.

As G acts spherically transitively on T , we thus have that RistG(v) acts spher-
ically transitively on Tw′ for every w′ ∈ V such that |w′| = |w| and v ≤ w′.
Thus, as v ≤ ξ, we can replace w by the prefix of ξ of length |w| if necessary,
so that we can assume that w ≤ ξ.

Using a similar argument to the one above, we see that the fact that
RistG(v) acts spherically transitively on Tw implies that RistG(v) acts min-
imally on ∂Tw ⊂ ∂Tv. As ∂Tv ⊆ U , we have that RistG(v) ≤ RistG(U).
Therefore, we have just shown that for every open set U ⊆ ∂T and for ev-
ery ξ ∈ U , there exists some w ∈ V such that ξ ∈ ∂Tw ⊆ U and the action
of RistG(U) on ∂Tw is minimal. The result then follows immediately from
Theorem 9.2.10.

In particular, for branch groups, the parabolic subgroups of regular points
are always isomorphic. To see this, we will need the following lemma.

Lemma 9.2.12. Let G be a group acting spherically transitively on a spheri-
cally homogeneous rooted tree T and let N ⊴ G be a normal subgroup of finite
index of G. Then, there exists w ∈ T such that N acts spherically transitively
on Tw.

Proof. Let {wi}i∈N be a sequence of vertices of T such that wi < wi+1 and
|wi+1| = |wi| + 1 for all i ∈ N, and let us consider the sequence of subgroups
{Hi = StG(wi)N}i∈N. As wi < wi+1, we have that StG(wi+1) ≤ StG(wi).
Therefore, we have

H0 ≥ H1 ≥ H2 ≥ · · · ≥ N.

As N is of finite index in G, this sequence must stabilise at some point, meaning
that there exists k ∈ N such that Hi = Hk for all i ≥ k. We will prove that
N acts transitively on Twk

. For this, it suffices to prove that for all v ∈ Twk
,

there exists i ∈ N and g ∈ N such that g · wi = v.
Let v ∈ Twk

be a vertex and let i ∈ N be the unique number such that
|wi| = |v| (such a number exists and is unique thanks to our hypotheses on
the sequence {wj}j∈N). Since G acts spherically transitively on T , there must
exist some g ∈ G such that g · wi = v. Notice that since wk ≤ wi and wk ≤ v,
we must have g · wk = wk, which means that g ∈ StG(wk) ≤ Hk. Now, since
Hk = Hi, this means that there exist h ∈ StG(wi) and n ∈ N such that g = nh.
Therefore, we get that gh−1 ∈ N . As h ∈ StG(wi), we have

gh−1 · wi = g · wi = v,

which concludes the proof.
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Corollary 9.2.13. Let G be a branch group acting on a spherically homoge-
neous rooted tree T , and let ξ, ζ ∈ ∂T be two points on the boundary of T .
Then, St0G(ξ)

∼= St0G(ζ). In particular, if ξ and ζ are both regular, we have
StG(ξ) ∼= StG(ζ).

Proof. By Corollary 9.2.11, it suffices to show that for all v ∈ T , there exists
w ≥ v such that RistG(v) acts spherically transitively on Tw. Since G is a
branch group, we have that RistG(|v|) is a normal subgroup of G of finite index.
Therefore, by Lemma 9.2.12, there exists some w ∈ T such that RistG(|v|) acts
transitively on Tw. Let v′ ∈ T be the unique vertex such that v′ ≤ w and
|v′| = |v|. Without loss of generality, we can assume that v′ = v. Indeed, it
follows from spherical transitivity that if a normal subgroup acts spherically
transitively on Tw, then it must act spherically transitively on Tw′ for all w′ ∈ T
with |w′| = |w|.

Since RistG(|v|) acts transitively on Tw, and since v ≤ w, we must have
that RistG(v) acts transitively on Tw. Indeed,

RistG(|v|) =
∏︂

|v′|=|v|

RistG(v
′),

and RistG(v
′) acts trivially on Tw for all v′ ̸= v. This concludes the proof.

The techniques employed in this section could also be used to study stabilis-
ers in other kinds of groups than groups acting on rooted trees. In particular,
Lemma 9.2.8 is quite general and could work in different settings. To illus-
trate this, we prove here a result regarding the stabilisers of irrational points in
Thompson’s group F . This result is not new, it was already proved by Golan
and Sapir in [38]. However, we thought it might be interesting to include a
proof of this fact using the techniques developed in this chapter to give an
example of the different kinds of groups for which our method also applies.

Proposition 9.2.14. Let F be Thompson’s group and let x, y ∈ [0, 1] be two
irrational points. Then, StF (x) ∼= StF (y).

Proof. To prove the result, we will use Lemma 9.2.8. Before we begin, however,
let us first prove that x and y are regular points.

Recall that Thompson’s group F is the group of all piecewise linear home-
omorphisms of [0, 1] with powers of 2 slopes and dyadic rational points of dis-
continuity for the derivative (see [19] for more information about this group).
If g ∈ F fixes the irrational point x, then we must have 2kx + b = x for some
k ∈ Z and some dyadic rational b. Therefore, we have x(1 − 2k) = b. As x
is irrational, this is only possible if k = b = 0. Therefore, we conclude that g
must also fix some neighbourhood of x, which shows that x is a regular point.
Likewise, y is also a regular point.

We now need to construct decreasing bases of neighbourhoods {Ui}i∈N and
{Vi}i∈N of x and y, respectively, and a sequence {gi}i∈N of elements of the
Thompson group F satisfying the hypotheses of Lemma 9.2.8.

Let {ai}i∈N be a strictly increasing sequence of dyadic rational numbers
such that a0 > 0 and limi→∞ ai = x, and let {bi}i∈N be a strictly decreasing
sequence of dyadic rational numbers such that b0 < 1 and limi→∞ bi = x
(such sequences obviously exist). Then, if we set Ui = [ai, bi], it is clear that
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{Ui}i∈N is a decreasing basis of neighbourhoods of x. In a similar way, we
construct sequences {ci}i∈N and {di}i∈N of dyadic rational numbers such that
{Vi = [ci, di]}i∈N is a decreasing sequence of neighbourhoods of y, with c0 > 0
and c1 < 1.

It is known that the Thompson group F acts transitively on the set of
pairs (a, b) ∈ [0, 1]× [0, 1] where a and b are both dyadic rational number and
0 < a < b < 1 (see for instance [19], Lemma 4.2). Therefore, there exists
g0 ∈ F such that g0(U0) = V0. Let us now assume that for some n ∈ N, we
have elements {gi}0≤i≤n of the Thompson group F such that gi(Ui) = Vi for
all 0 ≤ i ≤ n and gi+1(z) = gi(z) for all z ∈ [0, 1] \ Ui and for all 0 ≤ i < n.
We will show that we can construct gn+1 ∈ F with the same properties.

Recall that Un = [an, bn] with an and bn dyadic rational numbers. It is a
well-known fact that RistF (Un) acts transitively on pairs of dyadic rationals
(a, b) such that an < a < b < bn (see again [19], Lemma 4.2). Now, since
Vn+1 = [cn+1, dn+1] with cn+1, dn+1 dyadic rationals with cn < cn+1 < dn+1 <
dn, we have that

g−1
n (Vn+1) = [g−1

n (cn+1), g
−1
n (dn+1)]

with g−1
n (cn+1), g

−1
n (dn+1) dyadic rationals and

an < g−1
n (cn+1) < g−1

n (dn+1) < bn

since gn(an) = cn and gn(bn) = dn, and since the Thompson group F pre-
serves the order relation. It follows that there exists h ∈ RistF (Un) such that
h(Un+1) = g−1

n (Vn+1).
Let us set gn+1 = gnh. We have that

gn+1(Un+1) = gn(h(Un+1)) = gn(g
−1
n (Vn+1)) = Vn+1.

Furthermore, for z ∈ [0, 1] \ Un, we have

gn+1(z) = gn(h(z)) = gn(z)

since h ∈ RistF (Un). Thus, by induction, we can construct a sequence {gi}i∈N
of elements of F satisfying the hypotheses of Lemma 9.2.8, which concludes
the proof.

It thus seem that this method is quite versatile. It would be interesting to
better understand the class of groups to which it applies.

9.3 Isomorphism classes of parabolic subgroups

In Section 9.2, we saw that for weakly branch groups with sufficiently rich
rigid stabilisers, the parabolic subgroups associated to regular points are all
isomorphic. It is thus natural to ask if all parabolic subgroups are isomorphic
for these groups. In this section, we will give a negative answer to this question
by showing that under suitable conditions, points with non-isomorphic groups
of germs cannot have isomorphic stabilisers. In particular, for those groups,
the stabiliser of a singular point can never be isomorphic to the stabiliser of a
regular point.

We begin by a simple observation regarding centralisers of elements in the
neighbourhood stabiliser of a point for branch groups.
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Lemma 9.3.1. Let G be a finitely generated branch group acting on a spher-
ically homogeneous rooted tree T and let ξ ∈ ∂T be a point on the boundary
of the tree. Let g ∈ St0G(ξ) be an element fixing some neighbourhood of ξ, let
C(g) ≤ StG(ξ) be the centraliser of g in StG(ξ), and let Ng ⊴ StG(ξ) be the
largest normal subgroup of StG(ξ) that is contained in C(g). Then, the group
StG(ξ)/Ng is finitely generated.

Proof. Let us first notice thatNg is well-defined, since the product of subgroups
of C(g) that are normal in StG(ξ) is again a subgroup of C(g) that is normal
in StG(ξ).

As g belongs to the neighbourhood stabiliser of ξ, there exists v ∈ T with
v ≤ ξ such that g acts trivially on Tv. Let us set R = RistG(v) ∩ StG(ξ).
We must have that R ≤ C(g), since the supports of g and of elements of
RistG(v) are disjoint. Notice that R is a normal subgroup of StG(ξ), since
StG(ξ) ≤ StG(v). Therefore, we have that R ≤ Ng, which implies that

StG(ξ)/Ng ∼= (StG(ξ)/R)/(Ng/R).

As the quotient of a finitely generated group is finitely generated, it suffices to
show that StG(ξ)/R is finitely generated.

We have that

StG(ξ)/R = StG(ξ)/(RistG(v) ∩ StG(ξ))
∼= (StG(ξ)RistG(v))/RistG(v).

For any v′ ∈ T with |v′| = |v| and v′ ̸= v, we have that RistG(v
′) acts trivially

on Tv. Since v ≤ ξ, we conclude that RistG(v
′) ≤ StG(ξ). Therefore, we must

have

RistG(|v|) ≤ StG(ξ)RistG(v).

Since G is a branch group, RistG(|v|) is a subgroup of finite index in G, which
implies that StG(ξ)RistG(v) must also be a subgroup of finite index. As G
is finitely generated, we conclude that StG(ξ)RistG(v) must also be finitely
generated, and therefore so must StG(ξ)/R. This concludes the proof.

We will now show that the property of having a finitely generated quo-
tient by centralising elements is a characterisation of elements belonging to the
neighbourhood stabiliser. More precisely, we will show that if ξ is a singu-
lar point and g ∈ StG(ξ) \ St0G(ξ) is an element that does not belong to the
neighbourhood stabiliser of ξ, then StG(ξ)/N is not finitely generated for any
normal subgroup N contained in the centraliser of g. The proof will be very
similar to the proof of Theorem 9.1.1.

Lemma 9.3.2. Let X be a finite alphabet and let G be a weakly branch group
acting on the regular rooted tree X∗. Let ξ ∈ X∞ be a singular point, let
g ∈ StG(ξ) \St0G(ξ) be an element fixing ξ but not any neighbourhood of it, and
let C(g) ≤ StG(ξ) be the centraliser of g in StG(ξ). Let us suppose that there
exists M ∈ N such that, for all v ∈ X∗, RistG(v) acts non-trivially on vXM .
Then, for every normal subgroup N ⊴ StG(ξ) such that N ≤ C(g), the group
StG(ξ)/N is not finitely generated.
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Proof. For any i ∈ N, let us denote by ξi ∈ Xi the prefix of length i of ξ. As
g /∈ St0G(ξ), we can find a strictly increasing subsequence {ik}k∈N and elements
xk ∈ X, ζk ∈ X∞ such that ξikxk ̸= ξik+1 and g · (ξikxkζk) ̸= (ξikxkζk). For
all k ∈ N, let us denote by wk ∈ XM the prefix of length M of ζk.

As in the proof of Theorem 9.1.1, we will construct an infinite sequence of
different maps from StG(ξ) to a finite group. For every k ∈ N, let us denote by
Yk ⊆ XM+1 the orbit of xkwk under the action of φξik (StG(ξ)). We can then
define a map

αk : StG(ξ) → Sym(XM+1)

by

αk(h)(w) =

{︄
w if w /∈ Yk

φξik (h) · w if w ∈ Yk.

In other words, αk is the restriction of the action of φξik (StG(ξ)) to Yk. It is
then clear that αk is a homomorphism for all k ∈ N.

As in the proof of Theorem 9.1.1, we will prove that these maps are all
different by showing that for all k,m ∈ N, we have αk = αk+m if and only if
m = 0.

Let us fix k ∈ N, and let us consider RistG(ξikxk). Notice that since ξikxk ̸=
ξik+1, we have that RistG(ξikxk) acts trivially on ξik+1X

∞. In particular, this
means that RistG(ξikxk) ≤ StG(ξ).

By assumption, there exists r ∈ RistG(ξikxk) such that r acts non-trivially
on ξikxkX

M . In other words, there exists w ∈ XM such that φξikxk
(r) ·w ̸= w.

Without loss of generality, we can assume that w = wk. Indeed, by spherical
transitivity of the action of G, we know that there must exist some h ∈ G
such that h · ξikxkw = ξikxkwk. We then have that φξikxk

(hrh−1) · wk ̸= wk.
Since we have h ∈ StG(ξikxk), and since RistG(ξikxk) is normal in StG(ξikxk),
we get hrh−1 ∈ RistG(ξikxk). Therefore, replacing r by some conjugate if
necessary, we can assume that φξikxk

(r) · wk ̸= wk. In particular, this implies
that αk(r) ̸= 1. However, for any m ≥ 1, we have that φk+m(r) = 1, since
φξik+1(r) = 1. Thus, we conclude that all homomorphisms αk are different.

To conclude the proof, we only need to show that if N ⊴ StG(ξ) is a normal
subgroup such that N ≤ C(g), then αk(N) = 1 for all k ∈ N. Indeed, this
will imply that the homomorphisms αk : StG(ξ) → Sym(XM ) project to ho-
momorphisms α̃k : StG(ξ)/N → Sym(XM ). We will then have infinitely many
different homomorphisms between StG(ξ)/N and the finite group Sym(XM ),
which implies that StG(ξ)/N cannot be finitely generated.

Let us now prove the claim. Let N ⊴ StG(ξ) be a normal subgroup con-
tained in C(g), and let k ∈ N be any number. We need to show that for any
h ∈ N , we have αk(h) = 1. In other words, we need to show that h ·ξiky = ξiky
for all y ∈ Yk. Let us suppose, for the sake of contradiction, that this is
not the case. Then, using the fact that StG(ξ) acts transitively on Yk and
that N is normal in StG(ξ), we can assume without loss of generality that
h · ξikxkwk ̸= ξikxkwk.

Using the fact that N is a normal subgroup of StG(ξ) and that N ̸≤
StG(ξikxkwk), we get from Lemma 2.7.4 that Rist′StG(ξ)(ξikxkwk) ≤ N . Now,
since ξikxkwk is not a prefix of ξ, we have that RistG(ξikxkwk) acts triv-
ially on ξ, and thus RistG(ξikxkwk) ≤ StG(ξ). Consequently, we have that
RistStG(ξ)(ξikxkwk) = RistG(ξikxkwk), and so Rist′G(ξikxkwk) ≤ N . It follows
that Rist′G(v) ≤ N for all v ≥ ξikxkwk.
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Now, by assumption, we have g · ξikxkζk ̸= ξikxkζk. Therefore, there must
exist some vk ≥ ξikxkwk such that g · vk ̸= vk. It follows that we have

gRist′G(vk)g
−1 = Rist′G(g · vk)

with g · vk ̸= vk. On the other hand, since Rist′G(vk) ≤ N ≤ C(g), we must
have

gRist′G(vk)g
−1 = Rist′G(vk).

As RistG(vk) ∩ RistG(g · vk) = {1}, we must have Rist′G(vk) = {1}, which
contradicts Lemma 2.7.6. We conclude that for all h ∈ N , we must have
αk(h) = 1, which concludes the proof.

Using these two lemmas, we can now conclude that for finitely generated
branch groups with a sufficiently regular action, two parabolic subgroups with
non-isomorphic groups of germs are not isomorphic.

Theorem 9.3.3. Let X be a finite alphabet, let G be a finitely generated branch
group acting on X∗, let ξ, ζ ∈ X∞ be two points on the boundary with isomor-
phic stabilisers and let

f : StG(ξ) → StG(ζ)

be an isomorphism. If there exists M ∈ N such that RistG(v) acts non-trivially
on vXM for all v ∈ X∗, then we must have

f(St0G(ξ)) = St0G(ζ).

Proof. It suffices to show that for every g ∈ St0G(ξ), we have f(g) ∈ St0G(ζ),
since the other inclusion can be obtained by symmetry using f−1.

Let C(g) ≤ StG(ξ) be the centraliser of g and let Ng ⊴ StG(ξ) be the
largest normal subgroup of StG(ξ) that is contained in C(g). Then, by Lemma
9.3.1, the group StG(ξ)/Ng is finitely generated. Therefore, by applying the
isomorphism f , we find that StG(ζ)/f(Ng) is a finitely generated group. Now,
since f is an isomorphism, we must have that f(C(g)) = C(f(g)), which means
that f(Ng) is a normal subgroup of StG(ζ) contained in the centraliser of f(g).
As StG(ζ)/f(Ng) is finitely generated, it follows from Lemma 9.3.2 that we
must have f(g) ∈ St0G(ζ). This concludes the proof.

Corollary 9.3.4. Let X be a finite alphabet, and let G be a finitely generated
branch group acting on X∗. Suppose that there existsM ∈ N such that RistG(v)
acts non-trivially on vXM for all v ∈ X∗. Then, two parabolic subgroups
with non-isomorphic groups of germs cannot be isomorphic. In particular, the
stabiliser of a regular point cannot be isomorphic to the stabiliser of a singular
point.

Proof. Let ξ, ζ ∈ X∞ be two points such that StG(ξ) is isomorphic to StG(ζ),
and let f : StG(ξ) → StG(ζ) be such an isomorphism. Then, by Theorem
9.3.3, we must have f(St0G(ξ)) = St0G(ζ), which implies that f projects to an
isomorphism between StG(ξ)/ St

0
G(ξ) and StG(ζ)/St

0
G(ζ).

The hypotheses of Theorem 9.3.3 are satisfied by any finitely generated
self-similar regular branch group. We then get the following corollary.
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Corollary 9.3.5. Let X be a finite alphabet and let G be a finitely generated
self-similar regular branch group acting on X∗. Then, the stabilisers of singular
points on the boundary are never isomorphic to the stabilisers of regular points.

In particular, using this result, we conclude that the Grigorchuk group has
exactly two isomorphism classes of parabolic subgroups.

Corollary 9.3.4 tells us that parabolic subgroups with non-isomorphic groups
of germs are not isomorphic. It would be interesting to know if the converse is
true.

Question 9.3.6. Suppose that G is a finitely generated branch groups sat-
isfying the hypotheses of Corollary 9.3.4. If two parabolic subgroups have
isomorphic groups of germs, are they necessarily isomorphic?

We know from Corollary 9.2.13 that the answer to this question is yes in
the special case where the groups of germs are trivial, but we do not know
anything about the general case.

9.4 Index of parabolic subgroups

So far, in this chapter, we have mainly studied parabolic subgroups for groups
acting spherically transitively on a rooted tree. For such groups, every parabolic
subgroup must be of infinite index. However, in general, the index of a parabolic
subgroup needs not be infinite. Obviously, this cannot be the case for finite
groups, but it is not hard to construct examples of infinite groups acting on
a rooted tree such that every parabolic subgroup is of finite index. It is thus
natural to ask under which conditions an infinite group acting on a rooted tree
must admit a parabolic subgroup of infinite index (or equivalently, a point on
the boundary of the tree with an infinite orbit).

In this section, we provide an answer to this question in the case of au-
tomata groups, which are a special class of finitely generated self-similar groups.
We will show that an automaton group is infinite if and only if it contains a
parabolic subgroup of infinite index. In fact, using similar ideas, our result can
be generalised to a special class of semigroups called automata semigroups.
However, we will not prove it in such generality here, since this thesis only
concerns itself with groups. We refer the interested reader to [21] for a more
general statement.

Let us begin by giving a definition of automata groups.

Definition 9.4.1. Let X be a finite alphabet, and let G ≤ Aut(X∗) be a
self-similar group acting on the regular rooted tree X∗. The group G will be
called an automaton group if it admits a finite symmetric generating set S such
that φx(s) ∈ S ∪ {1} for all s ∈ S and all x ∈ X. U

Notice that a self-similar groups is an automaton group if and only if it
admits a generating set such that the projection maps are 1-Lipschitz maps in
the word metric associated to this generating set.

Proposition 9.4.2. Let X be a finite alphabet, and let G ≤ Aut(X∗) be a self-
similar group acting on the regular rooted tree X∗. Then, G is an automaton
group if and only if there exists a finite symmetric generating set S such that
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|φv(g)| ≤ |g| for all g ∈ G and for all v ∈ X∗, where | · | : G → N is the word
norm associated to S (see Definition 2.5.2).

Proof. If G is an automaton group, we have φx(s) ∈ S ∪ {1} for all x ∈ X and
s ∈ S, so |φx(s)| ≤ |s|. We conclude by subadditivity and induction.

On the other hand, if |φv(g)| ≤ |g| for all g ∈ G and v ∈ X∗, then in
particular, we have |φx(s)| ≤ |s| ≤ 1 for all x ∈ X and s ∈ S, which means
that φx(s) ∈ S ∪ {1}.

We have already seen many examples of automata groups. Indeed, it fol-
lows from Proposition 9.4.2 that every self-similar non-ℓ1-expanding group (see
Definition 3.1.7 is an automaton group. In particular, every Šunić group (see
Section 2.9) is an automaton group. It is also easy to see that the Basilica
group (see Section 8.1) is an automaton group. In fact, every finitely gener-
ated self-similar group mentioned in this thesis is an automaton group.

Remark 9.4.3. Automata groups are usually defined in terms of Mealy au-
tomata, which are deterministic finite-state transducers. However, for the pur-
pose of this thesis, we shall not need the theory of automata. We thus preferred
to define automata groups as in Definition 9.4.1, which is equivalent to the
standard definition but is easier to state in our context. Y

We will now prove that for every infinite automaton group G acting on a
regular rooted tree X∗, there exists some ξ ∈ X∞ such that the orbit of ξ
under G is infinite, which is equivalent to saying that StG(ξ) has infinite index
in G. In order to do this, we first define a map from X∗ to N ∪ {∞} that we
will call the potential function.

Definition 9.4.4. Let X be a finite alphabet and let G ≤ Aut(X∗) be a group
acting on X∗. We define the potential function PG : X∗ → N ∪ {∞} on X∗ by

PG(v) = sup
ξ∈X∞

|G · (vξ)|

for v ∈ X∗. In other words, PG(v) is the supremum of the size of the orbits of
points on the boundary below v. U

Remark 9.4.5. Notice that for any v ∈ X∗, we have

PG(v) = max
x∈X

PG(vx).

In particular, PG(v) = ∞ if and only if there exists x ∈ X such that PG(vx) =
∞. Y

As the next lemma shows, an automaton group is infinite if and only if the
root of the rooted tree on which it acts has infinite potential.

Lemma 9.4.6. Let X be a finite set and let G ≤ Aut(X∗) be a finitely gener-
ated group acting on X∗. Then, G is infinite if and only if PG(ε) = ∞, where
ε ∈ X∗ is the empty word.
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Proof. If PG(ε) = ∞, then it is clear that G must be infinite. We now need to
show the converse. Let us assume that PG(ε) is finite. Then, for any ξ ∈ X∞,
the orbit of ξ is of size at most PG(ε). As G is finitely generated, there are only
finitely many different homomorphisms from G to Sym(PG(ε)). This implies
that

H =
⋂︂

ξ∈X∞

StG(ξ)

is of finite index in G. However, as the action of G on X∞ is faithful, we must
have H = {1}, which implies that G is finite.

The potential function is well-behaved with respect to projections on some
vertex, as the next lemma shows.

Lemma 9.4.7. Let X be a finite alphabet, G ≤ Aut(X∗) be a group acting on
X∗, and v ∈ X∗ be a vertex. Then, for all w ∈ X∗, we have

PG(vw) = [G : StG(v)]PGv
(w),

where, as in Definition 2.6.25, Gv = φv(StG(v)).

Proof. Let ξ ∈ X∞ be a point on the boundary. We have that

|G · vwξ| = [G : StG(v)]|StG(v) · vwξ|.

Now, it is clear that |StG(v) · vwξ| = |Gv · wξ|, and so

|G · vwξ| = [G : StG(v)]|Gv · wξ|.

Taking the supremum over all ξ ∈ X∞ on both sides yields the result.

We are now ready to prove that an automaton group is infinite if and only
if there is a point on the boundary with infinite orbit.

Theorem 9.4.8. Let X be a finite alphabet and let G be an automaton group
acting on X∗. Then, G is infinite if and only if there exists ξ ∈ X∞ such that
|G · ξ| = ∞ (or, equivalently, [G : StG(ξ)] = ∞).

Proof. It is clear that if there exists some ξ ∈ Xω such that |G · ξ| = ∞, then
G must be infinite. Let us prove the converse.

Suppose that G is infinite. For each u ∈ X∗, we define the set

Bu = {v ∈ X∗ | v ≥ u and PG(v) = ∞} .

It follows from Remark 9.4.5 that Bu ̸= ∅ if and only if PG(u) = ∞. By Lemma
9.4.6, we then get that Bε ̸= ∅.

We may assume that there exists some w ∈ X∗ with PG(w) = ∞ and such
that for all v ∈ Bw,

|G · w| = |G · v|.

Indeed, suppose that this is not the case. Then, for every u ∈ X∗ with PG(u) =
∞, there exists some v ∈ Bu such that |G · u| < |G · v|. Thus, starting from
ε, which satisfies PG(ε) = ∞, we can construct a strictly increasing sequence
{ui}i∈N of elements of X∗ such that ui+1 ∈ Bui

and |G · ui| < |G · ui+1| for all
i ∈ N. Since the sequence {ui}i∈N is strictly increasing, there exists a unique
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element ξ ∈ X∞ such that ui is a prefix of ξ for all i ∈ N. It follows from the
fact that |G ·ui| < |G ·ui+1| that the size of the orbit of ξ is unbounded, which
is what we were looking for. Thus, it suffices to consider the case where there
exists some w ∈ X∗ as above.

In this case, for every v ∈ Bw, we have StG(w) = StG(v), since w ≤ v and
|G · w| = |G · v|. It follows that for every v ∈ Bw, we have

Gv = φv(StG(w)).

Since StG(w) is a finite index subgroup of the finitely generated group G, we
have that it is finitely generated. Let us fix a finite set D of generators for
StG(w), and let

L = max{|d| | d ∈ D},

where | · | : G → N is the word norm with respect to a finite generating set S
of G satisfying the property of Definition 9.4.1. Now, since for every v ∈ Bw,
we have

|φv(d)| ≤ |d| ≤ L,

we see that there are only finitely many possibilities for the image by φv of
generators of StG(w). As φv is uniquely determined by the image of generators
of StG(w), we conclude that the set

{Gv | v ∈ Bw}

is finite. Therefore, the set

P = {PGv
(a) | v ∈ Bw, a ∈ X} ⊂ N ∪ {∞}

is also finite. Let us denote by M the maximal element of the set P \ {∞}.
Let ξ ∈ X∞ be an element of the boundary. For every i ∈ N, let us denote

by ξi ∈ X∗ the prefix of ξ of length i. We are interested in studying the size
of the orbit of wξ under G. If wξi ∈ Bw for all i ∈ N, then we must have
|G ·wξ| = |G ·w|, since we have |G ·wξi| = |G ·w| for all i ∈ N. If not, then let
i0 ∈ N be the largest element of N such that wξi0 ∈ Bw. Notice that i0 is well-
defined, since if follows from Remark 9.4.5 that if wξj /∈ Bw, then wξj+m /∈ Bw
for all m ∈ N. Let a ∈ X be the unique element of X such that ξi0a = ξi0+1.
By definition, we must have |G · wξ| ≤ P (wξi0a), and since wξi0a /∈ Bw, we
must have P (wξi0a) <∞.

From Lemma 9.4.7, we have

P (wξi0a) = [G : StG(wξi0)]PGwξi0
(a)

= |G · w|PGwξi0
(a)

≤ |G · w|M

where the last inequality comes from the fact that since P (wξi0a) < ∞, we
must have PGwξi0

(a) <∞, and so PGwξi0
(a) < M by the definition of M .

We have thus shown that for every ξ ∈ X∞, we have |G · wξ| ≤ |G · w|M .
Therefore, we must have PG(w) ≤ |G · w|M < ∞, a contradiction to the fact
that PG(w) = ∞. We conclude that there must exist a point on the boundary
with infinite orbit.
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Remark 9.4.9. It was remarked by Ivan Mitrofanov that the proof of Theo-
rem 9.4.8 immediately generalises to finitely generated subgroups of automata
groups, which are not necessarily themselves automata groups. Y

Theorem 9.4.8 tells us that for an infinite automaton group G acting on X∗,
there always exists a point ξ ∈ X∞ on the boundary such that the orbit of ξ
under the action of G is infinite. However, we do not currently know anything
about this points ξ. In particular, we do not know if it is possible to choose
it in such a way that it is periodic, in the sense that there exists some v ∈ X∗

such that ξ = v∞.

Question 9.4.10. If G is an infinite automaton group acting on X∗, does
there always exist v ∈ X∗ such that the orbit of v∞ by the action of G is
infinite?

This question is equivalent to asking if the dual semigroup of an automaton
group can be infinite but contain only periodic elements, which is an analogue
of the Burnside problem for automata semigroups. An answer to this question
would be very interesting, since a positive answer would prove that the dual
semigroup of an infinite automaton group always contain a non-abelian free
semigroup and are thus of exponential growth, by a result of the author and
Ivan Mitrofanov [33], whereas a negative answer would give us an example of
an automaton group with different properties than any of the others we know
so far. So far, this is only known in the very special case of groups generated
by invertible and reversible automata of two states [56] and three states [57].
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groups. In Handbook of algebra, Vol. 3, volume 3 of Handb. Algebr., pages
989–1112. Elsevier/North-Holland, Amsterdam, 2003.

[10] Laurent Bartholdi and Floriane Pochon. On growth and torsion of groups.
Groups Geom. Dyn., 3(4):525–539, 2009.

[11] Laurent Bartholdi, Olivier Siegenthaler, and Pavel Zalesskii. The congru-
ence subgroup problem for branch groups. Israel J. Math., 187:419–450,
2012.

153



154 BIBLIOGRAPHY

[12] Laurent Bartholdi and Bálint Virág. Amenability via random walks. Duke
Math. J., 130(1):39–56, 2005.
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Akad. Nauk SSSR Ser. Mat., 28:261–272, 1964.

[41] Rostislav I. Grigorchuk. On Burnside’s problem on periodic groups. Funk-
tsional. Anal. i Prilozhen., 14(1):53–54, 1980.

[42] Rostislav I. Grigorchuk. On the Milnor problem of group growth. Dokl.
Akad. Nauk SSSR, 271(1):30–33, 1983.

[43] Rostislav I. Grigorchuk. Degrees of growth of finitely generated groups
and the theory of invariant means. Izv. Akad. Nauk SSSR Ser. Mat.,
48(5):939–985, 1984.

[44] Rostislav I. Grigorchuk. Degrees of growth of p-groups and torsion-free
groups. Mat. Sb. (N.S.), 126(168)(2):194–214, 286, 1985.



156 BIBLIOGRAPHY

[45] Rostislav I. Grigorchuk. Just infinite branch groups. In New horizons
in pro-p groups, volume 184 of Progr. Math., pages 121–179. Birkhäuser
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France, Paris, 1977. Avec un sommaire anglais, Rédigé avec la collabora-
tion de Hyman Bass, Astérisque, No. 46.

[81] Rachel Skipper. On a Generalization of the Hanoi Towers Group. PhD
thesis, Binghampton University, 2018.

[82] Jacques Tits. Free subgroups in linear groups. J. Algebra, 20:250–270,
1972.
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