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C∗-SIMPLE GROUPS:

AMALGAMATED FREE PRODUCTS,

HNN EXTENSIONS,

AND FUNDAMENTAL GROUPS OF 3-MANIFOLDS

PIERRE DE LA HARPE AND JEAN-PHILIPPE PRÉAUX

Abstract. We establish sufficient conditions for the C∗-simplicity
of two classes of groups. The first class is that of groups act-
ing on trees, such as amalgamated free products, HNN-extensions,
and their normal subgroups; for example normal subgroups of
Baumslag-Solitar groups. The second class is that of fundamental
groups of compact 3-manifolds, related to the first class by their
Kneser-Milnor and JSJ-decompositions.

Much of our analysis deals with conditions on an action of a
group Γ on a tree T which imply the following three properties:
abundance of hyperbolic elements, better called strong hyperbol-
icity, minimality, both on the tree T and on its boundary ∂T , and
faithfulness in a strong sense. For this, we define in particular the
notion of a slender automorphism of T , namely of an automor-
phism such that its set of fixed points on ∂T is nowhere dense with
respect to the shadow topology.

1. Introduction

In the first part of this paper, we analyse actions of groups on trees,
and we establish that the reduced C∗-algebras of some of these groups
are simple. In the second part, we apply this to fundamental groups of
compact 3-manifolds and their subnormal subgroups.

Given a group Γ, recall that its reduced C ∗-algebra C∗
r (Γ) is the clo-

sure for the operator norm of the group algebra C[Γ] acting by the
left-regular representation on the Hilbert space ℓ2(Γ). For an introduc-
tion to group C∗-algebras, see for example Chapter VII of [Davi–96].
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A group is C ∗-simple if it is infinite and if its reduced C∗-algebra has
no non-trivial two-sided ideals.

Non-abelian free groups are C∗-simple. The first proof, due to Powers
[Powe–75], relies on a combinatorial property of free groups shared by
many other groups, called for this reason Powers groups; the definition
is recalled in Section 7 below. For now, we emphasize that

Powers groups are C ∗-simple

(the converse does not hold). Whenever a group is known to be a
Powers group, the proof involves Proposition 17 below, or a variant
thereof. Let us agree that a

• strongly Powers group is a group Γ such that any subnormal
subgroup N 6= {1} of Γ is a Powers group.

(The definition of “subnormal” is recalled in the proof of Proposition
18.) More on these groups in Section 7 and in [Harp–07].

Part I, on groups acting on trees, begins with Section 2, where we
collect essentially known facts which are useful for the proof of Propo-
sition 1. We need first some terminology. A pending ray in a tree T is
a ray with vertex set (xn)n≥1 such that xn has degree 2 in T for all n
large enough. Cofinal classes of rays are the elements of the boundary
∂T , which is a space with a natural shadow topology (more on this in
Section 2). An action of a group Γ on a tree T is

• minimal if there does not exist any proper Γ-invariant subtree
in T .

If Γ acts by automorphisms on T , it acts also by homeomorphisms on
∂T . It is important not to confuse the minimality of the action on the
tree and the minimality of the action on the boundary (which means
that the boundary does not have any non-trivial Γ-invariant closed
subspace). An automorphism γ of T , with ∂T 6= ∅, is

• slender if its fixed point set in ∂T has empty interior,

and the action of Γ on T is slender if any γ ∈ Γ, γ 6= 1, is slender.
Observe that a slender action is faithful. As our trees are assumed to
be non-empty, observe also that a tree on which a group acts without
fixed vertex and without fixed geometric edge has infinite diameter and
non-empty boundary.

Proposition 1. Let T be a tree without vertices of degree ≤ 1 and
without pending rays. Let Γ be a countable group which acts on T . We
assume that the action is minimal (in particular without fixed vertex),
without fixed boundary point, and slender.

Then Γ is a strongly Powers group.
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Section 3 is a reminder on the fundamental group Γ of a graph of
groups G = (G, Y ), which acts on its Bass-Serre tree T . We recall
known criteria for T to be “small” (a vertex, or a linear tree), for the
action to be faithful, and for the action to be minimal. Most of this
can be found in papers by H. Bass. In Section 4, we analyse further
the two standard examples and obtain the following results; they rely
on Proposition 18, which is a reformulation of Proposition 1.

Let A, B, C be three groups, let ιA, ιB be injections of C in A, B
respectively, and let

Γ = A ∗C B = 〈A, B | ιA(c) = ιB(c) ∀c ∈ C〉

be the corresponding amalgam. Below, we identify C to a subgroup of
A and of B. We define inductively a decreasing sequence C0 ⊃ C1 ⊃ · · ·
of subgroups of C by C0 = C and

Ck =
( ⋂

a∈A

a−1Ck−1a
)
∩
( ⋂

b∈B

b−1Ck−1b
)

for k ≥ 1.

Proposition 2. Consider as above a countable amalgam Γ = A ∗C B,
with moreover [A : C] ≥ 3 and [B : C] ≥ 2. Assume that Ck = {1}
for some k ≥ 0.

Then Γ is a strongly Powers group.

The condition Ck = {1} has the following geometrical interpretation:
for γ ∈ Γ, if there exists e ∈ E(T ) such that the k-neighbourhood

Vk(e) = {x ∈ V (T ) |min{d(x, s(e)), d(x, t(e))} ≤ k}

is pointwise fixed by γ, then γ = 1. In particular, if Ck = {1} for some
k ≥ 0, then the action of Γ on T is faithful.

Proposition 2 is an improvement on previous results in two ways.
(i) It establishes a property of any subnormal subgroup N 6= {1}, and
not only of N = Γ. (ii) Its hypothesis are stated in terms of A, B, and C
only; on the contrary, with the same conclusion “Γ is a Powers group”,
Proposition 10 in [Harp–85] and Corollary 4.6 in [Ivan] have hypothesis
stated in terms of the action of Γ on the edge set of its Bass-Serre tree
(more precisely, this action should be strongly faithful, as defined in
Section 2). Our conditions in Proposition 2 are also weaker than those
of [Bedo–84].

A similar remark holds for Proposition 4 below and Proposition 11
in [Harp–85].

A particular case of Proposition 2 is well-known: the case of free
products [PaSa–79]. A free product A ∗ B is non-trivial if neither A
nor B is the group with one element. Recall that the infinite dihedral
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group is the free product of two groups of order two, and that it is the
only non-trivial amenable free product.

Corollary 3. A non-trivial free product A∗B is C ∗-simple if and only
if it is not isomorphic to the infinite dihedral group.

At first sight, Corollary 3 follows from Proposition 2 for countable
groups only. But a group Γ is C∗-simple [respectively Powers, strongly
Powers] as soon as, for any countable subgroup Γ0 of Γ, there exists
a countable C∗-simple [respectively Powers, strongly Powers] subgroup
of Γ containing Γ0; see Proposition 10 in [BeHa–00] and Lemma 3.1
in [BoNi–88]. It follows that Corollary 3 holds as stated above [and
also with “Powers group” or “strongly Powers group” instead of “C∗-
simple”].

Let G be a group, let θ be an isomorphism from a subgroup H of G
to some subgroup of G, and let

Γ = HNN(G, H, θ) = 〈G, τ | τ−1hτ = θ(h) ∀h ∈ H〉

be the corresponding HNN-extension. We define inductively a decreas-
ing sequence H0 ⊃ H1 ⊃ · · · of subgroups of H by H0 = H and

H ′
k = Hk−1 ∩ τ−1Hk−1τ = Hk−1 ∩ θ(Hk−1)

Hk =
( ⋂

g∈G

gH ′
k−1g

−1
)
∩ τ
( ⋂

g∈G

gH ′
k−1g

−1
)
τ−1

for k ≥ 1.

Proposition 4. Consider as above a countable HNN-extension Γ =
HNN(G, H, θ), with moreover H $ G and θ(H) $ G. Assume that
Hk = {1} for some k ≥ 0.

Then Γ is a strongly Powers group.

As for Proposition 2, the condition Hk = {1} has the following ge-
ometrical interpretation: for γ ∈ Γ, if there exists e ∈ E(T ) such that
the k-neighbourhood Vk(e) is pointwise fixed by γ, then γ = 1.

Though it does not quite follow from Proposition 4, similar argu-
ments imply the next proposition. Its first part is due to Nikolay
Ivanov, with a different proof (Theorem 4.9 in [Ivan]). In the sec-
ond part, for p ≥ 0, we denote abusively by θp(H) the image of the
restriction of θp to {h ∈ H | θj(h) ∈ H for j = 1, . . . , p − 1}, and
similarly for θ−p(H).

Proposition 5. The Baumslag-Solitar group

BS(m, n) = 〈τ, b | τ−1bmτ = bn〉 = HNN(bZ, bmZ, bmk 7−→ bnk)

is a strongly Powers group if and only if it is C ∗-simple, if and only if
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min{|m|, |n|} ≥ 2 and |m| 6= |n|.
More generally, let Γ be a countable group which is an HNN-extension

HNN(G, H, θ) such that H $ G, θ(H) $ G, and at least one of

K+ +
⋂

p≥0

θp(H) = {1}, K+ +
⋂

p≥0

θ−p(H) = {1}

holds. Then Γ is a strongly Powers group.

Consider for example the homomorphism σ : BS(m, n) −→ Z de-
fined by σ(b) = 0 and σ(τ) = 1, and the special Baumslag-Solitar
group

SBS(m, n) = ker(σ).

We have:

Corollary 6. If min{|m|, |n|} ≥ 2 and |m| 6= |n|, then SBS(m, n) is
a strongly Powers group.

The subject of Part II is the fundamental group Γ of a connected

compact 3-manifold M (with or without boundary). Let M̂ be the
manifold obtained from M by filling all 2-spheres in ∂M with 3-balls

(thus M is the connected sum of M̂ and as many 3-balls as the number

of components of ∂M which are 2-spheres). Since π1(M̂) = π1(M), it is

often convenient to replace M by M̂ . For background on 3-manifolds,
we refer to [Hemp–76], [JaSh–79], [Scot–83], [Thur–97], and [Bona–02];
see also Section 5.

Let us first describe four classes of examples for which it is easy to
see wether Γ is C∗-simple or not.

(i) A Seifert manifold is a connected 3-manifold which can be foliated
by circles, usually called fibers, such that each fiber has a neighbour-
hood, either a solid torus or a solid Klein bottle, which is a union of
fibers in some standard way (“such that ..” is automatic for a compact
manifold, by a theorem of David Epstein). Let M be a Seifert manifold
with infinite fundamental group Γ (equivalently: which is not covered
by a 3-sphere, see Lemma 3.2 in [Scot–83]); if M is given a Seifert
structure, a generic fiber generates a normal subgroup of Γ which is
infinite cyclic. Hence Γ is not C∗-simple, because a C∗-simple group
cannot have non-trivial amenable normal subgroups (Proposition 3 of
[Harp–07]).

(ii) A Sol-manifold is a connected 3-manifold M of which the interior

M̊ can be given a Riemannian structure such that the universal covering
π : Sol −→ M̊ is a local isometry. Here, Sol denotes the 3-dimensional
Lie group with underlying space R3, with product

(x, y, z)(x′, y′, z′) = (x + e−zx′, y + ezy′, z + z′),
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and with Riemannian structure

ds2 = e2zdx2 + e−2zdy2 + dz2.

The fundamental group of a Sol-manifold contains a subgroup of finite
index Γ0 which fits in a short exact sequence

{1} −→ K −→ Γ0 −→ Q −→ {1}

where K [respectively Q] is a discrete subgroup of the group of isome-
tries of a Euclidean plane [respectively of a line]; see Proposition 4.7.7
in [Thur–97]. In particular, Γ has a solvable subgroup of finite index,
hence Γ is amenable, and therefore Γ is not C∗-simple.

(iii) Let M be a connected 3-manifold which is hyperbolic and not
elementary (for example of finite volume). If M is orientable, then Γ is
isomorphic to a subgroup of PSL2(C) which is not almost solvable, and
these are strongly Powers groups. (See Section 7; see also Proposition
6 in [Harp–85], which could be added to the list of Corollary 12 in
[Harp–07].) If M is non-orientable, the orientation subgroup Γ′ of Γ,
which is of index two, is C∗-simple, by the previous argument; since Γ
is infinite and has infinite conjugacy classes (Lemma 9.1 in [HaPr–07]),
Γ itself is C∗-simple by [BeHa–00].

(iv) If the compact 3-manifold M̂ is not prime (= is a connected sum
in a non-trivial way), and if we assume the Poincaré Conjecture, then Γ
is a non-trivial free product. Suppose that, moreover, M is orientable.

If Γ is an infinite dihedral group, then M̂ is Seifert; in all other cases,
Γ is a strongly Powers group, by Proposition 2. (More on this in the
discussion of Section 5.)

We sum up the previous discussion as follows:

Example 7. Let M be a connected compact 3-manifold ! and let Γ
denote its fundamental group.

(i) If M̂ is a Seifert manifold, Γ is not C ∗-simple.

(ii) If M̂ is a Sol-manifold, Γ is not C ∗-simple.

(iii) If M̂ is hyperbolic and non-elementary, Γ is C ∗-simple.

Suppose moreover that M is orientable, and that the Poincaré Conjec-
ture is true.

(iv) If M̂ is not prime and not Seifert, Γ is a strongly Powers group.

In a sense, the existence of a Seifert structure and that of a Sol-

structure on M̂ are the only obstructions to the C∗-simplicity of Γ.
More precisely, as a consequence of Propositions 2 and 4, and as we
show in Section 6:
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Proposition 8. Let M be an orientable connected compact 3-manifold

and let M̂ be as above. We assume that Thurston’s Geometrisation
Conjecture holds.

If M̂ is not a Seifert manifold and is not a Sol manifold, then the
fundamental group Γ = π1(M) is a strongly Powers group.

Corollary 9. Let K be a knot in S3 and let Γ denote the fundamental
group of its complement.

Then Γ is a strongly Powers group if and only if K is not a torus
knot.

For non-orientable manifolds, we will restrict ourselves to the follow-
ing simple statement:

Proposition 10. Let M be a non-orientable connected compact 3-
manifold, Γ its fundamental group, and Γ′ the fundamental group of
the total space of the orientation cover of M ; in particular, Γ′ is a
subgroup of index 2 in Γ.

Then Γ is C ∗-simple if and only if Γ′ is C ∗-simple.

Remark on groups of surfaces and groups of 3-manifolds. Let S be a
connected compact surface. It follows from the classification of surfaces
and from elementary arguments (compare with [HaPr–07]) that the
following three properties are equivalent:

(i) S is not homeomorphic to a disc, a sphere, a projective plane,
an annulus, a Möbius band, a 2-torus, or a Klein bottle;

(ii) Γ is icc (namely all its conjugacy classes other than {1} are
infinite); or equivalently the von Neumann algebra of Γ is a
factor of type II1;

(iii) Γ is C∗-simple.

If Γ is now the fundamental group of a connected compact 3-manifold,
the equivalence of (ii) and (iii) does not carry over. Indeed, the funda-
mental group of a Sol manifold can be icc, and is never C∗-simple. In
some sense, Propositions 8 and 10 provide the 3-dimensional analogue
of the equivalence (i) ⇐⇒ (iii).

We are grateful to Luc Guyot for suggesting that most of our propo-
sitions establish not only that some Γ is a Powers group, but also
that any subnormal subgroup N 6= {1} is a Powers group, and for
many other comments on preliminary versions of this paper. We are
also grateful to Laurent Bartholdi, Bachir Bekka, Ken Dykema, Yves
Stalder, and Nicolas Monod for helpful remarks.
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I. Fundamental groups of graphs of groups

2. On groups acting on trees

Let X be a graph, with vertex set V (X) and edge set E(X). We
follow Bass [Bass–93] and Serre [Serr–77]; in particular, each geometric
edge of X corresponds to a pair {e, e} ∈ E(X), with e 6= e and e = e.
Each edge e ∈ E(X) has a source s(e) ∈ V (X) and a terminus, t(e) ∈
V (X). We denote by d(x, y) the combinatorial distance between two
vertices x, y ∈ V (X). In case of a tree, we write T rather than X, and
we agree that V (T ) 6= ∅.

We denote by ∂T the boundary of a tree T . Recall that a ray in T
is a subtree with vertex set (xn)n∈N, such that

d(xm, xn) = |m − n| for all m, n ∈ N.

The enumeration of the vertices of a ray will always be such that the
above condition holds. Two rays with vertex sets (xn)n∈N and (yn)n∈N

are cofinal if there exists some k ∈ Z such that yn = xn+k for all n
large enough, and ∂T is the set of cofinal classes of rays in T .

The set ∂T has a natural topology defined as follows. For any edge
e ∈ E(T ), the shadow (∂T )e of e in ∂T is the subset of ∂T repre-
sented by rays (xn)n∈N such that d(t(e), xn) < d(s(e), xn) for all n
large enough. The family of shadows {(∂T )e}e∈E(T ) generates a topol-
ogy on ∂T which is Hausdorff and totally disconnected; if T is count-
able, this topology is moreover metrisable. Given any x0 ∈ V (T ),
this topology coincides1 with the inverse limit topology on the set ∂T ,
identified with the inverse limit of the discrete spaces S(x0, n) = {x ∈
V (T ) | d(x0, x) = n}, namely of the spheres in T around x0. It is
known that ∂T is compact if and only if T is locally finite (and we do
consider below trees which are not locally finite). See the last exercise
in Section I.2.2 of [Serr–77], Section I.8.27 in [BrHa–99], and Section 4
in [MoSh–04].

Observe that, for ∂T to be non-empty, it suffices that T has more
than one vertex and does not have any vertex of degree 1.

A ray cofinal with a pending ray is also pending. The classes of the
pending rays are precisely the isolated points in ∂T ; in particular, the

1 Similarly, one can define two topologies on the disjoint union T = V (T ) ⊔ ∂T ,
one using appropriate shadows and one by identifying T to the inverse limit of the
balls {x ∈ V (T ) | d(x0, x) ≤ n}. These two topologies coincide if and only if the
tree T is locally finite, but their restrictions on ∂T coincide in all cases. The shadow
topology makes T a compact space, but ∂T need not be closed, and therefore need
not be compact (unless T is locally finite). More on this in [MoSh–04].
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topological space ∂T is perfect if the tree T does not have any pending
ray. (Pending rays are defined before Proposition 1.)

Proposition 11. For any countable tree T , the boundary ∂T is a Baire
space.

Proof. Choose a vertex x0 ∈ V (T ). Since T is countable, each of the
spheres S(x0, n) defined above is countable, and therefore is a polish
space for the discrete topology. Since the inverse limit of a countable
inverse system of polish spaces is polish ([Bou-TG9], § 6), ∂T is polish
(“countable” is important, because a product of uncountably many
polish spaces is not polish in general). Since polish spaces are Baire
spaces ([Bou-TG9], § 5), this ends the proof. �

Recall that an action of a group Γ on a set Ω is

• faithful if, for any γ ∈ Γ, γ 6= 1, there exists ω ∈ Ω such that
γ(ω) 6= ω, and

• strongly faithful if, for any finite subset F of Γ not containing
1, there exists ω ∈ Ω such that γ(ω) 6= ω for all γ ∈ F .

An action of a group on a tree T is faithful, or strongly faithful, if it is
the case for the action on the vertex set V (T ). Let Ω be a Hausdorff
space and let the action of Γ be by homeomorphisms; if the action is
strongly faithful and if F , ω are as above, observe that there exists a
neighbourhood V of ω in Ω such that γ(V ) ∩ V = ∅ for all γ ∈ F .
Recall also from the introduction that an action of a group Γ on a tree
T is

• slender if any γ ∈ Γ, γ 6= 1, is slender, namely is such that the
fixed point set (∂T )γ has empty interior.

Corollary 12. Let Γ be a countable group which acts by automorphisms
on a tree T .

If the action on T is slender, then the action on ∂T is strongly faith-
ful.

Proof. Let F be a finite subset of Γr{1}, as in the definition of “strongly
faithful”. Since the action is slender, the fixed point set (∂T )γ has no
interior for all γ ∈ F , so that there exists by Proposition 11 (Baire’s
property of ∂T ) a point ξ ∈ ∂T such that γ(ξ) 6= ξ for all γ ∈ F .

[Observe that ∂T r
⋃

γ∈Γr{1}(∂T )γ is dense, and therefore non-empty,

so that there exists ξ ∈ ∂T such that γ(ξ) 6= ξ for all γ ∈ Γ r {1}. We
shall not use this below.] �

Since [Tits–70], we know that an automorphism γ of a tree T can be
of three different kinds:
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• It is an inversion if there exists e ∈ E(T ) such that γ(e) = e.
• It is elliptic if it has at least one fixed point in V (T ).
• It is hyperbolic if it is not an inversion and if

d(γ) + min{d(y, γ(y)) | y ∈ V (T )} ≥ 1.

If γ is hyperbolic, it has an axis, which is a linear subtree Tγ,
such that x ∈ V (Tγ) if and only if d(x, γ(x)) = d(γ), and d(γ)
is called the translation length of γ.

We translate here by

• linear subtree

what is a “châıne” in [Tits–70] and a “droit chemin” in [Serr–77],
namely a subtree of which the vertex set is of the form (xn)n∈Z, with
d(xm, xn) = |m − n| for all m, n ∈ Z. Linear trees are defined accord-
ingly.

Remark 13. (i) An automorphism γ of T which is hyperbolic has
exactly two fixed points on ∂T which are its source α(γ) and its sink
ω(γ), and the infinite cyclic group γZ acts freely on ∂T r{α(γ), ω(γ)}.
If γ is an hyperbolic automorphism of a tree of which the boundary
consists of more than two points (and therefore of which the boundary
is infinite), then γ is always slender, since its fixed point set in ∂T
consists of two non-isolated points.

(ii) If T is a tree with non-empty boundary ∂T and if γ is an elliptic
automorphism of T with fixed point set V (T )γ of finite diameter, then
(∂T )γ = ∅, and in particular γ is slender.

(iii) If T is the Bass-Serre tree corresponding to the Baumslag-Solitar
group Γ = BS(m, n) for some m, n ∈ Z (as in Subsection 4.2 below),
there exist elliptic automorphisms γ ∈ Γ of T with fixed-point sets of
infinite diameter (Exemple 4.2 of [Stal–06]).

(iv) Let γ be an elliptic automorphism of a tree T such that (∂T )γ 6=
∅. Consider a ray with vertex set (xn)n≥0 of which the origin x0 is fixed
by γ and which represents a boundary point fixed by γ; then each of the
vertices xn is fixed by γ.

(v) Elliptic automorphisms need not be slender.

For (v), consider for example the regular tree T of degree 3, a vertex
x0 of T , and the three isomorphic connected components T1, T2, T3

obtained from T by deleting x0 and the incident edges. An appropriate
transposition of T1 and T2 fixing T3 is not slender, since (∂T )σ = ∂T3

is open non-empty, but a cyclic permutation γ of T1, T2, T3 of order 3
is slender since (∂T )γ = ∅.
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Let Γ be a group which acts by automorphisms on a tree T , and
therefore by homeomorphisms on ∂T . Two elements in Γ which are
hyperbolic (namely which act on T by hyperbolic automorphisms) are

• transverse if they do not have any common fixed point in ∂T ,
equivalently if the intersections of their axis is finite (possibly
empty).

The action is

• strongly hyperbolic if Γ contains a pair of transverse hyperbolic
elements.

If the action is strongly hyperbolic, the next lemma shows that there
is an abundance of transverse pairs.

Lemma 14. Let Γ be a group acting strongly hyperbolically on a tree T .
For any hyperbolic element γ0 ∈ Γ, there exist infinitely many hy-

perbolic elements γn, n ≥ 1, such that the γn, n ≥ 0, are pairwise
transverse.

Proof. Let α, β ∈ Γ be hyperbolic and transverse. Upon replacing α
with βkαβ−k for an appropriate k, we can assume furthermore that γ0

and α are transverse.
Set δm = αmγ0α

−m for all m ≥ 1. Then there exists a subsequence
(γn)n≥1 of (δm)m≥1 such that the γn, n ≥ 0, are pairwise transverse. �

The next proposition is a restatement of well-known facts from the
literature. See for example Proposition 2 of [PaVa–91] and Proposition
7.2 of [Bass–93].

Proposition 15. Let T be an infinite tree which is not a linear tree.
Let Γ be a group which acts on T , minimally and in such a way that
its action on ∂T has no fixed points.

Then the action of Γ on T is strongly hyperbolic.

Proof. By minimality, Γ 6= {1} fixes no vertex and no pair of adjacent
vertices. By Proposition 3.4 of [Tits–70], this implies that Γ contains
at least one hyperbolic element, say γ1, and that ∂T 6= ∅. Denote by
α1 ∈ ∂T the source of γ1 and by ω1 its sink.

By minimality and by the proof of Corollary 3.5 of [Tits–70], T is the
union of the axis of the hyperbolic elements of Γ. As T is infinite and
is not a linear tree, it follows that ∂T is infinite and that there exists
an hyperbolic element γ2 ∈ Γ, say with source α2 and sink ω2, such
that {α2, ω2} 6= {α1, ω1}. Upon replacing γ2 by γ−1

2 , we may assume
that α2 /∈ {α1, ω1}. If ω2 /∈ {α1, ω1}, there is nothing left to prove;
upon replacing γ1 by γ−1

1 if necessary, we can assume from now that
ω2 = ω1, and we denote this point by ω.
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Since Γ does not fix any boundary point in ∂T , there exists δ ∈ Γ
such that δ(ω) 6= ω. Upon exchanging γ1 and γ2, we can assume that
δ(α1) 6= ω.

We claim that all the orbits of Γ on ∂T are infinite. Since any orbit of
γZ

1 on ∂T r{α1, ω} is infinite, and similarly for γZ

2 on ∂T r{α2, ω}, the
only point we have to check is that the orbit Γ(ω) is infinite. Observe
that γ3 + δγ1δ

−1 is hyperbolic, that α(γ3) = δ(α1), and that ω(γ3) =
δ(ω). Since ω /∈ {α(γ3), ω(γ3)}, the γZ

3 -orbit of ω is infinite. A fortiori,
the Γ-orbit of ω is infinite.

It is a general fact that, if a group Γ acts on a set Ω in such a way
that all its orbits are infinite, and if F is any finite subset of Ω, there
exists γ ∈ Γ such that F and γ(F ) are disjoint; see2 Lemma 2.3 in
[NePM–76]. In our case, it implies that we can choose γ ∈ Γ such that
γ({α1, ω})∩ {α1, ω} = ∅, namely such that the hyperbolic elements γ1

and γγ1γ
−1 are transverse. �

Recall that an action of a group Γ on a topological space Ω is

• minimal if the only Γ-invariant closed subpaces of Ω are Ω itself
and the empty subspace.

If a group Γ acts on a tree T in a minimal way (definition before
Proposition 1), its action on ∂T need not be minimal. A first example
is that of the standard action of Z on a linear tree; a second example
is the action of a Baumslag-Solitar group BS(1, n) on its Bass-Serre
tree T , which is minimal, but with the corresponding action on the
infinite boundary ∂T having a fixed point (see Subsection 4.2 below).
However:

Proposition 16. Let Γ be a group which acts on a tree T . Assume
that the action is strongly hyperbolic and minimal.

Then the action of Γ on ∂T is minimal.

Proof. Let T0 be the subtree of T which is the union of the axis Tγ

over all hyperbolic elements γ ∈ Γ. As already noted in the proof of
Proposition 15, T0 = T . Hence the set

LΓ + {η ∈ ∂T | η = ω(γ) for some hyperbolic γ ∈ Γ}

is dense in ∂T .
Let C be a non-empty Γ-invariant closed subset of ∂T , and choose

ξ ∈ C. Let η ∈ LΓ; choose an hyperbolic element γ ∈ Γ such that
η = ω(γ). In case ξ 6= α(γ), we have η = limn→∞ γn(ξ), so that η ∈ C.

2 This is a straightforward consequence of the following lemma of B.H. Neumann
[NeBH–54]: a group cannot be covered by finitely many cosets with respect to
subgroups of infinite index. Other Proof: Theorem 6.6 in [BMMN–98].
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Assume now that ξ = α(γ). By Lemma 14, there exists an hyperbolic
element γ′ ∈ Γ transverse to γ. We have first ω(γ′) ∈ C as in the
previous case, and then η = limn→∞ γn

(
ω(γ′)

)
∈ C.

Hence C ⊃ LΓ, and C = LΓ = ∂T . In other terms, the action of Γ
on ∂T is minimal. �

Remark. Proposition 16 shows that, under appropriate hypothesis,
minimality on T implies minimality on ∂T . Here is a kind of converse:

Let T be an infinite tree without vertices of degree one. If a group
Γ acts on T in such a way that its action on ∂T is minimal, and if Γ
contains at least one hyperbolic element, then the action on T is also
minimal.

Indeed, suppose that the action of Γ on T is not minimal, so that
T0 defined as above is a non-empty proper subtree of T . Since T does
not have any vertex of degree 1, there exists a ray in T , disjoint from
T0, which defines a point ξ ∈ ∂T ; denote by (xn)n≥0 the vertices of this
ray, and by e the first edge of this ray, with s(e) = x0 and t(e) = x1.
Then the shadow (∂T )e is a neighbourhood of ξ in ∂T , disjoint from
the Γ-invariant closed subset ∂T0. Hence the action of Γ on ∂T is not
minimal.

A homeomorphism γ of a Hausdorff space Ω is

• hyperbolic if it has the following property: there are two points
α, ω ∈ Ω fixed by γ such that, for any neighbourhoods U of α
and V of ω, we have γn(Ω r U) ⊂ V and γ−n(Ω r V ) ⊂ U for
n large enough.

An action of a group Γ on Ω is

• strongly hyperbolic if Γ contains two hyperbolic homeomorphisms
which are transverse, namely without common fixed point.

These generalise notions defined above in the following sense: an hyper-
bolic automorphism of a tree T induces an hyperbolic homeomorphism
of the boundary ∂T , and a group acting on T strongly hyperbolically is
strongly hyperbolic on ∂T . The following proposition is a reformulation
of Proposition 11 and Theorem 13 in [Harp–07], indeed a reformulation
of part of [Powe–75] (see also Proposition 32 below).

Proposition 17. Let Γ be a group which acts by homeomorphisms
on a Hausdorff topological space Ω. Assume that the action is strongly
faithful, strongly hyperbolic, and minimal.

Then Γ is a Powers group.

Proof. Here is first a general observation. Let Γ be a group which acts
by homeomorphisms on a Hausdorff topological space Ω containing a
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Γ-invariant dense subspace Ω0. Then the action of Γ on Ω is strongly
faithful if and only if the action of Γ on Ω0 is strongly faithful.

Set LΓ + {η ∈ Ω | η = ω(γ) for some hyperbolic γ ∈ Γ}, as in the
proof of Proposition 16. If the action of Γ on Ω is strongly hyperbolic,
LΓ is non-empty, indeed infinite. If this action is minimal, LΓ is dense
in Ω. It follows that the action of Γ on LΓ is strongly faithful, so that
the hypothesis of Proposition 11 of [Harp–07] (= Proposition 32 here)
are fulfilled. �

The particular case of Ω = ∂T provides the following variation on
Proposition 1.

Proposition 18. Let Γ be a countable group which acts on a tree T .
Assume that the action is slender, strongly hyperbolic, and minimal.

Then Γ is a strongly Powers group.

Proof. First step: Proposition 17 applies to Γ. The action of Γ on ∂T
is strongly faithful by Corollary 12 and minimal by Proposition 16. It
follows from Proposition 17 that Γ is a Powers group.

Second step: Proposition 17 applies to any normal subgroup N 6= {1}
of Γ. The subgroup N has no fixed vertex in T . Otherwise, since the
set V (T )N is Γ-invariant, it would coincide with V (T ) by Γ-minimality,
and Γ could not be faithful on T . The same argument shows that N
has no fixed pair of adjacent vertices in T and (because Γ is faithful
and minimal on ∂T ) no fixed boundary point in ∂T . It follows that N
contains hyperbolic elements, by Proposition 3.4 of [Tits–70].

The union of the axis of the hyperbolic elements in N is a Γ-invariant
subtree, and coincides with T by Γ-minimality. It follows that the
action of N on T is minimal, and also strongly hyperbolic (for example
by Proposition 15). Proposition 17 again implies that N is a Powers
group.

Coda. If N 6= {1} is subnormal in Γ, namely if there exists a chain
of subgroups N0 = N ≤ N1 ≤ · · · ≤ Nk = Γ with Nj−1 normal in Nj

for j = 1, . . . , k, an induction on j based on the second step shows that
N is a Powers group. �

Proof of Proposition 1. Since there are in T neither vertices of degree
one nor pending rays, ∂T is non-empty and perfect. The action of Γ
on ∂T is strongly hyperbolic by Proposition 15, so that Proposition 18
applies. �

3. On the action of the fundamental group of a graph of
groups on the corresponding Bass-Serre tree

Recall that a graph of groups G = (G, Y ) consists of
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• a non-empty connected graph Y ,
• two families of groups (Gy)y∈V (Y ) and (Ge)e∈E(Y ), with Ge = Ge

for all e ∈ E(Y ),
• a family of monomorphisms ϕe : Ge −→ Gt(e), for e ∈ E(Y ).

An orientation of Y is a subset E+(Y ) of E(Y ) containing exactly one
of e, e for each e ∈ E(Y ); we denote by E−(Y ) the complement of
E+(Y ) in E(Y ).

A graph of groups G = (G, Y ) gives rise to the fundamental group
Γ = π1(G, Y, M) of G and the universal cover T = T (G, Y, M, E+(Y )),
also called the Bass-Serre tree of G, where M is a maximal tree in Y ,
and E+(Y ) an orientation of Y ; abusively, T is also called the Bass-
Serre tree of Γ. Let us recall as follows part of the standard theory
(§ I.5 in [Serr–77], and [Bass–93]).

• (BS-1) Γ has a presentation with generators the groups Gy,
y ∈ V (Y ), and elements τe, e ∈ E(Y ), and relations

τe = (τe)
−1 for all e ∈ E(Y ),

τ−1
e ϕe(h)τe = ϕe(h) for all e ∈ E(Y ) and h ∈ Ge,

τe = 1 for all e ∈ E(M).

Moreover, the natural homomorphisms

Gy −→ Γ and Z −→ Γ, k 7−→ τk
e

are injective for all y ∈ V (Y ) and for all e ∈ E(Y ) with e /∈
E(M).

• (BS-2) T is a graph with

V (T ) =
⊔

y∈V (Y )

Γ/Gy and E(T ) =
⊔

e∈E(Y )

Γ/ϕe(Ge).

The source map, the terminus map, and the inversion map,
are given by

s(γϕe(Ge)) =

{
γGs(e) if e ∈ E+(Y )

γτe
−1Gs(e) if e /∈ E+(Y ),

t(γϕe(Ge)) =

{
γτeGt(e) if e ∈ E+(Y )

γGt(e) if e /∈ E+(Y ),

γϕe(Ge) = γϕe(Ge)

for all γ ∈ Γ and e ∈ E(Y ). The natural action of Γ is by
automorphisms of graphs, and without inversions.

Moreover, T is a tree.
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• (BS-3) The natural mappings

V (T ) −→ V (Y ), γGy 7−→ y

E(T ) −→ E(Y ), γϕe(Ge) 7−→ e

are the constituants of a morphism of graphs p : T −→ Y which
factors as an isomorphism Γ\T ≈ Y .

• (BS-4) The sections

V (Y ) −→ V (T ), y 7−→ ỹ + 1Gy

E(Y ) −→ E(T ), e 7−→ ẽ + 1ϕe(Ge)

are such that the stabilizer of ỹ in Γ is isomorphic to Gy for all
y ∈ V (Y ), and similarly the stabilizer of ẽ in Γ is isomorphic to
Ge for all e ∈ E(Y ).

The first section V (M) = V (Y ) −→ V (T ) and the restriction
E(M) −→ E(T ) of the second section are the constituents of
an isomorphism of graph from M onto a subtree of T .

Moreover, up to isomorphisms, Γ and T do not depend on the choices
of M and E+(Y ).

For what we need below, it is important to observe that

the action of Γ on T need be neither faithful nor minimal.

We will often write Ge instead of ϕe(Ge); this is abusive since, though
Ge = Ge, the cosets Γ/Ge and Γ/Ge are different sets of oriented edges,
see the definitions of E(T ) and of the change of orientations in (BS-2).

3.1. Small Bass-Serre trees, fixed points, and fixed boundary

points. Let G = (G, Y ) be a graph of groups. An edge e ∈ E(Y ) is
trivial3 if s(e) 6= t(e) and if ϕe : Ge −→ Gs(e) is an isomorphism onto. If
G = (G, Y ) has a trivial edge e, we can define a new graph Y/e obtained
from Y by collapsing {e, e} to a vertex, and we can define naturally a
new graph of groups G/e, with fundamental group isomorphic to that
of G. Say that G is

• reduced if it does not contain any trivial edge.

3Terminological adjustment. “Trivial”, here and on Page 193 of [ScWa–79],
means the same as “directed” on Page 1096 of [Bass–76]. “Reduced” here means
the same as “minimal” in [ScWa–79]. On page 42 of [Bass–93], a vertex y ∈ V (Y ) is
terminal if there is a unique edge e ∈ E(Y ) with s(e) = y, and if ϕe : Ge −→ Gs(e)

is an isomorphism onto; observe then that e is trivial. If Y is a segment of length
2 with two end vertices x, z, a middle vertex y, the vertex group Gy isomorphic to
the two edge groups, and Gx, Gz large enough, then (G, Y ) is not reduced but does
not have any terminal vertex. The contraction process G  G/e is a particular
case of the process described with more details in Section 2 of [Bass–76].
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Let X be a connected subgraph of Y . The corresponding subgraph of
groups F = (F, X) is defined by Fx = Gx for all x ∈ V (X), and Fe = Ge

for all e ∈ E(X), with the inclusion Fe −→ Ft(e) being precisely ϕe for
all e ∈ E(X).

The next proposition collects observations from papers by Bass; we
choose a maximal tree M of Y containing a maximal tree L of X, and
an orientation E+(Y ) of Y containing an orientation E+(X) of X.

Proposition 19. Let G = (G, Y ) be a graph of groups, and let the
notation be as above.

(i) If F = (F, X) is a subgraph of groups of G, the fundamental
group π1(F, X, L) is isomorphic to a subgroup of π1(G, Y, M)
and the universal cover T (F, X, L, E+(X)) can be identified with
a subtree of T (G, Y, M, E+(Y )).

In case G is, moreover, finite and reduced, and if X is a
proper subgraph of Y , then π1(F, X, L) is a proper subgroup of
π1(G, Y, M).

(ii) If Y is finite, there exist a reduced graph of group H = (H, Z)
and a contraction G = (G, Y ) −→ H = (H, Z) which induces
an isomorphism from the fundamental group of G onto that of
H.

Proof. For (i), see Items 1.14 and 2.15 in [Bass–93]. For (ii), see Propo-
sition 2.4 in [Bass–76]. �

[Claim (ii) need not hold when Y is infinite; see the discussion in
Section 7 of [ScWa–79].]

For the next proposition, compare for example with Theorem 6.1 in
[Bass–76].

Proposition 20. Let G = (G, Y ) be a graph of groups, with universal
cover T ; we assume that G is reduced. Then:

(i) T is finite if and only if T is reduced to one vertex, if and only
if Y is reduced to one vertex.

(ii) T has no vertex of degree 1.
(iii) If T is infinite, it does not have any vertex fixed by Γ.
(iv) T is a linear tree if and only if Y is

– either a segment with two vertices and one pair of edges
{e, e}, and with [Gs(e) : ϕe(Ge)] = [Gt(e) : ϕe(Ge)] = 2 (case of
a degenerate non-trivial amalgam, see Subsection 4.1),

– or a loop with one vertex y and one pair of edges {e, e},
and with ϕe(Ge) = Gy = ϕe(Ge) (case of a semi-direct product
Gy ⋊θ Z, see Subsection 4.2).

(v) T has a pending ray if and only if it is a linear tree.
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Proof. Let G = (G, Y ) be a reduced graph of groups. If Y is not reduced
to one vertex, it contains either a segment of length one which is not
directed, or a loop. In both cases, T contains a linear subgraph X, by
Proposition 19, and Γ contains an element γ which leaves X invariant
and which induces on X an hyperbolic translation. Moreover, any edge
of T is contained in a linear subgraph. Claims (i) to (iii) follow.

Suppose that Y contains an edge e with s(e) 6= t(e); suppose more-
over either that at least one of [Gs(e) : ϕe(Ge)], [Gt(e) : ϕe(Ge)] is at
least 3, or that Y contains at least one other edge than e and e. Then
T has an abundance of vertices of degrees at least 3, and therefore T
does not have pending rays. Similarly, if Y contains a vertex y with
at least two loops incident to y, then T has an abundance of vertices
of degrees at least 4 and T does not have pending rays. This shows
Claims (iv) and (v). �

3.2. Faithful actions. Let N = (Ny)y∈V (Y ) be the family of subgroups

of the groups in the family (Gy)y∈V (Y ) defined as follows:

◦ Ny is a normal subgroup of Gy for all y ∈ Y ;
◦ the family is Y -invariant, which means that, for all e ∈ E(Y ),

there exists a subgroup Ne of Ge, with Ne = Ne, such that
Nt(e) = ϕe(Ne);

◦ and N is maximal with these properties (in the sense that Ny

is maximal in Gy for all y ∈ V (Y )).

Note that, for all y, y′ ∈ V (Y ), the groups Ny and Ny′ are isomorphic.
Our next proposition is Proposition 1.23 in [Bass–93].

Proposition 21. Let G = (G, Y ) be a graph of groups and let Γ, T,N =
(Ny)y∈V (Y ) be as above. Choose a vertex y0 ∈ V (Y ).

Then the kernel of the action of Γ on T is isomorphic to Ny0
. In

particular, the action of Γ on T is faithful if and only if Ny0
= {1}.

3.3. Minimal actions. The next proposition follows from the proof
of Corollary 3.5 in [Tits–70], and is also part of Proposition 7.12 in
[Bass–93].

Proposition 22. Let G = (G, Y ) be a graph of groups, and let Γ, T be
as above; we assume for simplicity that the diameter of the underlying
graph Y is finite.

The action of Γ on T is minimal if and only if Y is reduced.

4. The two standard examples

4.1. Amalgamated free products. In this case, the underlying graph
Y is a segment of length one, with two vertices x, y and one pair of edges
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{e, e}. The edge group Ge can be identified to a subgroup of both Gx

and Gy. The fundamental group of G = (Gx, Gy, Ge, Y ) is the free
product with amalgamation, or, for short, the amalgam Γ = Gx∗Ge

Gy.
From now on in this subsection, we write A, B, C instead of Gx, Gy, Ge,
so that in particular

Γ = A ∗C B acts on its Bass-Serre tree T.

The edge set of the universal cover T of G consists of two copies of
Γ/C exchanged by the involution e 7−→ e, say E(T ) = E+(T )⊔E−(T )

with E+(T ) = Γ/C and E−(T ) = Γ/C. The vertex set of T is the
disjoint union Γ/A ⊔ Γ/B. The source and terminus mappings are
defined to be the canonical projections

s : Γ/C −→ Γ/A, γC 7−→ γA

t : Γ/C −→ Γ/B, γC 7−→ γB

and
s : Γ/C −→ Γ/B, γC 7−→ γB

t : Γ/C −→ Γ/A, γC 7−→ γA.

In particular, the tree T is bipartite regular, with one class of vertices
of degree [A : C] and the other class of degree [B : C]. The action of
Γ has two orbits on the vertex set; it is transitive on the orientation
E+(T ), or equivalently on the set of geometric edges of T .

The kernel of such an amalgam is the subgroup

(1) ker(A ∗C B) =
⋂

γ∈Γ

γ−1Cγ

of C, namely the largest subgroup of C which is normal in both A and
B. An amalgam is

• faithful if its kernel is reduced to {1}, equivalently if the action
of Γ on T is faithful.

With the notation of Proposition 2, observe that

ker(A ∗C B) =
⋂

ℓ≥0

Cℓ ⊂ Ck for all k ≥ 0.

The amalgam is

• non-trivial if A 6= C 6= B (equivalently if G is reduced), and
• non-degenerate if moreover at least one of the indices [A : C],

[B : C] is strictly larger than 2.

From the definition of the universal cover T of G, the amalgam is trivial
if and only if the diameter of T is finite (and this occurs if and only
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the diameter of T is at most 2). Also, the amalgam is non-trivial and
degenerate if and only if T is a linear tree.

Remarks. (i) A non-trivial amalgam which is faithful is a fortiori non-
degenerate, unless it is the infinite dihedral group.

(ii) The condition for Γ to act faithfully on T implies that Γ is icc
(but the converse does not hold); see Corollary 2 in [Corn–09]. Recall
that a group Γ is infinite conjugacy class, or shortly is icc, if it is infinite
and if all its conjugacy classes except {1} are infinite.

(iii) For example, if m, n ≥ 2 are two coprime integers, the torus
knot group 〈a, b | am = bn〉 = 〈a〉 ∗〈am=bn〉 〈b〉 does not act faithfully on
its Bass-Serre tree; its kernel is infinite cyclic, generated by am = bn.
Any non-trivial free product A∗B acts faithfully on its Bass-Serre tree.

(iv) Let T be a regular tree of some degree d ≥ 3. Let Γ denote
the group of all automorphisms γ of T which are either elliptic or
hyperbolic with an even translation length; it is a subgroup of index 2
in Aut(T ), and simple [Tits–70]. Choose an edge e ∈ V (T ). Denote by
A [respectively B, C] the pointwise stabiliser in Γ of s(e) [respectively
of t(e), of {s(e), t(e)}], so that Γ = A∗C B. We leave it to the reader to
check that (as already stated in the introduction), for any k ≥ 0, the
group Ck is the pointwise stabiliser of the neighbourhood Vk(e) defined
in the introduction, and that

C = C0 % C1 % · · · % Ck % Ck+1 % · · ·

%
⋂

k≥0

Ck = ker(A ∗C B) = {1},

is a strictly decreasing infinite sequence of subgroups of C. Observe
that this group Γ is not countable, but that it contains dense countable
subgroups giving rise similarly to strictly decreasing infinite sequences
of Ck’s. We are grateful to Laurent Bartholdi for suggesting these
examples.

(v) For an integer k ≥ 1, recall that Γ = A ∗C B is k-acylindrical if,
whenever γ ∈ Γ fixes pointwise a segment of length k in its Bass-Serre
tree, then γ = 1 [Sela–97]. Thus the condition “Ck = {1} for some k ≥
0” is substancially weaker than the condition “Γ is ℓ-acylindrical for
some ℓ ≥ 0”. The previous remark shows that the condition “ker(A ∗C

B) = {1}” is the weakest of all.

Proposition 23. Let Γ = A ∗C B be an amalgam acting on its Bass-
Serre tree T as above.

(i) The amalgam is non-trivial if and only if there is no vertex in T
fixed by Γ, if and only if the tree T is infinite; if these conditions
hold, then the action of Γ on T is minimal.



C
∗
-SIMPLE GROUPS 21

We assume from now on that the amalgam is non-trivial.

(ii) The amalgam is non-degenerate if and only if T is not a linear
tree, if and only if ∂T is perfect, if and only if the action of Γ
on T is strongly hyperbolic.

We assume from now on that the amalgam is non-degenerate.

(iii) The action of Γ on ∂T is minimal.
(iv) The action of Γ on T is slender as soon as Ck = {1} for some

k ≥ 1.

Proof. For (i), see Propositions 20 and 22. [Alternatively, a direct
argument is straightforward.]

(ii) Observe first that, if the amalgam is non-trivial and degenerate,
then T is a linear tree, so that ∂T has two points, in particular is not
perfect, and the action of Γ on ∂T is not strongly hyperbolic.

Suppose now that the amalgam is non-degenerate. Choose q, r ∈ A
such that the three cosets C, qC, rC in A/C are pairwise disjoint, and
s ∈ B with s /∈ C (so that C ∩ sC = ∅ = C ∩ s−1C in B/C).

In T , there is a first segment of length 5, of which the 6 vertices and
5 oriented edges are, in “the” natural order,

qs−1A, qs−1C, qB, qC, A, C, B, sC, sA, sqC, sqB,

and similarly a second segment of length 5 with vertices and edges

rs−1A, rs−1C, rB, rC, A, C, B, sC, sA, srC, srB.

These two segments of length 5 have a common subsegment of length
2 with vertices and edges underlined above.

The element sqsq−1 ∈ Γ maps the first edge of the first segment onto
its last edge, and srsr−1 ∈ Γ maps the first edge of the second segment
onto its last edge. It follows that sqsq−1 and srsr−1 are hyperbolic
elements, with axis sharing exactly two geometric edges (see if neces-
sary Proposition 25 in Subsection I.6.4 of [Serr–77]). Thus these two
hyperbolic elements are transverse.

If the amalgam is non-degenerate, at least every other vertex in T
is of degree at least 3. In particular, T does not have any pending ray
(Proposition 20), so that ∂T is perfect.

(iii) If the amalgam is non-degenerate, the action of Γ on T is min-
imal, by (i). Hence the action is also minimal on ∂T , by Proposition
16.

(iv) Let γ ∈ Γ be such that the fixed point set (∂T )γ of γ on the
boundary has non-empty interior. To finish the proof, it suffices to
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show that, if the amalgam is non-degenerate and if Ck = {1}, then
γ = 1.

Since ∂T is perfect, γ cannot be hyperbolic. We can therefore assume
that γ has a fixed vertex x0 ∈ V (T ). Let (xn)n≥0 be the vertices of a
ray starting from x0 and representing a boundary point ξ in the interior
of (∂T )γ . By Remark 13.iv, the vertex xn is fixed by γ for all n ≥ 0.
Since ξ is in the interior of (∂T )γ , there is an edge in the ray (xn)n≥0,
say d from xm to xm+1, such that (∂T )d ⊂ (∂T )γ .

Let U be the subtree of T of which the vertices belong to rays with
first two vertices xm, xm+1. Since rays in this tree represent boundary
points in (∂T )γ , the same remark as above implies that γ fixes all
vertices and all edges in U . Choose an edge e ∈ E(U) such that all
vertices at distance at most k from s(e) or t(e) are in V (U); these
vertices are fixed by γ. Choose moreover δ ∈ Γ such that e = δC; we
can assume that s(e) ∈ Γ/A and t(e) ∈ Γ/B.

Let us first assume for simplicity that k = 1. Choose transversals
R ⊂ A and S ⊂ B such that A =

⊔
r∈R rC and B =

⊔
s∈S sC (disjoint

unions). Since γ fixes the edges δrC and δsC, we have γ ∈ δrC(δr)−1

and γ ∈ δsC(δs)−1 for all r ∈ R and s ∈ S, namely

γ ∈
( ⋂

r∈R

δrCr−1δ−1
)
∩
( ⋂

s∈R

δsCs−1δ−1
)

= δ

(
( ⋂

a∈A

aCa−1
)
∩
( ⋂

b∈B

bCb−1
)
)

δ−1

= δC1δ
−1 = {1},

hence γ = 1.
The argument in the general case, k ≥ 1, is similar, and is left to the

reader. Hence, in all cases, γ = 1. �

Proof of Proposition 2. We have now to assume that

A, B, and therefore also C, Γ, and T , are countable,

because our proof of Proposition 11 assumes countability. Moreover,
we assume as in Proposition 2 that the amalgam is non-degenerate and
that Ck = {1}.

Proposition 23 shows that the hypothesis of Proposition 18 are sat-
isfied. Hence the proof of Proposition 2 is complete. �

4.2. HNN extensions. In this case, the underlying graph Y is a loop,
with one vertex y, and one pair of edges {e, e}. The edge group Ge can
be identified (via ϕe) to a subgroup of Gy, and we have a monomor-
phism ϕe : Ge −→ Gy. From now on in this subsection, we write G, H, θ



C
∗
-SIMPLE GROUPS 23

instead of Gy, Ge, ϕe. The fundamental group of G = (G, H, θ(H), Y )
is a HNN-extension, which has the presentation

Γ = HNN(G, H, θ) = 〈G, τ | τ−1hτ = θ(h) ∀h ∈ H〉

and which acts on its Bass-Serre tree T .
The edge set of T consists of two copies of Γ/H exchanged by the

involution e 7−→ e, say E(T ) = E+(T ) ⊔ E−(T ) with E+(T ) = Γ/H

and E−(T ) = Γ/H. The vertex set of T is Γ/G. The source and
terminus mappings are

s : Γ/H −→ Γ/G, γH 7−→ γG

t : Γ/H −→ Γ/G, γH 7−→ γτG.

and
s : Γ/H −→ Γ/G, γH 7−→ γτG

t : Γ/H −→ Γ/G, γH 7−→ γG.

In particular, the tree T is regular, of degree [G : H ] + [G : θ(H)]. The
action of Γ is transitive on the vertex set, as well as on the orientation
E+(T ), or equivalently on the set of geometric edges of T .

The kernel of an HNN-extension is the subgroup

(2) ker(HNN(G, H, θ)) +
⋂

γ∈Γ

γ−1Hγ

of H ∩ θ(H), namely the largest subgroup of H ∩ θ(H) which is both
normal in G and invariant by θ. An HNN extension is

• faithful if its kernel is reduced to {1}, equivalently if the action
of Γ on T is faithful.

With the notation of Proposition 4, observe that

ker(HNN(G, H, θ)) =
⋂

ℓ≥0

Hℓ ⊂ Hk for all k ≥ 0.

The HNN-extension is

• ascending if at least one of H, θ(H) is the whole of G,
• strictly ascending if exactly one of H, θ(H) is the whole of G,

and
• non-degenerate if at least one of H, θ(H) is a proper subgroup

of G.

The HNN-extension is degenerate if and only if T is a linear tree, in
which case θ is an automorphism of G and Γ is the corresponding
semi-direct product G ⋊θ Z.

Remarks. (i) An HNN-extension with H 6= {1} which is faithful is a
fortiori non-degenerate.
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(ii) The condition for Γ to act faithfully on T implies that Γ is icc
(but the converse does not hold); see Example 2.9 in [Stal–06], and
Corollary 4 in [Corn–09].

(iii) For example, if m, n are integers, the Baumslag-Solitar group

BS(m, n) = 〈τ, b | τ−1bmτ = bn〉 = HNN(bZ, bmZ, bmk 7−→ bnk)

acts faithfully on the corresponding tree if and only if |m| 6= |n|. Indeed,
on the one hand, if n = ±m, then H = 〈bm〉 is clearly a normal
subgroup of Γ; and, on the other hand, it is a result of Moldavanskii that
BS(m, n) has an infinite cyclic normal subgroup if and only if |m| = |n|;
see [Mold–91], or the exposition in the Appendix of [Souc–01].

Proposition 24. Let Γ = HNN(G, H, θ) be an HNN-extension acting
on its Bass-Serre tree T as above. Then:

(i) There is no vertex in T fixed by Γ, the tree T is infinite and the
action of Γ on T is minimal.

(ii’) The HNN-extension is non-degenerate if and only if T is not a
linear tree, if and only if the space ∂T is perfect.

We assume from now on that the extension is non-degenerate.

(ii”) The HNN-extension is non-ascending if and only if the space
∂T is without Γ-fixed point, if and only if the action of Γ on T
is strongly hyperbolic.

We assume from now on that the extension is non-ascending.

(iii) The action of Γ on ∂T is minimal.
(iv) The action of Γ on T is slender as soon as Hk = {1} for some

k ≥ 1.

Proof. For (i) and (iii), see the proof of Proposition 23.

(ii’) If the extension is degenerate, T is a linear tree, so that ∂T has
exactly two points. Otherwise, T is regular of degree has least 3, so
that ∂T is perfect.

(ii”) Suppose first that H = G % θ(H). The mapping E+(T ) −→
V (T ), e 7−→ s(e) is a bijection. Choose a geodesic in T with vertex
set (xp)p∈Z

such that d(xp, xp′) = |p − p′| for all p, p′ ∈ Z, and such

that the edge from xp to xp+1 lies in E+(T ) for all p ∈ Z; consider
the limit ξ = limp→∞ xp ∈ ∂T . Consider also a geodesic ray with
vertex set (yq)q∈N

such that d(yq, yq′) = |q − q′| for all q, q′ ∈ N, and

such that the edge from yq to yq+1 lies in E+(T ) for all q ∈ N; set
η = limq→∞ yq ∈ ∂T . We claim that η = ξ, from which it follows that
ξ is fixed by Γ.

To prove the claim, it suffices to check that there exists b ∈ Z and
q ∈ N such that yq = xq+b; inded, since E+(T ) −→ V (T ), e 7−→ s(e),
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is a bijection, this implies that yq′ = xq′+b for all q′ ≥ q, and therefore
η = ξ.

If one could not find b, q such that yq = xq+b, there would exist a
segment with vertex set (zr)0≤r≤N , with N ≥ 1, connecting the geodesic
to the ray, namely with z0 = xp0

for some p0 ∈ Z and zN = yq0
for some

q0 ∈ N, moreover with zr /∈ {xp}p∈Z
for r ≥ 1 and zr /∈ {yq}q∈N

for
r ≤ N−1. On the one hand, the edge with source zr+1 and terminus zr

would be in E+(T ) for all r (as one checks inductively for r = 0, 1, . . .),
on the other hand, the edge with source zr−1 and terminus zr would also
be in E+(T ) for all r (as one checks inductively for r = N, N − 1, . . .).
But this is impossible, since E+(T ) cannot contain both some edge e
with source zr+1 and terminus zr and the edge e.

Suppose next that H $ G = θ(H), so that the mapping E+(T ) −→
V (T ), e 7−→ t(e) is a bijection. An analogous argument shows that
there exists a point in ∂T fixed by Γ.

It follows also that, if the HNN-extension is ascending, there cannot
exist two transverse hyperbolic elements in Γ.

Suppose now that the extension is non-ascending. Choose r, s ∈ G
with r /∈ H and s /∈ θ(H).

In T , there are two segments of length 2, with vertices and edges
respectively

τ−1G τ−1H G rH rτG,
s−1τ−1G s−1τ−1H G H τG,

sharing just one vertex, G. It follows that rτ and τs are two elements
of Γ which are hyperbolic and transverse, with axis having in common
the unique vertex G.

(iv) The proof of this claim is a somewhat tedious variation on that
of Proposition 23 and is left to the reader. �

Proof of Proposition 4. We have now to assume that

G, and therefore also H , Γ, and T , are countable,

because our proof of Proposition 11 assumes countability. Moreover,
we assume as in Proposition 4 that the HNN-extension is non-ascending
and that Hk = {1}.

Proposition 24 shows that the hypothesis of Proposition 18 are sat-
isfied. Hence the proof of Proposition 4 is complete. �

Lemma 25. Consider the Baumslag-Solitar group

Γ = 〈τ, b | τ−1bmτ = bn〉
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acting on its Bass-Serre tree T . Denote by G the cyclic subgroup of Γ
generated by b, and by H that generated by bm. Set

K+ =
⋂

p≥0

τ−pHτ p and K− =
⋂

p≥0

τpHτ−p.

(i) We have

◦ If |m| = |n|, then K+ = K− = H,
◦ if n = ±am for some a ≥ 2, then K+ = {1} and K− = H,
◦ if m = ±an for some a ≥ 2, then K+ = H and K− = {1},
◦ In all other cases, K+ = K− = {1}.

(ii) Assume that |m| 6= |n|. For any k ∈ Z, k 6= 0, the automorphism
g = bk of T is elliptic and slender.

(iii) If |m| 6= |n|, the action of Γ on T is slender.

Proof. (i) The normal form theorem for HNN extensions (Theorem 2.1
of Chapter IV in [LySc–77]) implies that

τ−1bℓτ /∈ G if ℓ /∈ mZ,

τ−1bkmτ = bkn for all k ∈ Z,

τbℓτ−1 /∈ G if ℓ /∈ nZ,

τbknτ−1 = bkm for all k ∈ Z.

Claim (i) follows.

For (ii) and (iii), we assume that K− = {1}. The case with K+ = {1}
will follow, since HNN(G, H, θ) ≈ HNN(G, θ(H), θ−1). Let x0 denote
the vertex G = 1G ∈ Γ/G = V (T ). Observe that x0 is fixed by g;
indeed, the isotropy subgroup {γ ∈ Γ | γx0 = x0} coincides with G.

(ii) It suffices to show the following claim: (∂T )e 6⊂ (∂T )g for any e ∈
E(T ) with d(x0, s(e)) < d(x0, t(e)). If g(t(e)) 6= t(e), then g ((∂T )e) ∩
(∂T )e = ∅, and the claim is obvious; we can therefore assume that
g(t(e)) = t(e). We distinguish two cases, depending on the Γ-orbit
of e.

Suppose first that e ∈ Γ/H , namely that there exists γ ∈ Γ such that
s(e) = γτ−1(x0) and t(e) = γ(x0). Then (γτpG)p∈N

are the vertices of a

ray ρ in T starting at t(e), with d(γτpG, γτ qG) = |p−q| for all p, q ∈ N,
and extending the segment from x0 to t(e). For p ≥ 1, the vertex γτpG
is fixed by g if and only if g ∈ γGγ−1∩γτpGτ−pγ−1, namely if and only
if γ−1gγ ∈ G ∩ τpGτ−p. It follows from (i) that there exists an edge f
in the ray ρ, with d(x0, s(f)) < d(x0, t(f)), such that g(s(f)) = s(f)
and g(t(f)) 6= t(f), and consequently such that g ((∂T )f )∩ (∂T )f = ∅.
Since (∂T )f ⊂ (∂T )e, this implies (∂T )e 6⊂ (∂T )g.
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Suppose now that e ∈ Γ/H, namely that there exists γ ∈ Γ such
that s(e) = γτ(x0) and t(e) = γ(x0). Observe that H 6= G, otherwise
K− = G could not be {1}. Choose u ∈ G with u /∈ H , so that
γuH is an edge with source γuτG 6= s(e) = γτG and with terminus
γG = t(e). Then (γuτ pG)p∈N are the vertices of a ray in T starting at
γG = γuG = t(e), and the argument of the previous case carries over.

(iii) Let γ ∈ Γ, γ 6= 1, be an elliptic automorphism of T . Choose
δ ∈ Γ such that the vertex δG is fixed by γ. Then g + δ−1γδ fixes x0,
so that g = bk, as in Claim (ii). We have (∂T )γ = δ ((∂T )g); in other
words, the subspace (∂T )γ of ∂T is the image by the homeomorphism
δ of ∂T of the subspace (∂T )g, without interior points by (ii). Hence
γ is slender. �

Proof of Proposition 5. If min{|m|, |n|} = 1, the Baumslag-Solitar
group BS(m, n) is solvable, in particular amenable, and therefore it is
not C∗-simple. If |m| = |n|, the group BS(m, n) contains an infinite
cyclic normal subgroup (as already noted in Remark (iii) just before
Proposition 24), so that BS(m, n) is not C∗-simple.

Let us assume that min{|m|, |n|} ≥ 2 and that |m| 6= |n|. Observe
that, say in the case of m and n coprime to simplify the discussion, we
have G = Z and

H0 = mZ % H1 = (mn)2Z % · · · % Hk = (mn)2kZ % · · ·

%
⋂

k≥0

Hk = ker(BS(m, n)) = {0},

so that we cannot apply Proposition 4, even though the action of
BS(m, n) on T is faithful (by this same Remark (iii)).

However, the action of BS(m, n) on its Bass-Serre tree T is slender,
by Lemma 25, strongly hyperbolic and minimal, by Proposition 24.
Hence, the hypothesis of Proposition 18 are satisfied, and the proof of
Proposition 5 for BS(m, n) is complete.

The proof of the more general case, which is similar, is left to the
reader. �

4.3. About the general case. Let G = (G, Y ) be a graph of groups.
If Y is a tree, the analysis of the fundamental group of G can be done
essentially as in Subsection 4.1. Assume now that Y is not a tree.

Choose a maximal tree M in Y . Let Z denote the graph obtained
from Y by collapsing M to a vertex, namely the wedge of circles with
a unique vertex, say z, and as many geometrical loops as there are
geometrical edges in Y r M ; and let H = (H, Z) be the corresponding
graph of groups, with Hz the fundamental group of the subgraph of
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groups of G defined by M , and with He the group Ge for any edge in
E(Y ) r E(M), appropriately identified to a subgroup of Hz. Observe
that, if G is reduced, so is H. Then the fundamental group of H is
isomorphic to that of G, and a multiple HNN extension of the form

Γ =

〈
H, τe, . . . , τf

∣∣∣∣∣

τ−1
e hτe = θe(h) ∀h ∈ He

· · ·

τ−1
f hτf = θf (h) ∀h ∈ Hf

〉
,

where e, . . . , f are the loops in some orientation E+(Z) of the wedge
of circles Z. The Bass-Serre tree of H is regular of degree

[Hz : He] + [Hz : θe(He)] + · · · + [Hz : Hf ] + [Hz : θf (Hf)].

The analysis of Γ can be done essentially as in Subsection 4.2.

4.4. Remark. On several occasions in the past, including in [Harp–85]
and [BeHa–86], the first author has been wrong in dealing with elliptic
automorphisms of a tree T , concerning their fixed point sets in V (T )
and in ∂T . As a consequence of this, Claims (d) and (e) of Theorem
5 in [BeHa–86] are not correct as stated, as pointed out in [Stal–06]
(many thanks to Yves Stalder). The notion of slender automorphism
provides some way to fix at least part of the confusion.

II. Fundamental groups of 3-manifold

Manifolds which appear below are assumed to be connected, except
explicit exceptions. In Items (5.1) to (5.3), M need not be orientable;
from (5.4) onwards, M is assumed to be orientable.

5. A reminder on 3-manifolds and their groups

Let M be a compact4 3-manifold; set Γ = π1(M). We use ≈ to
indicate both a homeomorphism of manifolds and an isomorphism of
groups. We also use rather standard notation for particular manifolds,
with the dimension in superscript: Sn for spheres, Pn for real projective
spaces, I, D2, and B3 for the interval, the 2-disc, and the 3-ball, T2

and K2 for the 2-torus and the Klein bottle.

(5.1) The manifold M is prime if it is not homeomorphic to the
3-sphere and if, for any connected sum M1♯M2 homeomorphic to M ,
one of M1, M2 is a standard 3-sphere. Any compact 3-manifold has

4This can be slightly relaxed, because of the following theorem. Let M be a 3-
manifold with π1(M) finitely generated. Then there exists a compact 3-submanifold
Q of M such that the induced homomorphism π1(Q) −→ π1(M) is an isomorphism
(Theorem 8.6 in [Hemp–76]).



C
∗
-SIMPLE GROUPS 29

a decomposition in connected sum M ≈ M1♯ · · · ♯Mk, with the Mj

prime, and with a small dose of non-uniqueness which can be precisely
described; we have moreover a free product decomposition π1(M) =
π1(M1)∗· · ·∗π1(Mk), which is unique up to the order of the factors. This
is the Kneser-Milnor decomposition of M (Chapter 3 of [Hemp–76]).

Note that we can have π1(Mj) = {1} for some j. Standard arguments
of algebraic topology show that this can occur only if Mj is a 3-ball
or a non-standard 3-sphere. Those Mj which are 3-balls correspond
bijectively to spherical connected components of ∂M (Lemma 3.7 in
[Hemp–76]). Denote by5

• P(M) = M1♯ · · · ♯Mℓ the Poincaré completion of M

(as in Chapter 10 of [Hemp–76]), where M1, . . . , Mℓ stand now for the
non simply connected prime factors of M ; then π1(P(M)) ≈ π1(M),
and π1(Mj) is not the trivial group for j = 1, . . . , ℓ.

To sum up this part of the discussion, there are three cases to dis-
tinguish:

(i) π1(M) is a non-degenerate free product,
(ii) π1(M) is an infinite dihedral group,
(*) P(M) is prime.

(Beware: these cases overlap, see Remark 27.)

(5.2) A 3-manifold M is irreducible if any 2-sphere in M bounds a
3-ball. A prime manifold M is either irreducible or a 2-sphere bundle
over a circle (Lemma 3.13 in [Hemp–76]). Suppose M is a S2-bundle
over S1; if M is orientable, this bundle is trivial, M ≈ S2 × S1; if M
is non-orientable, this bundle is the non-trivial S2-bundle over S1, say
S2×̃S1; in both cases, M is a Seifert manifold.

Thus, we can modify the summing up of (5.1), and replace (*) by
(iii) and (iv):

(iii) P(M) is a Seifert manifold,
(iv) P(M) is irreducible and is not a Seifert manifold.

(5.3) A manifold M is ∂-irreducible if it is irreducible and if, more-
over, all the connected components of its boundary are incompressible.
(We refer to Chapter 6 of [Hemp–76] for the definition of “incompress-
ible”; recall also that the fundamental group of any incompressible
component of the boundary injects in the fundamental group of M .)

Lemma 26. Let M be a 3-manifold such that P(M) = M . Assume
that M is irreducible and not ∂-irreducible.

5Thus P(M) = M̂ modulo the Poincaré Conjecture.
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Then either π1(M) is a non-trivial free product, or M is a solid torus
or a solid Klein bottle.

Proof. Since ∂M has a compressible component, say F , there exists a
2-disc D in M such that ∂D = D ∩ F , with ∂D not contractible in F .
Set M1 = M rD; more precisely, choose an open regular neighborhood
N (D) of D and consider the complement M1 of N (D) in M (thus M1

is obtained by “splitting M along D”, and our M r D is denoted by
σD(M) on Page 4 of [JaSh–79]). There are two cases to distinguish.

Suppose first that M1 is connected. By the Seifert – Van Kampen
theorem (for which the reference we like best is § 3 of [Rham–69]),
we have π1(M) = π1(M1) ∗ Z. If M1 is simply connected, then M1

is homeomorphic to a 3-ball (otherwise M would not be irreducible),
and M is homeomorphic to either a solid torus or a solid Klein bottle,
depending on the action of the gluing map on the orientation of D. If
M1 is not simply connected, then π1(M) is a non-trivial free product.

If M1 has two connected components, say M ′ and M ′′, then π1(M) =
π1(M

′)∗π1(M
′′), again by the Seifert – Van Kampen Theorem. Observe

that neither M ′ nor M ′′ is simply connected (otherwise one of M ′, M ′′

would be a 3-ball, and ∂D would be contractible in F ), so that π1(M)
is a non-trivial free product. �

Remark 27. (i) Each case in the conclusion of Lemma 26 occurs.
(ii) The fundamental group of a ∂-irreducible compact 3-manifold is

not a non-trivial free product.

Proof. (i) Let M1 be a compact 3-manifold which is irreducible and
which has a non-empty boundary. Let D, D′ be two disjoint 2-discs in
∂M1, and let M be the result of attaching a handle D2×I to D and D′.
Then π1(M) ≈ π1(M1) ∗ Z. The manifold M is irreducible and, if M1

is not simply connected, π1(M) is a non-trivial free product; observe
that M is not ∂-irreducible.

(ii) This is a result of Stallings (previously a conjecture of Kneser);
see Theorem 7.1 in [Hemp–76]). �

Here is one way to sum up the discussion above.

Proposition 28. Let M be a compact 3-manifold. Then at least one
of the following statements is true:

(i) the group π1(M) is a non-degenerate free product, and is there-
fore a strongly Powers group.

(ii) π1(M) is an infinite dihedral group,
(iii) P(M) is a Seifert manifold,
(iv) P(M) is ∂-irreducible, is not a Seifert manifold, and π1(M) is

not a non-trivial free product.
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(5.4) Suppose that π1(M) is an infinite dihedral group, and moreover
that M is orientable; assume also that the Poincaré conjecture is true.
Case (ii) in Proposition 28 is then contained in Case (iii); indeed, it

follows from a theorem of [Tao–62] that M̂ is homeomorphic to P3♯P3.
Recall that P3♯P3 is a circle bundle over P2, and a fortiori a Seifert
manifold.

If π1(M) is a non-degenerate free product, P(M) cannot be a Seifert
manifold, because the fundamental group of a Seifert manifold not
covered by S3 has a normal infinite cyclic subgroup (Lemma 3.2 in
[Scot–83]). Thus:

• for orientable manifolds, exactly one of the statements (i), (iii),
(iv) of Proposition 28 is true.

(5.5) An irreducible manifold M is atoroidal if any incompressible
torus in M is isotopic to a component of ∂M . Here is the basic JSJ
decomposition theorem of Jaco-Shalen and Johansen (see Page 157 of
[JaSh–79], Page 483 of [Scot–83], and Theorem 3.4 of [Bona–02]):

• Let M be a compact 3-manifold which is ∂-irreducible and ori-
entable. There exists a minimal finite family of disjoint es-
sential tori T1, . . . , Tk such that each connected component of
M r

⋃k
j=1 Tj is either atoroidal or a Seifert manifold, and this

family is unique up to isotopy.

Recall that an essential torus is a torus which is embedded in M , two-
sided, incompressible, and not boundary-parallel. The components of
M r

⋃k
j=1 Tj are called the pieces. As a corollary of this theorem, we

have

• If M and T1, . . . , Tk are as above, there is a graph of groups
G = (G, Y ), with one vertex for each piece and one geometric
edge for each torus, and with Ge = π1(T

2) ≈ Z2 for all e ∈
E(Y ), such that π1(M) is isomorphic to the fundamental group
of G.

Moreover, if k > 0, either M is a torus bundle over S1, and
k = 1, or, for each edge e ∈ E(Y ), the images of Ge by ϕe

and ϕe are proper subgroups of Gt(e) and Gs(e) respectively, and
k ≥ 2.

The last statement follows from Theorem 10.2 in [Hemp–76].

(5.6) An orientable 3-manifold M is geometric if the interior of M
is homeomorphic to a Riemannian manifold Λ\X, where X is in a
standard list of eight 3-dimensional manifolds, traditionally denoted
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by

S3, E3, H3, S2 ×R, H2 × R, ˜PLS2(R), Nil and Sol,

and where Λ is a group of isometries of X acting freely on X. Equiv-
alently (this is a theorem), a 3-manifold is geometric if its interior
admits a complete Riemannian metric which is locally homogeneous,
namely which is such that any pair of points in this interior has a pair
of isometric neighbourhoods.

If X is one of these eight “models” which is neither H3 nor Sol
then M is necessarily a Seifert manifold. It follows that a geometric
3-manifold is of one of three types:

• an hyperbolic manifold,
• a Seifert manifold,
• a Sol manifold.

There are many 3-manifolds which are not geometric: for example, a
connected sum of two closed manifolds is geometric if and only if it is
the connected sum of two copies of P3. For all this, see [Scot–83], in
particular Page 403 for the last claim, as well as [Bona–02].

(5.7) An oriented 3-manifold is said to satisfy Thurston’s Geometri-
sation Conjecture if the pieces of the decomposition (5.5) are geometric.

In three preprints made public in 2002 and 2003, Grisha Perelman,
following the Hamilton program and using the Ricci flow, has sketched
a proof of Thurston’s Geometrisation Conjecture; particular cases have
been known before. See [MoTi] and references there.

6. C∗-simplicity of 3-groups:
proofs of Propositions 8 to 10

We denote by K2×̃I the non-trivial I-bundle over the Klein bottle.

Lemma 29. Let N be a compact orientable connected 3-manifold which
is ∂-irreducible and with a connected component T of the boundary
which is a 2-torus. Assume that the fundamental group π1(N) contains
a normal subgroup K 6= {1} which is peripheral, in the image of π1(T ).

Then one of the following conclusion holds:

(i) K ≈ Z and N is a Seifert manifold,
(ii) K ≈ Z2 and N ≈ T2 × I,
(iii) K ≈ Z2 and N ≈ K2×̃I.

Proof. Observe that K, as a subgroup of π1(T ), is isomorphic to one
of Z or Z2. Consider two cases, depending on Q + π1(N)/K is finite
or not.
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Case 1: Q is finite. Assume first that K ≈ Z2. Theorem 10.6 in
[Hemp–76] implies that N is a I-bundle over a surface F ; since F is
necessarily homeomorphic to one of T2 or K2, one of (ii), (iii) holds.

Assume next that K ≈ Z; we will arrive at a contradiction. By
a theorem of Epstein (9.8 in [Hemp–76]), π1(N) is torsion-free. Since
π1(N) contains an infinite cyclic subgroup of finite index, π1(N) is itself
infinite cyclic. But π1(N) contains π1(T ) which is isomorphic to Z2,
and this is impossible.

Case 2: Q is infinite. By Consequence (3) in Theorem 11.1 of
[Hemp–76], we have K ≈ Z. By the theorem of Seifert fibration (see
for our case Theorem II.6.4 in [JaSh–79]), N is a Seifert manifold. �

Let M be a orientable connected compact 3-manifold which is not
simply connected; we assume that P(M) = M (or equivalently, mod-

ulo the Poincaré Conjecture, that M̂ = M). We want to prove Propo-
sition 8; by Proposition 28, we can assume that M is moreover ∂-
irreducible.

If M is geometric, then M is either hyperbolic, or Seifert, or Sol,
and Proposition 8 for these cases follows from Example 7. Thus, we
can assume furthermore that

• M is not geometric and M contains an essential 2-torus T ;

see (5.5). Proposition 8 follows now from the two next lemmas.

Lemma 30. In the previous situation, if T is separating, then Γ is a
strongly Powers group.

Proof. Denote by M1, M2 the two components of the result of splitting
M along T . Since M is ∂-irreducible and T is essential, M1 and M2 are
also ∂-irreducible. Set A = π1(M1), B = π1(M2), and C = π1(T ) ≈ Z2,
so that Γ = A∗C B by the Seifert – Van Kampen theorem; the amalgam
is non-trivial, see (5.5). By Proposition 2, either Γ is a strongly Powers
group, or Ck 6= {1} for all k ≥ 1. From now on, we will assume that
C2 6= {1} (so that C1 6= {1}), and we will obtain a contradiction.

Set CA =
⋂

a∈A a−1Ca and CB =
⋂

b∈B b−1Cb, so that C1 = CA ∩CB

is a non-trivial subgroup of C ≈ Z2. Observe that CA is isomorphic to
either Z or Z2, and also that CA is the largest subgroup of C which is
normal in A.

Note that neither M1 nor M2 can be homeomorphic to T2 × I, oth-
erwise T would be boundary parallel in M , and this is not the case by
(5.5). Hence each of M1, M2 is either as in (i) or as in (iii) of Lemma
29, and we will end the proof by showing that each case is ruled out.

Suppose first that M1 ≈ M2 ≈ K2×̃I. Then ∂M1 ≈ ∂M2 ≈ T2,
and we have two 2-coverings Nj −→ Mj with Nj ≈ T2 × I (j = 1, 2).
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Thus we have a 2-covering N −→ M where N = N1 ∪ N2 is a T2-
bundle over S1, so that N can be viewed as obtained from T2 × I by
identifying the two connected components of the boundary by a gluing
homeomorphism of T2. A torus bundle over S1 is Sol if the gluing
map is Anosov, and Seifert if the gluing map is periodic or reducible
(Theorem 5.5 in [Scot–83] or Exercice 3.8.10 in [Thur–97]). If N is Sol,
then M is also Sol (Theorem 5.3.i in [Scot–83]). If N is Seifert, then
M is also Seifert (Theorem II.6.3 in [JaSh–79]). Thus, in all cases, M
is geometric (see Page 483 of [Scot–83]), but this has been ruled out.
Thus this case does not occur.

Suppose now that M1 and M2 are Seifert, with

A ⊲ CA ≈ Z ≈ CB ⊳ B.

Since any subgroup of Z is characteristic, C1 = CA ∩ CB is normal in
both A and B, so that C1 ≈ Z is also normal in Γ. By the theorem of
Seifert fibrations (already used in the proof of Lemma 29), it follows
that M is Seifert, but this has been ruled out.

We can finally suppose that M1 is Seifert with Z ≈ CA ⊳ A, and
M2 = K2×̃I with ∂M2 ≈ T2 and C = π1(∂M2) ≈ Z2; since CB is the
maximal subgroup of C which is normal in B, we have CB = C. It
follows that C1 = CA ∩ CB = CA. Since C1 is normal in A,

{1} 6= C2 = C1 ∩
( ⋂

b∈B

b−1C1b
)
⊳ CA ≈ Z,

C2 is normal in both A and B, and therefore also in Γ. (Though we
will not use this, let us observe that Ck = C2 for al k ≥ 2.) It follows
as above that M is Seifert, which has been ruled out. �

Lemma 31. In the previous situation, if T is non-separating, then Γ
is a strongly Powers group.

Proof. To prove this claim, denote by M1 the result of splitting M along
T . Since M is ∂-irreducible and T is essential, M1 is also ∂-irreducible.
Set G = π1(M1); the two boundary components of M1 coming from
the splitting correspond to two isomorphic subgroups of G, say H and
θ(H) where θ is an isomorphism with domain H , and H ≈ π1(T ) ≈ Z2.
If one had H = G or θ(H) = G, the manifold M would be a T2-bundle
over S1 (Theorem 10.2 in [Hemp–76]), and this cannot be (as above).
It follows that the HNN-extension Γ = π1(M) = HNN(G, H, θ) is
non-degenerate. By Proposition 4, either Γ is a strongly Powers group,
or Hk 6= {1} for all k ≥ 1. From now on, we will assume that H2 6= {1}
(so that H1 6= {1}), we will obtain a contradiction.



C
∗
-SIMPLE GROUPS 35

Set HG =
⋂

g∈G g−1Hg, so that H1 = HG ∩ τ−1Hτ ∩ τHτ−1 is a

non-trivial subgroup of H ≈ Z2. Observe that HG is isomorphic to
either Z or Z2, and also that HG is the maximal subgroup of H which
is normal in G.

The boundary of M1 has at least two connected components which
are 2-tori. Since ∂(K2×̃I) ≈ T2 is connected, M1 cannot fit in Case
(iii) of Lemma 29. If one had HG ≈ Z2 and M1 ≈ T2 × I, the manifold
M would be a T2-bundle over S1, consequently would be geometric,
and this is ruled out (as above).

Therefore, because of Lemma 29, we can assume that M1 is Seifert
and that HG ≈ Z. Choose a generator h of H1, so that H1 = 〈h〉. Since
〈h〉 is characteristic in HG, the subgroup 〈h〉 is normal in G. Since

{1} 6= H2 = 〈h〉 ∩ τ−1〈h〉τ ∩ τ〈h〉τ−1,

there exists a pair of non-zero integers p, q such that τ−1hpτ = hq. By
what we know about Baumslag-Solitar subgroups of 3-manifold groups
(Theorem VI.2.1 in [JaSh–79]), this implies that q = ±p. Hence Γ
contains a normal subgroup 〈hp〉 ≈ Z. It follows as above that M is a
Seifert manifold, in particular a geometric manifold, and this has been
ruled out.

This ends the proof. �

Proof of Corollary 9. Let K be a knot in S3. Denote by M the
complement of an open tubular neighbourhood of K, and let Γ =
π1(M) the group of K. Then M is irreducible, by the Alexander-
Schönflies Theorem. Assume moreover that K is not trivial, so that
∂M is an incompressible torus (Proposition 3.17 in [BuZi–85]), and M
a ∂-irreducible manifold.

Suppose first that the JSJ decomposition of M is trivial, so that M
is either Seifert or atoroidal (see 5.5). If M is a Seifert manifold, then Γ
is not C ∗-simple beause K is a torus knot ; see [Budn–06], Proposition
4, first case, with n = 1 (observe that, in the second case of the same
proposition, n ≥ 1 should be replaced by n ≥ 2). If M is atoroidal,
Thurston’s Hyperbolisation Theorem implies that M is an hyperbolic
manifold of finite volume (see e.g. [Bona–02], Section 6.1); in this case,
K is a hyperbolic knot and Γ is a strongly Powers group, see Example 7.

Suppose now that the JSJ decomposition of M is non-trivial (i.e.
involves at least one torus), so that K is a satellite knot. Geomet-
ric manifolds of this kind are classified; they are special kinds of Sol
manifolds (see Theorem 2.11 in [Bona–02]) and cannot be knot com-
plements. Hence M is not geometric, and Γ is a strongly Powers group
by our Lemmas 30 and 31. �



36 PIERRE DE LA HARPE AND JEAN-PHILIPPE PRÉAUX

Proof of Propositions 10. If Γ is of order two, neither Γ nor Γ′ = {1}
is C∗-simple, and the Proposition holds for a trivial reason. We assume
from now on that Γ is not of order two, and it follows that Γ is infinite
(a result of D. Epstein, Theorem 9.5 in [Hemp–76]).

Any subgroup of finite index in a C∗-simple group is itself C∗-simple
[BeHa–00]. In particular, if Γ is C∗-simple, so is Γ′.

Assume finally that Γ′ is C∗-simple. Then Γ′ is icc (see Appendix J
in [Harp–07]). It follows from Lemma 9.1 in [HaPr–07] that Γ is icc,
and then from [BeHa–00] that Γ is C∗-simple. �

7. A reminder on Powers groups and C∗-simple groups

A group Γ is a Powers groups if it is not reduced to one element and
if, for any finite subset F in Γ r {1} and for any integer N ≥ 1, there
exists a partition Γ = C ⊔ D and elements γ1, . . . , γN in Γ such that

fC ∩ C = ∅ for all f ∈ F ,
γjD ∩ γkD = ∅ for all j, k ∈ {1, . . . , N}, j 6= k.

Let us recall here the following facts:

• non-abelian free groups are Powers groups [Powe–75];
• Powers group have non-abelian free subgroups [BrPi];
• a Powers group is C∗-simple, and moreover its reduced C∗-

algebra has a unique trace;
• Proposition 17 applies to many examples for showing them to

be Powers groups;
• there are uncountably many countable groups Γ with pairwise

non-isomorphic reduced C∗-algebras (Corollary 9 in [AkLe–80],
building up on [McDu–69]);

• if N is an amenable normal subgroup of a Powers group (or
more generally of a C∗-simple group), then N = {1};

• there are C∗-simple groups which are not Powers groups (exam-
ples: PSLn(Z) for large n, and direct products of non-abelian
free groups);

see [Harp–07]. We do not know any example of a Powers group which
is not a strongly Powers group, as defined in the introduction; indeed,
the following question is open for us:

• does there exist a pair (Γ, N) of a group and a non-trivial nor-
mal subgroup with Γ C ∗-simple and N not C ∗-simple?

We are grateful to Bachir Bekka who has observed to us that, as a
consequence of [Pozn], if such a pair (Γ, N) exists, then N cannot
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be linear (a fortiori Γ cannot be linear). Indeed, suppose that a C*-
simple group Γ would contain a linear non-C*-simple non-trivial normal
subgroup N ; then, by Poznansky’s results, the amenable radical R
of N would be non-trivial; but amenable radicals are characteristic
subgroups, so that N would be normal in Γ, and this is impossible
since Γ is C*-simple. The question is closely related to that about the
existence of a group Γ which would not be C∗-simple and which would
not contain any non-trivial amenable normal subgroup [BeHa–00].

Finally, let us state the following strenghtening of Proposition 11
of [Harp–07]. Given a group Γ of homeomorphisms of a topological
space Ω, recall that the subset LΓ of Ω has been defined in the proof
of Proposition 17.

Proposition 32. Let Γ be a group which acts by homeomorphisms on
a Hausdorff topological space Ω. Assume the action of Γ is strongly
hyperbolic on Ω and strongly faithful on LΓ. Then

(i) any non-empty Γ-invariant closed subset of Ω contains LΓ.

Let moreover N be a normal subgroup of Γ which contains an hyperbolic
homeomorphism. Then

(ii) LN = LΓ;
(iii) N is a Powers group.

Proof. Observe that LΓ is non-empty because Γ contains hyperbolic
elements, and indeed infinite because the action of Γ is strongly hy-
perbolic. Claim (i) follows from the argument used for Proposition 16,
and Claim (ii) is then straightforward. Thus the action of N on Ω sat-
isfies the hypothesis of Proposition 11 in [Harp–07], so that Claim (iii)
follows. �

Let M be a connected 3-manifold which is hyperbolic and not ele-
mentary, as in Example 7. Let Γ = π1(M) be acting in the canonical
way on Ω = S2, the boundary of the classical hyperbolic space H3 of
dimension 3. Since Γ is discrete on H3 and not elementary, Γ is strongly
hyperbolic on S2 and strongly faithful on LΓ. It is then standard that

Corollary 33. With the notation above, any normal subgroup N 6= {1}
of Γ = π1(M) contains transverse pairs of hyperbolic transformations.

Proof. On the one hand, N cannot contain non-identity elliptic trans-
formations, because Γ is torsion-free. On the other hand, if N contains
parabolic transformations, then the closure of

{η ∈ S2 | γη = η for some parabolic γ ∈ Γ}.
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coincides with LΓ by (i) of the previous proposition, so that N contains
pairs (p1, p2) of parabolic elements with distinct fixed points, and pk

1p
k
2

is hyperbolic for k large enough.
Thus LN is non-empty. Since LN is Γ-invariant, LN = LΓ, and the

conclusion follows. �

Similarly, in a Gromov-hyperbolic group, any infinite subnormal sub-
group contains hyperbolic transformations.
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“Mémoires dédiés à Georges de Rham”, publiés par André Haefliger
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