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ARTICLE

Accurate, scalable and integrative haplotype
estimation
Olivier Delaneau 1,2*, Jean-François Zagury3, Matthew R. Robinson1,2, Jonathan L. Marchini4 &

Emmanouil T. Dermitzakis 5,6,7

The number of human genomes being genotyped or sequenced increases exponentially and

efficient haplotype estimation methods able to handle this amount of data are now required.

Here we present a method, SHAPEIT4, which substantially improves upon other methods to

process large genotype and high coverage sequencing datasets. It notably exhibits sub-linear

running times with sample size, provides highly accurate haplotypes and allows integrating

external phasing information such as large reference panels of haplotypes, collections of pre-

phased variants and long sequencing reads. We provide SHAPEIT4 in an open source format

and demonstrate its performance in terms of accuracy and running times on two gold

standard datasets: the UK Biobank data and the Genome In A Bottle.
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Haplotypes are key features of disease and population genetic
analyses1, and data sets in which they prove to be useful
evolve in two main directions. On the one hand, cost

reduction of single-nucleotide polymorphism (SNP) arrays allow
genotyping hundreds of thousands of individuals resulting in data
sets such as the UK Biobank (UKB), which regroup genotype data
for half a million samples2. To efficiently estimate haplotypes on
this scale, three methods, Eagle23,4, SHAPEIT35, and Beagle56,7,
have been recently proposed with running times that are either
linear or close to linear with sample size. Data sets consisting of
millions of samples are now being generated by projects such as the
Million Veteran Program8 or by commercial companies such as
23andMe, which has now genotyped more than 5 million custo-
mers so far. In this context, it is unclear if the scaling with sample
size offered by these methods is able to conveniently process
genotype data on that scale. On the other hand, high-throughput
sequencing now enables exhaustive screening of millions of genetic
variants within tens of thousands of individuals such as in the
Haplotype Reference Consortium data set9. Latter developments in
sequencing have also witnessed the introduction of long reads
technologies such as PacBio10 or Oxford Nanopore11. By covering
multiple nearby heterozygous variants in an individual, the long
reads generated by these sequencing technologies allow resolving
haplotypes across hundreds of kilobases. To achieve this task,
commonly called haplotype assembly, multiple methods have been
proposed so far such as WhatsHap12, HapCut13, or Long Ranger14.
While these approaches are extremely efficient to resolve the phase
between nearby variants, they do not allow full haplotype resolu-
tion across entire chromosome. To assemble together these blocks
of phased variants, usually called phase sets, two types of
approaches are explored: experimental solutions based either on
Hi-C15 or strand-seq16 or computational solutions requiring
population level data17. At this point, it becomes clear that hap-
lotype estimation is now facing two main challenges: computa-
tional efficiently to accurately process large-scale data sets and data
integration to exploit simultaneously large reference panels of
haplotypes and long sequencing reads. In this paper, we describe
and benchmark a method for haplotype estimation, SHAPEIT4,
which proposes efficient solutions to these two challenges. Speci-
fically, it allows processing either SNP array or sequencing data
accurately with running times that are sub-linear with sample size,
therefore making it well suited for very large-scale data sets. In
addition, it also facilitates the integration of additional phasing
information such as reference haplotypes, long sequencing reads,
and sets of pre-phased variants altogether to boost the quality of
the resulting haplotypes. To achieve this, the method builds on
three main components: (i) the Li and Stephens model (LSM)18 to
capture long-range haplotype sharing between individuals, (ii) the
Positional Burrows–Wheeler Transform (PBWT)19 to speed up the
computations involved in the LSM and (iii) the compact repre-
sentation of the solution space built in previous versions of
SHAPEIT20,21, which allows efficient haplotype sampling and easy
integration of additional phasing information17,22. To demonstrate
its performance, we benchmark it on two gold standard data sets:
the UKB2 to evaluate its ability to process large-scale SNP array
data sets and on the Genome In A Bottle (GIAB)23 to assess its
ability to leverage long sequencing read information.

Results
Overview of SHAPEIT4. SHAPEIT4 improves upon previous
SHAPEIT versions at two main levels. As a first major
improvement, it now uses an approach based on the PBWT to
quickly assemble small sets of informative haplotypes to condi-
tion on when estimating haplotypes. This provides a computa-
tionally efficient alternative to the previous approach based on

Hamming distance20,24. A PBWT of haplotypes is a data structure
in which any two haplotypes sharing a long prefix (i.e., match) at
a given position are sorted next to each other at that position.
SHAPEIT4 takes advantage of this by maintaining a PBWT of all
the haplotype estimates so that long matches between haplotypes
can be identified in constant time. In practice, SHAPEIT4 works
within overlapping genomic regions (of 2 Mb by default) and
proceeds as follows to update the phase of an individual in a given
region: (i) it interrogates the PBWT arrays every eight variants to
get the P haplotypes that share the longest prefixes with the
current haplotype estimates at that position, (ii) it collapses the
haplotypes identified across the entire region into a list of K
distinct haplotypes, and (iii) it runs the LSM conditioning on the
K haplotypes (Fig. 1a, b). In this approach, P is the main para-
meter controlling the trade-off between speed and accuracy and
gives a model in which K varies and adapts to the data and region
being processed as opposed to previous methods in which K is
usually fixed20,24. Indeed, K varies depending on the length of the
matches found in the PBWT: longer matches involve smaller K,
which typically occurs as the algorithm converges, as the level of
relatedness between individuals increases and more importantly
as the number of samples in the data set increases. The latter
implies, and we later show, that SHAPEIT4 scales sub-linearly
with sample size. All other methods proposed so far exhibit at
best linear or close-to-linear scaling. In other words, the time
spent per genome decreases as the total number of genomes being
processed increases.

As a second improvement, SHAPEIT4 offers the possibility to
integrate three additional layers of phasing information when
estimating haplotypes: a reference panel of haplotypes, phase
information contained in sequencing reads and subsets of
genotypes at which the phase is known a priori (termed as
haplotype scaffold). This builds on previous work developed as
part of SHAPEIT217,22 so that all these layers of information can
be conveniently and simultaneously used. Adapting the method
to leverage reference panels of haplotypes is straightforward: the
PBWT matching procedure was just extended to also consider
the reference haplotypes when selecting conditioning haplotypes.
Concerning the two other layers of information, we implemented
them as constraints in the haplotype sampling scheme.
Specifically, we leverage phase information contained in
sequencing reads in a two-step approach in order to easily
accommodate with new sequencing technologies as they are
developed. First, we perform haplotype assembly with methods
such as WhatsHap for instance12. This essentially regroups
nearby heterozygous genotypes into phase sets when they are
overlapped by the same sequencing reads (Fig. 1c). Then, we
model the resulting phase sets as probabilistic constraints in
the SHAPEIT4 haplotype sampling scheme so that haplotype
configurations consistent with them are favored but not
necessarily sampled. This is controlled by a parameter that
defines the expected error rates in the phase sets (default is
0.0001). As a consequence, depending on the certainty of the
population-based phasing calls, we basically have two possible
scenarios: (i) uncertain calls can get informed by the phase sets,
which typically occur at rare variants and (ii) calls with high
certainty can correct phase sets when they contain errors. For the
haplotype scaffold, we explored two possible strategies in this
work: a family-based scaffold that we derived from genotyped
parents and a population-based scaffold that we derived from
very large reference panels of haplotypes (Fig. 1d). In both cases,
this gives reliable haplotype estimates defined at a sparser set of
variants that we leverage by enforcing SHAPEIT4 to only sample
haplotypes that are fully consistent with the available haplotype
scaffolds. This helps the algorithm to converge towards good
resolutions by pruning out unlikely configurations.
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Phasing large-scale data sets. We assessed the performance of
SHAPEIT4 on genotype data sets with large sample sizes and
compared it to the following methods: SHAPEIT35, Eagle23,4, and
Beagle56,7. To do so, we built multiple subsets of the UKB data set
comprising up to ~400,000 individuals, 500 of them being trio
children for whom haplotypes can be derived with certainty from
the family information. We used data on chromosome 20, which
comprises 18,477 SNPs. For each phasing scenario, we measured
the overall running times and the switch error rates (SERs) on the
500 trio children. Overall, we found that all tested methods
provide haplotype estimates with low error rates, which sub-
stantially decrease as sample size increases (Fig. 2a). A closer look
reveals that both Beagle5 and SHAPEIT4-P= 4 significantly
outperforms all other methods across all tested sample sizes. For
instance, on the largest sample size, we get the following error
rates: SHAPEIT4-P= 4 (0.117%), Beagle5 (0.125%), SHAPEIT4-
P= 2 (0.139%), Eagle2 (0.178%), SHAPEIT4-P= 1 (0.202%), and
SHAPEIT3 (0.356%). As expected, increasing P yields to appre-
ciable improvements in accuracy: for instance, the P= 2 and P=
4 configurations decrease the error rate of P= 1 by 31 and 42%
on the largest sample size, respectively. This shows that having
multiple candidates to copy from at a given position helps the
algorithm to reach good estimates. Accuracy of the haplotype
estimates can also be assessed by looking at the mean length of
haplotype segments free of any switch errors. These segments

become very long when phasing 400,000 samples: 15.50 and
14.75 Mb for SHAPEIT4-P= 4 and Beagle5, respectively (Sup-
plementary Fig. 1). In terms of running times, we found SHA-
PEIT4 to be substantially faster than all other methods regardless
of the sample size (Fig. 2b). For instance, SHAPEIT4-P= 4 is 1.6
to 3.6 times faster than Beagle5, 1.9 to 5.8 times faster than
Eagle2, and 4.1 to 11 times faster than SHAPEIT3 when phasing
from 10,000 to 400,000 individuals. The speedup gets better with
sample size as a consequence of sub-linear scaling. Indeed,
SHAPEIT4 spends less time per genome on larger sample sizes
conversely to all other methods (Fig. 2c). The sub-linear scaling
can also be noted when looking at the variation of the number of
conditioning states with sample sizes and iterations (Supple-
mentary Fig. 2A–C) or when looking at the coefficients of the
fitted functions relating running times T to sample size N on this
benchmark data set (Supplementary Fig. 2D–F). This allows
SHAPEIT4 to offer the best trade-off between speed and accuracy
across all tested methods (Fig. 2d). To assess its robustness in
other situations, we then run it on two additional data sets: one
based on UKB in which we introduced variable amounts of
genotyping errors and another based on 1000 Genomes samples
that mixes samples from different ancestries. In both cases,
SHAPEIT4 performs well (supplementary Figs. 3 and 4)
demonstrating that the PBWT-based approach adapts well in
such situations owing to its ability to select a variable number of
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Fig. 1 SHAPEIT4 overview. In all panels is shown the unphased genotype data for individual G. a Selection of a small number of informative haplotypes.
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conditioning states. Now, in terms of memory usage, we also
found SHAPEIT4 to substantially improve upon SHAPEIT3
(3.5× decrease) and to have memory requirements that match
available hardware capabilities as Beagle5 and Eagle2 do (Sup-
plementary Fig. 5). For instance, on the largest sample size, we
get the following ranking: Eagle2 (8.8 Gb), SHAPEIT4-P= 1
(30.6 Gb), SHAPEIT4-P= 2 (37.9 Gb), Beagle5 (47.3 Gb), SHA-
PEIT4-P= 4 (52.3 Gb), and SHAPEIT3 (182.4 Gb). Overall, we
found in this first benchmark that SHAPEIT4 offers the best
compromise between accuracy, speed, and memory usage across
all tested methods.

Phasing from large reference panels. We also assessed the per-
formance of SHAPEIT4 when phasing from large reference
panels of haplotypes. To do so, we used the UKB haplotypes
exhibiting the smallest SERs in the first benchmark in which we
removed the haplotypes of the 500 trio children. This resulted in
reference panels containing from ~1000 to ~800,000 reference
haplotypes. We then phased against these candidate reference
panels the 500 trio children alone or as part of larger data sets
comprising 5000 to 50,000 individuals, using either SHAPEIT4,
Beagle5, or Eagle2. For each phasing scenario, we measured the
overall running times and the SERs on the 500 trio children. In
this second benchmark, we found the same accuracy patterns

than in the first benchmark: overall error rates decrease as
reference panel size increases and both SHAPEIT4-P= 4 and
Beagle5 outperform all other methods no matter the amount of
data being processed (Fig. 3a–c). In terms of running times, we
found SHAPEIT4 to be faster than any other methods in all
scenarios excepted one (Fig. 3d–f): when phasing few samples
(=500) from very large reference panels (>400,000 haplotypes)
where Eagle2 seems to be slightly faster (Fig. 3d). Interestingly, we
also found that the PBWT approach used by SHAPEIT4 to
have an interesting property in this particular context: phasing
large sample size sizes (=50,000 samples) is faster when using
large reference panels (Fig. 3f). Again here, we found SHAPEIT4
to provide overall the best trade-off between speed and accuracy
when phasing from large reference panels.

Phasing using sequence reads. We finally assessed the ability of
SHAPEIT4 to leverage additional phase information when pro-
cessing genotypes derived from high-coverage sequencing data.
To do so, we merged the GIAB high-coverage genotype data on
chromosome 20 (n= 1) with unrelated European individuals that
have been sequenced as a part of the 1000 Genomes project25

(n= 502), resulting in a data set comprising 503 individuals typed
at 507,181 variants. We then phased this data set using SHA-
PEIT4 and two different layers of phase information. First, we
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performed haplotype assembly (using WhatsHap; Fig. 1c) for the
GIAB genotype data using five types of sequencing data23:
SOLiD5500W, Complete Genomics, Illumina HiSeq, PacBio, and
10x Genomics, which informed the phase at 9.8%, 35.1%, 57.9%,
90.1%, and 97.7% of the heterozygous genotypes, respectively
(Table 1). Second, we built two different haplotype scaffolds for
this data set: (i) one derived from a larger set of samples geno-
typed on Illumina OMNI2.5M SNP arrays in which most het-
erozygous genotypes can be phased using duos/trios and (ii)
another one derived by phasing all 503 samples against all
available UKB haplotypes obtained in the first benchmark
(~800,000 haplotypes; Fig. 1d). The first scaffold covers 197
(=39%) individuals (including NA12878) at 43,176 variants
(=8.5%) and fixes the phase of 6.59% of all the heterozygous
genotypes. The second scaffold covers all 503 individuals at
16,805 variants (=3.3%) and fixes the phase at 6.25% of all the
heterozygous genotypes. In this third benchmark, we could
make the following observations. First, the error rates of

SHAPEIT4 significantly decrease when using the phase infor-
mation contained in the phase sets, demonstrating the ability of
the methods to leverage such information (Fig. 4a). Second, the
various sequencing technologies exhibit large differences in terms
of accuracy. Not surprisingly, technologies based on long or
barcoded reads produce more accurate haplotypes with error
rates as low as 0.23% and 0.07% for PacBio and 10x Genomics,
respectively (Fig. 4a). Third, sparse haplotype scaffolds derived
either from family information or large reference panels provide
appreciable boosts in accuracy, particularly at common variants
(minor allele frequency >1%; Fig. 4b). This demonstrates the
benefit of using haplotype scaffolds when phasing sequencing
data. Fourth, SHAPEIT4 allows correcting many switch errors
introduced at the haplotype assembly step (Fig. 4c). For instance,
in our data, it corrects 26% and 79% of the switch errors obtained
from Illumina HiSeq and PacBio, respectively. Fifth, the error
model for phase sets performs well regardless of the expected
error rates (Supplementary Fig. 6) and at least as well as the
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Table 1 Summary statistics for GIAB sequencing data.

No. of reads (millions) Mean read length (bp) Mean insert size (bp) Mean coverage %hets phased

Solid5500W 22.13 68 NA 22 9.8
Complete Genomics 132.6 33 282 77 35.1
Illumina HiSeq 13.29 148 546 33 57.9
PacBio 1.04 3707 2048 42 90.1
10x Genomics 22.27 88 194 33 97.7

For each type of sequencing data available for GIAB is given the total number of reads in millions, the mean length of the reads in base pairs, the mean insert size in base pairs, the means coverage, and
the percentage of heterozygous genotypes belonging to phase sets
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model used in SHAPEIT2 while being able to process any type of
sequencing data (Supplementary Fig. 7). Finally, the value of
integrating data using SHAPEIT4 can be summarized by com-
paring three phasing scenarios of interest (Supplementary Fig. 8):
(i) the default situation in which the data was directly phased
without using any additional information (SER= 0.82%), (ii) the
situation that can often be implemented in which both Illumina
HiSeq data and a UKB based haplotype scaffold are used in the
estimation (SER= 0.42%, 49% decrease in error rate), and (iii)
the most accurate situation in which both 10x Genomics data and
a trio based haplotype scaffold are used (SER= 0.07%, 91%
decrease in error rate).

Discussion
We present here a method for statistical haplotype estimation,
SHAPEIT4, that substantially improves upon existing methods in
terms of flexibility and computational efficiency. One of the key
improvements resides in its ability to quickly select a variable
number of informative haplotypes to condition on through a
PBWT-based approach. The resulting method exhibits sub-linear
running times with sample size and provides highly accurate
haplotype estimates for large-scale data sets. We demonstrated
this on the largest genotype data set available so far, the UKB, in
which SHAPEIT4 offers the best trade-off between speed and
accuracy across all tested methods. We predict SHAPEIT4 to be
particularly well suited to process data sets reaching a million
individuals and above. Of note, the use of PBWT in the context of
phasing was pioneered in Eagle23,4 in order to build compact
representations of a fixed number of conditioning haplotypes
(called HapHedge structures). This fundamentally differs from
our approach in which we use PBWT to identify a small and
variable number of informative haplotypes to condition on. In
addition, even though our use of PBWT in this context involves
overall running times that increase sub-linearly with sample size,
this does not formally mean that the SHAPEIT4 algorithm has
sub-linear complexity as it still contains two components with
linear complexity: I/O operations and PBWT passes. However,
these two linear components are expected to have small con-
tributions to the overall running times in comparison of the
HMM-based computations for sample sizes in the order of mil-
lions. Beyond phasing, we believe this PBWT-based approach to
have the potential to speed up computations involved by other
haplotype-based models used in population genetics for admix-
ture mapping26, identity-by-decent (IBD) mapping27 or genotype
imputation24,28. Nowadays, haplotype phasing is commonly

performed on imputation servers such as the UMich server based
on large reference panels of haplotypes. We demonstrated that
the initial implementation of SHAPEIT4 already provides high
performance in this context and we predict that this can be
further improved by using other PBWT algorithms (e.g., Algo-
rithm 5 from Durbin19). Besides computational efficiency,
SHAPEIT4 is also flexible enough to conveniently leverage
additional phase information contained in long sequencing reads.
We notably showed that SHAPEIT4 is able to deliver very
accurate haplotypes for high-coverage sequenced data when
leveraging long or barcoded reads through a first step of haplo-
type assembly (e.g., 10x Genomics). In addition, its ability to use
haplotype scaffolds offers an interesting framework in which the
high accuracy delivered by very large SNP array data sets can be
propagated into high-coverage sequencing data sets of smaller
sample sizes. We predict that these two functionalities will help
improving phasing servers dedicated to whole-genome sequenced
samples29. It is also important to mention here that SHAPEIT4 is
not designed to perform genotype calling from low coverage
sequencing and adapting the model for such data would need
some additional work. Overall, we believe SHAPEIT4 to be par-
ticularly well suited to fully exploit the potential of the large data
sets being generated using either SNP arrays or new sequencing
technologies.

Methods
Haplotype sampling. Let us assume we have genotype data for N individuals
across L variant sites that we want to phase in 2N haplotypes. To achieve this,
SHAPEIT4 uses an iterative approach. It takes each individual’s genotype data G in
turn and estimates a consistent pair of haplotypes D= (h1, h2) given the set H of
haplotypes that has been previously estimated for the other N− 1 individuals.
When repeated many times, this builds a Monte Carlo Markov chain (MCMC) is
in which a single iteration consists in updating the haplotypes of all N individuals.
To update the haplotypes of G, SHAPEIT4 proceeds probabilistically by sampling a
new pair of haplotypes from the posterior distribution P(D|H). This posterior is
based on a particular Hidden Markov Model, the LSM, that build haplotypes for G
as mosaics of other haplotypes in H. This builds on the idea that individuals in a
population share relatively long stretches of haplotypes inherited from common
ancestors. While being accurate, the LSM is also very computationally demanding
and rapidly becomes intractable on large data sets. To ameliorate this, we intro-
duced in SHAPEIT1 an algorithm able to sample from P(D|H) in linear times with
the size of H. We achieved this by carrying out all LSM computations on compact
graph representations of all possible haplotype configurations that are consistent
with each individual (called genotype graph; see Supplementary Fig. 9 for a gra-
phical description and Delaneau et al.21 for a formal one). In SHAPEIT4, we
essentially use the same sampling algorithm that we completely re-implemented for
better performance:

- We used bitwise arithmetic for all genotype graph construction and
manipulation routines which resulted in ~100× speed-ups in some cases.
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- We defined more compact data structures to store genotype graphs in
memory, which resulted in a >3× decrease in memory usage.

- We optimized the code for HMM computations to make it cache friendly
and vectorised. This speeded up the HMM computations by ~3×.

Haplotype selection. A common approach to further speed up the sampling from
P(D|H) is to only use a subset of K conditioning haplotypes instead of the full
available set of 2N− 2 haplotypes (with K « 2N− 2). In SHAPEIT220, we define the
conditioning set as the K haplotypes minimizing the Hamming distance with the
current estimate D= (h1, h2). In practice, this requires a quadratic scan of the
haplotype data in O(LN2) that becomes prohibitive when facing large sample sizes
(e.g., N > 10,000). In SHAPEIT35, we improved this by maintaining a clustering of
the haplotypes so that Hamming distance minimization is only performed on the
haplotypes (typically 4000) belonging to the same clusters than D. This approach
exhibits close-to-linear running times in O(LN logN). In SHAPEIT4, we propose a
fully linear approach in O(LN) to assemble a conditioning set of K haplotypes that
share long matches with D. To do so, we build a PBWT of the full set of 2N
haplotypes before each MCMC iteration (so 15 times total) by running the algo-
rithm 2 from Durbin19. This algorithm is very fast and only requires a single O(LN)
sweep through the data. This gives prefix and divergence arrays that we store every
eight variants by default to reduce memory usage. A prefix array is a permutation
vector of the original haplotype indexes in which haplotypes sharing long prefixes
(i.e., matches) are sorted next to each other. A divergence array specifies the starts
of the matches. We extended the algorithm to also give a third array relating
original haplotype indexes to permuted ones so that any haplotype can be located
in the prefix or divergence arrays in constant time. Given these PBWT arrays, we
can then update the haplotypes for G as follows:

- We identify the P haplotypes sharing the longest prefixes with h1 and h2 at
each stored variants. By definition, these haplotypes are sorted next to h1
and h2 in the prefix arrays and the procedure has therefore running times
proportional to O(L).

- We collapse the 2LP/8 resulting haplotypes into a list of K distinct
haplotypes (i.e., we remove duplicates). Long matches involve that the same
haplotypes will be reported across multiple variants and therefore fewer
distinct haplotypes once collapsed.

- We run the LSM onto the resulting conditioning set to get new estimates
for G.

Using the same set of conditioning haplotypes across entire chromosomes is
inefficient since some of them would only be informative at particular genomic
regions. To account for this, we implemented the phasing procedure described
above in a sliding window of size W (W= 2Mb by default) similarly to what has
been already done in SHAPEIT2. Overall, this gives a procedure that has multiple
interesting properties. First, it provides informative haplotypes for the LSM as they
are guaranteed to share long matches with D in the region of interest. Second, it is
fast since building the PBWT and finding matches are done in running times
proportional to O(LN). Finally, it gives a number of conditioning haplotypes that
varies depending on the matches found in the PBWT: longer matches involve fewer
distinct haplotypes and therefore smaller K. This implies that the size of the LSM
(i) adapts to the local level of relatedness between individuals, (ii) shrinks as the
MCMC converges, and (iii) gets smaller for large sample sizes (i.e., sub-linearity
with sample size).

MCMC iteration scheme. In SHAPEIT2 and 3, we start from a random haplotype
resolution for all individuals and then perform 35 MCMC iterations to converge
towards a reasonable haplotype resolution. In SHAPEIT4, we implemented three
new features to improve the mixing of the MCMC:

- Initialization: We use a quick-and-dirty initialization of the haplotypes so
that the MCMC does not start from a random resolution. To do so, we use a
simplified version of the recursive phasing approach implemented in the
PBWT software package (see https://github.com/richarddurbin/pbwt),
which provides initial haplotype estimates very quickly in O(NL) with
SERs in the range of 8–10% in our data. In practice, we first build a vector
Bl.+ 1 that contains the 2N alleles carried by the N individuals at variant l+ 1
in which reference alleles are encoded as −1, alternative ones as 1 and those
occurring at heterozygous genotypes as 0. Then, we phase genotypes by
progressively imputing missing data in Bl+ 1 (i.e., zeros) given the PBWT
prefix array Al derived from the previous position l. Specifically, we make
inference on the alleles carried by the two haplotypes of a given individual
by copying those carried by neighbors as defined by the PBWT prefix array
Al (i.e., located just before and after in Al). Of note, for efficiency reasons,
this procedure also requires to keep track of indexes of the haplotypes in Al:
we store those in a vector Il (see Fig. 5). Details on the exact procedure can
be found in Fig. 5. Once all missing data filled, we build the prefix array Al+

1 for position l+ 1 and move to the next, l+ 2, until completion.
- IBD2 protection: We designed an approach to prevent SHAPEIT4 to copy

haplotypes across individuals sharing both of their haplotypes IBD (i.e.
IBD2). This typically happens in the case of siblings and constitutes a
converge trap that can really hurt accuracy (the two individuals just copy

their haplotypes without making any updates). To do so, we extended the
algorithm 3 of Durbin19 to deal with the tri-allelic nature of genotype data
and report genotype matches between individuals that are larger thanWMb
(i.e., the sliding window). We then use the reported matches to define local
constraints that we account for when building the conditioning sets of
haplotypes. By constraint, we mean here triplets (i, j, w), where i and j are
two individuals that are IBD2 in window w. In other words, when updating
the phase of an individual in a given window, we prevent from copying
other individuals that are IBD2 in this window.

- Specialized iterations: We designed three different types of iterations to help
MCMC mixing. A burn-in iteration (b) uses transition probabilities in the
genotype graphs to sample new pairs of haplotypes. A pruning iteration (p)
uses transition probabilities for sampling and also for trimming unlikely
haplotype configurations in the genotype graphs by merging consecutive
segments. Of note, this pruning iteration differs from previous SHAPEIT
versions: instead of doing a single pruning stage made of multiple iterations
(=8), we perform multiple stages of pruning (by default 3), each made of a
single iteration. Finally, a main iteration (m) samples haplotypes and stores
transition probabilities so that they can be averaged at the end of the run to
produce final estimates. The user can specify any sequence of iterations and
the default is 5b, 1p, 1b, 1p, 1b, 1p, 5m, which we found to perform well.

As a consequence of these three features, SHAPEIT4 needs a small number of
MCMC iterations to reach good level of convergence: by default, it only performs
15 iterations as opposed to previous versions that required 35 iterations (2.3× more
iterations).

Reference panel. SHAPEIT4 can borrow information from large reference panel
of haplotypes, which proves to be particularly useful when phasing only few
individuals. To achieve this, SHAPEIT4 simply considers the additional reference
haplotypes when building or updating the PBWT to allow conditioning haplotypes
to also originate from the reference panel. Besides this, the iteration scheme
remains remarkably identical to the algorithm described above. Of note, SHA-
PEIT4 only retains variants in the overlap between the main and the
reference panel.

Haplotype scaffold. SHAPEIT4 also allows for some heterozygous genotypes to be
phased a priori. This approach has been previously introduced in SHAPEIT2 in the
context of the 1000 Genomes project to perform genotype calling from low

Fig. 5 Phase genotypes in Bl+ 1 using prefix array Al.
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coverage sequencing data20. This scaffold of pre-phased heterozygous genotypes
can originate for instance from pedigrees in which many of the children’ genotypes
can be accurately phased using Mendel inheritance logic. In practice, we imple-
mented this functionality by simply pruning out all haplotype configurations in the
genotype graphs that are inconsistent with the available scaffold of haplotypes
(Supplementary Fig. 9). Of note, SHAPEIT4 does not have any requirements in
terms of variant overlap between the main genotype data and the scaffold haplo-
type data and therefore allows the latter to be derived from SNP array data while
the former from high-coverage sequencing data. In the context of this work, we
demonstrate the potential of this approach by deriving scaffolds from either trios or
massive reference panels.

Phase informative reads. SHAPEIT4 allows haplotype estimation to be informed
by sequencing reads overlapping multiple heterozygous genotypes. Haplotype
assembly methods such as Whatshap12 or HapCut13 are very efficient at
regrouping heterozygous genotypes within phase sets: groups of nearby genotypes
for which the phase is inferred from sequencing reads that overlap them. In
practice, SHAPEIT4 accommodates phase sets in a probabilistic manner (Supple-
mentary Fig. 9). When sampling new haplotypes for G, it assumes an error model
in which paths in the genotype graphs that are consistent with the phase sets
receive more weight than paths that are not. In other words, SHAPEIT4 samples
haplotypes from the distribution P DjH;Rð Þ / PðDjHÞPðDjRÞ, where R represents
the available phase sets for G and assuming that H and R are conditionally
independent of D. The sampling strategy is essentially the same than the one we
previously developed for SHAPEIT217. Only the way we compute the distribution
P(D|R) changes. We now use a simpler version in order to easily accommodate
with new developments in sequencing technologies and haplotype assembly
methods. Briefly, the distribution P(D|R) is now controlled by a parameter that
defines the expected error rate in the phase sets and not directly computed from the
sequencing reads. By default, we assume an error rate of 0.0001 and used this value
in all reported results. As a consequence, the sampled haplotypes D for G are not
necessarily consistent with all the phase sets which allows correcting phasing errors
in sequencing reads when phase sets are too discordant with population-based
phasing. Of note, this method comes with three additional properties as a result of
the data structure we used to store the space of possible haplotypes. First, the
method can handle cases in which phase sets are disjoint (i.e., overlapping), which
typically occurs in case of paired-end reads with large insert sizes. Second, the
method does not use phase sets that are only informative for non-consecutive
segments in the genotype graph structure, which occurs for a phase set that con-
nects two distal heterozygous genotypes spanning multiple other heterozygous
genotypes not included in the phase set. This may happen in the case of paired-end
reads with very large insert sizes or in the case of Hi-C data for instance. As a
segment of the genotype graph initially contains three heterozygous genotypes,
SHAPEIT4 cannot use phase sets spanning more than three heterozygous geno-
types in the first iterations. However, since consecutive segments are merged in the
pruning iterations, SHAPEIT4 is still able to use phase sets spanning more than
three heterozygous genotypes in the last set of iterations. Third, when using phase
sets together with a haplotype scaffold, the phase given by the scaffold is always
prioritized which means that reads inconsistent with the scaffold are automatically
discarded from the analysis.

I/O interface. All the input and output interface implemented in SHAPEIT4 is
built on the High-Throughput Sequencing library (HTSlib30,31) so that genotype
and haplotype data is read and written in either variant call format (VCF) or its
binary version; the BCF format. This has multiple benefits. All data management
on input and output files can be done using standard tools such as bcftools31. Using
the BCF format significantly speeds up I/O operations. VCF/BCF formats natively
define phase sets, which facilitates the integration of phase information contained
in sequencing reads in SHAPEIT4. HTSlib allows reading simultaneously multiple
VCF/BCF files, which facilitates complex SHAPEIT4 runs combining, for instance,
genotype data with phase sets, a reference panel of haplotypes and a scaffold of
haplotypes.

The UKB data sets. We generated genotype data sets with large sample sizes from
the full release of the UKB data set containing 488,377 individuals genotyped by
SNP arrays at 805,426 genetic variants. To do so, we proceeded according to the
five following steps. First, we filtered out all genetic variants with more than 5%
missing genotypes. Second, we extracted data only for chromosome 20, resulting in
18,477 variants in total. Third, we build trio candidates (two parents and one child)
from the pairwise kinship and IBS0 estimates (identity-by-state equals 0) between
individuals that have been measured as part of the UKB study2 and took the first
500 trios minimizing Mendel inconsistencies between parents and children geno-
types. The 500 children constitute high-quality validation data since their haplo-
types can be almost entirely resolved using Mendel inheritance logic. Fourth, we
merged these 500 individuals with multiple random subsets of other UKB indi-
viduals in order to build 11 genotype data sets comprising between 500 and
400,000 individuals in total. Finally, we remove all individuals containing more
than 5% missing genotypes in each data set. This gave us 11 data sets comprising
499, 995, 1997, 4973, 9939, 19,894, 49,752, 99,452, 198,894, 298,383, and 397,839

individuals for which genotype data is available at 18,477 variants. To mimic
phasing from large reference panels, we used the best haplotype estimates obtained
for each sample size from, which we removed the haplotypes of the 500 children.
This resulted in 10 reference panels comprising 992, 2996, 8948, 18,880, 38,790,
98,506, 197,906, 396,790, 595,768, and 794,680 haplotypes defined at 18477 var-
iants. All reference panels have been compressed to speed up I/O of the down-
stream phasing runs: we used BCF formats for both SHAPEIT4 and Eagle2 (using
bcftools v1.4) and bref3 format for Beagle5 (using bref3.28Sep18.793.jar from
https://faculty.washington.edu/browning/beagle/). For the main panels that were
phased against these reference panels, we used the 500 trio children that we merged
with 4500 and 49,500 other unrelated UKB samples. This resulted in three main
panels with 500, 5000, and 50,000 individuals with genotype data at 18,477 var-
iants. Of note, all data management was done using bcftools v.1.431.

Phasing runs on the UKB data sets. We phased the UKB data sets using SHA-
PEIT4 and three other widely used phasing methods: SHAPET3 (https://jmarchini.
org/shapeit3/), Eagle v2.4 (https://github.com/poruloh/Eagle), and Beagle5 (bea-
gle.14May18.ff7.jar; https://faculty.washington.edu/browning/beagle/beagle.html).
All runs were done on a RedHat server with Intel(R) Xeon(R) CPU E7-8870 v4 @
2.10 GHz (80 physical cores and 160 logical cores) and 3 Tb of RAM. Eagle v2.4
and Beagle5 have been run with default parameters. SHAPEIT3 has been run using
the options–states 200,–cluster-size 4000 and–early-stopping. All methods were
run using 10 threads to speed up computations. The reported running times and
memory usages were obtained using the GNU time v1.9 command. The running
times are computed as the sum of the User and System times and the memory
usage as the Maximum resident set size. The error rates of each method was
measured using the SER on the 500 trio children. Specifically, we enumerated all
heterozygous genotypes (i.e., hets) in the 500 trio children that can be phased using
Mendel inheritance logic (i.e., no triple hets and no Mendel inconsistencies). Then,
we computed the SER as the fraction of successive pairs of hets that are incorrectly
phased over all possible pairs. Confidence intervals for the SER are defined as
binomial 95% confidence intervals and were computed using the R/binconf of the
R/Hmisc package (https://cran.r-project.org/web/packages/Hmisc/index.html). For
the analysis in which we introduced genotyping errors, we measured switch error
rates only between genotypes without simulated errors.

The GIAB data sets. To assess performance of SHAPEIT4 on sequencing data, we
use the high-quality phased genotype data generated for the NA12878 individual
by the GIAB consortium23. In order to get population scale data, we merged the
high-coverage genotype data of the GIAB with 502 unrelated European individuals
sequenced as part of the phase 3 of the 1000 Genomes project (KGP3)25. To do so,
we proceeded as follows. First, we only used variants on chromosome 20. Second,
we assume NA12878 to be homozygous reference allele at all KGP3 variants not
typed in GIAB and removed all GIAB variants not typed in KGP3. Third, since
NA12878 has also been sequenced in KGP3, we only retained variants for which
GIAB and KGP3 genotypes are concordant. Finally, we only kept variants that were
phased by GIAB owing to some family data (i.e., multiple sequenced individuals
from the NA12878 family). Of note, NA12878 was not included in the final set of
502 KGP samples we used for merging. In total, this procedure gave us a data set
on chromosome 20 comprising genotype data for 503 European individuals across
507,181 genetic variants amongst which 478,581 are SNPs and the rest is a mixture
of short indels and large SVs. Of note, all data management was done using
bcftools v1.431. The GIAB consortium has generated sequence data using multiple
sequencing technologies for NA12878. In the context of this work, we used: (a)
SOLiD5500W, (b) Complete Genomics, (c) Illumina HiSeq, (d) PacBio, and (e) 10x
Genomics. Summary statistics for all this sequence data is given Table 1. We used
the five sets of sequencing data to phase as much as possible of the NA12878
genotype data. In practice, we used WhatsHap v0.1512 with default parameters to
phase NA12878 using sequence data (a) to (d). The proportion of heterozygous
genotypes being phased by each type of sequence data is shown in Table 1. For 10x
Genomics sequence data, we proceeded quite differently since this technology relies
on barcoded reads and not on long reads. In this case, we used the set of het-
erozygous genotypes that can be phased using the Long Ranger method provided
by 10x Genomics. We have not run the method ourselves but instead used the Long
Ranger outcome provided by the GIAB consortium. The outcome of WhatsHap or
Long Ranger has been included in the VCF file as phase sets (i.e., field PS) so that
SHAPEIT4 can use it.

Scaffolding the GIAB data. We generated two haplotype scaffolds for the data set
described above either using family or large reference haplotype panel. For the first
scaffold, we used genotype data derived from Illumina OMNI2.5M for a larger set
of individuals containing multiple trios and duos. Out of the 503 individuals with
sequence data, 190 of them (37.8%) are present in the OMNI data together with
parents or children so that we could fix the phase at 6.59% of the heterozygous
genotypes in the sequence data using Mendel inheritance logic. For the second
scaffold, we phased the 16,805 variants in the overlap with UKB data on chro-
mosome 20 using 795,678 UKB haplotypes as reference panel. This allowed fixing
the phase at 6.25% of the heterozygous genotypes in the sequence data.
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Phasing runs on the GIAB data sets. Using SHAPEIT4, we phased the 503
individuals with sequence data across all possible combinations of six types of
sequencing reads (i.e., no reads, SOLiD5500W, Complete Genomics, Illumina
HiSeq, PacBio, and 10x Genomics) and three scaffolds (no scaffold, OMNI, and
UKB scaffolds). Each run was repeated five times using different random number
generator seeds to assess variability of the results. Accuracy of phasing was mea-
sured using the switch error rate as described above on NA12878 using the phase
provided by GIAB as reference. The phase here was determined from the Illumina
Platinum Genomes extended family data (17 individuals sequenced at 50× from the
pedigree 1463, the CEPH pedigree that includes NA12878 as grandchild). Of note,
we also measure switch error rates between variants falling within identical phase
set (see Fig. 4c), thereby ignoring the phase between variants belonging to distinct
phase sets.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
We used the full release of the UKB (http://www.ukbiobank.ac.uk/). This work was
conducted under UKB project 35520. We used the following release of the GIAB (ftp://ftp-
trace.ncbi.nlm.nih.gov/giab/) and this release of the phase 3 of the 1000 Genomes project
(ftp://ftp.1000genomes.ebi.ac.uk). We downloaded this version of the larger set of 1000
Genomes samples genotyped on Illumina OMNI2.5M (ftp://ftp.1000genomes.ebi.ac.uk).
The sequencing data we used for GIAB are available from this location (ftp://ftp-trace.ncbi.
nlm.nih.gov/giab/ftp/data/NA12878/) and 10x Genomics VCF populated with PS field
(ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/10Xgenomics_ChromiumGeno
me_LongRanger2.1_09302016/NA12878_hg19/NA12878_hg19_phased_variants.vcf.gz).
All other relevant data is available upon request.

Code availability
SHAPEIT4 is available on the GitHub webpage (https://odelaneau.github.io/shapeit4/).
The code used for computing switch error rates is also on github (https://github.com/
odelaneau/switchError). All code is licenced under the MIT licence.
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