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Abstract 

The TREC 2019 Deep Learning task aims at studying information retrieval in a large training               
data regime. It includes two tasks: the document ranking task (1) and the passage ranking task                
(2). Both of these tasks had a full ranking (a) and reranking (b) subtasks. The SIB Text Mining                  
group participated at the full document ranking subtask (1a). In order to retrieve pertinent              
documents in the 3.2 million documents corpus, our strategy was two-fold. At first, we used a                
BM25 model to retrieve a subset of documents relevant to a query. We also tried to improve                 
recall by using query expansion. The second step consisted in reranking the retrieved subset              
using an original model, so-called query2doc. This model, which has been designed to predict if               
a query-document pair was a good candidate to be ranked in position #1, was trained using the                 
training dataset provided for the task. Our baseline, which is basically a BM25 ranking              
performed the best and achieve a MAP of 0.2892. Results of the query2doc run clearly indicates                
that the query2doc model could not learn any meaningful relationship. More precisely, to explain              
such a failure, we hypothesize that using documents returned by our baseline model as              
negative items confused our model. As future steps, it will be interesting to take into account                
features such as the document’s BM25 score as well as the number of times a document’s URL                 
is mentioned in the corpus and use them along with learning to rank algorithms. 

 

Introduction 

The SIB Text Mining group [1], at the Swiss Institute of Bioinformatics in Geneva, has a long                 
history of participation in TREC campaigns, including TREC Genomics [2], TREC Medical            
Records [3], TREC Chemical IR [4] and TREC Clinical Decision Support [5,6] tracks. The first               
iteration of the Deep Learning track was an opportunity for us to evaluate some machine               
learning tools on a real-world scenario. 

Since the turn of the millennium, Information Retrieval (IR) systems had to face an influx of                
available information. The question arises of how to efficiently and accurately find the right              
answer through billions of documents when the users’ queries may contain only a few words. In                
very specific domains, the context may be used to support the search engine (e.g. by               
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implementing related features in the IR component or by adding constraints to the initial query).               
However, with no context definition, machine learning strategies appears as a good alternative             
to the traditional approaches. 

This year, the TREC 2019 Deep Learning track proposed an extensive amount of             
query-document mappings for the training of search engines. Such a dataset was a challenge              
for the development of various models from scratch, and this year we focused on the document                
ranking task with a preeminent strategy based on recurrent neural networks (RNN). 

1. Data 

The full ranking (retrieval) subtask of the deep learning track’s document ranking task provides              
the MS-MARCO dataset which gathers about 3.2 million documents [7]. Each document            
contains a URL, a title and a body. Along with these documents, three sets of queries were                 
provided. A training and development set which map 367,013 and 5,193 queries respectively to              
a MS-MARCO document and a testing set of 200 queries (without mapping), which was              
provided later in the campaign. 

2. Strategies 

To deal with the large number of documents, our strategy was two-fold. We first used traditional                
methods to create subsets of relevant documents (1) which allowed us to use computationally              
intensive methods to refine the retrieved documents selection (2). In other words, in (1) our idea                
is to return a thousand documents while maximizing the recall score, while in (2), we use a                 
document reranking model to improve the precision of our predictions on the subset returned in               
(1). 
 
 

 

Figure 1 ​Strategies graphical representation 
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Methods used to create the first subset (1) are detailed in the next section under Document                
Retrieval, while the methods used to refine subsets (2) will be described later in the Document                
Reranking section. 

2.1 Document Retrieval 

2.1.1 BM25 retrieval 

For the initial retrieval, the documents were inserted into an Elasticsearch cluster [8]. The              
document ID, URL, title and body text of the documents were indexed. Retrieval from              
Elasticsearch can be adjusted with various options and parameters. We tested the performance             
BM25 retrieval module across a range of parameters (see figure 2). 

 

Figure 2​ BM25 fine tuning using MAP as metric. In the left panel are the results for scoring 
based on the title only and in the right panel are the results using all fields. Along the ​x​ axis, the 

value for ​k​1​ is varied, and along the ​y​ axis the value for ​b​ is varied. 

The ​k​1 variable affects how much a single query term can contribute to the score [9]. That is,                  
how many occurrences in the document maximises the possible score for a term. The ​b variable                
affects how much the document length is penalised, with ​0 not penalising long documents at all,                
and ​1 being the maximum. In addition, we tested whether it was beneficial in this task to score                  
documents using only the title text or to use all fields. Using this performance tuning, we                
identified the optimal parameters for the BM25 module to be ​b=0.95 and ​k​1​=1.2​. With these               
parameters, recall at 1000 was 0.913. 

2.1.2 Query Expansion 

As the preselection was an important starting point for the second part of our strategy, we tried                 
to boost the BM25 performances by using query expansion [10]. Unfortunately, query expansion             
did not improve the recall score in our development (at least for the size of the subset we were                   
returning) and was not used for the first step for our two runs. We tried two ways of expanding                   
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queries. The first method replaces words in a query with other words, which are related in a                 
language model, the second method translates queries in a foreign language and translate it              
back to the original language.  

2.1.2.1 Word2Vec similarity replacement 

We used different pre-trained Word2Vec models [11] found in [12] and replace words in a query                
that where exceeding a certain threshold of similarity using the cosine distances as a metric.               
This method allows us to retrieve documents [13] which does not necessarily contain the              
query’s words.  

2.1.2.1 Back-Translation 

Back-translation is a way to paraphrase entire sentences without having to look for monolingual              
parallel corpora [14]. Unlike the previous method using Word2Vec similarities, where words are             
replaced one by one, this method generates a paraphrase from a translation of the original               
sentence. We used the pretrained model described in [15] to generate translations in both              
German and Russian and translate them back to English. 

2.1.3 Query to documents distances 

We used doc2vec [16] and computed the vector representation for both the queries and each of                
the 3.2 million documents. We then computed, for each query, the cosine distances between              
the query vector and the document vector. The 1,000 closest documents were used as              
candidates. 

2.2 Document reranking 

This part details the two methods we used in order to narrow the 1,000 document selection                
down to 100 documents. 

2.2.1 Classification (query2doc RNN) 

We developed a model which takes a query followed by a document’s content (see figure 3) as                 
an input and trained it over the 367,013 queries in the training set. We thought it would be more                   
appropriate to encode the queries and documents in two different recurrent neural networks             
(RNN) because of the amount of words which is quite different in average between documents               
and queries. Both of these RNNs output a vector that is concatenated in order to feed a neural                  
network (NN). Thanks to gradient optimization methods, this architecture allows us to train the              
model at once instead of creating three different models (i.e. one for encoding queries, one for                
encoding documents and one for predicting if the query-document pair encoding is a good              
candidate) and training them separately. We used Nestrov Momentum in our optimization            
process, more precisely an approximation of [17] which is implemented in TensorFlow [18]. 
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Figure 3 ​Model graphical representation 

 
Documents that were retrieved according to our initial retrieval methods were used as negative              
observations when they were not labelled as positive in the dataset. For the inference, we took                
documents that were returned in the initial retrieval part and take the score that our model would                 
allocate to each query-document pair. For each query, the 100 documents with the highest              
scores were then returned. We called this model the query2doc RNN which corresponds to our               
first submitted run. 

2.2.2 Word Mover Distance (WMD) 

Even if we submit only the previous method in our runs (apart from the baseline), we also used                  
WMD [19] to refine the selection. We were unable to complete our testing of this method by the                  
deadline and will aim to test the results of this method once the qrel of the testing set is                   
released.  
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3. Results & Discussion 

In table 1, we can see results for our two runs. The baseline model used the BM25 retrieval                  
method returning 1,000 documents (2.1.1) whereas the query2doc run was a baseline subset of              
100 documents using query2doc method (2.2.1). 
 

Run name MAP recall_1000 NDCG 

Baseline 0.2892 0.6383 0.5563 

query2doc 0.0111 0.0697 0.0643 

 

Table 1 ​Principal metrics for our two runs 

It is obvious that the query2doc method worked poorly. Our hypothesis for this poor              
performance lies in the fact that we were using documents returned by our baseline model that                
were not labeled in the dataset as negative observations which confused the discriminative             
power of our model. Indeed, some of the documents labelled as negative could have been as                
pertinent as a positive one content-wise. In other words, the relationship between the negative              
observation and the query-document pair was ambiguous and thus, our model could not make              
sense of it. 
 
This is why it would be interesting to see if the WMD (2.2.2) method, which is unsupervised,                 
would have worked better. We also think that the aggregation of other features would have               
significantly improved the reranking (e.g. the document’s BM25 score, the number of times a              
document’s URL is mentioned in the corpus, etc.) and in future editions, we will test the                
efficiency of learning to rank algorithms in such a task.  
 
Finally, we did not try to change the size of our subsets, which could have had an impact on our                    
metrics. In our next experiments, we will use our best performing methods of document retrieval               
on larger sets (e.g. 2,000; 5,000; 10,000) and use learning to rank methods to refine the                
selection. As query expansion has not been used in our runs, it would also be interesting to see                  
how it performs for retrieving a larger set. 

Conclusion 

Our experiment allowed us to step into the first iteration of the TREC Deep Learning track.                
Although the results of our main run are quite poor, it has given us insights about how to                  
approach these problems in the future. Some aspects of our approach were more successful              
than the final results would imply. Our initial retrieval using Elasticsearch was very simple but               
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effective, and drastically reduced the number of candidates which needed to be processed             
using the RNN. As noted in the previous section, we think that reranking should have been                
tackled differently and we will certainly rethink our strategy for the next iteration of this track. 
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