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ARTICLE
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ABSTRACT

OBJECTIVE.MRI studies have shown that preterm infants with brain injury have
altered brain tissue volumes. Investigation of preterm infants without brain injury
offers the opportunity to define the influence of early birth on brain development
and provide normative data to assess effects of adverse conditions on the preterm
brain. In this study, we investigated serial MRI of low-risk preterm infants with the
aim to identify regions of altered brain development.

METHODS. Twenty-three preterm infants appropriate for gestational age without
magnetic resonance–visible brain injury underwent MRI twice at 32 and at 42
weeks’ postmenstrual age. Fifteen term infants were scanned 2 weeks after birth.
Brain tissue classification and parcellation were conducted to allow comparison of
regional brain tissue volumes. Longitudinal brain growth was assessed from pre-
term infants’ serial scans.

RESULTS.At 42 weeks’ postmenstrual age, gray matter volumes were not different
between preterm and term infants. Myelinated white matter was decreased, as
were unmyelinated white matter volumes in the region including the central gyri.
The gray matter proportion of the brain parenchyma constituted 30% and 37% at
32 and 42 weeks’ postmenstrual age, respectively.

CONCLUSIONS. This MRI study of preterm infants appropriate for gestational age and
without brain injury establishes the influence of early birth on brain development.
No decreased cortical gray matter volumes were found, which is in contrast to
findings in preterm infants with brain injury. Moderately decreased white matter
volumes suggest an adverse influence of early birth on white matter development.
We identified a sharp increase in cortical gray matter volume in preterm infants’
serial data, which may correspond to a critical period for cortical development.
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PRETERM INFANTS ARE at risk for adverse neurodevel-
opmental outcome and functional disabilities be-

cause of increased vulnerability of the brain before and
after premature birth.1,2 Brain injury, seen as white and
gray matter signal abnormalities and enlarged ventricles,
can be clinically recognized with MRI.3,4 Providing high-
resolution images of the living subject, this modality has
also become a major tool for preterm brain research.
MRI research has provided insight into the morphology
and etiology of white matter injury and gray matter
abnormalities.3,4 MRI-visible brain injury has been
linked to hypoxic-ischemic incidences,5 and the severity
of the injury has been shown to depend on epidemio-
logic factors, such as perinatal infection6,7 and hypoten-
sion with use of inotrope medication.8

Recently, image postprocessing including segmenta-
tion9 and parcellation10 has contributed to the under-
standing of the relationship between brain injury and
quantitative morphologic changes of the major brain
tissue compartments. Several conditions, such as
periventricular leukomalacia and fetal growth restric-
tion, have been found to affect white and gray matter
development in preterm infants when compared with
healthy term infants.10–15 Whereas most investigations
compare total brain tissue volumes, studies assessing
regional changes are few in number.10,16

Investigations in preterm infants also offer the oppor-
tunity for the study of longitudinal brain development.
In this context, an important indicator of brain develop-
ment is the process of myelination. Early myelination is
seen in preterm MRI as altered signal intensity, for ex-
ample, high signal intensity on T1-weighted images in
localized regions in the internal capsule and brainstem.17

The segmentation approach used in this study is based
on MRI signal intensity contrast between brain tissues.
This technique enabled the segmentation of 2 different
tissue classes for unmyelinated (UMWM) and myelin-
ated white matter (MWM).18

Infants who are born before 28 weeks’ postmenstrual
age (PMA), whose birth weight is �1000 g, or who
suffer from fetal growth restriction seem at higher risk
for brain injury. However, the majority of preterm in-
fants are of moderate gestational age (�28 weeks’ PMA)
and moderate birth weight (�1500 g).19,20 Their risk for
brain injury is recognized as low.21,22 However, research
on these low-risk preterm infants’ brain development is
still very scarce. The limited existing studies report mod-
erate developmental delay.23,24

The aim of this study was to investigate by MRI the
brain’s appearance in a group of preterm infants born at
28 to 33 weeks’ PMA, appropriate in growth for gesta-
tional age (AGA) at birth and without known risk factors
for altered brain development. Preterm infants were
scanned at 42 weeks’ PMA, and the scans were com-
pared with age-equivalent healthy term infants’ scans.
Postprocessing of the MRI acquisitions included segmen-

tation of brain tissues into 5 gray and white matter
compartments and parcellation of the intracranial cavity
(ICV)25 to identify regional differences in brain tissue
volumes. In addition, an early scan was acquired for
each preterm infant soon after birth. This provided the
opportunity to describe longitudinal brain development
during the third trimester outside the womb. It was the
aim of this study to define changes in the tissue compo-
sition of the brain and to investigate whether growth
occurs at different rates in different regions.

METHODS

Subjects
Forty-three infants were included in the study; 26 (20
preterm and 6 term infants) born at the Brigham and
Women’s Hospital (Boston, MA) and part of a larger
study26; 8 preterm infants born at the Children’s Hospi-
tal, (Geneva, Switzerland); and 9 term infants born at
the Royal Women’s Hospital (Melbourne, Australia).
The gestational age of the infant at birth was estimated
by mother’s last menstrual period and early ultrasound.
Infant age at the time of the scans is given as PMA,
which is defined as gestational age plus the time elapsed
since birth.27

Preterm infants’ selection criteria included gestational
age at birth 28 to 33 weeks’ PMA, 5-minute Apgar score
�7; AGA for weight and head circumference at birth
(�10th percentile for both); normal cranial ultrasound
and baseline MRI; and �72 hours of mechanical venti-
lation and vasopressor medication. Exclusion criteria
were congenital and chromosomal abnormalities, con-
genital and acquired infections, prenatal brain lesions
(eg, cysts and infarctions), and neonatal seizures. Par-
ents’ selection criteria included absence of major medical
and psychiatric illness, long-term medication treatment
(eg, insulin, steroids, antidepressants, and anticonvul-
sants), and absence of a history of substance abuse,
including tobacco and alcohol. Written, informed con-
sent was obtained from all of the parents before enroll-
ment into the study. Identical imaging study protocols
were used across institutions after obtaining permission
from each of the institutions review boards for research
with human subjects.

MRI Acquisitions
Preterm infants were scanned at a 1.5-T magnetic reso-
nance (MR) system (General Electric Signa, Milwaukee,
WI, or 1.5 T Marconi Philipps Medical Systems, An-
dover, MA) after birth as soon as they were judged to be
in stable condition. The mean PMA for the preterm
infants’ first scan was 33.3 � 1.6 weeks acquired at 13 �
6 days after birth. Scanning was repeated at 41.7 � 1.7
weeks’ PMA. Term infants were scanned at 41.7 � 0.7
weeks’ PMA. High-resolution (0.7 � 0.7 � 1.5-mm
coronal slices) T1-weighted three-dimensional Fourier
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transform spoiled gradient recalled (SPGR) images were
obtained (18-cm field of view, 1.5-mm contiguous slice
thickness, repetition and echo times of 40 ms and 4 ms,
matrix 256 � 256, flip angle � 20°) requiring a scan time
of 20 minutes. T2-weighted and proton density-
weighted images were acquired using a dual echo fast
spin echo sequence (echo train length: 8; 3-mm skip
interleave; 2 acquisitions; repetition time: 4000; echo
times: 160 and 80 ms; matrix: 256 � 256; field of view:
18 cm; number of excitations: 1; coronal slices: 0.7 � 0.7
� 3 mm; scan time: 6.4 minutes). Before scanning,
infants were fed, wrapped securely in warm blankets,
outfitted with ear protection, and placed into the scan-
ner on a vacuum pillow.

A neonatologist and/or NICU staff nurse responsible
for the infants’ transfer to the MR scanner also stayed
with them in the scanner room during scanning to mon-
itor their electrocardiography and pulse oximetry. All of
the scans were performed without sedation. Five scans
were excluded from the study, because motion artifacts
were judged to interfere significantly with image post-
processing. After exclusion of these cases, 23 preterm
and 15 term infants remained in the study. At each
center, a pediatric neuroradiologist reviewed the infants’
scans, and no abnormalities were identified.

Image Processing
For each acquisition, the following image analysis steps
were applied to obtain a tissue classification and a par-
cellation. The scans from the different centers were pro-
cessed centrally by the same expert.

Because artifacts from MR field inhomogeneity pose a
greater challenge in the processing of newborn brain
images than in those of adults because of the reduced
gray matter/white matter contrast seen in newborns,
intensity nonuniformity effects, subsequent to the field
inhomogeneity, were removed using a retrospective
method that minimizes the entropy of the image.28,29

Subsequently, edge-preserving adaptive diffusion filter-
ing30 was used to reduce noise in the SPGR images while
preserving subtle structures and boundaries. Rigid intra-
subject registration was performed by application of an
algorithm based on mutual information. The T2-
weighted and proton density-weighted images were reg-
istered and upsampled to the higher resolution of the
SPGR sequence.31

Segmentations of the ICV, cerebrospinal fluid (CSF),
and 4 tissue classes (cortical gray matter [CGM], subcor-
tical gray matter [SGM], UMWM, and MWM) were
obtained using a semiautomatic segmentation method.9

Sample voxels were selected interactively, and optimal
estimation of the distribution of MRI signal intensities
associated with each type of tissue was conducted. An
anatomic template was aligned with the ICV of the sub-
ject and used to disambiguate the segmentation of tis-
sues that have overlapping signal intensity characteris-
tics but nonoverlapping spatial distribution. Different
anatomic templates were provided for the scans ob-
tained at 32 and at 42 weeks’ PMA. The sum of CGM,
SGM, UMWM, and MWM defined the total volume of
the cerebral parenchyma (CPAR).

The segmentation method described has been suc-
cessfully applied in previous studies.13,14,32–34 An expert
conducted 5 repeated segmentations of 5 infants’ MRI
scans to assess the accuracy of the segmentation ap-
proach. An algorithm called Simultaneous Truth and
Performance Level Estimation (STAPLE)35 was then ap-
plied to estimate for each tissue class the probability of
the true segmentation of each voxel based on the re-
peated segmentations. The posterior probability repre-
sents the probability that a voxel truly is a particular
tissue class when the segmentation states it is. The coef-
ficient of variation of the posterior probability of the
repeated segmentations was estimated to provide an
indicator of the reproducibility of the method (Table 1).

The cerebellum was interactively outlined using the
software package 3D Slicer36 after an established and
validated method.34 3D Slicer was also used to interac-
tively align and resample all of the scans to the Talairach
space.25 A sagittal axis was placed through the inter-
hemispherical fissure, and an axial axis was placed lead-
ing along the upper edge of the anterior commissure and
the lower edge of the posterior commissure. Three coro-
nal planes were placed, 1 each through the genu of the
corpus callosum, the anterior, and the posterior commis-
sure. Thus, the ICV was divided into 16 parcels (Fig 1).
The coronal planes defined the partition of the ICC into
4 major regions: the frontal, precentral, central, and
occipital regions.

This parcellation scheme has been demonstrated as
reliable and valid for MRIs of the adult brain37,38 and has
been applied to preterm infants’ MRI.10 STAPLE35 was

TABLE 1 Posterior Probability and Coefficient of Variation for Repeated Parcellations and Tissue
Classification

Repeated parcellation P1a P2 P3 P4 P5 CV
Mean PP of parcellation 0.90 0.98 0.96 0.95 0.97 4.0%
Tissue classes CGM SGM UMWM MWM CSF CV
Mean PP of segmentationb 0.84 0.80 0.90 0.80 0.89 5.4%

CV indicates coefficient of variation; PP, posterior probability.
a Five repeated parcellations P1 to P5 were done on 1 case by the same observer.
b Five cases were chosen for repeated segmentations, and each case was segmented 5 times by the same observer.
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applied to assess the accuracy of the parcellation method
in newborn infants in the same manner to the above
described validation of the segmentation method. An
expert conducted repeated parcellations of an infant’s
MRI scan. For each parcellation, the posterior probability
of a voxel belonging to a certain parcel was computed. In
addition, the coefficient of variation of the posterior
probability of repeated parcellations was estimated to
assess the reproducibility of the method (Table 1).

Statistical Analyses
Analysis of covariance (ANCOVA) with SPSS (SPSS Inc,
Chicago, IL) was used to test for differences between
tissue volumes in the scans acquired at 42 weeks’ PMA
in preterm versus term infants. Model testing with ICV,
CPAR, and age as covariates and 2-way interactions was
conducted for all of the tissue classes. Models covarying
for ICV or volume of the total CPAR showed highest
significance; age as a second covariate did not account
significantly for variation in the model.

When Levene’s test39 and residual statistics showed
evidence for heteroscedasticity, a heteroscedasticity-
consistent SE estimator for small sample sizes, called
HC3, was applied to manage heteroscedasticity of an
unknown form.40,41 The theory and application of the
HC3 method has been described elsewhere.42

When testing group differences for 7 tissue classes for
total and regional volumes and 16 single parcels, it is
essential to correct for multiple significance tests. Ben-
jamini and Hochberg43 developed a method to control
the probability of the family-wise error rate44 by com-
puting the false-discovery rate, which controls the ex-
pected proportion of falsely rejected hypotheses. We
applied the false-discovery rate and chose a hierarchical
approach to minimize the number of simultaneously
tested hypotheses. Group differences for total volumes
and regions were analyzed first. Only for those regions
that proved to show significant differences, the right and
left side and the individual parcels were subsequently

tested to further characterize the specific nature of the
group differences. The number of hypotheses tested
(probability level, 2-tailed: P � .05) was counted sepa-
rately for each of the 7 segmented tissue types to allow
a separate statement to be made regarding the appear-
ance of each segmented class.

Linear regression was applied to determine absolute
and relative longitudinal brain changes from 32 weeks’
PMA to 42 weeks’ PMA in preterm infants’ serial MRI
(Pearson’s coefficient [r]). Regression models that corre-
late tissue volumes with PMA at the time of the scan and
CPAR had similar significance. Reported results are
based on a regression model that correlates with CPAR
with the exception of the analysis of CPAR itself, which
was correlated with PMA. Predicted values at 32 and 42
weeks’ PMA were computed to describe total and re-
gional rate of growth.

RESULTS

Consistency and Accuracy of the Parcellation and
Segmentation Methods
For each infant’s MRI study, a segmentation of the major
brain tissues and a parcellation of the ICV was achieved.
Through parcellation based on a limited number of land-
marks, regions and parcels with consistent anatomic
contents were obtained (Fig 1). At 32 and 42 weeks’
PMA, the temporal lobe was located in the inferior pre-
central and central region and in the occipital region.
The frontal region was occupied by most of the frontal
lobe; a small part close to the precentral sulcus lay in the
precentral region, which also included the inferior pre-
central gyrus. The central region contained the superior
precentral gyrus and the central and postcentral gyrus.
This region also enclosed the lower part of the postcen-
tral sulcus and part of the angular gyrus. The occipital
lobe and the cerebellum were included in the occipital
region. Variability was seen in the association of central
sulcus and precentral gyrus to the central or precentral
region and the quantity of the frontal lobe that belonged
to the precentral parcel (Fig 1).

A high accuracy was found for the parcellation
method and the segmentation method using STAPLE35

on repeated parcellations and segmentations (Table 1).
Intrarater variability was low, with a coefficient of vari-
ation of 4.0% and 5.4% of the posterior probability for
the parcellation and the segmentation method, respec-
tively (Table 1).

Comparison of Brain Tissue Volumes in Term and Preterm
Infants at Term: Analysis of the Relationship Among ICV,
CPAR, and CSF
Twenty-three preterm infants and 15 term infants were
included in the analysis. Differences in the population
mean for total and regional volumes of all of the tissue
classes were first tested with ICV entered as covariate.

FIGURE 1
Left, Three-dimensionalmodel of the segmentedUMWM lying inside the parcellated ICV
(preterm infant scanned at 32 weeks’ PMA): from left to right are occipital, central, pre-
sentral, and frontal regions, each with a superior and inferior parcel. Notice the major
sulci, displayed in their relation to the partitions of the parcellation: 1 indicates precentral
sulcus; 2, central sulcus; 3, postcentral sulcus; 4, Sylvian fissure. Right, Three-dimensional
model of the cerebellum (teal) andMWM (red) surrounded by the parcellated ICV. MWM
at �32 and 42 weeks’ PMA is mainly present in the brainstem and internal capsule.
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When CSF was found to be significantly larger in pre-
term infants’ frontal region, an analysis of head size and
cerebral volume was conducted. Total and regional vol-
umes of the ICV, CSF, and CPAR were alternately ana-
lyzed as a function of PMA at scan, ICV, and CPAR
(Table 2). Total and frontal CSF and ICV were signifi-
cantly larger in preterm infants when covaried with
CPAR or age (Table 2). Regardless if CPAR was corre-
lated to ICV or age, it was not different between the 2
groups. Visual inspection of a midaxial and a midsagittal
slice of the infants revealed head shape differences, con-
sistent with biparietal flattening of the skull in the pre-
term population. The preterm infants’ heads were doli-
chocephalic narrow and elongated. Their frontal skull
and brain appeared rounder and more prominent with a
frontal accumulation of CSF, when compared with term
infants (Fig 2).

When MWM was tested for possible group differences
in relation to total ICV and CPAR, the volume of MWM
for single parcels was significantly decreased as a fraction
of the ICV but not as a fraction of the cerebral volume.
This indicated the possibility for overestimation of vol-
ume differences, when normalizing with the ICV be-
cause of extraparenchymal differences between the 2
populations. Therefore, group differences between pre-
term and term infants were investigated in relation to
the total CPAR.

Comparison of Brain TissueVolumes at TermCorrecting for CPAR
Total and regional volumes of CGM, SGM, and cerebel-
lum did not differ significantly between preterm (n �
23) and term infants (n � 15; Table 3). Significantly
increased CSF in preterm infants was found for total
volume, for the frontal and precentral region, and for all
4 of the sides and all 4 of the upper parcels.

UMWM was significantly smaller in preterm infants
in the central region, the right side, and the right lower
parcel of the central region (Table 3). MWM was present
in the central (51%) and occipital region (45%), where
early appearance of myelination was confined to the
brainstem, the cerebellar peduncle, and the internal cap-
sule (Fig 1). The total volume of MWM and the volumes
of the central and occipital regions were significantly
smaller in preterm infants (Table 3), but none of the 4
right and left sides of both regions nor any of the 8 single

parcels reached statistical significant difference. All of
the parcels, however, showed a strong trend toward
significance.

In a next step, the ratio of MWM/CPAR and UMWM/
CPAR was computed to express the MWM fraction and
UMWM fraction of the total cerebral volume. The rela-
tion between the MWM and UMWM fractions as an
indicator of WM maturation was then investigated car-
rying out analysis of covariance for total, central, and
occipital volumes. In this analysis, the MWM fraction
was expressed in relation to the UMWM fraction for
preterm versus term infants. The MWM fraction was
found to be significantly decreased in preterm infants
(Ptotal � .005; Pcentral � .005; Poccipital � .01). This indi-
cates a smaller ratio of MWM versus UMWM in preterm
infants. Moreover, in term infants, a smaller fraction of
UMWM was related to a larger fraction of MWM, but in
preterm infants, for a smaller fraction of UMWM, the
fraction of MWM did not increase (Fig 3). This altered
correlation was found for total MWM, as well as for the
volume of MWM in the central and occipital region.

Longitudinal Brain Development in Preterm Infants: Total
Tissue Volumes
The serial preterm infants’ scans demonstrated a steeper
increase for the ICV (112%) than CPAR (103%; Table
4). Accordingly, CSF increased by 183%. Total CPAR
increased from 215 to 437.6 mL between the 32 and 42
weeks’ PMA, which corresponds with a daily increase in
cerebral volume of 3.2 mL.

At both time points, the cerebellum was located solely
in the inferior occipital region (Fig 1). It showed the
largest growth rate, with a 206% increase. For all of the
other tissue, CGM volume increase was largest with
167%, followed by SGM with 71%. The volume of
UMWM increased by 67%, and MWM volume increased
by 55% (Table 4). Pearson’s coefficient for MWM (Table
4) was lower than for all of the other tissue classes (r �
0.54).

The composition of the cerebral tissues changed be-
tween the 2 time points at which the infants were
scanned (Fig 4). At 32 weeks’ PMA, the UMWM repre-
sented 57% of the CPAR. At 42 weeks’ PMA, UMWM
accounted only for 47% of the CPAR (49% in term
infants). Average MWM remained stable, forming 2.2%

TABLE 2 Analysis of CSF, ICV, and CPAR Covaried by Age, ICV, or CPAR

Tissue
Class

Preterm Infants (n � 23),
mean � SD, mL

Term Infants (n � 15),
mean � SD, mL

P (ANCOVA) Covaried by

PMA at Scan Total CPAR Total ICV

CSF total 76.4� 33.9 48.9� 29.9 �.02 �.02 NS
CSF frontal 21.0� 10.5 9.0� 6.1 �.0005 �.0005 �.001
ICV total 516.4� 53.1 485.7� 54.5 NS �.02 —
ICV frontal 85.3� 12.1 70.6� 16.6 �.005 �.0001 —
CPAR total 440.0� 35.5 436.8� 42.6 NS — NS

NS indicates not significant.
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and 1.7% (2.1% in term infants) of total CPAR at 32 and
42 weeks’ PMA, respectively. The portion of CGM in-
creased from 30% to 39% of total CPAR between the 2
time points. The percentage of SGM of the total CPAR
decreased slightly from 5.8% at 32 weeks’ PMA to 4.8%
at 42 weeks’ PMA. At 32 weeks’ PMA, the cerebellum
accounted for 4.4% of the total CPAR, and at 42 weeks’
PMA, the percentage was increased to 6.3% (Fig 4).

Regional Development
Volumes of all of the tissue classes in each region and
Pearson’s regression coefficient are reported in Table 4.
In addition, it was a goal in this study to determine
whether the percentage increase of the tissue volumes
over time was accelerated for a certain region. Therefore,
the percentage increase for each tissue in all of the

regions was normalized, setting the smallest increase to
1. In this way, the ratio of the growth rate for the frontal,
precentral, central, and occipital region was computed.
A similar pattern for regional growth was found for ICV,
CPAR, UMWM, and CGM (Table 4). The precentral and
central region developed slower than the frontal and
occipital region. The ICV increased faster for the frontal
region, and slower for the occipital region than for all of

FIGURE 2
A and B, Midsagittal MRIs; C and D, axial MRIs at the level of the
anterior and posterior commissure. The parcellation of the ICV is
superimposed in color. Sequence of parcels from anterior to pos-
terior: frontal, precentral, central, and occipital parcels. A and C, a
term infant’s head; B and D, a preterm infant’s head. Note the
different head shapes; the sagittal images show a triangular-
shaped frontal region in the term infant and a round shape in the
preterm infant. The occipital region is elongated in the preterm
infant. In the axial view, the preterm infant’s head appears nar-
row. Anterior and posterior diameters are 113 and 125 mm; left-
to-right diameter is 91 and 86mm in the termandpreterm infant,
respectively.

TABLE 3 Total and Significant Different Regional Brain Tissue
Volumes in Preterm Versus Term Infants at 42 Weeks’ PMA

Tissue Class Preterm Infants
(n � 23),

Mean � SD, mL

Term Infants
(n � 15),

Mean � SD, mL

P
(ANCOVA)a

CGM 176.2� 26.2 162.4� 23.4 NS
SGM 21.2� 4.2 20.7� 5.2 NS
CER 29.0� 3.6 27.4� 3.9 NS
UMWM 206.4� 29.2 216.5� 31.9 NS
Central UMWM 36.1� 6.0 40.2� 5.6 �.01
Right inferior central UMWM 6.8� 1.1 8.0� 1.1 �.0005
MWM 7.3� 2.4 9.8� 3.8 �.02
Central MWM 3.7� 1.2 4.8� 1.9 �.05
Occipital MWM 3.1� 1.4 4.4� 1.9 �.02

NS indicates not significant.
a ANCOVA was carried out with CPAR as a covariate.

FIGURE 3
Relation between MWM and UMWM expressed as a fraction of total CPAR.�, Values for
term infants; U, values for preterm infants. Also shown are the regression line and the
95% mean prediction intervals.
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the other brain tissues tested. CGM showed a slower
growth rate in the frontal region as compared with the
UMWM and CPAR. At both time points, growth rate for
MWM was similar for the central and occipital region.
No MWM was found in the frontal and precentral re-
gion. SGM was found to grow more slowly in the occip-
ital than in the central region. It was not detected in the
frontal and precentral region at either of the time points.

DISCUSSION

Comparison of Preterm and Term Infants’ Brain Tissue
Volumes

Effects of Premature Birth on Intracranial, Cerebral, and
CSF Volumes
Studies have shown head circumference to be a reliable
indicator of an infant’s gestational age if the infants’
growth is appropriate for its gestational age.45,46 Hence,
most newborn infant studies that involve tissue classifi-
cation have used intracranial volume as an indicator for
the infant’s head size and expressed brain tissue volumes
relative to intracranial volume.11,13,14,33,47 This approach
assumes that head growth progresses in a similar fashion

after preterm and term birth and that cerebral growth
influences head size and shape similarly in both popu-
lations.

However, in the current study, gross assessment of
the infants’ MRI revealed biparietal narrowed and fron-
to-occipital elongated heads in the preterm population
accompanied by regionally increased CSF volumes. Bi-
parietal flattening occurs in response to external com-
pression force exerted during sleep position in incuba-
tors and cribs48 during the first days after preterm
birth.49–51 Mode of delivery does not implicate flattening
of the skull.52 In normal infants, head circumference as
assessed in ultrasound biometry serves as a good indica-
tor for brain size. However, if the head shape is abnormal
and head growth is accelerated, this is not the case.53,54

Thus, other measures are suggested for preterm infants,
such as the cerebellar diameter, which reliably measures
adequate growth even when the infant exhibits an un-
usually shaped head.55,56

Studies using MRI biomarkers such as tissue volumes
are sparse. Duncan et al57 found head circumference
measured in fetal imaging to be a poor indicator for brain
size in infants with fetal growth restriction. Several in-
vestigations in preterm infants with brain injury have
identified an association between increased CSF vol-
umes and decreased cerebral volumes.11,13,47 The current
study provides the first evidence to suggest that, in low-
risk preterm infants, those selected to have a head cir-
cumference appropriate for their PMA, cerebral volume
is normal, yet CSF volume is increased. Considering that
an appropriate head circumference between the 10th
and 90th percentile corresponds with 33- to 38-cm head
circumference measured at birth, this gives a broad
range of variable brain tissue and CSF volumes, which
may obscure true group differences in a small cohort.
Results from the longitudinal analysis, which show a

TABLE 4 Brain Tissues in Preterm Infants (n � 23) at 32 and 42Weeks’ PMA: Volumes and Growth Rate

Tissue Class Frontal Region Precentral Region Central Region Occipital Region Total Brain
Growth, % (r)b

32 wka 42 wka 32 wk 42 wk 32 wk 42 wk 32 wk 42 wk

ICV, mL 32.2 84.3 45.8 87.2 54.3 102.1 116.4 257.4 112 (0.95)
CPAR, mL 30.2 63.9 39.7 68.6 49.4 87.6 97.6 219.3 103 (0.96)
UMWM, mL 20.7 38.3 24.9 36.8 24.4 36.2 54.0 95.3 67 (0.86)
CGM, mL 9.4 25.5 11.1 25.5 16.2 36.6 28.5 86.4 167 (0.92)
SGM, mL 3.7 6.3 6.3 11.1 2.5 3.9 71 (0.70)
MWM, mL 2.4 3.7 2.0 3.1 55 (0.51)
CER, mL 9.4 28.8 206 (0.96)
Relative growth rate for each regionc

ICV 1.8 : 1.0 : 1.0 : 1.4
CPAR 1.5 : 1.0 : 1.0 : 1.6
UMWM 1.8 : 1.0 : 1.0 : 1.6
CGM 1.3 : 1.0 : 1.0 : 1.6
SGM 1.2 : 1.3 : 1.0
MWM 1.0 : 1.0

a Predicted tissue volumes at 32 and 42 weeks’ PMA in relation to PMA at scan.
b Regression coefficient rwith PMA at scan as dependent variable is given for total tissue development.
c Growth rate reveals the region of fastest growth.

FIGURE 4
Composition of cerebral tissue volume by its single components at 32 weeks’ PMA (left)
and 42 weeks’ PMA (right).
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distinct growth pattern for the CSF volume and the
slower increasing cerebral volume, support the findings
of the comparison between preterm and term infants.
Future work is needed to investigate the association
between changes in preterm infants’ head shape and
tissue volumes and to identify the effect that this might
have on the reliability of a landmark-based parcellation.

Effects of Premature Birth on Gray Matter Volumes
Quantitative MRI studies, which investigated preterm
infants with white matter injury, those born very early,
and those with fetal growth restriction, have found de-
creased gray matter volumes in preterm infants.14,32,47

These changes have been further associated with im-
paired neurodevelopmental outcome.32 During late ges-
tation, after the migration of neurons into the cortex is
completed, decreased gray matter volumes may be
caused by atrophy and neuronal loss, disruption of the
formation of neural connectivity and of dendrite growth
during synaptogenesis.58–60 The undisturbed gray matter
development found in the preterm sample of the current
study might explain the only moderate neurodevelop-
mental differences otherwise reported in low-risk AGA
preterm infants.23,24,61

Effects of Premature Birth on Total and Regional White
Matter Volumes
Although statistical analyses identified significant differ-
ences of regional white matter volumes between pre-
term and term infants, testing of single parcels failed to
reach statistical significance. This underlines the impor-
tance of regional assessment when investigating brain
development but also points to the limitations of mea-
suring regional and therewith often very small volumes.

Reduction in statistical power makes interpretation of
such results difficult, especially given the relatively small
sample of the current study, which consisted of 23 pre-
term and 15 term infants after exclusion of 5 infants
because of motion artifacts. An alternative definition of
parcels may also improve sensitivity to differences in
myelination, because myelination follows an anatomi-
cally specific developmental process.62

Similar to the current study, Peterson et al47 reported
findings of decreased white matter in the central region,
which includes the sensor-motor system, as well as the
auditory processing areas of the frontotemporal lobes. In
addition, the preterm infants in that study displayed
decreased white matter volumes in the parieto-occipital
regions when compared with term infants. A possible
explanation for the differences between the results of
Peterson et al47 and the current study is the fact that the
preterm infants in the study by Peterson et al47 experi-
enced several clinical complications, such as periven-
tricular leukomalacia and bronchopulmonary dysplasia
treated with postnatal steroids, which are known to
affect brain development. It is likely that, therefore, the

preterm brains in the study by Peterson et al47 were
impaired to a more extended degree.

The current study suggests an alteration in the course
of myelination for the preterm infants studied. In these
infants, a decrease of UMWM fraction was not always
accompanied by an increase in the myelinated fraction.
Whether these observations are caused by unidentified
injury, delay, or an alteration of fiber tract development
cannot be answered with the present study. New tech-
niques, such as the analysis of diffusion tensor imaging,
have been applied recently to preterm and term MRI.63

Initial findings show promising results for the analysis of
white matter maturation. Evidence has been found re-
cently for underlying delay in white matter maturation
in preterm infants with brain injury,64,65 as well as in
AGA preterm infants without brain injury.26

Longitudinal Brain Development in Preterm Infants

Growth of Total Cerebral Tissues
Literature on fetal biometry was reviewed to compare
postnatal measures from this study to reference values
from fetal imaging. Fetal MRI and ultrasound66–69 have
been used to estimate fetal brain volumes in normal
pregnancies, and best-fit regression equations have been
reported. Postprocessing methods range from estimation
of brain volume to an exact labeling of the boundaries in
each slice to outline the brain.68 Daily increase in cere-
bral tissue volume has been reported in a number of
publications66–69 with a range of 2.3 to 3.6 mL and a
mean of 3.1 mL. Whereas the current study’s methods
were not directly comparable, because postprocessing
methodology differed, daily growth rate was similar with
3.2 mL per day. This should be encouraging for future
investigations, which may use data from low-risk un-
complicated preterm infants as a model for the investi-
gation of brain development.

Single Brain Tissue Development and Tissue Composition of
the Brain
Longitudinal analysis of the brain tissue composition
suggested that the developmental period studied seems
to be a critical period for cerebral gray matter growth.
One possible explanation is that because neural migra-
tion itself gradually ends by the beginning of the third
trimester, the pronounced increase in gray matter vol-
ume may indicate the increasingly rich axonal branching
and developing connectivity between neurons, as well as
synaptogenesis.70–72 CGM volume is further influenced
by cortical folding, which increases markedly during the
studied period between 32 and 40 weeks. Cortical fold-
ing is more prominent in the occipital lobe than in the
frontal lobe, which is reflected in the higher growth rate for
CGM volume in the occipital lobe than in the frontal lobe.

Another consideration is that cortical thickness as
measured by MRI is influenced by tissue characteristics,
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such as water content. During cortical development,
inner layers of the cortex have higher water content,
which might lead to a falsely thin cortical rim on MRI
and, consequently, to an underestimation of the cortical
volume by the proposed segmentation techniques. My-
elination leads to decreased water content followed by
signal intensity changes of the white matter and the
adjacent gray matter. The rapid gray matter volume
change in the preterm infants’ cortex observed in the
current study might, thus, be related to a physiologic
decrease in the water content during ongoing white
matter maturation,17 leading to an overestimation of the
increase in gray matter volume.

CONCLUSIONS
This study provides evidence that low-risk AGA preterm
infants show moderate regional differences for white
matter development in comparison with healthy term
infants. In contrast, the regional pattern for gray matter
development was not affected in the studied preterm
population. These findings are consistent with studies
reporting moderate neurodevelopmental delay in low-
risk preterm infants. Longitudinal analysis of preterm
infants’ serial data demonstrated that the brain tissue
composition changes from 32 to 42 weeks’ PMA, pre-
senting a decreasing partition of UMWM in favor of gray
matter growth and an accentuated growth of the frontal
and occipital region.
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THE BAND-AID

“But when Earle Dickson invented the adhesive bandage in 1920, he saw it
as an ingenious and effective solution to a serious problem. In doing so, he
created an immensely useful product as well as a universally recognized
brand. Dickson was a cotton buyer for Johnson & Johnson. According to
Lawrence G. Foster, who helped launch the company’s public relations
department in the 1950’s and later served as its unofficial historian, Dickson’s
wife, Josephine, was ‘not very adept in the kitchen.’ Company lore has it that
she was forever suffering minor cuts and burns while cooking. Applying
cotton gauze and surgical tape proved difficult to do one-handed, so she often
summoned her husband home to help. Johnson & Johnson had been making
sterile dressings and adhesive surgical tapes for decades. Dickson simply put
the two together in a single convenient package. He affixed squares of cotton
gauze to a long strip of tape and covered the whole thing with crinoline,
which would prevent the tape from sticking to itself when rolled up and keep
the gauze reasonably aseptic. Mrs. Dickson could cut off a piece from the strip,
peel off the crinoline, and bandage her wound. Dickson described his inven-
tion to a coworker, who encouraged him to tell his boss about it. ‘The boys in
the front office loved the concept,’ Dickson said years later. The general public
was not as enthusiastic. In the first year, sales were a disappointing $3,000.
But the first Band-Aids, which were handmade, measured 21⁄2 inches wide
and 18 inches long, so they couldn’t have been an enormous breakthrough in
convenience. The advertising firm of Young and Rubicam told the company
that they were a lost cause, but Johnson & Johnson kept faith in the product.
Automated manufacturing, more convenient packaging, and aggressive mar-
keting eventually helped turn Band-Aids into one of the most successful
consumer products in history, with more than 100 billion sold over the last 80
years. . . . History hasn’t recorded the fate of Josephine Dickson, but her
husband was well rewarded for his innovation, becoming a vice president at
Johnson & Johnson and later a member of the company’s board of directors,
so perhaps if those stories were actually true, he was able to hire his wife a
cook.”

Wohleber C. Invention & Technology. Summer 2005
Noted by JFL, MD
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