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Abstract

This thesis investigates whether and how the human cognitive system to extract recursive nested

structures  from a  highly  simplified  input  where  hierarchy  is  marked  only  by  sequential  order

information.  Elaboration  and  processing  of  hierarchical  representations  is  involved  in  many

domains of human cognition (Martins, 2012; Uddén et al., 2020), the most notable being language.

Natural languages are characterized by structural dependencies in which constituents are linked to

each other in such a way that sentences cannot be reduced to the linear relationships between these

constituents. Therefore, to correctly interpret a sentence, the cognitive system cannot rely solely on

the linear relationship between words but must go beyond this linearity and extract the underlying

hierarchical structure of the sentence (Chomsky, 1957). However, demonstrating the  building of

hierarchical  representations  in  sequences'  processing  has  proven  difficult  (Levelt,  2020).  The

difficulty stems from the complexity of implementing hierarchical structure in artificial settings as

well  as  from methodological  issues  associated  with  the  conventional  habituation/discrimination

testing procedure. As a result, effects that have been attributed to hierarchical learning can also be

attributed to the encoding of the surface properties of the input (Perruchet, 2005). 

Our  question  is  thus  whether  the  cognitive  system develops  hierarchical  representations  when

processing non-linguistic sequences.  To address this question, we investigated the processing of

aperiodic and self-similar binary strings generated by the Fibonacci grammar (Lindenmayer, 1968).

Instead  of  the  habituation/discrimination  paradigm,  we  evaluated  the  extraction  of  hierarchical

structures by incorporating the strings generated by this grammar into a serial reaction time (SRT)

task. By leveraging the properties of the Fibonacci grammar and the SRT task, we were able  to

investigate the elaboration of hierarchical representations while controlling for the use of surface

strategies.



Three main questions were investigated concerning the processing of the Fibonacci grammar. We

first examined whether participants developed a hierarchical representation of Fib-generated strings

during an SRT task. Results revealed that participants' pattern of anticipation could not be explained

solely  by  "flat"  statistical  learning  processes.  Instead,  anticipation  appeared  to  be  based  on

hierarchical assumptions.  Additionally,  we observed that participants exhibited sensitivity to the

grammar's  constituent  structure,  suggesting  that  they  organized  the  input  into  embedded

constituents.  Secondly,  we  explored  the  extent  to  which  one  of  the  formal  properties  of  the

Fibonacci grammar, namely the isomorphism between derivational order and sequential order, plays

a role in hierarchical structure extraction. In two experiments, we compared participants' processing

of the Fibonacci grammar with that of an alternative grammar, the Skip grammar, which does not

exhibit this isomorphism. Results showed that participants extracted a hierarchical structure during

the processing of both grammars, suggesting that isomorphism is not a key property for hierarchical

structure  extraction.  Finally,  we  explored  the  impact  of  presentation  rate  on  the  extraction  of

hierarchical  structure  by  manipulating  the  duration  of  the  Response-to-Stimulus  Interval  (RSI).

Multiple hypotheses have been put forward in the literature to account for the influence of RSI

duration on sequence learning in the SRT task (Frensch & Miner, 1994; Willingham et al., 1997).

However,  this  question has  never  been addressed from the perspective of  hierarchical  structure

extraction. We found that RSI duration affected hierarchical elaboration in a non-linear way, with

participants building higher hierarchical structures with an RSI of 250 ms compared to RSIs of

1000 ms  and  100 ms.  This  finding suggests  the  presence  of  an  optimal  temporal  window for

sequence learning in the SRT task. This U-shaped effect cannot be accounted for by any of the

existing hypotheses on the influence of RSI duration on sequence learning in the SRT task. We

hypothesized  that  this  effect  results  from  the  tension  between  the  cognitive  system's  limited

encoding capacity and the amount of information per unit of time delivered to the system.
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Chapter 1. General introduction

1.1 Introduction

To predict the course of a sequence of events over time, the cognitive system must infer from the

surface  properties  of  the signal  its  underlying  organization,  i.e.,  make an approximation of  the

underlying structure of the signal and use this mental model to generate predictions allowing a

better adaptation. The difficulty is that this underlying structure is not directly accessible in the

signal itself but must be inferred from it. Consider the situation where the cognitive system receives

as input the following speech signal:  the  picture of the neighbor is gone. Any individual with a

sufficient command of the English language will be able to correctly answer the question “is the

picture gone?”  despite  the  fact  that  the  signal  contains  the  sequence  “the  neighbor  is  gone”.

Although  such  behavior  may  seem  trivial  at  first  glance,  the  computational  problem  that  the

cognitive  system faces  in  such  a  situation  is  quite  complex.  The  input  the  system receives  is

fundamentally linear : words unfold in time. However, to understand that what is gone is the picture

of the neighbor and not the neighbor himself, the system cannot rely on the adjacent relationship

between words. This is because the syntactic relationship between words is not proportional to the

distance between them, it is not because two words are temporally close that they are syntactically

related. Thus, in order to correctly interpret this sentence, the system has to extract its underlying

hierarchical structure.

Most theories of language processing assume that human language production and comprehension

cannot  be  captured  by  the  mere  concatenation  of  consecutive  items  but  must  be  mentally

represented as recursive nested structures (Chomsky, 1957; Lashley, 1951; Simon, 1962). However,

demonstrating  the  extraction of  nested  structures  in  sequence  processing  through  experimental

methods has proven challenging. To investigate the mechanisms involved in hierarchical structure
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extraction,  researchers  have resorted to creating simpler  artificial  systems that  allow for  highly

controlled settings. However, there is a limited number of empirical studies in the field of artificial

grammar learning (AGL) that provide conclusive evidence of nested structure extraction  (Fitch,

2014;  Honing & Zuidema,  2014;  Kovács  & Endress,  2014;  Levelt,  2020).  The reason for  this

situation comes from the fact that in the test case classically used with this paradigm, a sequence

can be processed without requiring the construction of a nested structure. Instead, alternative and

potentially simpler ways of representing the sequence can lead to comparable learning performance

(Dehaene et al., 2015; Maheu et al., 2019; Uddén et al., 2020).

The objective  of  this  thesis  is  to  explore  the  ability  of  the  human cognitive  system to  extract

hierarchical structure from a sequentially presented input. Our experimental research focuses on the

underlying cognitive mechanisms involved in this process. It should be noted that we make no

assumptions about an equivalence between the cognitive mechanisms used by participants during

our  experimental  investigations  and  those  involved  in  language  processing.  We  explored  the

extraction  of  hierarchical  structure  in  sequences  generated  by  a  grammar  belonging  to  the

Lindenmayer formalism (Lindenmayer, 1968) : the Fibonnacci Grammar. Sequences generated by

this  grammar  are  aperiodic  and self-similar.  Instead  of  the  habituation/discrimination  paradigm

classically used, we implemented the sequence generated by this grammar in a Serial Reaction Time

task (SRT) (Nissen & Bullemer, 1987). By leveraging the features of the Fibonacci grammar and

the SRT task, we were able to assess the extraction of hierarchical structures without facing the

challenges commonly encountered in the existing literature on this topic.

The subsequent sections of this introduction will address several key points. Firstly, we will clarify

the distinction between hierarchical and  algebraic representations. Following that, we will briefly

explain  why  the  AGL  paradigm  is  not  a  suitable  approach  for  investigating  hierarchical

representation. Then, we will describe the methodology retained in this work and how it overcomes

the limitations of the AGL paradigm. Finally, we will outline the main research questions addressed

in the following chapters and provide a preview of the key findings.
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1.2 Hierarchical structure in sequence processing

Demonstrating the learning of hierarchical structure in sequence processing has proven challenging.

The main difficulty is conceptual. Just as the cognitive system does not have direct access to the

underlying structure of the signal, the researcher in cognitive science does not have direct access to

the mental  representations of the individuals  he studies.  As a  result,  the architecture of  mental

representations must be deduced from observable behaviour. The problem is that the output of a

system is often compatible with several generators. For example, humans are relatively good at

estimating where a ball will fall after being thrown. However, this does not imply that Newtonian

laws of physics are encoded somewhere in the brain as a generator that would work on the basis of

simpler  heuristics  could  account  for  this  behavior.  The  same  situation  arises  in  the  study  of

sequence  processing:  the  same  sequence  can  be  underpinned  by  several  representational

architectures (Uddén et al., 2020).

1.2.1 Defining hierarchical structure

The term "hierarchical structure" has occasionally been confounded with that of "algebraic pattern"

(Koch & Hoffmann, 2000). It is therefore important to define what we mean hierarchical structure

in the context of the present work. In this regard, Dehaene et al. (2015) presented a taxonomy that

categorizes various types of internal representations that can be generated from a sequence. As per

the  taxonomy  proposed  by  these  authors,  the  differentiation  between  algebraic  patterns  and

hierarchical structures can be outlined as follows. An algebraic pattern representation is a type of

representation that encodes the relationships between the elements of a sequence independently of

their  perceptual  expression;  in  other  words,  the  relationships  are  encoded  as  variables  whose

arguments can take several values. Algebraic representations allow to explain the generalization of a

structure  to  new  material.  An  example  of  an  algebraic  representation  developed in  sequence

processing is the learning of the AAB structure. Marcus et al. (1999) investigated seven-month-old

children's sensitivity to the structure of trisyllabic pseudowords, exposing them to pseudowords

with the AAB structure (such as "duduba" or "pipiro"), where the first two syllables were identical
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and the third was different. The results showed that when presented with new pseudowords made of

new syllables, the children could distinguish between pseudowords that followed the AAB structure

and those that followed the ABA structure. Insofar as test strings were composed solely of new

syllables, the authors argued that children had developed an algebraic rule-like representation of the

AAB pattern. However, the representation of the AAB structure, even though abstract, cannot be

called hierarchical  because the relationship between the categories is  analogous to the order of

presentation of the sequence elements. This is where a hierarchical representation differs from an

algebraic representation. A hierarchical representation (also referred to as nested representation) is a

type of representation where elements can be nested into a higher order constituent. This permits the

encoding of a relationship between two elements regardless of the distance between them. Thus,

arbitrarily large material can intervene between the linked elements without altering the dependency

relationship. For example, complex structural dependencies that characterize natural languages, like

the subject-verb agreement dependency cannot be captured by an algebraic pattern. This is due to

the  fact  that  the  elements  involved  in  agreement  are  constituents  that  may  encompass  nested

constituents at lower levels, allowing for arbitrarily large amounts of material to occur between the

subject and the verb without disrupting the dependency relationship.

1.2.2 Limitations of the AGL paradigm

One of the widely used paradigms to study the learning of hierarchical structure is the AGL task. In

a typical AGL experiment, participants are first presented with a set  of training strings that are

generated by a specific grammar. They are then asked to use the acquired knowledge to recognize

new strings that are either generated by the same grammar (grammatical strings) or generated by a

different  grammar  (ungrammatical  strings).  The  task  is  typically  performed  without  explicit

instruction or feedback, and participants rely on their implicit knowledge to perform it. In a seminal

study using this paradigm, Reber (1967) found that after the exposure phase, participants were able

to  distinguish  new  grammatical  strings  from  ungrammatical  strings.  Successful  discrimination

between  grammatical  and  ungrammatical  strings  has  been  replicated  in  many  AGL  studies,
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however,  the  type  of  representations  that  are  developed  in  this  task  as  well  as  the  learning

mechanism that  underlies  the  development  of  these  representations  remains  a  matter  of  debate

(Gervain et al., 2020; E. M. Pothos, 2007; Schiff & Katan, 2014; ten Cate et al., 2020; Trotter et al.,

2020, see Chapter 2 for a detailed description of the debate).

Five main reasons may explain why the AGL paradigm failed to provide unequivocal evidence in

favour of hierarchical learning. The first is the difficulty of ensuring that the discrimination between

grammatical  and  ungrammatical  test  strings  is  possible  only  if  the  underlying  structure  of  the

training material has been extracted by the participants. Indeed, if ungrammatical test strings exhibit

distinct surface properties that are not present in grammatical strings, then their rejection may be

attributed to the representation of these surface properties rather than their lack of grammaticality.

This  necessitates  that  the  dimension  along  which  grammatical  and  ungrammatical  test  strings

diverge is not perceptually expressed in the input signal. However, since a hierarchical structure is

in the mind of the one that processes the signal and not in the signal itself, the grammaticality of a

test string is necessarily judged on the basis of whether or not its surface properties (i.e., what the

parser has access to) allow the extraction of a structure similar to the target structure. Thus, a foil

can only be judged as such if its surface properties do not allow the extraction of a grammatical

structure, implying that a foil that does not diverge in its surface properties with a grammatical

string is in fact, a grammatical string. Modifying the perceptual attributes of stimuli between the

exposure and test phases, such as using new syllables or modifying the shape or color, does not

offer a solution to this problem. This is because at least one surface property of the training material

must  be  retained  in  the  test  materials  in  order  to  discriminate  between  grammatical  and

ungrammatical test strings. For example, in the Marcus et al. (1999) study, the AAB pseudowords

used in  the  exposure  and  test  phases,  despite  consisting  of  different  syllables,  share  a  surface

property: the order in which the syllables are presented.

The second limitation of the AGL paradigm is that the mechanisms used during the exposure phase

may  differ  from  those  used  in  the  test  phase.  This  task  asks  participants  to  compare  the
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representation developed during the exposure phase with the test string and to judge, on the basis of

their degree of similarity, whether or not they belong to the same category. The assumption is that

the same structure extraction mechanisms are used in both phases. However, only the mechanisms

involved in the test phase are measured, and the most efficient strategy for correct discrimination

may not necessarily involve extracting the underlying structure of the test string. As a result, even if

participants have successfully extracted the underlying structure from the training materials, they

may  rely  on  different  strategies  to  judge  the  grammaticality  of  the  test  strings.  Just  as  it  is

impossible to determine the exact properties that lead to the rejection of an ungrammatical string

(i.e., whether based on its higher-order or surface properties), it is impossible to determine on the

basis of which properties a grammatical string is judged as grammatical: this may be on the basis

that the grammatical string shares surface properties with previously learned materials, or on the

basis that an identical hierarchical structure can be extracted, or on both.

The third limitation is that the test materials may contaminate the knowledge developed during

exposure as participants continue to learn. As a result, if too many test items are administered, the

contamination effect may become too prominent, leading to an inaccurate assessment of learning.

The number of test strings that can be presented is therefore limited, which has a direct impact on

the statistical power of the dataset, as a smaller number of test items can reduce the reliability and

validity of the results.

The fourth limitation of the AGL task is that learning is measured offline, after exposure, which

makes  it  challenging  to  assess  the  evolution  of  learning  over  time  using  this  paradigm.

Incorporating  alternating  learning  and  testing  phases  may  be  a  solution,  but  it  can  introduce

confounding  factors  like  contamination  from  test  strings,  making  data  interpretation  difficult.

Another approach could be to manipulate the duration of exposure across participants, ensuring

only one test phase per length of exposure. However, despite its theoretical feasibility, practical

implementation of this design may pose challenges as it would require different conditions for each
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time point in the learning trajectory being measured and to our knowledge, no study has used such a

design.

Finally, the quantification of learning, i.e., the extent to which participants have learned the target

structure, is often overlooked in the AGL field  (Franck et al., 2016). This oversight stems from a

vision of learning as a discrete process, despite being measured continuously. Typically, successful

learning  is  defined  based  on  above-chance  performance,  resulting  in  a  binary  view  where

participants are deemed to have either learned or not learned the target structure. Therefore, if a

participant's  performance is  58% above chance,  they may be categorized as having learned the

target structure, while another participant with a performance of 80% above chance also fall in the

same category. This approach oversimplifies the complexity of the learning process and ignore the

potential differences in the quality and depth of learning.

1.2.3 Addressing the limitations of the AGL paradigm

The AGL paradigm's challenge lies in its two-stage organization, consisting of a learning phase

followed  by  a  testing  phase.  If  learning  could  be  measured  continuously  directly  during  the

exposure phase, the aforementioned limitations could be circumvented. First, direct measurement of

learning eliminates  the need to  present  ungrammatical  strings  to  participants.  Second,  it  is  not

necessary to assume that the mechanisms at play during exposure are identical to those involved in

the test phase since the test phase is eliminated. Third, contamination of learned representations by

test strings during the testing phase is avoided, again, because the test phase is no longer present.

Finally, the continuous measurement makes it possible to finely estimate the evolution of learning

over time.

In order to measure learning directly during exposure, two key components are required. First, a

sequence with properties that enable evaluation of hierarchical structure extraction without relying

on foils  must  be  used.  In  the  present  work,  we capitalized  on the  properties  of  the  Fibonacci

grammar.  This grammar generates self-similar  and aperiodic sequences.  In these sequences,  the
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learning of one regularity is conditioned by the prior learning of another, lower-level regularity.

This makes it  possible to evaluate the depth of learning without relying on foils  by comparing

which  regularities  the  learner  has  identified.  Moreover,  due  to  the  self-similar  nature  of  the

sequences, the height of the hierarchical structure that can be learned is not limited a priori, which

allows  for  a  precise  assessment  of  learning.  Secondly,  an  experimental  paradigm that  enables

continuous  tracking  of  participants'  learning  performance  and  avoid  explicit  grammaticality

judgments  must be employed. The Serial Reaction Time (SRT) task (Nissen & Bullemer, 1987)

precisely  meets  this  requirement.  In  the  SRT task,  participants  rapidly  respond  to  sequentially

presented stimuli, with each response triggering the next stimulus. In the following, we explain in

more detail the properties of the Fib grammar strings and explain how their implementation in the

SRT task avoids the limitations of the AGL paradigm mentioned in the previous section.

1.2.3.1 The Fibonacci grammar

The Fibonacci grammar (Fib henceforth) belongs to the Lindenmayer formalism (L-systems). In

contrast  to  other  classes  of  grammars,  there  is  no  distinction  between  rewriteable  and  non-

rewriteable  symbols  in  L-systems,  and rewrite  rules  are  applied  simultaneously  to  all  symbols

instead of sequentially from left-to-right in a string (Lindenmayer, 1968; Vitányi & Walker, 1978).

These simplifications yield rule systems that generate complex structural patterns. The Fib grammar

comprises two rewrite rules:

0 → 1

1 → 0 1

The interpretation of this formalism is as follows: every instance of [0] in a sequence is 'rewritten'

as [1], and every instance of [1] in the same sequence is rewritten as [01]. By iteratively applying

these  rules,  longer  sequences  of  symbols  emerge,  each  corresponding  to  a  'generation'  of  the

grammar. This grammar is named after the Fibonacci sequence as the number of points1 in each

1 Note that in a grammar, the rewriting rules manipulate the "symbols" that belong to an alphabet. The actual realization
of symbols can be expressed in various ways without altering their significance. For instance, substituting 0s and 1s
with As and Bs has no impact. To refer to the concrete realization of the symbols in the Fib grammar, I will use the term
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generation adheres to the sequence (as shown in Fig. 1). Additionally, there is an asymmetry in the

distribution of 0s and 1s in each generation, with a greater number of 1s than 0s: the ratio of 1s to 0s

approximates the golden ratio (1.618). When examining a sequence generated by the grammar from

left to right, two possible transitions exist, one from 0 and the next point, and one from 1 and the

next point. The probabilities of these transitions are also asymmetric. The transition from 0 to 1 is

deterministic, meaning that 0 is always followed by 1, while the transition from 1 to the next point

is probabilistic, with 1 being followed by 0 in 61.8% of cases and by 1 in 38.2% of cases.

Fig 1. Derivation of the Fibonacci grammar for the first 5 generations. The right column shows the number
of symbols at each generation, which maps the Fibonacci sequence. Arrows and circles highlight the 
hierarchical constituency of the grammar. 

The Fib grammar is a particularly suitable candidate for exploring hierarchical structure extraction

because  it  exhibits  the  following  properties:  (1)  the  generated  strings  are  self-similar,  (2)  the

generated strings are aperiodic, (3) the grammar is deterministic, and (4) while presenting complex

structural patterns, the generated strings are maximally simplified (i.e., the strings are binary).

The most important aspect of the strings generated by Fib grammar for the present investigation lies

in their self-similarity. Because of the recursive aspect of the rewriting rules, each generation in the

Fibonacci grammar can be analyzed by breaking it down into two consecutive smaller generations

that are inherent constituents of the grammar. For instance, the fourth generation [01101] can be

partitioned into the second and third generations [[01][101]], which can be further subdivided into

"point" throughout this thesis.
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the first and second generations [[01][1][01]], and then again into the zeroth and first generations

[[[0][1]][[1][[0][1]]]].  Therefore,  any generation  can  be  visualized  as  a  complex  embedding  of

constituents  that  exhibit  the  hierarchical  organization  of  the  grammar.  Moreover,  Fib-generated

sequences are scale-free, meaning that the transitional probabilities between points at the surface

level  are  equivalent  to  those  between  constituents  (see  Fig.  2  right  panel).  Importantly,  the

points/constituents  that  surround  a  deterministic  transition  at  level  n  always  form  a  larger

constituent at level n+1. For instance, at the surface level, 0 is invariably followed by 1, and their

concatenation  results  in  the higher-order  constituent  [01],  which is  a  natural  constituent  of  the

grammar.  At  level  1,  the  constituent  [1]  is  always  followed  by  the  constituent  [01],  and  their

combination leads to the higher-order constituent [101]. Therefore, because of the invariance of the

transitional probabilities due to the grammar's self-similarity, the distributional properties of Fib

provide a scaffold for the parser to access the constituent structure of the grammar. The processing

mechanism may  begin  by  merging  the  points  that  are  connected  by  a  deterministic  transition.

Subsequently,  the  higher-order  constituents  obtained from this  merging process  can  be  used  to

identify deterministic transitions at the next hierarchical level. If this recursive combination process

is  repeated,  it  would  result  in  a  gradual  transformation  of  the  sequence  representation  into  a

complex hierarchical structure of embedded constituents (see Fig. 2 left panel).

Fig 2. Left panel: depiction of the first three hierarchical levels of generation 7 of the Fibonacci
grammar. Non-disambiguated points at each level are highlighted in red and disambiguated points
in green. To form a new hierarchical level,  points that span across a deterministic transition are
combined together (this is illustrated by the arrows). The result is a new representation of the
string that consists in the combination of points corresponding to natural higher-order constituents
of the grammar (illustrated by the brackets). At each level, constituents spanning a deterministic
transition can be combined to form an embedded hierarchy.  Right panel: transition probabilities
between constituents at each level.
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The  strings  generated  by  the  Fib  grammar  allow  us  to  measure  learning  online  thanks  to  the

following property: points that follow a probabilistic transition at level n can be appear within a

constituent that follows a deterministic transition at level n+1. For example, all occurrences of 0s

exhibit a probabilistic transition at the surface level, with p(0|1) = .62 and 1-p(0|1) = .38. However,

0s always manifest at level 1 within the constituent [01], and some instances of this constituent

follow a higher-order deterministic transition: the constituent [1] is consistently followed by the

constituent [01] (p([01]|[1])=1). Therefore, even though all 0s are ambiguous at the surface level, a

subset of them are disambiguated at level 1 (i.e., the 0s that follow a higher-order deterministic

transition). As a result, the detection of higher-order deterministic transitions serves to disambiguate

some of the points  that  were previously ambiguous at  the lower level.  Notably,  the higher  the

hierarchical structure,  the more points will  be disambiguated.  Therefore,  each hierarchical level

corresponds to a specific learning pattern of points: those that remain ambiguous at this level (i.e.,

non-disambiguated points) and those that are disambiguated at this level.

However, the self-similar aspect of the strings generated by Fib would be of little experimental

interest if the distribution of points in the sequences was not also aperiodic. Aperiodicity means that

the sequence never exactly repeats itself i.e., there is no linear function that can be used to predict

all future points. As a result,  there is no hierarchical level that can disambiguate all ambiguous

points, a subset of non-disambiguated points which can lead to a new embedding always persists.

Due  to  aperiodicity,  it  is  thus  impossible  to  accurately  predict  future  points  using  low-level

strategies such as detecting recurring patterns.

Moreover, in contrast to a probabilistic sequence, the strings generated by the Fib grammar are

entirely  deterministic.  This  makes  it  possible  to  generate  precise  predictions  about  which

anticipation pattern corresponds to a given hierarchical level. Each hierarchical level corresponds to

a  specific  pattern  of  learning of  points:  points  that  are  still  ambiguous at  that  level  (i.e.,  non-

disambiguated points) and points that are disambiguated at  that level and below. This makes it

possible to assess the height of the hierarchical structure built by the participants without having to
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compare performance between grammatical and ungrammatical stimuli, as the learning is evaluated

within the sequence itself.

Another advantage of the Fib-generated string is that since sequences are binary, the input presented

to participants is maximally simplified while allowing complex structural processing. In contrast,

the use of more complex sequences may involve factors that are difficult to control such as prior

knowledge, semantic content, or the need to teach participants a lexicon prior to testing  (Levelt,

2020; Planton et  al.,  2021). Finally, the hierarchical structure in the strings generated by Fib is

indexed  by  a  single  factor,  which  is  the  sequential  order  of  presentation  of  the  points.  In

comparison, other experimental setups typically rely on perceptual cues to index the hierarchical

structure of the signal (Franck et al., 2016; Grama et al., 2016; Onnis et al., 2005; Peña et al., 2002;

Reeder  et  al.,  2013;  van  den Bos  et  al.,  2012).  The  use  of  perceptual  cues  can  inadvertently

introduce associations or biases that may complicate data interpretation. By using sequences that

rely  only  on  sequential  order  to  indicate  hierarchical  structure,  this  potential  complication  is

avoided, resulting in easier and more reliable interpretation of experimental results.

1.2.3.2 The Serial Reaction Time task

In the present work, we evaluated the learning of Fib-generated string with the Serial Reaction Time

(SRT) paradigm (Nissen & Bullemer, 1987). This paradigm allows for the online monitoring of

participants' learning performance. In a typical SRT experiment, participants are asked to press a

key on a keyboard in response to the appearance of a visual stimulus presented at a specific location

on a screen as quickly as possible. Responding to the stimulus causes it to disappear and the next

one is presented after a fixed interval. Learning is assessed online: as participants learn the target

sequence, they develop expectations about its structure, resulting in improved performance over

time (shorter RTs, higher accuracy). By using the SRT task in conjunction with Fib sequences, we

can measure learning directly (i.e., without relying on foils) and continuously (i.e., as learning is

measured at each trial).
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1.3 Research questions

The properties of the Fib grammar coupled with the SRT task provide a novel approach to study

hierarchical extraction from sequences while avoiding the pitfalls of the AGL paradigm. The thesis

addresses three main questions in regard to the processing of the Fibonacci grammar: (1) Does the

cognitive system elaborate a hierarchical representation from Fib-generated strings ? (2) Does one

of the formal properties of the Fib grammar, namely the isomorphism between the derivational and

the sequential order, play a role in hierarchical structure extraction ? (3) How does the rate at which

stimuli  are  presented  affect  structure  extraction  ?  To  address  these  questions,  a  total  of  6

experiments have been conducted, which we report in Chapters 2, 3 and 4.  In what follows, we

briefly outline how these questions are addressed and anticipate the main results reported.

Chapter  2  addresses  question  (1),  which  is  the  precondition  for  the  others,  namely  whether

participants  actually  elaborate  a  hierarchical  structure  when  processing  this  grammar.  We

hypothesized that the surface properties (i.e., the transitional probabilities) of the sequence would

drive the parser in building a hierarchical structure. The mechanism we propose is relatively simple:

participants  would  recursively  merge  points  that  span  across  a  deterministic  transition  (i.e.,

transitional probabilities equal to 1), and use the output of this process to merge new deterministic

transitions between these groups of merged points. This process would result in a representation of

embedded constituents. To test this hypothesis, we exposed participants to strings generated by the

Fibonacci grammar in a SRT task. Hierarchical elaboration should result in a progressive ability to

anticipate locally ambiguous points that are disambiguated at higher hierarchical levels. To test this

prediction,  we  compared  the  evolution  of  RTs  and  accuracy  through  exposure  of  points

disambiguated  at  level  n  to  those  of  non-disambiguated  points  at  the  same  level.  The  results

indicated  that  disambiguated  points  were  progressively  anticipated  better  than  their  non-

disambiguated counterparts at levels 0, 1, 2 and 3, suggesting that participants built the structure up

to the third hierarchical level. We conducted a second analysis aimed at specifying further whether

participants  had processed the  Fibonacci  grammar as  a  nested  structure.  If  participants  rely on

23



deterministic  transitions  between  constituents  to  anticipate  disambiguated  points,  then  the

processing  of  such  points  would  be  influenced  not  only  by  the  level  at  which  they  are

disambiguated but also by the constituent in which they appear higher in the hierarchy. To this end,

we compared different instances of disambiguated points of the same level but occuring at level n+1

either  in  an ambiguous constituent  or  in  a  non-ambiguous constituent.  Our results  showed that

points that had exactly the same transitional probability (which was equal to 1) were processed

differently in virtue of their position in the higher-order constituent at levels 1 and 3. This suggest

that participants anticipated, at least in part, points on the basis of hierarchical assumptions. In the

last part of Chapter 2, we explored in more detail the form of the representations developed by the

participants. In particular, we wanted to know whether participants processed constituents as single

units without internal structure or as composed of several embedded sub-constituents. The results

showed  that  lower-level  constituents  were  still  represented  within  higher-level  constituents,

suggesting that participants were not treating constituents as single homogenous units. To conclude,

observations  from  Chapter  2  clearly  suggest  that  participants  extracted  a  hierarchical  nested

structure from the string generated by the Fib grammar.

Chapter 3 investigates whether hierarchical elaboration is driven by the formal properties of the Fib

grammar. More precisely, our specific focus is on investigating the k-points hypothesis (Vender et

al., 2020; Krivochen, 2018) according to which participants would be sensitive to the isomorphism

between the  surface  and the  derivational  properties  of  the  Fib grammar  in  order  to  extract  its

hierarchical  structure.  According  to  this  hypothesis,  the  identification  of  specific  points  in  the

grammar, called k-points, would enable the parser to build the local hierarchical structure of the

grammar because of their specific structural status. To investigate the cognitive system's sensitivity

to the structural status of k-points, Vender et al. (2020) conducted a SRT experiment where they

first exposed participants to the Fib grammar and then to an alternative grammar called Skip. The

Skip and Fib grammars share some properties: the strings generated are aperiodic and self-similar

and the statistical distribution of points is similar.  However, from a formal point of view, even
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though the surface expression of k-points is present in Skip, they do not have any special structural

status. The results showed a slowdown in RTs for Skip k-points compared to Fib k-points. These

authors concluded that the advantage for Fib k-point would come from their specific formal status.

However, this interpretation is questionable because the Skip grammar differs from Fib not only

from a formal point of view but also in terms of their surface properties. The difference in the

statistical distribution of points between the two grammars is sufficient to account for the results

reported by Vender et al. (2020) without having to assume that participants were sensitive to the

specific formal properties of Fib. Moreover, the k-point hypothesis seems incompatible with several

observations reported in Chapter 2. We therefore wanted to know whether the hypothesis proposed

in Chapter  2,  namely that  participants  build a  hierarchical  structure via  the recursive merge of

deterministic transitions (referred to as the recursive merge hypothesis), could explain the results of

Vender et al. (2020). Insofar as the argument for the k-point hypothesis relies on the comparisons

between the Fib and Skip grammar, and insofar as we did not test the Skip grammar in Chapter 2,

the purpose of Chapter 3 is to compare the predictions of each hypothesis in the processing of the

Fib and the Skip grammar. To this end, we carried out two SRT experiments in which participants

were exposed to either the Fib grammar followed by the Skip grammar ("Experiment 1") or the

Skip grammar followed by the Fib grammar ("Experiment  2").  This  allowed us to  test  a  large

number of predictions made by each hypothesis (four for the k-points hypothesis and two for the

recursive  merge  hypothesis).  The  results  showed  that  in  both  the  Fib  and the  Skip  grammars,

participants elaborated a hierarchical structure from the input. This suggests the involvement of at

least partially similar mechanisms during the processing of each grammar. The results were also

mostly in contradiction with the prediction of the k-point hypothesis whereas the recursive merge

hypothesis  had  the  majority  of  its  predictions  confirmed.  Overall,  the  results  suggest  that

hierarchical building in Fib is not due to the formal properties of k-point.

In Chapter 4, we explore the impact of the presentation rate on hierarchical structure extraction by

manipulating  one  of  the  parameters  of  the  SRT task:  the  Response-to-Stimulus  Interval  (RSI).
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Although this issue has never been directly addressed in the literature, three hypotheses have been

proposed to account for the effect of RSI duration in sequence learning in general. According to the

Decay hypothesis (Frensch & Miner, 1994; Soetens et al., 2004), RSI duration would affect learning

through the decay of stimulus representations in working memory: the shorter the RSI, the better the

sequence would be learned. According to the Preparation hypothesis (Willingham et al., 1997), the

duration of the RSI would not affect sequence learning as such but rather performance in the SRT

task. Learning would be identical across different RSI durations but could only be detected when

the RSI is short enough. At long RSI durations, participants would have more time to prepare for

the next trial, which would mask the learning effect. Finally, according to the Awareness hypothesis

(Cleeremans & Sarrazin, 2007; Destrebecqz & Cleeremans, 2001, 2003; Frensch & Miner, 1994;

Huang et al., 2017; Kuhn & Dienes, 2006; Norman et al., 2007; Savalia et al., 2016; Soetens et al.,

2004; W. B. Verwey & Wright, 2014; W. Verwey & Dronkers, 2019; Willingham et al., 1997), RSI

duration would modulate  the implicit/explicit  nature of learning:  the shorter  the RSI,  the more

learning  would  be  implicit.  Under  the  assumption  that  abstract  knowledge  cannot  be  acquired

implicitly, the duration of the RSI would have the effect of restricting the type of representation that

can be learned in the SRT task. The knowledge developed would become more and more abstract as

the RSI lengthens. To disentangle between these hypotheses, we manipulated the duration of the

RSI  while  using  Fib  grammar-generated  strings  as  target  sequences  in  three  experiments.  In

Experiment 1, the RSI lasted 1000 ms, in Experiment 2 it lasted 250ms and in Experiment 3 100

ms. According to the Decay hypothesis, the height of the hierarchical structure elaborated by the

participants should increase with the shortening of the RSI. The Awareness hypothesis makes the

opposite prediction: the height of the hierarchical structure elaborated by the participants should

decrease  with  the  shortening  of  the  RSI.  Finally,  the  preparation  hypothesis  predicts  that  the

duration of the RSI should have no effect on the height of the hierarchical structure elaborated by

the participants. The results showed that the height of the hierarchical structure was maximal when

the RSI lasted 250 ms and decreased at 1000 ms and 100 ms. These results suggest the existence of
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an optimal time window for learning. None of the three hypotheses can account for this U-shape,

non-linear effect of the RSI. We interpreted these findings through the lens of recent applications of

Shannon's  information  theory  to  sequence  processing  (Radulescu  et  al.,  2019,  2021;  Shannon,

1948).

1.4 Organisation of the thesis

Chapters 2, 3, and 4 were written as distinct research articles, which resulted in partial overlapping

in their  introductions.  Chapter  2 is  published under the title  "Finding Hierarchical  Structure in

Binary  Sequences:  Evidence  from  Lindenmayer  Grammar  Learning"  in  the  journal  Cognitive

Science in January 2023 (Schmid et al., 2023a). Chapter 3 is currently under revision under the title

"Uncovering  hierarchical  structure  through  statistical  dependency"  in  the  journal  PLOS  ONE

(Schmid et al., 2023b). Chapter 4 is intended to be submitted in the near future as a research article

to an academic journal. Chapter 5 discuss the main results of the experiments further in regard to

the main questions addressed in this work. We will highlight limitations of the empirical work and

propose  directions  for  future  research.  To  minimize  redundancy  between  chapters,  all

bibliographical references are gathered at the end of this work.
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Chapter 2. Finding hierarchical structure in binary
sequences : evidence from Lindenmayer grammar learning

2.1 Introduction

How do  humans extract hierarchical structure from a sequentially presented input? This question

lies at the core of multiple domains of cognitive psychology and neuroscience. The most prominent

is  probably  language processing  where  most  linguistic  theories  assume that  the  sequences  that

humans produce and remember cannot be reduced to mere associations of consecutive items but

must  be  mentally  represented  as  recursively  nested  structures  (Chomsky,  1957;  Lashley,  1951;

Simon,  1962).  Nested  tree  structure  is  a  form  of  representation  generated  by  symbolic  rules

allowing recursion when they are embedded such that the same element can appear at multiple

levels.

There's a plethora of evidence that nested structures are represented and used by adults in sentence

processing (e.g.,  Lewis & Phillips, 2015) as well as in other cognitive domains like mathematical

expressions (Maruyama et al., 2012; Monti et al., 2012; Nakai & Sakai, 2014), motor action (Hunt

& Aslin, 2001; Martins, Bianco, et al., 2019), musical melody (Koelsch, 2005) and rhythm (Fitch &

Martins, 2014; Kotz et al., 2018). Nevertheless, the experimental demonstration of the learning of

nested structures in sequence processing has proven difficult and the field of artificial grammar

learning (AGL) has produced very few empirical studies showing conclusive evidence (Fitch, 2014;

Honing & Zuidema, 2014; Kovács & Endress, 2014; Levelt, 2020).

This  difficulty  comes  from the  fact  that  in  the  test  cases  classically  used,  a  sequence  can  be

processed  without  necessarily  building  a  nested  structure  as  other,  possibly  simpler  ways  of

representing it  can give rise to similar learning performance.  Dehaene et  al.  (2015) proposed a

taxonomy of the different types of internal representations that can be generated from a sequence. In

particular, they distinguish between two kinds of hierarchical representations: nested representations
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and algebraic patterns. Algebraic patterns refer to a type of representation where the input is coded

as sequential abstract relationships or categories, thus allowing generalization to new exemplars

irrespective of their specific identity. For example, the pseudowords "duduba" and "pipiro" share

the algebraic pattern AAB that can be coded as a repetition followed by an alternation. Marcus et al.

(1999) showed that at seven months, children were able to generalize this pattern to new unseen

pseudowords, suggesting that they had a representation of the AAB rule. Algebraic patterns are

hierarchical in the sense that they consist in variables that can take different values. Nevertheless,

patterns, even though abstract, are insufficient to account for complex structural dependencies that

characterize natural languages, like the subject-verb agreement dependency. For example, in the

sentence “[The cats [the car avoided] ran away]” the plural subject (cats) agrees with the verb (ran)

irrespective of the intervention of the relative clause (the car avoided). Long-distance dependencies

in natural language are impossible to express with a system that only captures local order relations

because arbitrarily large materials can intervene between the subject and the verb. In other words,

the  nesting of constituents where (cats) and (ran) are directly linked  is necessary to account for

long-distance dependencies.

Many AGL attempts to study the learning of nested structures have focused on the ability to learn

and  generalize  center-embedding  (Bahlmann  &  Friederici,  2006;  de Vries  et  al.,  2012;  Lai  &

Poletiek, 2011, 2013; J. L. Mueller et al., 2010). Center-embedding is the nesting of an arbitrary

number of phrases into higher-order phrases (e.g., [The cat [the dog chased] ran away]). Context-

free  grammars  (CFG)  represent  the  minimal  level  in  the  Chomsky  hierarchy  because  of  their

unbounded memory that allows the binding of an unlimited number of constituents  (Chomsky &

Lightfoot, 2002). A well-studied instance of CFG is the a(n)b(n) grammar that generates strings like

AB, A[AB]B, A[A[AB]B]B, etc. In order to assess if recursion can be induced by participants after

exposure  to  sequences  generated  from  this  grammar,  the  test  contrast  is  provided  by  strings

generated from a finite state grammar (FSG) like (ab)n. FSGs cannot generate center-embedding

because they have no memory; transitions are determined by the current state and the input only.
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They are therefore unable to describe nested structures. Fitch and Hauser  (2004) compared in a

habituation/discrimination  task  the  ability  of  humans  and  cotton-top  tamarins  to  discriminate

between the a(n)b(n) grammar and the (ab)n grammar. The authors discovered that humans were

able to notice the change from one grammar to the other while cotton-top tamarins were not able to

discriminate (ab)n from a(n)b(n) after training on a(n)b(n). The results were interpreted as evidence

that humans possess a unique ability to induce the hierarchical structure needed to process CFG,

while cotton-top tamarins are limited to the processing of less complex grammars.

However,  the conclusion that participants can represent  a(n)b(n) as a  nested structure has been

challenged.  Perruchet  and  Rey  (2005) noted  that  it  was  not  necessary  to  pair  As  and  Bs  to

discriminate  between  the  two  kinds  of  test  strings;  a  simpler  strategy  based  on  counting  and

detection of repetition could also explain performance. They showed that participants were unable

to  pair  As  and  Bs  in  structures  involving  mirror  recursion  (center-embedding  with  systematic

pairing of As and Bs that generate strings such as A3[A2[A1B1]B2]B3). Although later studies

reported successful learning of mirror recursion under specific conditions (Bahlmann & Friederici,

2006; de Vries et al., 2008, 2012), the authors of these studies all acknowledged that the processing

of  surface  distinctions  could  also  account  for  performance.  This  comes  from the  fact  that  the

ungrammatical  test  strings  necessarily  differ  in  their  surface  expression  from the  grammatical

string:  the  correct  rejection  of  an  ungrammatical  string  can  therefore  also  be  due  to  the

representation of those surface properties.

Recent  work  has  used  fractal  stimuli  to  explore  hierarchical  processing  in  the  visual  modality

(Martins et al., 2014, 2015; Martins, Krause, et al., 2019), the auditory modality  (Martins et al.,

2017, 2020), and in the motor domain  (Martins,  Bianco, et  al.,  2019). In this series of studies,

participants were performing a completion task on periodic fractals. For example, in Martins et al.

(2017)  participants  were  first  exposed  to  three  auditory  stimuli  that  were  generated  by  the

application of a recursive rule. Participants were then asked to choose between two stimuli the one

that  followed  the  rule  at  the  higher  hierarchical  level.  Each  application  of  the  rule  added  a
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hierarchical  level  to  the  existing  stimulus.  Each hierarchical  level  consisted  of  three  notes  that

formed an ascending contour. The application of the recursive rule superimposed on each note of

the preceding level three shorter higher pitch notes that also formed an ascending contour.  For

example, the first stimulus was a low-pitch note with a duration of 7.3 sec (level 1). The second

stimulus (level 1 + level 2) superimposed three shorter medium pitch notes on the low pitch note of

level 1. The third stimulus (level 1 + level 2 + level 3) superimposed nine shorter high pitch notes

on each of the medium pitch notes of level 2. The authors found that participants were able to select

the correct continuation when presented along with different foils, and interpreted this result as an

indication that  participants were able  to  apply rules to  new hierarchical  levels.  However,  these

results do not demonstrate that rules were embedded because it was sufficient to apply the rule only

to the highest hierarchical level to solve the task. Indeed, a rule of the type "the notes follow an

ascending pattern" was enough to reject the foils because level 3 of each foil violated this rule. In

other words, it was not necessary to apply the rule simultaneously at all the hierarchical levels to

succeed.

As  we have  seen,  it  has  proven challenging to  create  foils  that  allows  to  distinguish  between

learning based on surface regularities from learning based on higher-order structural properties in

the  habituation/discrimination paradigm. Furthermore,  the presentation of ungrammatical strings

may contaminate participants’ mental representations throughout the testing phase. To avoid these

difficulties, one should be able to assess learning without having to present ungrammatical strings

to participants. To this end, the grammar should  generate sequences in which the learning of one

regularity is conditioned by the learning of another, lower-level regularity. This makes it possible to

evaluate the depth of learning by comparing which regularities the learner has identified. Assessing

learning of such a grammar that contains its own test can be done with a procedure that measures

the evolution of performance throughout the task, avoiding the use of ungrammatical strings and

explicit grammaticality judgments. The serial reaction time (SRT) paradigm (Nissen & Bullemer,

1987) allows such on-line monitoring of the participants’ learning performance. In the SRT task,
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participants respond as quickly as possible to successively presented stimuli, usually by pressing

response keys. Each response triggers the presentation of the next stimulus, to which participants

respond anew. Learning typically manifests by a reduction in reaction times and is expected to take

place when a given trial is subject to anticipation.

Only a few studies have made use of this paradigm to explore the learning of hierarchical structure

and for most of them, the kind of knowledge developed by participants involves algebraic patterns

and not nested structures. Koch and Hoffman  (2000) were the first to report evidence suggesting

sensitivity  to  higher-order  properties  of  sequences  in  SRT.  Participants  were  presented  with

sequences consisting of 6 different digits. The sequences were periodic and 24 digits in length. The

participants' task was to respond to the digit presented on the screen with one of the six response

keys. The authors manipulated the relational structure of the sequences. In the third experiment, the

highly  structured  sequences  were  composed  of  four  pairs  of  three  elements  that  followed  two

relational patterns. The first two pairs corresponded to a mirror relationship of an ascending and

descending order (e.g., 123-321) and the last two pairs corresponded to a transposition (e.g., 123-

234). Participants in this condition therefore saw a sequence like 123-321-456-654-123-234-345-

456 (e.g., mirror, mirror, transposition, transposition). The unstructured sequences were created by

the permutation of the triplets  in such a way to break the relational patterns while keeping the

statistical  distribution  identical  (e.g.,  123-345-456-123-234-321-456-654).  The results  showed a

greater  decrease  in  reaction  times  for  participants  in  the  structured  than  in  the  unstructured

condition, suggesting that they were sensitive to the sequences’ higher-order relational structure.

The participants thus went beyond the surface statistical properties and seem to have organized the

sequence according to relational patterns.  However,  an algebraic rule like “two mirror relations

followed by two transposition relations” is actually sufficient to account for the results: it is thus not

necessary to assume that the representation developed by the participants corresponds to a nested

structure in which an algebraic rule is  nested within another algebraic rule,  since the relational

patterns were not embedded in multiple levels.
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In a slightly different task, the discrete sequence production task (DSP), Verway and Wright (2014)

trained participants by repeatedly presenting them with short sequences of six elements, each was

associated with the location of an illuminated square. During training, each sequence was presented

with one of the six elements positioned in a random location, while all other elements occupied a

position following a pattern, which could not be extracted from a single sequence, but required

combining positional information across sequences. In the test phase, participants were presented

with  the  sequence  without  deviations  (i.e.,  the  ‘true’ but  never  seen  sequence)  as  well  as  an

unfamiliar  sequence  (i.e.,  a  sequence  where  the  order  of  elements  never  matched  the  training

phase).  Participants  were  faster  in  the  no-deviation  sequence  than  in  the  unfamiliar  sequence,

although they did not practice either during the training phase. This suggests that during the training

phase, participants extracted probabilities related to the order of appearance (i.e., the probability

that  an  element  appears  in  position  1,  position  2,  etc.)  and  combined  that  information  into  a

representation capturing the underlying pattern of the sequence. Although those results demonstrate

learning of an algebraic pattern, like in the study of Koch and Hoffman (2000), they do not attest to

learning of nested structures.

To our knowledge, only one SRT study reported results suggesting the use of nested structures,

which is that from Hunt and Aslin  (2001). These authors presented probabilistic sequences in a

visual SRT task. The sequences were presented by illuminating buttons occupying different spatial

positions. In their Experiment 3, the sequence consisted of 4 pairs of elements where the transitional

probability from the first to the second element was 1, so the second element of a pair could always

be anticipated with certainty by the participants. On the other hand, the transition between pairs was

governed by the following probabilities: pairs A and B were each followed in 50% of the cases by

pair C and in the remaining 50% by pair D. Pairs C and D were each followed in 25% of the cases

by pair A and in 25% of the cases by pair B. Pair C was followed in 50% of the cases by pair D and

pair D in 50% of the cases by pair C. An additional restriction was that when pairs C and D were

contingent, the next pair had to be either A or B (thus prohibiting alternating CDC or DCD). The
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authors observed that some participants became sensitive to the cumulative probability of the two

most frequent pairs. When pairs C and D were contingent, reaction times for the second element of

the pair in position 2 were faster than those for the second item of the same pair when it was in

position 1. Since the transitional probability was always 1 for the second element of a pair,  the

effect can be explained only if participants have acquired the knowledge that the transition between

elements of a pair is embedded in the transition between pairs. This embedding of transition seems

more in line with a nested representation than a representation of an algebraic pattern; however, this

interpretation has some limitations. First, only 3 participants out of 10 showed the effect. Second,

the alternation CDC and DCD being prohibited, the transition following CD or DC was at chance

level (50% A and 50% B). Thus, the design of the materials prevented determining if participants

nested more than one relation, that is, if the transitions between pairs were themselves embedded

into  transitions  between  multiples  pairs.  Nevertheless,  the  results  suggest  that  transitional

information is sufficient to bootstrap the construction of nested representations.

In a recent study, Planton et al.  (2021) went further and explored if a simple form of temporal

sequence could give rise to nested representations. One of the simplest forms of temporal sequences

are binary sequences, and unlike more complex sequences like music or natural language, they have

the advantage of allowing maximal control of the input presented to the participants. This apparent

simplicity however preserves the possibility of creating highly complex sequences, which can be

expressed as nested tree structures. The authors presented short  binary sequences in a violation

detection task. After an exposure phase, altered sequences that deviated by one item from the initial

sequences were presented to the participants. The participants'  task was to report  as quickly as

possible if they detected a violation. In order to vary the complexity of the sequences, the authors

developed  a  formal  language  containing  a  limited  number  of  primitive  instructions  that  could

generate any binary sequence. This allowed them to characterize each binary sequence in terms of

Kolmogorov Complexity. Kolmogorov complexity is a theoretical measure where the complexity of

a sequence is equal to the size of the shortest computer program that can generate it. Thus, the
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complexity of a sequence was defined by the minimal number of primitive instructions needed to

generate it in the proposed language. The more the complexity of a sequence increases, the more its

most  compressed  representation  requires  the  use  of  instruction  nesting.  The  authors  therefore

wanted to know if the participants' sequence representations were compressed in a similar way. To

separate the part of the performance explained by this compression process and the part that can be

attributed  to  the  learning  of  transitional  probabilities,  the  authors  also  measured  in  each  test

sequence the Shannon surprise induced by the deviant stimuli. Shannon surprise (Shannon, 1948)

measures the degree of uncertainty of observing an item given the history of previous items and

thus reflects  statistical  learning. Since surprise  is  independent of complexity (it  varies with the

position  of  the  deviant  within  a  sequence  and  is  insensitive  to  sequence  complexity  that

characterizes a sequence as a whole), if participants process only the transitional probabilities of the

sequences, the degree of surprise of the deviant stimuli should be the only predictor of performance.

Conversely,  the use of compression by participants should result  in a significant portion of the

variance being explained by the degree of complexity of the sequences. The results showed that

both  surprise  and  complexity  were  significant  predictors  of  performance  suggesting  that

compression  occurred  along  with  statistical  learning.  This  finding  demonstrates  that  statistical

learning is insufficient to fully account for sequence processing: even when processing sequences as

simple  as  binary  sequences,  participants  recode  the  sequence  using  a  recursive  compression

algorithm. However, this study did not assess the degree of compression of the participants. Indeed,

sensitivity to complexity, demonstrated by slower violation detection times in the most complex

sequences, does not imply that participants have compressed the sequence to the maximum, nor that

the  primitive  instructions  of  their  formal  language  correspond  to  the  mental  operations  of  the

participants. Our study aims to go further by trying to characterize more precisely the mechanism

used by the participants to compress the signal.
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2.1.1 Present study

The purpose of the present study is to evaluate, with the SRT paradigm, if participants represent

binary sequences of events as nested structures. In theory, recursive compression algorithms allow

an infinite number of hierarchical levels. This is obviously not the case for human whose processing

capacity is finite, limiting the number of hierarchical levels it can represent. Nevertheless, this limit

cannot  be  defined a  priori  and can  vary  from one  participant  to  another.  Thus,  predefining  in

advance the hierarchical structure of a sequence and setting a maximum number of levels does not

allow for  finely  evaluating  the  hierarchical  depth  reached by the  participants.  We avoided this

problem by using sequences generated by the Fibonacci grammar that are self-similar and aperiodic.

The investigation of hierarchical processing with sequences having these two properties has several

advantages. First, the self-similar character of the sequences does not limit a priori the hierarchical

depth, which is theoretically infinite1. Second, the aperiodic character of the sequences means that

no matter how deep the hierarchical representations are, they will necessarily be incomplete and

will  only  explain  part  of  the  signal.  Thus,  the  part  not  explained  by the  hierarchical  structure

corresponds to the maximum hierarchical level reached. In this way, it is not necessary to compare

performance between grammatical and ungrammatical  stimuli  because the learning is  evaluated

within the sequence.  Crucially, the linear distribution of units  (henceforth referred to as points) in

the  sequences  is aperiodic, meaning that there is no linear function that can be used to linearly

predict when a point will occur. This prevents the use of low-level strategies like detecting recurring

patterns.

The sequences we will use are generated by a grammar derived from the Lindenmayer formalism

(L-systems).  These  grammars  show  interesting  properties:  there  is  no  distinction  between

rewriteable and non-rewriteable symbols, and rewrite rules apply simultaneously to all symbols2

1 Note that  the hierarchical  depth can of  course only be infinite  for  an infinite chain.  In the present study, the
presented sequences were 233 points long, and had potentially up to 12 hierarchical levels, which is presumably
well beyond the processing capacity of the cognitive system.

2 Formally, the rewriting rules of a grammar operate on the "symbols" of an alphabet. The expression of the symbols
(i.e. their actual realization) can however vary. For example, 0s and 1s can be replaced arbitrarily by As and Bs
without any impact. In this article, we use the term "point" to refer to the actual realization of the symbols of the
Fibonacci grammar. 
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rather than sequentially from left-to-right in a string (Lindenmayer, 1968; Vitányi & Walker, 1978).

Because L-systems do not distinguish rewriteable from non-rewriteable symbols, rule systems are

simplified,  but still  produce complex structural patterns. One instantiation of L-systems used in

AGL paradigms is the so-called Fibonacci grammar, which consists in two rewrite rules (Geambaşu

et al., 2016; Saddy, 2009; Shirley, 2014):

0 →1
1 →0 1

The interpretation of such a formalism is very simple: every instance of [0] in a sequence must be

‘rewritten  as’ [1],  and  every  instance  of  [1]  in  the  same  sequence  must  be  rewritten  as  [01].

Applying these rules over and over again generates longer and longer sequences of points, each of

which corresponds to a ‘generation’ of the grammar. The name of this grammar comes from the fact

that the number of  points in each generation actually follows the Fibonacci sequence (Fig. 1C).

Moreover, in each generation, the distribution of 0s and 1s is asymmetric, with more 1s than 0s: the

ratio between the number of 1s and 0s approximates the golden ratio (1.618). If we consider a

sequence (i.e., a string generated by the grammar) from left to right, two transitions are possible

(from 0 and the next point and from 1 and the next point) and the probability of those transitions is

also  asymmetric.  The  transition  from 0  to  1  is  deterministic:  0  is  always  followed  by  1.  The

transition from 1 to the next point is probabilistic: 1 is followed by 0 in 61.8% of the cases and by 1

in 38.2% of the cases.

The most  important  property of  this  grammar with respect  to  our  research question is  its  self-

similarity.  Each  generation  of  this  grammar  constitutes  by  definition  a  natural  constituent

(Krivochen et al., 2018). Because of the recursive nature of the generative process, any generation

is the concatenation of the two previous generations (Fig. 1C). This means that any generation can

be parsed with two consecutive smaller generations that are natural constituents of the grammar. For

example, generation 4 [01101] can be divided into generations 2 and 3 [[01][101]], which can be
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further divided into generations 1 and 2 [[01][1][01]], which can (trivially) be further divided into

generations  0  and  1  [[[0][1]][[1][[0][1]]]].  Thus,  any  generation  can  be  seen  as  a  multiple

embedding of constituents reflecting the hierarchical structure of the grammar. Transitions in the

Fibonacci grammar are scale-free: the transitional probabilities between points at the surface level

are identical to the transitional probabilities between constituents (Fig. 1A right panel). Crucially,

points/constituents surrounding a deterministic transition at level n always form a bigger constituent

at level n+1. For example, at the surface level, 0 is always followed by 1 and the concatenation of

these two points results in the higher-order constituent [01], which is a natural constituent of the

grammar.  At  level  1,  the  constituent  [1]  is  always  followed  by  the  constituent  [01]  and  their

concatenation results in the higher-order constituent [101]. Thus, because of the grammar’s self-

similarity, transitional probabilities at each level provide the parser a way to access the constituent

structure of the grammar. The processing mechanism may start by merging the points linked by a

deterministic transition, and then use the output of this process, i.e., the higher-order constituents, to

detect  the  deterministic  transitions  at  the  next  hierarchical  level.  This  process  of  recursive

combination  would  progressively  transform the  representation  of  the  sequence  into  a  complex

hierarchical structure of embedded constituents (Fig. 1A left panel).
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Fig  1. (A) Left  panel:  depiction of the first  three hierarchical  levels of  generation  7 of the Fibonacci
grammar. Non-disambiguated points at each level are highlighted in red and disambiguated points in green.
To form a new hierarchical level,  points that span across a deterministic transition are combined together
(this  is  illustrated by the arrows).  The result  is  a  new representation of  the  string that  consists  in  the
combination of points corresponding to natural higher-order constituents of the grammar (illustrated by the
brackets).  At  each  level,  constituents  spanning a  deterministic  transition  can  be  combined to  form an
embedded  hierarchy.  Right  panel:  transition  probabilities  between  constituents  at  each  level.  (B)
Disambiguated points (green) and non-disambiguated points (red) for each hierarchical level for generation
7 of the Fibonacci grammar. In the present study, we used generation 12 of the Fibonacci grammar that
consists  in  233  points.  We did not  illustrate  this  generation due space limitation,  but  the  rationale  is
identical. (C) Derivation of the Fibonacci grammar for the first 5 generations. The right column shows the
number of symbols at each generation, which maps the Fibonacci sequence. Arrows and circles highlight
the hierarchical constituency of the grammar. (D) Structural contexts at levels 1, 2 and 3. Green bars point
to  the  constituents  in  non-ambiguous structural  contexts  at  each level  and  red bars  point  to  the  same
constituents when in ambiguous structural contexts. Arrows illustrate the fact that, with the exception of the
first  point,  points that  occur inside constituents have the same transitional  probability regardless if  the
constituent  is  in  an  ambiguous  or  non-ambiguous  structural  context.  (E)  Transitional  probabilities  for
disambiguated and non-disambiguated points at each level given the sub-sequence that precedes them. We
see that the transitional probability of the sub-sequence that precedes a disambiguated point is equal to 1
whereas the transitional probability of the sub-sequence that precedes a non-disambiguated point is equal to
.38.
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This leads to an interesting observation: points that follow a probabilistic transition at level n can

appear inside a constituent that follows a deterministic transition at level n+1. For example, all 0s

follow a probabilistic transition at the surface level:  p(0|1) = .62 and 1-p(0|1) = .38. However, 0s

always appear at level 1 in the constituent [01] and some instances of this constituent follow a

higher-order deterministic transition: the constituent [1] is always followed by the constituent [01]

(p([01]|[1])=1).  Thus,  although  at  the  surface  level  all  0s  are  ambiguous  (i.e.  they  follow  a

probabilistic transition) a subset of them are  disambiguated at level 1 (i.e.  the 0s that follow a

higher-order  deterministic  transition).  Therefore,  the  detection  of  higher-order  deterministic

transitions  serves  to  disambiguate  some of  the  points  that  were  ambiguous  at  the  lower  level.

Crucially, the higher the hierarchical structure is, the more ambiguous points will be disambiguated.

Nevertheless,  due  to  the  aperiodicity  of  the  string,  there  will  always  remain  a  subset  of  non-

disambiguated points that can lead to new embedding, no matter the depth of the hierarchy. Thus,

each hierarchical  level  corresponds to  a specific  learning pattern of  points:  points  that  are  still

ambiguous at this level (i.e. non-disambiguated points) and points that are disambiguated at this

level and lower levels.

Structural processing in the Fibonacci grammar has already been explored via the classical AGL

paradigm (Geambaşu et al., 2016, 2020). However, these studies have run into the problem inherent

to the habituation/discrimination paradigm of creating non-grammatical test strings that respect the

surface  properties  of  grammar.  In  a  first  study,  Geambaşu et  al.  (2016) found that  participants

exposed  to  the  Fibonacci  grammar  were  unable  to  distinguish  between  grammatical  and

ungrammatical strings, and attributed that failure to the fact that some of the foils were in fact Fib-

grammatical (i.e., they were possible subsequences of the Fibonacci grammar). In a follow-up study

using a different set of non-grammatical test strings, Geambaşu et al. (2020) found that participants

were able to discriminate them from grammatical strings, and concluded that the grammar was

successfully learned. However, closer inspection shows that 16 of the 18 foils contained the non-

grammatical  sub-sequence  [01010],  which  is  impossible  in  the  Fibonacci  grammar.  Hence,
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participants may have rejected the foils on the basis of a low-level strategy without having learned

the  Fibonacci  grammar.  Two other  studies  (Vender  et  al.,  2019,  2020) explored  the  Fibonacci

grammar by way of an SRT task: a sequence of blue and red dots generated by the Fibonacci

grammar  was  presented  to  the  participants  whose  task  was  to  press  the  left  or  right  button

corresponding to the color of each dot. Sequences of dots were implemented in a Simon task: dots

appeared to the left or to the right side of the screen, such that the colored dot sometimes appeared

to the opposite side of the corresponding key. Such incongruent trials occurred every sixth trials.

The Simon task was introduced to make the task less repetitive for participants. In the 2020 study,

the  authors  added  a  final  block  within  which  the  order  of  appearance  of  stimuli  followed  an

alternative grammar called Skip, which has similar surface properties to Fib: 0 is always followed

by 1 (p(1|0) = 1), the sub-sequence 11 is always followed by 0 (p(0|11) = 1) and the first order

transitional probabilities are relatively similar: p(0|1) = .73 and p(1|1) = .27 but differ from the latter

from  a  formal  point  of  view.  The  authors  proposed  that  within  the  Fibonacci  grammar,  the

identification  of  certain  points,  called  k-points,  would  allow  the  reconstruction  of  the  local

hierarchical structure of the sequence due to their specific structural status. Indeed, the distance

between  two  k-points  exactly  mirrors  the  transitional  probability  of  the  minimal  units  of  the

sequence (see Krivochen et al., 2018 for a detailed explanation). Linearly, k-points are the last 1 of

the 3-gram [011] and correspond to the constituent [1] of level 1 (shown in Fig. 1-A left panel)

whose transitional probability is  p(1|1) = .38. In Skip, although the surface expression of the k-

points is present (Skip has the 3-gram [011]), their identification would not allow the reconstruction

of the local hierarchical structure because the distance between them does not mirror the statistical

distribution of minimal units. In other words, in contrast to Fib, the self-similarity of Skip does not

allow to extend the local statistical regularities at a higher hierarchical level. Vender et al. (2020)

found faster processing for the last 1 of the 3-gram [011] in Fib blocks than in the Skip block. They

interpreted this as evidence that participants had granted a special status to k-points, suggesting that

they partially reconstructed the hierarchical structure of the Fibonacci grammar.
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However,  a  more detailed  analysis  of  the  sequences  generated  by the Skip grammar shows an

inversion  of  the  second  order  transitional  probabilities.  In  Skip,  k-points  have  a  second  order

conditional probability of p(1|01) = .36 while in Fib it is equal to  p(1|01) = .62. Thus, the slower

processing observed for the last 1 of the 3-gram [011] in Skip block could also be explained by

participants becoming sensitive to the fact that 01 is more frequently followed by 0 than by 1. The

effect can therefore also be explained by ‘flat’ statistical learning processes. Moreover, the Simon

task introduces a factor that occurs periodically (i.e. incongruent trials occurred every sixth trials);

Fibonacci grammar being aperiodic, incongruent trials are not distributed evenly in the sequence,

which makes the impact of this factor difficult to evaluate.

In the present study, we implemented Fibonacci sequences in an SRT task, thus avoiding the need to

create non-grammatical Fib-strings (like in Geambaşu et al., 2016, 2020). In contrast to Vender et

al. (2019, 2020), dots were presented in the center of the screen, to avoid the interfering congruency

factor  introduced  by  the  Simon  task.  Importantly,  we  developed  new  analyses,  substantially

different from those conducted in these 4 papers, which allowed us to evaluate hierarchical learning

within the Fibonacci grammar without having to compare the performance of participants to another

grammar or to  a random block. Sequence learning in the SRT task is  traditionally  assessed by

inserting a so-called “transfer block” at the end of the experiment in which trials follow a random

order  or  an  alternative  sequence.  A slowdown in  the  transfer  block  relative  to  the  block  that

precedes it is interpreted as indicating that participants have acquired the target sequence (Schwarb

& Schumacher, 2012). However, when it comes to interpreting the origin of a slowdown in the

transfer block this methodology encounters the same limitation as the habituation/discrimination

paradigm. The slowdown can be either due to a change in surface properties or to a change in more

abstract  properties.  The use of the Fibonacci  grammar aims precisely at  avoiding this  problem

because it allows us to evaluate the learning during the processing without having to compare the

performance to an alternative sequence. Our conceptual framework critically diverges from Vender

et al. (2020) in that rather than hypothesizing that the parser extracts some formal properties of the
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Fibonacci grammar (k-points), we hypothesize that it proceeds through recursively merging points

that span across deterministic transitions, and then using the output of this process to merge new

deterministic  transitions  between  groups  of  points,  resulting  in  the  progressive  building  of  a

hierarchical  structure. Participants  may  also  develop  knowledge  of  formal  properties  of  the

Fibonacci grammar, however this question is beyond the scope of the present study.

We carried out two analyses to assess whether participants built a hierarchical structure from the

Fibonacci  grammar  through  the  recursive  combination  of  points/constituents  surrounding

deterministic transitions. The first analysis (Processing of hierarchical structure) explored whether

disambiguated points (i.e. points following a higher-order deterministic transition) were anticipated

better than non-disambiguated points (i.e. points following a higher-order probabilistic transition).

To this  end,  we compared reaction times and accuracy  for points disambiguated at  a particular

hierarchical level to points not disambiguated at the same level (Fig. 1B). Hierarchical processing

should result in a larger decrease in reaction times and better accuracy for disambiguated points

compared to non-disambiguated points. We do not have any prior expectation with respect to how

many levels the participants might reach. We will therefore evaluate each level successively until

the effects disappear at the group level (see Fig. 1A left panel for levels descriptions). In order to

control for frequency effects that could be due to the asymmetry of the sequence (1s being more

frequent than 0s), we compared, for each hierarchical level, only 1s to 1s and 0s to 0s. Anticipating

the results, we found evidence of learning at levels 1, 2 and 3 but not at level 4 (which is why this

level is not presented in Fig. 1A and Fig. 1B). 

The second analysis (Processing of hierarchical constituency) aimed at specifying further whether

participants have processed the Fibonacci grammar as a nested structure. To this end, we explored

the influence of the constituent structure at level  n on the processing of disambiguated points at

level  n-1. This  analysis  is  a  logical  continuation  of  the  first:  if  participants  use  deterministic

transitions  between  constituents  to  anticipate  disambiguated  points,  then  the  processing  of  a

disambiguated point should depend not only on the level at which it is disambiguated but also on
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the constituent in which it appears higher in the hierarchy. If we examine closely the constituents of

each  level,  we  see  that  the  first  position  (from  left  to  right)  is  always  occupied  by  either  a

disambiguated or a non-disambiguated point (Fig. 1A left panel) whereas the following positions

are composed of points disambiguated at the previous levels. Crucially, the remaining positions of

the  constituent  following  a  deterministic  transition  and  of  the  constituent  following  a  low

probabilistic  transition (Fig.  1A right  panel)  are  occupied by points  disambiguated at  the same

levels (Fig. 1D). In other words, a point disambiguated at level n can appear at level n+1 in either a

constituent that follows a deterministic transition or in a constituent that follows a probabilistic

transition, while the composition of the constituents is identical (except for the point in the first

position).  Thus,  the  same disambiguated  point  appears  higher  in  the  hierarchy  subsumed  in  a

different structural context. We refer to the condition where a disambiguated point appears at a

higher  level  inside  a  constituent  that  follows  a  deterministic  transition  as  a  non-ambiguous

structural context and to the condition where a disambiguated point appears at a higher level in a

constituent following a probabilistic transition as an ambiguous structural context (Fig. 1D). If the

system is sensitive to the hierarchical constituency of the sequence, disambiguated points appearing

at the upper level in a non-ambiguous structural context should be processed faster than the same

disambiguated points appearing in an ambiguous structural context.  Anticipating the results,  we

found a significant processing advantage for points occurring in non-ambiguous structural contexts

compared to points occurring in ambiguous structural contexts at levels 1 and 3.

2.2 Methods

2.2.1 Participants

One hundred seventy-four students (33 men and 141 women; mean age 22.8 years old) participated

in the experiment. They were recruited either from an introductory psycholinguistics course from

the university of Geneva or through announcements at the University of Geneva. All participants

reported normal or corrected-to-normal vision.
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2.2.2 Materials

The training sequence  was composed of  two elements  and had a  length  of  50.  The order  was

pseudo-randomized and elements had the same frequency. The training sequence included multiple

non-grammatical sub-sequences such as 00 or 111. The longest Fib-grammatical sub-sequence had a

length of 4. In the experimental blocks, the sequence consisted of generation 12 of the Fibonacci

grammar which has 233 points. Each block corresponded to the full generation. 

2.2.3 Design and procedure

Each trial consisted of a red or blue circle 100px in diameter presented at the center of the screen

which correspond, respectively, to 0 and 1 in a string generated by the Fib grammar. The circles

disappeared after the response of the participant, or after 1200ms, if no response was given. The

response-to-stimulus  interval  lasted 500 ms.  Participants  were instructed to  press  as  quickly as

possible the button corresponding to the color of the circle they saw on the screen (X=blue, N=red).

Keys  X  and  N were  chosen  because  they  had  a  similar  position  on  QWERTZ and  AZERTY

keyboards. No information about the grammar was given. The experiment started with a training

block that was identical for all the participants. During the training block, when the participants

made an error, the experiment stopped and a message appeared to remind them the color – key

association,  the  experiment  resumed  after  3000ms.  In  the  experimental  blocks,  no  message

appeared when they made an error. After the training block, participants did 5 experimental blocks

of  233  trials.  The  experiment  was  conducted  online  on  the  website  Testable

(https://www.testable.org/) (Rezlescu et al., 2020). Pre-testing showed that the error rate in the task

was extremely low, which is not surprising given the simplicity of the task, so the emphasis on

speed alone was intended to increase the error rate and avoid ceiling effects. Participants were asked

to perform the experiment in a quiet environment where they could not be disturbed. Instructions

were displayed on the screen and participants had to click on a button to start the experiment. The

experiment lasted approximately 25 minutes.
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2.2.4 Data analyses

Four participants were removed due to technical failures. We also removed participants who had an

error rate superior to 3 SD to the mean error rate in at least one block. This led to the removal of 11

additional participants. Due to an error in the experiment code, the data of the training block was

not recorded. Reaction times and accuracy were both modelled as dependent variables. We removed

from the analysis all the trials where participants did not respond after 1200 ms (699 trials). For the

analysis of reaction times, only trials with a correct answer were included. Homoscedasticity and

normality  were  checked  by  visual  inspection  of  residual  plots.  Data  from  the  remaining  159

participants were analyzed with linear mixed-effects models as implemented in the lme4 package

for R (Bates et al., 2014; R Core Team, 2022). 

For the analysis Processing of hierarchical structure, models included two fixed-effect factors and

their  interaction:  Exposure, Ambiguity,  and Exposure*Ambiguity.  Exposure was  treated  as  a

continuous variable with a value of 0 for trials of the 1st experimental block, and of 1, 2, 3 and 4 for

trials of the 2nd, 3d, 4th and 5th blocks. This factor being continuous, it allowed us to have only one

estimate which represents the evolution (i.e., the slope) of performance throughout the experiment

across  all  participants.  Ambiguity  is  a  discrete  variable  contrasting  disambiguated  and  non-

disambiguated points and operationalized differently depending on the level at which its effect is

explored (it is labeled Ambiguity leveln according to the level at which it has been operationalized).

The modality “Non-disambiguated” of the factor Ambiguity leveln was always set as the intercept of

the models. As random effects, the models had intercepts for Participants. P-values were calculated

by way of the Satterthwaites’s approximation to degrees of freedom with the lmerTest package

(Kuznetsova et al., 2015). We conducted separate analyses for RTs and accuracy instead of using a

composite score because there is no consensus in the literature on the optimal method of calculation

(Liesefeld  & Janczyk,  2019;  Vandierendonck,  2017,  2018).  Moreover,  composite  measures  that

integrate  RTs  and  accuracy  cannot  be  calculated  per  trial  but  only  per  condition  (for  each

participant). Since the factor  Ambiguity is nested within blocks (i.e., each block contains several

46



disambiguated and non-disambiguated points of the same level), using a composite score would

drastically reduce the number of observations per participant and thus the statistical power of the

analyses.

For the analysis  Processing of hierarchical constituency, models included two fixed-effect factors

and  their  interaction:  Exposure,  Structural  context,  and  Exposure*Structural context.  Structural

context is a discrete variable contrasting disambiguated points that appeared at the next level in

constituents  that  either  followed  a  deterministic  transition  (Non-ambiguous)  or  a  probabilistic

transition (Ambiguous). This variable is operationalized differently depending on the level at which

its effect is explored (it is labeled  Structural context leveln according to the level at which it has

been  operationalized).  The  same  mixed  models  were  ran  as  in  previous  analysis,  including

Structural  context and  Exposure as  fixed  factors  and  the  modality  “Ambiguous”  of  the  factor

Structural context leveln was always set as the intercept. Since at each level, the first point of a

constituent is either a disambiguated or a non-disambiguated point we excluded those first points

when we computed  the  mean  RTs  and accuracy of  the  constituents  (Fig.  1D).  At  level  1,  the

constituent  of  interest  is  [01]  and  contains  2  points.  This  constituent  is  in  a  non-ambiguous

structural context when it is preceded by [1] but in an ambiguous structural context when preceded

by [01]. Since the first point of [01] can be either a disambiguated or a non-disambiguated point, we

have included in the level 1 analysis only the second point of constituent [01] (i.e.,  the 1). We

excluded from the RT analyses all the constituents containing at least one error. At level 2, the

constituent of interest is [101] and contains 3 points. It is in a non-ambiguous structural context

when it is preceded by [01] and in an ambiguous structural context when it is preceded by [101]. We

have included in the analysis only the last two points of constituent [101] (i.e., 01) for the same

reason explained above. In the RT analysis, we first excluded all constituents containing at least one

error. Insofar as the distribution of 0s and 1s is identical in each modality of the factor Structural

context  (i.e.  there  is  exactly  one  0  and  one  1  in  both  the  non-ambiguous  and  the  ambiguous

structural context at level 2), there is no more asymmetry between the number of 0s and 1s. We thus
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calculated for each occurrence of the constituent [101] the mean of the last two points and took this

measure as dependent variable. For analyzing accuracy, we computed the mean number of correct

answers for the last two points of [101] (i.e., the two disambiguated points that appeared in both

structural contexts) and divided it by 2 in order to have a value that ranged from 0 to 1 (we did not

consider the first point of [101] because it could either be disambiguated or non-disambiguated

point depending on the structural context). At level 2, the accuracy value for the constituent was

either 1 (no error), 0.5 (1 error) or 0 (2 errors). At level 3, the constituent of interest is [01101] and

contains 5 points. It is in a non-ambiguous structural context when it is preceded by [101] and in an

ambiguous structural context when it is preceded by [01101]. We have included in the analysis only

the  last  four  points  of  constituent  [01101].  To  analyze  RTs,  we  first  excluded  all  constituents

containing at least one error. We then calculated for each occurrence of the constituent [01101] the

mean of the last four points (i.e., 1101) and took this measure as dependent variable. For analyzing

accuracy, we followed the same logic as in level 2 but with the constituent [01101]. We computed

the  mean  number  of  correct  answers  for  the  four  disambiguated  points  that  appeared  in  both

structural context and divided it by 4 in order to have a value that ranged from 0 to 1. At level 3, the

accuracy value for the constituent could either be 1 (no error), 0.75 (1 error), 0.5 (2 errors), 0.25 (3

errors), or 0 (4 errors).

We first explored if participants were sensitive to the surface statistical properties of the sequence,

corresponding  to  level  0,  and  then  if  they  were  able  to  detect  the  higher-order  deterministic

transitions  at  levels  1-4  (see  Fig.  1B).  We  then  explored  if  participants  were  sensitive  to  the

constituent structure of the grammar by comparing, at each level, disambiguated points occurring in

different structural contexts (see Fig. 1D). Finally, we analyzed performance at the individual level

to more finely explore the effect of structural context at level 3 found at the group level.
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2.3 Results

2.3.1 Processing of hierarchical structure

2.3.1.1 Processing of surface statistical regularities (Level 0)

Analyses of reaction times showed a main effect of Exposure (β = -21.53, SE = 0.25, t = -87.23, p

< .001) with a mean reduction of reaction times of 86 ms from block 1 to block 5. There was also a

main effect of  Ambiguity level0 (β = -57.45,  SE = 0.73,  t =  -78.52,  p < .001) with disambiguated

points  being  faster  than  non-disambiguated  ones  by  57  ms.  The  interaction  Ambiguity  level0*

Exposure was also significant (β = -14.16, SE = 0.50, t = -28.48, p < .001) with a more important

reduction over exposure for disambiguated points (Mblock1 – block5 = -106 ms) than non-disambiguated

points (Mblock1 – block5 = -49 ms) (Mblock1 – block5  indicates the mean difference between blocks 1 and 5).

Results are shown in Fig. 2. 

Concerning accuracy,  we found a  main  effect  of  Exposure (β =  -0.06,  SE =  0.01,  z =  -6.302,

p< .001) with a mean reduction of accuracy of 1 % from block 1 to block 5. There was also a main

effect  of  Ambiguity  level0 (β =  2.26,  SE = 0.04,  z  = 57.80,  p< .001) with higher  accuracy for

disambiguated points  (M = 0.98)  than for  non-disambiguated  points  (M = 0.90).  The effect  of

Exposure significantly interacted with  Ambiguity level0 (β = 0.23,  SE = 0.03, z  = 8.354,  p< .001)

with  accuracy  increasing  for  disambiguated  points  over  exposure (Mblock1  –  block5 =  0.006)  and

decreasing for non-disambiguated points (Mblock1 – block5 = -0.037). Results are shown in Table 1.
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Fig 2. Mean RT (ms) for Disambiguated and Non-disambiguated points of Hierarchical Levels 0 
and 1 by Block. Errors bars denote the 95% confidence interval.

Table 1

Mean Proportion (M) and Standard Deviation (SD) of Correct Responses for Disambiguated and Non-
Disambiguated Points by Hierarchical Levels and Blocks

Block 1 Block 2 Block 3 Block 4 Block 5

M SD M SD M SD M SD M SD

Level 0 Disambiguated 0.98 0.13 0.99 0.09 0.99 0.11 0.99 0.10 0.99 0.09

Non-disambiguated 0.93 0.26 0.91 0.28 0.90 0.30 0.89 0.31 0.89 0.31

Level 1 Disambiguated 0.96 0.20 0.96 0.19 0.96 0.19 0.97 0.18 0.97 0.17

Non-disambiguated 0.91 0.28 0.89 0.32 0.87 0.34 0.86 0.35 0.86 0.35

Level 2 Disambiguated 0.92 0.27 0.91 0.28 0.9 0.30 0.9 0.30 0.9 0.24

Non-disambiguated 0.94 0.23 0.90 0.30 0.89 0.31 0.88 0.32 0.88 0.33

Level 3 Disambiguated 0.91 0.28 0.89 0.32 0.87 0.33 0.87 0.34 0.87 0.34

Non-disambiguated 0.91 0.28 0.89 0.32 0.88 0.34 0.84 0.36 0.85 0.36

2.3.1.2 Processing of hierarchical regularities (Levels 1-4)

Hierarchical processing at level 1

Analyses of reaction times showed a main effect of Exposure (β = -18.39, SE = 0.31, t = -59.45, p

< .001) with a mean reduction of reaction times of 73 ms from block 1 to block 5. There was also a
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main effect of  Ambiguity level1 (β = -56.19,  SE = 0.92,  t =  -61.31,  p < .001) with disambiguated

points  being  faster  than  non-disambiguated  ones  by  56  ms.  The  interaction  Ambiguity  level1*

Exposure was also significant (β = -15.20, SE = 0.64, t = -23.62, p < .001) with a more important

reduction over  exposure for disambiguated points (Mblock1 – block5 = -95 ms) than non-disambiguated

points (Mblock1 – block5 = -34 ms). Results are shown in Fig. 2.

Concerning accuracy, we found a main effect of  Exposure (β = -0.055,  SE = 0.01,  z = -5.022,

p< .001) with a mean reduction of accuracy of 1.2 % from block 1 to block 5. There was also a

main effect of Ambiguity level1 (β = 1.35, SE = 0.03, z = 41.903, p< .001) with accuracy higher for

disambiguated points  (M = 0.96)  than for  non-disambiguated  points  (M = 0.88).  The effect  of

Exposure significantly interacted with  Ambiguity level1 (β = 0.20,  SE = 0.02, z  = 8.759,  p< .001)

with  accuracy  increasing  for  disambiguated  points  over  exposure (Mblock1  –  block5 =  0.01)  and

decreasing for non-disambiguated points (Mblock1 – block5 = -0.05). Results are shown in Table 1.

Hierarchical processing at level 2

Analyses of reaction times showed a main effect of Exposure (β = -12.32, SE = 0.36, t = -34.036, p

< .001) with a mean reduction of reaction times of 49 ms from block 1 to block 5. There was also a

main effect of  Ambiguity level2 (β = -8.10,  SE = 1.05,  t =  -7.693,  p  < .001) with disambiguated

points  being  faster  than  non-disambiguated  ones  by  8  ms.  The  interaction  Ambiguity  level2*

Exposure was also significant (β = -7.75,  SE = 0.74, t = -10.44,  p < .001) with a more important

reduction over  exposure for disambiguated points (Mblock1 – block5 = -61 ms) than non-disambiguated

points (Mblock1 – block5 = -31 ms). Results are shown in Fig. 3.
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Fig 3. Mean RT (ms) for Disambiguated and Non-disambiguated points of Hierarchical Levels 2
and 3 by Block. Errors bars denote the 95% confidence interval.

Concerning accuracy,  we found a  main  effect  of  Exposure (β =  -0.10,  SE =  0.01,  z =  -8.905,

p< .001) with a mean reduction of accuracy of 3.5 % from block 1 to block 5. There was also a

main effect of Ambiguity level2 (β = 0.07, SE = 0.03, z = 2.195, p = .028) with accuracy higher for

disambiguated points  (M = 0.91)  than for  non-disambiguated  points  (M = 0.89).  The effect  of

Exposure significantly interacted with  Ambiguity level2 (β = 0.09,  SE = 0.02, z  = 3.811,  p< .001)

with accuracy decreasing less for disambiguated points over exposure (Mblock1 – block5 = -0.02) than for

non-disambiguated points (Mblock1 – block5 = -0.06). Results are shown in Table 1.

Hierarchical processing at level 3

Analyses of reaction times showed a main effect of Exposure (β = -8.60, SE = 0.50, t = -17.314, p

< .001) with a mean reduction of reaction times of 34 ms from block 1 to block 5. There was also a

main effect of  Ambiguity level3 (β = -12.86,  SE = 1.47,  t = -8.769,  p < .001) with disambiguated

points  being  faster  than  non-disambiguated  ones  by  12  ms.  The  interaction  Ambiguity  level3*

Exposure was also significant (β = -3.224, SE = 1.03, t = -3.120, p = .002) with a more important
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reduction over  exposure for disambiguated points (Mblock1 – block5 = -38 ms) than non-disambiguated

points (Mblock1 – block5 = -27 ms). Results are shown in Fig. 3.

Concerning accuracy,  we found a  main  effect  of  Exposure (β =  -0.13,  SE =  0.01,  z =  -9.215,

p< .001) with a mean reduction of accuracy of 5.2 % from block 1 to block 5. There was also a

main effect of Ambiguity level3 (β = 0.09, SE = 0.04, z = 2.187, p = .029) with accuracy higher for

disambiguated points (M = 0.88) than for non-disambiguated points (M = 0.87). The interaction

Exposure*  Ambiguity level3  did not reach significance level (β = 0.05,  SE = 0.03, z  = 1.651,  p

< .098). Results are shown in Table 1.

Hierarchical processing at level 4

Analyses of reaction times showed a main effect of Exposure (β = -7.46, SE = 0.54, t = -13.911, p

< .001) with a mean reduction of reaction times of 30 ms from block 1 to block 5. There was no

main effect of  Ambiguity level4 (β = 0.03,  SE = 1.56,  t = 0.023,  p = .981) and the interaction

Ambiguity level4* Exposure was also not significant (β = 1.59, SE = 1.10, t = 1.442, p = .149). 

Concerning accuracy, we found a main effect of  Exposure (β = -0.16,  SE = 0.02,  z = -8.617, p

< .001) with a mean reduction of accuracy of 6 % from block 1 to block 5. There was no main effect

of Ambiguity level4 (β = -0.02, SE = 0.05, z = -0.295, p = .768) and the interaction Ambiguity level4*

Exposure was also not significant (β = 0.023, SE = 0.04, z = 0.603, p = .546). 

2.3.2. Processing of hierarchical constituency

The results  above suggest that participants were sensitive to the higher-order regularities of the

sequence up to the third level, we thus restricted the analysis of the structure constituency to level 1,

2 and 3.

Hierarchical constituency at level 1

Analyses of reaction times showed a main effect of Exposure (β = -26.52, SE = 0.31, t = -85.703, p

< .001) with a mean reduction of reaction times of 106 ms from block 1 to block 5. There was also a

main effect of  Structural contextlevel1 (β = 4.89,  SE = 0.90,  t =  5.416,  p < .001) with points in an
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ambiguous structural context faster than points in a non-ambiguous structural context by 4.9 ms.

The interaction  Structural contextlevel1*  Exposure was not significant (β = -0.86,  SE = 0.64 t = -

1.345, p = .178).

Concerning accuracy, we found a main effect of Exposure (β = 0.13, SE = 0.03, z = 5.192, p < .001)

with accuracy increasing of 0.7 % from block 1 to block 5. There was no main effect of Structural

contextlevel1 (β =  -0.02,  SE =  0.07,  z  =  -0.280,  p =  .779).  However,  the  interaction  Structural

contextlevel1*  Exposure was significant (β = 0.14,  SE = 0.05, z = 2.649,  p = .008) with accuracy

increasing more for points in non-ambiguous structural context (Mblock1 – block5 = 0.009) than points in

ambiguous structural context (Mblock1 – block5 = 0.004). Results are shown in Table 2.

Hierarchical constituency at level 2

Analyses of reaction times showed a main effect of Exposure (β = -25.32, SE = 0.30, t = -83.536, p

< .001) with a mean reduction of reaction times of 101 ms from block 1 to block 5. There was no

effect  of  Structural  contextlevel2 (β =  -1.29,  SE =  0.88,  t =  -1.464,  p  = .143).  The  interaction

Structural  contextlevel2*  Exposure was  also  not  significant  (β =  -0.18,  SE =  0.58, t =  -0.311,  p

= .756).

Concerning accuracy, we found a main effect of  Exposure (β = 0.002,  SE = 0.0004,  t = 4.802,

p< .001) with accuracy increasing of 0.8 % from block 1 to block 5. Structural contextlevel2 did not

reach significance level (β = -0.002, SE = 0.001, t = -1.703, p = .088) and the interaction Structural

contextlevel2  *  Exposure was also not significant (β = 0.0008,  SE = 0.0008, t  = 0.930,  p = .352).

Results are shown in Table 2.

Hierarchical constituency at level 3

Analyses of reaction times showed a main effect of Exposure (β = -23.18, SE = 0.33, t = -68.782, p

< .001) with a mean reduction of reaction times of 92 ms from block 1 to block 5. There was also a

main effect of Structural contextlevel3 (β = -4.01, SE = 0.98, t = -4.08, p < .001) with points in non-

ambiguous  structural  context  faster  than  points  in  ambiguous  structural  context  by  4  ms.  The
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interaction  Structural contextlevel3*  Exposure was significant (β = -1.58,  SE = 0.69 t = -2.279,  p

= .022) with a more important reduction over  exposure for points in a non-ambiguous structural

context (Mblock1 – block5 = -94 ms) than for points in an ambiguous structural context (Mblock1 – block5 = -

88ms). Fig. 4 shows the results plotted for each disambiguated point of the ambiguous and non-

ambiguous structural context.

With respect to accuracy, we found no main effect of Exposure (β = 0.0003, SE = 0.0005, t = -0.740,

p= .459). There was a significant main effect of Structural contextlevel3 (β = 0.003, SE = 0.001, t =

2.222, p = .026) with accuracy better for points in a non-ambiguous structural context (M = 0.96)

than for points in an ambiguous structural context (M = 0.95). The interaction Structural contextlevel3

* Exposure was significant (β = 0.002, SE = 0.001, t = 2.371, p = .018) with accuracy increasing for

points in a non-ambiguous structural context over exposure (Mblock1 – block5 = 0.004) and decreasing for

points in an ambiguous structural context (Mblock1 – block5 = -0.005). Results are shown in Table 2.

Fig 4. Mean RT (ms) of disambiguated points occurring in Ambiguous (dashed lines) and Non-ambiguous
(solid lines) Structural Contexts at Level 3 by Position and Blocks. The position number indicates the serial
order in the constituent [01101], from left to right. Errors bars denote the 95% confidence interval.
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Table 2 

Mean Proportion (M) and Standard Deviation (SD) of Correct Responses for Ambiguous and Non-ambiguous 
Structural Context by Hierarchical Levels and Blocks

Block 1 Block 2 Block 3 Block 4 Block 5

M SD M SD M SD M SD M SD

Level 1 Non-ambiguous Structural Context 0.98 0.13 0.99 0.10 0.99 0.09 0.99 0.09 0.99 0.09

Ambiguous Structural Context 0.99 0.11 0.99 0.09 0.99 0.11 0.99 0.10 0.99 0.10

Level 2 Non-ambiguous Structural Context 0.97 0.13 0.97 0.12 0.97 0.12 0.98 0.12 0.98 0.12

Ambiguous Structural Context 0.97 0.12 0.97 0.11 0.97 0.11 0.98 0.11 0.98 0.11

Level 3 Non-ambiguous Structural Context 0.95 0.11 0.96 0.11 0.96 0.12 0.96 0.11 0.96 0.11

Ambiguous Structural Context 0.95 0.11 0.96 0.11 0.96 0.11 0.95 0.12 0.95 0.12

2.4 Discussion

The aim of  the  present  study was  to  evaluate  if  binary  sequences  can  be processed  as  nested

structures. To do so, we created aperiodic self-similar sequences from the Fibonacci grammar, and

tested adult participants’ learning of their properties in an SRT task. The transitions within these

sequences  can  be  considered  from  a  hierarchical  point  of  view.  Sequences  being  self-similar,

transitions between units at level n are identical to transitions between constituents at level n+1. At

each  level,  the  transitions  are  either  probabilistic  or  deterministic.  Crucially,  the  probabilistic

transitions at level n are embedded in deterministic transitions at level n+1. It is thus possible to

reduce the number of probabilistic transitions by recursively embedding deterministic transitions.

This  recursive  structure  allows  us  to  predict  precisely  which  unit  can  be  anticipated  if  the

underlying hierarchical structure of the sequence is processed.

We hypothesized  that  hierarchical  processing  would  result  in  a  progressive  construction  of  the

underlying,  nested  structure.  This  should  be  reflected  by  (a)  a  progressive  ability  to  anticipate

specific points in the sequence that are ambiguous at level n, but disambiguated at level n+1, and

(b) a better anticipation for disambiguated points appearing at level n+1 in a constituent following a

deterministic transition (non-ambiguous structural context) compared to the same disambiguated
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points  occurring  at  level  n+1  in  a  constituent  following  a  probabilistic  transition  (ambiguous

structural context).

In line with the first prediction, we found that for levels 0, 1, 2 and 3, disambiguated points showed

a steeper reduction of RTs through exposure than their non-disambiguated counterparts. At levels 0

and 1, we also found that through exposure, accuracy increased for disambiguated points while it

decreased for non-disambiguated points. However, at levels 2 and 3 accuracy decreased through

exposure for both disambiguated and non-disambiguated points suggesting a speed accuracy trade-

off. Critically, this decrease in accuracy does not invalidate our predictions since, at level 2, it was

significantly greater for non-disambiguated than disambiguated points and at level 3, accuracy was

overall higher for disambiguated points. The decrease in accuracy could be due to the boredom of

the participants caused by the simplicity of the task. It could also be due to the instructions which

only concerned the speed of response. It should also be noted that the magnitude of this decrease

remains relatively small, it was at most at 6% between the first and the last block of the experiment.

Finally, we found no sign of anticipation at level 4. Taken all together the results of the first analysis

suggest that participants were able to build the structure up to the third hierarchical level.

An alternative explanation based on linear precedence may account for the better anticipation of

disambiguated points compared to non-disambiguated points. This explanation is based on the fact

that  disambiguated  points  are  systematically  preceded  by  a  specific  sub-sequence  that  never

precedes non-disambiguated points of the same level, whereas transitions between sub-sequences of

identical length and their following non-disambiguated points are probabilistic (Fig. 1E). Thus, the

better  anticipation  of  disambiguated  points  can  potentially  come  from their  linear  precedence.

However,  accounting  for  the  anticipation  of  disambiguated  points  with  linear  precedence  faces

numerous challenges. First, such explanations would be very costly in terms of memory resource.

The linear sub-sequences needed to anticipate the disambiguated points overlaps (see Fig. 5), hence

the parser would need to track in parallel all the different patterns. Second, the sequence being

binary, the patterns are distinguishable only by their positional order; the parser must therefore also
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be able to deal with the interference caused by the similarity in the patterns’ elements. Finally, the

pattern  allowing anticipation  of  disambiguated  points  would have  to  be  held  in  memory for  a

relatively long time. In the present experiment, the pattern retention time would include the 500 ms

of the response-to-stimulus interval and the time to answer the trial. If we consider a mean reaction

time of 300 ms per trials, the patterns allowing anticipation of disambiguated points at level 1, 2 and

3 should be held in memory for 1.6, 3.2 and 5.5 seconds, respectively. Thus, in order to account for

the  results,  a  linear  precedence  parser  would  have  to  overcome  these  three  requirements:

overlapping patterns,  interference caused by item similarity  and long retention time in working

memory.  The  attentional  cost  induced  by  these  constraints’ casts  doubt  that  a  simple  pattern

recognition mechanism could be a plausible candidate to account for anticipation of disambiguated

points.

Fig 5. Sub-sequences (blue) preceding disambiguated points (green) by hierarchical levels. We see that the
linear sub-sequences necessary to anticipate the disambiguated points of each levels overlap.

These results also seem to contradict the hypothesis put forward by Vender et al. (2020) to explain

the processing of the Fibonacci grammar. According to this hypothesis, participants would identify

certain points of the grammar, called k-points, as relevant structural units and would rely on these k-

points  to  build the  hierarchical  structure.  According  to  our  notation,  k-points  are  the  non-

disambiguated points of level 0 (i.e., they are all the 1s that appear after [01]) and therefore, level 2

contrast  different  instance of k-points  (i.e.,  the disambiguated and non-disambiguated points of

level 2 are all and only k-points). If the formal status of k-points was at the origin of the building of

the hierarchical structure, then they should all be identified in the same way, which should translate

into  an  identical  processing  advantage  for  all  k-points.  Therefore,  the  difference  between
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disambiguated and non-disambiguated points we found at level 2 cannot be explain by Vender et al.

(2020) hypothesis. Moreover, since k-points are by definition 1s, this hypothesis cannot explain the

effects we found at level 3, which concern differences between 0s. Since Vender et al's (2020) core

argument in favor of k-points relies on the comparison between the processing of k-points in the

Fibonacci grammar and in an alternative grammar, we cannot assess the validity of this hypothesis,

however, the formal approach adopted by these authors needs to be further elaborated to account for

our results.

Concerning the second prediction,  we found that accuracy increased significantly more in non-

ambiguous  structural  contexts  than  in  ambiguous  structural  contexts  at  level  13,  suggesting

progressive learning of the constituent structure at level 1. Results also showed that points occurring

in an ambiguous structural context were overall faster than when they appeared in a non-ambiguous

structural context. However, that effect was there from the beginning of the sequence, i.e., it did not

interact  with  exposure,  which  suggests  that  it  does  not  reflect  learning.  Level  3  showed  the

predicted effect of structural context in both RTs and accuracy, with a significant reduction of RTs

and  a  significant  accuracy  increase  for  the  non-ambiguous  structural  context  compared  to  the

ambiguous structural context. However, at level 2, we found no effect of structural context in either

RTs or accuracy, although a trend was found in the expected direction. Before reasoning about the

possible explanation to the lack of effect at level 2, it is important to highlight that the effects found

at levels 1 and 3 already exclude the possibility that performance is  only due to "flat" statistical

learning processes (i.e. linear precedence). If better anticipation for the disambiguated points was

due to participants memorizing the sub-sequence preceding them, the structural context in which

they occur should have no influence given that in both ambiguous and non-ambiguous structural

contexts, disambiguated points were preceded by exactly the same sub-sequences. These effects can

3 The reader may find it surprising that accuracy increases with exposure at levels 1 and 2 in the analysis Processing
of  hierarchical  constituency while  it  decreases  for  the  same levels  in  the  analysis  Processing  of  hierarchical
structure. This is explained by the fact that the two modalities of the factor  Structural context  contrast different
instances  of  disambiguated  points,  non-disambiguated  points  are not  taken  into account.  Structural  contextlevel1

contrasts  disambiguated  points  at  level  0  and  Structural  contextlevel2 contrasts  disambiguated  points  at  level  0
combined with disambiguated points at level  1.  Since accuracy increased with exposure for the disambiguated
points at levels 0 and 1 (see Table 1), it is logical that it also increases for the structural context at levels 1 and 2. 
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only be accounted for by a strategy that incorporates in one way or another the notion of hierarchy.

But why did structural context fail to significantly affect performance at level 2? Although we are

currently  unable  to  provide  one  fully  satisfying  explanation,  we  can  sketch  different  lines  of

reasoning. First, it should be kept in mind that for the analysis of structural context, we compared at

each level  different  instances  of  the  same disambiguated  points.  At  level  2,  we compared two

subsets of disambiguated points from levels 0 and 1 whose transitional probabilities were p(1|0) = 1

and p(0|11) = 1, respectively. It could be that the linear precedence of the points involved in this

comparison has hidden the effects of structural context. In line with this interpretation, the first

analysis showed that these disambiguated points were learned very early in the experiment, already

in block 1 (see Fig. 2). Moreover, these disambiguated points were the ones that showed the highest

RT decrease. It is thus possible that a floor level was reached, making the effect of structural context

undetectable. However, according to this interpretation, the effects should be weaker for the lower

level than for higher levels (i.e., it should be the strongest at level 3, followed by level 2 and then

level 1) because higher level constituents contain points that are also disambiguated at higher levels,

which imply that the influence of the linear precedence should decreases the higher one progresses

in the hierarchy. The fact that we observed an effect at level 1 therefore tempers this interpretation,

although the effect size was small. Finally, Fig. 4 shows that the effect of structural context at level

3  is  distributed  across  all  the  points  of  the  constituent.  In  particular,  the  RTs  of  the  points  at

positions 4 and 5, which correspond respectively to disambiguated points at level 1 and 0, decrease

more strongly in the non-ambiguous structural context than in the ambiguous structural context.

These points are precisely the disambiguated points taken in the analysis of the structural context of

level 2. Thus, it might be that the null result found at that level was due to a lack of statistical

power.

Taken together, those results suggest that participants have organize the input in a hierarchical way.

However, the exact nature of the representations that have been acquired remains to be explored.

Fig. 4. shows that the advantage for the non-ambiguous structural context was not driven by one
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particular point but was distributed across all  the points that appeared in that context.  This last

finding is interesting as it tells us something about the type of hierarchical structure participants

built. We have suggested that the process by which participants anticipate higher-order regularities

would  consist  in  the  recursive  combination  of  units  linked  through  deterministic  transitions.

However, such a mechanism does not necessarily need to represent a unit as embedded in multiple

hierarchical levels; the parser could only retain a representation of the highest level’s constituents

and anticipate the constituents as wholes. In that view, lower levels’ constituents are dissolved into

higher  levels’ constituents  and  become  inaccessible  once  these  higher  levels’ constituents  are

represented. In other words, the internal hierarchical structure of the constituents might dissolve as

hierarchical building progresses. Such hypothesis is assumed in different models of chunking in

which there is no record of the sequential steps by which a chunk is formed (French et al., 2011;

Goldwater et al., 2009; McCauley & Christiansen, 2014; Perruchet & Vinter, 1998; Robinet et al.,

2011). For example, in PARSER (Perruchet & Vinter, 1998), the system chunks together units that

are  present  in  the  focus  of  attention.  The  span  of  this  focus  changes  randomly  at  each  trial

(encompassing 1, 2 or 3 units). Once a chunk is created, it is processed as a single unit in the focus

of attention. Thus, if a chunk reoccurs in the signal, it will occupy only one slot in the focus of

attention. This allows the model to chunk multiple chunks together if they are present at the same

time in the focus of attention. The activation value of a chunk decreases at each trial if it is not in

the focus of attention and increases each time the chunk is encountered. When multiple chunks in

memory correspond to the signal (that is when the signal could fit with chunks of different sizes)

the activation value of the chunk with the best fit increases while the activation value of the chunks

with a lower fit decrease.  In this way, the small chunks that are created in the early phases of

learning have their activation values progressively tend to 0 as bigger chunks that embed them are

created. This results in a representation where only the biggest chunks that fit the signal are kept in

memory  whereas  the  smaller  chunks  that  allowed  the  creation  of  these  bigger  chunks  are
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progressively erased from memory. In this view, cognitive representations are limited to chunks

with no internal hierarchical structure.

Evidence supporting this claim comes from the so-called sub-unit effect that shows that sub-units of

a chunk are less accessible once a chunk is learned  (Fiser & Aslin, 2005; Giroux & Rey, 2009;

Orbán et al., 2008; L. Slone & Johnson, 2015; L. K. Slone & Johnson, 2018). In SRT experiments,

this manifests as relatively slow RTs for the first unit of a chunk followed by an acceleration for the

remaining units (Hunt & Aslin, 2001; Jiménez et al., 2011; Sakai et al., 2003). In our experiment, if

participants  were  processing  constituents  as  single  units  without  internal  structure,  RTs  should

progressively  diminish  through  the  constituent.  This  should  be  especially  true  for  constituents

appearing in the non-ambiguous structural contexts at level 3. This constituent (01101) is composed

of 5 points and 4 transitions: if it were processed as a single unit, the transition from one point to the

next should result in a progressive reduction of RTs, and the transitional pattern should thus be ( - - -

- ) (where “-”corresponds to a diminution of RTs from each unit to the following). In contrast to that

prediction, the transitional pattern observed for this constituent in the last two blocks is ( - + - - )

(where “+”corresponds to an increase of RTs), i.e., there was a strong deceleration at the second

transition. Crucially, that deceleration appears precisely at the border between two constituents at

the  lower  level:  the  internal  structure  of  [01101]  is  indeed  [[01][101]].  The  pattern  of

acceleration/deceleration therefore provides further evidence that participants represent the internal

structure of constituent [01101].

In order to make sure that the deceleration at the second transition observed at the group level was

not  driven by a subset  of participants  we computed for each participant  the direction of  the 4

transitions  of  the  constituent  in  the  non-ambiguous  structural  context  at  level  3.  We  ran  by-

participants comparisons with 4 linear models (one for each transition). The factor Position had two

modalities (before, after), “before” coded for the points that was before the transition and “after”

coded for the point after the transition. Each model had as predictor the factors Participants, and the

interaction Participants* Position  (the factor Position was entered only in the interaction term in
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order to compare the effect of position for the same individual and not across individuals). In order

to increase statistical power, we computed transitions for blocks 4 and 5 jointly (see supplementary

materials S1 for detailed results). Table 3 shows the number of participants by transition pattern. We

see  that  78  % of  the  participants  show a  deceleration  at  the  second transition,  22% show no

variation in RTs, and critically none shows acceleration. This shows that the transition pattern ( - + -

- ) found at the group level is replicated at the individual level, and is therefore not due to a mix of

different patterns across participants. We also see that the transitional pattern ( - - - - ), expected if

chunks lost their internal structure, was found in no participants, suggesting that the constituent

[01101] was never processed as a single unit. Crucially, 93 % of the slow-downs occurred at the

second and third transitions, that is, at the boundary between lower level constituents. This suggests

that  participants  represent  several  hierarchical  levels  simultaneously:  the  pattern  reflects  the

processing  of  the  internal  structure  [[01][[1][01]]]  of  the  constituent  [01101].  This  observation

brings further support to our hypothesis that sequences are represented as recursive embedding of

constituents.
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Table 3

Distribution of the statistical effects for the four transitional patterns in Blocks 4 and 5 combined for the 
constituent [01101] in Non-ambiguous Structural Context. 

Transitional pattern N° of obs.
Transition 1 Transition 2 Transition 3 Transition 4

- + - - 30
- + = - 32
- + - = 31
- + = = 22
- = = = 20
- + - + 5
- = - + 3
- = - = 3
= = = = 3
- + + - 2
= = - = 2
- = + - 1
- = = - 1
- = = + 1
= + - = 1
= + = = 1
= = - + 1
- - - - 0

Note. The + sign indicate a significant increase in reaction times. The - sign indicate a significant decrease in 
reaction times. The = sign indicate no significant differences in reaction times. Significant differences were 
considered at the p < 0.05 level. 

In the present study, we proposed that the cognitive system would build a hierarchical structure by

recursively combining deterministic transitions in the Fibonacci grammar. This mechanism does not

require that participants have access to the rewriting rules of the grammar. Because of the  Fib-

specific self-similarity which makes the transitional probabilities perfectly scale-free, the surface

properties (i.e., the transitional probabilities) lead the parser to a structure that is identical to the

natural structure of the Fibonacci grammar. We would like to emphasize that this mechanism is only

one possible mechanism to account for the results, which does not mean that it is the only possible

strategy to build a hierarchical structure from the Fibonacci grammar. However, it seems that our

results  can  only  be  explained  by  a  single  family  of  strategies:  those  that  are  sensitive  to

hierarchically organized substrings.

Our results also confirm the finding of Planton et al. (2021) that even sequences as simple as binary

sequences  can be processed hierarchically.  Our proposal  that  the parser  relies  on the statistical

regularities  of  the  signal  to  access  higher-level  constituents  is  also  consistent  with  the  results
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reported by these authors regarding the involvement of statistical learning. Indeed, this component

explained a significant part of the variance even in sequences with high Kolmogorov complexity.

The idea that the degree of complexity of the input is the factor that will lead the system to recode

the information has also been put forward to explain how the system induces rules from a set of

exemplars  (E. Pothos, 2010; Radulescu et al., 2019, 2021). In particular, Radulescu et al. (2019,

2021)  proposed  that  the  recoding  of  information  into  a  more  abstract  format  depends  on  the

complexity of the signal and the finite encoding capabilities of the cognitive system. The degree of

entropy of a signal (i.e., its complexity) depends on the number of items that compose it as well as

on the homogeneity of the distribution of these items. The more homogeneous the distribution (i.e.,

all items have the same probability) and the longer the signal, the higher the entropy is. Radulescu

argues  that  rule  induction  arises  when  the  entropy  level  exceeds  the  encoding capacity  of  the

system. This upper limit of the amount of information that can be sent through the channel per unit

of time forces the system to compress the information into a more abstract format in order to reduce

the level of entropy. We suggest that the construction of a hierarchical structure can be seen as a

way to reduce the entropic state of the parser: uncertainty is reduced as the hierarchical structure of

the signal  is  built,  in  line with the proposition of Radulescu et  al.  (2019, 2021).  However,  the

particularity  of  the  Fibonacci  grammar  is  that  at  each  level,  the  statistical  distribution  of  the

constituents is identical, due to the specific flavor of self-similarity of the Fibonacci grammar. An

interesting line for future research could be to ask whether and how self-similarity may play a role

in the compression of the input, since it is independent of the entropy of the signal. The rich world

of L-systems allows such manipulation, that is manipulating the degree of isomorphism of the self-

similarity while keeping entropy constant.
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Chapter 3. Uncovering hierarchical structure through
statistical dependency

3.1 Introduction

The way in which the cognitive system extracts a hierarchical structure from a linear input is a

central issue in cognitive science. In order to anticipate the environment in which it evolves, the

cognitive system has to infer from the surface properties of the signal its underlying organization.

The  human  brain  is  surprisingly  good  at  this  task  and  nested  structure  extraction  has  been

demonstrated in multiple domains (Dehaene et al., 2015, 2022; Fitch, 2014; Kotz et al., 2018; Lewis

&  Phillips,  2015;  Martins,  Krause,  et  al.,  2019;  Nakai  &  Sakai,  2014).  However,  since  the

hierarchical structure is not present in the signal itself but must be inferred from it, the cognitive

system cannot determine a priori if a signal has an underlying hierarchical organization  (Levelt,

2020; Uddén et al., 2020). The question is therefore to know which properties of the signal lead the

system to organize it hierarchically.

The  Information Premise (Pothos, 2010) proposes that when the cognitive system has to process

new information, it tends to represent it with the least possible uncertainty. The input is therefore

recoded in a format that reduces the entropy of the representational state of the system. Several

authors have suggested that the degree of input complexity would modulate the intensity of its

compression (Planton et al.,  2021; Pothos, 2010; Radulescu et al.,  2019, 2021). The underlying

reasoning is that processing cost increases with signal complexity. The cognitive system having a

finite  encoding capacity  in  terms of memory and processing speed,  a  signal  whose complexity

would induce costs that exceed these capacities would push the system to compress it into a more

abstract format, thus reducing the cost of information processing. In this view, hierarchical structure
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building can therefore be seen as a way to condense information by getting rid of item-specific

properties and keeping only the properties shared among items.

Radulescu et al. (2019) explored how signal complexity affects rule induction by manipulating the

entropy of the input. Entropy is a theoretical measure that quantifies the degree of uncertainty (i.e.,

the complexity) of a signal (Shannon, 1948). It is a function of the length and number of different

items that compose the signal (i.e.,  the more the signal contains different items, the higher the

entropy) as well as the homogeneity of the probability distribution of these items within the signal

(i.e.,  entropy increases  when all  items have the same probability).  Based on previous  work of

Gómez & Gerken,  (2000),  the  authors  distinguished two processes  of  rule  induction.  The first

process, called item-bound generalization, is a form of rule induction that refers to the ability to link

perceptual  features  of  different  items,  that  is,  generalizing  a  relation  between  items’ physical

dimensions.  For  example,  extracting  a  rule  like  “ends  in  ba”  when  presented  with  a  list  of

pseudowords that all have “ba” as last syllable. Category-based generalization, on the contrary, is

the process by which rules operating on variables are  extracted,  that  is,  rules that  apply to  the

relation between abstract categories that can take any value. For instance, extracting the structure

AAB from the  pseudo-word  “duduba”  (i.e.,  a  repetition  of  the  first  syllables  followed  by  an

alternation) and generalizing it to novel stimuli like “pipiro” (Marcus et al., 1999). Radulescu et al.

(2019) explored whether the degree of entropy of the input (i.e., its complexity) favored one or the

other rule induction process. To this end, they presented to participants sequences that contained

multiple 3-syllable pseudowords that followed the AAB structure. Participants were then asked to

perform a grammaticality judgment (yes-no) on pseudowords that also followed the AAB structure

and  were  made  of  either  identical  syllables  than  the  ones  used  in  the  familiarization  or  new

syllables. Crucially, they manipulated the entropy of the input by varying the number of different

syllables  in  the  pseudowords  during  the  familiarization  phase.  They found that  the  increase  in

entropy went hand in hand with an increase in the acceptance rate of AAB pseudowords made of

new syllables. Moreover, as entropy increased, the difference in acceptance rate between the AAB
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pseudowords  made  of  new  syllables  and  the  AAB  pseudowords  made  of  familiar  syllables

decreased.  Thus,  as  the  input  entropy  increases,  participants  discriminate  less  between  the

individual AAB pseudowords from the exposure phase and those of the test phase, demonstrating

that the increase in complexity of the input pushes the cognitive system towards a category-based

generalization.

Using a different measure of complexity than Radulescu et al. (2019), Planton et al. (2021) showed

that  increasing the complexity of the input  causes  the cognitive system to compress the signal

representation even when there is  no “rule” to  learn.  Participants were first  exposed to a short

binary sequence. In a subsequent test phase, they were exposed to an altered sequence that deviated

by one item from the initial  sequence. The task was to report as quickly as possible if  the test

sequence deviated from the original. The task depended upon the manipulation of the Kolmogorov

complexity  of the training sequences. Kolmogorov complexity is a theoretical measure where the

complexity of a sequence is equal to the size of the shortest computer program that can generate it.

The  more  the  Kolmogorov complexity  of  a  sequence  increases,  the  more  its  most  compressed

representation requires the use of instruction nesting. In order to determine whether participants had

a compressed representation of the sequence, the authors also manipulated the  Shannon surprise

induced by the deviant stimulus in the test sequence. Shannon surprise (Shannon, 1948) measures

the degree of uncertainty of an observation according to the history of previous observations and

reflects  statistical  learning.  This  measure  is  therefore  independent  of  Kolmogorov  complexity

because it varies according to the position of the deviant in the sequence, whereas Kolmogorov

complexity characterizes the sequence as a whole.  The authors found that both complexity and

surprise were significant predictors of performance, suggesting that alongside statistical learning,

participants  recoded  the  sequence  into  a  compressed  representation.  They  interpreted  this  as

suggesting that the participants have at their disposal a recursive compression algorithm that allows

them to recode inputs as simple as binary sequences.
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Recent research (Schmid et al., 2023a; Vender et al., 2020) suggests that a parameter independent of

complexity to which the cognitive system may also be sensitive to is signal self-similarity. These

studies have explored hierarchical structure extraction by presenting to participants aperiodic self-

similar  sequences  that  were  generated  by  the  Fibonacci  grammar.  Due  to  self-similarity,  the

sequence’s  surface  statistical  regularities  are  identical  to  the  regularities  between  higher  order

constituents and because the distribution of sequence’s units is aperiodic, successful learning cannot

be done by the use of low-level strategies like detecting recurring patterns.

A number  of  studies  that  have  explored  structural  processing  in  the  Fibonacci  grammar  (Fib

henceforth)  actually  failed  to  provide  clear-cut  evidence  in  favor  of  hierarchical  processing

(Geambaşu et al., 2016, 2020; Vender et al., 2019). Geambaşu et al. (2016), presented sequences

from  the  Fib grammar  consisting  of  two  sounds.  After  an  exposure  phase,  participants  did  a

grammaticality judgment task. Although 5 participants performed above chance level, the study did

not show any effect at the group level. One of the explanations given by the authors for this null

result  is  that  some  of  the  foils,  although  never  heard  by  the  participants,  were  in  fact  Fib-

grammatical (i.e. they were possible subsequences of the Fib grammar). It is thus possible that this

made the discrimination too difficult for the participants. Geambaşu et al. (2020) reused the same

paradigm but controlled the structure of the foils  more carefully.  Participants were then able to

correctly classify grammatical and ungrammatical strings in the test phase. The authors claimed that

this result could not be explained by surface properties of the foils and the grammatical strings

because the minimal non-grammatical sub-sequence in the foils was 15 units long (the total length

of the foils was 50 units). Because this size exceeds the working memory span, it is unlikely that

participants  based  their  judgment  on memorized  patterns.  The authors  therefore concluded that

participants had developed an implicit sensitivity to the higher-order regularities of the grammar.

However,  a  detailed analysis  of  the  foils  showed that  only 2 of  the 18 used contained a  non-

grammatical sub-sequence of at least 15 units. The remaining 16 all contained the sub-sequence

[01010], which is non-grammatical in Fib. Since this sub-sequence is 5 units long, it is conceivable
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that participants relied on this difference to reject foils. Thus, the results can also be explained by a

low-level strategy consisting in identifying that the sequence [01010] has never been heard during

exposure. These two studies illustrate the limitation of the classical paradigm used in AGL. First,

the creation of non-grammatical test strings whose rejection cannot be explained by differences in

surface properties is extremely difficult. Furthermore, a growing number of studies have challenged

the  use  of  reflection-based  measures  such  as  two  alternative  forced  choice  to  assess  learning

(Arnon,  2020;  Christiansen,  2019;  Isbilen  et  al.,  2020;  Isbilen  &  Christiansen,  2022).  These

measures require participants to deliberate over the memorized material, they therefore also capture

decision making mechanisms that can vary greatly from one individual to another, adding noise to

the results. As a consequence, the sensitivity, reliability and internal consistency of such measures

would be relatively low (Arnon, 2020).

Vender et al. (2019) explored hierarchical processing in the Fib grammar via the use of a modified

Simon task. This procedure provides a direct measure of the learning performance throughout the

whole  task  rather  than  at  the  end of  an exposure  session.  In  this  task,  a  blue  or  red  stimulus

appeared at each trial on the right or left side of a screen. Participants had to respond to the color of

the stimuli irrespective of its location. The order of appearance of the stimuli was determined by the

Fib grammar and incongruent trials (a stimulus appearing on the opposite side of the response key)

occurred  every  sixth  trial.  The  sole  objective  of  incongruent  trials  was  to  make  the  task  less

repetitive  for  participants.  These  authors  found  that  10-year-old  children  were  sensitive  to  the

surface statistical regularities of the sequences. However, they did not explore whether participants

detected higher order sequence regularities.

So far, only Schmid et al. (2023a) and Vender et al. (2020) reported results that suggest hierarchical

structure extraction from the Fib grammar. However, the theoretical viewpoints adopted by each of

these studies differ substantially. Vender et al. (2020) based their rationale on the formal approach

developed by Krivochen et al. (2018) who hypothesized that the parser would take advantage of the

isomorphism between the surface properties of the Fib grammar and its structural properties in
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order to extract a hierarchical structure. The idea being that the detection of statistical regularities

would  push  the  parser  towards  an  isomorphic  structural  hypothesis  (i.e.,  the  linear  order  is

symmetric to the hierarchy). We will refer to this hypothesis as the “k-points hypothesis”. Schmid et

al. (2023a) adopted a computational approach that attributes less weight to the formal aspects of the

Fib grammar.  Their  idea is  that the parser would progressively create a multi-level hierarchical

representation  by  the  recursive  application  of  transitional  probabilities.  This  would  be  made

possible by the fact that the statistical distribution of units within the Fib sequences is self-similar.

The  surface  properties  of  the  input  would  therefore  drive  the  cognitive  system  to  build  a

hierarchical structure that mimics the natural structure of the Fib grammar.  We will refer to this

hypothesis as the “recursive merge hypothesis”. The term “recursive merge” is to be interpreted

literally,  i.e.,  as  the  recursive  combination  of  two  elements.  It  does  not  refer  to  Chomsky's

minimalist  program  (Chomsky,  1995).  Note  that  although  this  hypothesis  does  not  rely  on  the

property of isomorphism of the Fib grammar emphasized by Schmid et al. (2023a), it does not rule

out that it may also play a role; that is, the two hypotheses are not mutually exclusive.

The goal of the present study is to compare the predictions made by each proposal in the processing

of an alternative grammar, the Skip grammar, which shares some superficial similarities with the

Fibonacci grammar but is substantially different. The details of each of those proposals is described

in the following paragraphs, in relation to the specific properties of the Fib and Skip grammars. 

The Fib grammar is  derived from the Lindenmayer  formalism in which there is  no distinction

between rewriteable and non-rewriteable symbols,  and rewrite rules apply simultaneously to all

symbols  rather  than  sequentially  from left-to-right  in  a  string  (Lindenmayer,  1968;  Vitányi  &

Walker, 1978). The Fib grammar shown below consists in two rewriting rules and contains a two-

symbol alphabet:

0→1

1→01
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The interpretation of this formalism is the following: [0] is rewritten as [1] and [1] is rewritten as

[01]. For the sake of simplicity, we will use the term "point" to refer to the symbols generated by the

grammar for the remaining of this article (formally, the rewriting rules of a grammar operate on the

"symbols" of an alphabet that differ from their actual realization but this distinction is irrelevant in

this case). The successive application of these rules generates longer and longer sequences of points

that  correspond to  different  “generations”  of  the  grammar.  Each generation  corresponds  to  the

concatenation  of  the  two  previous  ones,  therefore  the  number  of  points  in  each  generation

corresponds to the Fibonacci sequence from which the grammar takes its name (Fig 1C). Despite

the  simplicity  of  these  rules,  the  Fib  grammar  produces  a  complex  structural  pattern.  The

distribution of points within this grammar is asymmetrical: 1s are more frequent than 0s and the

ratio of the number of 1s to 0s approximates the golden ratio (1.618). Two transitions are possible in

those sequences (from [0] to the next points and from [1] to the next points) and the probability of

those transitions is also asymmetric. The transition from [0] to [1] is deterministic: [0] is always

followed  by  [1] (p(1|0)=1).  The  transition  from [1]  to  the  next  points  is  probabilistic:  [1]  is

followed by [0] in 62% of the cases (p(0|1)= .618) and by [1] in 38% of the cases (p(1|1)= .382). As

we mentioned above, the strings produced by this grammar are self-similar and aperiodic. Self-

similarity  comes  from  the  recursive  nature  of  the  rewriting  rules.  Each  generation  being  the

concatenation  of  the  two  previous  ones,  any  generation  can  be  segmented  into  two  smaller

generations.  For example,  generation 4 [01101] can be segmented in generations 2 and 3 [[01]

[101]] or in generations 1 and 2 [[01][1][01]]. Thus, each generation is a natural constituent of the

grammar. The Fib grammar being self-similar, the transitions between points mentioned above are

identical to the transitions between constituents (Fig 1A right panel). The aperiodicity is also scale-

free: whichever hierarchical level is considered, there is no linear function that can predict with

certainty the whole sequence.
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Fig  1.  (A) Left panel: depiction of the first three hierarchical levels of generation 7 of the Fib
grammar. Points following a probabilistic transition at each level are highlighted in red and points
following a deterministic transition in green. To form a new hierarchical level, points/constituents
that span across a deterministic transition are combined together (this is illustrated by the arrows).
The  result  is  a  new  representation  of  the  string  that  consists  in  the  combination  of  points
corresponding to natural higher-order constituents of the grammar (illustrated by the brackets). At
each level, constituents spanning a deterministic transition can be combined to form an embedded
hierarchy.  Right  panel:  transition  probabilities  between  constituents  at  each  level.  (B)
Disambiguated points (green) and non-disambiguated points (red) for each hierarchical level for
generation 7 of the Fib grammar. In the present study, we used sequences of 120 points. We did not
illustrate a full string due space limitation, but the rationale is identical. (C) Derivation of the Fib
grammar  for  the  first  5  generations.  The  right  column  shows  the  number  of  points at  each
generation,  which  maps  the  Fibonacci  sequence.  Arrows and circles  highlight  the  hierarchical
constituency of the grammar. (D) Left panel: depiction of the isomorphism between the linear order
“a 0 is always followed by a 1” and derivational order of k-points “a k-point is always dominated
by  a  0”.  Right  panel:  depiction  of  k-points  at  generation  n  and  generation  n-1.  K-points  are
highlighted in blue.

The k-points hypothesis proposed by Vender et al. (2020) assumes that some specific points in the

grammar, called  k-points, would allow the construction of the local hierarchical structure of the

sequence due to their specific structural status (Fig 1D right panel). Krivochen et al. (2018) defines
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a k-point as a 1 that is derived from a [0] at generation n-1. Because a k-point is the daughter of a

[0] and the sequence 00 is ungrammatical in Fib, the mother of a k-point at generation n-1 is always

preceded and followed by a [1], which implies that at generation n, a k-point is always preceded and

followed by [01]. This means that the identification of k-points as such gives information about its

local environment. The surface expression of k-points corresponds to every [1] appearing after [01]

which is the last 1 of the 3-gram [011]. By hypothesizing that the linear order and the structure are

symmetrical,  the  parser  could  identify  k-points  because  their  derivation  order  “a  k-point  is

dominated by a 0” is  isomorphic to the linear order of the deterministic transition “a 0 is always

followed by a 1” (Fig 1D left  panel).  In fact,  identifying k-points  as  such makes the structure

completely transparent because the k-points can be seen as "errors" in the signal: if we remove

them, the sequence becomes a periodic sequence of alternating 0s and 1s.

To explore whether the cognitive system is sensitive to the structural status of k-points, Vender et al.

(2020) compared the processing of k-points in the Fib grammar to points in an alternative grammar

where the surface expression of k-points is present but where they have no special structural status.

This alternative grammar, called Skip, is shown below :

0 → 01

1→01101

Skip's rewriting rules correspond to two non-consecutive generations of the Fib grammar: [0] is

rewritten as Fib generation 1 and [1] is rewritten as Fib generation 3. As a result, Skip displays

identical surface properties to Fib: [0] is always followed by [1] (p(1|0) = 1), the sub-sequence [11]

is always followed by [0] (p(0|11) = 1) and the first order transitional probabilities are relatively

similar : p(0|1) = .73 and p(1|1) = .27. However, in Skip, the linear order is not isomorphic to the

derivational order, meaning that although the surface expression of the k-points is present (Skip

contains  the  3-gram  011),  k-points  in  Skip  do  not  convey  structural  information  as  they  are
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daughters of a [1] (Fig 2D). Hence,  if k-points were assigned a specific structural status in the

processing of Fib-derived sequences, the subsequent presentation of a Skip-derived sequence should

not give rise to facilitation in the processing of k-points as they don’t have a particular structural

status in this grammar.

To put this hypothesis at test, Vender et al. (2020) exposed children to the Fib grammar by using the

same Simon task as  Vender et al. (2019). After exposition to Fib, the authors added a final block

within which the order of stimuli followed the Skip grammar. They found slower processing speed

for  the  k-points  in  the  Skip  block  compared  to  the  Fib  blocks.  Thus,  participants  exhibited  a

slowdown when they encountered the surface expression of k-points in Skip.  Vender et al. (2020)

interpreted this result as suggesting that participants were sensitive to the structural status of the Fib

k-points.
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Fig 2.  (A) Depiction of the first four hierarchical levels in a string of the Skip grammar. Points
following a probabilistic transition at  each level are highlighted in red and points following a
deterministic  transition  in  green.  To  form a  new hierarchical  level,  points  that  span  across  a
deterministic transition are combined together (this is illustrated by the arrows). The result is a new
representation of the string that consists in the combination of points corresponding to higher-order
constituents of the grammar (illustrated by the brackets). At each level, constituents spanning a
deterministic  transition  can  be  combined  to  form an embedded  hierarchy.  (B)  Disambiguated
points (green) and non-disambiguated points (red) for each hierarchical level of the Skip grammar.
In the present study, we used strings of 120  points. We did not illustrate a full string due space
limitation, but the rationale is identical. (C) Transition probabilities between constituents at each
hierarchical level of the Skip grammar. (D) Depiction of k-points at generation n and generation n-
1 in the Skip grammar. K-points at generation n are highlighted in blue.

However, Schmid et al. (2023a) pointed out that the surface regularities of Skip differ from Fib as

soon as the second order conditional probability is considered. In Skip, k-points have a second order

conditional probability of p(1|01) = .36 while in Fib it is equal to  p(1|01) = .62. Thus, the slower

processing  observed  for  the  last  [1]  of  the  3-gram [011]  in  Skip  could  also  be  explained  by

participants becoming sensitive to the fact that [01] is more frequently followed by [0] than by [1]
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as compared to what they had been exposed to before, i.e., Fib blocks. The effect can therefore also

be explained by ‘flat’ statistical processing.

Schmid et al. (2023a) studied the extraction of hierarchical structure in the Fib grammar using a

similar experimental setup as Vender et al. (2019, 2020), except that the stimuli were presented in

the  center  of  the  screen.  In  their  proposal,  k-points  are  not  assigned  any  particular  status,  as

hierarchical  structure  extraction  is  assumed  to  take  place  through  the  recursive  merge  of

deterministic transitions. At the surface level, points that follow a deterministic transition can be

predicted based on the point that precedes them (i.e., a 0 is always followed by a 1) whereas this is

not the case for points that follow a probabilistic transition. However, as we explained above, the

self-similarity in Fib is such that the surface transitional probabilities are identical to those between

constituents of higher hierarchical levels. This implies that constituents following a higher-order

deterministic transition can be predicted on the basis of the constituent that precedes them (Fig 1A

right panel). Crucially, points that follow a probabilistic transition at level n can appear inside a

constituent that follows a deterministic transition at level n+1. Therefore, the detection of higher-

order  deterministic  transitions  allows  to  predict  some  of  the  points  that  follow  a  probabilistic

transition at lower levels. To access this constituent structure, the processing mechanism would start

by merging the points linked by a deterministic transition, and then use the output of this process to

detect the deterministic transitions at the next hierarchical level. This process of recursive merge

would  progressively  transform  the  representation  of  the  sequence  into  a  complex  hierarchical

structure of embedded constituents (Fig 1A left panel). For example, merging the points that span

across the deterministic transition at level 0 (p(1|0) = 1) leads to the creation of the constituent [01].

Therefore,  the sequence can be represented at  level 1 with two constituents:  the newly created

constituent  [01]  and the  constituent  [1]  (which consists  of  what  remains  after  the  merge).  The

cognitive system could then detect the higher-order deterministic transition between constituents

p([01]|[1]) = 1 which would enable to predict a subset of the constituents [01]. Thus, some of the 0s

that appear in the constituent [01] (and that always follow a probabilistic transition at level 0) can
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now be predicted on the basis  of the constituent in which they appear.  This hypothesis derives

precise predictions about which points should be subject to anticipation as each hierarchical level

contains points that follow a higher order deterministic transition as well as points that follow a

higher order probabilistic transition. The recursive merge hypothesis predicts that the building of

the  structure  would  be  reflected  by  the  faster  processing  of  points  following  a  deterministic

transition at a given level compared to points following a probabilistic transition at the same level

(Fig  1B).  For  clarity,  we  will  use  the  same  terminology  as  Schmid  et  al.  (2023a)  where

“disambiguated points” refer  to points following a deterministic transition at  a  given level and

“non-disambiguated points” refer to points following a probabilistic transition at the same level. In

line with their hypothesis, results showed that participants were able to anticipate disambiguated

points  up  to  the  third  hierarchical  level.  They  interpreted  those  results  as  suggesting  that  the

participants’ sequence  representation  corresponded  to  the  recursive  embedding  of  constituents

linked through deterministic transitions.

Interestingly, some aspects of their findings seem incompatible with the k-points hypothesis. Under

this hypothesis, all k-points have the same structural status (they are all dominated by a [0] in Fib)

and their identification is what allows the building of the hierarchical structure. This hypothesis thus

predicts that k-points will be identified in the same way, which should be reflected by an identical

processing advantage for all k-points. In contrast to that prediction, Schmid et al. (2023a) found that

disambiguated points were processed faster than non-disambiguated points at level 2, despite the

fact that at this level, both disambiguated and non-disambiguated points are k-points. Moreover,

since k-points are by definition 1s, the hypothesis that structure building operates on the basis of k-

points cannot explain the effects they found at level 3, where disambiguated points were processed

faster than non-disambiguated points despite the fact that at this level, both disambiguated and non-

disambiguated points are 0s (Fig 1B). It thus seems that in its current state, the k-points hypothesis

cannot explain the results of Schmid et al. (2023a).
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Nevertheless,  the  core  argument  put  forward  by  Vender  et  al.  (2020) in  favor  of  the  k-points

hypothesis was not based on the processing of k-points in the Fib grammar per se, but on the fact

that their processing differs across grammars, suggesting that participants were sensitive to specific

properties in the Fib grammar that are absent in the Skip grammar. Since the study by Vender et al.

(2020) contained only one block of Skip and Schmid et al. (2023a) did not explore the processing of

the Skip grammar, a deeper exploration of the processing of the Skip grammar seems necessary. 

The purpose of the present study is thus to examine the predictions of the k-points hypothesis as

well as those of the recursive merge hypothesis in the processing of the Fib and Skip grammars. To

this end, we conducted two experiments using the experimental paradigm of Schmid et al. (2023a).

In the first experiment, participants were first exposed to five blocks of the Fib grammar and then to

one block of the Skip grammar, in the second experiment, participants were first exposed to five

blocks of the Skip grammar and then to one block of the Fib grammar. 

The  k-points  hypothesis  proposes  that  in  the  Fib  grammar,  the  extraction  of  the  hierarchical

structure  relies  on  the  isomorphism between  the  linear  and derivational  orders  that  allows  the

identification of k-points as relevant structural units. This hypothesis assumes that the advantage

conferred  by  the  isomorphism  is  restricted  to  k-points.  Four  predictions  follow  from  this

hypothesis :

(1) Because all k-points have the same formal status in the Fib grammar, they should all be

processed equally well.  Thus,  there should be no difference between disambiguated and

non-disambiguated points on the second hierarchical level in the Fib blocks of Experiment 1

since they are all k-points.

(2) In Experiment 1, the switch from Fib to Skip should negatively affect the processing of k-

points in Skip because in this grammar, the regularity "a 0 is always followed by a 1" does

not give access to the k-points dominance relation. This should be reflected by an increase
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of RTs and of the error rate  for k-points in Skip compared to  the last  block of the Fib

grammar. 

(3) In Experiment 2, the switch from Skip to Fib should positively affect the processing of k-

points  in Fib because the prior processing of Skip allows the acquisition of the surface

regularity "a 0 is always followed by a 1". Thus, the parser should be already sensitive to the

relevant surface regularity when it encounters Fib, which should facilitate the identification

of k-points. This should be reflected by a decrease of RTs and error rates for k-points after

the grammar switch.

(4) K-points should show a processing advantage in Fib over Skip even in the absence of prior

exposure to an alternative grammar. Thus, k-points should be learned better, i.e., showing a

stronger  decrease  of  RTs  and  higher  accuracy,  in  Fib  (Experiment  1)  than  in  Skip

(Experiment 2).

The recursive merge hypothesis proposes that the construction of the hierarchical structure is done

by  a  recursive  combination  of  deterministic  transitions.  This  hypothesis  predicts  a  processing

advantage that is not restricted to k-points, the determining factor being whether a point follows a

higher order deterministic transition or not. Like Fib, Skip contains only one deterministic transition

at each hierarchical level. As a result, we can determine unambiguously which points should be

subject to anticipation according to the recursive merge hypothesis. Since this hypothesis does not

take into account the differences in isomorphism between each grammar, it predicts that hierarchical

learning should take place in the same way in each grammar. We can therefore derive the following

predictions:

(a) In Experiment 1, the processing of strings generated from the Fib grammar should give rise

to better learning for disambiguated points at a given level compared to non-disambiguated

points at the same level.
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(b) In Experiment 2, the processing of strings generated from the Skip grammar should give rise

to better learning for disambiguated points at a given level compared to non-disambiguated

points at the same level.

In the remaining part of this paper, we first report Experiment 1 and evaluate predictions (1), (2)

and (a). We then report Experiment 2 and evaluate predictions (3) and (b). Finally, we report a last

analysis where we compared the results of Experiments 1 and 2 in order to evaluate prediction (4).

We found that prediction (2) of the k-points hypothesis was in line with the results, replicating the

observation reported by Vender et al. (2020). On the other hand, the results were in contradiction

with predictions (1), (3) and (4) of the k-points hypothesis. The k-points hypothesis thus seems to

be insufficient to fully account for the processing of the Fib and Skip grammars. Concerning the

recursive  merge  hypothesis,  our  results  were  in  agreement  with  prediction  (a),  suggesting

hierarchical  learning during Fib grammar processing,  in  line  with the  observations  reported  by

Schmid et al.  (2023a). Concerning prediction (b), results were in line with the recursive merge

hypothesis up to level 3, suggesting that Skip grammar is at least partially processed hierarchically.

At level 4, however, results were opposite to prediction (b). We propose an ad-hoc explanation of

this result in the discussion based on the difference in the form of self-similarity of Fib and Skip.

3.2 Experiment 1 : Switching from Fib to Skip

Experiment 1 aimed at evaluating predictions (1) and (2) of the k-points hypothesis and prediction

(a) of the recursive merge hypothesis. Like in Vender et al. (2020), participants were first exposed to

sequences generated by the Fib grammar and then to sequences generated by the Skip grammar.

Beyond the fact that the current study was conducted on adults, whereas that of Vender et al. (2020)

was conducted on children, our study differs on other aspects. First, instead of a Simon task, we

used the simpler task of Schmid et al. (2023a) in which stimuli are all presented centrally. Since

Schmid et al. (2023a) failed to find any anticipation effect for the disambiguated points of level 1,

we increased the number and length of the blocks to increase statistical power. We also set the
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Response-to-Stimulus Interval (RSI) at 1000 ms instead of the 500 ms RSI used in Vender et al.

(2020) and Schmid et al. (2023a). Finally, in both Vender et al. (2020) and Schmid et al. (2023a),

each  block  corresponded  to  a  full  generation  of  the  Fib  grammar  (generations  10  and  12,

respectively)  and the  blocks  were identical  across  participants.  In  the present  experiment,  each

participant saw a different block consisting of a 120-long string taken from generation 23 of the Fib

grammar in  order to exclude the possibility that  the effects  come from specific properties of a

string.

3.2.1 Methods

3.2.1.1 Participants

Fifty-eight  students  (12  men  and  46  women;  mean  age  21.5  years  old)  from an  introductory

psycholinguistics course from the university of Geneva participated in the experiment for course

credits. All participants reported normal or corrected-to-normal vision. This study was approved by

the ethics commission of the University of Geneva. Informed consent was obtained from each of the

participants included in the study.

3.2.1.2 Materials

In  the  training  block,  we  used  a  binary  sequence  of  120  stimuli.  The  order  of  stimuli  was

randomized for each participant. The sequences used in the experimental blocks corresponding to

the Fib grammar were created by extracting 290 sub-sequences of 120 point from generation 23 of

the Fib grammar. Each of those 290 sub-sequences corresponded to a unique block and were used

only once across participants. The sequences used in the experimental blocks corresponding to the

Skip grammar were created by extracting 58 sub-sequences of 120 points from generation 8 of the

Skip grammar. Each of those 58 sub-sequences corresponded to a unique block and were used only

once across participants.

83



3.2.1.3 Design and procedure

Each trial consisted of a blue or red circle 100 px in diameter presented at the center of the screen.

Blue  circles  correspond  to  the  1s  and  the  red  circles  to  the  0s  of  the  grammar.  The  circles

disappeared after the response of the participant, or after 1200ms if no response was given. The

response-to-stimulus interval lasted 1000 ms. Participants were asked to press as quickly as possible

the button corresponding to the color of the circle (X=blue, N=red) on a QWERTZ keyboard. Since

the task was extremely simple, instructions did not emphasize the precision of the answer in order

to avoid ceiling effects. No information related to the grammar was given. The experiment started

with  a  training  block  followed  by  6  experimental  blocks.  The  training  block  was  intended  to

accustom the participants to the task; therefore, we did not analyze it as we had no predictions about

it. In experimental blocks 1 to 5, the order of the trials was determined by the Fib grammar. In

experimental block 6, the order of the trials was determined by the Skip grammar. The experiment

was conducted using an HP elite book laptop running on Windows 7 with a 14’’ inch screen and a

resolution  of  1920*1080  pixels.  The  computer  was  placed  at  approximately  60  cm  from  the

participants.  The  experiment  used  MATLAB  version  2016b  (MATLAB,  2016) programming

software. Instructions were displayed on the screen and participants had to click on a button to start

the experiment. Participants were told that the experiment contained 7 blocks and that they could

take  a  pause  between  each  block.  Before  each  block,  a  message  was  displayed  indicating  the

number of the blocks remaining and participants had to click a button to start.  The experiment

lasted approximately 20 minutes.

3.2.1.4 Data analyses

In  order  to  evaluate  prediction  (2)  of  the  k-points  hypothesis,  we  conducted  a  first  analysis

(Processing of k-points) where we compared the RTs and accuracy of k-points in the last Fib block

to that of the Skip block. The k-points hypothesis predicts slower RTs and higher error rates for the

Skip k-points compared to the Fib k-points.
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In order to evaluate prediction (a), we analyzed the Fib blocks data (Processing of Fib hierarchical

structure)  as  Schmid  et  al.  (2023a).  We compared  within  each  hierarchical  level  the  RTs  and

accuracy of the points that follow a deterministic transition (i.e., disambiguated points) to those that

follow a probabilistic transition (i.e., non-disambiguated points) (Fig 1B). The Fib grammar being

asymmetric in its distribution of 0s and 1s, we compared within each level only 1s to 1s and 0s to

0s.  The recursive merge hypothesis  predicts  that  hierarchical  building should  result  in  a  larger

decrease  in  RTs  and  error  rates  across  blocks  for  disambiguated  points  compared  to  non-

disambiguated points. The same analysis also allowed us to test prediction (1) that k-points in Fib

should all be processed in the same way. If this prediction is correct, there should be no difference

between disambiguated and non-disambiguated points at the second hierarchical level since at this

level, both types of points are k-points.

We removed five participants who had an error rate superior to 3 SD to the mean error rate in at

least one block. RTs and accuracy were both modeled as dependent variables. We removed from the

analysis all the trials where participants did not respond after 1200 ms (47 trials). For the analysis of

RTs, only trials with a correct answer were included. Homoscedasticity and normality were checked

by visual inspection of residual plots. Data from the remaining 53 participants were analyzed with

linear mixed-effects models as implemented in the lme4 package for R (Bates et al., 2014; R Core

Team,  2022).  For  all  the  models,  p-values  were  calculated  by  way  of  the  Satterthwaites’s

approximation to degrees of freedom with the lmerTest package (Kuznetsova et al., 2015). 

For  the  analysis  Processing  of  k-points,  the  model  included  the  fixed-effect  factor  Grammar.

Grammar is a discrete variable contrasting k-points in the last block of Fib (Block 5) and in the

block of Skip (block 6). As random effects, the model had an intercept for  Participants. For the

analysis Processing of Fib hierarchical structure, models included two fixed-effect factors and their

interaction:  Exposure, Fib  ambiguity,  and Exposure*Fib  ambiguity.  Exposure was  treated  as  a

continuous variable with a value of 0 for trials of the 1st experimental block, and of 1, 2, 3 and 4 for

trials of the 2nd, 3d, 4th and 5th blocks. Treating this factor as continuous allowed us to have a single
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estimate that represents the evolution (i.e.,  the slope) of performance throughout the experiment

across  all  participants. Fib ambiguity is  a  discrete  variable  contrasting disambiguated and non-

disambiguated points and operationalized differently depending on the level at which its effect is

explored  (it  is  labeled  Fib  ambiguity  leveln according  to  the  level  at  which  it  has  been

operationalized). We entered as fixed effects the factors  Fib ambiguity leveln (Disambiguated vs.

Non-disambiguated),  Exposure, and the interaction  Exposure*Fib ambiguity. The modality “Non-

disambiguated” of the factor Fib ambiguity leveln was always set as the intercept of the models. As

random effects, the models had intercept for Participants.

3.2.2 Results

3.2.2.1 Processing of k-points

Analyses of RTs showed a significant effect of Grammar (β = 14.49, SE = 4.6, t = 3.149, p = .001)

with k-points in the last block of the Fib grammar (M = 347 ms) faster than the k-points in the Skip

grammar (M = 361 ms). Concerning accuracy, we found a significant effect of Grammar (β = -0.56,

SE = 0.12, z = -4.691, p < .001) with higher accuracy for Fib k-points (M = 0.89, SD = 0.31) than

Skip k-points (M = 0.83, SD = 0.38).

3.2.2.2 Processing of Fib hierarchical structure

Processing of surface statistical regularities (Level 0). 

Analyses of RTs showed a main effect of Exposure (β = -14.18, SE = 0.52, t = -27.11, p < .001) with

a mean reduction of RTs of 71 ms from block 1 to block 5. There was also a main effect of  Fib

ambiguity level0 (β = -46.50, SE = 1.54, t = -30.27, p < .001) with disambiguated points being faster

than non-disambiguated ones by 47 ms. The interaction  Exposure*Fib ambiguity level0  was also

significant (β = -13.46, SE = 1.08, t = -12.445, p < .001) with a more important reduction over time

for disambiguated points (Mblock5 – block1 = -79 ms) than non-disambiguated points (Mblock5 – block1 = -23

ms) (Mblock5 – block1 indicates the mean difference between blocks 5 and 1). Results are shown in Fig 3.
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Fig 3. Experiment 1: mean RTs for disambiguated and non-disambiguated points by block (level 0
and 1). Errors bars denote the 95% confidence interval.

Investigating accuracy, we found a main effect of  Exposure (β = -0.10,  SE = 0.03,  z = -3.716,  p

< .001) with a mean reduction of accuracy of 1.4 % from block 1 to block 5. There was also a main

effect of Fib ambiguity level0 (β = 1.66, SE = 0.08, z = 20.309, p < .001) with higher accuracy for

disambiguated points (M = 0.98) than for non-disambiguated points (M = 0.92). Crucially, the effect

of  Exposure significantly interacted with  Fib ambiguity level0 (β = 0.31,  SE = 0.06, z  = 5.358,  p

< .001) with accuracy increasing for disambiguated points over exposure (Mblock5 – block1 = 0.01) and

decreasing for non-disambiguated points (Mblock5 – block1 = -0.05). Results are shown in Table 1.
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Table 1

Mean Proportion (M) and Standard Deviation (SD) of Correct Responses for Disambiguated and 
Non-Disambiguated Points in the Fib grammar by Hierarchical Levels and Blocks.

Block 1 Block 2 Block 3 Block 4 Block 5

M SD M SD M SD M SD M SD

Level 0 Disambiguated 0.98 0.15 0.98 0.14 0.99 0.12 0.98 0.13 0.99 0.12

Non-disambiguated 0.94 0.23 0.93 0.26 0.93 0.26 0.90 0.30 0.89 0.31

Level 1 Disambiguated 0.95 0.22 0.95 0.21 0.96 0.21 0.94 0.25 0.94 0.24

Non-disambiguated 0.94 0.24 0.89 0.32 0.87 0.34 0.87 0.34 0.87 0.34

Level 2 Disambiguated 0.93 0.26 0.92 0.27 0.92 0.27 0.89 0.31 0.91 0.29

Non-disambiguated 0.97 0.18 0.93 0.25 0.93 0.25 0.91 0.29 0.86 0.34

Hierarchical processing at level 1. 

Analyses of RTs showed a main effect of Exposure (β = -10.59, SE = 0.68, t = -15.59, p < .001) with

a mean reduction of 53 ms from block 1 to block 5. There was also a main effect of Fib ambiguity

level1 (β = -24.47, SE = 1.99, t = -12.26, p < .001) with disambiguated points being faster than non-

disambiguated ones by 24 ms. The interaction Exposure*Fib ambiguity level1 was also significant

(β = -8.69,  SE = 1.40, t = -6.19,  p < .001) with a more important reduction over exposure for

disambiguated points (Mblock5 – block1 = -58 ms) than non-disambiguated points (Mblock5 – block1 = -20 ms).

Results are shown in Fig 3. Concerning accuracy, we found a main effect of Exposure (β = -0.12, SE

= 0.02, z = -4.828, p < .001) with a mean reduction of accuracy of 3.1 % from block 1 to block 5.

There was also a main effect of Fib ambiguity level1 (β = 0.85, SE = 0.07, z = 12.082, p< .001) with

higher accuracy for disambiguated points (M = 0.95) than non-disambiguated points (M = 0.89).

The interaction Exposure * Fib ambiguity level1 was not significant (β = 0.10, SE = 0.05, z = 1.923,

p = .054). Results are shown in Table 1.
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Hierarchical processing at level 2.

Analyses of RTs showed a main effect of Exposure (β = -5.55, SE = 0.81, t = -6.812, p < .001) with

a mean reduction of 28 ms from block 1 to block 5. There was no effect of Fib Ambiguity level2 (β =

-4.18, SE = 2.37, t = -1.768, p = .077) . The interaction Exposure*Fib ambiguity level2 was however

significant (β = -6.546,  SE = 1.67, t = -3.917,  p < .001) with a more important reduction over

exposure for disambiguated points (Mblock5 – block1 = -32 ms) than non-disambiguated points (Mblock5 –

block1 = -8 ms). Results are shown in Fig 4. Concerning accuracy, we found a main effect of Exposure

(β = -0.18, SE = 0.03, z = -5.909, p< .001) with a mean reduction of accuracy of 5.2 % from block 1

to block 5. There was no effect of Fib ambiguity level2 (β = -0.08, SE = 0.09, z = -0.935, p = .350).

The effect of Exposure however significantly interacted with Fib ambiguity level2 (β = 0.24, SE =

0.07, z = 3.618, p< .001) with accuracy decreasing less for disambiguated points over time (Mblock5 –

block1 = -0.02) than for non-disambiguated points (Mblock5 – block1 = -0.10). Results are shown in Table 1.

Fig 4. Experiment 1: mean RTs for disambiguated and non-disambiguated points by block (level 2
and 3). Errors bars denote the 95% confidence interval.
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Hierarchical processing at level 3.

Analyses of RTs showed a main effect of Exposure (β = -5.08, SE = 1.06, t = -4.788, p < .001) with

a mean reduction of 26 ms from block 1 to block 5. There was no effect of Fib ambiguity level3 (β =

-3.19, SE = 3.11, t = -1.024, p = .306) and the interaction Exposure*Fib ambiguity level3 failed to

reach significance (β = 3.55, SE = 2.18, t = 1.626, p = .104). Results are shown in Fig 4. Concerning

accuracy, we found a main effect of  Exposure (β = -0.16,  SE = 0.03,  z = -4.725,  p< .001) with a

mean reduction of accuracy of 7.1 % from block 1 to block 5. There was no effect of Fib ambiguity

level3 (β = 0.02, SE = 0.10, z = 0.161, p = .872) and the interaction Exposure*Fib ambiguity level3

was also not significant (β = -0.03, SE = 0.07, z = 0.488, p = .625).

3.2.3 Discussion

The results of Experiment 1 fail to support prediction (1) according to which all k-points should be

processed similarly. The effect of ambiguity found at level 2 cannot be explained by the k-points

hypothesis:  despite the fact that disambiguated and non-disambiguated points were all  k-points,

they  were  not  processed  similarly.  However,  results  validate  prediction  (2)  of  the  k-points

hypothesis, replicating Vender et al. (2020) : when switching from the Fib grammar to the Skip

grammar, k-points were processed more slowly and gave rise to more errors than their counterparts

in the last block of the Fib grammar.

The results of Experiment 1 also meet prediction (a) of the recursive merge hypothesis: participants

learned disambiguated points better than non-disambiguated points at levels 0, 1 and 2. RTs slopes

across exposure were steeper for disambiguated points than for non-disambiguated points. Accuracy

tended  to  globally  decrease  through  exposure,  which  may  suggest  a  speed-accuracy  trade-off.

However, this does not affect our interpretation of the results since what is key is actually how

ambiguity affected accuracy. At levels 0 and 1, accuracy increased for disambiguated points while it

decreased for non-disambiguated points (note that at level 1, the interaction just failed to reach

significance at  p = .054) and at level 2, accuracy decreased more strongly for non-disambiguated
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points than for disambiguated points. These results therefore bring support to the hypothesis that

participants built a hierarchical structure up to the second hierarchical level. An overall decrease in

accuracy has  also been observed in  Schmid et  al.  (2023a),  which  used  the  same experimental

paradigm. Two non-mutually exclusive reasons have been advanced: the decrease in accuracy could

be due to the boredom of the participants caused by the simplicity of the task or to the instructions,

which only emphasize response speed.

Nevertheless, in contrast to Schmid et al. (2023a), we failed to find significant structural learning at

level 3. Three non-exclusive possibilities can explain this finding. First, the response-to-stimulus

interval in the present experiment was 1000 ms instead of 500 ms in Schmid et al. (2023a). Several

SRT task  studies  have  reported  a  decrease  in  sequence  learning  with  increasing  RSI  duration

(Frensch & Miner, 1994; Soetens et al., 2004; Willingham et al., 1997). This reduced learning was

attributed to the reduction of the activation level of the relevant representations in working memory.

The longer interval of our experiment could have impaired the hierarchical building process as

items had to be kept longer in memory to be merged into constituents, and may have been subject to

decay (Barrouillet et al., 2004; Frensch & Miner, 1994; Hommel, 1994; S. T. Mueller et al., 2003),

but see Lewandowsky & Oberauer, (2009); Oberauer & Lewandowsky, (2014) for a discussion on

decay. Second, the lack of exposition to the grammar might have also played a role. In Schmid et al.

(2023a), participants were exposed to 1165 trials of the Fib grammar whereas they only had 600

trials in the present experiment. Third, Schmid et al. (2023a) involved 159 participants whereas ours

had only 53, which may be responsible for weaker statistical power, knowing that indeed the effect

of ambiguity at level 3 was weaker than that at other levels in Schmid et al. (2023a).

3.3 Experiment 2 : Switching from Skip to Fib

In Experiment 2, participants were exposed to 5 blocks of the Skip grammar followed by one block

of  the  Fib  grammar.  The  first  aim of  Experiment  2  was  to  test  prediction  (3)  of  the  k-points

hypothesis according to which identification of k-points in the final Fib block should be facilitated
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compared to the last block of Skip because participants would have already been exposed to the

surface regularity “a 0 is always followed by a 1” that permits identification of k-points. If this

prediction is correct, k-points should show faster RTs and better accuracy in the Fib block compared

to the last Skip block. The second aim of this experiment was to test prediction (b) of the recursive

merge hypothesis  that participants  extract a hierarchical  structure in the processing of the Skip

grammar in the same way as in Fib, since both exhibit an underlying hierarchical structure.

3.3.1 Methods

3.3.1.1. Participants

Fifty-one  students  (19  men  and  32  women;  mean  age  21.8  years  old)  from  an  introductory

psycholinguistics course from the university of Geneva participated in the experiment for course

credits. All participants reported normal or corrected-to-normal vision. This study was approved by

the ethics commission of the University of Geneva. Informed consent was obtained from each of the

participants included in the study.

3.3.1.2 Materials

The  training  sequence  was  identical  to  that  of  Experiment  1.  The  sequences  used  in  the

experimental  blocks  corresponding  to  the  Skip  grammar  were  created  by  extracting  255  sub-

sequences of 120 points from generation 12 of the Skip grammar. Each of those 255 sub-sequences

corresponded to a unique block and were used only once across participants. The sequences used in

the  experimental  blocks  corresponding to  the  Fib grammar were created  by extracting 51 sub-

sequences of 120 points from generation 21 of the Skip grammar. Each of those 51 sub-sequences

corresponded to a unique block and were used only once across participants.

3.3.1.3 Design and procedure

The design and procedure were identical to  Experiment  1 except  that  the order  of the trials  in

experimental blocks 1 to 5 was determined by the Skip grammar and in experimental block 6, the
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order of the trials was determined by the Fib grammar. Stimuli were presented electronically using

the E-Prime 2.0 software (Psychology Software Tools, Inc. (2016).

3.3.1.4 Data analyses

Data cleaning  was identical to Experiment 1. We removed one participant who had an error rate

superior to 3 SD to the mean error rate in two blocks. We also removed 30 trials where participants

did  not  respond  after  1200  ms.  Analyses  for the  remaining  50  participants  were identical  to

Experiment 1.

3.3.2 Results

3.3.2.1 Processing of k-points

Analyses of RTs showed no effect of Grammar (β = 9.17, SE = 5.07, t = 1.809, p = .070). The effect

of Grammar on accuracy was also not significant (β = 0.22, SE = 0.12, z = 1.876, p = .061). 

3.3.2.2 Processing of Skip hierarchical structure

Processing of surface statistical regularities (Level 0).

Analyses of RTs showed a main effect of Exposure (β = -17.35, SE = 0.56, t = -30.60, p < .001) with

a mean reduction of 87 ms from block 1 to block 5. There was also a main effect of Skip ambiguity

level0 (β = -62.17, SE = 1.88, t = -33.15, p < .001) with disambiguated points being faster than non-

disambiguated ones by 62 ms. The interaction Exposure*Skip ambiguity level0 was also significant

(β = -10.97,  SE = 1.32, t = -8.296,  p < .001) with a more important reduction over exposure for

disambiguated points (Mblock5 – block1 = -80 ms) than non-disambiguated points (Mblock5 – block1 = -32 ms).

Results are shown in Fig 5.
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Fig 5. Experiment 2: mean RTs for disambiguated and non-disambiguated points by block (level 0
and 1). Errors bars denote the 95% confidence interval.

Concerning accuracy,  we found a  main  effect  of  Exposure (β =  -0.10,  SE =  0.03,  z =  -3.483,

p< .001) with a mean reduction of accuracy of 1.6 % from block 1 to block 5. There was also a

main effect of Skip ambiguity level0 (β = 2.74, SE = 0.10, z = 27.80, p< .001) with higher accuracy

for disambiguated points (M = 0.99) than for non-disambiguated points (M = 0.87). The effect of

Exposure significantly interacted with  Skip ambiguity level0 (β = 0.42,  SE = 0.07, z  = 5.898,  p

< .001) with accuracy increasing for  disambiguated points  over time (Mblock5  –  block1 = 0.01) and

decreasing for non-disambiguated points (Mblock5 – block1 = -0.09). Results are shown in Table 2.
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Table 2

Mean Proportion (M) and Standard Deviation (SD) of Correct Responses for Disambiguated and Non-
Disambiguated Points in the Skip grammar by Hierarchical Levels and Blocks.

Block 1 Block 2 Block 3 Block 4 Block 5

M SD M SD M SD M SD M SD

Level 0 Disambiguated 0.98 0.13 0.99 0.11 0.99 0.08 0.99 0.10 0.99 0.07

Non-disambiguated 0.91 0.28 0.88 0.33 0.86 0.35 0.86 0.35 0.82 0.38

Level 1 Disambiguated 0.96 0.22 0.97 0.18 0.97 0.18 0.97 0.17 0.97 0.18

Non-disambiguated 0.97 0.17 0.96 0.19 0.96 0.20 0.96 0.20 0.95 0.22

Level 2 Disambiguated 0.97 0.18 0.97 0.17 0.97 0.18 0.96 0.19 0.95 0.22

Non-disambiguated 0.98 0.15 0.95 0.21 0.95 0.22 0.95 0.22 0.95 0.22

Level 3 Disambiguated 0.92 0.27 0.90 0.31 0.88 0.32 0.89 0.31 0.86 0.35

Non-disambiguated 0.88 0.32 0.83 0.38 0.78 0.41 0.76 0.43 0.74 0.44

Level 4 Disambiguated 0.98 0.13 0.95 0.22 0.94 0.25 0.94 0.23 0.93 0.26

Non-disambiguated 0.97 0.16 0.96 0.20 0.96 0.21 0.95 0.21 0.96 0.20

Hierarchical processing at level 1.

Analyses of RTs showed a main effect of Exposure (β = -13.58, SE = 0.63, t = -21.428, p < .001)

with a mean reduction of 53 ms from block 1 to block 5. There was no effect of Skip ambiguity

level1 (β =  2.37,  SE =  1.86,  t =  1.275,  p = .203),  but  a  significant  interaction  Exposure*Skip

ambiguity level1 (β = -4.35,  SE = 1.31, t = -3.31,  p < .001) with a more important reduction over

exposure for disambiguated points (Mblock5 – block1 = -62 ms) than non-disambiguated points (Mblock5 –

block1 = -44 ms). Results are shown in Fig 5. Concerning accuracy, we found a significant effect of

Exposure (β = -0.07, SE = 0.03, z = -2.117, p = .034) with a mean reduction of accuracy of 1.1 %

from block 1 to block 5. There was a main effect of Skip ambiguity level1 (β = 0.22, SE = 0.10, z =

2.146,  p  = .032)  with  accuracy  higher  for  disambiguated  points  (M =  0.97)  than  for  non-

disambiguated  points  (M =  0.96).  The  interaction  Exposure*Skip  ambiguity  level1  was  also

significant (β = 0.16, SE = 0.07, z = 2.300, p = .021) with accuracy increasing for disambiguated
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points over time (Mblock5 – block1 = 0.005) and decreasing for non-disambiguated points (Mblock5 – block1 = -

0.02). Results are shown in Table 2.

Hierarchical processing at level 2.

Analyses of RTs showed a main effect of Exposure (β = -11.96, SE = 0.80, t  = -14.872, p < .001)

with a mean reduction of 60 ms from block 1 to block 5. There was no significant effect of  Skip

ambiguity  level2 (β =  -3.26,  SE =  2.31,  t =  -1.415,  p  = .157),  but  a  significant  interaction

Exposure*Skip ambiguity level2 (β = -5.42, SE = 1.63, t = -3.330, p < .001) with a more important

reduction over exposure for disambiguated points (Mblock5 – block1 = -52 ms) than non-disambiguated

points (Mblock5 – block1 = -32 ms). Results are shown in Fig 6. Concerning accuracy, we found a main

effect of Exposure (β = -0.13, SE = 0.04, z = -3.234, p = .001) with a mean reduction of accuracy of

2.2 % from block 1 to block 5. There was no effect of Skip ambiguity level2 (β = 0.20, SE = 0.12, z =

1.745, p = .081). The interaction Exposure*Skip ambiguity level2 was also not significant (β = 0.03,

SE = 0.08, z = 0.393, p = .695). Results are shown in Table 2.

Fig 6. Experiment 2: mean RTs for disambiguated and non-disambiguated points by block (level 2
and 3). Errors bars denote the 95% confidence interval.
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Hierarchical processing at level 3. 

Analyses of RTs showed a main effect of Exposure (β = -8.98, SE = 1.19, t = -7.542, p < .001) with

a mean reduction of 45 ms from block 1 to block 5. There was a main effect of Skip ambiguity level3

(β = -25.397,  SE = 3.93,  t = -6.466,  p < .001) with disambiguated points being faster than non-

disambiguated ones by 24 ms. The interaction Exposure*Skip ambiguity level3  was also significant

(β =  -11.08,  SE =  2.76, t =  -4.01,  p <  .001)  with  a  more  important  reduction  over  time  for

disambiguated points (Mblock5 – block1 = -43 ms) than non-disambiguated points (Mblock5 – block1 = -1 ms).

Results are shown in Fig 6. Concerning accuracy, we found a main effect of Exposure (β = -0.18, SE

= 0.03,  z = -5.426, p < .001) with a mean reduction of accuracy of 9 % from block 1 to block 5.

There was a main effect of  Skip ambiguity level3 (β = 0.75,  SE = 0.09,  z = 7.950,  p < .001) with

higher accuracy for disambiguated points (M = 0.89) than for non-disambiguated points (M = 0.80).

The interaction Exposure*Skip ambiguity level3 was not significant (β = 0.09, SE = 0.07, z = 1.268,

p = .205). Results are shown in Table 2.

Hierarchical processing at level 4.

Analyses of RTs showed a main effect of Exposure (β = -9.19, SE = 1.20, t = -7.642, p < .001) with

a mean reduction of 46 ms from block 1 to block 5. There was no effect of Skip ambiguity level4 (β

= 5.83, SE = 3.56, t = 1.636, p = .102), but a significant interaction Exposure*Skip ambiguity level4

(β = 5.01,  SE = 2.51, t =  1.997,  p = .046)  with  a  less  important  reduction  over  exposure for

disambiguated points (Mblock5 – block1 = -22 ms) than non-disambiguated points (Mblock5 – block1 = -38 ms).

Results are shown in Fig 7. Concerning accuracy, we found a main effect of Exposure (β = -0.16, SE

= 0.06, z = -2.464, p = .014) with a mean reduction of accuracy of 2.8 % from block 1 to block 5.

There was no effect of  Skip ambiguity level4 (β = -0.30,  SE = 0.18,  z  = -1.694,  p = .090). The

interaction Exposure*Skip ambiguity level4 was also not significant (β = -0.16, SE = 0.13, z = -1.286,

p = .199). Results are shown in Table 2.
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Fig 7. Experiment 2: mean RTs for disambiguated and non-disambiguated points by block (level 4).
Errors bars denote the 95% confidence interval.

3.3.2.3 Comparison of Experiment 1 and 2 : processing of k-points in the Fib grammar and the Skip
Grammar

In order to evaluate prediction (4) of the k-points hypothesis according to which the processing of

k-points  in  the  Fib  grammar  should  be  facilitated  compared  to  k-points  in  the  Skip  grammar

independently of prior exposure to one of the grammars, we compared the RTs and accuracy of k-

points in the Fib blocks of Experiment 1 to that of the Skip blocks of Experiment 2. The model

included  two  fixed-effect  factors  and  their  interaction:  Exposure, Grammar,  and

Exposure*Grammar. Exposure was modeled in the same way as in the previous analysis. Grammar

is a discrete variable contrasting the k-points of the Fib blocks of Experiment 1 to that of the Skip

blocks  of  Experiment  2.  As  random  effects,  the  models  had  intercepts  for  Participants.  The

modality “Fib” of the factor Grammar was set as the intercept of the model.

Analyses of RTs showed a main effect of Exposure (β = -6.76, SE = 0.67, t = -10.158, p < .001) with

a mean reduction of 28 ms from block 1 to block 5. There was no effect of Grammar (β = -1.57, SE
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= 10.81, t = -0.146, p = .885). The interaction Exposure*Grammar was however significant (β = -

3.15,  SE = 1.38, t = -2.283, p = .022) with a more important reduction over exposure for Skip k-

points (Mblock5 – block1 = -32 ms) than Fib k-points (Mblock5 – block1 = -23 ms). Concerning accuracy, we

found a main effect of Exposure (β = -0.18, SE = 0.02, z = -8.308, p < .001) with a mean reduction

of accuracy of 7 % from block 1 to block 5. There was a main effect of Grammar (β = -0.56, SE =

0.14, z = -3.983, p < .001) with accuracy higher for k-points of the Fib grammar (M = 0.92) than for

k-points of the Skip grammar (M = 0.87). The interaction  Exposure*Grammar  was however not

significant (β = -0.001, SE = 0.04, z = -0.044, p = .965).

3.3.3 Discussion

The first aim of Experiment 2 was to evaluate prediction (3) of the k-points hypothesis that prior

exposition to the surface regularity “a 0 is always followed by a 1” in the Skip grammar should

facilitate the ulterior identification of k-points in the Fib grammar. There was no difference in RTs

or accuracy between Fib k-points and Skip k-points, contrary to Experiment 1 where Skip k-points

were processed more slowly and led to more errors than Fib k-points. These results suggest that

switching from Skip to Fib, unlike the switch from Fib to Skip, has no detrimental effect on k-

points processing. However, capitalizing on a null result is always tricky and more data is needed to

interpret this effect further. In any case, contrary to prediction (3) of the k-points hypothesis, prior

processing of the Skip grammar did not facilitate identification of k-points in Fib. 

The  second  aim  of  Experiment  2  was  to  evaluate  prediction  (b)  that participants  extracted  a

hierarchical structure during the processing of the Skip grammar, as they did for the Fib grammar,

through the recursive combination of elements spanning across deterministic transitions. The results

of the Skip blocks showed that for levels 0, 1, 2 and 3, RTs decreased significantly more for the

disambiguated  points  than  for  their  non-disambiguated  counterparts.  The  accuracy  was  also

systematically higher for disambiguated points than for non-disambiguated points, suggesting that
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the decrease in RTs was not due to a speed accuracy trade-off. The results of levels 0, 1, 2 and 3 are

therefore in line with the prediction of the recursive merge account.

According to prediction (4) of the k-points hypothesis, a general processing advantage was expected

for k-points in Fib compared to k-points in Skip. Comparison between Fib processing (Experiment

1) and Skip processing (Experiment 2) showed that RTs of k-points in Skip decreased more through

exposure than k-points in Fib. Although Fib k-points were found to be more accurately processed

than  Skip  k-points,  this  effect  was  already present  in  the  first  block and did  not  change  with

exposure, suggesting that the difference between the two grammars did not arise as a consequence

of learning. These results therefore invalidate prediction (4) of the k-points hypothesis: the lack of

isomorphism did not hinder the learning of k-points in the Skip grammar.

Finally, an intriguing finding was found at level 4 at which RTs decreased more strongly for non-

disambiguated points than for disambiguated points. There was no difference in accuracy at this

level. We discuss the implication of this incongruent result in the General discussion.

3.4 General Discussion

The aim of the present  study was to  evaluate  two proposals  that  account  for the extraction of

hierarchical structure in the processing of the Fib grammar. The k-points hypothesis (Krivochen et

al., 2018; Vender et al., 2020) proposes that within the Fib grammar, the identification of certain

points,  called  k-points,  would  allow the  construction  of  the  local  hierarchical  structure  of  the

sequence due to their specific structural status. In order to identify these k-points, the parser would

make the assumption that the linear order "a 0 is always followed by a 1" is symmetric to the

derivational order "a k-point is dominated by a 0". This assumption would be possible in the Fib

grammar  because  of  the  isomorphism between  the  surface  properties  of  the  sequence  and  its

derivational properties. In support of this hypothesis, Vender et al. (2020) reported a processing

advantage for k-points in the Fib grammar compared to k-points in an alternative grammar, Skip,

which has the same surface statistical  regularities as Fib but without  isomorphism between the
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linear and derivational orders. An alternative hypothesis attributing no role to isomorphism has been

proposed to  explain  hierarchical  learning in  the  Fib  grammar.  The recursive  merge  hypothesis

Schmid et  al.  (2023a)  proposes  that  the  process  behind the  extraction  of  hierarchical  structure

consists  in  the  progressive  recursive  combination  of  points  that  are  linked  by  deterministic

transitions  resulting in  a  complex  multi-level  hierarchical  structure  composed  of  embedded

constituents. Although the recursive merge hypothesis relies on recursion, another formal property

of Fib, and not on isomorphism, it does not rule out the possibility that isomorphism also plays a

role in structure extraction. 

Since the key observation in favor of the k-points hypothesis was based on the comparison between

Fib and Skip, and the predictions of the recursive merge hypothesis in Skip had not been explored,

we  conducted  the  present  study  to  more  systematically explore  the  predictions  of  the  two

hypotheses  for these  two  grammars.  Two  experiments  were  reported  using  an  SRT  task.  In

Experiment 1, participants performed five blocks of the Fib grammar followed by one block of the

Skip grammar, while the opposite order was tested in Experiment 2. We review the results in light

of  the predictions  of each hypothesis,  and then discuss  a  possible  explanation for some of the

unexpected results, lying in the differing type of self-similarity of our two test grammars.

3.4.1 Predictions of the two hypotheses in light of the data

3.4.1.1 Predictions of the k-points hypothesis

Prediction (1)

A k-point in the Fib grammar is defined as a 1 that is dominated by a 0 at generation n-1. Thus, all

k-points have the same formal status in the Fib grammar. If identification of k-points is the sole

factor that drives hierarchical structure building, then all k-points should be processed in the same

way in  the  Fib grammar.  We found that  at  level  2,  RTs  decreased  more  through exposure  for

disambiguated  than  non-disambiguated  points  whereas  accuracy  decreased  more  for  non-
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disambiguated points than for disambiguated points. Since at this level both disambiguated and non-

disambiguated points are k-points, the data do not support prediction (1).

Prediction (2)

The k-points hypothesis predicted that after exposure to the Fib grammar, the processing of k-points

should be impaired in the Skip grammar because the Skip grammar does not show the isomorphism

found in Fib. Our results are in line with this prediction : the k-points in the Skip block following

Fib blocks in Experiment 1 resulted in longer RTs and a higher error rate than the k-points in the

last Fib block. 

Prediction (3)

The k-points hypothesis  predicted that prior exposition to the surface regularity “a 0 is  always

followed by a 1” in the Skip grammar should facilitate the ulterior identification of k-points in the

Fib grammar. We found no difference in processing between Skip k-points and Fib k-points either in

RTs or in accuracy. Thus, exposure to the Skip grammar did not facilitate further processing of k-

points in the Fib grammar. However, our results showed an asymmetry between the transition from

one grammar to the other. In Experiment 1, the switch from Fib to Skip led to a detrimental effect

on k-points processing, while it was not the case in the switch from Skip to Fib. Further studies are

needed  to  investigate  this  question.  In  any  case,  prediction  (3)  of  the  k-points  hypothesis  is

invalidated.

Prediction (4)

The  k-points  hypothesis  stated  that  k-points  should  be  easier  to  process  in  the  Fib  grammar

compared  to  the  Skip  grammar,  independently  of  prior  exposition.  Results  showed  that  RTs

decreased more through exposure for k-points in the Skip grammar compared to k-points in the Fib

grammar, invalidating prediction (4). The lack of isomorphism in the Skip grammar does impair the

processing of k-points.
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3.4.1.2. Predictions of the recursive merge hypothesis

Prediction (a)

The recursive merge hypothesis predicted that the processing of the Fib grammar should result in

the progressive anticipation of the points that follow a higher order deterministic transition. The

results of Experiment 1 are consistent with this hypothesis: across exposure, disambiguated points

showed a decrease in RTs and an increase in accuracy greater than non-disambiguated points at

levels 0, 1 and 2. Those results replicate Schmid et al. (2023a). However, contrary to Schmid et al.,

(2023a), we did not find an effect at level 3. As previously discussed, this null result may be due to

the lower statistical power and/or the longer RSI of our experiment.

Prediction (b)

The recursive merge hypothesis assumes that the same mechanism allows for the extraction of the

hierarchical structure in Skip and Fib. Results from Experiment 2 on Skip sequences showed that

RTs and error rates of the disambiguated points of hierarchical levels 0, 1, 2 and 3 decreased more

strongly than those of their non-disambiguated counterparts, which parallels what was found for Fib

sequences in Experiment 1. In line with the recursive merge hypothesis, those results suggest that

participants built a hierarchical structure up to the third level. They also show that the isomorphism

between  the  linear  and  derivational  order  is  not  a  necessary  condition  for  the  extraction  of  a

hierarchical structure since the Skip grammar lacks this isomorphism. Nevertheless, the recursive

merge hypothesis fails to account for the finding that RTs decreased more through exposure for the

non-disambiguated points than for the disambiguated points at level 4. We discuss a potential ad-

hoc explanation of this finding in section 3.4.2.

In summary, with the exception of prediction (2) which replicates the results of Vender et al. (2020),

the k-points hypothesis seems unable to account for the findings of the present study. However, the

finding that disambiguated points were globally anticipated better  than their  non-disambiguated

counterparts,  in  both  the  Fib  and  Skip  grammars,  supports  the  hypothesis  that  a  common

hierarchical  building mechanism was used that  consists  in  the recursive merge of deterministic
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transitions.  Our  results  therefore  suggest  that  the  absence  of  isomorphism  does  not  prevent

participants  from  elaborating  a  hierarchical  structure  in  the  Skip  grammar.  Moreover,  the

similarities  between  the  processing  of  each  grammar  cast  doubt  on  the  hypothesis  that  the

isomorphism  in  Fib  is  the  factor  driving  hierarchical  elaboration.  Nevertheless,  the  reverse

ambiguity effect found at Skip level 4 suggests processing differences between the two grammars.

What are the differences between the two grammars that could explain this effect ?

In the next section, we reinterpret the k-points hypothesis in suggesting that the presence or absence

of isomorphism actually reflects a difference in the form of self-similarity between Fib and Skip.

We then propose that this variation in self-similarity affects the recursive merge building process

through the interplay between self-similarity and signal complexity.

3.4.2 The role of self-similarity

The isomorphism between surface properties (i.e., horizontal order) and derivational properties (i.e.,

vertical order) is at the heart of the k-points hypothesis. It is expressed in the Fib k-points: their

formal status recapitulates the structure of the grammar. This reflects the fact that Fib shows perfect

structure preservation: the structure of this grammar is entirely scale-free (Krivochen et al., 2018).

Skip  does  not  exhibit  the  isomorphism  of  Fib;  however,  both  grammars  have  some  common

properties.  This  is  not  surprising  since  the  rewriting  rules  of  Skip  correspond  to  Fib  natural

constituents.  Thus,  Skip inherits  some properties of Fib,  namely recursive constituent  structure,

asymmetry and aperiodicity. However, the Skip grammar departs from Fib in an important way : in

Skip, transitional probabilities do not always match those of higher order constituents (Fig 2. C).

This is because Skip does not show perfect structure preservation : the self-similarity of Skip is not

uniform across the hierarchy but is  bounded. Thus, in contrast to Fib, Skip’s self-similarity is not

scale-free but operates in a restricted range. We will refer to weak self-similarity (bound, as in Skip)

and strong self-similarity (scale-free, as in Fib). 
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We  hypothesize  that  self-similarity  acts  as  reinforcing  the  representation  of  the  hierarchical

structure. In Fib, due to its strong self-similarity, a disambiguated point at level n always predicts a

deterministic transition at level n-1; in other words, the creation of a new level can always be done

by predicting  a  point/constituent  that  was  itself  used to  predict  a  point/constituent  at  the  level

immediately below. As a result, in Fib, ambiguous points are always integrated in the structure in

the same way, and the representation of the structure thus gets reinforced with time. In Skip,  a

disambiguated point at level n  does not always  predict a deterministic transition at level n-1.  In

consequence, the robustness of the hierarchical structure is weaker in Skip.

Interestingly, the type of self-similarity covaries with another parameter that may play a key role in

sequence processing: complexity. Indeed, as we saw in the introduction, the level of complexity of

the input leads the cognitive system to compress it into a more abstract format (Planton et al., 2021;

Pothos,  2010;  Radulescu  et  al.,  2019,  2021).  When  the  complexity  of  the  input  exceeds  the

processing capacity of the parser, it compresses the signal to reduce processing cost. In that regard,

hierarchical elaboration can be seen as a way to reduce the entropic state of the parser. Skip and Fib

differ in their complexity: at the surface level, Skip is less complex than Fib because the transitional

probabilities are more asymmetric (i.e.,  the closer the different transitional probabilities are, the

more  random, and therefore the more complex is  the  signal).  However,  due to  its  strong self-

similarity, the elaboration of a new hierarchical level in Fib decreases the entropic state of the parser

at a constant rate, i.e., the proportion of ambiguous points that are disambiguated is identical at each

level. Conversely, this rate  is not equivalent within each level in Skip because of its weak self-

similarity. This means that the complexity of Skip varies across the hierarchy: some levels are less

complex than others. It might thus be that when the parser reaches some levels, its entropic state is

reduced enough so that the input does not trigger further compression, thus halting the process of

hierarchical elaboration. Alternative parsing strategies that were too costly to be considered at the

beginning of the learning phase might then become available. Those strategies would operate on the
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hierarchical  structure previously built  but they would not consist  of further compression of the

representation of the signal.

This  interplay  between  complexity  and  self-similarity  may  explain  the  unexplained  learning

advantage for the non-disambiguated points of level 4 in Skip. At level 3,  the parser would have

resorted to a strategy that is a priori more costly in terms of cognitive load but made accessible by

the fact that the entropic state of the parser has been sufficiently reduced at that level. Let's consider

the distribution of constituents at level 3 of the Skip grammar (Fig 2C). At this level, [01] is always

followed by [10101], [10101] is followed by [01] in 73% of the cases, and [10101] is followed by

[10101] in  27% of the cases.  Therefore,  the repetition of the constituent  [10101] occurs rarely

(about 5 times per block). This means that except for the 5 times where [10101] is repeated, the rest

of the sequence consists of a periodic alternation between [01] and [10101]. Thus, when level 3 is

reached, the parser could hypothesize that the sequence consists of the periodic alternation of these

two constituents. This would be a relatively efficient strategy because it is only violated five times

per block, i.e., when constituent [10101] is repeated. According to this hypothesis, the repetition of

[10101] should give rise to a slowdown. This is  what our results show: the non-disambiguated

points of level 3, which correspond to the first point of [10101] when it is repeated (i.e., the 1 in

bold in [10101][10101]), do not give rise to any learning (Mblock5 – block1 = -1 ms). In order to explain

the incongruent effect at level 4, let’s examine where the disambiguated and non-disambiguated

points of this level occur. Below, we have put in bold the disambiguated points (i) and the non-

disambiguated points (ii) of level 4 :

(i) [10101] [10101] [01]

(ii) [01] [10101] [01]

We can see in (i) that disambiguated points of level 4 systematically follow [10101] when it repeats,

whereas (ii) show that non-disambiguated points of level 4 systematically follow [10101] when it

does not repeat. Therefore, if the periodic alternation structure developed by the parser is less robust
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because of weak self-similarity, the unexpected repetition of the constituent [10101] may trigger the

revision of that structure. In consequence, the parser would be cautious about the points that follow

the repetition of [10101], thus explaining the slower RTs for the disambiguated points of level 4. 

In a nutshell,  the proposed hypothesis  relies on the core underlying assumption of the k-points

hypothesis, which is that the type of self-similarity between the grammars diverge. This property is

assumed  to  interact  with  the  complexity  of  the  parser's  signal  representation.  Skip  not  being

uniformly self-similar, the parser could reach a sufficient degree of signal compression that makes

available other strategies that do not require deepening the hierarchical structure. In contrast, Fib

being  scale-free,  the  error  from the  signal  always  reinforces  the  structure  and  triggers  further

hierarchical elaboration. The apparent opposition between the hypotheses of Schmid et al. (2023a)

and Vender et al. (2020) would thus be due to the fact that the measure on which Vender et al.

(2020) relied (i.e., the processing of k-points) is too restricted to capture the impact of the formal

properties of Fib and Skip on the mechanisms put in place by the participants.

We have proposed that the self-similarity of the signal plays a role along with signal complexity.

One possibility could be that self-similarity has the effect of reinforcing the existing structure while

complexity leads  to further  compression of  that structure.  In this  view,  the two parameters  are

complementary. Our study does not allow us to conclude on this question because as explained

above, the Skip grammar and the Fib grammar vary both in complexity and in the form of their self-

similarity. Further research where self-similarity and input complexity are carefully teased apart are

thus necessary.

107



108



Chapter 4. Non-linear effects of presentation rate on sequence
learning

4.1 Introduction

The  understanding  of  the  mechanism  allowing  the  acquisition  of  the  regularity  underlying  a

sequence of events represents a fundamental question in cognitive science. Among the multiple

methods adopted to explore sequence learning, the Serial Reaction Time (SRT) task is one of the

most  prominent.  In  this  task,  the  elements  of  the  sequence  are  presented  one  by  one  and  the

sequence determines the position of a stimulus on a screen. On each trial, the participant must press

the button associated with the position of the stimulus as quickly as possible. Once the response is

made, the stimulus disappears and the next trial begins. In the initial version of Nissen and Bullemer

(1987), the stimulus could appear in four possible positions; this setting has been widely adopted in

following studies. The assessment of sequence learning is done in two phases. In the learning phase,

participants perform several blocks where the order of appearance of the stimuli is determined by

the target sequence to be learned. This phase is followed by a so-called  transfer block where the

order of the stimuli is determined by an alternative sequence and then again by a block following

the target sequence. The target sequence is considered as learned if the participants show a transfer

effect,  i.e.,  a  slowing  down  in  the  transfer  block  compared  to  the  adjacent  sequenced  blocks

(Schwarb & Schumacher, 2012). The target sequence is typically 10-12 items long and is presented

in a loop through the blocks. The most commonly used type of sequence follows a Second Order

Conditional (SOC) structure (Reed & Johnson, 1994). In SOC sequences, the position of a trial tn

can be predicted with certainty by the position of the two preceding trials (p(tn|tn-1,tn-2) = 1) although

the position of trial tn-1 alone is non-informative (p(tn|tn-1) = .25). In most studies published after

Reed and Johnson (1994), the alternative sequence used in the transfer block also follows the SOC
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structure (but with a different surface expression) instead of the random sequence used previously.

This allows for precise control of the statistical distribution of the alternative sequence and thus

ensures that if a transfer effect is observed, it is due to the fact that the participants have learned the

target sequence (see Reed & Johnson, 1994, for a justification of this manipulation).

Many  parameters  influencing  sequence  learning  in  the  SRT task  have  been  reported,  such  as

sequence structure, alignment between stimulus locations and response key, or the presence of a

secondary  task (see  Forkstam & Petersson,  2005;  Schwarb & Schumacher,  2012;  for  reviews).

However, the influence of yet another parameter, the duration of the Response-to-Stimulus Interval

(RSI), remains unclear. Three hypotheses on the influence of RSI duration on sequence learning

have been proposed in  the  literature.  The first  hypothesis  states  that  the  RSI would  affect  the

amount of knowledge acquired about the sequence because of its impact on information processing

in Working Memory (WM) (Frensch & Miner, 1994; Soetens et al.,  2004). RSI duration would

affect learning through the decay of stimulus representations in working memory : the shorter the

duration of the RSI, the better the sequence would be learned. For the sake of clarity, we will refer

to this hypothesis as the "Decay hypothesis". The second hypothesis states that the modulation of

the RSI would not affect the learning of the sequence per se, but rather the performance in the SRT

task (Willingham et al., 1997). According to this hypothesis, the duration of the RSI would affect

the  preparation  of  the  response.  Learning  would  be  relatively  equivalent  across  different  RSI

durations but could only be detected when the RSI is sufficiently short. With a long RSI, when the

stimulus appears at an unexpected position in the transfer block, participants would have enough

time to inhibit  the learned response which would hide the transfer effect.  We will  refer to this

hypothesis  as  the  "Preparation  hypothesis".  Finally,  the  third  hypothesis  proposes  that  the  RSI

would  mainly  influence  the  ability  to  elaborate  a  conscious  representation  of  the  acquired

knowledge  (Cleeremans & Sarrazin,  2007;  Destrebecqz & Cleeremans,  2001,  2003;  Frensch &

Miner, 1994; Huang et al., 2017; Kuhn & Dienes, 2006; Norman et al., 2007; Savalia et al., 2016;

Soetens et al., 2004; Verwey & Dronkers, 2019; Verwey & Wright, 2014; Willingham et al., 1997).
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The idea being that participants could only acquire explicit knowledge of the sequence when the

duration of the RSI is long enough. When the RSI is very short or null, the knowledge acquired

would remain largely implicit.  Since the acquisition of item-based representations  is  limited to

implicit  learning, and acquiring more abstract knowledge requires explicit  representation of the

sequence, the duration of the RSI would affect the degree of abstraction of the acquired knowledge.

We will refer to this hypothesis as the "Awareness hypothesis".

In what follows, we first review the empirical evidence for each of these hypotheses about the role

of the RSI in the SRT task. To date, no consensus has been reached and all the aforementioned

hypotheses remain plausible candidates. We then argue that the limitations of the method classically

used to assess sequence learning (i.e., the transfer effect) make it unsuitable to settle between these

hypotheses. We therefore assessed learning without using a transfer block. To achieve this, we took

advantage from the specific properties of the sequence generated by the Fibonacci grammar which

enable  to  measure  learning continuously  without  having  to  compare  performance to  a  transfer

block. 

Hypothesis 1: RSI duration affects sequence learning

The Decay hypothesis is based on the observation in some studies that the magnitude of the transfer

effect  decreases  with  increasing  RSI  duration.  Frensch  and  Miner  (1994) observed  that  the

magnitude of the transfer effect was smaller for an RSI of 1500 ms than for an RSI of 500 ms. This

detrimental effect of RSI lengthening on the transfer effect was replicated by other studies (Soetens

et al., 2004; Stadler, 1995; Willingham et al., 1997). Frensch and Miner (1994) proposed that this

detrimental effect would be due to the decay of the stimulus representation in WM. With a long

RSI, the number of stimuli simultaneously active in WM would decrease, which would reduce the

detection  of  sequence  regularity  and  thus  decrease  the  magnitude  of  the  transfer  effect.

Nevertheless, the influence of the RSI on the magnitude of the transfer effect has not always been

replicated,  with  multiple  studies  reporting  no  effect  even  with  very  different  RSI  values

(Destrebecqz  & Cleeremans,  2001,  2003;  Huang  et  al.,  2017;  Norman  et  al.,  2007) and  none
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showing  the  opposite  effect.  For  example,  Destrebecqz  and  Cleeremans  (2003)  found  that  the

magnitude of the transfer effect was identical for RSIs of 0 ms, 250 ms and 1500 ms. Moreover,

although the claim that memory traces decay over time is assumed by multiple models of working

memory (Barrouillet et al., 2004; Hommel, 1994; S. T. Mueller et al., 2003), it is not consensual due

to  the  fact  that  effects  typically  attributed  to  decay  can  also  actually  be  due  to  interference

(Lewandowsky & Oberauer, 2009; Oberauer, 2013, 2019; Oberauer & Lewandowsky, 2013, 2014;

Ricker et al., 2016).

Hypothesis 2: RSI duration would not affect sequence learning but response preparation

The Preparation hypothesis provides an alternative explanation for the finding of weaker transfer

effects with long RSIs in the SRT task. Willingham et al. (1997) manipulated the duration of the

RSI within participants. In the long-short condition, participants first performed four training blocks

and a transfer block with a 1500 ms RSI. After this, participants performed another training block

with the same target sequence but with an RSI reduced to 500 ms, followed by a final transfer

block. In the short-long condition, the short RSI was initially presented, followed by the long RSI.

Participants in the long-short condition showed no transfer effect when the RSI lasted 1500 ms. In

contrast, the same participants displayed a transfer effect once the RSI duration was reduced to 500

ms, even though they performed only one training block at this presentation rate. To explain these

results, Willingham et al (1997) suggested that sequence learning occurred when the RSI was 1500

ms long, but that the long presentation rate hid the learning effect, which was only visible when the

RSI was short enough. The decrease in the magnitude of the transfer effect with increasing RSI

duration  frequently  found  in  the  literature  would  thus  not  reflect  sequence  learning  but  better

response preparation. With a longer RSI, participants would have more time to prepare for the next

trial, so the surprise effect induced by a stimulus arriving at an unexpected position would be less,

resulting in a reduced transfer effect. 

Another observation suggesting that RSI duration does not affect sequence learning itself comes

from two studies that manipulated the duration of the RSI by using probabilistic target sequences
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(Norman et al., 2007; Shanks et al., 2003). In Normann et al. (2007), authors first created two SOC

sequences, SOC-A and SOC-B. In order to make these sequences probabilistic, the authors simply

manipulated the probability that the position of the stimulus at each trial was determined by the first

or second sequence. During the training phase, the position of the stimulus was determined by the

SOC-A sequence in 88% of the trials (high probability trials) and by the SOC-B sequence in 12% of

the trials (low probability trials). The training phase was followed by a transfer block where the

probabilities were reversed (i.e., in the transfer block, the probability that a trial was determined by

the SOC-A sequence was .12 and by the SOC-B sequence was .88). The authors compared two

conditions where the RSI lasted either 0 ms or 1000 ms. RSI duration did not affect the magnitude

of the transfer effect, which was present at both 0 ms and 1000 ms. However, the results showed

that in the training blocks, participants were slower for the low probability trials compared to the

high probability  trials  and that  this  effect  interacted  with the  RSI:  the  RTs difference  between

probable and improbable trials was bigger when the RSI lasted 0 ms than when it lasted 1000 ms.

Similar  results  were  reported  by  Shanks  (2003).  Thus,  short  RSIs  exacerbated  RTs  differences

between probable and improbable trials compared to long RSIs, although the transfer effect was

identical in both cases. Normann et al. (2007) proposed that this effect could be due to a rapid shift

of attention towards the next position predicted by the sequence. When participants have more time

to  prepare  for  the  next  trial  (in  the  1000  ms  condition),  they  would  be  able  to  expand  their

attentional focus in anticipation of a target appearing anywhere. This broadening of attention would

reduce the detrimental effect of a stimulus arriving at an unexpected position, resulting in smaller

differences between probable and improbable trials compared to the 0 ms condition.

This hypothesis could also account for the common observation that longer RSIs give rise to faster

RTs (Destrebecqz & Cleeremans, 2001, 2003; Frensch & Miner, 1994; Huang et al., 2017; Norman

et al.,  2006, 2007; Shanks et al.,  2003; Soetens et al.,  1985, 2004). As the duration of the RSI

increases, participants have more time to prepare for the next trial, resulting in faster RTs. Some

studies have also reported that the duration of the RSI affects the slopes of RTs in the training
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phase: the longer the RSI, the less steep the slopes (Destrebecqz & Cleeremans, 2003; Frensch &

Miner, 1994; Soetens et al., 2004; Willingham et al., 1997). This may be due to the fact that when

participants are slower (due to a short RSI), there is more room for RTs to decrease. Note however

that the effect of RSI on slopes has not always been found (Destrebecqz & Cleeremans, 2001;

Huang et al., 2017; Norman et al., 2006, 2007; Shanks et al., 2003). Therefore, RSI duration may

not affect the learning of the sequence per se, but the preparation of the response in the SRT task.

Hypothesis 3: RSI duration affects sequence awareness

Many studies have put forward the hypothesis that the duration of the RSI would influence the

ability  to  elaborate  a  conscious  representation  of  the  knowledge  acquired  in  an  SRT  task

(Cleeremans & Sarrazin, 2007; Destrebecqz & Cleeremans, 2001, 2003; Frensch & Miner, 1994;

Huang et al., 2017; Kuhn & Dienes, 2006; Norman et al., 2007; Savalia et al., 2016; Soetens et al.,

2004;  Willingham et  al.,  1997).  According to  the  Awarness  hypothesis,  participants  could  only

acquire explicit knowledge of the sequence when the duration of the RSI is long enough. When the

RSI is very short or absent, the knowledge acquired would remain largely implicit. It is assumed

that implicit  knowledge  tends  to  be  restricted  to  perceptual  features  of  stimuli  while  explicit

knowledge,  on  the  other  hand,  is  typically  associated  with  more  abstract  representations

(Cleeremans & Jiménez, 2002; Huang et al., 2017). As a consequence, RSI duration would affect

the degree of abstraction of the acquired knowledge.

Destrebecqz and Cleeremans (2001, 2003) evaluated the influence of the duration of the RSI on

sequence awareness by adding three tasks after the SRT task. In the  fragment recognition task,

participants had to judge if sequence fragments were identical or not to the target sequence. The

underlying processes that allow success in this task, i.e., retrieving in memory the sequence learned

during  the  SRT task  and  comparing  it  to  the  presented  fragment,  are  seen  as  largely  explicit

(Perruchet  et  al.,  1997;  Perruchet  & Amorim, 1992;  Shanks et  al.,  2003; Shanks & Johnstone,

1999). In  the  exclusion  task,  participants  had  to  produce  a  different  sequence  from  the  one

previously learned. The exclusion task thus requires inhibiting the sequence learned, the underlying
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reasoning being that this  inhibition can only take place if  the representation of the sequence is

explicit. Finally, in the generation task, participants had to reproduce the target sequence in a loop.

Unlike the fragment recognition task and the exclusion task, success in the generation task does not

require  a  conscious  elaboration  process  and  can  be  achieved  on  the  basis  of  largely  implicit

knowledge  (but  note  that  the  question  of  whether  the  generation  task  require  only  implicit

knowledge has been debated, Goschke, 1998). Destrebecqz and Cleeremans (2001, 2003) observed

poorer performance with a 0 ms RSI compared to longer RSIs in the two tasks that required explicit

sequence  knowledge,  but  no  effect  of  RSI  in  the  more  implicit  task.  Although  the  studies  by

Destrebecqz and Cleeremans (2001, 2003) have been criticized for their lack of power (Wilkinson

& Shanks, 2004), a number of other studies using alternative measures of awareness converge on

the  idea  that  RSI  affects  sequence  awareness  (see  Forkstam  &  Petersson,  2005;  Schwarb  &

Schumacher, 2012 for reviews).

If  the duration of the RSI affects  the degree of awareness of the sequence,  then the degree of

abstraction of the acquired knowledge should vary accordingly. The longer the RSI duration, the

more abstract the acquired knowledge will be, as it provides more time for participants to process

and analyze the sequence. Therefore, the learning of abstract structural rules should be impossible at

short RSIs because the knowledge of the sequence is implicit. Huang et al., (2017) investigated

whether the RSI influences the ability to acquire the underlying regularity of SOC sequences, which

is that the position of the stimulus at trial t is determined by the position of the stimulus at trial t-1

and  t-2. To do so, they created two SOC sequences, SOC-A and SOC-B, which shared the same

higher-order structural rule (i.e., they were both SOC sequences) but whose actual realization was

different. In the first 10 blocks, participants were exposed to the SOC-A sequence. Block 11 was a

transfer block where the order of the stimuli was randomized. In blocks 12, 13 and 14, the order of

the stimuli followed the SOC-B sequence and block 15 was a second transfer block. The authors

compared participants' performance when the RSI lasted 250 ms or 750 ms. The results showed that

in the first transfer block, the transfer effect was equivalent for 250 ms and 750 ms RSIs conditions.
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However, in the second transfer block, only participants in the 750 ms RSI condition showed a

transfer effect. Crucially, there was no transfer effect at either 250 ms or 750 ms in the control

condition where participants were exposed to the SOC-B sequence for only 3 blocks, suggesting

that the lack of transfer effect for SOC-B at 250 ms was not due to a lack of exposure. The authors'

interpretation was that during the processing of the SOC-A sequence, participants in the 750 ms

condition acquired the higher-order structural rule and reused it in the processing of the SOC-B

sequence, whereas participants in the 250 ms condition failed to acquire the rule because the RSI

was too short. These results are in line with the hypothesis that RSI does not affect learning as such,

but the type of information that can be acquired.

4.2 Present study

In sum, both the Decay hypothesis and the Awareness hypothesis claim that RSI duration affects

learning  directly.  According  to  the  Decay  hypothesis,  RSI  duration  affects  the  amount  of

information that can be stored in working memory, such that shorter RSIs allow encoding more

units  from  the  sequence  and  therefore  better  sequence  learning.  According  to  the  Awareness

hypothesis, RSI duration affects the type of knowledge that can be acquired. Longer RSIs allow

developing more abstract, higher-order properties of the sequence, and therefore better learning. In

contrast to these two hypotheses, the Preparation hypothesis assumes that RSI duration does not

affect sequence learning itself but participants' response preparation. Longer RSIs would reduce the

surprise effect induced by a stimulus appearing at an unexpected position, thus hiding a potential

transfer effect that would otherwise be observable at shorter RSIs.

Since the data reported in the literature on the impact of RSI on the transfer effect are sometimes

inconsistent, and since there is no consensus on the interpretation of this impact, it may be relevant

to switch to a different method to get fresh insight about the role of RSI in the SRT task. One

important limitation of the transfer effect is that it is a relative measure of learning, since what is

being measured is the participant's reaction to a change in the input. A slowdown in the transfer
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block is classically interpreted as due to the fact that the target sequence has been learned. However,

because the transfer effect reflects the divergence between the target sequence and an alternative

sequence, the slowdown entirely relies on the properties of this alternative sequence and how it

differs from the target. Beyond the fact that this renders comparison among experiments difficult

(since they vary on both the target and the alternative sequences), this method also fails to quantify

how much participants have learned about the target sequence. Moreover, comparing averages of

entire blocks does not take into account the fact that participants may continue to learn during the

transfer blocks. It is therefore possible that intra-block learning hides the slowdown due to changes

in the input : performance may be slower in the initial trials of the transfer block, and then improve

such that the initial slowdown disappears in the average.

In the present study,  we addressed these drawbacks of the transfer method. To do so,  we took

advantage of the properties of sequences generated by the Fibonacci grammar (Fib henceforth)

which we used as a target sequence. The particularity of this sequence is that it allows us to quantify

learning,  trial  by  trial,  without  having  to  compare  the  performance  of  the  participants  to  an

alternative sequence. This provides us with a continuous measure of learning, without the need of

transfer blocks.  This is  made possible by the fact that the regularities in the Fib sequences are

dependent  on  one  another:  the  learning of  higher-order  regularities  is  conditioned by the  prior

learning of lower order regularities. It is therefore possible to estimate how much participants have

learned about the sequence by looking at the level at which these regularities have been extracted.

The Fib grammar is derived from the Lindenmayer formalism and was originally used to model

algae  growth (Lindenmayer,  1968;  Vitányi  & Walker,  1978).  Recent  studies  have  explored  the

processing of the Fib grammar in the SRT task (Schmid et al., 2023a; Vender et al., 2019, 2020).

These studies investigated whether participants process this sequence as a recursive nested structure

of  events.  In  particular,  we  observed  in  a  previous  study  (Schmid  et  al.,  2023a)  that  the

representation resulting from the processing of this sequence is similar to the natural constituent

structure of the grammar. We proposed that in order to access this structure, the cognitive system
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would recursively merge the transitional probabilities between units of the sequence. This simple

mechanism would result in a constituent structure similar to that of Fib because of the specific

distribution of units in the sequence, which is aperiodic and self-similar. The Fib grammar is shown

below and consists of two rewrite rules and contains a two-symbol alphabet:

0→1

1→01

The interpretation of these rules is the following: “0” is rewritten as “1” and “1” is rewritten as

“01”. The successive application of these rules generates increasingly long sequences of 0s and 1s

(henceforth refer as points). The name of this grammar comes from the fact that the number of

points at each generation (i.e., each application of the rules) follows the Fibonacci sequence (Fig.

1C). This results in an asymmetry in the distribution of 0s and 1s that approximates the golden ratio

(1.618) : in each generation, there are 1.618 times more 1s than 0s. Moreover, because the rewrite

rules  are  recursive,  each generation is  the concatenation of the two previous  ones.  A sequence

generated by the Fib grammar can therefore be parsed into smaller previous generations which are

therefore the natural constituents of the grammar.
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Fig. 1. (A) Left panel: depiction of the first three hierarchical levels of generation 7 of the Fibonacci grammar.
Non-disambiguated points at each level are highlighted in red and disambiguated points in green. To form a
new  hierarchical  level,  points that  span  across  a  deterministic  transition  are  combined together  (this  is
illustrated by the arrows). The result is a new representation of the string that consists in the combination of
points corresponding to natural higher-order constituents of the grammar (illustrated by the brackets). At each
level, constituents spanning a deterministic transition can be combined to form an embedded hierarchy. Right
panel: transition probabilities between constituents at each level. (B) Disambiguated points (green) and non-
disambiguated points (red) for each hierarchical level for generation 7 of the Fibonacci grammar. In the present
study, we used generation 12 of the Fibonacci grammar that consists in 233 points. We did not illustrate this
generation due space limitation, but the rationale is identical. (C) Derivation of the Fibonacci grammar for the
first  5 generations.  The  right  column shows the  number  of  symbols  at  each  generation,  which  maps  the
Fibonacci sequence. Arrows and circles highlight the hierarchical constituency of the grammar.

The interest of the sequences generated by this grammar is that they are aperiodic and self-similar.

In the classical SRT task, a SOC sequence is presented in a loop, so the sequence the participant is

exposed to is periodic. Thus, learning the sequence theoretically allows to predict  all future trials

with  certainty. This is not possible in sequences generated by the Fib grammar because of their

aperiodicity: it is impossible to predict all the trials with certainty because there is no pattern that

repeats  in  a  loop.  However,  these sequences  are  not  random: they present  regularities,  but  the

distribution of these regularities is aperiodic. If we examine the first order transitional probabilities

(i.e., the conditional probability of a point according to the point preceding it) of these sequences,

we see that three transitions are possible (Fig. 1A right panel). The first transition is deterministic: a
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0 is always followed by a 1 (p(1|0)=1). The two other transitions are probabilistic: a 1 is followed

by a 0 in 62% of the cases (p(0|1)= .62) and by a 1 in 38% of the cases (p(1|1)= .38). Points that

follow a first order deterministic transition (i.e.,  1s that appear after a 0) can be predicted with

certainty on the basis of what precedes them, whereas this is not the case for points that follow a

probabilistic transition. However, sequences generated by the Fib grammar are also self-similar,

which means that  the transitional  probabilities between points are  found also in the transitions

between constituents. This implies that some of the points that follow a probabilistic transition can

appear in a constituent that follows a deterministic transition. Thus, accessing to these higher-order

deterministic transitions allows to predict with certainty a subset of points that follow a lower-order

probabilistic transition (Fig. 1A left panel).

In a previous study (Schmid et  al.,  2023a), we proposed that in order to access the constituent

structure  of  the  grammar,  the  cognitive  system would  start  by merging the  points  linked by a

deterministic transition. This would result in the creation of a constituent on the basis of which the

cognitive system could further detect new higher-order deterministic transitions (i.e., a deterministic

transitions between constituents). 

Let's take an example: at the surface level, 0 is always followed by 1; the merge of these points

gives  rise  to  the  constituent  [01].  This  results  in  a  new  representation  (which  we  call  a  new

hierarchical level) where the sequence is partitioned into two constituents: [1] and [01]. At this

level, constituent [01] can be followed either by constituent [1] (p([1]|[01])=.62) or by constituent

[01] (p([01]|[01])=.38), while constituent [1] is always followed by constituent [01] (p([01]|[1])=1).

The cognitive system can merge again the constituents that span across a deterministic transition,

which results in the creation of the constituent [101]. The new representation of the sequence then

consists of two new constituents: [01] and [101]. The sequence being self-similar, the transition

between these constituents is identical to that of lower levels, and merging of the deterministic

transition p([101]|[01]) = 1 would lead to the creation of a new hierarchical level. The key property

to understand is that the first point of a constituent that follows a deterministic transition at level n
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always follows a probabilistic transition at level n-1. Thus, a point that is ambiguous at level n can

be disambiguated if it appears at level n+1 in a constituent that follows a deterministic transition.

For  example,  the  first  point  of  the  constituent  [01]  (i.e.,  the  0)  at  level  1  always  follows  a

probabilistic transition at level 0 (p(0|1)=.62). If the cognitive system has detected the higher-order

deterministic  transition  p([01]|[1])  =  1,  then  a  subset  of  the  points  that  follow a  probabilistic

transition at level 0 (i.e., the 0s that appear in constituent [01] when it follows constituent [1]) can

now be predicted with certainty (Fig. 1B). For clarity, we will call disambiguated points the points

that follow a (higher-order) deterministic transition and  non-disambiguated points the points that

follow a (higher-order) probabilistic transition at the same hierarchical level. To test the hypothesis

that  participants  develop a  hierarchical  structure  based on the  recursive merge of  deterministic

transitions, we implemented sequences of the Fib grammar in an SRT task where 0s and 1s were

transformed into red and blue circles and presented in the center of a screen (Schmid et al., 2023a).

The RSI lasted 500 ms. The results showed a greater decrease in RTs for disambiguated points than

for non-disambiguated points at levels 0, 1, 2 and 3, suggesting that participants had reached the 3rd

hierarchical level.

In the present study, we asked to what extent RSI duration impacts learning in the Fib grammar.

Because  of  the  self-similar  character  of  the  sequences,  the  number  of  hierarchical  levels  is

theoretically  infinite1,  thus,  there  is  no  a  priori  limitation  in  the  amount  of  knowledge  that

participants can acquire. The use of the Fib grammar therefore makes it possible to evaluate the

depth of learning without having to use the transfer method. 

In order to systematically explore the influence of the RSI in the SRT task, we conducted three

experiments where we manipulated the duration of the RSI. The RSI lasted 1000 ms in Experiment

1, 250 ms in Experiment 2 and 100 ms in Experiment 3. In all experiments, we used the same

paradigm as Schmid et al. (2023a) where sequences of the Fib grammar were implemented in the

1 Note that the hierarchical depth can of course only be infinite for an infinite string. In the present study, the shortest 
sequences were 144 points long and potentially involved up to 11 hierarchical levels, which is likely well beyond the 
processing capacity of the cognitive system.

121



SRT task. The 0s and 1s were transformed into red or blue circles (respectively) and presented

sequentially  in  the  center  of  a  screen.  Participants  had  to  press  the  button  associated  with the

displayed color. The answer made the circle disappear and triggered the next trial.

Each hypothesis makes distinct predictions about how RSI duration will affect the height of the

hierarchical structure elaborated by the participants. According to the Decay hypothesis, the WM

representation of the points/constituents deteriorates over time; this should make it more difficult to

merge  deterministic  transitions.  Therefore,  the  height  of  the  hierarchical  structure  built  by  the

participants should increase with the shortening of the RSI. According to the Awareness hypothesis,

the duration of the RSI affects the type of knowledge that can be acquired. Under the common

assumption in  this  field that the construction of abstract,  hierarchical  structure requires explicit

knowledge, the height of the hierarchical structure should decrease with the shortening of the RSI.

The predictions of the Awareness hypothesis regarding the height of the hierarchical structure are

thus the opposite of those of the Decay hypothesis. Finally, according to the Preparation hypothesis,

RSI duration does not affect learning per se but the preparation of the response in the SRT task.

Thus,  the height  of the hierarchical  structure should not  vary with RSI duration.  However,  the

length of the RSI should still affect the results because it affects the time to prepare for the next

trial. Therefore, participants should be faster on average the longer the RSI. This should go along

with less steep RTs slopes because if participants are faster at long RSIs, there is less room for

improvement.

In order to test if RSI duration affects hierarchical learning, we conducted a first analysis in which

we evaluated the height of the hierarchical structure in each experiment in the same way as in our

previous study (Schmid et al.,  2023a). Hierarchical elaboration generates expectations about the

structure of the input, which the participants' RTs reflect (Huettel et al., 2002; Hyman, 1953; Lynn

et  al.,  2020;  McCarthy  &  Donchin,  1981;  Sternberg,  1969).  Hierarchical  learning  therefore

manifests in terms of steeper slopes of RTs for disambiguated points at a given level compared to

the  slopes  of  non-disambiguated  points  at  the  same  level.  To  control  for  asymmetry  in  the
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distribution of 0s and 1s in the sequence (i.e., 1s are more frequent than 0s), we compared at each

level only 1s to 1s and 0s to 0s. Since the Preparation hypothesis predicts that RSI duration should

not affect the height of the hierarchical structure but the time to prepare for the next trial, we also

conducted a second analysis where we compared the average RTs and slopes of each experiment.

An important point to clarify is that the Preparation hypothesis makes predictions about the average

RTs and slopes for all points regardless of their ambiguity status. That’s because RSI duration is a

constant that affects all trials in the same way. We therefore considered disambiguated and non-

disambiguated points of all levels jointly in this analysis. In order to have a wider range of RSI

durations, we also included in this analysis the results of Schmid et al. (2023a) with a 500 ms RSI. 

Anticipating the results, the first analysis revealed that the duration of the RSI affected the height of

the hierarchical structure in a non-linear way: participants reached the 3rd hierarchical level when

the RSI lasted 250 ms, whereas they only reached the 2nd hierarchical level for 100 ms and 1000

ms RSIs. None of the three hypotheses can account for this U-shape pattern of results. The second

analysis partially met the predictions of the Preparation hypothesis. Concerning the average RTs,

participants were slower with a 100 ms RSI compared to all other RSI durations, however, there

was no difference between RSIs of 250 ms, 500 ms, 1000 ms. Concerning the average slopes, we

found again a non-linear, U-shape effect of RSI duration: the slopes for the 250 ms and 500 ms

RSIs were both steeper than the slopes for the 1000 ms and 100 ms RSIs, which did not differ. This

result cannot be explained by the Preparation hypothesis.

In summary, the continuous measure of performance used in the present study combined with the

testing of multiple RSIs show that that there is actually an optimal time window for learning in the

SRT task. None of the hypotheses proposed in the literature can capture the non-linear effect of RSI

duration  on  both  the  height  of  the  hierarchical  structure  represented  and the  evolution  of  RTs

through the task.  We propose that  this  effect  is  due to an information compression mechanism

determined  by  the  interaction  between  the  encoding  capacity  of  the  cognitive  system  (which

corresponds to the amount of entropy the system can encode per unit of time) and the source rate of
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information transmission (the amount of entropy per unit of time sent by the source) (Radulescu et

al., 2019, 2021; Shannon, 1948).

4.3 Experiment 1 : 1000 ms RSI

In  Experiment  1,  the  RSI  lasted  1000  ms.  To  avoid  that  the  RSI  of  1000  ms  exhausted  the

participants,  we made small  design change in  Experiment  1 compare to  Schmid et  al.  (2023a)

design (where the RSI lasted 500 ms) : we presented more blocks (7 instead of 5) but shorter (144

trials per block instead of 233). As a result, the overall number of trials per participant slightly

differs from Schmid et al. (2023a) (1008 trials instead of 1165).

4.3.1 Methods

4.3.1.1 Participants

One hundred and eighty participants (49 men and 131 women; mean age 24 years old) recruited

through announcements  at  the  University  of  Geneva participated  in  the  experiment.  Thirty-two

participated  as  volunteers  and  the  remaining  148 were  paid  10  CHF.  All  participants  reported

normal or corrected-to-normal vision.

4.3.1.2 Materials

The training sequence  was composed of  two elements  and had a  length  of  50.  The order  was

pseudo-randomized and elements had the same frequency. The training sequence included multiple

non-grammatical sub-sequences such as 00 or 111. The longest Fib-grammatical sub-sequence had a

length of 6. In the experimental blocks, the sequence consisted of generation 11 of the Fibonacci

grammar which has 144 points. Each experimental block corresponded to a full generation.

4.3.1.3 Design and procedure

Each trial consisted of a red or blue circle 100px in diameter presented at the center of the screen

which correspond, respectively, to 0 and 1 in a string generated by the Fib grammar. The circles
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disappeared after the response of the participant, or after 1200 ms, if no response was given. The

RSI lasted 1000 ms. Participants responded by pressing the button corresponding to the color of the

circle. Participants responded using the X and M keys of a QWERTZ keyboard (X=blue, M=red).

The experiment started with a training block of 50 trials that was identical for all the participants.

After  the training block, participants did 7 experimental  blocks  of 144 trials.  Instructions were

displayed on the screen and participants had to click on a button to start the experiment. Participants

were instructed to respond as quickly as possible. Pre-testing showed that the error rate in the task

was extremely low, which is not surprising given the simplicity of the task, so the emphasis on

speed alone was intended to increase the error rate and avoid ceiling effects. No information related

to the grammar was given. Between each block, a message was displayed saying that participant

had to press the key “enter” to start the next block, participants were told at the beginning of the

experiment that they could take as much time as they wanted between each block. Stimuli were

presented electronically using the E-Prime 3.0 software (Psychology Software Tools, Pittsburgh,

PA). The experiment was conducted using a desktop computer running on windows 7 with a 17’’

inch screen with a 1280*1020 pixels resolution. The computer screen was placed approximately

60cm from the participants. The experiment lasted approximately 30 minutes.

4.3.1.4 Data analyses

We removed six participants who had an error rate superior to 3 SD to the mean error rate in at least

one block. Reaction times and accuracy were both modelled as dependent variables. We removed

from the analysis all the trials where participants did not respond after 1200 ms (321 trials). For the

analysis of reaction times, only trials with a correct answer were included. Homoscedasticity and

normality  were  checked  by  visual  inspection  of  residual  plots.  Data  from  the  remaining  174

participants were analyzed with linear mixed-effects models as implemented in the lme4 package

for R (Bates et al., 2014; R Core Team, 2022). Models included two fixed-effect factors and their

interaction:  Exposure, Ambiguity,  and Exposure*Ambiguity. Exposure was treated as a continuous

variable with a value of 0 for trials of the 1st experimental block, and of 1, 2, 3, 4, 5 and 6 for trials
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of the 2nd, 3d, 4th , 5th 6th and 7th blocks. This factor being continuous, it allowed us to have only one

estimate which represents the evolution (i.e., the slope) of performance throughout the experiment

across  all  participants.  Ambiguity  is  a  discrete  variable  contrasting  disambiguated  and  non-

disambiguated points and operationalized differently depending on the level at which its effect is

explored (it is labeled Ambiguity leveln according to the level at which it has been operationalized).

We entered as fixed effects the factors  Ambiguity leveln (Disambiguated vs. Non-disambiguated),

Exposure, and  the  interaction  Exposure*Ambiguity.  The  modality  “Non-disambiguated”  of  the

factor Ambiguity leveln was always set as the intercept of the models. As random effects, the models

had  intercepts  for  Participants.  P-values  were  calculated  by  way  of  the  Satterthwaites’s

approximation to degrees of freedom with the lmerTest package (Kuznetsova et al., 2015). 

In order to explore the height of the hierarchical structure elaborated by the participants, we tested

the effect of Ambiguity starting at level 0. We stopped the analysis as soon as the effect was no

longer significant. In the present experiment, we conducted the analysis at levels 0, 1, 2 and 3.

4.3.2 Results

Processing of Level 0

Analyses of reaction times showed a main effect of Exposure (β = -11.94, SE = 0.17, t = -69.06, p

< .001) with a mean reduction of reaction times of 72 ms from block 1 to block 7. There was also a

main effect of  Ambiguity level0 (β = -50.23,  SE = 0.72,  t =  -69.64,  p < .001) with disambiguated

points  being  faster  than  non-disambiguated  ones  by  50  ms.  The  interaction  Ambiguity  level0*

Exposure was also significant (β = -9.59,  SE = 0.36, t = -26.73, p < .001) with a more important

reduction over time for disambiguated points (Mblock7 – block1 = -95 ms) than non-disambiguated points

(Mblock7 – block1 = -34 ms) (Mblock7 – block1 indicates the mean difference between blocks 7 and 1). Results

are shown in Fig. 2.

Concerning accuracy,  we found a  main  effect  of  Exposure (β =  -0.07,  SE =  0.01,  z =  -7.303,

p< .001) with a mean reduction of accuracy of 1 % from block 1 to block 7. There was also a main
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effect of  Ambiguity level0 (β =  2.18,  SE = 0.05,  z  = 47.849,  p< .001) with higher accuracy for

disambiguated points  (M = 0.99)  than for  non-disambiguated  points  (M = 0.93).  The effect  of

Exposure significantly interacted with  Ambiguity level0 (β = 0.27,  SE = 0.02, z  = 11.66,  p< .001)

with  accuracy  increasing  for  disambiguated  points  over  exposure  (Mblock7  –  block1 =  0.01)  and

decreasing for non-disambiguated points (Mblock7 – block1 = -0.04). Results are shown in Table 1.

Processing of Level 1

Analyses of reaction times showed a main effect of Exposure (β = -9.64, SE = 0.22, t  = -44.05, p

< .001) with a mean reduction of reaction times of 58 ms from block 1 to block 7. There was also a

main effect of  Ambiguity level1 (β = -35.82,  SE = 0.90,  t =  -39.62,  p < .001) with disambiguated

points  being  faster  than  non-disambiguated  ones  by  36  ms.  The  interaction  Ambiguity  level1*

Exposure was also significant (β = -7.05,  SE = 0.45, t = -15.65,  p < .001) with a more important

reduction over time for disambiguated points (Mblock7 – block1 = -73 ms) than non-disambiguated points

(Mblock7 – block1 = -31 ms). Results are shown in Fig. 2.
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Fig. 2. Mean RT (ms) for Disambiguated and Non-disambiguated points for Hierarchical Levels 0 and 1
(left) and for Hierarchical Levels 2 and 3 (right) by Block in Experiment 1. Errors bars denote the 95%
confidence interval.

Concerning accuracy,  we found a  main  effect  of  Exposure (β =  -0.09,  SE =  0.01,  z =  -9.196,

p< .001) with a mean reduction of accuracy of 2.4 % from block 1 to block 7. There was also a

main effect of Ambiguity level1 (β = 1.06, SE = 0.04, z = 27.059, p< .001) with accuracy higher for

disambiguated points  (M = 0.97)  than for  non-disambiguated  points  (M = 0.93).  The effect  of

Exposure significantly interacted with  Ambiguity level1 (β = 0.10,  SE = 0.02, z  = 5.005,  p< .001)

with accuracy increasing for disambiguated points over time (Mblock7 – block1 = 0.003) and decreasing

for non-disambiguated points (Mblock7 – block1 = -0.06). Results are shown in Table 1.
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Table 1

Mean  Proportion  (M)  and  Standard  Deviation  (SD)  of  Correct  Responses  for  Disambiguated  and  Non-
Disambiguated Points by Hierarchical Levels and Blocks in Experiment 1.

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7

M SD M SD M SD M SD M SD M SD M SD

Level 0 Disambiguated 0.98 0.13 0.99 0.11 0.99 0.08 0.99 0.08 0.99 0.09 0.99 0.08 0.99 0.08

Non-disambiguated 0.96 0.20 0.94 0.23 0.93 0.25 0.92 0.26 0.92 0.28 0.91 0.28 0.92 0.28

Level 1 Disambiguated 0.97 0.16 0.98 0.15 0.97 0.16 0.97 0.18 0.97 0.17 0.97 0.17 0.97 0.16

Non-disambiguated 0.96 0.20 0.94 0.23 0.93 0.26 0.92 0.27 0.92 0.27 0.91 0.28 0.90 0.30

Level 2 Disambiguated 0.95 0.21 0.94 0.23 0.94 0.25 0.93 0.26 0.92 0.27 0.92 0.28 0.92 0.27

Non-disambiguated 0.97 0.19 0.94 0.23 0.93 0.25 0.92 0.28 0.91 0.28 0.91 0.29 0.91 0.28

Level 3 Disambiguated 0.96 0.20 0.94 0.24 0.92 0.27 0.92 0.27 0.92 0.27 0.92 0.28 0.90 0.30

Non-disambiguated 0.96 0.19 0.95 0.22 0.93 0.25 0.93 0.26 0.92 0.27 0.92 0.28 0.91 0.29

Processing of Level 2

Analyses of reaction times showed a main effect of Exposure (β = -5.73, SE = 0.27, t = -20.893, p

< .001) with a mean reduction of reaction times of 34 ms from block 1 to block 7. There was also a

main effect of Ambiguity level2 (β = -5.07,  SE = 1.14,  t = -4.436,  p < .001) with disambiguated

points  being  faster  than  non-disambiguated  ones  by  5  ms.  The  interaction  Ambiguity

level2*Exposure was also significant (β = -3.85,  SE = 0.57,  t = -6.762,  p < .001) with a  more

important  reduction  over  exposure for  disambiguated  points  (Mblock7  –  block1 = -47 ms)  than  non-

disambiguated points (Mblock7 – block1 = -23 ms). Results are shown in Fig. 2. 

Concerning accuracy,  we found a  main  effect  of  Exposure (β  = -0.12,  SE =  0.01,  z =  -11.66,

p< .001) with a mean reduction of accuracy of 4 % from block 1 to block 7. There was no effect of

Ambiguity  level2 (β =  0.05,  SE =  0.04,  z  =  1.33,  p =  .184)  and  the  interaction  Ambiguity

level2*Exposure was not significant (β = 0.04, SE = 0.02, z = 1.852, p= .064). Results are shown in

Table 1.

129



Processing of Level 3

Analyses of reaction times showed a main effect of Exposure (β = -5.22, SE = 0.37, t  = -14.23, p

< .001) with a mean reduction of reaction times of 31 ms from block 1 to block 7. There was no

effect of Ambiguity level3 (β = -1.94,  SE = 1.50,  t = -1.293, p = .196). The interaction Ambiguity

level3*Exposure was also not significant (β = -0.03,  SE = 0.7, t = -0.042,  p = .966). Results are

shown in Fig. 2. 

Concerning accuracy,  we found a  main  effect  of  Exposure (β =  -0.12,  SE =  0.01,  z =  -9.864,

p< .001) with a mean reduction of accuracy of 6 % from block 1 to block 7. There was also a main

effect of Ambiguity level3 (β = -0.13, SE = 0.05, z = -2.622, p = .009) with accuracy higher for non-

disambiguated  points  (M =  0.92)  than  for  disambiguated  points  (M =  0.93).  The  interaction

Ambiguity level3* Exposure was however not significant (β = 0.02, SE = 0.03, z = 0.848, p= .396).

Results are shown in Table 1.

4.3.3 Discussion

In  Experiment  1,  we  found  that  RTs  of  disambiguated  points  at  levels  0,  1  and  2  decreased

significantly more through exposure than their non-disambiguated counterparts. We also found that

accuracy  tended  to  decreased  over  time  at  levels  0,  1,  2  and  3.  However,  this  decrease  was

modulated by Ambiguity :  at  levels  0  and 1,  accuracy for  non-disambiguated points  decreased

through exposure while it increased for disambiguated points. At level 2, the decrease in accuracy

was  identical  for  disambiguated  and  non-disambiguated  points.  Thus,  even  if  this  decrease  in

accuracy  suggests  a  speed-accuracy  trade-off,  it  cannot  explain  the  difference  in  RTs  between

disambiguated and non-disambiguated points. This decrease in accuracy was also observed in our

previous study (Schmid et al., 2023a) and could be due to instructions that emphasized speed of

response or to the boredom induced by the long RSI or the simplicity of the task. At level 3, RTs did

not differ between disambiguated and non-disambiguated points. There was however a main effect

in accuracy with a better performance for disambiguated points compared to non-disambiguated
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points. However, this effect did not interact with time, suggesting that the effect was present from

the beginning and does therefore not reflect learning. Taken together, these results suggest that with

an RSI of 1000 ms, participants reached the second hierarchical level.

4.4 Experiment 2 : 250 ms RSI

In Experiment 2, the RSI lasted 250 ms. Based on pilot testing, we noticed that the fatigue induced

by this duration is reduced compared to that induced by the RSI of 1000 ms in Experiment 1. We

therefore reproduced the design of Schmid et al. (2023a) with 5 blocks of 233 trials each. As a

result, the total number of trials per participant is slightly higher in Experiment 2 (1165 trials) than

in Experiment 1 (1008 trials). Apart from these minor adjustments, the design of Experiment 2 was

identical to that of Experiment 1.

4.4.1 Methods

4.4.1.1 Participants

One hundred and fifty participants ( men and women; mean age years old) recruited using Prolific

(www.prolific.co) participated in the experiment.  Participants were paid 3.75 £.  All  participants

reported normal or corrected-to-normal vision.

4.4.1.2 Materials

The training sequence was identical to that of experiment 1. However, instead of generation 11 of

the Fib grammar we used generation 12 which contain 233 points.

4.4.1.3 Design and procedure

The procedure was identical to that of Experiment 1 except for the following elements. During the

training block, when the participants made an error, the experiment stopped and a message appeared

to  remind  them  the  color  –  key  association,  the  experiment  resumed  after  3000  ms.  In  the

experimental  blocks,  no  message  appeared  when they  made  an  error.  After  the  training  block,
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participants did 5 experimental blocks of 233 trials. The experiment was created using PsychoPy

(Peirce et al., 2019) and conducted online on the website Pavlovia (www.pavlovia.org). Participants

were asked to perform the experiment in a quiet environment where they could not be disturbed.

The experiment lasted approximately 20 minutes.

4.4.1.4 Data analyses

We removed one participant who had a number of timeout trials 3 SD above the mean answered

trials. We also removed four participants who had an error rate superior to 3 SD to the mean error

rate in at least one block. We removed from the analysis  all the trials where participants did not

respond after 1200 ms (578 trials). Data from the remaining 145 participants were analyzed in the

same way as in Experiment 1.

4.4.2 Results

Processing of Level 0

Analyses of reaction times showed a main effect of Exposure (β = -19.81, SE = 0.24, t = -80.99, p

< .001) with a mean reduction of reaction times of 87 ms from block 1 to block 5. There was also a

main effect of  Ambiguity level0 (β = -51.24,  SE = 0.71,  t =  -71.30,  p < .001) with disambiguated

points  being  faster  than  non-disambiguated  ones  by  51  ms.  The  interaction  Ambiguity  level0*

Exposure was also significant (β = -14.98, SE = 0.51, t = -29.64, p < .001) with a more important

reduction over exposure for disambiguated points (Mblock5 – block1 = -110 ms) than non-disambiguated

points (Mblock5 – block1 = -45 ms) (Mblock5 – block1  indicates the mean difference between blocks 1 and 5).

Results are shown in Fig. 3.

Concerning accuracy, there was a main effect of  Exposure (β = 0.04,  SE = 0.01,  z = -2.634,  p =

.008) with a mean reduction of accuracy of 0.4 % from block 1 to block 5. There was also a main

effect of  Ambiguity level0 (β =  1.99,  SE = 0.05,  z  = 42.59,  p  < .001) with higher accuracy for

disambiguated points (M = 0.99) than for non-disambiguated points (M = 0.94). The interaction
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Exposure*Ambiguity level0 was significant (β = 0.14, SE = 0.03, z = 4.294, p < .001) with accuracy

increasing over exposure for disambiguated points (Mblock5 – block1 = 0.004) and decreasing for non-

disambiguated points (Mblock5 – block1 = -0.02). Results are shown in Table 2.

Processing of Level 1

Analyses of reaction times showed a main effect of Exposure (β = -19.26, SE = 0.34, t = -57.22, p

< .001) with a mean reduction of reaction times of 77 ms from block 1 to block 5. There was also a

main effect of  Ambiguity level1 (β = -87.57,  SE = 1.00,  t =  -87.86,  p < .001) with disambiguated

points  being  faster  than  non-disambiguated  ones  by  88  ms.  The  interaction  Ambiguity  level1*

Exposure was also significant (β = -18.40, SE = 0.70, t = -26.36, p < .001) with a more important

reduction over exposure for disambiguated points (Mblock5 – block1 = -108 ms) than non-disambiguated

points (Mblock5 – block1 = -30 ms). Results are shown in Fig. 3.

Concerning accuracy, we found a main effect of  Exposure (β = -0.12,  SE = 0.01,  z = -9.492,  p

< .001) with a mean reduction of accuracy of 2.4 % from block 1 to block 5. There was also a main

effect  of  Ambiguity  level1 (β =  1.56,  SE = 0.04,  z  = 39.80,  p< .001) with accuracy higher  for

disambiguated points  (M = 0.98)  than for  non-disambiguated  points  (M = 0.90).  The effect  of

Exposure significantly interacted with  Ambiguity level1 (β = 0.11,  SE = 0.03, z  = 3.803,  p< .001)

with  accuracy  increasing  over  exposure  for  disambiguated  points  (Mblock5  –  block1 =  0.004)  and

decreasing for non-disambiguated points (Mblock1 – block75 = -0.06). Results are shown in Table 2.
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Fig. 3. Mean RT (ms) for Disambiguated and Non-disambiguated points for Hierarchical Levels 0 and 1 (left) 
and Hierarchical Levels 2 and 3 (right) by Block in Experiment 2. Errors bars denote the 95% confidence 
interval.

Processing of Level 2

Analyses of reaction times showed a main effect of Exposure (β = -10.32, SE = 0.34, t = -30.19, p

< .001) with a mean reduction of reaction times of 41 ms from block 1 to block 5. There was also a

main effect of Ambiguity level2 (β = -7.16, SE = 0.99, t = -7.21, p < .001) with disambiguated points

being faster than non-disambiguated ones by 7 ms. The interaction Ambiguity level2* Exposure was

also significant (β = -6.33, SE = 0.70, t = -9.039, p < .001) with a more important reduction over

exposure for disambiguated points (Mblock5 – block1 = -55 ms) than non-disambiguated points (Mblock5 –

block1 = -28 ms). Results are shown in Fig. 3.

Concerning accuracy, there was a significant effect of Exposure (β = -0.07, SE = 0.02, z = -4.316, p

< .001) with a mean augmentation of accuracy of 1.6 % from block 1 to block 5. There was also a

main effect of Ambiguity level2 (β = -0.09, SE = 0.04, z = -2.103, p = .035) with accuracy higher for

non-disambiguated points (M = 0.942) than for disambiguated points (M = 0.937). The effect of
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Exposure significantly interacted with  Ambiguity level2 (β = 0.14,  SE = 0.03, z  = 4.508,  p< .001)

with accuracy decreasing more over exposure for non-disambiguated points (Mblock5 – block1 = -0.03)

than for disambiguated points (Mblock5 – block1 = -0.005). Results are shown in Table 2.

Table 2

Mean Proportion (M) and Standard Deviation (SD) of Correct Responses for Disambiguated and Non-
Disambiguated Points by Hierarchical Levels and Blocks in Experiment 2.

Block 1 Block 2 Block 3 Block 4 Block 5

M SD M SD M SD M SD M SD

Level 0 Disambiguated 0.98 0.11 0.99 0.09 0.99 0.09 0.99 0.09 0.99 0.09

Non-disambiguated 0.95 0.21 0.94 0.24 0.94 0.24 0.93 0.25 0.93 0.25

Level 1 Disambiguated 0.98 0.15 0.98 0.15 0.97 0.16 0.97 0.16 0.98 0.16

Non-disambiguated 0.94 0.24 0.91 0.29 0.88 0.32 0.88 0.32 0.88 0.32

Level 2 Disambiguated 0.94 0.23 0.93 0.25 0.94 0.25 0.94 0.24 0.94 0.24

Non-disambiguated 0.97 0.18 0.94 0.23 0.94 0.24 0.93 0.25 0.93 0.25

Level 3 Disambiguated 0.93 0.26 0.91 0.29 0.88 0.32 0.89 0.31 0.89 0.31

Non-disambiguated 0.95 0.22 0.90 0.30 0.88 0.33 0.87 0.34 0.87 0.33

Processing of Level 3

Analyses of reaction times showed a main effect of Exposure (β = -7.34, SE = 0.52, t  = -14.01, p

< .001) with a mean reduction of reaction times of 30 ms from block 1 to block 5. There was also a

main effect of  Ambiguity level3 (β = -14.38,  SE = 1.55,  t = -9.277,  p < .001) with disambiguated

points  being  faster  than  non-disambiguated  ones  by  14  ms.  The  interaction  Ambiguity  level3*

Exposure was  significant  (β =  -2.14,  SE =  1.09, t =  -1.967,  p =  .049)  with  a  more  important

reduction over exposure for disambiguated points (Mblock5 – block1 = -34 ms) than non-disambiguated

points (Mblock5 – block1 = -23 ms). Results are shown in Fig. 3.

Concerning accuracy,  we found a  main  effect  of  Exposure (β =  -0.15,  SE =  0.02,  z =  -9.951,

p< .001) with a mean reduction of accuracy of 5.6 % from block 1 to block 5. There was no main

effect of  Ambiguity level3 (β = 0.06,  SE = 0.05,  z  = 1.296,  p = .195). The interaction  Exposure*
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Ambiguity level3  was however significant (β = 0.09, SE = 0.03, z = 2.762, p = .006) with accuracy

decreasing  less  over  exposure  for  disambiguated  points  (Mblock5  –  block1 =  -0.04)  than  for  non-

disambiguated points (Mblock5 – block1 = -0.08). Results are shown in Table 2.

Processing of level 4

Analyses of reaction times showed a main effect of Exposure (β = -6.21, SE = 0.53, t = -11.716, p

< .001) with a mean reduction of reaction times of 25 ms from block 1 to block 5. There was no

effect of Ambiguity level4 (β = -0.79,  SE = 1.53,  t = -0.515, p = .607). The interaction Ambiguity

level4* Exposure did not reach significance (β = -1.04, SE = 1.08, t = -0.962, p = .336). 

Concerning accuracy,  we found a  main  effect  of  Exposure (β =  -0.15,  SE =  0.03,  z =  -5.856,

p< .001) with a mean reduction of accuracy of 3.4 % from block 1 to block 5. There was a main

effect of  Ambiguity level4 (β = 0.15,  SE = 0.07,  z  = 2.090,  p = .037)  with accuracy higher for

disambiguated points (M = 0.946) than for non-disambiguated points (M = 0.939). The interaction

Exposure* Ambiguity level4 was however not significant (β = 0.01, SE = 0.05, z = 0.134, p = .893).

4.4.3 Discussion

The results of Experiment 2 show that RTs of disambiguated points decreased significantly more

through exposure than their non-disambiguated counterparts at hierarchical levels 0, 1, 2 and 3. As

in Experiment 1,  accuracy tended to decrease throughout the experiment,  but this decrease was

modulated by ambiguity: at levels 0 and 1, accuracy increased for disambiguated points, while it

decreased for their non-disambiguated counterparts. At levels 2 and 3, accuracy decreased for both

disambiguated and non-disambiguated points, but the decrease was significantly greater for non-

disambiguated points. Finally, there was no effect at level 4 in the RTs. Accuracy turned out to be

higher for non-disambiguated points than for disambiguated points, but this effect did not evolve

over time and has a small effect size (less than 1%); we will therefore not interpret this effect. In

summary, results of Experiment 2 suggest that participants reached the third hierarchical level when

the RSI lasted 250 ms.
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4.5 Experiment 3: 100 ms RSI

In Experiment 3,  the RSI was 100 ms long. We took advantage of the fact that this  short  RSI

reduces the total time to complete the experiment to increase the number of trials per participant.

Thus, Experiment 3 was slightly longer but the number of trials was more than twice as large. This

results in a higher statistical power compared to Experiments 1 and 2, however, as will become

clear,  this  increase  in  statistical  power  did  not  favor  the  appearance  of  significant  effects.

Participants were exposed to 7 blocks of 377 trials (generation 13 of the Fib grammar) for a total of

2639 trials (compared to 1008 trials for experiment 1 and 1165 trials for experiment 2). Apart from

these differences, the design of Experiment 3 was identical to that of Experiments 1 and 2.

4.5.1 Methods

4.5.1.1 Participants

One hundred participants (44 men and 56 women; mean age 24.4 years old) recruited using Prolific

(www.prolific.co) participated in the experiment.  Participants were paid 3.75 £.  All  participants

reported normal or corrected-to-normal vision.

4.5.1.2 Materials

The training sequence was identical to that of experiment 1 and 2. However, we used generation 13

the Fib grammar which contain 377 points instead of generation 11 used in Experiment 1 and

generation 12 used in Experiment 2. 

4.5.1.3 Design and procedure

The procedure was identical to that of Experiment 2 except that participants did 7 experimental

blocks  of  377  trials.  The  experiment  was  created  using  PsychoPy  (Peirce  et  al.,  2019)  and

conducted online on the website Pavlovia (www.pavlovia.org). Participants were asked to perform

the experiment in a quiet environment where they could not be disturbed. The experiment lasted

approximately 30 minutes.
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4.5.1.4 Data analyses

One participant  was removed for  not  providing answers  in  two blocks.  We also removed five

participants who had an error rate superior to 3 SD to the mean error rate in at least one block. We

removed from the analysis  all the trials where participants did not respond after 1200 ms (1375

trials). For  the  analysis  of  reaction  times,  only  trials  with  a  correct  answer  were  included.

Homoscedasticity and normality were checked by visual inspection of residual plots. Data from the

remaining 94 participants were analyzed in the same way as in Experiment 1 and 2. 

4.5.2 Results

Processing of Level 0

Analyses of reaction times showed a main effect of Exposure (β = -11.47, SE = 0.17, t = -69.38, p

< .001) with a mean reduction of reaction times of 69 ms from block 1 to block 7. There was also a

main effect of  Ambiguity level0 (β = -53.67,  SE = 0.68,  t =  -78.39,  p < .001) with disambiguated

points  being  faster  than  non-disambiguated  ones  by  54  ms.  The  interaction  Ambiguity  level0*

Exposure was also significant (β = -5.23,  SE = 0.34, t = -15.28, p < .001) with a more important

reduction over exposure for disambiguated points (Mblock7 – block1 = -91 ms) than non-disambiguated

points (Mblock7 – block1 = -52 ms) (Mblock7 – block1  indicates the mean difference between blocks 1 and 7).

Results are shown in Fig. 4.

Concerning accuracy, there was no effect of  Exposure (β = 0.01,  SE = 0.01,  z = 1.54,  p = .123).

There was however a main effect of Ambiguity level0 (β = 1.57,  SE = 0.04,  z = 42.637, p < .001)

with higher accuracy for disambiguated points (M = 0.99) than for non-disambiguated points (M =

0.95). The interaction  Exposure*Ambiguity level0 was not significant (β = -0.02,  SE = 0.02, z  = -

0.977, p = .328). Results are shown in Table 3.

Processing of Level 1

Analyses of reaction times showed a main effect of Exposure (β = -13.30, SE = 0.22, t = -61.07, p

< .001) with a mean reduction of reaction times of 80 ms from block 1 to block 7. There was also a
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main effect of Ambiguity level1 (β = -141.87, SE = 0.91, t = -155.89, p < .001) with disambiguated

points  being  faster  than  non-disambiguated  ones  by 142 ms.  The interaction  Ambiguity  level1*

Exposure was also significant (β = -13.38, SE = 0.45, t = -29.66, p < .001) with a more important

reduction over exposure for disambiguated points (Mblock7 – block1 = -117 ms) than non-disambiguated

points (Mblock7 – block1 = -31 ms). Results are shown in Fig. 4.

Concerning accuracy,  we found a  main  effect  of  Exposure (β =  -0.09,  SE =  0.01,  z =  -11.89,

p< .001) with a mean reduction of accuracy of 2.8 % from block 1 to block 7. There was also a

main effect of Ambiguity level1 (β = 1.67, SE = 0.03, z = 50.89, p< .001) with accuracy higher for

disambiguated points  (M = 0.98)  than for  non-disambiguated  points  (M = 0.89).  The effect  of

Exposure significantly interacted with  Ambiguity level1 (β = 0.07,  SE = 0.02, z  = 4.431,  p< .001)

with  accuracy  increasing  over  exposure  for  disambiguated  points  (Mblock7  –  block1 =  0.004)  and

decreasing for non-disambiguated points (Mblock7 – block1 = -0.07). Results are shown in Table 3.

Fig. 4. Mean RT (ms) for Disambiguated and Non-disambiguated points of Hierarchical Levels 0 and 1 (left) 
and for Hierarchical Levels 2 and 3 (right) by Block in Experiment 3. Errors bars denote the 95% confidence 
interval.

139



Table 3

Mean Proportion (M) and Standard Deviation (SD) of Correct Responses for Disambiguated and Non-
Disambiguated Points by Hierarchical Levels and Blocks in Experiment 3.

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7

M SD M SD M SD M SD M SD M SD M SD

Level 0 Disambiguated 0.99 0.10 0.99 0.10 0.99 0.11 0.99 0.10 0.98 0.12 0.99 0.9 0.99 0.10

Non-disambiguated 0.95 0.22 0.94 0.23 0.95 0.22 0.96 0.21 0.95 0.21 0.95 0.22 0.95 0.21

Level 1 Disambiguated 0.98 0.14 0.98 0.15 0.98 0.15 0.98 0.15 0.97 0.17 0.98 0.15 0.97 0.16

Non-disambiguated 0.94 0.23 0.91 0.29 0.88 0.32 0.89 0.32 0.87 0.33 0.87 0.33 0.87 0.33

Level 2 Disambiguated 0.95 0.23 0.94 0.24 0.95 0.23 0.96 0.21 0.95 0.22 0.95 0.22 0.96 0.20

Non-disambiguated 0.96 0.19 0.95 0.21 0.96 0.21 0.96 0.21 0.96 0.20 0.95 0.22 0.94 0.22

Level 3 Disambiguated 0.94 0.24 0.90 0.30 0.88 0.33 0.90 0.31 0.87 0.34 0.88 0.33 0.88 0.33

Non-disambiguated 0.95 0.22 0.92 0.27 0.89 0.31 0.87 0.33 0.87 0.33 0.87 0.34 0.88 0.33

Processing of Level 2

Analyses of reaction times showed a main effect of Exposure (β = -8.10, SE = 0.23, t  = -35.56, p

< .001) with a mean reduction of reaction times of 48 ms from block 1 to block 7. There was also a

main effect of  Ambiguity level2 (β = -12.55,  SE = 0.94,  t =  -13.36,  p < .001) with disambiguated

points  being  faster  than  non-disambiguated  ones  by  13  ms.  The  interaction  Ambiguity  level2*

Exposure was also significant (β = -4.86, SE = 0.47, t = -10.359, p < .001) with a more important

reduction over exposure for disambiguated points (Mblock7 – block1 = -64 ms) than non-disambiguated

points (Mblock7 – block1 = -31 ms). Results are shown in Fig. 4.

Concerning accuracy, there was no effect of Exposure (β = 0.02, SE = 0.01, z = 1.805, p = .071).

There was a main effect of  Ambiguity level2 (β = -0.13,  SE = 0.04,  z  = -3.136,  p = .002) with

accuracy higher for non-disambiguated points (M = 0.96) than for disambiguated points (M = 0.95).

The effect of  Exposure significantly interacted with  Ambiguity level2 (β = 0.09,  SE = 0.02, z  =

4.324,  p< .001) with accuracy increasing for disambiguated points over exposure (Mblock7 –  block1 =
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0.01) and decreasing for non-disambiguated points (Mblock7 – block1 = -0.02). Results are shown in Table

3.

Processing of Level 3

Analyses of reaction times showed a main effect of Exposure (β = -4.75, SE = 0.35, t = -13.449, p

< .001) with a mean reduction of reaction times of 29 ms from block 1 to block 7. There was also a

main effect of  Ambiguity level3 (β = -10.33,  SE = 1.46,  t = -7.091,  p < .001) with disambiguated

points  being  faster  than  non-disambiguated  ones  by  10  ms.  The  interaction  Ambiguity  level3*

Exposure was however not significant (β = -0.86,  SE = 0.72, t = -1.182,  p = .237). Results are

shown in Fig. 4.

Concerning accuracy,  we found a  main  effect  of  Exposure (β =  -0.11,  SE =  0.01,  z =  -12.31,

p< .001) with a mean reduction of accuracy of 6.7 % from block 1 to block 7. There was no effect

of  Ambiguity  level3 (β =  -0.04,  SE =  0.04,  z  = -0.986,  p  = .324).  The  interaction  Exposure*

Ambiguity level3  was also not significant (β = 0.03,  SE = 0.02, z  = 1.792,  p = .073). Results are

shown in Table 3.

4.5.3 Discussion

The results of Experiment 3 showed that the RTs for disambiguated points decreased more through

exposure than their non-disambiguated counterparts at levels 0, 1 and 2. There was no effect in

accuracy at  level 0.  At levels 1 and 2,  accuracy increased through exposure for disambiguated

points and decreased for non-disambiguated points. At level 3, there was only a main effect on RTs

with  disambiguated  points  processed  faster  than  non-disambiguated  points.  However,  the

interaction was non-significant, suggesting that this effect do not reflect learning. Taken together,

these results suggest that participants reached the second hierarchical level when the RSI lasted 100

ms. It is interesting to note that even though the number of trials was significantly higher in this

experiment,  this  greater  exposure  did  not  improve  learning  compared  to  Experiment  2  where

participants reached level 3. This is in line with a recent meta-analysis  (Isbilen & Christiansen,
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2022), which reported that the amount of exposure does not influence learning. It may be that the

amount of exposure plays only a minor role above a certain threshold.

4.6 Comparison of 1000 ms, 500 ms, 250 ms and 100 ms RSIs

In this  second analysis,  we test  the predictions  of the Preparation hypothesis  that RSI duration

affects  participants'  control  of  the  response.  With  longer  RSIs,  participants  have  more  time  to

prepare their responses which should result in faster RTs than for shorter RSI. Conversely, the slope

of RTs should be steeper the shorter the RSI because there is more room for improvement. Since the

RSI is the same throughout the trials, the influence of RSI duration on preparation is also constant

and is therefore not expected to vary between the different types of points. We therefore compared

the average RTs and slopes without distinguishing between disambiguated and non-disambiguated

points at the different levels. In order to have a wider range of RSI duration, we also integrated in

this analysis our previous results where the RSI lasted 500 ms (Schmid et al., 2023a). Except for the

duration of the RSI, the design of this experiment was strictly identical to that of Experiment 2

where  the  RSI  lasted  250  ms.  Since  the  amount  of  exposure  varied  in  each  experiment,  we

considered only the first 1008 trials of each experiment in order to have the same number of trials in

each experiment. This number corresponds to the number of trials in Experiment 1, which was the

shortest.

4.6.1 Methods

4.6.1.1 Materials

Since Experiment 1 contains 1008 experimental trials and is  the shortest,  we considered in the

analyses the first 1008 experimental trials of experiments 1 (RSI = 1000 ms), 2 (RSI = 250 ms) and

3 (RSI = 100 ms). We also included in the analysis the first 1008 experimental trials of Schmid et al,

(2023a) where the RSI was 500 ms. We did not include in the analysis the trials of the training

block where the order of the points was random.
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4.6.1.2 Data analysis

Models included two fixed-effect factors and their interaction: Exposure, RSI, and Exposure *RSI.

Exposure was treated as a continuous variable with a value of 0 for the first trial and 1007 for the

last trial. This factor being continuous, it allowed us to have only one estimate which represents the

evolution (i.e., the slope) of RTs throughout the experiments across all participants. Trials where an

incorrect answer was given were not included in the analysis. RSI is a between subject discrete

variable contrasting RSI duration. We entered as fixed effects the factors RSI (1000 ms vs 500 ms vs

250 ms vs 100 ms),  Exposure, and the interaction  Exposure*RSI. The modality “100 ms” of the

factor RSI was set as the intercept of the models. As random effects, the models had intercepts for

Participants. Since the factor RSI contained 4 modalities and that the Preparation hypothesis makes

predictions on all comparisons, we had to run the model 3 times. In order to control for type 1 error,

we applied the Bonferroni  correction for multiple  testing by dividing the alpha level by 3.  We

therefore considered as significant the p-value lower than .01667. P-values were calculated by way

of the Satterthwaites’s approximation to degrees of freedom with the lmerTest package (Kuznetsova

et al., 2015).

4.6.2 Results

Results showed a main effect of the  Exposure (β = -0.089,  SE = 0.0005,  t  = -160.91, p < .001)

indicating that RTs decreased across exposure. RTs in the "100 ms" condition (M = 416 ms; SD =

146 ms) were significantly slower than those of the "250 ms" condition (M = 365 ms; SD = 138 ms)

(β = -51.87, SE = 8.39, t = -6.182, p < .001), “500 ms” condition (M = 363 ms; SD = 136 ms) (β = -

53.54, SE = 8.24, t = -6.494, p < .001) and “1000 ms” condition (M = 350 ms; SD = 134 ms) (β = -

67.40,  SE = 8.11,  t  = -8.310, p < .001).  The mean RTs of the "1000 ms" condition did not differ

from those of the "500 ms" condition (β = 13.86,  SE = 6.95,  t  = 1.994, p = .047) and "250 ms"

condition (β = 15.53, SE = 7.12, t = 2.180, p = .030). Finally, there was no difference between the

"500 ms" and "250 ms" conditions (β = 1.66,  SE = 7.27,  t  = 0.229, p = .819). Concerning the
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interaction RSI*Exposure, there was no difference in slope of RTs between the “100 ms” condition

and “1000 ms” condition (β = -0.03, SE = 0.001, t = -1.622, p = .105). There was also no difference

between the “250 ms” and “500 ms” conditions (β = 0.002,  SE = 0.002,  t  = 1.179, p = .238).

However, the RTs decreased more through exposure for the "250 ms" condition compare to the

“1000 ms” condition (β = -0.02, SE = 0.001, t = -13.872, p < .001) and the “100 ms” condition (β =

-0.02,  SE = 0.001,  t = -10.209, p < .001). Finally, RTs decreased more through exposure for the

"500 ms" condition compare to the “1000 ms” condition (β = -0.02,  SE = 0.001,  t = -15.396, p

< .001) and the “100 ms” condition (β = -0.02,  SE = 0.002,  t = -11.404, p < .001). Results are

shown in Fig. 5.

Fig. 5. Moving average of RTs for the first 1008 experimental trials as a function of RSI duration. The 
moving average is calculated over the 21 trials that precede trial t. We removed trial 1 of each experiment 
from the graph because it was processed extremely slowly and was out of the frame.
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4.6.3 Discussion

According to the Preparation hypothesis, average RTs should increase as the RSI is reduced. In line

with this prediction, participants were indeed slower when the RSI was 100 ms long compared to all

other conditions. However, we found no difference in average RTs between the 1000 ms, 500 ms

and 250 ms RSIs, contrary to the predictions of the Preparation hypothesis. We doubt that this lack

of effect is due to a lack of power given the number of participants (572) and the number of trials

per participant (1008). We also found that the duration of the RSI affected the slope of the RTs in a

non-linear way: RTs decreased more strongly for RSIs of 250 ms and 500 ms compared to RSIs of

1000 ms and 100 ms. Again, this result cannot be explained by the Preparation hypothesis which

predicted a linear relationship between slope steepness and RSI.

4.7. General discussion

Three hypotheses have been put forward to explain the role of RSI duration on sequence learning in

the SRT task. According to the Decay hypothesis (Frensch & Miner, 1994; Soetens et al., 2004), the

duration of the RSI affects information processing in WM. As the duration of the RSI increases, the

trace  of  the  stimuli  would  tend  to  decrease,  which  would  decrease  the  number  of  stimuli

simultaneously active in WM. As a result,  the detection of sequence regularities would become

more  difficult  as  RSI  increases  and  conversely,  learning  would  be  better  with  shorter  RSIs.

According to the Preparation hypothesis (Norman et al., 2007; Shanks et al., 2003; Willingham et

al., 1997), the duration of the RSI does not affect sequence learning as such but the preparation of

the  response;  sequence  learning  would  be  relatively  equivalent  across  different  RSI  values.

According to the Awareness hypothesis, the duration of RSI affects the development of explicit

knowledge of the target sequence, and therefore the learning of the structural rules underlying the

sequence  (Cleeremans  &  Sarrazin,  2007;  Destrebecqz  &  Cleeremans,  2001,  2003;  Frensch  &

Miner, 1994; Huang et al., 2017; Kuhn & Dienes, 2006; Norman et al., 2007; Savalia et al., 2016;

Soetens  et  al.,  2004;  Willingham  et  al.,  1997).  Learning  becomes  increasingly  explicit  with
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increasing RSI duration and remain largely implicit at short RSI duration. Consequently, knowledge

requiring conscious elaboration such as structural rules could only be acquired when the RSI is

sufficiently long.

In  the  present  study,  we  tested  the  predictions  of  each  of  these  hypotheses  by  implementing

sequences generated by the Fib grammar in the SRT task. The use of these sequences allowed us to

quantify learning during processing without having to expose participants to alternative sequences.

We manipulated the duration of the RSI in three experiments: 1000 ms in Experiment 1, 250 ms in

Experiment 2 and 100 ms in Experiment 3. In all three experiments, RTs for disambiguated points

decreased through exposure more than RTs for non-disambiguated points at levels 0, 1 and 2. At

level  3,  this  effect  was  only  present  in  Experiment  2  where  the  RSI  lasted  250  ms.  In  all

experiments, accuracy decreased systematically for non-disambiguated points. In contrast, accuracy

for disambiguated points either increased through exposure or decreased, but to a lesser extent than

non-disambiguated points. These results suggest that participants built a hierarchical structure up to

the  second hierarchical  level  when the RSI lasted 1000 ms and 100 ms and reached the third

hierarchical  level  when  the  RSI  lasted  250 ms.  Taken  together  with  our  previous  finding  that

participants also reached the third level with an RSI of 500 ms (Schmid et al., 2023a), it seems that

the duration of RSI has a non-linear effect on sequence learning. This non-linear effect of RSI

duration on the height of the hierarchical structure cannot be explained by any of the hypotheses put

forward.

If  the  RSI  affects  sequence  learning  through  stimulus  decay  in  WM,  then  merging

points/constituents  should  be  more  difficult  as  the  RSI  is  longer.  Therefore,  the  height  of  the

hierarchical structure should increase with shortening of the RSI. The Decay hypothesis cannot

explain the fact that the hierarchical structure elaborated by participants in Experiment 3 (100 ms

RSI) is lower than in Experiment 2 (250 ms RSI) and in Schmid et  al.  (2023a) (500 ms RSI).

Furthermore,  exposure  was  more  than  twice  as  long when the  RSI  lasted  100 ms,  this  higher
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exposure should have strengthened the trace of stimuli  in WM, and thus promoted hierarchical

elaboration.

According to  the  Preparation hypothesis,  RSI duration  do not  affect  sequence  learning but  the

preparation  of  the  response,  therefore  the  height  of  the  hierarchical  structure  built  by  the

participants (i.e. that reflect sequence learning) should be identical across different RSI duration.

The non-linear effect of RSI duration on learning we observed cannot be accounted for by this

hypothesis.  However,  according  to  this hypothesis,  RSI  duration  affect  the  preparation  of  the

responses as it modulate the time to prepare for the next trial. This should result in participants

being faster overall the longer the RSI and, conversely, the overall slope of RTs should be steeper

the shorter the RSI. To test this second prediction, we compared the average RTs and the overall

slope of decrease of RTs of the three experiments. We also included in this analysis the results of

our previous study where the RSI lasted 500 ms (Schmid et al., 2023a). We only took into account

the first 1008 trials in order to have the same number of trials in each experiment (1008 corresponds

to the number of trials in Experiment 1 which was the shortest). The results showed that participants

were significantly slower when the RSI was 100 ms long compared to all other experiments. There

was no difference between the 1000 ms, 500 ms and 250 ms RSIs after the p-values have been

corrected for multiple testing. We also found that the decrease in RTs across exposure was greater

when the RSI lasted 500 ms and 250 ms compared to when it lasted 1000 ms and 100 ms. There

was no difference in slope between the 500 ms and 250 ms RSIs and between the 1000 ms and 100

ms RSIs. These results cannot be explained by the Preparation hypothesis which predicts that the

effect of RSI duration on slopes is linear. These results also address a potential confound regarding

the way we assessed learning. Indeed, we considered that reaching a hierarchical level results in a

larger decrease in RTs for disambiguated points compared to non-disambiguated points of the same

level. To the extent that the Preparation hypothesis also predicts an effect on slopes, it could be that

the effect of the RSI on the height of the hierarchical structure is in fact due to the preparation of the

response by the participants. However, this explanation cannot account for the fact that the overall
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slopes of the RTs as well as the height of the hierarchical structure built by the participants were

non-linearly affected by the duration of the RSI.

Finally,  according to the Awareness hypothesis,  the length of the RSI would affect the type of

knowledge that can be acquired. If hierarchical learning in the Fib grammar involves higher-order

structural rules, then the height of the hierarchical structure should increase with the lenghtening of

the RSI. Our results can be interpreted in two different ways, depending on the assumption retained.

If the Awareness hypothesis is true, i.e. if RSI duration affects the implicit aspect of learning and

that structural rules can only be acquired explicitly, since RSI duration affected learning in a non-

linear way, our results mean that Fib grammar processing does not require conscious elaboration of

structural rules. Note that this is not in contradiction with the hypothesis that the Fib grammar gives

rise  to  hierarchical  elaboration.  Indeed,  we do not  claim that  the  participants  have  learned the

rewriting  rules  of  the  Fib  grammar  in  order  to  access  its  hierarchical  structure,  nor  that  the

knowledge  they  have  developed  is  akin  to  abstract  structural  rules.  Our  hypothesis  is  that

participants build a hierarchical structure from the input by recursively merging points/constituents

that span across a deterministic transition. Because the sequence generated by the Fib grammar are

aperiodic and self-similar, this mechanism results in a hierarchical structure similar to the natural

constituent  structure  of  the  Fib  grammar.  The  hierarchical  elaboration  is  thus  driven  by  the

particular distributional  regularities of Fib and not by the fact  that  the participants would have

acquired the underlying rules  of  the grammar.  If  one assumes that  hierarchical  building in  Fib

necessarily requires the elaboration structural rules, either participants have acquired these rules

implicitly, or RSI duration does not affect the implicit/explicit aspect of learning in the SRT task.

However,  our  results  cannot  disentangle  between  these  hypothesis  since  we  did  not  assess

participants' awareness of Fib. Note that even if this had been the case, it is not certain that checking

participants'  consciousness  could  have  provided  useful  information.  Indeed,  this  evaluation  is

indirect  and is  done by adding additional  tasks  after  the  learning phase.  These  tasks  therefore
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measure  what  remains  in  memory  after  processing  and  not  the  degree  of  awareness  of  the

mechanisms involved during encoding.

In summary, none of the hypotheses put forward can explain the non-linear effect of RSI duration

on performance. The first question raised by these results is why a non-linear effect of RSI has, to

our knowledge, never been reported in the literature. One possible explanation could be that this is

due to sampling bias. If, as is often the case, only two RSI durations are compared, then the non-

linear  effect  of  RSI  is  invisible.  Our  observation  would  simply  come  from  the  fact  that  we

compared more than two RSI durations. While this non-linear effect of the RSI may never have

been observed due to sampling bias in RSI duration, this still does not explain its existence. 

In the following, we interpret these findings through the lens of recent applications of Shannon's

information theory to sequence processing (Pothos, 2010; Radulescu et al., 2019, 2021; Shannon,

1948).  According to Shannon information theory (1949), if the amount of information in a signal

exceeds the encoding capacity of the receiver, another encoding method should be used to limit the

loss  of  information.  Changing  the  encoding  method  means  compressing  the  input  signal  into

another format. According to the Information Premise (Pothos, 2010), the cognitive system would

tends to represents new information with as little uncertainty as possible. To accomplish this, the

input  is  recoded  (i.e.  compressed)  in  a  way  that  minimizes  the  entropy  of  the  system's

representational  state.  According  to  Radulescu  et  al.  (2019,  2021),  acquisition  of  higher  order

knowledge result from the tension between the amount of information contained in the input and the

cognitive system's limited encoding power in term of memory and processing speed. The encoding

power of the cognitive system is defined as the amount of information per unit of time that it is able

to process. When the signal exceeds the encoding power, it can be encoded with minimal loss as

long as a sufficiently efficient compression method is available. If there is no compression method

suitable for the amount of information in the input, the loss of information will increase. Thus,

increasing the volume of information per unit of time delivered to the cognitive system compels it

to compress the input into a more abstract format as long as the system has a sufficiently powerful
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compression method at its disposal. If the amount of information delivered to the system exceeds

the most efficient compression method, this will result in a loss of information.

In  what  follows,  we  adopt  this  proposal  to  explain  the  non-linear  effect  of  RSI  duration.  We

consider that hierarchical elaboration is the manifestation of information compression. Thus, the

height of the hierarchical structure elaborated by the participants reflects the degree of compression

of  the  sequence.  RSI  duration  determines  the  volume  of  information  per  unit  of  time  that  is

delivered to the participants. This hypothesis explain the non-linear effect of RSI duration in the

following way: when the RSI lasts 1000 ms, the amount of information to encode per unit of time

would not  require  compressing the  sequence  beyond the  second hierarchical  level.  As the  RSI

shortens,  the  amount  of  information  per  unit  of  time  increases  and  the  sequence  is  further

compressed, thus explaining why participants reach the third hierarchical level with RSIs of 500 ms

and 250 ms. When the RSI lasts 100 ms, the volume of information is too large to compress the

sequence without loss, which explains why participants reached only the second hierarchical level.

4.8 Conclusion

The results of the present study broadly replicate previous observations that participants extract a

hierarchical  structure  when  processing  Fib  grammar  sequence  in  the  SRT task  (Schmid  et  al.,

2023a;  Vender  et  al.,  2019,  2020).  This  adds  to  the  growing  interest  in  Fibonacci  grammar

processing (Geambaşu et al., 2016, 2020; Krivochen et al., 2018; Shirley, 2014). Our results also

suggest  that  there  is  an optimal  temporal  window for  sequence  learning in  the  SRT task.  It  is

possible that these results stem from a tension between the limited encoding power of the cognitive

system and the amount of information per unit of time delivered to the system. An open question is

whether this non-linear effect of the RSI is specific to the sequence generated by the Fib grammar

or whether it can be replicated in other types of sequences. Future work is therefore necessary.
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Chapter 5. General Discussion

5.1 Summary of the thesis

The central question of this thesis is whether and how the cognitive system extracts hierarchical

structure from a sequentially presented input. Since several underlying structures are possible for a

given signal (i.e.,  several generators with different properties can produce the same signal), the

information  contained  in  a  signal  does  not  fully  determine its  structure.  This  means  that  the

structure extracted by the cognitive system (whether linear or hierarchical) will not depend on the

generator of the signal but on the information expressed in the signal. The question is therefore to

determine which properties of the input are used to extract hierarchical structure. Moreover, in order

to know whether the output of the cognitive system reflects the extraction of hierarchical structure,

it  is not sufficient that the input signal originates from a “hierarchical” generator:  one needs to

ensure that this output can be obtained from the input only by hierarchical processing.

To explore hierarchical structure extraction, a highly simplified language based on a lexicon of two

symbols and a grammar consisting of two rewrite  rules  was used in the present work:  the Fib

grammar.  This  grammar  generates  binary  sequences  that  are  self-similar  and  aperiodic.  The

conjunction of these two properties allows us to assess hierarchical learning while controlling for

the use of low-level strategies like detecting recurring patterns. The simplicity of this grammar,

which nevertheless involves complex formal properties, allows making clear predictions as to how

hierarchical learning will manifest in performance. In all the experiments reported in this thesis,

strings strings generated by the Fib grammar were presented to the participants through an SRT

task. The use of this task allows us to assess learning on-line during encoding, thus avoiding the use

of ungrammatical strings and explicit  grammaticality  judgments that  are  used in classical  AGL

tasks. Three specific questions were explored. The first is whether participants process Fib grammar
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strings as nested structures. The second is the extent to which some of the specific formal properties

of the Fib grammar play a role in hierarchical structure extraction. The third concerns the effect of

presentation rate on sequence learning in the SRT task. The Fib grammar was used to disentangle

three  hypotheses  about  the  mechanisms  underlying  this  effect.  These  questions  have  been

investigated in Chapters 2, 3 and 4 respectively. 

In Chapter 2, we tested the hypothesis that participants build hierarchical structure by recursively

merging deterministic transitions.  Due to self-similarity,  transitions between units at  level n are

identical to transitions between constituents at level n+1 in Fib-generated strings. At each level,

transitions are either probabilistic or deterministic. The key feature is that probabilistic transitions at

level n are embedded in deterministic transitions at level n+1. It is therefore possible to reduce the

number  of  probabilistic  transitions  by  recursively  embedding  deterministic  transitions.  This

recursive  embedding mechanism makes  precise  predictions  about  the  pattern  of  anticipation  of

points  corresponding  to  a  given  hierarchical  level.  Since  the  number  of  hierarchical  levels  is

theoretically infinite (of course, for an infinite string only, in our experiment, the maximum number

of levels was 12, which is presumably well beyond the processing capacity of the cognitive system),

there  will  always  remain  higher-order  deterministic  transitions  that  are  not  mastered  by  the

participants,  making  it  possible  to  determine  the  maximum  height  of  hierarchical  structure

extraction that they reached. Results showed that participants’ pattern of anticipation could not be

accounted for by “flat”  statistical  learning processes  and was consistent  with them anticipating

upcoming points based on hierarchical assumptions. We also found that participants were sensitive

to structure constituency, suggesting that they organized the signal into embedded constituents. The

results  are  compatible  with  the  hypothesis  that  participants  built  this  structure  by  recursively

merging deterministic transitions.

In chapter 3, we explored whether the isomorphism between surface and derivational properties of

the Fib grammar is  at  the origin of  hierarchical  structure extraction.  According to  the k-points

hypothesis (Krivochen et al., 2018; Vender et al., 2020), this formal property plays a crucial role in
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the processing of the Fib grammar whereas according to the recursive merge hypothesis developed

in Chapter 2, this factor should, a priori, play no role. We compared the predictions of each of these

hypotheses in the processing of the Fib grammar and the Skip grammar. The Skip grammar also

belongs  to  the  Lindenmayer  formalism:  its  rewriting  rules  correspond  to  two  non-consecutive

generations of the Fib grammar. As a result, Skip displays similar surface properties (in terms of

statistical distribution) while not exhibiting the Fib isomorphism. The results show that in both the

Fib and the Skip grammars, participants elaborated a hierarchical structure from the input. This

suggests that isomorphism is not a critical factor in hierarchical structure extraction, invalidating the

k-points hypothesis. In contrast, the recursive merge hypothesis was found to be compatible with

performance on both the Fib and the Skip grammars, with one exception. In the Skip grammar, we

found a reverse ambiguity effect at level 4 (i.e., better anticipation for non-disambiguated points

than for disambiguated points). We hypothesized that this effect might stem from the difference in

the type of self-similarity of the two grammars. Fib displays strong self-similarity (i.e., transitional

probabilities are identical at all hierarchical levels) whereas Skip displays weak self-similarity (i.e.,

transitional probabilities vary with the hierarchical level). As a result, some levels are less complex

than others in Skip: the proportion of non-disambiguated points relative to disambiguated points

varies among hierarchical levels. Crucially, complexity drops at level 3 of Skip: thus, instead of

building  the  fourth  hierarchical  level,  participants  may  have  resorted  to  an  alternative  parsing

strategy based on the periodic alternation of the two constituents of level 3. This strategy would be

relatively effective in anticipating future points as it would be inaccurate only 5 times per block,

and it accounts for the reverse ambiguity effect at level 4.

Finally, in Chapter 4, we explored the impact of presentation rate on hierarchical learning. Three

hypotheses have been put forward in the literature to explain the impact of RSI duration in the SRT

task  :  the  Decay  hypothesis  (Frensch  &  Miner,  1994;  Soetens  et  al.,  2004),  the  Awareness

hypothesis  (Cleeremans & Sarrazin,  2007;  Destrebecqz & Cleeremans,  2001,  2003;  Frensch &

Miner, 1994; Huang et al., 2017; Kuhn & Dienes, 2006; Norman et al., 2007; Savalia et al., 2016;
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Soetens et al., 2004; Verwey & Dronkers, 2019; Verwey & Wright, 2014; Willingham et al., 1997)

and  the  Preparation  Hypothesis  (Willingham  et  al.,  1997).  None  of  these  hypotheses  directly

focuses on the extraction of hierarchical representations; they address sequence learning in general.

To bring new insight to this debate, we took advantage of the fact that the Fib grammar allows us to

measure learning in a continuous way without having to resort to the transfer method, which is the

basis of most of the studies supporting the aforementioned hypotheses. In three experiments, we

manipulated RSI duration and found that it affected performance in a non-linear way, as participants

built higher hierarchical structure with an RSI of 250 ms compared to RSIs of 1000 ms and 100 ms.

The results suggest the existence of an optimal temporal window for sequence learning in the SRT

task, which cannot be accounted for by any of the hypotheses. We hypothesized that this non-linear

effect of RSI duration is due to the interaction between the limited encoding power of the cognitive

system and the amount of information per unit of time delivered to the system.

The  remainder  of  the  Discussion  is  divided  into  three  sections.  In  Section  5.2,  we  assess  the

evidence supporting hierarchical learning in Fib in light of the results of the experiments conducted

in Chapters 2, 3, and 4. We conclude this  section with a proposal for an experiment to further

investigate  hierarchical  learning  in  Fib.  In  Section  5.3,  we  discuss  our  claim that  participants

segmented  Fib  into  natural  constituents  and  explore  whether  alternative  segmentations  could

account  for  the  results  of  the  Fib  experiments.  This  section  concludes  with  a  proposal  for  an

experiment aiming at further investigating how participants segment a Fib string. In Section 5.4, we

investigate  whether  the  model  PARSER  (Perruchet  &  Vinter,  1998) which is  insensitive  to

deterministic  transitions  can  segment  Fib  into  natural  constituents.  Finally,  section  5.5  provide

concluding remarks for this thesis.

5.2 Do participants extract hierarchical structure in the processing of the Fib grammar ?

The central question of this work is whether the cognitive system extracts a hierarchical structure

from string generated by the Fib grammar. To answer this question, one needs an hypothesis about
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how hierarchical learning should manifest itself in the data. Such hypothesis necessarily pertains to

the mechanisms by which a hierarchical structure could be extracted in the Fib grammar. Therefore,

the question of whether a hierarchical structure is extracted and the question of how this structure is

extracted are intrinsically linked. In the present work, we made the hypothesis that hierarchical

structure extraction in Fib would be done by the recusive merge of transition probabilities. In the

following, we review the evidence in favour of this alleged processing mechanism in the light of all

the chapters. We then justify why the K-point hypothesis (Krivochen et al., 2018; Vender et al.,

2020)  seems ill-suited  to  account  for  hierarchical  learning  in  Fib.  We end this  section  with  a

suggestion for future research that could provide further evidence for hierarchical processing in the

Fib grammar. The rationale for this suggestion is relatively simple: If the non-linear effect of RSI

duration reported in Chapter 4 is due to participants building a hierarchical structure, then this non-

linear  effect  of  RSI should not  be  observed if  a  sequence that  does  not  allow for  hierarchical

building is used.

5.2.1 Main results in favour of hierarchical learning

To find out whether processing of the Fib grammar results in the creation of hierarchical structure,

we conducted several experiments where strings generated by the Fib grammar were implemented

in a SRT task. Since these strings are self-similar, transitions between points at level n are identical

to transitions between constituents at level n+1. The key feature is that probabilistic transitions at

level n are embedded in deterministic transitions at level n+1. It is therefore possible to reduce the

number of probabilistic transitions by recursively embedding deterministic transitions. We made the

hypothesis  that  the participants  would  build a  hierarchical  structure  via  the  recursive  merge of

deterministic transitions.  The operating principle of the recursive merge hypothesis  is relatively

simple: the parser would start by merging the points linked by a deterministic transition and would

use the resulting constituent to detect new higher-order deterministic transitions. To the extent that

some ambiguous points at level n appear at level n+1 in a constituent that follows a deterministic

transition, a subset of those ambiguous points can be disambiguated at level n+1. This hypothesis
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makes precise predictions about the anticipation pattern of points compatible with the elaboration of

a hierarchical structure. We tested the predictions of this hypothesis in two ways. If participants

build a hierarchical structure by recursively merging deterministic transitions, we should observe:

(a) a processing advantage that increases through exposure for points that follow a deterministic

transition  at  level  n  (i.e.  disambiguated  points)  compared  to  points  that  follow a  probabilistic

transition  at  the  same  hierarchical  level  (i.  e.  non-disambiguated  points),  and  (b)  a  better

anticipation  for  disambiguated  points  appearing  at  level  n+1  in  a  constituent  following  a

deterministic transition (non-ambiguous structural context) compared to the same disambiguated

points  occurring  at  level  n+1  in  a  constituent  following  a  probabilistic  transition  (ambiguous

structural context).

We tested prediction (a) of the recursive merge hypothesis in five SRT experiments using the Fib

grammar. The experiments varied along four parameters: the duration of the RSI, the number of

blocks,  the  total  number  of  trials and  the  number  of  trials  per  block.  Table  1 displays  these

parameters for each experiments along with the corresponding number of participants, the chapter

in  which  the  experiments  are  described  and  the  highest  hierarchical  level  reached  by  the

participants. To ensure clarity, we have assigned alphabetical labels to each experiment based on

their chronological description, the labels are showin in Table 1.

Table 1

Summary of the SRT experiments using the Fib grammar by Chapter, RSI duration in ms, number of 
experimental blocks, total number of trials, number of participants and highest hierarchical level reached at 
the group level.

Chapter Experiment Label RSI duration
 (ms)

N° of 
Blocks

N° of trials
per Block

Total
number of

trials 

N° of
participants

Highest
hierarchical

level reached

2 Experiment 1 A 500 5 233 1165 159 Level 3

3 Experiment 1 B 1000 5 120 600 53 Level 2

4 Experiment 1 C 1000 7 144 1008 174 Level 2

4 Experiment 2 D 250 5 233 1165 145 Level 3

4 Experiment 3 E 100 7 377 2639 94 Level 2
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The processing advantage for disambiguated points over non-disambiguated points was replicated

up to level 2 in all experiments, representing in total 625 participants. This advantage also extended

to the third hierarchical level in Experiments A and D, representing in total 304 participants. Due to

the big sample size, it is unlikely that these effects are due to a type I error. The results of the five

experiments using the Fib grammar reported are thus fully in line with prediction (a).

However,  as  explained  in  Chapter  2,  these  results  are  also  potentially  compatible  with  a  non-

hierarchical processing mechanism sensitive to linear precedence.  This explanation relies on the

fact that disambiguated points are systematically preceded by a specific sub-sequence that never

appears before non-disambiguated points of the same level. In contrast, transitions between sub-

sequences of identical length and their following non-disambiguated points are probabilistic. For

example, the sub-sequence "0101" always precedes disambiguated points of the second hierarchical

level and predicts them with certainty (p(1|0101) = 1), whereas the sub-sequence "1101" which

always precedes non-disambiguated points of the same level predicts them 38% of the time (p(1|

1101)= .38). Therefore, the processing advantage of disambiguated points may stem from linear

precedence and not hierarchical elaboration. Nevertheless, accounting for the results with linear

precedence presents several challenges. First, it would require significant memory resources, as the

linear  sub-sequences  needed  to  anticipate  disambiguated  points  overlap,  necessitating  parallel

tracking of multiple patterns (see Fig. 5 in Chapter 2 section 2.1). Second, due to the binary nature

of the strings, the different sub-sequences can only be distinguished based on their positional order.

Therefore, the parser must be able to handle the interference resulting from the similarity between

the  pattern  elements.  Finally,  the  pattern  allowing  for  the  anticipation  of  disambiguated  points

would need to be held in memory for a relatively long time. This retention time must include the

duration of the RSI and the time required to respond to a trial. Table 2 shows the retention times

required for linear sub-sequences in function of RSI duration, assuming an average reaction time of

300 ms per trial. In Experiment E, where the RSI lasts 100 ms and participants have reached level 2,

the retention time required for anticipating disambiguated points using linear  precedence is  1.6
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seconds. For Experiments B and C, where the RSI lasts 1000 ms and participants have reached level

2, the sub-sequences must be held in memory for approximately 5.2 seconds. In Experiments A and

D, where participants have reached level 3, the sub-sequences must be held in memory for 5.6 and

3.8 seconds, respectively. Thus, a linear precedence parser would need to overcome overlapping

patterns, interference from item similarity, and long retention times in working memory to account

for the results. The attentional cost imposed by these constraints raises doubts that a simple pattern

recognition  mechanism would  be  a  feasible  approach  to  explain  anticipation  of  disambiguated

points.

Table 2

Retention time (in ms) required to anticipate disambiguated points based on linear precedence by hierarchical
level and RSI duration.

RSI duration Retention time required 

Level 1 Level 2 Level 3

1000 ms 2600 (ms) 5200 (ms) 9100 (ms) *

500 ms 1600 (ms) 3200 (ms) 5600 (ms)

250 ms 1100 (ms) 2200 (ms) 3850 (ms)

100 ms 800 (ms) 1600 (ms) 2800 (ms) *

Note. The * sign indicate that participants did not reached level 3 with an RSI of 1000 ms (Experiments B
and C) and with an RSI of 100 ms (Experiment E).

In  regards  to  prediction  (b),  Experiment  A revealed  a  processing  advantage  for  points  in  non-

ambiguous structural contexts compared to points in ambiguous structural contexts at levels 1 and

3.  This  is  in  line  with  the  recursive  merge  hypothesis.  Since  ambiguous  and  non-ambiguous

structural  contexts  contrast  different  instances  of  disambiguated  points  only  (i.e.,  no  non-

disambiguated  points  were  included  in  this  analysis),  points  in  both  structural  contexts  were

preceded by identical sub-sequences (with a transition probability equal to 1). Therefore, effects of

structural contexts cannot be explained by a strategy consisting of anticipating disambiguated points

based on linear precedence.
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5.2.2 Alternative account of hierarchical learning in Fib

If participants are extracting a hierarchical structure from Fib string, they may not necessarily do so

by the recursive merge of deterministic transition.  The k-points hypothesis (Vender et  al.  2020)

proposes an alternative explanation as to how hierarchical structure is extracted in Fib. The k-points

hypothesis is based on the formal approach developed by Krivochen (Krivochen et al., 2018) who

hypothesized  that  the  parser  would  take  advantage  of  the  isomorphism  between  the  surface

properties  of  the  Fib  grammar  and  its  structural  properties  in  order  to  extract  a  hierarchical

structure. According to this hypothesis, the identification of specific points in the grammar, called k-

points, would enable the parser to build the local hierarchical structure of the grammar because of

their  specific  structural  status  (see  Chapter  3  section  3.1  for  detail).  However,  many  of  our

observations cannot be explained by this hypothesis. First, if k-points' formal status is the basis for

building the hierarchical structure, there should be a processing advantage for all k-points as they

should be identified in the same way. However, our results are in contradiction with this prediction.

In our notation, k-points are the non-disambiguated points of level 0, and therefore, level 2 contrasts

different  instances  of  k-points.  Consequently,  the  better  anticipation  of  disambiguated  points

compared to non-disambiguated points at level 2 that we replicated in Experiments A, B, C, D and

E cannot be explained by this hypothesis. Second, if hierarchical learning in Fib is based solely on

the identification of k-points, the processing advantage should be restricted to k-points. Again, our

result show that this is not the case. In particular, the disambiguation effect found at level 3 in

Experiment A and replicated in Experiment D, which pertains to differences between 0s, cannot be

accounted for by this hypothesis since k-points are, by definition, 1s. In summary, results support

our hypothesis that when processing the string generated by the Fib grammar, participants build a

hierarchical structure through the recursive merge of deterministic transitions rather than by the

identification of K-points.
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5.2.3 Is the non-linear effect of RSI duration a marker of hierarchical learning?

In line with Isbilen & Christiansen, (2022) the summary in Table 1 suggests that length of exposure

has  no effect  on learning.  This  observation  aligns  with  our  statement  in  Chapter  4,  where  we

observed that increasing exposure did not seem to improve hierarchical learning. Our justification

was based on the fact that, despite a more than twofold increase in exposure in Experiment E as

compared to Experiment D, participants only reached the second hierarchical level in Experiment E,

while they reached the third hierarchical level in Experiment D. However, this comparison was

improper as RSI duration differed between the experiments. Nevertheless, a comparison between

Experiments B and C eliminates this confounding factor and supports the hypothesis that length of

exposure does not improve hierarchical learning: even though the exposure was 40% longer in

Experiment  C than in  Experiment  B, participants  in both experiments only reached the second

hierarchical level.  Rather, RSI duration seems to be the factor that determines the height of the

hierarchical structure built by the participants.

The  non-linear  effect  of  RSI  duration  on  performance  may  provide  interesting  insight  on  the

mechanisms involved in the processing of the Fib Grammar. In particular, it suggests the existence

of an optimal temporal window for learning. In Chapter 4, we saw that the height of the hierarchical

structure elaborated by the participants was higher when the RSI lasted 500 ms and 250 ms and

decreased with an RSI of 1000 ms and 100 ms. This U-shape effect has, to our knowledge, never

been reported, possibly because of a sampling bias in RSI duration as most studies compared only

two RSI durations. However, the mechanism underlying this effect remains to be unveiled as none

of the hypotheses proposed in the literature could account for it.

To  account  for  it,  we  have  considered  hierarchical  elaboration  as  an  information  compression

mechanism. According to Shannon information theory (1948), if the amount of information in a

signal exceeds the encoding capacity of the receiver, another encoding method should be used to

limit the loss of information. Changing the encoding method means compressing the input signal

into another format. According to the  Information Premise (Pothos, 2010), the cognitive system
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would  always  try  to  represent  new  information  with  as  little  uncertainty  as  possible,  that  is,

minimizing the entropy of its representational state.  The tension between the limited processing

capacity of the cognitive system and the amount of information contained in a signal would be the

driving force that leads the cognitive system to develop higher-order knowledge (Radulescu et al.

2019, 2021). The idea is as follows: the encoding power of the cognitive system is limited by its

processing speed and memory storage capacity. The encoding power can be defined as the amount

of information per unit  of time that the system is able to process. When the input exceeds the

encoding power, it can be encoded with minimal loss as long as a sufficiently efficient compression

method is available. If there is no compression method suitable for the amount of information in the

input, the loss of information will increase. In this framework, the duration of the RSI determines

the amount of information per unit of time that is delivered to the participants. If we assume that the

height of the hierarchical structure elaborated reflects the degree of compression of the input, the U-

shape pattern is explained in the following way: when the RSI lasts 1000 ms, the pressure on the

system would not be high enough for it to elaborate the third hierarchical level. As the RSI shortens,

the amount  of information per  unit  of time increases and the input  is  further compressed,  thus

explaining why participants reach the third hierarchical level with RSIs of 500 ms and 250 ms. With

an RSI of 100ms, the amount of information per unit of time would be too high without involving

information loss: participants would not have a sufficiently efficient compression method to encode

so much information, which explains the decrease in the height of the hierarchical structure.

5.2.3.1 Idea for future work: exploring the effect of RSI duration in other types of sequences

This hypothesis makes an interesting prediction regarding the question of whether the processing of

the Fib grammar actually results in the elaboration of hierarchical structure. Indeed, this hypothesis

assumes  that  the  presentation  rate  affects  hierarchical  elaboration,  which  consists  in  input

compression. Crucially, a non-hierarchical processing mechanism is incompatible with the notion of

compression: if disambiguated points are anticipated on the basis of linear precedence in a purely

item-based manner, they cannot, by definition, be compressed. Thus, if the compression of the input
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is  the  cause  of  the  non-linear  effect  of  RSI duration,  a  sequence  in  which  there  would  be  no

hierarchical structure to build upon should not exhibit this effect. Testing that prediction could be

done with an experiment in which target sequences give rise to "flat" statistical learning without

hierarchical learning. One possible approach  would be to use a sequence that follows a Second

Order Conditional (SOC) structure (Reed & Johnson, 1994).

5.3 Does the parser identify Fib-natural constituents?

In this section, we ask whether our results can be explained without assuming that the participants

built the natural constituents of Fib. According to the recursive merge hypothesis, participants build

a hierarchical structure by recursively merging points/constituents that span across a deterministic

transition. This process results in a nested structure consisting of the natural constituents of the Fib

grammar. The reason why participants would have developed the natural constituents and not others

is a consequence of the interaction between the alleged operating principle (i.e., recursive merge)

and the statistical properties of Fib grammar strings. Since at each hierarchical level there is exactly

one  deterministic  transition,  recursive  merge  of  deterministic  transitions  can  only  result  in  the

building of the natural Fib constituents. As we have seen in Chapter 2, the patterns of anticipation of

points  at  the  group  level  are  replicated  at  the  individual  level.  We interpreted  this  finding  as

suggesting  that  participants  had  all  formed  a  hierarchical  structure  made  up  of  natural  Fib

constituents. However, this rationale holds only if the segmentation into natural constituents is the

only one that predicts the observed anticipation patterns. If there are other ways of segmenting a Fib

string that yield identical predictions, the precise constituents built could vary from one participant

to  another  despite  the  overall  similarity  of  the  anticipation  patterns  among participants.  In  the

following, we explore whether the segmentation into natural Fib constituents is the only one that

can account for the patterns of anticipation observed in experiments A, B, C, D and E.
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5.3.1 Classification of segmentations in Fib

Given the high number of possible segmentations, we had to find a criterion to restrict our analysis.

For this purpose, we took advantage of the self-similarity of the Fib grammar. Because of the self-

similarity,  any Fib generation can be segmented into a pair  of  n-grams of length equal  to  two

consecutive  numbers  of  the  Fibonacci  sequence  (as  a  reminder,  each  number  of  the  Fibonacci

sequence is the sum of the two previous ones: 0-1-1-2-3-5-8, etc.). Segmenting a Fib string in this

way minimizes the number of different n-grams needed to ensure there are no remainders: only two

n-grams are needed for optimal tessellation. If n-grams are used whose length is not a number of the

Fibonacci sequence (for instance a 4-gram), at least three different n-grams are required for the full

mapping of the string. Let's consider the eighth generation of the Fib grammar shown in (i). The

first possible segmentation involves using the natural constituents of Fib, as illustrated in (ii) using

the 2-gram [01] and the 3-gram [101] that correspond to level 2. In this case, both constituents

perfectly match the sequence, leaving no "remainder". However, we can also segment (i) without

leaving a remainder with another pair of 2-gram and 3-gram. As an example, (iii) shows the seventh

generation  segmented  using  the  2-gram [10]  and  the  3-gram [101],  which  perfectly  maps  the

sequence.

(i) 101011010110110101101

(ii) [101][01][101][01][101][101][01][101]

(iii) [10][101][10][101][101][10][101][101]

The question is therefore whether there are some alternative segmentations that are compatible with

our results. Since the number of possible segmentations increases exponentially with the size of the

constituents considered, we will restrict our analysis to the set of segmentations consisting of a 1-

gram  and  a  2-gram,  which  is  equivalent  to  the  first  hierarchical  level,  and  to  the  set  of

segmentations consisting of a 2-gram and a 3-gram, which is equivalent to the second hierarchical

level.
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5.3.1.1 Segmentations with a 1-gram and a 2-gram

There are only two options for segmenting a Fib string with a 1-gram and a 2-gram. The first is to

use the natural Fib constituents [1] and [01], as shown in (iv). The second is to use the 1-gram [1]

and 2-gram [10], as shown in (v). We have highlighted in green the points that are disambiguated by

each segmentation and in red the points that are not. Upon examination of (v), it appears that the 1-

gram [1] is consistently followed by the 2-gram [10]. Therefore, the points that constitute [10] when

preceded by [1] are disambiguated whereas points that constitute [10] when preceded by [10] are

non-disambiguated. This segmentation predicts the opposite ambiguity effect at level 0 than the

segmentation  into  natural  constituents  (i.e.,  better  anticipation  for  non-disambiguated  points

compared to disambiguated points at level 0), which is in complete contradiction with our results.

Additionally, segmentation (v) makes it impossible for the parser to determine the identity of the

point following the 1-gram [1] a priori because both n-grams of this segmentation start with a "1"

(e.g. [1] and [10]). When a "1" is perceived, how could the parser ascertain whether this "1" marks

the beginning of the 2-gram [10] or the 1-gram [1]? Identification of the border between n-grams

could thus be done only  a posteriori, when a "0" is perceived. This makes it impossible to use

segmentation (v) regularity “[1] is always followed by [10]” to improve anticipation.

(iv) [1][01][01][1][01][01][1][01][1][01][01][1][01]

(v) [10][10][1][10][10][1][10][1][10][10][1][10][1]

5.3.1.2 Segmentation with a 2-gram and a 3-gram

There  are  four  ways  of  segmenting  a  Fib  string  with  pairs  of  2-grams  and  3-grams.  The

segmentation into natural constituents of Fib [01] and [101] is shown in (vi).  In (vii),  we have

segmented with the 2-gram [10] and the 3-gram [101]. In (viii), we have segmented with the 2-gram

[01]  and  with  the  3-gram  [011].  The  segmentations  (vii)  and  (viii)  both  predict  the  opposite

ambiguity effect at the first hierarchical level than the segmentation into natural constituent (i.e.,

better  anticipation  for  non-disambiguated  points  compared to  disambiguated  points  at  level  1),

which contrasts with our finding. Moreover, like (v), the n-grams of segmentations (vii) and (viii)
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start in the same way: in (vii) the n-grams [10] and [101] both start with "10" and in (viii), n-grams

[01] and [011] both start with "01". Therefore, in these segmentations, the parser can only determine

the beginning of an n-gram a posteriori when processing the next n-gram, making it impossible to

use the regularity of segmentation (vii) "[10] is always followed by [101]" or segmentation (viii)

"[01] is always followed by [011]" to improve anticipation.

(vi) [101][01][101][01][101][101][01][101]

(vii) [10][101][10][101][101][10][101][101]

(viii) 1][01][011][01][011][011][01][011][01

(ix) 10][10][110][10][110][110][10][110][1

Segmentation using the 2-gram [10] and the 3-gram [110] is presented in (ix). Unlike (vii) and

(viii), (ix) yields predictions that align with our findings. This segmentation precisely disambiguates

the same set of ambiguous points as (vi). Additionally, the 2-gram [10] and the 3-gram [110] differ

enough to  enable  the  parser  to  discern  their  location  before  encountering  an  ambiguous point.

However,  the creation of these particular n-grams in the first  place is  somewhat challenging to

explain. The recursive merge hypothesis suggests that participants must first segment the string as

in (iv) to access (vi). As (v) cannot lead to (ix), the only plausible explanation is that participants

directly built the second hierarchical level. The mechanism underlying this possibility would need

to be explained. 

In  summary,  we  see  that  if  we  restrict  ourselves  to  the  second  hierarchical  level,  only  two

alternative  segmentations  are  compatible  with  our  results:  the  segmentation  into  natural  Fib

constituents (as in (vi)) and segmentation (ix). Of course, the number of compatible segmentations

increases as the size of the n-grams considered grows, however, in order to be compatible with our

results, upper levels segmentations must adopt segmentation (iv) or segmentation (ix) at level 2.

Our results do not provide a definitive answer on which segmentation ((iv) or (ix)) was adopted by

the  participants.  However,  although  segmentation  (ix)  fits  with  the  results,  it  remains  to  be
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explained how this segmentation would be attained in the first place. In contrast, the segmentation

into natural constituents of Fib is accounted for by a single operating principle: the recursive merge

of deterministic transition.

5.3.2 Idea for future work: Further exploration of the constituent structure

To  explore  further  whether  the  different  segmentations  mentioned  above  facilitate  or  hinder

learning, a segmentation scheme could be highlighted by manipulating perceptual features of the

stimuli or the location at which they appear. This could be easily achieved since in the experiments

conducted  in  this  work,  only  one  variable  indexed  hierarchical  structure  (i.e.,  the  order  of

presentation of the stimuli), leaving a wide range of parameters that could be manipulated. Such

manipulation would also permit to highlight several hierarchical levels simultaneously. This would

allow us to explore from a different angle the representation elaborated by the cognitive system. i.e.,

to  see  if  the  participants  consider  all  levels  of  the  structure  simultaneously.  The  addition  of

perceptual cues could therefore open up interesting perspectives for future studies.

5.4 Does the parser identify Fib-natural constituents by detecting deterministic transitions?

The  recursive  merge  hypothesis  posits  that  hierarchical  structure  extraction  in  Fib  involves

recursively merging deterministic transitions. In a Fib string, the boundaries between constituents at

each level are denoted by deterministic transitions. By having only one deterministic transition per

hierarchical level, the recursive merge method always segments Fib into natural constituents.  In

order  to  detect  deterministic  transitions,  it  is  necessary  to  assume  that  the  cognitive  system

computes  transition  probabilities  between  the  elements  of  the  sequence.  However,  there  is  no

consensus  on  whether  the  cognitive  system  actually  computes  transition  probabilities  when

segmenting a signal.

The question of how constituents are extracted from a linear string is actually the same question that

underlies the wide debate about how words are extracted from a continuous stream (see Perruchet,

2019 for a review). Two main approaches have been adopted, that assume substantially different
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mechanisms responsible for detecting the units that make up a signal. The first assumes that the

initial stage of signal processing is based on the calculation of pairwise statistics between salient

perceptual elements such as transition probabilities (Adini et al., 2015; Meyniel et al., 2016; Saffran

et al., 1996). In a seminal study, Saffran et al. (1996) exposed 8-month-old infants to a continuous

stream of syllables, which were arranged in triplets that formed pseudo-words. Importantly, the only

cue  to  the  boundaries  between  triplets  was  the  statistical  distribution  of  syllables:  transition

probabilities  between  syllables  of  a  word  are  higher  than  those  between  syllables  at  word

boundaries. Following exposure to the speech stream, the infants were tested on their ability to

discriminate between triplets that did or did not contain a boundary. The results showed that the

infants were able to differentiate between the two types of triplets, suggesting that infants were

computing transition probabilities to detect word boundaries. Our recursive merge hypothesis is in

line  with  this  assumption  that  constituent  boundaries  are  identified  on the  basis  of  transitional

probabilities between units.  Our hypothesis  further assumes that the cognitive system computes

transitional probabilities recursively at  higher levels,  as constituent structure is  being built.  The

second approach assumes that a chunking mechanism of the input is responsible for the extraction

of the units, without calculation of transitional probabilities. This approach was initially proposed

and modelled by Perruchet  and Vinter (1998), and alternative implementations of the same idea

have  been  proposed  subsequently  (French  et  al.,  2011;  Goldwater  et  al.,  2009;  McCauley  &

Christiansen, 2014; Robinet et al., 2011; Thiessen & Erickson, 2013). The idea is that the system

aggregates elementary elements simultaneously present in the focus of attention. This process leads

to the creation of chunks that either map or do not map the actual units of the signal. Chunks that

correctly map the units will occur more often and therefore be reinforced as processing units. The

chunking approach does not state that the statistical distribution of the input does not play a role, but

that one does not have to assume that the system computes transitional probabilities to segment the

signal.
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In the following section, we explore whether  it is possible to detect boundaries between natural

constituents without relying on deterministic transitions. If a model that does not compute transition

probabilities  systematically  segments  Fib  into  natural  constituents,  it  would  show  that  along

deterministic transitions, there is another property in the Fib strings that can be used to reliably

access constituent structure. To explore this question, we conducted a series of simulations using the

PARSER model developed by Perruchet and Vinter (1998), using as input Fib grammar-generated

strings.

5.4.1 Overview of PARSER

The purpose of the PARSER model was to showcase that stream segmentation could be achieved

without  calculating transition probabilities.  The model accomplishes this  by randomly grouping

units together from the beginning of the learning process. The model operates cyclically according

to the steps in Fig. 1, and requires primitives (0 and 1 in our case) as the minimal element of a

sequence to function. At each cycle, the span of the focus of attention randomly changes, ranging

from 1 to 3 slots. Initially, only primitives are stored in memory, but as the model encounters pairs

of units in its input, it creates new units by chunking them together. Once a chunk is formed, it is

treated as a single unit within the focus of attention. Therefore, if the same chunk appears again, it

occupies only one slot in the focus of attention. This process leads to the creation of chunks that

either map or do not map the actual units of the signal. At each cycle, the activation value of all the

chunks that were not in the focus of attention declines whereas the activation value of the chunks

present in the focus of attention increases. When multiple chunks in memory correspond to the

input (i.e., when the signal fits chunks of different sizes), only the chunk with the best fit see its

activation value increases. As a result, chunks that correctly map the words in the input will have

their activation value increased because they occur more often while chunks that only partially map

the input will see their activation value progressively reduced and tend to zero. This model tends to

select the segmentation of an input that requires the smallest number of different chunks, as only the
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best-fitting (longest)  chunks see their activation value increase,  while it decreases for the least-

fitting chunks.

Fig 1. Flow chart of the PARSER model, from Perruchet & Vinter, (1998).

5.4.2 Simulations of Fib string chunking by PARSER

In order to find out whether PARSER segments Fib strings into natural constituents in a systematic

way, we conducted a series of simulations where strings of the Fib grammar were presented to the

model. The simulations reported below were carried out with the PARSER implementation in the

U-learn  software  (Perruchet  et  al.,  2014).  There  are  several  important  aspects  of  the  model's

functioning  that  should  be  highlighted.  First,  the  model's  parameters,  including  decay  rate,

interference  rate,  and  the  minimum and  maximum percept  sizes,  are  set  by  the  experimenter.

Default parameter values are given in Perruchet and Vinter (1998), and we used these values in our

simulations. Second, the results of a simulation are determined by the seed that sets the vector of

subsequent sizes of attentional focus. Thus, comparing simulations with the same parameters tells

us something about the probability of a parse to occur. Third, the model's implementation does not

grant access to the memory's content cycle by cycle, but only at the conclusion of each run. To
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gauge the memory content's evolution, we employed three input strings of varying lengths: (i) the

11th generation of the Fib grammar with a length of 144 points, (ii) the concatenation of the 11th

generation 7 times (1008 points), and (iii) the 20th generation of the Fib grammar (10946 points).

Fourth, the software options for exploring the memory content across multiple runs is limited and

this had consequences on the way we carried out our investigation. The model's implementation

allows tracking up to 10 lists of chunks across multiple runs. A list can contain multiple chunks,

however, when it this the case, the model returns only the frequency of the lists (i.e., the number of

occurrences where at least one member of the list was present in memory at the end of learning) and

not the frequency of the chunks that compose it. Due to the vast number of possible n-grams in Fib

(which exceeds 10 by far), the combinations of these n-grams result in a huge number of potential

segmentations. As the number of n-grams that can individually be monitored across multiple runs is

restricted to 10 (i.e., by creating 10 lists, each comprising a single n-gram), it is clearly impossible

to test every possible segmentation. This led us to conduct three analyses where we explored a

distinct aspect of the behavior of PARSER. Each aspect explored represents a necessary condition

that PARSER must fulfil in order to conclude that the model segments Fib into natural constituents

in a systematic way. We explain these analyses below.

The  first  analysis  aimed at  establishing  whether  the  model  chunks  n-grams whose  length  is  a

number of the Fibonacci sequence. Indeed, we know that the length of the natural constituents of

the Fib grammar correspond to a number of the Fibonacci sequence. Thus, if PARSER segments Fib

into natural constituents, n-grams that are not the length of a number of the Fibonacci sequence

should not  be created by the model.  The second analysis  aimed at  testing whether  n-grams of

identical length are present simultaneously in the model's memory. The reason behind this analysis

is that all natural Fib constituents have a different length, i.e., there is never two n-grams of the

same length (with the exception of the primitive 0 and 1). In PARSER, there is no constraint on the

number of n-grams of a particular length: it is therefore possible to have multiple n-grams of the

same length. Therefore, if PARSER segment Fib into natural constituents, two n-grams of identical
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lenght should not coexist in the model's memory at the end of the learning process. Finally, in the

third  analysis,  we  explored  the  identity  of  the  Fib  length  n-grams  chunked  by  the  model.  If

PARSER segments Fib into its natural constituents, then Fib length n-gram that are not natural

constituents of the grammar should never be chunked. 

In the following section, we report and discuss the results of each analysis. In each analysis, the

model was run 1000 times for each input length, resulting in 3000 simulations per analysis. In total,

we ran 9000 simulations.  In each analysis,  the Fib grammar alphabet 0 and 1 were utilized as

primitives.

5.4.2.1 Is PARSER chunking n-grams of Fib length?

Fig.  2  displays  the  frequency  of  chunks  as  a  function  of  their  length  (ranging from 1  to  10),

irrespective of their identity. For instance, the blue bar in the 2-gram category indicates that a 2-

gram was detected in 696 out  of 1000 runs,  regardless  of whether  it  was  01,  10,  or 11.  Each

category  contains  all  possible  n-grams  in  Fib  for  a  given  length.  The  list  of  n-grams  in  each

category is given in appendix S4.
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Fig 2. Frequency of n-grams per size present at the end of the training by input length: generation 11 
of the Fibonacci grammar (Fib g11), generation 11 of the Fibonacci grammar concatenated seven 
times (Fib g11x7), and generation 20 of the Fibonacci grammar (Fib g20).

Two conclusions  can  be  drawn  from this  first  analysis.  First,  the  frequency  of  short  n-grams

diminishes with exposure: 2-grams and 3-grams are more frequent when the model is presented

with short strings (Fib g11) compared to medium length strings (Fib g11x7), and even less frequent

in long strings (Fib g20). This suggests that the model chunks 2-grams and 3-grams in the initial

stages of learning, but they disappear later due to decay. Second, and more importantly, the model

rarely chunks n-grams that are not the length of a number of the Fibonacci sequence: n-grams of Fib

length (i.e., 1, 2, 3, 5, and 8-grams) are more likely to be chunked compared to n-grams that are not

the length of Fib (i.e., 4, 6, 7, 9, and 10-grams). This effect can be explained by the fact that the

model favors the shortest lexicon (i.e., the partitioning of a corpus with the smallest number of

different words). As seen in section 5.3, optimal segmentation of Fib strings (i.e., segmentations

where there are no remainders) involved only two Fib-length n-grams. If a chunk that is not the

length of a number of the Fibonacci sequence is created (e.g., a 4-gram), it will inevitably align less

well with the input than a Fib-length n-gram and will therefore decay as soon as a Fib-length n-
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gram is created. The results of this first analysis show that n-grams that are not Fib-length are

almost never chunked by PARSER.

5.4.2.2 Do chunks of identical length co-exist in PARSER's memory?

Fig. 3. shows the frequency of simulations in which the model retained two chunks of the same

length at  the end of the learning. As no instance of three or more identical chunks in memory

occurred across the 3000 simulations, the frequency of such occurrences could not be depicted.

Fig 3. Absolute frequency of run in which two n-grams of the same length were present at the end of 
the learning, by input length: generation 11 of the Fibonacci grammar (Fib g11), generation 11 of the 
Fibonacci grammar concatenated seven times (Fib g11x7), and generation 20 of the Fibonacci 
grammar (Fib g20). 

The results indicate that the model almost never stores two chunks of the same size simultaneously

in memory. This observation can be attributed to the fact that there are optimal ways of tessellating

a Fib string (i.e., segmenting without leaving any remainder). The optimal segmentation of a Fib

string involves Fib-length n-grams of different lengths. Thus, once the model settles on a particular

set of n-grams, these n-grams will be reused over and over again because they tessellate the string in

an optimal way, leaving n-grams of identical length that are not in that set virtually no chance of

appearing. Note that bigger n-grams can still appear because they provide a better fit of the input.

173



The results of this second analysis show that PARSER almost never segments two n-grams of the

same length at the same time.

5.4.2.3 Is PARSER chunking Fib-natural constituents ?

Fig.  4.  shows the  frequency  of  occurrence  of  all  3-grams  and 5-grams possible  in  the  strings

generated by the Fib grammar.

Fig 4. Frequency of occurrence of all 3-grams and 5-grams in memory at the end of the learning by 
input length : generation 11 of the Fibonacci grammar (Fib g11), generation 11 of the Fibonacci 
grammar repeated seven times (Fib g11x7), and generation 20 of the Fibonacci grammar (Fib g20)

The  first  observation  to  note  is  that  the  3-gram  [010]  and  the  5-gram  [11011]  are  chunked

significantly less often than the other 3-grams and 5-grams. This is explained by the fact that these

n-grams are not sufficient to tessellate a Fib string in an optimal way; they will thus always provide

a poorer fit than the other 3-grams and 5-grams, and are therefore less likely to be chunked by

PARSER. The second point to note is that even though PARSER chunks the 3-gram [101] and the

5-gram [01101], other 3-grams and 5-grams are chunked in the majority of the simulations. In total,

the 3-gram [101] appears in 23.6 % of the simulations (49.1% in Fib g11, 16.4% in Fib g11x7 and

5.4% in Fib g20) and the 5-gram [01101] appears in 27.4% of the simulations (23.4% in Fib g11,
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27.5% in  Fib  g11x7  and  31.5% in  Fib  g20).  An  important  point  to  note  is  that  these  values

overestimate the number of times PARSER actually chunked the natural constituents [101] and

[01101]. This is because not all 3-grams [101] and 5-grams [01101] are natural constituents. For

instance, the segmentations (vi) and (vii) in section 5.3.1.2 show that the 3-gram [101] is a natural

constituent  in  (vi)  but  not  in  (vii)  (we have reproduced these segmentations  below for  ease of

reading). Therefore, in the 23.6% of simulations where PARSER chunked the 3-gram [101], only a

(unknown) subset corresponds to the natural constituents [101]. The same demonstration can be

done for the 5-gram [01101] (and in fact for all natural constituents of a length greater than 2). This

also explains why the 3-gram [101] and the 5-gram [01101] are chunked more often, as they may or

may not appear as natural constituents, they are overall more frequent than other 3-grams and 5-

grams. The results of this third analysis show that in most simulations, PARSER chunks n-grams

that are not natural constituents of the Fib grammar.

(vi) [101][01][101][01][101][101][01][101]

(vii) [10][101][10][101][101][10][101][101]

In summary, although the first two analyses showed that PARSER almost exclusively chunk Fib-

length n-grams and that two n-grams of identical length almost never coexist in the model memory,

the  results  of  the  third  analysis  showed that,  although PARSER occasionally  identifies  natural

constituents of the Fib grammar, it does not do so in a systematic way. This suggests that the Fib

strings do not possess properties allowing PARSER to reliably detect their constituent structure. It

thus seems that in order to systematically segment Fib into its natural constituents, it is necessary to

rely on the computation of deterministic transitions.

5.4.3 Can PARSER account for participants' anticipation patterns in Fib?

The fact that PARSER does not systematically segment Fib-generated strings in natural constituents

does not mean that this model cannot account for our experimental results. As we saw in section

5.3, there are (few) alternative segmentations that predict a pattern of anticipation of points identical
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to that predicted by the segmentation into natural constituents. Hence,  it  is possible that in the

simulations  where  PARSER  did  not  segment  the  Fib  strings  into  natural  constituents,  it  still

performed a segmentation that aligns with our experimental results. 

To the extent that some of the segmentations that align with the results share a common n-gram

with segmentations that does not, it is difficult to estimate the number of times PARSER performed

a  segmentation  compatible  with  the  results.  However,  we  can  easily  approximate  how  often

PARSER produced a segmentation that predicts a pattern of anticipation of points that does  not

align with the results. In Fig. 4, all the simulations where PARSER has chunked the n-grams [011],

[10101], [10110] or [01011] necessarily falls into a segmentation that predict an anticipation pattern

opposite to the one we have observed experimentally. We see that in 44% of the simulations, at least

one  of  these  n-grams  appears.  This  percentage  underestimates  the  number  of  times  PARSER

actually segmented Fib in a way that is inconsistent with the results because it does not take into

account the n-grams that may or may not appear in these segmentations (i.e., n-grams [101], [110],

[01101], and [11010]). Nevertheless, it shows that in at least 44% of the cases, PARSER segmented

Fib in a way that is inconsistent with the experimental results. In section 2.4 of Chapter 2, we saw

that the pattern of anticipation at the group level is replicated at the individual level. Thus, this

proportion of 44% seems too high to conclude that PARSER accounts for the anticipation pattern of

the participants.

5.5 Conclusion

The  different  experiments  reported  in  this  work  strongly  suggest  that  participants  extract  a

hierarchical structure during processing of strings generated by the Fib Grammar. The recursive

merge  hypothesis  provides  a  satisfactory  explanation  of  our  results.  Its  operation  is  simple:

participants recursively merge points that span across a deterministic transition, and use the output

of this process, i.e., the constituents created by this merging process, to detect new higher-order

deterministic transitions. The result of this process is a representation of embedded constituents, or

176



a ‘chunk of chunks’ representation. The fact that this mechanism results in a constituent structure

identical to the natural constituent structure of Fib is due to the Fib-specific self-similarity which

makes  the  transitional  probabilities  perfectly  scale-free.  Thus,  the  surface  properties,  i.e.,  the

transitional probabilities, lead the parser to a structure that is identical to the natural structure of Fib.

It is important to stress that the scope of the recursive merge hypothesis is relatively limited. While

this  hypothesis  offers  a  satisfactory  explanation  for  our  findings,  it  remains  to  be  determined

whether its applicability can be expanded beyond fractal binary sequences generated by L-systems.

More precisely, the question at hand pertains to whether the recursive calculation of transitional

probabilities is contingent upon specific characteristics present in the input, or if it is a multipurpose

statistical learning mechanism commonly used by the cognitive system. Future studies testing the

recursive merge hypothesis in other types of sequences are therefore needed to answer this question.

A related question is to what extent hierarchical structure extraction is underpinned by a domain-

general ability. More specifically, is hierarchical processing in Fib and in other cognitive domains

underpinned, at least in part, by a common processing module or are they distinct mechanisms that

nonetheless  share  a  set  of  domain-general  principles  ?  Examining  the  correlation  between

participants' performance in Fib and other types of hierarchical processing, such as those involved

in  natural  language  processing,  could  shed  light  on  this  inquiry.  This  perspective  presents  an

intriguing direction for future studies.

In conclusion, although many questions remain unanswered at the end of this work, it nevertheless

remains that the Fib grammar and L-systems in general offers an interesting potential for the study

of hierarchical processing and the underlying mechanisms involved.
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7. Supplementary materials

7.1 Supplementary materials for Chapter 2

S1 – Transition patterns for the constituent [01101]

To evaluate if the slowdown at the second transition of the constituent [01101] found at the group

level was due to a subset of participants, we considered each of the 4 transition for each individual.

This  analysis  was  done  only  on  the  constituent  [01101]  when  it  occurred  in  non-ambiguous

structural context. In order to increase statistical power, we considered block 4 and 5 jointly. 

We ran 4 linear models (one for each transition) on reaction times. The factor  Position had two

modality (before, after), “before” coded for the points that was before the transition and “after”

coded for the point after the transition. Each models had reaction times as dependent variable and as

predictor the factors  Participants  and the interaction Participants* Position. The factor  Position

was entered only in the interaction term in order to compare the effect of position for the same

individual and not across individuals. The modality “before” of the factor Position was always set

as the intercept, thus, a “-” sign before the interaction coefficients indicate a diminution of RTs. We

considered in the analysis only trials in which a correct response was given. Since the variable

Participants was  used as  factor,  the p-value  of  the main  effects  and the  global  interaction  are

overestimated, we thus did not interpret them and we report only the interaction coefficient of each

participants. 

Mean difference of RTs (ms) and Standard error for Transition 1 of the constituent [01101] in non-ambiguous
structural context by Position and Participants

Participants Position 
before - after 

Std.Error T-value

1 -101 27 -3.75 ***

2 -157 24.4 -6.42 ***

3 -111 27.4 -4.07 ***

4 -99 25.1 -3.95 ***
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5 -94 28.9 -3.25 **

6 -147 24.8 -5.93 ***

7 -75 30.5 -2.47 *

8 -131 34.1 -3.84 ***

9 -56 27 -2.06 *

10 -38 29.4 -1.29

11 -274 26.6 -10.31 ***

12 -130 30.5 -4.25 ***

13 -184 25.8 -7.12 ***

14 -111 27 -4.1 ***

15 -247 28.9 -8.58 ***

16 -141 25.1 -5.61 ***

17 -147 31.8 -4.63 ***

18 -80 24.4 -3.27 **

19 -123 31.8 -3.87 ***

20 -117 29.9 -3.89 ***

21 -123 25.1 -4.89 ***

22 -163 29.4 -5.53 ***

23 -113 27 -4.18 ***

24 -149 25.1 -5.94 ***

25 -68 24.8 -2.76 **

26 -114 25.1 -4.53 ***

27 -159 26.2 -6.06 ***

28 -166 30.5 -5.44 ***

29 2 35 0.06

30 -103 25.4 -4.03 ***

31 -136 24.4 -5.57 ***

32 -81 34.1 -2.37 *

33 -25 25.1 -0.98

34 -129 25.4 -5.08 ***

35 -98 24.4 -4.01 ***

36 -217 28.4 -7.67 ***

37 -93 27.9 -3.35 ***

38 -124 25.4 -4.89 ***

39 -130 27 -4.82 ***

40 -57 28.9 -1.97 *

41 -106 25.1 -4.23 ***

42 -153 25.1 -6.09 ***

43 -67 27.9 -2.42 *

44 -67 31.2 -2.15 *

45 -137 27.9 -4.91 ***

46 -159 24.4 -6.52 ***

47 -45 25.8 -1.73 .

48 -135 24.1 -5.6 ***

49 -199 27.9 -7.14 ***

50 -120 28.9 -4.17 ***

51 -122 28.9 -4.22 ***

52 -42 26.2 -1.6

53 -130 27 -4.81 ***

54 -85 23.8 -3.58 ***
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55 -200 31.8 -6.29 ***

56 -248 30.5 -8.11 ***

57 -53 23.8 -2.22 *

58 -255 27.4 -9.3 ***

59 -156 25.8 -6.04 ***

60 -65 27.4 -2.35 *

61 -92 24.8 -3.71 ***

62 -116 27 -4.29 ***

63 -81 27.9 -2.91 **

64 -128 27 -4.76 ***

65 -123 32.6 -3.78 ***

66 -128 26.2 -4.88 ***

67 -124 29.4 -4.21 ***

68 -113 27.4 -4.11 ***

69 -82 25.8 -3.18 **

70 -90 31.8 -2.84 **

71 -98 35 -2.79 **

72 -147 31.8 -4.62 ***

73 -150 27 -5.57 ***

74 -117 27.4 -4.28 ***

75 -5 28.9 -0.16

76 -65 25.1 -2.58 **

77 -98 27.4 -3.59 ***

78 -171 25.1 -6.83 ***

79 -194 25.4 -7.63 ***

80 -94 29.4 -3.21 **

81 -82 25.1 -3.25 **

82 -113 29.4 -3.83 ***

83 -99 25.8 -3.84 ***

84 -176 27 -6.51 ***

85 -147 29.9 -4.9 ***

86 -158 26.6 -5.96 ***

87 -94 30.5 -3.07 **

88 -178 25.8 -6.92 ***

89 -118 27.4 -4.32 ***

90 -224 31.8 -7.05 ***

91 -293 28.9 -10.14 ***

92 -117 27.9 -4.19 ***

93 -92 26.6 -3.44 ***

94 -121 25.1 -4.82 ***

95 -180 24.8 -7.26 ***

96 -55 23.8 -2.3 *

97 -17 25.4 -0.67

98 -85 27 -3.15 **

99 -115 25.1 -4.57 ***

100 -126 26.6 -4.73 ***

101 -102 27.4 -3.74 ***

102 -169 27 -6.28 ***

103 -158 30.5 -5.18 ***

104 -41 25.4 -1.6
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105 -84 29.4 -2.85 **

106 -155 24.4 -6.33 ***

107 -80 28.4 -2.82 **

108 -112 28.9 -3.87 ***

109 -194 28.4 -6.85 ***

110 -82 27 -3.03 **

111 -133 27.4 -4.84 ***

112 -125 33.3 -3.75 ***

113 -82 24.4 -3.35 ***

114 -52 26.6 -1.94 .

115 -213 25.8 -8.26 ***

116 -101 28.9 -3.52 ***

117 -131 28.9 -4.54 ***

118 -106 29.4 -3.6 ***

119 -96 31.2 -3.07 **

120 -183 26.6 -6.9 ***

121 -170 25.8 -6.59 ***

122 -109 27 -4.04 ***

123 -45 24.8 -1.8 .

124 -222 27.9 -7.96 ***

125 -104 25.8 -4.04 ***

126 -120 25.4 -4.71 ***

127 -149 25.1 -5.93 ***

128 -164 25.4 -6.46 ***

129 -198 25.8 -7.66 ***

130 -99 27.4 -3.62 ***

131 -210 25.1 -8.35 ***

132 -108 30.5 -3.54 ***

133 -141 25.8 -5.47 ***

134 -135 28.9 -4.68 ***

135 -108 28.9 -3.75 ***

136 -223 26.2 -8.5 ***

137 -91 24.4 -3.73 ***

138 -103 27 -3.8 ***

139 -276 34.1 -8.07 ***

140 -123 24.4 -5.01 ***

141 -90 24.8 -3.63 ***

142 -106 24.4 -4.35 ***

143 -201 27 -7.44 ***

144 -45 27 -1.68 .

145 -164 32.6 -5.03 ***

146 -139 25.1 -5.56 ***

147 -88 25.1 -3.5 ***

148 -26 25.4 -1.01

149 -85 26.2 -3.23 **

150 -90 26.6 -3.39 ***

151 -148 27.4 -5.39 ***

152 -107 24.1 -4.43 ***

153 -221 25.1 -8.81 ***

154 -100 27.4 -3.66 ***
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155 -96 25.1 -3.84 ***

156 -176 25.4 -6.93 ***

157 -172 24.8 -6.95 ***

158 -99 24.4 -4.07 ***

159 -150 26.2 -5.74 ***

Note. .p < .1, *p < .05, **p < .01, ***p < .001 

Mean difference of RTs (ms) and Standard error for Transition 2 of the constituent [01101] in non-ambiguous
structural context by Position and Participants

Participants Position 
before - after 

Std.Error T-value

1 88 25.9 3.39***
2 51 23.5 2.17*
3 17 26.3 0.63
4 78 24.1 3.25**
5 64 27.7 2.31*
6 144 23.8 6.07***
7 64 29.3 2.18*
8 95 32.8 2.89**
9 5 25.9 0.18
10 78 28.2 2.77**
11 234 25.5 9.18***
12 147 29.3 5.01***
13 42 24.8 1.68.
14 36 25.9 1.38
15 177 27.7 6.40***
16 46 24.1 1.89.
17 120 30.5 3.94***
18 103 23.5 4.40***
19 17 30.5 0.54
20 109 28.7 3.78***
21 52 24.1 2.14*
22 126 28.2 4.47***
23 94 25.9 3.62***
24 106 24.1 4.40***
25 -26 23.8 -1.09
26 58 24.1 2.40*
27 118 25.1 4.7***
28 124 29.3 4.22***
29 -42 33.6 -1.24
30 45 24.4 1.84.
31 36 23.5 1.52
32 66 32.8 2.02*
33 48 24.1 1.99*
34 17 24.4 0.69
35 36 23.5 1.52
36 193 27.2 7.08***
37 86 26.7 3.20**
38 95 24.4 3.89***
39 79 25.9 3.04**
40 71 27.7 2.56*
41 46 24.1 1.91.
42 121 24.1 5.03***
43 30 26.7 1.11
44 55 29.9 1.83.
45 -7 26.7 -0.25
46 118 23.5 5.03***
47 22 24.8 0.86
48 53 23.2 2.29*
49 80 26.7 2.98**
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50 51 27.7 1.82.
51 94 27.7 3.39***
52 10 25.1 0.38
53 50 25.9 1.94.
54 23 22.9 1.00
55 123 30.5 4.04***
56 131 29.3 4.47***
57 29 22.9 1.25
58 216 26.3 8.21***
59 159 24.8 6.43***
60 17 26.3 0.63
61 77 23.8 3.24**
62 67 25.9 2.57*
63 28 26.7 1.06
64 110 25.9 4.24***
65 138 31.2 4.41***
66 105 25.1 4.19***
67 129 28.2 4.56***
68 116 26.3 4.39***
69 37 24.8 1.48
70 91 30.5 2.98**
71 68 33.6 2.01*
72 147 30.5 4.81***
73 39 25.9 1.50
74 74 26.3 2.79**
75 -19 27.7 -0.69
76 8 24.1 0.32
77 98 26.3 3.73***
78 6 24.1 0.24
79 127 24.4 5.20***
80 47 28.2 1.67.
81 32 24.1 1.32
82 79 28.2 2.80**
83 56 24.8 2.26*
84 151 25.9 5.81***
85 190 28.7 6.60***
86 130 25.5 5.09***
87 84 29.3 2.88**
88 152 24.8 6.13***
89 61 26.3 2.32*
90 218 30.5 7.14***
91 252 27.7 9.10***
92 118 26.7 4.42***
93 98 25.5 3.84***
94 78 24.1 3.23**
95 128 23.8 5.36***
96 31 22.9 1.34
97 21 24.4 0.84
98 130 25.9 5.03***
99 94 24.1 3.88***
100 69 25.5 2.70**
101 116 26.3 4.39***
102 143 25.9 5.51***
103 102 29.3 3.49***
104 37 24.4 1.52
105 89 28.2 3.14**
106 114 23.5 4.87***
107 114 27.2 4.20***
108 89 27.7 3.19**
109 106 27.2 3.90***
110 93 25.9 3.60***
111 69 26.3 2.63**
112 51 32 1.58
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113 34 23.5 1.44
114 54 25.5 2.12*
115 134 24.8 5.41***
116 110 27.7 3.96***
117 66 27.7 2.39*
118 109 28.2 3.85***
119 94 29.9 3.15**
120 126 25.5 4.93***
121 90 24.8 3.61***
122 52 25.9 2*
123 10 23.8 0.44
124 79 26.7 2.96**
125 49 24.8 1.97*
126 121 24.4 4.97***
127 52 24.1 2.16*
128 57 24.4 2.31*
129 109 24.8 4.40***
130 46 26.3 1.75.
131 76 24.1 3.17**
132 99 29.3 3.37***
133 63 24.8 2.52*
134 91 27.7 3.27**
135 38 27.7 1.36
136 125 25.1 4.95***
137 39 23.5 1.68.
138 86 25.9 3.33***
139 198 32.8 6.03***
140 82 23.5 3.50***
141 44 23.8 1.84.
142 76 23.5 3.22**
143 145 25.9 5.60***
144 -8 25.9 -0.31
145 97 31.2 3.10**
146 98 24.1 4.08***
147 63 24.1 2.59**
148 -14 24.4 -0.57
149 56 25.1 2.21*
150 -8 25.5 -0.33
151 96 26.3 3.65***
152 10 23.2 0.44
153 154 24.1 6.38***
154 31 26.3 1.18
155 61 24.1 2.54*
156 170 24.4 6.98***
157 118 23.8 4.95***
158 70 23.5 3.00**
159 190 25.1 7.57***

Note. .p < .1, *p < .05, **p < .01, ***p < .001 

Mean difference of RTs (ms) and Standard error for Transition 3 of the constituent [01101] in non-ambiguous
structural context by Position and Participants

Participants Position 
before - after 

Std.Error T-value

1 -92 26 -3.53***
2 -44 23.5 -1.89.
3 54 26.4 2.06*
4 -99 24.2 -4.10***
5 -105 27.8 -3.78***
6 -66 23.9 -2.77**
7 -3 29.4 -0.10
8 14 32.9 0.43
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9 -30 26 -1.16
10 -46 28.3 -1.63
11 -50 25.6 -1.94.
12 -49 29.4 -1.68.
13 -5 24.9 -0.19
14 -10 26 -0.36
15 -47 27.8 -1.70.
16 -72 24.2 -2.99**
17 -40 30.7 -1.30
18 -89 23.5 -3.78***
19 -10 30.7 -0.33
20 -37 28.8 -1.27
21 -22 24.2 -0.92
22 67 28.3 2.36*
23 -69 26 -2.63**
24 -54 24.2 -2.22*
25 24 23.9 1.00
26 -2 24.2 -0.08
27 -35 25.2 -1.37
28 -12 29.4 -0.4
29 32 33.7 0.95
30 -17 24.5 -0.68
31 -13 23.5 -0.54
32 -3 32.9 -0.10
33 -55 24.2 -2.28*
34 37 24.5 1.52
35 6 23.5 0.23
36 -121 27.3 -4.42***
37 -48 26.8 -1.80.
38 -65 24.5 -2.64**
39 -15 26 -0.59
40 -71 27.8 -2.55*
41 -22 24.2 -0.92
42 -94 24.2 -3.88***
43 -7 26.8 -0.25
44 -20 30 -0.66
45 34 26.8 1.25
46 -124 23.5 -5.26***
47 -43 24.9 -1.71.
48 -63 23.2 -2.71**
49 -36 26.8 -1.32
50 -13 27.8 -0.47
51 -79 27.8 -2.82**
52 -38 25.2 -1.48
53 -17 26 -0.65
54 -28 23 -1.21
55 -29 30.7 -0.93
56 -63 29.4 -2.14*
57 -26 23 -1.14
58 -58 26.4 -2.19*
59 -29 24.9 -1.17
60 6 26.4 0.22
61 -56 23.9 -2.34*
62 -20 26 -0.76
63 -115 26.8 -4.28***
64 -59 26 -2.27*
65 -35 31.3 -1.10
66 -66 25.2 -2.59**
67 -88 28.3 -3.09**
68 -60 26.4 -2.28*
69 -40 24.9 -1.59
70 -40 30.7 -1.31
71 44 33.7 1.31
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72 -64 30.7 -2.07*
73 15 26 0.56
74 27 26.4 1.01
75 -56 27.8 -2.00*
76 12 24.2 0.48
77 -13 26.4 -0.47
78 37 24.2 1.52
79 -103 24.5 -4.20***
80 -35 28.3 -1.23
81 -37 24.2 -1.53
82 -10 28.3 -0.36
83 -14 24.9 -0.56
84 -43 26 -1.65.
85 -65 28.8 -2.24*
86 -117 25.6 -4.56***
87 -42 29.4 -1.44
88 -59 24.9 -2.36*
89 -60 26.4 -2.28*
90 -84 30.7 -2.72**
91 -24 27.8 -0.84
92 -53 26.8 -1.97*
93 -151 25.6 -5.90***
94 -52 24.2 -2.13*
95 -66 23.9 -2.74**
96 -62 23 -2.71**
97 -38 24.5 -1.53
98 -74 26 -2.86**
99 -50 24.2 -2.05*
100 7 25.6 0.27
101 -17 26.4 -0.66
102 -99 26 -3.82***
103 -28 29.4 -0.95
104 -43 24.5 -1.73.
105 -50 28.3 -1.77.
106 -50 23.5 -2.12*
107 -33 27.3 -1.20
108 -58 27.8 -2.07*
109 17 27.3 0.61
110 -54 26 -2.09*
111 -30 26.4 -1.15
112 -35 32.1 -1.09
113 -30 23.5 -1.25
114 -52 25.6 -2.01*
115 -18 24.9 -0.72
116 -40 27.8 -1.42
117 5 27.8 0.19
118 -55 28.3 -1.93.
119 -41 30 -1.36
120 -43 25.6 -1.66.
121 -77 24.9 -3.09**
122 -3 26 -0.11
123 -36 23.9 -1.52
124 41 26.8 1.53
125 9 24.9 0.35
126 -78 24.5 -3.18**
127 -61 24.2 -2.51*
128 46 24.5 1.88.
129 -92 24.9 -3.70***
130 -28 26.4 -1.06
131 -11 24.2 -0.46
132 -55 29.4 -1.86.
133 -13 24.9 -0.51
134 -36 27.8 -1.29
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135 -16 27.8 -0.59
136 -134 25.2 -5.32***
137 -31 23.5 -1.31
138 -34 26 -1.29
139 -5 32.9 -0.15
140 -48 23.5 -2.04*
141 -15 23.9 -0.61
142 -66 23.5 -2.79**
143 -73 26 -2.80**
144 -92 26 -3.55***
145 -100 31.3 -3.18**
146 -74 24.2 -3.04**
147 -56 24.2 -2.32*
148 -56 24.5 -2.27*
149 -1 25.2 -0.03
150 -93 25.6 -3.62***
151 -102 26.4 -3.86***
152 -48 23.2 -2.04*
153 -88 24.2 -3.64***
154 -3 26.4 -0.09
155 -31 24.2 -1.28
156 -104 24.5 -4.25***
157 -59 23.9 -2.46*
158 -12 23.5 -0.50
159 -109 25.2 -4.32***

Note. .p < .1, *p < .05, **p < .01, ***p < .001 

Mean difference of RTs (ms) and Standard error for Transition 4 of the constituent [01101] in non-ambiguous
structural context by Position and Participants

Participants Position 
before - after 

Std.Error T-value

1 11 25.6 0.42
2 42 23.2 1.78.
3 -109 26 -4.17***
4 34 23.8 1.43
5 42 27.4 1.53
6 -49 23.5 -2.07*
7 -58 29 -2.01*
8 -108 32.4 -3.32***
9 30 25.6 1.17
10 -9 27.9 -0.34
11 -252 25.2 -9.97***
12 -56 29 -1.94.
13 16 24.5 0.65
14 13 25.6 0.49
15 -132 27.4 -4.81***
16 36 23.8 1.52
17 -76 30.2 -2.50*
18 -18 23.2 -0.75
19 -24 30.2 -0.79
20 -58 28.4 -2.05*
21 -48 23.8 -2.01*
22 -180 27.9 -6.43***
23 -12 25.6 -0.48
24 -42 23.8 -1.77.
25 30 23.5 1.26
26 -32 23.8 -1.35
27 -74 24.9 -2.97**
28 -84 29 -2.9**
29 -22 33.3 -0.67
30 8 24.2 0.34
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31 43 23.2 1.85.
32 -75 32.4 -2.30*
33 6 23.8 0.25
34 18 24.2 0.74
35 13 23.2 0.54
36 -30 26.9 -1.10
37 -62 26.5 -2.33*
38 30 24.2 1.24
39 -72 25.6 -2.80**
40 4 27.4 0.16
41 -10 23.8 -0.40
42 -43 23.8 -1.81.
43 -39 26.5 -1.49
44 -75 29.6 -2.52*
45 -25 26.5 -0.93
46 42 23.2 1.79.
47 6 24.5 0.26
48 25 22.9 1.08
49 -87 26.5 -3.28**
50 -19 27.4 -0.70
51 5 27.4 0.19
52 20 24.9 0.81
53 20 25.6 0.78
54 14 22.6 0.6
55 -127 30.2 -4.19***
56 -9 29 -0.29
57 -7 22.6 -0.31
58 -163 26 -6.26***
59 -99 24.5 -4.05***
60 -65 26 -2.49*
61 -48 23.5 -2.02*
62 -27 25.6 -1.05
63 3 26.5 0.10
64 -45 25.6 -1.75.
65 -89 30.9 -2.87**
66 16 24.9 0.63
67 -95 27.9 -3.42***
68 -68 26 -2.61**
69 -5 24.5 -0.18
70 -47 30.2 -1.54
71 -81 33.3 -2.42*
72 -91 30.2 -3.01**
73 -36 25.6 -1.40
74 -104 26 -3.98***
75 26 27.4 0.96
76 -6 23.8 -0.26
77 -61 26 -2.33*
78 4 23.8 0.16
79 -6 24.2 -0.25
80 21 27.9 0.74
81 9 23.8 0.38
82 -40 27.9 -1.42
83 -10 24.5 -0.39
84 -67 25.6 -2.63**
85 -145 28.4 -5.08***
86 20 25.2 0.80
87 -44 29 -1.52
88 -56 24.5 -2.28*
89 -4 26 -0.17
90 -102 30.2 -3.38***
91 -279 27.4 -10.16***
92 -68 26.5 -2.57*
93 114 25.2 4.52***
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94 -18 23.8 -0.76
95 -39 23.5 -1.66.
96 34 22.6 1.50
97 1 24.2 0.05
98 -95 25.6 -3.70***
99 -57 23.8 -2.4*
100 -50 25.2 -1.97*
101 -80 26 -3.08**
102 -35 25.6 -1.34
103 -40 29 -1.37
104 31 24.2 1.29
105 -98 27.9 -3.49***
106 -34 23.2 -1.47
107 -65 26.9 -2.41*
108 -30 27.4 -1.08
109 -74 26.9 -2.73**
110 -14 25.6 -0.55
111 0 26 0.01
112 -12 31.6 -0.36
113 -4 23.2 -0.18
114 1 25.2 0.02
115 -189 24.5 -7.69***
116 -38 27.4 -1.39
117 -80 27.4 -2.93**
118 -66 27.9 -2.37*
119 -65 29.6 -2.19*
120 -57 25.2 -2.25*
121 -9 24.5 -0.37
122 -49 25.6 -1.90.
123 10 23.5 0.42
124 -125 26.5 -4.72***
125 -51 24.5 -2.08*
126 -31 24.2 -1.27
127 6 23.8 0.23
128 -107 24.2 -4.41***
129 -5 24.5 -0.20
130 5 26 0.20
131 -12 23.8 -0.48
132 -64 29 -2.2*
133 -47 24.5 -1.92.
134 -36 27.4 -1.32
135 21 27.4 0.75
136 85 24.9 3.43***
137 -11 23.2 -0.48
138 13 25.6 0.52
139 -151 32.4 -4.66***
140 -35 23.2 -1.51
141 -28 23.5 -1.19
142 -19 23.2 -0.80
143 -67 25.6 -2.60**
144 94 25.6 3.67***
145 67 30.9 2.15*
146 -10 23.8 -0.42
147 -5 23.8 -0.21
148 58 24.2 2.40*
149 -47 24.9 -1.89.
150 83 25.2 3.29***
151 36 26 1.38
152 45 22.9 1.95.
153 -64 23.8 -2.68**
154 -14 26 -0.53
155 -27 23.8 -1.13
156 -106 24.2 -4.36***
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157 -54 23.5 -2.28*
158 -49 23.2 -2.09*
159 -47 24.9 -1.88.

Note. .p < .1, *p < .05, **p < .01, ***p < .001 

S2 - Data reported in Chapter 2

Deidentified  associated  with  Chapter  2  can  be  found  electronically  at https://osf.io/8n9he/?

view_only=6f4b42d8e0d7429a984d9a8ff96ad4ba

7.2 Supplementary materials for Chapter 3

S3 - Data reported in Chapter 3

Deidentified  data  collected  in  Experiments  1  and  2  of  Chapter  3  are  posted  at  https://osf.io/jauq3/?

view_only=86efbe9dfa66487284da6d7039de3643.

7.3 Supplementary materials for Chapter 5

S4- List of n-grams used in the PARSER simulation

Each list contains all possible n-grams in Fib for a given length. Since PARSER can track up to 10 lists

simultaneously, we have considered all possible n-grams up to a length of 10.

Lenght Identity Lenght Identity

1-grams 1 5-grams 11011

0 11010

2-grams 01 10110

10 10101

11 01101

3-grams 110 01011

101 6-grams 110110

011 110101

010 101101

4-grams 1101 101011

1011 011011

1010 011010

0110 010110

0101
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Lenght Identity Lenght Identity

7-grams 1101101 10-grams 1101101011

1101011 1101011010

1011011 1101011011

1011010 1011011010

1010110 1011010110

0110101 1010110110

0110110 1010110101

0101101 0110110101

8-grams 11011010 0110101101

11010110 0101101101

10110110 0101101011

10110101

10101101

01101101

01101011

01011011

01011010

9-grams 110110101

110101101

101101101

101101011

101011011

101011010

011011010

011010110

010110110

010110101
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