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a b s t r a c t 

Given the controversy about the impact of modifiable risk factors on mood and cognition in ageing, we 

sought to investigate the associations between cardio-vascular risk, mental health, cognitive performance 

and brain anatomy in mid- to old age. We analyzed a set of risk factors together with multi-parameter 

magnetic resonance imaging (MRI) in the CoLaus|PsyCoLaus cohort (n > 1200). Cardio-vascular risk was 

associated with differences in brain tissue properties – myelin, free tissue water, iron content – and re- 

gional brain volumes that we interpret in the context of micro-vascular hypoxic lesions and neurode- 

generation. The interaction between clinical subtypes of major depressive disorder and cardio-vascular 

risk factors showed differential associations with brain structure depending on individuals’ lifetime tra- 

jectory. There was a negative correlation between melancholic depression, anxiety and MRI markers of 

myelin and iron content in the hippocampus and anterior cingulate. Verbal memory and verbal fluency 

performance were positively correlated with left amygdala volumes. The concomitant analysis of brain 

morphometry and tissue properties allowed for a neuro-biological interpretation of the link between 

modifiable risk factors and brain health. 

© 2021 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

Despite the positive aspects of rising longevity worldwide 

( Foreman et al., 2018 ; Kontis et al., 2017 ), ageing-associated brain 
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disorders such as Alzheimer’s disease, vascular dementia, and 

late-life depression present an increasing burden on older indi- 

viduals and society. The association between ageing and cognitive 

decline is modulated by a plenitude of known (e.g. the apolipopro- 

tein APOE ∗e4 allele) and unknown genetic factors, by environmen- 

tal ( Killin et al., 2016 ), lifestyle and cardio-vascular risk factors 

(CVRFs) ( Kivipelto et al., 2018 ), that act across the entire lifes- 

pan. Similarly for mood disorders, recent evidence supports the 

link between late-life depression and cardio-vascular risk in the 

context of ageing ( van den Berg et al., 2019 ). Much less is known 
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about the neuro-biological mechanisms related to the main effects 

and interactions between cardio-vascular risk factors, which could 

explain individuals’ affective or cognitive outcomes. 

There is strong empirical evidence supporting the impact of 

CVRFs on cognitive performance in old age ( Deckers et al., 2017 ; 

Leritz et al., 2011 ; Marseglia et al., 2019 ). Already in middle-aged 

cognitively healthy adults, CVRFs have strong predictive value 

for future cognitive outcome ( Takeda et al., 2017 ). Studies in 

older populations confirmed the importance of CVRFs-associated 

micro-vascular white matter lesions for individuals’ cognitive 

performance ( Prins and Scheltens, 2015 ) that is further modulated 

by metabolic and inflammatory factors ( Wang et al., 2016 ). 

Evidence suggest that the relationship between CVRFs and 

mood disorders is bidirectional. Large-scale epidemiological stud- 

ies reported an association between early-life CVRFs and higher 

risk for late-life depression ( ̊Aberg et al., 2012 ; Baghai et al., 2011 ), 

suicidal behavior ( ̊Aberg et al., 2014 ), anxiety and depression 

symptoms ( Jani et al., 2014 ). At the same time, major depressive 

disorder (MDD) is viewed as an independent CVRF ( Van der 

Kooy et al., 2007 ) given its association with increased mortality 

( Dhar and Barton, 2016 ; Fiedorowicz, 2014 ), coronary heart disease 

( Vaccarino et al., 2020 ), arterial hypertension, tobacco use, obesity, 

low physical exercise capacity, and dyslipidemia ( Rubin et al., 

2010 ). 

The widespread use of computational anatomy methods 

for analyzing magnetic resonance imaging (MRI) data, helped 

demonstrating characteristic brain patterns associated either with 

cognitive decline ( Ruan et al., 2016 ), depression ( Geerlings and 

Gerritsen, 2017 ; Woelfer et al., 2019 ) or CVRFs ( Cox et al., 2019 ; 

Hamer and Batty, 2019 ). The emergence of large-scale cohorts 

with brain MRI data acquisition in the general population as 

exemplified by the UK Biobank ( Miller et al., 2016 ; Sudlow et al., 

2015 ) and Cam-CAN ( Shafto et al., 2014 ), allowed investigating 

the relationship between CVRFs and brain anatomy in older 

age. However, the inferences derived from these studies were 

mostly based on T1-weighted MRI protocols that can result in 

spurious morphometric findings ( Lorio et al., 2016 ). Advances in 

quantitative MRI (qMRI) sensitive to iron, myelin and MR-visible 

water proved the robustness of relaxometry-based measurements 

against artefactual estimation of regional brain volume or cortical 

thickness due to MR contrast changes caused by underlying tissue 

property alterations in brain development ( Natu et al., 2019 ) and 

ageing ( Lorio et al., 2016 ; Taubert et al., 2020 ). To date, there were 

no studies investigating CVRFs-related brain tissue property differ- 

ences in the context of cognitive and mental health in the general 

population. 

Here, we sought to investigate in a large-scale (n = 1261), 

population-based sample of adults (BrainLaus cohort age range 

45-86 years old from the CoLaus|PsyCoLaus N = 6734), the associ- 

ations between CVRFs, cognitive performance, and mood, together 

with their brain anatomy correlates. Our statistical modelling pro- 

ceeded in multiple stages. Prior to the analyses we ascertained that 

the BrainLaus cohort was exempt from sampling bias and repre- 

sentative of the parent population-based cohort CoLaus|PsyCoLaus. 

In the first stage, we identified associations among CVRFs, psycho- 

metric and cognitive outcomes. We then extended these analyses 

with the inclusion of brain measures of tissue property and vol- 

ume across all regions-of-interest (ROI). Finally, aiming to reduce 

the dimensionality of our model of multi-contrast MRI and multi- 

modal clinical observations, we analyzed brain volume and tissue 

microstructure in an informed subset of ROI. Building on our pre- 

vious work on the effects of age on brain volume, myelin and iron 

content ( Lorio et al., 2016 ; Taubert et al., 2020 ), we hypothesized 

that CVRFs would primarily correlate with brain myelin and tissue 

water content via micro-vascular hypoxic lesions. We predicted 

Fig. 1. Timeline of CoLaus|PsyCoLaus and the nested BrainLaus sub-study. 

that cognitive performance and mood would be associated with 

a differential pattern of volume and tissue property differences in 

specific cortical and subcortical brain structures. 

2. Materials and methods 

2.1. Participants 

Our study sample BrainLaus ( https://www.colaus-psycolaus.ch/ 

professionals/brainlaus/ ) is part of the CoLaus|PsyCoLaus cohort 

( Firmann et al., 2008 ; Preisig et al., 2009 ), a prospective follow-up 

study designed to determine the associations between CVRFs 

and mental disorders in the general population. A total of 6734 

individuals aged 35 to 75 years were recruited from the civil reg- 

istry of Lausanne, Switzerland between 2003 and 2006 (baseline) 

following a random selection procedure. There were two follow-up 

evaluations, which took place from 2009 to 2013 (first follow-up) 

and 2014 to 2018 (second follow-up). Among the 36 6 6 people who 

participated in the second psychiatric follow-up evaluation, 1324 

accepted to take part in the brain imaging investigation (Brain- 

Laus). After quantitative MRI data quality assessment (see 2.3 

Data quality assessment ) we excluded 63 participants (4.7%), which 

resulted in 1261 participants included in the analyses ( Fig. 1 ). The 

CoLaus|PsyCoLaus study and the BrainLaus nested study received 

approval from the local Ethics Committee and participants signed 

written informed consent prior to inclusion in the study. 

2.2. MRI protocol and data processing 

We acquired magnetic resonance images on a 3T whole-body 

MRI system (Magnetom Prisma, Siemens Medical Systems, Ger- 

many), using a 64-channel radio-frequency (RF) receive head coil 

https://www.colaus-psycolaus.ch/professionals/brainlaus/
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Fig. 2. Group-average anatomical multi-parameter maps R1, R2 ∗ , MT, and PD ∗ (n = 1261). 

and body coil for transmission. The qMRI protocol included three 

multi-echo 3D fast low angle shot (FLASH) acquisitions with mag- 

netization transfer-weighted (MTw: TR = 24.5 ms, α = 6 °), proton 

density-weighted (PDw: TR = 24.5 ms, α = 6 °), and T1-weighted 

(TR = 24.5 ms, α = 21 °) contrasts at 1 mm isotropic resolution 

( Draganski et al., 2011 ; Weiskopf et al., 2013 ). To correct for the 

effects of RF transmit field inhomogeneities ( Lutti et al., 2014 ), 

B1 mapping data was acquired using the 3D EPI spin-echo and 

stimulated echo method described in ( Lutti et al., 2010 ; Lutti et al., 

2012 ) (4 mm 

3 resolution, TE = 39.06 ms, TR = 500 ms). B0-field 

mapping data was acquired to correct image distortions in the EPI 

data (2D double-echo FLASH sequence with slice thickness = 2 

mm, TR = 1020 ms, TE1/TE2 = 10/12.46 ms, α = 90 °, BW = 260 

Hz/pixel). The total acquisition time was 27 min. 

Quantitative MRI maps were calculated from the raw data as 

described in ( Helms et al., 2008a ; Helms et al., 2008b ) using the 

VBQ toolbox ( Draganski et al., 2011 ; Tabelow et al., 2019 ). We 

used maps of magnetization transfer saturation (MT) indicative 

for tissue myelin ( Callaghan et al., 2014 ; Helms et al., 2008a ; 

Stanisz et al., 1999 ), transverse relaxation rate (R2 ∗ = 1/T2 ∗) –

iron content ( Fukunaga et al., 2010 ; Stüber et al., 2014 ; Yao et al., 

2009 ), effective longitudinal relaxation rate (R1 = 1/T1) - myelin 

and iron content ( Lutti et al., 2014 ), and effective proton density 

(PD 

∗) - tissue water content ( Lin et al., 1997 ; Watanabe et al., 

2019 ). PD 

∗ maps were normed with a scaling procedure such that 

mean values in the white matter (WM) agreed with the published 

level of 69% ( Tofts, 2003 , chapter 4), which precludes from analyz- 

ing PD 

∗ values in the WM. Group-average multi-parameter maps 

are shown in Fig. 2 . 

All structural data were processed in the framework of Sta- 

tistical Parametric Mapping SPM12 ( www.fil.ion.ucl.ac.uk/spm ; 

Wellcome Trust Centre for Neuroimaging, London) using cus- 

tomized MATLAB tools (The Mathworks, Sherborn, MA, USA). We 

performed automated tissue classification using the multi-channel 

option of SPM12 “unified segmentation” with MT and PD maps and 

enhanced tissue priors ( Lorio et al., 2016 ) that yielded gray matter 

(GM), WM, and cerebrospinal fluid (CSF) maps. Total intracranial 

volumes were calculated as the sum of GM, WM, and CSF volumes. 

For analysis within a predefined set of ROIs, we calculated 

GM regional averages of tissue volume, MT, R2 ∗, PD 

∗, and R1 

using the probabilistic and maximum probability tissue labels 

derived from the “MICCAI 2012 Grand Challenge and Work- 

shop on Multi-Atlas Labeling” ( https://my.vanderbilt.edu/masi/ 

about-us/resources-data/ ) with 125 cortical and subcortical la- 

bels. The labels were spatially registered to individuals’ native 

space using SPM12 ′ s diffeomorphic “geodesic shoot” registration 

( Ashburner and Friston, 2011 ). 

2.3. Data quality assessment 

An automated quality assessment procedure was used to 

flag images potentially deteriorated by intra- and inter-sequence 

motion artefacts. The latter were estimated from co-registration 

parameters of MTw and T1w data to the corresponding PDw 

(threshold = 0.05 ° for rotations and 3.5 mm for translations). Intra- 

sequence motion was flagged using the homogeneity (SD/mean) 

of PDw signal (threshold = 0.1) and from the standard deviation 

of R2 ∗ in the WM calculated from both T1w and PDw images 

(threshold = 4.5 × 10 -3 ms −1 ) which correlates to individuals’ 

head motion ( Castella et al., 2018 ). Two experienced neurosci- 

entists visually inspected all data surpassing at least one of the 

mentioned thresholds. With 94% agreement, they excluded 17 

participants’ data from the final analysis. Additionally, to exclude 

images with macroscopic brain abnormalities, we created for each 

individual a binary mask per tissue class (GM, WM, CSF) with a 

probability threshold > 0.2 and compared the number of voxels 

to a canonical group-average tissue map. Among the individuals 

with fewer voxels in a given tissue class, we identified those 

surpassing the mean number of missing voxels + 2 SD, excluding 

46 additional individuals from the final analysis. 

2.4. Clinical and behavioral assessments 

Measures of CVRFs collected from questionnaires, blood sam- 

ples, anthropometric, medication and blood pressure assessments 

resulted in a comprehensive set indicative of disease history and 

cardio-vascular risk ( Firmann et al., 2008 ). Aiming at dimensional- 

ity reduction for the planned multivariate analyses, we calculated 

previously established aggregate CVRF scores (aCVRF; Cox et al., 

2019 ) from individuals’ assessment of hypertension, diabetes, 

dyslipidemia, tobacco use, body mass index > 25, waist-to-hip 

ratio > 0.85 for females or > 0.90 for males. 

The psychiatric evaluation ( Preisig et al., 2009 ) included the 

semi-structured Diagnostic Interview for Genetic Studies (DIGS; 

Nurnberger, 1994 ). Diagnoses were assigned according to the 

Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR; 

American Psychiatric Association, 20 0 0 ). Atypical and melancholic 

major depressive episodes were diagnosed according to the DSM- 

IV specifiers. For atypical episodes the presence of mood reactivity 

as well as two of the following four features were required: i. 

increased appetite, ii. hypersomnia, iii. leaden paralysis, and iv. 

interpersonal rejection sensitivity. For melancholic episodes a loss 

of pleasure or a lack of mood reactivity was required as well 

as three of the following five symptoms: i. depression regularly 

worse in the morning, ii. early morning awakening, iii. psychomo- 

tor retardation or agitation, iv. decreased appetite, and v. excessive 

guilt. Participants diagnosed with MDD were classified into one of 

three categories: i. atypical MDD if they presented atypical but not 

melancholic episodes, ii. melancholic MDD with melancholic but 

not atypical episodes, or iii. unspecified MDD if they presented 

features from neither or both subtypes. The latter category was 

not analyzed in the present study because of its heterogeneity. 

Late-life MDD was defined as MDD occurring after the age of 

50 years. Bipolar disorder included both types I and II. Anxiety 

http://www.fil.ion.ucl.ac.uk/spm
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disorders were defined as presenting at least one of the following 

characteristics: agoraphobia, generalized anxiety disorder, panic 

disorder, and social phobia (or social anxiety disorder). 

Participants older than 65 years were further tested with 

a standard cognitive test battery, including the Clinical De- 

mentia Rating (CDR; Morris, 1993 ), Grober & Buschke Double 

Memory Test (DMT; Buschke et al., 1997 ), a verbal fluency task 

( Cardebat et al., 1990 ) and the Stroop color test ( Stroop, 1935 ). The 

verbal fluency score consisted of the number of words correctly 

produced in a total of 5 min divided between category (seman- 

tic) and letter (phonemic) word production segments. A Stroop 

interference index was calculated by taking the mean time to 

name incongruent colors (interference) divided by the mean time 

to name congruent colors (no interference). The Mini-Mental State 

Examination (MMSE; Folstein et al., 1975 ) was also assessed in 

all participants older than 60 years. Aiming to ease interpretation 

of linear regression analyses, we changed the valence of CDR and 

Stroop interference scores - in such a way higher scores reflected 

better performance, similarly to other cognitive scores. 

All analyses were done using assessments from the second 

study follow-up, except for lifetime psychiatric measures, which 

included the whole life period from birth to the second study 

follow-up. For a comprehensive list of variables see Supplementary 

Table 1. 

2.5. Socio-economic status 

We collected information about monthly household gross in- 

come, highest educational attainment, and last known occupational 

position by questionnaire. Monthly income was divided into three 

categories: up to 4999 CHF (low), 50 0 0-9499 CHF (middle), and 

more than 9500 CHF (high). Educational attainment was grouped 

into three levels: mandatory school or apprenticeship (low), high 

school diploma or upper secondary education (middle), and uni- 

versity degree (high). Occupational position was classified into 

three levels according to the European Socio-Economic Classifica- 

tion (ESEC) scale ( www.iser.essex.ac.uk/archives/esec/user-guide ). 

All three SES measures were included in the extensive association 

analyses between risk factors and brain structure. Educational level 

was also used as a covariate of no interest in analyses involving 

cognitive scores to control for known education effects. 

2.6. Statistical analyses 

Aiming to exclude potential selection bias, we compared 

BrainLaus participants to all other CoLaus|PsyCoLaus participants 

using independent samples t-tests for continuous variables and 

chi-square tests for categorical variables. For cases of significant 

difference between samples, we used ordinary least squares 

(OLS) regression for continuous variables or logistic regression 

for binary variables to test whether age, sample (BrainLaus 

participants vs. all other CoLaus|PsyCoLaus participants), or 

age × sample interaction explained the observed differences. 

We then calculated correlations between pairs of non-imaging 

variables using correlation measures adapted to variable types 

(i.e. the Phi coefficient for dichotomous-dichotomous variables 

pairs, Point-Biserial correlation for dichotomous-continuous pairs, 

Pearson’s correlation for continuous-continuous pairs, and Spear- 

man’s rank correlation for pairs involving ordinal variables with 

more than two levels). Formally, we tested pairwise associa- 

tions between each of the eight assessed CVRFs (body mass 

index (BMI), waist/hip ratio, obesity, hypertension, dyslipidemia, 

diabetes, smoking, physical activity) and three MDD subtypes 

(atypical, melancholic, late-life) using logistic regression with age 

and sex as covariates, and between the eight CVRFs and five 

cognitive test scores (MMSE, CDR, DMT, verbal fluency, Stroop) 

using OLS regression with age, sex, and educational level as 

covariates. 

For extensive analyses on all 121 GM and four WM regions, we 

regressed values in each of the 125 ROIs against each of the 138 

non-imaging measures (listed in Supplementary Table 1) using 

OLS regression, including age, age 2 , sex, and total intracranial 

volume as covariates to the models. We used identical statistical 

designs for the analysis of GM volume, R1, R2 ∗, MT, and PD 

∗. 

For hypothesis-driven analyses, we used an identical statistical 

design restricted to eight bilateral GM regions and 16 non-imaging 

measures consisting of the main CVRFs, psychiatric diagnoses, and 

cognitive test scores. The ROI selection was based on the assump- 

tion of their specific involvement in mood disorders ( Smagula and 

Aizenstein, 2016 ; Ancelin et al., 2019; Wang et al., 2016 ) and 

cognitive function ( Helie et al., 2013 ; Tabatabaei-Jafari et al., 2015 ; 

Herrmann et al., 2019 ). The ROIs include the anterior cingulate 

cortex (ACC), anterior insula, hippocampus, amygdala, caudate, 

putamen, accumbens, and pallidum, in addition to bilateral 

cerebral WM ( Fig. 4 ). 

To assess the unique contribution of CVRFs and MDD to the 

variance in brain anatomy features, we performed a Multivariate 

Analysis of Variance (MANOVA) testing the explanatory power 

of a combination of MDD diagnosis and CVRFs – hypertension, 

diabetes, dyslipidemia, obesity, and current tobacco use – on all 

brain ROI values combined. BMI and waist/hip ratio were not 

included because of the shared variance with obesity. We tested 

the main effects of CVRFs and lifetime MDD as well as interactions 

between CVRFs and MDD subtypes (atypical, melancholic, and 

late-life MDD). All models were calculated separately for the GM 

volume, R1, R2 ∗, MT, PD 

∗ maps and included age, sex, and TIV as 

covariates. 

We used an identical statistical design for cognitive perfor- 

mance instead of MDD diagnosis. Given that cognitive scores were 

assessed only in BrainLaus individuals above 65 yo, we abstained 

from using separate CVRFs as above aiming to reduce the loss of 

degrees of freedom. Instead, we used the calculated aCVRF score 

and tested the main effects and interaction effects of aCVRF and 

cognitive scores, with educational level as additional covariate. 

We report results significant at a threshold p-value < 0.05, after 

applying Bonferroni correction for multiple comparisons and False 

Discovery Rate (FDR) correction ( Benjamini and Hochberg, 1995 ) 

where deemed appropriate. 

We used Python 3.7 NumPy, Pandas, Statsmodels, and SciPy 

packages to perform all the statistical analyses. 

3. Results 

3.1. Sample representativeness validation 

The comparison between BrainLaus participants and the rest of 

the cohort of 36 6 6 with second psychiatric follow-up showed that 

BrainLaus individuals were younger (mean age difference = 4.0 yrs, 

t 3,664 = 11.5, p < 0.001), though with a small effect size (d = 0.4). 

We observed differences in several socio-demographic, somatic, 

psychiatric, and cognitive measures between cohorts (see Table 1 ). 

Linear regression analyses (Supplementary Tables 2 and 3) showed 

that all effects were explained by the age difference, and not by 

the sample (BrainLaus participants vs. all other CoLaus|PsyCoLaus 

participants) or age × sample interaction. 

3.2. Demographic determinants of health 

We show that age was associated with an increased waist-to- 

hip ratio, higher rates of hypertension, dyslipidemia, and diabetes, 

http://www.iser.essex.ac.uk/archives/esec/user-guide
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Table 1 

Comparison between BrainLaus participants and the rest of CoLaus|PsyCoLaus at follow-up 2 

PsyCoLaus (n = 3666) BrainLaus (n = 1261) Non-BrainLaus (n = 2405) T / χ 2 p value 

Age (mean, SD), yrs 62.9 (10.3) 60.2 (9.2) 64.2 (10.5) 12 < 0.001 

Sex, % women 55.0 52.6 56.3 4.5 0.03 

SES (low/middle/high), % 

Income 26.3/43.8/30.0 22.9/43.1/34.0 28.3/44.2/27.6 17 < 0.001 

Educational level 50.9/27.2/21.8 48.2/27.7/24.1 52.4/27.0/20.7 7.3 0.03 

Last occupational position 42.8/42.3/14.9 43.1/40.9/16.0 42.6/43.1/14.3 1.8 0.4 

CVRFs 

BMI (mean, SD), kg/m2 26.4 (4.8) 25.9 (4.5) 26.6 (4.9) 4.1 < 0.001 

Waist/hip ratio (mean, SD) 0.89 (0.09) 0.88 (0.09) 0.89 (0.09) 3.9 < 0.001 

Obesity, % 18.8 15.3 20.7 15 < 0.001 

Hypertension, % 45.0 35.7 50.0 66 < 0.001 

Dyslipidemia, % 39.8 36.1 41.7 10 0.001 

Diabetes, % 10.0 6.2 12.0 29 < 0.001 

Smoking (current/former/never), % 18.8/39.2/42.0 19.7/36.9/43.4 18.4/40.5/41.1 4.1 0.1 

Physical activity (never, 1x/wk, 2x/wk, ≥3x/wk), % 32.3/10.6/56.0/1.1 30.4/12.2/56.4/1.0 33.3/9.7/55.8/1.1 6.8 0.08 

Psychiatric diagnoses and scores 

Lifetime MDD, % 48.9 50.6 48.0 2.2 0.1 

Atypical MDD, % 17.1 19.8 15.7 9.8 0.002 

Melancholic MDD, % 22.9 24.3 22.1 2.2 0.1 

Late-life MDD, % 21.5 20.1 22.2 1.9 0.2 

Lifetime bipolar disorder, % 2.2 2.8 1.9 2.8 0.1 

Lifetime anxiety disorders, % 19.7 21.3 18.8 3.2 0.07 

Lifetime GAF score (0-100) (mean, SD) 77.0 (11.5) 77.6 (10.8) 76.7 (11.8) 2.3 0.02 

STAI trait score (20-80) (mean, SD) 36.1 (10.4) 36.4 (10.3) 35.9 (10.5) 1.1 0.3 

Medication, % 

Antidepressant 11.0 11.6 10.7 0.7 0.4 

Tranquilizer 7.7 5.4 9.0 14 < 0.001 

Cognitive scores (only in ≥ 65 yrs) 

MMSE (0-30) (mean, SD) (in ≥ 60 yrs) 29.1 (1.5) 29.2 (1.4) 29.0 (1.5) 1.5 0.1 

CDR score (0/0.5/1), % 48.3/51.0/0.7 50.9/48.8/0.3 47.3/51.9/0.8 2.0 0.4 

DMT total free recall (0-64) (mean, SD) 41.3 (9.6) 42.2 (8.7) 41.0 (10.0) 2.0 0.05 

Verbal fluency nb. words (mean, SD) 58.1 (16.1) 58.5 (15.7) 57.9 (16.3) 0.6 0.6 

Stroop interference index (mean, SD) 2.20 (0.77) 2.18 (0.67) 2.21 (0.80) 0.5 0.6 

Comparison between BrainLaus and non-BrainLaus samples by independent samples t tests (continuous variables) or chi-square tests (categorical variables). 

Key: BMI, body mass index; CDR, Clinical Dementia Rating; DMT, Grober & Buschke Double Memory Test; CVRFs, cardio-vascular risk factors; GAF, Global Assessment of 

Functioning; MDD, major depressive disorder; MMSE, Mini-Mental State Examination; SES, socioeconomic status; STAI, State-Trait Anxiety Inventory. 

and higher occupational position (r ranging 0.09 – 0.37, full corre- 

lation matrix in Supplementary Fig. 1). Older age correlated with 

lower income and education level, lower cognitive scores, lower 

prevalence of MDD (except late-life MDD) and anxiety disorders 

(r ranging -0.32 to −0.09). We observed sex differences in several 

categories ( Table 2 ) – women had a better overall cardio-vascular 

health, a lower socio-economic status (SES), they were more fre- 

quently diagnosed with MDD and anxiety disorders, scored higher 

on the verbal memory scale and lower on the CDR (|r| ranging 

0.08 – 0.58). 

3.3. Cardio-vascular risk factors, mood and cognitive performance 

Beyond the demographic characteristics, the strongest cor- 

relations appeared within each of the categories (SES, CVRFs, 

psychiatric diagnoses and scores, and cognitive scores). More 

precisely, there was a large shared variance between measures 

of SES (r ranging 0.31 – 0.55); CVRFs (|r| ranging 0.09 – 0.75) 

except smoking; psychometric scores (|r| ranging 0.03 – 0.50); 

and cognitive scores (|r| ranging 0.08 – 0.44). Additional analyses 

showed positive correlation between high SES and cardio-vascular 

health (|r| ranging 0.09 – 0.17), mood (|r| ranging 0.08 – 0.11), 

and cognitive performance (r ranging 0.14 – 0.31). CVRFs were 

negatively associated with cognitive outcome (r ranging -0.24 –

-0.09, Supplementary Fig. 1b). 

There was no significant correlation between CVRFs and psy- 

chometric scores when unadjusted for the demographic covariates. 

After adjustment for age and sex, we observed a significant corre- 

lation between atypical MDD, obesity and diabetes (OR of 2.14 and 

1.56 respectively, Table 3 ). The melancholic subtype of MDD cor- 

related with smoking habits (OR = 1.27 for each change in status 

from never smoked, to former smoker, to current smoker). Late-life 

MDD showed positive correlation with high BMI (OR = 1.02 for 

each additional point of BMI), dyslipidemia (OR = 1.25), smoking 

(OR = 1.30) and low physical activity (OR = 0.86 for each of the 

four activity frequencies). 

In models adjusted for age, sex, and education, all cognitive 

scores were related to at least one or more CVRFs ( Table 4 ). 

Waist-to-hip ratio was negatively correlated with all cognitive 

scores ( β = -0.93 for MMSE; 1.07 for CDR; -1.15 for DMT; -1.11 

for verbal fluency), except the Stroop test. Diabetes correlated 

negatively with all cognitive measures ( β = -0.21 for MMSE; 0.24 

for CDR; -0.26 for DMT; 0.24 for Stroop) except verbal fluency 

score. The proportion of explained variance in cognitive scores was 

relatively low (adjusted R 

2 ranging from 0.04 for Stroop to 0.15 for 

DMT). 

3.4. Whole-brain regional metrics, cardio-vascular risk and clinical 

phenotypes 

Fig. 3 shows the results of the analyses between regional 

brain metrics, cardio-vascular risk and clinical phenotypes. Among 

the 138 somatic and behavioral measures tested, the measures 

categorized as CVRF showed the strongest correlation with brain 

anatomy features ( Fig. 3 a) (threshold at P uncorrected = 5.83 × 10 −7 

with Bonferroni correction for multiple comparisons). Single vari- 

ables from other categories – the inflammation marker C-reactive 

protein, smoking status, the diagnostic entities brief psychotic 
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Table 2 

Sex differences in socioeconomic and clinical characteristics in the BrainLaus sample 

Overall (n = 1261) Men (n = 598) Women (n = 663) T/ χ 2 p value 

Age (mean, SD), yrs 60.2 (9.2) 59.7 (9.2) 60.7 (9.2) 2.0 0.05 

SES (low/middle/high), % 

Income 22.9/43.1/34.0 15.8/40.8/43.5 29.5/45.1/25.4 49 < 0.001 

Educational level 48.2/27.7/24.1 44.3/26.2/29.5 51.7/29.1/19.2 19 < 0.001 

Last occupational position 43.1/40.9/16.0 35.2/40.0/24.8 50.8/41.9/7.3 61 < 0.001 

CVRFs 

BMI (mean, SD), kg/m2 25.9 (4.5) 26.6 (3.8) 25.4 (5.0) 4.8 < 0.001 

Waist/hip ratio (mean, SD) 0.88 (0.09) 0.93 (0.07) 0.83 (0.07) 25 < 0.001 

Obesity, % 15.3 15.4 15.2 0.0 > 0.9 

Hypertension, % 35.7 40.6 31.3 11 < 0.001 

Dyslipidemia, % 36.1 44.9 28.3 37 < 0.001 

Diabetes, % 6.2 9.4 3.4 18 < 0.001 

Smoking (current/former/never), % 19.7/36.9/43.4 20.1/41.8/38.1 19.3/32.7/48.0 14 0.001 

Physical activity 

(never, 1x/wk, 2x/wk, ≥3x/wk), % 

30.4/12.2/56.4/1.0 31.7/15.9/51.5/0.8 29.2/8.7/60.8/1.2 19 < 0.001 

Psychiatric diagnoses and scores 

Lifetime MDD, % 50.6 38.6 61.4 64 < 0.001 

Atypical MDD, % 19.8 11.0 27.8 54 < 0.001 

Melancholic MDD, % 24.3 16.4 31.5 38 < 0.001 

Late-life MDD, % 20.1 13.2 26.4 33 < 0.001 

Lifetime bipolar disorder, % 2.8 2.7 2.9 0.0 > 0.9 

Lifetime anxiety disorders, % 21.3 17.1 25.2 12 < 0.001 

Lifetime GAF score (0-100) (mean, SD) 77.6 (10.8) 79.2 (10.2) 76.3 (11.2) 4.8 < 0.001 

STAI trait score (20-80) (mean, SD) 36.4 (10.3) 34.4 (9.3) 38.0 (10.7) 5.1 < 0.001 

Medication, % 

Antidepressant 11.6 7.3 15.5 20 < 0.001 

Tranquilizer 5.4 3.6 7.0 6.6 0.01 

Cognitive scores (only in ≥ 65 yrs) 

MMSE (0-30) (mean, SD) (in ≥ 60 yrs) 29.2 (1.4) 29.1 (1.7) 29.2(1.2) 1.5 0.1 

CDR score (0/0.5/1), % 50.9/48.8/0.3 42.1/57.1/0.7 57.2/42.8/0.0 8.5 0.01 

DMT total free recall (0-64) (mean, SD) 42.2 (8.7) 40.2 (8.8) 43.6 (8.3) 3.6 < 0.001 

Verbal fluency nb. words (mean, SD) 58.5 (15.7) 58.8 (16.4) 58.3 (15.3) 0.3 0.8 

Stroop interference index (mean, SD) 2.18 (0.67) 2.15 (0.58) 2.20 (0.73) 0.8 0.4 

Comparison between men and women by independent samples t-tests (continuous variables) or chi-square tests (categorical variables). 

Key: BMI, body mass index; CVRFs, cardio-vascular risk factors; CDR, Clinical Dementia Rating; DMT, Grober & Buschke Double Memory Test; GAF, Global Assessment of 

Functioning; MDD, major depressive disorder; MMSE, Mini-Mental State Examination; SES, socioeconomic status; STAI, State-Trait Anxiety Inventory. 

Table 3 

Univariate associations between depression subtypes and CVRFs adjusted for age and sex 

Atypical MDD Melancholic MDD Late-life MDD 

OR [95% CI] p OR [95% CI] p OR [95% CI] p 

BMI 1.07 [1.05 – 1.09] < 0.001 1.00 [0.98 – 1.01] 0.8 1.02 [1.00 – 1.04] 0.01 

Waist/hip ratio 16.3 [4.6 – 57.7] < 0.001 0.83 [0.26 – 2.60] 0.7 3.6 [1.2 – 11.3] 0.03 

Obesity 2.14 [1.73 – 2.65] < 0.001 1.04 [0.85 – 1.29] 0.7 1.25 [1.02 – 1.53] 0.03 

Hypertension 1.12 [0.92 – 1.36] 0.3 0.95 [0.80 – 1.14] 0.6 0.96 [0.80 – 1.15] 0.7 

Dyslipidemia 1.20 [0.99 – 1.20] 0.06 1.01 [0.85 – 1.20] 0.9 1.25 [1.05 – 1.48] 0.01 

Diabetes 1.56 [1.13 – 2.15] 0.006 0.91 [0.66 – 1.23] 0.5 1.18 [0.90 – 1.55] 0.2 

Smoking 1.13 [1.01 – 1.28] 0.04 1.27 [1.14 – 1.42] < 0.001 1.30 [1.16 – 1.45] < 0.001 

Physical activity 0.92 [0.84 – 1.01] 0.09 0.98 [0.90 – 1.07] 0.7 0.86 [0.79 – 0.86] 0.001 

Odds ratios (OR) with 95% confidence intervals (CI) and uncorrected p values are reported from logistic regression models 

where MDD measures were individually regressed against CVRFs, including age and sex as covariates. 

Significant associations after false discovery rate correction are indicated in bold. 

Key: BMI, body mass index; CI, confidence interval; CVRFs, cardio-vascular risk factors; MDD, major depressive disorder; 

OR, odds ratio. 

disorder and schizotypal personality disorder were also correlated 

with brain anatomy. When considering the less conservative FDR 

correction (threshold at P uncorrected = 1.46 × 10 −3 ), all categories 

of somatic, psychiatric, and socio-economic measures showed 

correlations with brain anatomy mainly in R1, R2 ∗, and MT maps 

( Fig. 3 b, showing respectively 659, 632, and 739 supra-threshold 

hits for R1, R2 ∗, and MT, while GM volume reached 198 supra- 

threshold hits). 

For the participants older than 65 yrs with cognitive test 

results and brain imaging (n = 564), the strongest association was 

with verbal fluency scores (threshold at P uncorrected = 6.19 × 10 -7 

with Bonferroni correction) ( Fig. 3 c). 

3.5. Whole-brain regional metrics - multi-variate analysis 

In a multivariate approach testing the contribution of a com- 

bination of CVRFs and MDD lifetime diagnosis to the variance of 

brain anatomy characteristics ( Table 5 , Model 1), we observed a 

significant contribution of hypertension, diabetes, dyslipidemia, 

obesity, and current smoking status, to brain anatomy across all 

measured MRI parameters (Wilk’s λ ranging 0.35–0.54, F 595-615 

ranging 1.2–2.1, p-values ranging 4.37 × 10 −42 –0.003). In addition 

to the main effect of CVRFs, there was a main effect of atypical 

MDD subtype in the MT map ( λ = 0.87, F 123 = 1.4, p = 0.009) 

and a main effect of late-life MDD in R2 ∗ ( λ = 0.86, F 123 = 1.4, 
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Table 4 

Univariate associations between cognitive scores and CVRFs after adjusting for age, sex, and educational level 

MMSE CDR’ DMT Verbal Fluency Stroop’ 

ß p ß p ß p ß p ß p 

BMI -0.01 0.3 -0.001 0.8 -0.003 0.6 -0.02 0.006 -0.01 0.03 

Waist/hip ratio -0.93 0.003 -1.07 0.006 -1.15 0.003 -1.11 0.005 -0.71 0.08 

Obesity -0.11 0.06 -0.01 0.9 -0.01 0.9 -0.20 0.005 -0.11 0.1 

Hypertension -0.05 0.3 -0.02 0.7 -0.13 0.3 -0.13 0.04 -0.06 0.3 

Dyslipidemia -0.04 0.4 -0.01 0.8 -0.01 0.8 -0.05 0.4 -0.15 0.01 

Diabetes -0.21 0.001 -0.24 0.003 -0.26 0.001 -0.17 0.03 -0.24 0.003 

Smoking -0.04 0.2 0.003 0.9 0.007 0.9 0.06 0.1 0.008 0.9 

Physical activity 0.08 0.001 0.05 0.07 0.07 0.02 0.07 0.03 0.08 0.009 

Beta coefficients (ß) and uncorrected p values are reported from OLS regression models where cognitive scores were 

individually regressed against CVRFs, including age, sex, and educational level as covariates. CDR and Stroop scores 

were multiplied by -1 for consistent (higher, better) directionality of scores (CDR’ and Stroop’). 

Significant associations after false discovery rate correction are indicated in bold. 

Key: BMI, body mass index; CDR, Clinical Dementia Rating; CVRFs, cardio-vascular risk factors; DMT, Grober & 

Buschke Double Memory Test; MMSE, Mini-Mental State Examination. 

Table 5 

MANOVA of R1, R2 ∗ , MT, PD ∗ , and volume in brain ROIs, with CVRFs and lifetime diagnosis of MDD as regressors 

R1 R2 ∗ MT PD ∗ Volume 

λ F (df) p λ F (df) p λ F (df) p λ F (df) p λ F (df) p 

Model 1 

CVRFs 0.35 2.1 (615) < 0.001 0.42 1.7 (615) < 0.001 0.42 1.7 (615) < 0.001 0.44 1.7 (595) < 0.001 0.54 1.2 (615) 0.003 

MDD 0.89 1.1 (123) 0.3 0.91 0.9 (123) 0.7 0.90 1.0 (123) 0.4 0.91 1.0 (119) 0.6 0.89 1.1 (123) 0.3 

Model 2 

CVRFs 0.43 1.6 (615) < 0.001 0.45 1.6 (615) < 0.001 0.46 1.5 (615) < 0.001 0.50 1.4 (595) < 0.001 0.54 1.2 (615) 0.003 

MDD 0.90 1.0 (123) 0.6 0.90 1.0 (123) 0.5 0.90 0.9 (123) 0.7 0.93 0.7 (119) > 0.9 0.92 0.8 (123) > 0.9 

CVRFs × MDD 0.53 1.2 (615) < 0.001 0.52 1.2 (615) < 0.001 0.57 1.1 (615) 0.2 0.56 1.1 (595) 0.01 0.57 1.1 (615) 0.1 

Model 3 

CVRFs 0.39 1.9 (615) < 0.001 0.43 1.7 (615) < 0.001 0.44 1.6 (615) < 0.001 0.47 1.5 (595) < 0.001 0.54 1.2 (615) 0.007 

Atypical MDD 0.90 1.0 (123) 0.6 0.91 0.9 (123) 0.7 0.87 1.4 (123) 0.009 0.91 0.9 (119) 0.8 0.91 0.9 (123) 0.8 

CVRFs × atypical MDD 0.55 1.1 (615) 0.02 0.53 1.2 (615) < 0.001 0.55 1.1 (615) 0.02 0.58 1.1 (595) 0.1 0.59 1.0 (615) 0.6 

Model 4 

CVRFs 0.39 1.9 (615) < 0.001 0.44 1.6 (615) < 0.001 0.45 1.6 (615) < 0.001 0.46 1.5 (595) < 0.001 0.54 1.2 (615) 0.004 

Melancholic MDD 0.92 0.8 (123) > 0.9 0.92 0.8 (123) > 0.9 0.88 1.2 (123) 0.09 0.92 0.8 (119) 0.9 0.91 0.9 (123) 0.9 

CVRFs × melancholic MDD 0.55 1.1 (615) 0.01 0.56 1.1 (615) 0.06 0.56 1.1 (615) 0.07 0.56 1.1 (595) 0.02 0.59 1.0 (615) 0.5 

Model 5 

CVRFs 0.37 1.9 (615) < 0.001 0.44 1.6 (615) < 0.001 0.44 1.6 (615) < 0.001 0.48 1.5 (595) < 0.001 0.55 1.2 (615) 0.008 

Late-life MDD 0.92 0.8 (123) > 0.9 0.86 1.4 (123) 0.003 0.89 1.1 (123) 0.3 0.90 1.0 (119) 0.5 0.92 0.8 (123) > 0.9 

CVRFs × late-life MDD 0.53 1.2 (615) < 0.001 0.52 1.2 (615) < 0.001 0.54 1.2 (615) 0.002 0.57 1.1 (595) 0.06 0.57 1.1 (615) 0.2 

Wilk’s lambda ( λ), F-value, number of degrees of freedom (df), and uncorrected p value from Multivariate ANalysis Of VAriance are reported (n = 1234). Each of the five 

models predicts a linear combination of the brain ROIs (separately for each MRI contrast) from a linear combination of hypertension, diabetes, dyslipidemia, obesity, and 

current smoking (CVRF) and lifetime MDD diagnoses, with (models 2-5) or without (model 1) interaction between CVRFs and MDD. All models included age, sex, and total 

intracranial volume as covariates. R1, R2 ∗ , MT, and volume included GM and WM regions while PD ∗ included only GM regions. 

Significant results after false discovery rate correction are indicated in bold. 

Key: CVRFs, cardio-vascular risk factors; GM, gray matter; MDD, major depressive disorder; ROI, region of interest; WM, white matter. 

p = 0.003). We report interaction between CVRFs and lifetime 

MDD on R1, R2 ∗, and PD 

∗ maps (Model 2, λ ranging 0.52–0.56, 

F 595-615 ranging 1.1–1.2, p -values ranging 1.63 × 10 −4 –0.01) as 

well as between CVRFs and atypical MDD (Model 3, R1: λ = 0.55, 

F 615 = 1.1, p = 0.02; R2 ∗: λ = 0.53, F 615 = 1.2, p < 0.001; MT: 

λ = 0.55, F 615 = 1.1, p = 0.02), melancholic MDD (Model 4, R1: 

λ = 0.55, F 615 = 1.1, p = 0.01; PD 

∗: λ = 0.56, F 595 = 1.1, p = 0.02), 

and late-life MDD (Model 5, R1: λ = 0.53, F 615 = 1.2, p < 0.001; 

R2 ∗: λ = 0.52, F 615 = 1.2, p < 0.001; MT: λ = 0.54, F 615 = 1.2, 

p = 0.002). 

In the reduced sample of individuals aged ≥ 65 years and 

tested for cognitive performance (all scores available: n = 306), 

there was a main effect of the aggregate CVRF score ( Table 6 , 

Model 1, R1: λ = 0.44, F 123 = 1.8, p < 0.001; MT: λ = 0.42, 

F 123 = 2.0, p < 0.001). We did not observe a significant contri- 

bution of unique cognitive scores or interaction effects between 

CVRFs and cognitive performance (Models 1-4). 

3.6. Selected region-of-interest analysis 

The ROI analysis showed positive correlations between diabetes, 

smoking status and iron content (R2 ∗) in the basal ganglia ( β rang- 

ing 0.10 – 0.15; since z-scores were used, one unit increase in β
represents one SD increase in MRI measures), and a negative corre- 

lation between iron content in the bilateral ACC and the diagnosis 

of anxiety disorder ( β = -0.10 and -0.11). We observed a negative 

correlation between arterial hypertension and myelin content 

(MT), particularly in the WM ( β = -0.10 and -0.11) contrasted to 

positive correlation between myelin and obesity ( β ranging 0.09 –

0.12). Arterial hypertension, diabetes, obesity, and bipolar disorder 

in the selected ROIs showed negative correlation with tissue water 

content (PD 

∗, β ranging -0.12 – -0.08). R1 maps, sensitive to both 

iron and myelin content, showed positive correlation with diabetes 

and obesity ( β ranging 0.09 – 0.14), and negative correlation 

with melancholic MDD and anxiety disorders in the hippocampus 
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Fig. 3. Manhattan plots relating 621 values from R1, R2 ∗ , MT, PD ∗ , and volume maps to 138 non-imaging measures grouped into 10 categories. For each imaging – non- 

imaging pair, the significance is plotted as -log 10 (p) of the uncorrected p-value associated with the OLS regression coefficient. Each dot represents one model (i.e. one imaging 

– non-imaging pair), the 138 non-imaging measures being projected on the x-axis and grouped by categories (see Supplementary Table 1 for a full list of the non-imaging 

measures). Linear models included sex, age, age 2 , and total intracranial volume as covariates. Correction for multiple comparison is indicated as a blue line for Bonferroni 

correction (threshold at P uncorrected = 5.83 × 10 −7 ) and a red line for FDR correction (threshold at P uncorrected = 1.46 × 10 −3 ) corresponding to the 85,698 tested paired 

associations. (A) All maps are shown together. (B) Manhattan plot relating 621 values from R1, R2 ∗ , MT, PD ∗ , and volume maps to five cognitive scores, only in participants 

≥ 65 years old (n = 564). Bonferroni correction threshold at P uncorrected = 6.19 × 10 −7 and FDR threshold at P uncorrected = 5.42 × 10 −4 correspond to the 80,730 tested paired 

associations in this sub-group (621 imaging values × 130 non-imaging variables). (C) R1, R2 ∗ , MT, PD ∗ , and volume are shown separately. Correction lines show the thresholds 

corresponding to the total 85,698 tests. Abbreviations: CVRFs = cardio-vascular risk factors; FDR = false discovery rate; OLS = ordinary least squares; SES = socio-economic 

status. Substance = substance abuse or dependence; Eating = eating disorders; Other = unclassified psychiatric disorders. 

( β = -0.09). We report a negative correlation between amygdala 

volume and diabetes ( β ranging -0.09 – -0.05) contrasted to pos- 

itive correlation with obesity ( β ranging 0.05 – 0.13) ( Fig. 5 ). The 

MMSE, DMT, and verbal fluency scores correlated positively with 

left amygdala volume ( β ranging 0.12 – 0.23). Verbal fluency was 

also associated with higher PD 

∗ in the right putamen ( β = 0.18) 

( Fig. 6 ). 

4. Discussion 

Our large-scale monocentric study on mid- and old-age com- 

munity dwelling adults confirms the wide-ranging association 

between cardio-vascular risk, cognitive performance, mental 

health and brain anatomy. We extend the previous findings in 

the field by analyzing MRI parameters indicative for brain tissue 
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Table 6 

MANOVA of R1, R2 ∗ , MT, PD ∗ , and volume in brain ROIs, with aCVRF and cognitive scores as regressors 

R1 R2 ∗ MT PD ∗ Volume 

λ F (df) p λ F (df) p λ F (df) p λ F (df) p λ F (df) p 

Model 1 

aCVRF 0.44 1.8 (123) < 0.001 0.51 1.4 (123) 0.03 0.42 2.0 (123) < 0.001 0.56 1.2 (119) 0.1 0.57 1.1 (123) 0.3 

DMT 0.54 1.2 (123) 0.1 0.61 0.9 (123) 0.7 0.59 1.0 (123) 0.5 0.61 1.0 (119) 0.5 0.55 1.2 (123) 0.1 

VF 0.61 0.9 (123) 0.7 0.54 1.2 (123) 0.1 0.57 1.1 (123) 0.3 0.60 1.0 (119) 0.5 0.57 1.1 (123) 0.3 

Stroop 0.52 1.3 (123) 0.05 0.54 1.2 (123) 0.1 0.62 0.9 (123) 0.8 0.58 1.1 (119) 0.3 0.58 1.0 (123) 0.4 

Model 2 

aCVRF 0.43 1.9 (123) < 0.001 0.52 1.3 (123) 0.03 0.43 1.9 (123) < 0.001 0.56 1.2 (119) 0.1 0.56 1.1 (123) 0.2 

DMT 0.56 1.1 (123) 0.3 0.63 0.8 (123) 0.9 0.64 0.8 (123) > 0.9 0.66 0.8 (119) > 0.9 0.62 0.9 (123) 0.8 

aCVRF × DMT 0.51 1.4 (123) 0.03 0.60 1.0 (123) 0.6 0.58 1.0 (123) 0.4 0.62 0.9 (119) 0.6 0.58 1.0 (123) 0.4 

Model 3 

aCVRF 0.45 1.7 (123) < 0.001 0.51 1.4 (123) 0.03 0.42 2.0 (123) < 0.001 0.55 1.2 (119) 0.1 0.57 1.1 (123) 0.3 

VF 0.61 0.9 (123) 0.7 0.65 0.8 (123) > 0.9 0.59 1.0 (123) 0.5 0.57 1.1 (119) 0.2 0.61 0.9 (123) 0.7 

aCVRF × VF 0.56 1.1 (123) 0.3 0.62 0.9 (123) 0.8 0.56 1.1 (123) 0.2 0.57 1.1 (119) 0.2 0.61 0.9 (123) 0.7 

Model 4 

aCVRF 0.45 1.8 (123) < 0.001 0.51 1.4 (123) 0.03 0.43 1.9 (123) < 0.001 0.55 1.2 (119) 0.1 0.56 1.1 (123) 0.2 

Stroop 0.70 0.6 (123) > 0.9 0.67 0.7 (123) > 0.9 0.59 1.0 (123) 0.5 0.65 0.8 (119) 0.9 0.68 0.7 (123) > 0.9 

aCVRF × Stroop 0.62 0.9 (123) 0.7 0.62 0.9 (123) 0.8 0.62 0.9 (123) 0.7 0.63 0.9 (119) 0.8 0.66 0.7 (123) > 0.9 

Wilk’s lambda ( λ), F-value, number of degrees of freedom (df), and uncorrected P-value from Mutlivariate ANalysis Of VAriance are reported (n = 306). Each of the four 

models predicts a linear combination of the brain ROIs (separately for each MRI contrast) from an aggregate CVRF score and normalised cognitive scores, with (models 

2-4) or without (model 1) interaction between aCVRF and cognitive score. All models included age, sex, total intracranial volume, and educational level as covariates. R1, 

R2 ∗ , MT, and volume included GM and WM regions while PD ∗ included only GM regions. 

Significant results after false discovery rate correction are indicated in bold. 

Key: aCVRF, aggregate cardio-vascular risk factor index; DMT, Grober & Buschke Double Memory Test; GM, gray matter; ROI, region of interest; VF, verbal fluency; WM, 

white matter. 

Fig. 4. Selected cortical and subcortical regions-of-interest projected on a standard brain in Montreal Neurological Institute space. 

properties – myelin, iron and tissue water, that are complementary 

to the reporting of regional cortical thickness or volume metrics. 

Given the constellation of volume and tissue property differences, 

additionally to the fact that we adjust for the effects of age in all 

our analyses, we interpret the observed effects as associations be- 

tween cardio-vascular risk factors and behavioral outcome rather 

than as effects confounded by ageing. 

The complexity of interactions between CVRFs, mood and 

brain anatomy becomes evident through the observed differ- 

ential association of CVRFs with the melancholic and atypical 

MDD subtypes. Our findings support the notion that the two 

entities differ not only in clinical phenotype characteristics, but 

also in associated risk factors. Previous findings from prospective 

cohort studies indicate a temporal sequence between lifestyle 

factors and late-life depression ( Chang et al., 2016 ; Tanaka et al., 

2011 ), suggesting that targeted intervention on modifiable risk 

factors could decrease the incidence of late-life MDD. Opposed 

to their differential CVRFs profile, melancholic and atypical MDD 

shared the same signature of high iron content in the basal 

ganglia that could be interpreted in the context of abundant 

dopamine receptors in subcortical structures and the essential 

role of iron in dopamine synthesis ( Rouault, 2013 ). The fact 

that MDD patients, particularly the melancholic and late-life 

subtypes, have a higher proportion of smokers than the rest, 

complemented by the observed iron accumulation in smokers’ 

basal ganglia, suggests possible effects of shared variance. At 

that stage, we can only speculate about the link between basal 

ganglia dopamine receptors distribution, iron content and tobacco 

addiction. 

A shared feature across all studied psychiatric nosological en- 

tities is myelin decrease in the brain’s white matter. The decrease 

was observed for the two metrics indicative for myelin content 

– the magnetization transfer saturation MT and the longitudinal 

relaxation rate R1, with the first shown to be the closest to myelin 
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Fig. 5. Beta coefficients from pairwise linear regressions of selected brain regions against cardio-vascular risk factors and psychiatric diagnoses. Local averages of eight 

GM regions (bilateral) and total cerebral WM (bilateral, when applicable) were individually regressed against main CVRFs and psychiatric diagnoses. To allow comparison 

between beta coefficients, we normalised brain regional values and non-imaging measures. Linear models included sex, age, age 2 , and total intracranial volume as covariates. 

We show results for (A) maps that included cerebral WM and (B) the one that did not. Abbreviations: ACC = anterior cingulate cortex; CVRFs = cardio-vascular risk factors; 

GM = gray matter; MDD = major depressive disorder; WM = white matter. Significant associations after false discovery rate correction are indicated with an asterisk. 

Fig. 6. Beta coefficients from pairwise linear regressions of selected brain regions against cognitive scores. Local averages of eight GM regions (bilateral) and total cerebral 

WM (bilateral, when applicable) were individually regressed against cognitive scores. To allow comparison between beta coefficients, we normalised brain regional values 

and cognitive scores, and multiplied CDR and Stroop scores by -1 for consistent (higher = better) directionality of scores (CDR’ and Stroop’). Linear models included sex, age, 

age 2 , and total intracranial volume as covariates. Abbreviations: ACC = anterior cingulate cortex; CDR = Clinical Dementia Rating; DMT = Grober & Buschke Double Memory 

Test; GM = gray matter; MMSE = Mini-Mental State Examination; WM = white matter. Significant associations after false discovery rate correction are indicated with an 

asterisk. 
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content metric compared to the majority of existing techniques 

for direct and indirect measurement of myelin ( Mancini et al., 

2020 ). The white matter myelin loss across all CVRFs, particularly 

in arterial hypertension and in the presence of mood disorders, 

supports the assumption of “spill-over” effects due to shared vari- 

ance. This is further enforced by the interaction between myelin 

content, CVRFs and the atypical/late-life MDD subtypes, but not 

with the melancholic type – the one that is not necessarily asso- 

ciated with a cardio-vascular risk profile. Despite the differences 

between our approach to average across the entire white matter 

volume and the fine-grained tract-based investigation of white 

matter hyperintensities in a recent study ( Dalby et al., 2019 ), we 

feel that our results corroborate the reported findings about lack 

of group differences in abnormal tissue oxygenation in white 

matter hyperintensities between late-life MDD and individuals 

without depression. The planned investigation of these effects 

at the voxel- or tract-based level will help us to determine the 

topological pattern of changes that should lead to a presumed 

spatially differential interpretation of our current observations. 

While CVRFs-related hypoxic tissue injury could underlie the 

decrease of myelin in late-life depression, astrocyte pathology 

confined to ventral prefrontal areas could confirm the assumption 

of myelin reduction in early-life MDD ( Rajkowska et al., 2018 ). 

The observed associations between CVRFs and cognitive per- 

formance in the sub-group of participants aged 65 and over 

corroborate published results on the link between obesity, hy- 

percholesterolemia, diabetes, and cognitive decline in older age 

( Leritz et al., 2011 ; Marseglia et al., 2019 ). Similar to previous 

findings, waist-to-hip ratio proved to be a more sensitive mea- 

sure than BMI in explaining variability across cognitive scores 

( Crowe et al., 2018 ; Liu et al., 2019 ), particularly for memory and 

executive functions ( Hartanto and Yong, 2018 ). We note the sur- 

prisingly weaker associations between cognitive performance and 

hippocampus (micro)structure. We explain this by the observed 

higher predictive value of small-vessel disease-related anatomy 

changes compared with baseline differences ( Moon et al., 2017 ), 

additionally to the reduced statistical power of this subgroup 

analysis when compared to the whole BrainLaus cohort (n = 306 

vs. 1234). Alternatively, the absence of significant effects may 

be due to the larger shared variance with individuals’ education 

attainment level, which was included as a covariate in the model. 

The positive association between left amygdala volume, MMSE, 

verbal memory and verbal fluency scores may reflect cognitive 

decline in preclinical Alzheimer’s disease due to local beta-amyloid 

and tau pathology as recently reported ( Betthauser et al., 2020 ), 

which is further supported by the left-sided predominance of 

our language system-related findings. Verbal memory and verbal 

fluency scores also showed a trend for negative correlation with 

iron content. The latter can be interpreted in the context of the 

“free-radical induced energetic decline in senescence” model that 

suggests iron-related oxidative stress as a mediator of ageing 

effects on brain anatomy and cognitive function ( Daugherty and 

Raz, 2015 ; Raz and Daugherty, 2018 ). 

Given the exploratory character of our analysis of cardio- 

vascular, inflammatory, lifestyle factors, mood, anxiety and 

cognition, we adjusted for the confounding effects of sex and age, 

whilst acknowledging potential interaction effects. The observed 

lower CVRFs and higher verbal memory scores, paralleled by 

higher depression and anxiety morbidity in women are consistent 

with previous reports ( Altemus et al., 2014 ; Peters et al., 2019 ) and 

suggest differential mechanisms of association between modifiable 

risk factors and cognitive and mental health in men and women. 

We carefully adjusted for the confounding effects of SES, which 

was positively correlated with cardio-vascular and mental health. 

Individuals with low SES have a higher incidence of psychiatric 

disorders ( Zimmerman and Katon, 2005 ) and cardio-vascular dis- 

ease ( Elo et al., 2014 ; Kamphuis et al., 2012 ; Stringhini et al., 2017 ) 

suggesting that SES at least partly mediates the association be- 

tween CVRFs and mental disorders. It is of note that we observed a 

relatively high lifetime prevalence of MDD in our sample – 50.6 % 

when considering all MDD subtypes – compared to meta-analytic 

reports of 10-21% lifetime MDD prevalence in European coun- 

tries ( Lim et al., 2018 ; Gutiérrez-Rojas et al., 2020 ). As discussed 

previously ( Vandeleur et al., 2017 ), one possible explanation is 

that the CoLaus|PsyCoLaus sample was recruited from an urban 

population known to be more susceptible to psychiatric disorders 

( Peen et al., 2007 ). Another line of argumentation is defined by the 

semi-structured character of the Diagnostic Interview for Genetic 

Studies (DIGS) instrument used for psychiatric assessment in 

CoLaus|PsyCoLaus that results in more frequent positive diagnosis 

than fully-structured interview methods ( Eaton et al., 20 0 0 ). The 

latter type of methods may under-estimate the prevalence of 

depression in the community ( Kruijshaar et al., 2005 ). 

The novelty of our study is mainly in providing complemen- 

tary information about brain-behavior relationship by analyzing 

MRI parameters derived from established biophysical models 

and allowing for a straightforward neuro-biological interpretation 

( Weiskopf et al., 2015 ). Our findings of reduced longitudinal 

relaxation time R1 fit well in the presumed mechanism of CVRFs- 

related decrease in interstitial fluid mobility and water content 

that predates or co-occurs with demyelination and gliosis captured 

by the MT saturation ( Maniega et al., 2015 ). Given that R1 is a 

weighted average of the free and bound water phases, empirical 

research showed that a large part of the R1 variance was shared 

with MT and R2 ∗ ( Callaghan et al., 2015 ). We interpret the residual 

correlations between R1 and CVRFs after regressing out the effects 

of MT and R2 ∗, as an independent contribution of the total water 

content to brain microstructure (Supplementary Fig. 2). Contrary 

to our expectations of a negative impact of obesity on white 

matter’s myelin, we observed a positive correlation that merits 

further investigation, particularly in the context of ApoE allelic 

variants as demonstrated recently ( Mole et al., 2020 ). 

There are some limitations in our study that should be 

acknowledged. Given the focus on urban population, the general- 

izability of our results is uncertain. The cross-sectional data not 

only limits the interpretations to correlation analysis findings, but 

it also hampers assessing the impact of inter-individual differences 

on brain and behavior that, particularly in the cognitive domain, 

will increase with advancing age ( Nyberg et al., 2020 ). By adopting 

a region-of-interest approach as in the UK Biobank ( Miller et al., 

2016 ), we refrained from a whole-brain analysis as reported previ- 

ously ( Taubert et al., 2020 ), which can be seen as a potential weak 

point of the current report. The shared variance between age, 

lifetime factors and the outcome variables in our study – cognitive 

performance and mood – pose a challenge for a straightforward 

interpretation of the obtained results. Attempts to formally test 

these relationships using structural equation modelling or similar 

techniques for mediation analysis do not resolve the issue of 

complex interdependencies that are potentially addressable by 

longitudinal studies (e.g. Veldsman et al., 2020 ). Alternatively, the 

authors provide a highly selective set of lifetime variables that 

help avoiding shared variance and the dilemma of interpretability 

but omit a range of factors that could explain additional variance 

(e.g. Opel et al., 2020 ). 

In summary, the presented results on brain anatomy patterns 

that link cardio-vascular risk factors, mood and cognition showed 

main effects and complex interactions in the context of ageing. The 

fact that CVRFs correlated with both brain tissue microstructure 

and volume differences underscores the complementary character 

of MRI parameter mapping that is closer to the underlying neu- 
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robiological mechanisms and reduces the probability of spurious 

morphometric findings. 
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