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1. Introduction

ABSTRACT

Given the controversy about the impact of modifiable risk factors on mood and cognition in ageing, we
sought to investigate the associations between cardio-vascular risk, mental health, cognitive performance
and brain anatomy in mid- to old age. We analyzed a set of risk factors together with multi-parameter
magnetic resonance imaging (MRI) in the CoLaus|PsyCoLaus cohort (n > 1200). Cardio-vascular risk was
associated with differences in brain tissue properties - myelin, free tissue water, iron content - and re-
gional brain volumes that we interpret in the context of micro-vascular hypoxic lesions and neurode-
generation. The interaction between clinical subtypes of major depressive disorder and cardio-vascular
risk factors showed differential associations with brain structure depending on individuals’ lifetime tra-
jectory. There was a negative correlation between melancholic depression, anxiety and MRI markers of
myelin and iron content in the hippocampus and anterior cingulate. Verbal memory and verbal fluency
performance were positively correlated with left amygdala volumes. The concomitant analysis of brain
morphometry and tissue properties allowed for a neuro-biological interpretation of the link between
modifiable risk factors and brain health.

© 2021 The Author(s). Published by Elsevier Inc.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

disorders such as Alzheimer’s disease, vascular dementia, and
late-life depression present an increasing burden on older indi-

Despite the positive aspects of rising longevity worldwide
(Foreman et al., 2018; Kontis et al., 2017), ageing-associated brain
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viduals and society. The association between ageing and cognitive
decline is modulated by a plenitude of known (e.g. the apolipopro-
tein APOE*e4 allele) and unknown genetic factors, by environmen-
tal (Killin et al., 2016), lifestyle and cardio-vascular risk factors
(CVRFs) (Kivipelto et al., 2018), that act across the entire lifes-
pan. Similarly for mood disorders, recent evidence supports the
link between late-life depression and cardio-vascular risk in the
context of ageing (van den Berg et al., 2019). Much less is known
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about the neuro-biological mechanisms related to the main effects
and interactions between cardio-vascular risk factors, which could
explain individuals’ affective or cognitive outcomes.

There is strong empirical evidence supporting the impact of
CVRFs on cognitive performance in old age (Deckers et al., 2017;
Leritz et al.,, 2011; Marseglia et al., 2019). Already in middle-aged
cognitively healthy adults, CVRFs have strong predictive value
for future cognitive outcome (Takeda et al, 2017). Studies in
older populations confirmed the importance of CVRFs-associated
micro-vascular white matter lesions for individuals’ cognitive
performance (Prins and Scheltens, 2015) that is further modulated
by metabolic and inflammatory factors (Wang et al., 2016).

Evidence suggest that the relationship between CVRFs and
mood disorders is bidirectional. Large-scale epidemiological stud-
ies reported an association between early-life CVRFs and higher
risk for late-life depression (Aberg et al., 2012; Baghai et al., 2011),
suicidal behavior (Aberg et al, 2014), anxiety and depression
symptoms (Jani et al., 2014). At the same time, major depressive
disorder (MDD) is viewed as an independent CVRF (Van der
Kooy et al., 2007) given its association with increased mortality
(Dhar and Barton, 2016; Fiedorowicz, 2014), coronary heart disease
(Vaccarino et al., 2020), arterial hypertension, tobacco use, obesity,
low physical exercise capacity, and dyslipidemia (Rubin et al.,
2010).

The widespread use of computational anatomy methods
for analyzing magnetic resonance imaging (MRI) data, helped
demonstrating characteristic brain patterns associated either with
cognitive decline (Ruan et al., 2016), depression (Geerlings and
Gerritsen, 2017; Woelfer et al., 2019) or CVRFs (Cox et al., 2019;
Hamer and Batty, 2019). The emergence of large-scale cohorts
with brain MRI data acquisition in the general population as
exemplified by the UK Biobank (Miller et al., 2016; Sudlow et al.,
2015) and Cam-CAN (Shafto et al., 2014), allowed investigating
the relationship between CVRFs and brain anatomy in older
age. However, the inferences derived from these studies were
mostly based on T1-weighted MRI protocols that can result in
spurious morphometric findings (Lorio et al, 2016). Advances in
quantitative MRI (qMRI) sensitive to iron, myelin and MR-visible
water proved the robustness of relaxometry-based measurements
against artefactual estimation of regional brain volume or cortical
thickness due to MR contrast changes caused by underlying tissue
property alterations in brain development (Natu et al., 2019) and
ageing (Lorio et al., 2016; Taubert et al., 2020). To date, there were
no studies investigating CVRFs-related brain tissue property differ-
ences in the context of cognitive and mental health in the general
population.

Here, we sought to investigate in a large-scale (n = 1261),
population-based sample of adults (BrainLaus cohort age range
45-86 years old from the CoLaus|PsyCoLaus N = 6734), the associ-
ations between CVRFs, cognitive performance, and mood, together
with their brain anatomy correlates. Our statistical modelling pro-
ceeded in multiple stages. Prior to the analyses we ascertained that
the BrainLaus cohort was exempt from sampling bias and repre-
sentative of the parent population-based cohort CoLaus|PsyCoLaus.
In the first stage, we identified associations among CVRFs, psycho-
metric and cognitive outcomes. We then extended these analyses
with the inclusion of brain measures of tissue property and vol-
ume across all regions-of-interest (ROI). Finally, aiming to reduce
the dimensionality of our model of multi-contrast MRI and multi-
modal clinical observations, we analyzed brain volume and tissue
microstructure in an informed subset of ROI. Building on our pre-
vious work on the effects of age on brain volume, myelin and iron
content (Lorio et al., 2016; Taubert et al., 2020), we hypothesized
that CVRFs would primarily correlate with brain myelin and tissue
water content via micro-vascular hypoxic lesions. We predicted
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n=6734

_________________ I

Follow-up 2 (2014-2018)

Colaus|PsyColaus
with psychiatric evaluation
n = 3666

! No brain MRI
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BrainLaus (brain MRI)
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Insufficient image quality
n=63

' BrainLaus final sample
s n=1261 y

Fig. 1. Timeline of CoLaus|PsyCoLaus and the nested BrainLaus sub-study.

that cognitive performance and mood would be associated with
a differential pattern of volume and tissue property differences in
specific cortical and subcortical brain structures.

2. Materials and methods
2.1. Participants

Our study sample BrainLaus (https://www.colaus-psycolaus.ch/
professionals/brainlaus/) is part of the CoLaus|PsyCoLaus cohort
(Firmann et al., 2008; Preisig et al., 2009), a prospective follow-up
study designed to determine the associations between CVRFs
and mental disorders in the general population. A total of 6734
individuals aged 35 to 75 years were recruited from the civil reg-
istry of Lausanne, Switzerland between 2003 and 2006 (baseline)
following a random selection procedure. There were two follow-up
evaluations, which took place from 2009 to 2013 (first follow-up)
and 2014 to 2018 (second follow-up). Among the 3666 people who
participated in the second psychiatric follow-up evaluation, 1324
accepted to take part in the brain imaging investigation (Brain-
Laus). After quantitative MRI data quality assessment (see 2.3
Data quality assessment) we excluded 63 participants (4.7%), which
resulted in 1261 participants included in the analyses (Fig. 1). The
CoLaus|PsyCoLaus study and the BrainLaus nested study received
approval from the local Ethics Committee and participants signed
written informed consent prior to inclusion in the study.

2.2. MRI protocol and data processing
We acquired magnetic resonance images on a 3T whole-body

MRI system (Magnetom Prisma, Siemens Medical Systems, Ger-
many), using a 64-channel radio-frequency (RF) receive head coil
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Fig. 2. Group-average anatomical multi-parameter maps R1, R2*, MT, and PD* (n = 1261).

and body coil for transmission. The qMRI protocol included three
multi-echo 3D fast low angle shot (FLASH) acquisitions with mag-
netization transfer-weighted (MTw: TR = 24.5 ms, @ = 6°), proton
density-weighted (PDw: TR = 24.5 ms, « = 6°), and T1-weighted
(TR = 24.5 ms, o = 21°) contrasts at 1 mm isotropic resolution
(Draganski et al., 2011; Weiskopf et al., 2013). To correct for the
effects of RF transmit field inhomogeneities (Lutti et al., 2014),
B1 mapping data was acquired using the 3D EPI spin-echo and
stimulated echo method described in (Lutti et al., 2010; Lutti et al.,
2012) (4 mm?3 resolution, TE = 39.06 ms, TR = 500 ms). BO-field
mapping data was acquired to correct image distortions in the EPI
data (2D double-echo FLASH sequence with slice thickness = 2
mm, TR = 1020 ms, TE1/TE2 = 10/12.46 ms, « = 90°, BW = 260
Hz/pixel). The total acquisition time was 27 min.

Quantitative MRI maps were calculated from the raw data as
described in (Helms et al., 2008a; Helms et al., 2008b) using the
VBQ toolbox (Draganski et al., 2011; Tabelow et al., 2019). We
used maps of magnetization transfer saturation (MT) indicative
for tissue myelin (Callaghan et al., 2014; Helms et al., 2008a;
Stanisz et al,, 1999), transverse relaxation rate (R2* = 1/T2*) -
iron content (Fukunaga et al., 2010; Stiiber et al., 2014; Yao et al.,
2009), effective longitudinal relaxation rate (R1 = 1/T1) - myelin
and iron content (Lutti et al., 2014), and effective proton density
(PD*) - tissue water content (Lin et al., 1997; Watanabe et al,,
2019). PD* maps were normed with a scaling procedure such that
mean values in the white matter (WM) agreed with the published
level of 69% (Tofts, 2003, chapter 4), which precludes from analyz-
ing PD* values in the WM. Group-average multi-parameter maps
are shown in Fig. 2.

All structural data were processed in the framework of Sta-
tistical Parametric Mapping SPM12 (www.fil.ion.ucl.ac.uk/spm;
Wellcome Trust Centre for Neuroimaging, London) using cus-
tomized MATLAB tools (The Mathworks, Sherborn, MA, USA). We
performed automated tissue classification using the multi-channel
option of SPM12 “unified segmentation” with MT and PD maps and
enhanced tissue priors (Lorio et al., 2016) that yielded gray matter
(GM), WM, and cerebrospinal fluid (CSF) maps. Total intracranial
volumes were calculated as the sum of GM, WM, and CSF volumes.

For analysis within a predefined set of ROIs, we calculated
GM regional averages of tissue volume, MT, R2* PD* and R1
using the probabilistic and maximum probability tissue labels
derived from the “MICCAI 2012 Grand Challenge and Work-
shop on Multi-Atlas Labeling” (https://my.vanderbilt.edu/masi/
about-us/resources-data/) with 125 cortical and subcortical la-
bels. The labels were spatially registered to individuals’ native
space using SPM12’s diffeomorphic “geodesic shoot” registration
(Ashburner and Friston, 2011).

2.3. Data quality assessment

An automated quality assessment procedure was used to
flag images potentially deteriorated by intra- and inter-sequence

motion artefacts. The latter were estimated from co-registration
parameters of MTw and Tlw data to the corresponding PDw
(threshold = 0.05° for rotations and 3.5 mm for translations). Intra-
sequence motion was flagged using the homogeneity (SD/mean)
of PDw signal (threshold = 0.1) and from the standard deviation
of R2* in the WM calculated from both Tlw and PDw images
(threshold = 4.5 x 103 ms~!) which correlates to individuals’
head motion (Castella et al., 2018). Two experienced neurosci-
entists visually inspected all data surpassing at least one of the
mentioned thresholds. With 94% agreement, they excluded 17
participants’ data from the final analysis. Additionally, to exclude
images with macroscopic brain abnormalities, we created for each
individual a binary mask per tissue class (GM, WM, CSF) with a
probability threshold > 0.2 and compared the number of voxels
to a canonical group-average tissue map. Among the individuals
with fewer voxels in a given tissue class, we identified those
surpassing the mean number of missing voxels + 2 SD, excluding
46 additional individuals from the final analysis.

2.4. Clinical and behavioral assessments

Measures of CVRFs collected from questionnaires, blood sam-
ples, anthropometric, medication and blood pressure assessments
resulted in a comprehensive set indicative of disease history and
cardio-vascular risk (Firmann et al., 2008). Aiming at dimensional-
ity reduction for the planned multivariate analyses, we calculated
previously established aggregate CVRF scores (aCVRF; Cox et al.,
2019) from individuals’ assessment of hypertension, diabetes,
dyslipidemia, tobacco use, body mass index > 25, waist-to-hip
ratio > 0.85 for females or >0.90 for males.

The psychiatric evaluation (Preisig et al., 2009) included the
semi-structured Diagnostic Interview for Genetic Studies (DIGS;
Nurnberger, 1994). Diagnoses were assigned according to the
Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR;
American Psychiatric Association, 2000). Atypical and melancholic
major depressive episodes were diagnosed according to the DSM-
IV specifiers. For atypical episodes the presence of mood reactivity
as well as two of the following four features were required: i.
increased appetite, ii. hypersomnia, iii. leaden paralysis, and iv.
interpersonal rejection sensitivity. For melancholic episodes a loss
of pleasure or a lack of mood reactivity was required as well
as three of the following five symptoms: i. depression regularly
worse in the morning, ii. early morning awakening, iii. psychomo-
tor retardation or agitation, iv. decreased appetite, and v. excessive
guilt. Participants diagnosed with MDD were classified into one of
three categories: i. atypical MDD if they presented atypical but not
melancholic episodes, ii. melancholic MDD with melancholic but
not atypical episodes, or iii. unspecified MDD if they presented
features from neither or both subtypes. The latter category was
not analyzed in the present study because of its heterogeneity.
Late-life MDD was defined as MDD occurring after the age of
50 years. Bipolar disorder included both types I and II. Anxiety
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disorders were defined as presenting at least one of the following
characteristics: agoraphobia, generalized anxiety disorder, panic
disorder, and social phobia (or social anxiety disorder).

Participants older than 65 years were further tested with
a standard cognitive test battery, including the Clinical De-
mentia Rating (CDR; Morris, 1993), Grober & Buschke Double
Memory Test (DMT; Buschke et al., 1997), a verbal fluency task
(Cardebat et al., 1990) and the Stroop color test (Stroop, 1935). The
verbal fluency score consisted of the number of words correctly
produced in a total of 5 min divided between category (seman-
tic) and letter (phonemic) word production segments. A Stroop
interference index was calculated by taking the mean time to
name incongruent colors (interference) divided by the mean time
to name congruent colors (no interference). The Mini-Mental State
Examination (MMSE; Folstein et al., 1975) was also assessed in
all participants older than 60 years. Aiming to ease interpretation
of linear regression analyses, we changed the valence of CDR and
Stroop interference scores - in such a way higher scores reflected
better performance, similarly to other cognitive scores.

All analyses were done using assessments from the second
study follow-up, except for lifetime psychiatric measures, which
included the whole life period from birth to the second study
follow-up. For a comprehensive list of variables see Supplementary
Table 1.

2.5. Socio-economic status

We collected information about monthly household gross in-
come, highest educational attainment, and last known occupational
position by questionnaire. Monthly income was divided into three
categories: up to 4999 CHF (low), 5000-9499 CHF (middle), and
more than 9500 CHF (high). Educational attainment was grouped
into three levels: mandatory school or apprenticeship (low), high
school diploma or upper secondary education (middle), and uni-
versity degree (high). Occupational position was classified into
three levels according to the European Socio-Economic Classifica-
tion (ESEC) scale (www.iser.essex.ac.uk/archives/esec/user-guide).
All three SES measures were included in the extensive association
analyses between risk factors and brain structure. Educational level
was also used as a covariate of no interest in analyses involving
cognitive scores to control for known education effects.

2.6. Statistical analyses

Aiming to exclude potential selection bias, we compared
BrainLaus participants to all other CoLaus|PsyCoLaus participants
using independent samples t-tests for continuous variables and
chi-square tests for categorical variables. For cases of significant
difference between samples, we used ordinary least squares
(OLS) regression for continuous variables or logistic regression
for binary variables to test whether age, sample (BrainLaus
participants vs. all other CoLaus|PsyColaus participants), or
age x sample interaction explained the observed differences.
We then calculated correlations between pairs of non-imaging
variables using correlation measures adapted to variable types
(i.e. the Phi coefficient for dichotomous-dichotomous variables
pairs, Point-Biserial correlation for dichotomous-continuous pairs,
Pearson’s correlation for continuous-continuous pairs, and Spear-
man’s rank correlation for pairs involving ordinal variables with
more than two levels). Formally, we tested pairwise associa-
tions between each of the eight assessed CVRFs (body mass
index (BMI), waist/hip ratio, obesity, hypertension, dyslipidemia,
diabetes, smoking, physical activity) and three MDD subtypes
(atypical, melancholic, late-life) using logistic regression with age
and sex as covariates, and between the eight CVRFs and five

cognitive test scores (MMSE, CDR, DMT, verbal fluency, Stroop)
using OLS regression with age, sex, and educational level as
covariates.

For extensive analyses on all 121 GM and four WM regions, we
regressed values in each of the 125 ROIs against each of the 138
non-imaging measures (listed in Supplementary Table 1) using
OLS regression, including age, age?, sex, and total intracranial
volume as covariates to the models. We used identical statistical
designs for the analysis of GM volume, R1, R2*, MT, and PD*.

For hypothesis-driven analyses, we used an identical statistical
design restricted to eight bilateral GM regions and 16 non-imaging
measures consisting of the main CVRFs, psychiatric diagnoses, and
cognitive test scores. The ROI selection was based on the assump-
tion of their specific involvement in mood disorders (Smagula and
Aizenstein, 2016; Ancelin et al., 2019; Wang et al., 2016) and
cognitive function (Helie et al., 2013; Tabatabaei-Jafari et al., 2015;
Herrmann et al., 2019). The ROIs include the anterior cingulate
cortex (ACC), anterior insula, hippocampus, amygdala, caudate,
putamen, accumbens, and pallidum, in addition to bilateral
cerebral WM (Fig. 4).

To assess the unique contribution of CVRFs and MDD to the
variance in brain anatomy features, we performed a Multivariate
Analysis of Variance (MANOVA) testing the explanatory power
of a combination of MDD diagnosis and CVRFs - hypertension,
diabetes, dyslipidemia, obesity, and current tobacco use - on all
brain ROI values combined. BMI and waist/hip ratio were not
included because of the shared variance with obesity. We tested
the main effects of CVRFs and lifetime MDD as well as interactions
between CVRFs and MDD subtypes (atypical, melancholic, and
late-life MDD). All models were calculated separately for the GM
volume, R1, R2*, MT, PD* maps and included age, sex, and TIV as
covariates.

We used an identical statistical design for cognitive perfor-
mance instead of MDD diagnosis. Given that cognitive scores were
assessed only in BrainLaus individuals above 65 yo, we abstained
from using separate CVRFs as above aiming to reduce the loss of
degrees of freedom. Instead, we used the calculated aCVRF score
and tested the main effects and interaction effects of aCVRF and
cognitive scores, with educational level as additional covariate.

We report results significant at a threshold p-value < 0.05, after
applying Bonferroni correction for multiple comparisons and False
Discovery Rate (FDR) correction (Benjamini and Hochberg, 1995)
where deemed appropriate.

We used Python 3.7 NumPy, Pandas, Statsmodels, and SciPy
packages to perform all the statistical analyses.

3. Results
3.1. Sample representativeness validation

The comparison between BrainLaus participants and the rest of
the cohort of 3666 with second psychiatric follow-up showed that
BrainLaus individuals were younger (mean age difference = 4.0 yrs,
t3664 = 11.5, p < 0.001), though with a small effect size (d = 0.4).
We observed differences in several socio-demographic, somatic,
psychiatric, and cognitive measures between cohorts (see Table 1).
Linear regression analyses (Supplementary Tables 2 and 3) showed
that all effects were explained by the age difference, and not by
the sample (BrainLaus participants vs. all other CoLaus|PsyCoLaus
participants) or age x sample interaction.

3.2. Demographic determinants of health

We show that age was associated with an increased waist-to-
hip ratio, higher rates of hypertension, dyslipidemia, and diabetes,
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Table 1
Comparison between BrainLaus participants and the rest of CoLaus|PsyCoLaus at follow-up 2
PsyCoLaus (n = 3666) BrainLaus (n = 1261) Non-BrainLaus (n = 2405) T/ x? p value
Age (mean, SD), yrs 62.9 (10.3) 60.2 (9.2) 64.2 (10.5) 12 <0.001
Sex, % women 55.0 52.6 56.3 4.5 0.03
SES (low/middle/high), %
Income 26.3/43.8/30.0 22.9/43.1/34.0 28.3/44.2/27.6 17 <0.001
Educational level 50.9/27.2/21.8 48.2/27.7/24.1 52.4/27.0/20.7 7.3 0.03
Last occupational position 42.8/42.3/14.9 43.1/40.9/16.0 42.6/43.1/14.3 1.8 0.4
CVRFs
BMI (mean, SD), kg/m2 26.4 (4.8) 25.9 (4.5) 26.6 (4.9) 4.1 <0.001
Waist/hip ratio (mean, SD) 0.89 (0.09) 0.88 (0.09) 0.89 (0.09) 3.9 <0.001
Obesity, % 18.8 15.3 20.7 15 <0.001
Hypertension, % 45.0 35.7 50.0 66 <0.001
Dyslipidemia, % 39.8 36.1 41.7 10 0.001
Diabetes, % 10.0 6.2 12.0 29 <0.001
Smoking (current/former/never), % 18.8/39.2/42.0 19.7/36.9/43.4 18.4/40.5/41.1 41 0.1
Physical activity (never, 1x/wk, 2x/wk, >3x/wk), % 32.3/10.6/56.0/1.1 30.4/12.2/56.4/1.0 33.3/9.7/55.8/1.1 6.8 0.08
Psychiatric diagnoses and scores
Lifetime MDD, % 48.9 50.6 48.0 2.2 0.1
Atypical MDD, % 17.1 19.8 15.7 9.8 0.002
Melancholic MDD, % 22.9 243 22.1 2.2 0.1
Late-life MDD, % 21.5 20.1 222 1.9 0.2
Lifetime bipolar disorder, % 2.2 2.8 1.9 2.8 0.1
Lifetime anxiety disorders, % 19.7 213 18.8 3.2 0.07
Lifetime GAF score (0-100) (mean, SD) 77.0 (11.5) 77.6 (10.8) 76.7 (11.8) 2.3 0.02
STAI trait score (20-80) (mean, SD) 36.1 (10.4) 36.4 (10.3) 35.9 (10.5) 1.1 0.3
Medication, %
Antidepressant 11.0 11.6 10.7 0.7 0.4
Tranquilizer 7.7 5.4 9.0 14 <0.001
Cognitive scores (only in > 65 yrs)
MMSE (0-30) (mean, SD) (in > 60 yrs) 29.1 (1.5) 29.2 (1.4) 29.0 (1.5) 1.5 0.1
CDR score (0/0.5/1), % 48.3/51.0/0.7 50.9/48.8/0.3 47.3/51.9/0.8 2.0 0.4
DMT total free recall (0-64) (mean, SD) 41.3 (9.6) 42.2 (8.7) 41.0 (10.0) 2.0 0.05
Verbal fluency nb. words (mean, SD) 58.1 (16.1) 58.5 (15.7) 57.9 (16.3) 0.6 0.6
Stroop interference index (mean, SD) 2.20 (0.77) 2.18 (0.67) 2.21 (0.80) 0.5 0.6

Comparison between BrainLaus and non-BrainLaus samples by independent samples t tests (continuous variables) or chi-square tests (categorical variables).
Key: BMI, body mass index; CDR, Clinical Dementia Rating; DMT, Grober & Buschke Double Memory Test; CVRFs, cardio-vascular risk factors; GAF, Global Assessment of
Functioning; MDD, major depressive disorder; MMSE, Mini-Mental State Examination; SES, socioeconomic status; STAI, State-Trait Anxiety Inventory.

and higher occupational position (r ranging 0.09 - 0.37, full corre-
lation matrix in Supplementary Fig. 1). Older age correlated with
lower income and education level, lower cognitive scores, lower
prevalence of MDD (except late-life MDD) and anxiety disorders
(r ranging -0.32 to —0.09). We observed sex differences in several
categories (Table 2) — women had a better overall cardio-vascular
health, a lower socio-economic status (SES), they were more fre-
quently diagnosed with MDD and anxiety disorders, scored higher
on the verbal memory scale and lower on the CDR (|r| ranging
0.08 - 0.58).

3.3. Cardio-vascular risk factors, mood and cognitive performance

Beyond the demographic characteristics, the strongest cor-
relations appeared within each of the categories (SES, CVRFs,
psychiatric diagnoses and scores, and cognitive scores). More
precisely, there was a large shared variance between measures
of SES (r ranging 0.31 - 0.55); CVRFs (|r| ranging 0.09 - 0.75)
except smoking; psychometric scores (|r| ranging 0.03 - 0.50);
and cognitive scores (|r| ranging 0.08 - 0.44). Additional analyses
showed positive correlation between high SES and cardio-vascular
health (|r| ranging 0.09 - 0.17), mood (|r| ranging 0.08 - 0.11),
and cognitive performance (r ranging 0.14 - 0.31). CVRFs were
negatively associated with cognitive outcome (r ranging -0.24 -
-0.09, Supplementary Fig. 1b).

There was no significant correlation between CVRFs and psy-
chometric scores when unadjusted for the demographic covariates.
After adjustment for age and sex, we observed a significant corre-
lation between atypical MDD, obesity and diabetes (OR of 2.14 and

1.56 respectively, Table 3). The melancholic subtype of MDD cor-
related with smoking habits (OR = 1.27 for each change in status
from never smoked, to former smoker, to current smoker). Late-life
MDD showed positive correlation with high BMI (OR = 1.02 for
each additional point of BMI), dyslipidemia (OR = 1.25), smoking
(OR = 1.30) and low physical activity (OR = 0.86 for each of the
four activity frequencies).

In models adjusted for age, sex, and education, all cognitive
scores were related to at least one or more CVRFs (Table 4).
Waist-to-hip ratio was negatively correlated with all cognitive
scores (B = -0.93 for MMSE; 1.07 for CDR; -1.15 for DMT; -1.11
for verbal fluency), except the Stroop test. Diabetes correlated
negatively with all cognitive measures (8 = -0.21 for MMSE; 0.24
for CDR; -0.26 for DMT; 0.24 for Stroop) except verbal fluency
score. The proportion of explained variance in cognitive scores was
relatively low (adjusted R? ranging from 0.04 for Stroop to 0.15 for
DMT).

3.4. Whole-brain regional metrics, cardio-vascular risk and clinical
phenotypes

Fig. 3 shows the results of the analyses between regional
brain metrics, cardio-vascular risk and clinical phenotypes. Among
the 138 somatic and behavioral measures tested, the measures
categorized as CVRF showed the strongest correlation with brain
anatomy features (Fig. 3a) (threshold at Pypcorrected = 5-83 x 1077
with Bonferroni correction for multiple comparisons). Single vari-
ables from other categories - the inflammation marker C-reactive
protein, smoking status, the diagnostic entities brief psychotic
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Table 2
Sex differences in socioeconomic and clinical characteristics in the BrainLaus sample
Overall (n = 1261) Men (n = 598) Women (n = 663) T/x? p value
Age (mean, SD), yrs 60.2 (9.2) 59.7 (9.2) 60.7 (9.2) 2.0 0.05
SES (low/middle/high), %
Income 22.9/43.1/34.0 15.8/40.8/43.5 29.5/45.1/25.4 49 <0.001
Educational level 48.2/27.7/24.1 44.3/26.2/29.5 51.7/29.1/19.2 19 <0.001
Last occupational position 43.1/40.9/16.0 35.2/40.0/24.8 50.8/41.9/7.3 61 <0.001
CVRFs
BMI (mean, SD), kg/m2 25.9 (4.5) 26.6 (3.8) 25.4 (5.0) 4.8 <0.001
Waist/hip ratio (mean, SD) 0.88 (0.09) 0.93 (0.07) 0.83 (0.07) 25 <0.001
Obesity, % 15.3 154 15.2 0.0 >0.9
Hypertension, % 35.7 40.6 313 11 <0.001
Dyslipidemia, % 36.1 44.9 28.3 37 <0.001
Diabetes, % 6.2 9.4 34 18 <0.001
Smoking (current/former/never), % 19.7/36.9/43.4 20.1/41.8/38.1 19.3/32.7/48.0 14 0.001
Physical activity 30.4/12.2/56.4/1.0 31.7/15.9/51.5/0.8 29.2/8.7/60.8/1.2 19 <0.001
(never, 1x/wk, 2x/wk, >3x/wk), %
Psychiatric diagnoses and scores
Lifetime MDD, % 50.6 38.6 61.4 64 <0.001
Atypical MDD, % 19.8 11.0 27.8 54 <0.001
Melancholic MDD, % 243 16.4 31.5 38 <0.001
Late-life MDD, % 20.1 13.2 26.4 33 <0.001
Lifetime bipolar disorder, % 2.8 2.7 2.9 0.0 >0.9
Lifetime anxiety disorders, % 213 171 25.2 12 <0.001
Lifetime GAF score (0-100) (mean, SD) 77.6 (10.8) 79.2 (10.2) 76.3 (11.2) 4.8 <0.001
STAI trait score (20-80) (mean, SD) 36.4 (10.3) 34.4 (9.3) 38.0 (10.7) 5.1 <0.001
Medication, %
Antidepressant 11.6 7.3 15.5 20 <0.001
Tranquilizer 5.4 3.6 7.0 6.6 0.01
Cognitive scores (only in > 65 yrs)
MMSE (0-30) (mean, SD) (in > 60 yrs) 29.2 (1.4) 29.1 (1.7) 29.2(1.2) 1.5 0.1
CDR score (0/0.5/1), % 50.9/48.8/0.3 42.1/57.1/0.7 57.2/42.8/0.0 8.5 0.01
DMT total free recall (0-64) (mean, SD) 42.2 (8.7) 40.2 (8.8) 43.6 (8.3) 3.6 <0.001
Verbal fluency nb. words (mean, SD) 58.5 (15.7) 58.8 (16.4) 58.3 (15.3) 0.3 0.8
Stroop interference index (mean, SD) 2.18 (0.67) 2.15 (0.58) 2.20 (0.73) 0.8 0.4

Comparison between men and women by independent samples t-tests (continuous variables) or chi-square tests (categorical variables).

Key: BMI, body mass index; CVRFs, cardio-vascular risk factors; CDR, Clinical Dementia Rating; DMT, Grober & Buschke Double Memory Test; GAF, Global Assessment of
Functioning; MDD, major depressive disorder; MMSE, Mini-Mental State Examination; SES, socioeconomic status; STAI, State-Trait Anxiety Inventory.

Table 3

Univariate associations between depression subtypes and CVRFs adjusted for age and sex

Atypical MDD

Melancholic MDD

Late-life MDD

OR [95% CI] p OR [95% CI] p OR [95% CI] p

BMI 1.07 [1.05 - 1.09] <0.001 1.00 [0.98 - 1.01] 0.8 1.02 [1.00 - 1.04]  0.01
Waist/hip ratio 163 [4.6 - 57.7]  <0.001  0.83 [0.26 - 2.60] 0.7 36 [1.2 - 11.3] 0.03
Obesity 214 [1.73 - 2.65] <0.001 104 [0.85-1.29] 0.7 125[1.02 - 1.53]  0.03
Hypertension 1.12[0.92 - 1.36] 0.3 0.95 [0.80 - 1.14] 0.6 0.96 [0.80 - 1.15] 0.7
Dyslipidemia 120 [0.99 - 1.20]  0.06 1.01 [0.85 - 1.20] 0.9 1.25 [1.05 - 1.48]  0.01
Diabetes 1.56 [1.13 - 215] 0.006 091 [0.66 - 1.23] 0.5 1.18 [0.90 - 1.55] 0.2
Smoking 1.13[1.01 - 1.28]  0.04 127 [1.14 - 1.42]  <0.001  1.30 [1.16 - 1.45]  <0.001
Physical activity ~ 0.92 [0.84 - 1.01]  0.09 0.98 [0.90 - 1.07] 0.7 0.86 [0.79 - 0.86]  0.001

0Odds ratios (OR) with 95% confidence intervals (CI) and uncorrected p values are reported from logistic regression models

where MDD measures were individually regressed against CVRFs, including age and sex as covariates.
Significant associations after false discovery rate correction are indicated in bold.
Key: BMI, body mass index; CI, confidence interval; CVRFs, cardio-vascular risk factors; MDD, major depressive disorder;

OR, odds ratio.

disorder and schizotypal personality disorder were also correlated
with brain anatomy. When considering the less conservative FDR
correction (threshold at Pypcorrected = 146 x 1073), all categories
of somatic, psychiatric, and socio-economic measures showed
correlations with brain anatomy mainly in R1, R2*, and MT maps
(Fig. 3b, showing respectively 659, 632, and 739 supra-threshold
hits for R1, R2*, and MT, while GM volume reached 198 supra-
threshold hits).

For the participants older than 65 yrs with cognitive test
results and brain imaging (n = 564), the strongest association was
with verbal fluency scores (threshold at Pygcorrected = 6.19 x 1077
with Bonferroni correction) (Fig. 3c).

3.5. Whole-brain regional metrics - multi-variate analysis

In a multivariate approach testing the contribution of a com-
bination of CVRFs and MDD lifetime diagnosis to the variance of
brain anatomy characteristics (Table 5, Model 1), we observed a
significant contribution of hypertension, diabetes, dyslipidemia,
obesity, and current smoking status, to brain anatomy across all
measured MRI parameters (Wilk’s A ranging 0.35-0.54, Fsg5.615
ranging 1.2-2.1, p-values ranging 4.37 x 10~42-0.003). In addition
to the main effect of CVRFs, there was a main effect of atypical
MDD subtype in the MT map (A = 0.87, F153 = 14, p = 0.009)
and a main effect of late-life MDD in R2* (A = 0.86, Fj53 = 14,
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Table 4
Univariate associations between cognitive scores and CVRFs after adjusting for age, sex, and educational level
MMSE CDR’ DMT Verbal Fluency Stroop’
g p 8 p B8 p B P g P
BMI -0.01 0.3 -0.001 0.8 -0.003 0.6 -0.02 0.006 -0.01 0.03
Waist/hip ratio -0.93 0.003 -1.07 0.006 -1.15 0.003 -1.11 0.005 -0.71 0.08
Obesity -0.11 0.06 -0.01 0.9 -0.01 0.9 -0.20 0.005 -0.11 0.1
Hypertension -0.05 0.3 -0.02 0.7 -0.13 0.3 -0.13  0.04 -0.06 0.3
Dyslipidemia -0.04 04 -0.01 0.8 -0.01 0.8 -0.05 04 -0.15 0.01
Diabetes -0.21 0.001 -0.24 0.003 -0.26 0.001 -0.17 0.03 -0.24  0.003
Smoking -0.04 0.2 0.003 0.9 0.007 0.9 0.06 0.1 0.008 0.9
Physical activity ~ 0.08 0.001 0.05 0.07 0.07 0.02 0.07 0.03 0.08 0.009

Beta coefficients (B) and uncorrected p values are reported from OLS regression models where cognitive scores were
individually regressed against CVRFs, including age, sex, and educational level as covariates. CDR and Stroop scores
were multiplied by -1 for consistent (higher, better) directionality of scores (CDR’ and Stroop’).

Significant associations after false discovery rate correction are indicated in bold.

Key: BMI, body mass index; CDR, Clinical Dementia Rating; CVRFs, cardio-vascular risk factors; DMT, Grober &
Buschke Double Memory Test; MMSE, Mini-Mental State Examination.

Table 5
MANOVA of R1, R2*, MT, PD*, and volume in brain ROIs, with CVRFs and lifetime diagnosis of MDD as regressors
R1 R2* MT PD* Volume
A F (df) p A F (df) p A F (df) p A F (df) p A F (df) p
Model 1
CVRFs 035 2.1 (615) <0.001 042 1.7 (615) <0.001 0.42 1.7 (615) <0.001 0.44 1.7 (595) <0.001 0.54 1.2 (615) 0.003
MDD 0.89 1.1(123) 03 091 09 (123) 0.7 0.90 1.0(123) 0.4 091 1.0(119) 0.6 0.89 1.1(123) 03
Model 2
CVRFs 043 1.6 (615) <0.001 045 1.6 (615) <0.001 046 1.5 (615) <0.001 0.50 1.4 (595) <0.001 0.54 1.2 (615) 0.003
MDD 0.90 1.0(123) 0.6 0.90 1.0(123) 0.5 0.90 09 (123) 0.7 0.93 0.7 (119) =09 0.92 08 (123) =09
CVRFs x MDD 0.53 1.2 (615) <0.001 0.52 1.2 (615) <0.001 0.57 1.1(615) 0.2 0.56 1.1 (595) 0.01 0.57 1.1 (615) 0.1
Model 3
CVRFs 0.39 1.9 (615) <0.001 043 1.7 (615) <0.001 0.44 1.6 (615) <0.001 047 1.5(595) <0.001 0.54 1.2 (615) 0.007
Atypical MDD 0.90 1.0(123) 0.6 091 09 (123) 0.7 0.87 14 (123) 0.009 0.91 09 (119) 0.8 0.91 09 (123) 0.8
CVRFs x atypical MDD 0.55 1.1 (615) 0.02 0.53 1.2 (615) <0.001 0.55 1.1 (615) 0.02 0.58 1.1(595) 0.1 0.59 1.0 (615) 0.6
Model 4
CVRFs 039 1.9 (615) <0.001 0.44 1.6 (615) <0.001 0.45 1.6 (615) <0.001 0.46 1.5 (595) <0.001 0.54 1.2 (615) 0.004
Melancholic MDD 092 08 (123) =09 092 08(123) =09 0.88 1.2(123) 0.09 0.92 0.8 (119) 0.9 091 0.9 (123) 09
CVRFs x melancholic MDD 0.55 1.1 (615) 0.01 0.56 1.1 (615) 0.06 0.56 1.1 (615) 0.07 0.56 1.1 (595) 0.02 0.59 1.0(615) 0.5
Model 5
CVRFs 0.37 1.9 (615) <0.001 0.44 1.6 (615) <0.001 0.44 1.6 (615) <0.001 048 1.5(595) <0.001 0.55 1.2(615) 0.008
Late-life MDD 0.92 0.8(123) =09 086 1.4 (123) 0.003 089 1.1(123) 03 0.90 1.0(119) 0.5 092 0.8 (123) >0.9
CVRFs x late-life MDD 0.53 1.2 (615) <0.001 0.52 1.2 (615) <0.001 0.54 1.2 (615) 0.002 057 1.1(595) 0.06 0.57 1.1(615) 0.2

Wilk’s lambda (A), F-value, number of degrees of freedom (df), and uncorrected p value from Multivariate ANalysis Of VAriance are reported (n = 1234). Each of the five
models predicts a linear combination of the brain ROIs (separately for each MRI contrast) from a linear combination of hypertension, diabetes, dyslipidemia, obesity, and
current smoking (CVRF) and lifetime MDD diagnoses, with (models 2-5) or without (model 1) interaction between CVRFs and MDD. All models included age, sex, and total
intracranial volume as covariates. R1, R2*, MT, and volume included GM and WM regions while PD* included only GM regions.

Significant results after false discovery rate correction are indicated in bold.

Key: CVRFs, cardio-vascular risk factors; GM, gray matter; MDD, major depressive disorder; ROI, region of interest; WM, white matter.

p = 0.003). We report interaction between CVRFs and lifetime
MDD on R1, R2*, and PD* maps (Model 2, A ranging 0.52-0.56,
Fsos.615 ranging 1.1-1.2, p-values ranging 1.63 x 1074-0.01) as
well as between CVRFs and atypical MDD (Model 3, R1: A = 0.55,
Feis = 11, p = 0.02; R2*: A = 0.53, Fg5 = 1.2, p < 0.001; MT:
A = 0.55, Fg;5 = 1.1, p = 0.02), melancholic MDD (Model 4, R1:
A = 0.55, Fg;5 = 1.1, p = 0.01; PD*: A = 0.56, F595 = 1.1, p = 0.02),
and late-life MDD (Model 5, R1: A = 0.53, Fg;5 = 1.2, p < 0.001;
R2*: A = 052, F615 = 12, p < 0001, MT: A = 054, F615 = 12,
p = 0.002).

In the reduced sample of individuals aged > 65 years and
tested for cognitive performance (all scores available: n = 306),
there was a main effect of the aggregate CVRF score (Table 6,
Model 1, R1: A = 044, Fj53 = 18, p < 0.001; MT: A = 0.42,
Fio3 = 2.0, p < 0.001). We did not observe a significant contri-
bution of unique cognitive scores or interaction effects between
CVRFs and cognitive performance (Models 1-4).

3.6. Selected region-of-interest analysis

The ROI analysis showed positive correlations between diabetes,
smoking status and iron content (R2*) in the basal ganglia (8 rang-
ing 0.10 - 0.15; since z-scores were used, one unit increase in 8
represents one SD increase in MRI measures), and a negative corre-
lation between iron content in the bilateral ACC and the diagnosis
of anxiety disorder (8 = -0.10 and -0.11). We observed a negative
correlation between arterial hypertension and myelin content
(MT), particularly in the WM (8 = -0.10 and -0.11) contrasted to
positive correlation between myelin and obesity (8 ranging 0.09 -
0.12). Arterial hypertension, diabetes, obesity, and bipolar disorder
in the selected ROIs showed negative correlation with tissue water
content (PD*, B ranging -0.12 - -0.08). R1 maps, sensitive to both
iron and myelin content, showed positive correlation with diabetes
and obesity (B ranging 0.09 - 0.14), and negative correlation
with melancholic MDD and anxiety disorders in the hippocampus
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Fig. 3. Manhattan plots relating 621 values from R1, R2*, MT, PD*, and volume maps to 138 non-imaging measures grouped into 10 categories. For each imaging - non-
imaging pair, the significance is plotted as -log;o(p) of the uncorrected p-value associated with the OLS regression coefficient. Each dot represents one model (i.e. one imaging
- non-imaging pair), the 138 non-imaging measures being projected on the x-axis and grouped by categories (see Supplementary Table 1 for a full list of the non-imaging
measures). Linear models included sex, age, age?, and total intracranial volume as covariates. Correction for multiple comparison is indicated as a blue line for Bonferroni
correction (threshold at Pyncorrected = 5-83 x 1077) and a red line for FDR correction (threshold at Pyncorrectea = 146 x 1073) corresponding to the 85,698 tested paired
associations. (A) All maps are shown together. (B) Manhattan plot relating 621 values from R1, R2*, MT, PD*, and volume maps to five cognitive scores, only in participants
> 65 years old (n = 564). Bonferroni correction threshold at Pypcorrected = 6.19 x 10~7 and FDR threshold at Pypcorrected = 5.42 x 104 correspond to the 80,730 tested paired
associations in this sub-group (621 imaging values x 130 non-imaging variables). (C) R1, R2*, MT, PD*, and volume are shown separately. Correction lines show the thresholds
corresponding to the total 85,698 tests. Abbreviations: CVRFs = cardio-vascular risk factors; FDR = false discovery rate; OLS = ordinary least squares; SES = socio-economic
status. Substance = substance abuse or dependence; Eating = eating disorders; Other = unclassified psychiatric disorders.

(B = -0.09). We report a negative correlation between amygdala 4. Discussion

volume and diabetes (8 ranging -0.09 - -0.05) contrasted to pos-

itive correlation with obesity (8 ranging 0.05 - 0.13) (Fig. 5). The Our large-scale monocentric study on mid- and old-age com-
MMSE, DMT, and verbal fluency scores correlated positively with munity dwelling adults confirms the wide-ranging association
left amygdala volume (8 ranging 0.12 - 0.23). Verbal fluency was between cardio-vascular risk, cognitive performance, mental
also associated with higher PD* in the right putamen (8 = 0.18) health and brain anatomy. We extend the previous findings in
(Fig. 6). the field by analyzing MRI parameters indicative for brain tissue
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Table 6
MANOVA of R1, R2#, MT, PD*, and volume in brain ROIs, with aCVRF and cognitive scores as regressors
R1 R2* MT PD* Volume
A F (df) p A F (df) p A F (df) p A F (df) p A F (df) p
Model 1
aCVRF 044 1.8(123) <0.001 0.51 1.4(123) 003 042 2.0(123) <0.001 056 1.2(119) 0.1 057 1.1(123) 03
DMT 0.54 1.2 (123) 0.1 0.61 0.9 (123) 0.7 0.59 1.0(123) 0.5 0.61 1.0 (119) 0.5 0.55 1.2 (123) 0.1
VF 0.61 09 (123) 0.7 054 1.2(123) 0.1 057 1.1(123) 03 060 1.0(119) 0.5 057 1.1(123) 03
Stroop 052 1.3(123) 0.05 054 1.2(123) 0.1 062 09(123) 038 058 1.1(119) 03 058 1.0(123) 04
Model 2
aCVRF 043 19(123) <0.001 0.52 13(123) 003 043 19(123) <0.001 056 1.2(119) 0.1 056 1.1(123) 0.2
DMT 0.56 1.1 (123) 03 0.63 0.8(123) 09 0.64 0.8 (123) =09 0.66 0.8 (119) =09 0.62 09 (123) 0.8
aCVRF x DMT 051 1.4(123) 0.03 060 1.0(123) 0.6 058 1.0(123) 04 0.62 09 (119) 0.6 0.58 1.0 (123) 04
Model 3
aCVRF 045 1.7 (123) <0.001 0.51 1.4 (123) 0.03 042 2.0(123) <0.001 055 1.2(119) 0.1 057 1.1(123) 03
VF 0.61 09 (123) 0.7 065 0.8(123) =09 059 1.0(123) 0.5 057 1.1(119) 0.2 061 0.9(123) 0.7
aCVRF x VF 056 1.1(123) 03 062 0.9(123) 0.8 056 1.1(123) 0.2 057 1.1(119) 0.2 061 0.9 (123) 0.7
Model 4
aCVRF 045 1.8(123) <0.001 0.51 1.4(123) 003 043 19(123) <0.001 055 1.2(119) 0.1 056 1.1(123) 0.2
Stroop 0.70 0.6 (123) =09 067 0.7(123) =09 059 1.0(123) 0.5 0.65 0.8(119) 0.9 0.68 0.7 (123) >0.9
aCVRF x Stroop 0.62 0.9 (123) 0.7 062 0.9(123) 0.8 062 09(123) 0.7 063 09(119) 0.8 066 0.7 (123) =>0.9

Wilk’s lambda (A), F-value, number of degrees of freedom (df), and uncorrected P-value from Mutlivariate ANalysis Of VAriance are reported (n = 306). Each of the four
models predicts a linear combination of the brain ROIs (separately for each MRI contrast) from an aggregate CVRF score and normalised cognitive scores, with (models
2-4) or without (model 1) interaction between aCVRF and cognitive score. All models included age, sex, total intracranial volume, and educational level as covariates. R1,
R2*, MT, and volume included GM and WM regions while PD* included only GM regions.

Significant results after false discovery rate correction are indicated in bold.

Key: aCVRF, aggregate cardio-vascular risk factor index; DMT, Grober & Buschke Double Memory Test; GM, gray matter; ROI, region of interest; VF, verbal fluency; WM,

white matter.
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Fig. 4. Selected cortical and subcortical regions-of-interest projected on a standard brain in Montreal Neurological Institute space.

properties — myelin, iron and tissue water, that are complementary
to the reporting of regional cortical thickness or volume metrics.
Given the constellation of volume and tissue property differences,
additionally to the fact that we adjust for the effects of age in all
our analyses, we interpret the observed effects as associations be-
tween cardio-vascular risk factors and behavioral outcome rather
than as effects confounded by ageing.

The complexity of interactions between CVRFs, mood and
brain anatomy becomes evident through the observed differ-
ential association of CVRFs with the melancholic and atypical
MDD subtypes. Our findings support the notion that the two
entities differ not only in clinical phenotype characteristics, but
also in associated risk factors. Previous findings from prospective
cohort studies indicate a temporal sequence between lifestyle
factors and late-life depression (Chang et al., 2016; Tanaka et al.,
2011), suggesting that targeted intervention on modifiable risk
factors could decrease the incidence of late-life MDD. Opposed

to their differential CVRFs profile, melancholic and atypical MDD
shared the same signature of high iron content in the basal
ganglia that could be interpreted in the context of abundant
dopamine receptors in subcortical structures and the essential
role of iron in dopamine synthesis (Rouault, 2013). The fact
that MDD patients, particularly the melancholic and late-life
subtypes, have a higher proportion of smokers than the rest,
complemented by the observed iron accumulation in smokers’
basal ganglia, suggests possible effects of shared variance. At
that stage, we can only speculate about the link between basal
ganglia dopamine receptors distribution, iron content and tobacco
addiction.

A shared feature across all studied psychiatric nosological en-
tities is myelin decrease in the brain’s white matter. The decrease
was observed for the two metrics indicative for myelin content
- the magnetization transfer saturation MT and the longitudinal
relaxation rate R1, with the first shown to be the closest to myelin
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Fig. 5. Beta coefficients from pairwise linear regressions of selected brain regions against cardio-vascular risk factors and psychiatric diagnoses. Local averages of eight
GM regions (bilateral) and total cerebral WM (bilateral, when applicable) were individually regressed against main CVRFs and psychiatric diagnoses. To allow comparison
between beta coefficients, we normalised brain regional values and non-imaging measures. Linear models included sex, age, age?, and total intracranial volume as covariates.
We show results for (A) maps that included cerebral WM and (B) the one that did not. Abbreviations: ACC = anterior cingulate cortex; CVRFs = cardio-vascular risk factors;

GM = gray matter; MDD = major depressive disorder; WM = white matter. Significant associations after false discovery rate correction are indicated with an asterisk.
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Fig. 6. Beta coefficients from pairwise linear regressions of selected brain regions against cognitive scores. Local averages of eight GM regions (bilateral) and total cerebral
WM (bilateral, when applicable) were individually regressed against cognitive scores. To allow comparison between beta coefficients, we normalised brain regional values
and cognitive scores, and multiplied CDR and Stroop scores by -1 for consistent (higher = better) directionality of scores (CDR’ and Stroop’). Linear models included sex, age,
age?, and total intracranial volume as covariates. Abbreviations: ACC = anterior cingulate cortex; CDR = Clinical Dementia Rating; DMT = Grober & Buschke Double Memory
Test; GM = gray matter; MMSE = Mini-Mental State Examination; WM = white matter. Significant associations after false discovery rate correction are indicated with an

asterisk.
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content metric compared to the majority of existing techniques
for direct and indirect measurement of myelin (Mancini et al.,
2020). The white matter myelin loss across all CVRFs, particularly
in arterial hypertension and in the presence of mood disorders,
supports the assumption of “spill-over” effects due to shared vari-
ance. This is further enforced by the interaction between myelin
content, CVRFs and the atypical/late-life MDD subtypes, but not
with the melancholic type - the one that is not necessarily asso-
ciated with a cardio-vascular risk profile. Despite the differences
between our approach to average across the entire white matter
volume and the fine-grained tract-based investigation of white
matter hyperintensities in a recent study (Dalby et al., 2019), we
feel that our results corroborate the reported findings about lack
of group differences in abnormal tissue oxygenation in white
matter hyperintensities between late-life MDD and individuals
without depression. The planned investigation of these effects
at the voxel- or tract-based level will help us to determine the
topological pattern of changes that should lead to a presumed
spatially differential interpretation of our current observations.
While CVRFs-related hypoxic tissue injury could underlie the
decrease of myelin in late-life depression, astrocyte pathology
confined to ventral prefrontal areas could confirm the assumption
of myelin reduction in early-life MDD (Rajkowska et al., 2018).

The observed associations between CVRFs and cognitive per-
formance in the sub-group of participants aged 65 and over
corroborate published results on the link between obesity, hy-
percholesterolemia, diabetes, and cognitive decline in older age
(Leritz et al., 2011; Marseglia et al.,, 2019). Similar to previous
findings, waist-to-hip ratio proved to be a more sensitive mea-
sure than BMI in explaining variability across cognitive scores
(Crowe et al., 2018; Liu et al., 2019), particularly for memory and
executive functions (Hartanto and Yong, 2018). We note the sur-
prisingly weaker associations between cognitive performance and
hippocampus (micro)structure. We explain this by the observed
higher predictive value of small-vessel disease-related anatomy
changes compared with baseline differences (Moon et al., 2017),
additionally to the reduced statistical power of this subgroup
analysis when compared to the whole BrainLaus cohort (n = 306
vs. 1234). Alternatively, the absence of significant effects may
be due to the larger shared variance with individuals’ education
attainment level, which was included as a covariate in the model.
The positive association between left amygdala volume, MMSE,
verbal memory and verbal fluency scores may reflect cognitive
decline in preclinical Alzheimer’s disease due to local beta-amyloid
and tau pathology as recently reported (Betthauser et al., 2020),
which is further supported by the left-sided predominance of
our language system-related findings. Verbal memory and verbal
fluency scores also showed a trend for negative correlation with
iron content. The latter can be interpreted in the context of the
“free-radical induced energetic decline in senescence” model that
suggests iron-related oxidative stress as a mediator of ageing
effects on brain anatomy and cognitive function (Daugherty and
Raz, 2015; Raz and Daugherty, 2018).

Given the exploratory character of our analysis of cardio-
vascular, inflammatory, lifestyle factors, mood, anxiety and
cognition, we adjusted for the confounding effects of sex and age,
whilst acknowledging potential interaction effects. The observed
lower CVRFs and higher verbal memory scores, paralleled by
higher depression and anxiety morbidity in women are consistent
with previous reports (Altemus et al., 2014; Peters et al., 2019) and
suggest differential mechanisms of association between modifiable
risk factors and cognitive and mental health in men and women.
We carefully adjusted for the confounding effects of SES, which
was positively correlated with cardio-vascular and mental health.
Individuals with low SES have a higher incidence of psychiatric

disorders (Zimmerman and Katon, 2005) and cardio-vascular dis-
ease (Elo et al., 2014; Kamphuis et al., 2012; Stringhini et al., 2017)
suggesting that SES at least partly mediates the association be-
tween CVRFs and mental disorders. It is of note that we observed a
relatively high lifetime prevalence of MDD in our sample - 50.6 %
when considering all MDD subtypes - compared to meta-analytic
reports of 10-21% lifetime MDD prevalence in European coun-
tries (Lim et al,, 2018; Gutiérrez-Rojas et al., 2020). As discussed
previously (Vandeleur et al., 2017), one possible explanation is
that the CoLaus|PsyColLaus sample was recruited from an urban
population known to be more susceptible to psychiatric disorders
(Peen et al., 2007). Another line of argumentation is defined by the
semi-structured character of the Diagnostic Interview for Genetic
Studies (DIGS) instrument used for psychiatric assessment in
CoLaus|PsyCoLaus that results in more frequent positive diagnosis
than fully-structured interview methods (Eaton et al., 2000). The
latter type of methods may under-estimate the prevalence of
depression in the community (Kruijshaar et al., 2005).

The novelty of our study is mainly in providing complemen-
tary information about brain-behavior relationship by analyzing
MRI parameters derived from established biophysical models
and allowing for a straightforward neuro-biological interpretation
(Weiskopf et al., 2015). Our findings of reduced longitudinal
relaxation time R1 fit well in the presumed mechanism of CVRFs-
related decrease in interstitial fluid mobility and water content
that predates or co-occurs with demyelination and gliosis captured
by the MT saturation (Maniega et al, 2015). Given that R1 is a
weighted average of the free and bound water phases, empirical
research showed that a large part of the R1 variance was shared
with MT and R2* (Callaghan et al., 2015). We interpret the residual
correlations between R1 and CVRFs after regressing out the effects
of MT and R2*, as an independent contribution of the total water
content to brain microstructure (Supplementary Fig. 2). Contrary
to our expectations of a negative impact of obesity on white
matter’s myelin, we observed a positive correlation that merits
further investigation, particularly in the context of ApoE allelic
variants as demonstrated recently (Mole et al., 2020).

There are some limitations in our study that should be
acknowledged. Given the focus on urban population, the general-
izability of our results is uncertain. The cross-sectional data not
only limits the interpretations to correlation analysis findings, but
it also hampers assessing the impact of inter-individual differences
on brain and behavior that, particularly in the cognitive domain,
will increase with advancing age (Nyberg et al., 2020). By adopting
a region-of-interest approach as in the UK Biobank (Miller et al.,
2016), we refrained from a whole-brain analysis as reported previ-
ously (Taubert et al., 2020), which can be seen as a potential weak
point of the current report. The shared variance between age,
lifetime factors and the outcome variables in our study - cognitive
performance and mood - pose a challenge for a straightforward
interpretation of the obtained results. Attempts to formally test
these relationships using structural equation modelling or similar
techniques for mediation analysis do not resolve the issue of
complex interdependencies that are potentially addressable by
longitudinal studies (e.g. Veldsman et al., 2020). Alternatively, the
authors provide a highly selective set of lifetime variables that
help avoiding shared variance and the dilemma of interpretability
but omit a range of factors that could explain additional variance
(e.g. Opel et al., 2020).

In summary, the presented results on brain anatomy patterns
that link cardio-vascular risk factors, mood and cognition showed
main effects and complex interactions in the context of ageing. The
fact that CVRFs correlated with both brain tissue microstructure
and volume differences underscores the complementary character
of MRI parameter mapping that is closer to the underlying neu-
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robiological mechanisms and reduces the probability of spurious
morphometric findings.
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