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We discuss the limitations to the use of the effective field theory approach to study dark matter at the
LHC. We introduce and study a few quantities, some of them independent of the ultraviolet completion
of the dark matter theory, which quantify the error made when using effective operators to describe
processes with very high momentum transfer. Our criteria indicate up to what cutoff energy scale, and
with what precision, the effective description is valid, depending on the dark matter mass and couplings.

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

Identifying the nature and properties of Dark Matter (DM), whose contribution to the total energy density budget of the universe
amounts to about 30% [1], will have profound consequences both in high energy particle physics and in cosmology. A very intense
experimental activity is nowadays devoted to the search for DM: in the so-called indirect searches of DM the goal is to detect the
products of DM annihilations or decays around the Milky Way [2]; in direct searches the hope is to detect the scattering between DM
and heavy nucleons [3]; finally in collider searches at the Large Hadron Collider (LHC) the mono-jet [4–7] and mono-photon [8–11]
searches are currently under way to look for an indirect signature of DM production (for alternative kinds of DM searches at the LHC see
e.g. Refs. [12–17]). The complementary interplay of these different approaches can considerably improve the discovery potential.

Despite the fact that the nature of the DM is not known, from the theoretical point of view the most studied candidate is represented
by a Weakly Interacting Massive Particle (WIMP): a neutral particle with weak-scale mass and weak interactions, whose thermal relic
density may naturally fit the observed DM abundance. Given the plethora of particle physics model beyond the SM providing such a
candidate, it is highly desirable to study the signatures of this DM candidate in a model-independent way. One possible starting point is
the Effective Field Theory (EFT) approach where the interactions between the DM particle and the SM sector are parametrized by a set of
effective (non-renormalizable) operators, generated after integrating out heavy mediators [18–28]. Since direct and indirect detection of
WIMPs, as well as WIMP production at the LHC, all require an interaction of the WIMPs with the SM particles, and such an interaction
may be generated by the same operator, the EFT approach has the advantage of facilitating the analysis of the correlations between
the various kinds of experiments. Currently, the EFT approach is being used by the LHC collaborations in their DM searches in the
mono-jet/mono-photon plus missing energy channels.

The EFT description is only justified whenever there is a clear separation between the energy scale of the process to describe and
the scale of the underlying microscopic interactions. In other contexts of DM searches, the energy scales involved are such that the EFT
expansion is completely justified. For instance, for indirect DM searches the annihilations of non-relativistic DM particles in the galaxy
occur with momentum transfers of the order of the DM mass mDM; in direct searches, the momentum transfers involved in the scattering
of DM particles with heavy nuclei are of the order of tens of keV. In all these cases, it is possible to carry out an effective description in
terms of operators with an Ultra-Violet (UV) cutoff larger than the typical momentum transfer, and reliable limits on the operator scale
can be derived (see e.g. Refs. [29,30]).
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However, the situation is dramatically different at the LHC environment, where the energies involved can be very high, and the pro-
cesses one wishes to describe in terms of effective operators can actually occur at an energy beyond the validity of the EFT itself. The
effective non-renormalizable operators mimic the effect of heavy particles. Of course, such a description will be incorrect in the case that
near future LHC searches provide a signal of a direct production of the heavy mediators. Supposing that this will not be the case, one is
left with the conclusion that the EFT is valid as long as the energy scale of the process involving the DM and the SM particles is small
compared to the energy scale associated to the heavy mediator. Thus, in this situation one should make a careful use of the EFT, making
sure to use it consistently and within its range of applicability.

The goal of this Letter is to answer a simple, yet basic, question: under what circumstances is the EFT approach reliable for DM searches
at the LHC? We will introduce some quantities to assess the validity of the EFT. Some of them have the virtue of being independent of
the UV completion of the DM theory and therefore can be adopted in their full generality. The Letter is organized as follows. In Section 2,
we discuss some general issues about the EFT and introduce a simple model with a heavy scalar mediator which will be a useful example
to illustrate the points we make. In Section 3, we provide an estimate of the energy transfer which gives us the first indication of the
goodness of the EFT. In Section 4, we introduce various model-independent ratios to quantify the validity of the EFT approach; in the
same section we go back to the heavy scalar mediator model to analyze the EFT for a well-defined specific case. Finally, in Section 5 we
draw our conclusions.

2. General considerations

An EFT is a powerful and economical way to describe physical processes occurring at a given energy scale in terms of a tower of
interactions, involving only the degrees of freedom present at such scale. These interactions are generically non-renormalizable and with
mass dimensions Λk , for some k � 1. For example, if one imagines that the UV theory contains a heavy particle of mass M , the low-energy
effective theory at energies less than Λ ∼ M only contains the degrees of freedom lighter than Λ. The effects of the heavy field in the
processes at low momentum transfer Q tr � Λ are encoded by a series of interactions, scaling as (Q tr/Λ)k and whose coefficients are
matched to reproduce the UV theory at Q tr = Λ. Therefore, the scale Λ sets the maximum energy at which the operator expansion in
the EFT can be trusted. So generally speaking, the condition for the validity of an EFT is that the momentum transfer Q tr in the relevant
process one wants to describe must be less than the energy scale Λ.

In order to assess to what extent the effective description is valid, one has to compare the momentum transfer Q tr of the process of
interest (e.g. pp → χχ + jet/γ ) to the energy scale Λ and impose that

Λ� Q tr. (2.1)

Of course, there is some degree of arbitrariness in this choice, as one does not expect a sharp transition between a valid and an invalid
EFT, but more precisely that the observables computed within the EFT are a less and less accurate approximation of the ones of the
unknown UV theory as the cutoff scale Λ is approached. A more precise information on what Λ is can only come from knowing the
details of the UV theory, the mass spectrum and the strength of the interactions.

The lower limits on Λ, extracted from interpreting the experimental data in terms of effective operators, should be considered together
with the condition (2.1) on the validity itself of the effective approach. This means that one has to make sure that the lower limits on Λ

obtained by the experiments satisfy to some extent the condition (2.1).
In order to clarify this point better, let us consider a simple example, which will be the leitmotiv throughout this work. Let us consider

DM to be a fermion, whose interactions with quarks are mediated by a heavy scalar particle S through the Lagrangian

LUV ⊃ 1

2
M2 S2 − gqq̄qS − gχ χ̄χ S. (2.2)

At energies much smaller than M the heavy mediator S can be integrated out, resulting in a tower of non-renormalizable operators for
the fermionic DM interactions with quarks. The lowest-dimensional operator has dimension six

OS = 1

Λ2
(χ̄χ)(q̄q), (2.3)

and the matching condition implies

1

Λ2
= gχ gq

M2
. (2.4)

The Feynman diagrams for the processes under consideration are depicted in Fig. 1. The processes where a quark-jet is emitted from an
initial gluon also contribute to the signal, but are suppressed by a factor of about 4 at 8 TeV LHC with respect to the gluon emission, and
for simplicity we will not consider them in this Letter. The procedure of integrating out the heavy mediator and retaining the operator of
lowest dimension can be viewed in terms of the expansion of the heavy particle propagator

1

Q 2
tr − M2

= − 1

M2

(
1 + Q 2

tr

M2
+O

(
Q 4

tr

M4

))
, (2.5)

where only the leading term 1/M2 is kept. The higher-order terms in the expansion correspond to higher-dimensional operators. It is
obvious that retaining only the lowest-dimensional operator is a good approximation as long as Q 2

tr � M2 ∼ Λ2. Thus, the parameter
Q tr/M characterizes the goodness of the truncation of the tower of effective operators to the lowest dimensional ones.

For the couplings to stay in the perturbative regime, one needs gq, gχ < 4π (see Ref. [31] for an alternative criterion based on unitar-
ity). Also, we need a mediator heavier than the DM particle mDM, that is M > mDM. So, Eq. (2.4) gives [21]
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Fig. 1. The Feynman diagrams for DM pair production with ISR of a photon or jet, for a model with scalar exchange (left panel) and its effective operator (right panel). We
omitted the diagrams where the radiation is emitted from the anti-quark.

Λ� mDM

4π
, (2.6)

which depends linearly on the DM mass. This is a very minimal requirement on Λ and it is what, for instance, ATLAS uses in Ref. [6]. On
top of this condition, the validity of the truncation to the lowest order in the expansion (2.5) requires that Q tr < M , i.e. Q tr <

√
gq gχΛ <

4πΛ, so that

Λ >
Q tr√
gq gχ

>
Q tr

4π
, (2.7)

which depends on mDM through Q tr and refines the condition (2.1). Furthermore, assuming s-channel momentum transfer, kinematics
imposes Q tr > 2mDM so from Eq. (2.7)

Λ >
mDM

2π
, (2.8)

which is stronger than Eq. (2.6). However, the details of this condition depend case by case on the values of gq, gχ , and therefore on the
details of the UV completion.

As an example of what the condition in Eq. (2.1) means, let us consider the hard scattering process of the production of two DM
particles at the parton-level q(p1) + q̄(p2) → χ1(p3) + χ2(p4). Since the two χ ’s are produced on-shell, the energy injected into the
diagram needs to be Q tr � 2mDM, so Λ � Q tr is equivalent to Λ � 2mDM, which would be much stronger than Eq. (2.6). However, the
relevant process used for extracting lower limits on Λ at the LHC is when a single jet or photon is emitted from the initial state quark
and this is the process we will consider in the next sections. We will proceed in two different ways. In the next section we will provide
an estimate of the typical momentum transfer involved in the DM production associated to mono-jet or mono-photon, as a function of
the transverse momentum and rapidity of the mono-jet or mono-photon. This calculation, even though not rigorous, will serve to provide
an idea of the minimum value of Λ compatible with the EFT approach. Subsequently, in Section 4, we will asses the validity of the EFT
more precisely by studying the effect of the condition Q tr < Λ on the cross sections for the production of DM plus mono-jet/photon, and
by comparing the cross section in the EFT and in the UV theory where the mediator has not been integrated out.

3. An estimate of the momentum transfer

Many LHC searches for DM are based on the idea of looking at events with missing energy plus a single jet or photon, emitted from
the initial state. At the parton level the process is described by

q(p1) + q̄(p2) → χ1(p3) + χ2(p4) + jet(k). (3.1)

Let us see what happens if the energy exchanged is in the s-channel. Notice that, in the cases where the heavy mediator is exchanged
in the t- or u-channels, one can always Fierz-rotate the corresponding non-renormalizable operator to give rise to (a set of) operators
where the momentum is transferred in the s-channel. However, the basis of operators considered in experimental searches corresponds
to s-channel mediation only.

In the pp center of mass frame, the proton momenta take the explicit form P1 = (
√

s/2,0,0,
√

s/2), P2 = (
√

s/2,0,0,−√
s/2), where

s is the center-of-mass energy. Ignoring the small transverse momenta of the partons, we can write the constituent quark momenta as
fractions of these four-vectors

p1 = x1 P1, p2 = x2 P2. (3.2)

The four-momentum of the jet (assuming it is massless) is given in terms of transverse momentum pT, pseudo-rapidity η and azimuth
angle φ by

k = (pT coshη, pT cosφ, pT sinφ, pT sinhη). (3.3)

If the production of the DM takes place through the s-channel, then in the propagator it will appear the quantity Q 2
tr − M2, where

Q 2
tr = (p1 + p2 − k)2 = x1x2s − √

spT
(
x1e−η + x2eη

)
. (3.4)

The condition that Q 2
tr > 0 is equivalent to the condition that the energy of the jet should be smaller than the energy of the parton it is

emitted from. The expression (3.4) is maximized at the rapidity value e2η = x1/x2 corresponding to Q 2
tr|max = x1x2s − 2

√
spT

√
x1x2.

To assess the validity of the EFT, we first adopt a procedure which, albeit not rigorous, gives an idea of the error one might make in
adopting the EFT. The advantage of this procedure is that it is model-independent in the sense that it does not depend on the particular
UV completion of the EFT theory. A simple inspection of the expansion (2.5) tells us that the EFT is trustable only if Q 2

tr � M2 and we take
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Fig. 2. The momentum transfer in the s-channel in Eq. (3.4), weighted with PDFs, as a function of mDM, for different choices of pT, η of the radiated jet. We considered√
s = 8 TeV.

for the typical value of Q tr the square root of the averaged squared momentum transfer in the s-channel, where the average is computed
properly weighting with PDFs [32]

〈
Q 2

tr

〉 =
∑

q

∫
dx1dx2[ fq(x1) fq̄(x2) + fq(x2) fq̄(x1)]θ(Q tr − 2mDM)Q 2

tr∑
q

∫
dx1dx2[ fq(x1) fq̄(x2) + fq(x2) fq̄(x1)]θ(Q tr − 2mDM)

. (3.5)

The integration in x1, x2 is performed over the kinematically allowed region Q tr � 2mDM and we have set the renormalization and fac-
torization scales to pT + 2[m2

DM + p2
T/4]1/2, as often done by the LHC collaborations (see e.g. Ref. [6]). The results are plotted in Fig. 2

as a function of the DM mass mDM and for different choices of pT and η of the radiated jet. From Fig. 2 we see that the lower the jet
pT, the lower the momentum transfer is, and therefore the better the EFT will work. The same is true for smaller DM masses. These
behaviors, which are due to the fact we have restricted the average of the momentum transfer to the kinematically allowed domain, will
be confirmed by a more rigorous approach in the next section. Notice that 〈Q 2

tr〉1/2 is always larger than about 500 GeV, which poses a
strong bound on the cutoff scale Λ: when the coupling constants gq and gχ are close to their perturbative regime, from the condition
(2.7) we get Λ � 50 GeV, but when the couplings are of order unity, one gets a much stronger bound Λ� 500 GeV.

4. Validity of the EFT approach

The tree-level differential cross sections for the hard scattering process qq̄ → χχ + gluon, in the UV (with interaction Lagrangian
Eq. (2.2)), and in the EFT (with the operator Eq. (2.3)), are

d2σ̂eff

dpTdη
= αs

36π2

1

pT

1

Λ4

[Q 2
tr − 4m2

DM]3/2
[
1 + Q 4

tr
(x1x2s)2

]
Q tr

, (4.1)

d2σ̂UV

dpTdη
= αs

36π2

1

pT

g2
q g2

χ

[Q 2
tr − M2]2

[Q 2
tr − 4m2

DM]3/2
[
1 + Q 4

tr
(x1x2s)2

]
Q tr

, (4.2)

respectively, where Q tr is given by Eq. (3.4). The corresponding cross sections initiated by the colliding protons are

d2σeff

dpTdη
=

∑
q

∫
dx1dx2

[
fq(x1) fq̄(x2) + fq(x2) fq̄(x1)

] d2σ̂eff

dpTdη
, (4.3)

d2σUV

dpTdη
=

∑
q

∫
dx1dx2

[
fq(x1) fq̄(x2) + fq(x2) fq̄(x1)

] d2σ̂UV

dpTdη
. (4.4)

The explicit derivation of Eqs. (4.1)–(4.2) can be found in Appendix A. Throughout this work we will identify the emitted gluon with the
final jet observed experimentally. For numerical results at NLO see Ref. [33].

The cross sections for the mono-jet processes are measured with a precision roughly of the order of 10%, although this number can
fluctuate due to many factors (jet energy scale, PDFs, etc.). However, as we are going to show, the effect of taking into account a cutoff
scale can be larger than the precision of the cross section measurement, so the concern about the validity of the EFT approach is justified.

4.1. The effect of the EFT cutoff

Let us suppose we know nothing about the UV completion of the EFT. Even so, we know that adopting only the lowest-dimensional
operator of the EFT expansion is accurate only if the transfer energy is smaller than an energy scale of the order of Λ, see Eqs. (2.1), (2.5).
However, up to what exact values of Q tr/Λ is the EFT approach justified? Let us consider the ratio of the cross section obtained in the EFT
by imposing the constraint Q tr < Λ on the PDF integration domain, over the cross section obtained in the EFT without such a constraint

RΛ ≡
d2σeff
dpTdη

∣∣
Q tr<Λ

d2σeff
dpTdη

. (4.5)
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Fig. 3. The ratio RΛ defined in Eq. (4.5) for
√

s = 8 TeV, η = 0. Top row: RΛ as a function of Λ, for various choices of mDM, for pT = 120 GeV (left panel), pT = 500 GeV
(right panel). Bottom row: RΛ as a function of mDM, for various choices of pT, for Λ = 1.5 TeV (left panel), Λ = 2.5 TeV (right panel).

Fig. 4. The ratio Rtot
Λ defined in Eq. (4.6) for

√
s = 8 TeV, |η| � 2. Top row: Rtot

Λ as a function of Λ, for pmin
T = 120 GeV (left panel), pmin

T = 500 GeV (right panel). Bottom
row: Rtot

Λ as a function of mDM, for various choices of Λ, for pmin
T = 120 GeV (left panel), pmin

T = 500 GeV (right panel).

This ratio quantifies the fraction of the differential cross section for qq̄ → χχ + gluon, for given pT, η of the radiated object, mediated by
the effective operator (2.3), where the momentum transfer is below the scale Λ of the operator. Values of RΛ close to unity indicate that
the effective cross section is describing processes with sufficiently low momentum transfers, so the effective approach is accurate. On the
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Fig. 5. Top row: Contours for the ratio Rtot
Λ , defined in Eq. (4.6), on the plane (mDM,Λ). We set

√
s = 8 TeV, |η| � 2 and pmin

T = 120 GeV (left panel), pmin
T = 500 GeV (right

panel). Bottom row: 50% contours for the ratio Rtot
Λ , varying the cutoff Q tr < Λ/2 (dotted line), Λ (solid line), 2Λ (dashed line), 4πΛ (dot-dashed line). We have also shown

the contour corresponding to Λ < mDM/(2π) (see Eq. (2.8)), which is often used as a benchmark for the validity of the EFT. We set
√

s = 8 TeV, |η| � 2 and pmin
T = 120 GeV

(left panel), pmin
T = 500 GeV (right panel).

other hand, a very small RΛ signals that a significant error is made by extrapolating the effective description to a regime where it cannot
be fully trusted, and where the neglected higher-dimensional operators can give important contributions.

This ratio is plotted in Fig. 3 as a function of Λ and mDM, for various choices of pT and η. Our results indicate that if one would
measure the cross section for the mono-jet emission process within the EFT, but without taking into account that Q tr should be bounded
from above, one makes an error which may even be very large, depending on the values of the DM mass, the scale Λ of the operator and
the pT, η of the emitted object. Of course, the precise definition of the cutoff scale of an EFT is somewhat arbitrary, with no knowledge of
the underlying UV theory; therefore one should consider the values of RΛ with a grain of salt.

To sum over the possible pT, η of the jets, we integrate the cross sections over values typically considered in the experimental searches
and we can thus define the following ratio of total cross sections

Rtot
Λ ≡ σeff|Q tr<Λ

σeff
=

∫ 1 TeV
pmin

T
dpT

∫ 2
−2 dη d2σeff

dpTdη

∣∣
Q tr<Λ∫ 1 TeV

pmin
T

dpT
∫ 2
−2 dη d2σeff

dpTdη

. (4.6)

As an example, we consider two cases: pmin
T = 120 GeV, 500 GeV, used in the signal regions SR1, SR4 of [6], respectively. The results

are shown in Fig. 4. Notice that both ratios RΛ, Rtot
Λ get closer to unity for smaller DM masses, which confirms the qualitative analysis

on 〈Q tr〉 in Section 3, and also for larger Λ, when the effect of the cutoff becomes negligible. On the other hand, RΛ goes to zero at
Λ = 2mDM, as the phase space of DM pair production Q tr � 2mDM gets closed. Notice also that the ratios involving differential and total
cross sections (RΛ and Rtot

Λ ) are very similar, as a consequence of the fact that the integrands are very peaked at low pT and at η = 0.
We stress that this calculation does not rely on any specific UV completion of the EFT, but it is completely rooted in the effective

operator and the requirement of a consistent use of it within its range of validity. Its only limitations are the lack of a precise identification
of the cutoff scale and that it applies to the case in which the momentum transfer occurs in the s-channel. The quantities in Eqs. (4.5)–(4.6)
are not directly deduced from actual data, but they require explicit analytical forms of the cross sections or Monte Carlo simulations of
the events. We have also found useful fitting functions for Rtot

Λ in the case pmin
T = 120 GeV

Rtot
Λ = [

1 − e−1.273(
Λ−2mDM

1 eV )1.752][
1 − e−1.326(

Λ+2mDM
1 TeV )0.903]

, (4.7)

and in the pmin
T = 500 GeV

Rtot
Λ = [

1 − e−1.265(
Λ−2mDM

1 TeV )1.820][
1 − e−0.714(

Λ+2mDM
1 TeV )1.385]

, (4.8)

which are valid for 10 GeV < mDM < 1 TeV, 800 GeV < Λ < 7 TeV, to better than about 15%. The first factors in square brackets in
Eqs. (4.7)–(4.8) are very mildly sensitive to the cut on pT. Of course, these results hold for the operator OS in (2.3); for a different
operator one would have a different fitting function. The contours in the top row of Fig. 5 indicate the regions in the parameter space
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Fig. 6. The ratio rUV/eff defined in Eq. (4.9), for
√

s = 8 TeV, η = 0 and M = Λ (corresponding to gq = gχ = 1). Left panel: rUV/eff as a function of Λ for various choices of
mDM and pT = 120 GeV. Right panel: rUV/eff as a function of mDM for various choices of pT, and Λ = 2.5 TeV.

(Λ,mDM) where the description in terms of dim-6 effective operator is accurate and reliable. Even for very small DM masses, having Rtot
Λ

at least 75%, requires a cutoff scale at least above 1 TeV.
We reiterate that there is always some degree of arbitrariness when defining precisely the cutoff scale up to which the EFT is reliable,

as one does not know the details of the UV physics integrated out. This point reflects into the fact that the condition on the transfer
momentum, see Eq. (2.7), varies according to the values of gq, gχ . The effect of varying the cutoff scale is shown in the bottom row of
Fig. 5, for the representative contour Rtot

Λ = 50%. The extreme, and most conservative, situation Q tr < 4πΛ, corresponding to couplings in
the UV theory at the limit of the perturbative regime, is also shown. Yet, the corresponding 50% contour is above the limit Λ > mDM/(2π)

(see Eq. (2.8)), which is often used as a benchmark for the validity of the EFT. This means that the parameter space regions of validity of
the effective operator approach can be smaller than commonly considered.

4.2. Comparing the effective operator with a UV completion

Let us now turn to quantify the validity of the EFT by comparing cross sections for the production of DM plus mono-jet or mono-photon
in the simple example of a theory containing a DM particle χ and a heavy mediator S with the Lagrangian described in Eq. (2.2) with its
effective counterpart given by the operator in Eq. (2.3). The matching condition implies Λ = M/

√
gq gχ . Let us study the ratio of the cross

sections obtained with the UV theory and with the effective operator

rUV/eff ≡
d2σUV
dpTdη

∣∣
Q tr<M

d2σeff
dpTdη

∣∣
Q tr<Λ

. (4.9)

This ratio quantifies the error of using the EFT, truncated at the lowest-dimensional operator, with respect to its UV completion, for given
pT, η of the radiated object. Values of rUV/eff close to unity indicate the effective operator is accurately describing the high-energy theory,
whereas large values of rUV/eff imply a poor effective description.

For numerical integrations over the PDFs we have regularized the propagator introducing a small width Γ = (g2
q + g2

χ )M/(8π) for
the scalar mediator, which of course can be larger in presence of additional decay channels. The function rUV/eff is plotted in Fig. 6, for
different choices of pT, η,Λ,mDM. Once again, one can see that the smaller pT and mDM are, the better the EFT works.

Also, we can integrate over pT, η using cuts commonly used in the experimental analysis (see e.g. [6]): pT � pmin
T , |η|� 2

rtot
UV/eff ≡ σUV|Q tr<M

σeff|Q tr<Λ

=
∫ 1 TeV

pmin
T

dpT
∫ 2
−2 dη d2σUV

dpTdη

∣∣
Q tr<M∫ 1 TeV

pmin
T

dpT
∫ 2
−2 dη d2σeff

dpTdη

∣∣
Q tr<Λ

. (4.10)

The DM pair production is kinematically allowed for Q tr > 2mDM; furthermore, when dealing with the processes with mediator exchange,
one also has to require Q tr < M to avoid on-shell mediator. Therefore we have worked with the condition 2mDM < Q tr < M , which can
only be satisfied if mDM < M/2. The results for rtot

UV/eff are plotted in Fig. 7. Again, we see that one needs a cutoff scale Λ at least larger

than about a few TeV in order for the ratios rUV/eff and rtot
UV/eff to be of order unity, the best case being attained for the lowest DM

masses. As in the previous subsection, the ratios involving differential and total cross sections (rUV/eff and rtot
UV/eff) are very similar, as a

consequence of the fact that the integrands are very peaked at low pT and at η = 0.
As a final remark of this section, notice that σUV turns out to be easily much bigger than σeff. This means that interpreting the mono-jet

data in terms of effective operator or in terms of mediator exchange can make a big difference. In particular, it implies that there can
be placed more stringent bounds on the mediator mass of the simple model than on the cutoff scale of the effective operators. We also
expect the direct exclusion bounds from the negative searches of heavy mediators (e.g. di-jet searches) to play an important role.

5. Conclusions

The EFT approach is commonly used to study the indirect signatures of the production of DM particles at LHC. While this approach
has the undeniable advantage of being independent of the plethora of models of DM, its validity has to be scrupulously analyzed as the
momentum transfers involved in the mono-jet and mono-photon searches can be rather large.
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Fig. 7. The ratio rtot
UV/eff defined in Eq. (4.10), as a function of Λ (left panel) and mDM (right panel). We have set pmin

T = 120 GeV, |η|� 2, M = Λ, gq = gχ = 1 and
√

s = 8 TeV.

In this Letter we have introduced various quantities which can help in assessing the validity of the EFT approach for DM searches.
Some of these quantities have the virtue of being independent of the UV completion of the DM model. For instance, for a specific operator
connecting DM particles with quarks, we have introduced the ratio Rtot

Λ (see Eq. (4.6)), which is a measure of the error one would make
by extrapolating the effective description to a regime with very high momentum transfers, where it cannot be fully trusted. It does not
rely on any specific UV completion of the EFT, but simply follows from the requirement of using the effective approach consistently, for
momentum transfers below the cutoff scale of the operator. Given its large range of applicability, we have provided simple fitting functions
Eqs. (4.7)–(4.8) which may be used to set general criterions on the validity of the EFT approach.

We have also studied in detail a specific example of UV physics giving rise to a given operator at low energies. In this model, the
SM sector and the DM particles are connected through a heavy scalar mediator. The ratio rtot

UV/eff (see Eq. (4.10)) relates the cross section
for mono-jet production obtained with the effective operator and with its possible UV completion. The analysis confirms the general
conclusions one can draw from the model-independent quantities, that is: the validity of the EFT approach in studying indirect signals of
DM at the LHC requires the cutoff scale Λ to be larger than about 1 TeV (unless the couplings constants involved in the processes are
close to the non-perturbative regime). Increasing the mass of the DM increases the lower bounds on Λ. The reason for this behavior is
clear: larger DM masses imply larger momentum transfers which, in turn, require larger values of the EFT cutoff scale Λ.

Thus, we conclude that the use of EFT for DM searches in a highly energetic environment, such as the LHC, should be handled with
care. This point has been already remarked in various references [15,21,24,31,33,34], and our results are in general agreement with theirs.
The results of the experimental searches carried out in the EFT language need to be confronted, consistently and case by case, with the
validity of the effective description itself. Although we have restricted our analysis to a specific operator, it is clear that the very same logic
discussed in this Letter is equally applicable to any other situation or operator. In particular, it would be interesting also to investigate the
case of scalar DM particles, which has not yet been studied by the experimental LHC collaborations.
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Appendix A. Three-body cross sections

In this appendix we show the details of the calculations of the tree-level cross sections for the hard scattering process q(p1)+ q̄(p2) →
χ(p3)+χ(p4)+γ /g(k), where the photon/gluon is emitted from the initial state quark (of charge Q qe). For simplicity we show explicitly
the calculation for the photon emission, the case of gluon emission amounts to a simple rescaling of the overall coefficient (see the end
of the appendix).

The differential cross section is generically given by

dσ̂ =
∑ |M|2

4(p1 · p2)
dΦ3, (A.1)

where the three-body phase space is

dΦ3 = (2π)4δ(4)(p1 + p2 − p3 − p4 − k)
dp3

(2π)32p0
3

dp4

(2π)32p0
4

dk

(2π)32k0
. (A.2)

The amplitudes for the processes with the exchange of a scalar of mass M , whose interactions are described by the Lagrangian in Eq. (2.2),
and with the effective operator OS in Eq. (2.3) are

MUV = i Q qegq gχ

(p1 + p2 − k)2 − M2

[
v̄(p2)

(
2p2 · ε∗ + /k/ε∗

2p2 · k
− 2p1 · ε∗ + /ε∗/k

2p1 · k

)
u(p1)

][
ū(p3)v(p4)

]
, (A.3)

Meff = − i Q qe

Λ2

[
v̄(p2)

(
2p2 · ε∗ + /k/ε∗

2p2 · k
− 2p1 · ε∗ + /ε∗/k

2p1 · k

)
u(p1)

][
ū(p3)v(p4)

]
, (A.4)
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respectively. The squared amplitudes, averaged over initial states (spin and color) and summed over final states, are

∑
|MUV|2 = 4

3
Q 2

q e2 g2
q g2

χ

[(p3 · p4) − m2
DM][(k · (p1 + p2))

2 − 2(p1 · p2)(k · p1 + k · p2 − p1 · p2)]
[(p1 + p2 − k)2 − M2]2(k · p1)(k · p2)

, (A.5)

∑
|Meff|2 = 4

3

Q 2
q e2

Λ4

[(p3 · p4) − m2
DM][(k · (p1 + p2))

2 − 2(p1 · p2)(k · p1 + k · p2 − p1 · p2)]
(k · p1)(k · p2)

. (A.6)

At this stage one can proceed in two equivalent ways: either by evaluating the scalar products and the phase space directly in the lab
frame, or by computing them in the center-of-mass frame and then boosting the result to the lab frame. We show the details for the latter
procedure, but we have also carried out the calculation in the former way and checked the agreement.

Let us first write down the four-momenta in components in the center-of-mass (c.o.m.) frame of the two colliding partons, carrying
equal momentum fractions x1 = x2 ≡ x of the incoming protons

p1 = x

√
s

2
(1,0,0,1), p2 = x

√
s

2
(1,0,0,−1), k = x

√
s

2
(z0, z0k̂),

p3 = x

√
s

2

(
1 − y0,

√
(1 − y0)2 − a2 p̂3

)
, p4 = x

√
s

2

(
1 + y0 − z0,

√
(1 + y0 − z0)2 − a2 p̂4

)
, (A.7)

where a ≡ 2mDM/(x
√

s ) < 1, k̂ = (0, sin θ0, cos θ0), and θ0 is the polar angle of k̂ with respect to the beam line, in the c.o.m. frame.
The subscript 0 refers to quantities in the c.o.m. frame. The three-momentum conservation fixes the angle θ03 j between p̂3 and k̂:
cos θ03 j = (p2

4 − k2 − p2
3)/2|k||p3|. With these expressions, the squared amplitudes (A.5)–(A.6) simplify to

∑
|MUV|2 = 8

3
x2s

Q 2
q e2 g2

q g2
χ

[x2s(1 − z0) − M2]2

[1 − z0 − a2][1 + (1 − z0)
2]

z2
0 sin2 θ0

, (A.8)

∑
|Meff|2 = 8

3
x2s

Q 2
q e2

Λ4

[1 − z0 − a2][1 + (1 − z0)
2]

z2
0 sin2 θ0

, (A.9)

which do not depend on angles other than θ0, so we can simply integrate the phase space over the azimuth of k and over θ03 j, φ03 j

dΦ3 = 1

(4π)3
dE3dkd cos θ0 = 1

(4π)3

x2s

4
dz0dy0d cos θ0. (A.10)

The kinematical domains of the variables y0, z0 are

z0

2

(
1 −

√
1 − z0 − a2

1 − z0

)
� y0 �

z0

2

(
1 +

√
1 − z0 − a2

1 − z0

)
, (A.11)

0 � z0 � 1 − a2. (A.12)

Finally, we get the differential cross sections with respect to the energy and angle of the emitted photon, in the c.o.m. frame

d2σ̂

dz0d cos θ0

∣∣∣∣
UV

= 1

3

Q 2
q αg2

q g2
χ

16π2

1

x2s

1

[(1 − z0) − M2

x2s
]2

[1 − z0 − 4m2
DM

x2s
]3/2

√
1 − z0

[1 + (1 − z0)
2]

z0 sin2 θ0
, (A.13)

d2σ̂

dz0d cos θ0

∣∣∣∣
eff

= 1

3

Q 2
q α

16π2

x2s

Λ4

[1 − z0 − 4m2
DM

x2s
]3/2

√
1 − z0

[1 + (1 − z0)
2]

z0 sin2 θ0
, (A.14)

where α = e2/(4π). Eq. (A.14) agrees with the findings in Refs. [24,25], up to the factor of 1/9, as we are considering colored colliding
particles.

To get the cross sections in the lab frame we perform a boost along the ẑ-axis, accounting for generic parton momentum fractions
x1, x2, as in Eq. (3.2). The relations between the quantities z0, θ0 in the c.o.m. frame the analog ones z, θ in the lab frame are

z0 = z
(x1 + x2)

2 + cos θ(x2
2 − x2

1)

4x1x2
, (A.15)

sin2 θ0 = 4x1x2

[(x1 + x2) + cos θ(x2 − x1)]2
sin2 θ, (A.16)

so that the cross section in the lab frame is simply

d2σ̂

dzd cos θ
= x1 + x2

x1 + x2 + cos θ(x2 − x1)

d2σ̂

dz0d cos θ0

∣∣∣∣ z0→z0(z)
θ0→θ0(θ)

. (A.17)

Expressing the energy of the photon in terms of the transverse momentum and rapidity, k0 = pT coshη, one finds
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z = 4pT coshη

(x1 + x2)
√

s
, cos θ = tanhη, (A.18)

which allows to express the differential cross sections with respect to the transverse momentum and pseudo-rapidity of the emitted
photon,

d2σ̂

dpTdη
= 4

(x1 + x2)
√

s coshη

d2σ̂

dzd cos θ
. (A.19)

Therefore, from Eqs. (A.13), (A.14), (A.17) and (A.19), we finally get the desired cross sections in the lab frame

d2σ̂

dpTdη

∣∣∣∣
UV

= Q 2
q αg2

q g2
χ

48π2

1

x1x2s

1

pT

[1 − f − 4m2
DM

x1x2s ]3/2

[1 − f − M2

x1x2s ]2

[1 + (1 − f )2]√
1 − f

, (A.20)

d2σ̂

dpTdη

∣∣∣∣
eff

= Q 2
q α

48π2

x1x2s

Λ4

1

pT

[1 − f − 4m2
DM

x1x2s ]3/2[1 + (1 − f )2]√
1 − f

, (A.21)

where we have defined

f (pT, η, x1, x2) ≡ pT(x1e−η + x2eη)

x1x2
√

s
. (A.22)

For the emission of a gluon, rather than a photon, one simply replaces Q 2
q α → (4/3)αs in Eqs. (A.20)–(A.21). These expressions reproduce

the ones reported in Eqs. (4.1)–(4.2).
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