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Abstract

Background: Information overflow, a common problem in the present clinical environment, can be mitigated by summarizing
clinical data. Although there are several solutions for clinical summarization, there is a lack of a complete overview of the research
relevant to this field.

Objective: This study aims to identify state-of-the-art solutions for clinical summarization, to analyze their capabilities, and to
identify their properties.

Methods: A scoping review of articles published between 2005 and 2022 was conducted. With a clinical focus, PubMed and
Web of Science were queried to find an initial set of reports, later extended by articles found through a chain of citations. The
included reports were analyzed to answer the questions of where, what, and how medical information is summarized; whether
summarization conserves temporality, uncertainty, and medical pertinence; and how the propositions are evaluated and deployed.
To answer how information is summarized, methods were compared through a new framework “collect—synthesize—communicate”
referring to information gathering from data, its synthesis, and communication to the end user.

Results: Overall, 128 articles were included, representing various medical fields. Exclusively structured data were used as input
in 46.1% (59/128) of papers, text in 41.4% (53/128) of articles, and both in 10.2% (13/128) of papers. Using the proposed
framework, 42.2% (54/128) of the records contributed to information collection, 27.3% (35/128) contributed to information
synthesis, and 46.1% (59/128) presented solutions for summary communication. Numerous summarization approaches have been
presented, including extractive (n=13) and abstractive summarization (n=19); topic modeling (n=5); summary specification
(n=11); concept and relation extraction (n=30); visual design considerations (n=59); and complete pipelines (n=7) using information
extraction, synthesis, and communication. Graphical displays (n=53), short texts (n=41), static reports (n=7), and problem-oriented
views (n=7) were the most common types in terms of summary communication. Although temporality and uncertainty information
were usually not conserved in most studies (74/128, 57.8% and 113/128, 88.3%, respectively), some studies presented solutions
to treat this information. Overall, 115 (89.8%) articles showed results of an evaluation, and methods included evaluations with
human participants (median 15, IQR 24 participants): measurements in experiments with human participants (n=31), real situations
(n=8), and usability studies (n=28). Methods without human involvement included intrinsic evaluation (n=24), performance on
a proxy (n=10), or domain-specific tasks (n=11). Overall, 11 (8.6%) reports described a system deployed in clinical settings.

Conclusions: The scientific literature contains many propositions for summarizing patient information but reports very few
comparisons of these proposals. This work proposes to compare these algorithms through how they conserve essential aspects
of clinical information and through the “collect—synthesize—communicate” framework. We found that current propositions
usually address these 3 steps only partially. Moreover, they conserve and use temporality, uncertainty, and pertinent medical
aspects to varying extents, and solutions are often preliminary.

(JMIR Med Inform 2023;11:e44639) doi: 10.2196/44639
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Introduction

Background
Summarization is an essential element of human cognition and
consists of taking a set of information and retaining the pertinent
elements to take action [1]. Feblowitz et al [2] defined
information summarization in the health care context as “the
act of collecting, distilling, and synthesizing patient information
for the purpose of facilitating any of a wide range of clinical
tasks.” This definition translates as simplifying the presented
information so that health care professionals (HCPs) can act
more smoothly and efficiently in different clinical situations.

Automatic summarization of information in electronic health
records (EHRs) can serve as a solution for information overload
[3], a widespread problem in health care when the presented
data are too much to be efficiently processed in a care situation.
Information overload can have detrimental effects on patient
care in the form of professional stress, fatigue, delays, and
medical errors [4]. Although the phenomenon is not novel, it is
increasingly present owing to an aging population with an
exponentially increasing presence of chronic diseases, increased
administrative burden, overabundance, and suboptimal storage
of medical data [5,6]. Furthermore, current EHR systems present
information in a fragmented manner [7] with widespread
repetition, copy-pasting [8], and details not relevant to clinical
care [9].

Despite the need for automatic patient information
summarization, there is no widely accepted theory or
methodology. This report aimed to synthesize the contributions
of patient information summarization scattered in the literature.
Scoping review is the chosen form with the aim of mapping
ideas, mapping concepts related to the question, and identifying
knowledge gaps.

The review is not unprecedented: in their narrative review,
Pivovarov and Elhadad [10] already summarized the most
important contributions to clinical summarization in 2015.
Moreover, there have been several published studies surveying
the literature in related fields, including the summarization of
biomedical literature [11,12], the summarization from medical
documents [13], neural natural language processing (NLP) in
EHRs [14], named entity recognition, a type of information
extraction and NLP technique, free-text clinical notes [15],
automatic clinical documentation [16], the visualization of
medical information in the clinical context [17-20], the
visualization of intensive care unit (ICU) data [21], and the
visualization of trends in medical data [22]. The latter reviews,
although exhaustive in their specific scope, do not permit the
identification of state-of-the-art summarization methods for
HCPs. For example, it is difficult to state the current state of
research for the management of uncertainty and time in clinical
summarization. Moreover, they did not provide any informed
guidelines for clinical summarization.

Objective
This review, building on a broader scope of articles than the
combination of all the previous studies, systematically evaluates
where, what, and how medical information is summarized;
whether summarization conserves temporality, uncertainty, and
medical pertinence; and how the propositions are evaluated and
deployed.

On the basis of cognitive science literature, this review also
proposes a novel “collect—synthesize—communicate”
framework to compare studies on how they contribute to clinical
summarization.

Methods

Overview
The methodology was designed to process a broad scope of
articles; hence, different search strategies were combined to
diversify the sources. Two reviewers agreed on the selection
method: 2 databases with a clinical focus were searched with
similar queries and the retrieved articles were filtered by one
of the reviewers according to their titles and abstracts. The same
reviewer read the remaining reports in the full text and selected
them according to the inclusion and exclusion criteria. The same
filtering was then carried out on citations within these articles
and the citations of these articles. The reporting was done using
the PRISMA-ScR (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses extension for Scoping Reviews)
[23], and a checklist is provided in Multimedia Appendix 1.

The 2 databases searched in this review were the Web of Science
Core Collection and PubMed as they contain a broad scope of
articles in the medical field and are less inclusive of other
articles in computer science, not related to the medical or
scientific domain.

The search query for Web of Science was designed as a
combination of 2 parts: capturing the summarization process
and capturing the health care content. An iterative process was
used to define the exact search term, where the gain of adding
a keyword was examined by determining whether the first 5%
(sorted by relevance defined by Web of Science) of the results
from a query containing the new word but excluding the
previous words shows any relevant article. This led to the
following query: “ALL=((‘ehr’ OR ‘emr’ OR ‘health’ OR
‘patient’ OR ‘medical’ OR ‘hospital’ OR ‘healthcare’) AND
(‘summarization’ OR ‘summarisation’ OR ‘summarizing’))”
searching in the title, abstract, and metadata of the articles in
the database, including the “keyword plus” field containing
terms frequently appearing in the body of an article but not
mentioned in the title or abstract.

The query in PubMed was “(‘her’ OR 'emr' OR ‘health’ OR
‘patient’ OR ‘medical’ OR ‘hospital’ OR ‘health care’ OR
‘medical record’[(MeSH Terms])) AND (‘summarization’ OR
‘summarisation’ OR ‘summarizing’).” This query was almost
identical to the search made in Web of Science except that
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PubMed does not have a “keyword plus” field like Web of
Science to search in. Instead, preindexed articles with the
Medical Subject Headings term “medical records” were included
in the search.

All results of the queries were imported into the Rayyan app
[24], helping to organize the citations for a review article. After
duplicates were removed, the abstracts and titles were scanned
in this application to filter records that were obviously irrelevant
to patient information summarization. The app enables
highlighting specific words in the abstract with 2 distinct colors,
speeding up the review process. After this filtering step, the
remaining articles were read in the full text for inclusion using
the inclusion and exclusion criteria detailed in the following
section.

After identifying the relevant works, the list of references in the
selected articles and the list of citing papers retrieved by Google
Scholar were manually reviewed for titles related to the topic.
These potentially relevant titles were manually added to the
citation manager and further filtered by reading their abstract
and eventually reading them in the full text (as with the original
results). If these articles contained further (previously unseen)
relevant references or citations toward them, they were also
processed.

Inclusion and Exclusion Criteria
According to the inclusion criteria, all records mentioning the
summarization of clinical or health data as a general goal in
their abstract, proposing solutions for information overflow, or
claiming to make steps for these general goals were included.

All records were excluded where the corresponding article was
not available in the full text for the authors (ie, at the University
of Geneva campus), as the analysis could not be conducted on
these records.

As several articles do not mention the source of the data in their
abstracts, an exclusion criterion excludes articles about
summarizing non-EHR data (eg, summarizing research articles;
not EHR). Similarly, articles developing summarization for

users other than HCPs (not for HCP) or for contexts other than
clinical applications (not clinical) were excluded.

As many different methods can be labeled as “summarization,”
only records presenting a type of overview of a patient’s current
or past status are aimed to be included, therefore articles
proposing alerts (eg, risk scores and cues) or similar simple
parameters to summarize the state of a disease or patient (alert)
and articles proposing other remedies for information overflow
than automatic summarization for information overflow (not
automatic) were excluded.

As previous reviews analyzed articles using different aspects,
a broad timeframe was aimed at the review. However, as early
EHR systems were very different from current systems, and
hence the concept of summarization is largely different in these
systems, articles before 2005 were excluded (<2005). The cutoff
year is somewhat of an arbitrary (but round) threshold, although
contributions before this year are sporadic.

Finally, articles presenting summarization solutions only for
nontextual and nonstructured data (eg, video or signal
summarization; Other data) and review papers (Review) were
also excluded.

Articles found relevant to the review were evaluated by one of
the reviewers for several criteria chosen to answer the following
questions:

1. Where is summarization performed?
2. What is summarized? How?
3. How crucial aspects of clinical information are conserved

and used?
4. How are the algorithms evaluated?

Textbox 1 presents the detailed criteria. Some of these criteria
were defined a priori, whereas others were shaped during the
analysis process. For 1 aspect, the input data type for
summarization, the analysis was carried out on a broader scope,
and reports excluded by the “other data” criterion were also
analyzed for this information.
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Textbox 1. Criteria according to which articles are evaluated in the analysis part of this review. For some of the criteria, categories are defined a priori.
For others, they are shaped during the analysis process (the ones defined a posteriori are marked with an asterisk).

General aspects

• Type of the study

• Prototype: articles describing a summarization system or algorithm that can be evaluated. The evaluation might be present or absent from
the article.

• Evaluation study: articles evaluating summarization systems, algorithms, or current summarization processes in health care without presenting
a new automatic summarization solution.

• Recommendations: articles with theoretical contributions not being implemented.

Where are summaries needed?

• Field of application*: the medical or clinical domain where the summarization is applied. The categories are discovered during the review process.

What should be summarized?

• Source of information:

• Single encounter

• Multiple encounters

• This information cannot be inferred from the text.

• Input for the summarization:

• Structural data: a combination of numerical and categorical data

• Textual data: free-text patient information present in electronic health record systems

How to summarize?

• The summarization method*: the categories of summarization methods are shaped during the review process.

• Presentation*: how the summary is presented to the end user. The types of presentations are shaped during the review process.

• View on the summarization problem:

• The top-down group represents records where summarization consists of eliminating “disturbances” from all available information, that is,
hiding information deemed to be unnecessary.

• Bottom-up methods see summarization as a process of finding the most salient information available and building a summary from it.

Aspects to be conserved during summarization

• Temporality*: if and how temporal information is conserved and used during summarization. The categories are shaped by the discoveries in the
scoping review.

• Uncertainty*: if and how the uncertainty of information is represented during summarization. The categories are shaped by the discoveries in
the scoping review.

• Medical knowledge*: if any medical knowledge is included in the design of the summarization system or during summarization. The categories
are shaped during the review process.

What is a good summary? Evaluation and deployment

• Evaluation*: the method of evaluation. The types are shaped according to the discoveries from the review process.

• Deployment: if the summarization system was deployed in real clinical settings

Collect—Synthesize—Communicate Framework
During the analysis, we developed a new framework to compare
methods of how they summarize clinical information. Following
the definition presented in the introduction [2], the model divides
the summarization process into an ideally sequential process of
information collection, information synthesis, and summary
communication. Information collection refers to the extraction

of information from raw data, synthesis describes the selection
and eventual transformation of the retrieved information, and
communication refers to the representation of the synthesized
information in a human-digestible format.

This view was consistent with that of several sources of
cognitive psychology. For example, Johnson [25] describes
summarization as a sequence of prerequisites for summarization
(including comprehending individual propositions of a story,
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establishing connections, identifying the consistent structure of
the story, and remembering the information), information
selection, and formulating a concise summary. This is also
similar to the view presented by Hidi and Anderson [26], who
discussed selection, condensation, and transformation.

Nevertheless, the few theoretical studies on clinical
summarization have slightly different views on the process.
Feblowitz et al [2] described clinical summarization as a process

of aggregation, organization, reduction, transformation,
interpretation, and synthesis. Jones [27,28] describes textual
summarization as a process of interpretation, transformation,
and text generation. Although these theories mention seemingly
different steps for summary creation, they can be mapped to the
proposed simpler and more general 3-step framework. Table 1
presents the mapping to the present framework of these theories
and some of the most commonly used summarization methods.

Table 1. Summary of how existing theoretical frameworks and most abundant summarization methods relate to the collect—synthesize—communicate
framework.

CommunicationSynthesisCollectionTheory or method

Organization and synthesisReduction, transformation,
and synthesis

Aggregation, organization,
and interpretation

Feblowitz et al [2]

Text generationTransformationInterpretationJones [27,28]

N/A (not covered)Sentence selectionN/Aa (not covered)Extractive summarization (eg, Liang et al [29])

N/A (not covered)Attention mechanismEncodingAbstractive summarization (eg, Gundogdu et al [30])

N/A (not covered)N/A (not covered)Topic extractionTopic modeling (eg, Botsis et al [5])

aN/A: not applicable.

Results

Overview
As shown in Multimedia Appendix 2 [31], a total of 7925 titles
were retrieved from PubMed and 3641 articles were retrieved
from Web of Science. After removing duplicates, 9166 records
were screened by their title and abstract for inclusion criteria
and 380 records were chosen for full-text reading. From these,
1 could not be accessed by the authors and 328 were excluded
based on the exclusion criteria.

From the 52 articles included in the analysis, 612 records were
identified as potentially relevant by their title and 175 titles
were chosen to be read in the full text after screening the
abstracts. From these 175 titles, 2 could not be accessed, 97
records were excluded according to the exclusion criteria, and
76 titles were included in the analysis.

Among the 128 articles remaining in the analysis, 102 titles
were categorized as a prototype, 20 were categorized as
evaluation studies, and 6 were categorized as
“recommendations.”

Fields of Application
This review identified diverse fields of application for which
summarization methods have been developed. A grouping of
these fields is as follows:

1. ICU (27/128, 21.1%), where recent events and vital
parameters are summarized

2. Surgery (1/128, 0.8%) and related anesthesiology (5/128,
3.9%), requiring all the information related to surgery to
be summarized

3. Diagnostics, showing findings from one or several
diagnostic sessions and including radiology (19/128,
14.8%), out of which 5.5% (7/128) were presented as a
solution in the MEDIQA 2021 summarization task [32],

ultrasound (2/128, 1.6%), prostatectomy (1/128, 0.8%), and
laboratory data management in a clinical context (1/128,
0.8%)

4. Hospital care (9/128, 7%), where information related to a
hospital stay requires efficient summarization

5. Chronic disease monitoring including diabetes (4/128,
3.1%), HIV (1/128, 0.8%), chronic obstructive pulmonary
disease care (1/128, 0.8%), cardiology (2/128, 1.6%),
nephrology (1/128, 0.8%), and monitoring of multiple
chronic diseases (4/128, 3.1%), where salient events and
information during a complex and long-lasting disease are
required

6. Oncology (5/128, 3.9%), where the main events and
elements of complex treatment are summarized

7. Drug prescription (3/128, 2.3%), where pharmaceutical
history is summarized

8. Other medical environments included psychotherapy (3/128,
2.3%), opioid misuse treatment (1/128, 0.8%), general
practice (2/128, 1.6%), emergency room (2/128, 1.6%),
older adult care (2/128, 1.6%), and maternal care (1/128,
0.8%).

In addition, 25% (32/128) of articles did not specify their field
of application or were meant to be usable in multiple types of
medical environments and domains.

Input for Summarization
Regarding the source of information, 62.5% (80/128) of reports
talk about systems summarizing single patient encounters, 27.3%
(35/128) of reports explicitly talk about summarizing multiple
encounters, 6.3% (8/128) of reports implicitly describe multiple
encounter summarization, and 3.9% (5/128) of reports did not
specify the cardinality of encounters.

Among the 128 articles in the review, 3 (2.3%) reports do not
specify the input type for the summary, 59 (46.1%) worked only
with structured data, 53 (41.4%) worked only with textual data,
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and 13 (10.2%) worked with both types. The trends in the
number of articles with different input types are shown in Figure
1. Although more records use only structured data as the input
type, the number of articles using textual information has shown

a rapidly increasing trend in recent years. Textual information
is usually assumed to be in English [33,34] and presents
solutions for Finish and German languages [35,36].

Figure 1. The number of records by year of publication and the input type used in the summarization system or method presented or evaluated. Each
column corresponds to a year, the different input types are aggregated into this column, their proportion for the given year is visible on the figure. ICU:
intensive care unit.

A rapid analysis of the excluded articles using other types of
clinical data identified the following:

1. Overall, 37 video and image sequence visualization tools
in the clinical domain, mainly keyframe extraction [37,38]
or motif discovery [39] methods in various fields of
medicine, including older adult care, endoscopy [40],
hysteroscopy [40,41], laparoscopy [42], magnetic resonance
image [39,43], and ultrasound [44]

2. Overall, 20 sensory data simplification techniques using
time-series analysis, motif discovery [45], and classification
[46] methods for electrocardiogram or other types of signals

3. Overall, 117 articles about summarizing genomic data [47]

How Data Can Be Summarized? Summarization
Methods
Common summarization methods used in the analyzed studies
include (a report might use several of these) the following:

1. Visual design (59/128, 46.1%) organizes the information
visually to help HCPs understand it within a short
timeframe.

2. Concept and relation extraction (30/128, 23.4%): extracts
semantic information from textual information

3. Abstractive summarization (19/128, 14.8%) [30,48-52]
shortens texts by reformulating them using different
wording to describe the content of a document [10].

4. Extractive summarization (13/128, 10.2%) [29,53] shortens
texts by omitting a part of it, that is, composing a short text
(a summary) from extracts of the original document.

5. Summary specification (11/128, 8.6%) describes the content
to be presented for a summary.

6. Pipeline extracting information and synthesizing and
communicating it with natural language generation tools
(7/128, 5.5%)

7. Topic modeling (5/128, 3.9%) [54-57] categorizes
documents according to their content and labels them with
a list of representative words [58]

8. Time-series analysis (6/128, 4.7%) identifies characteristic
properties in a temporal data series, including motif

discovery, identifying meaningful patterns in temporal data
(used in the study by Jane et al [59]), trend detection [60],
or change detection [61].

9. Dimensionality reduction (3/128, 2.3%) treats patient data
as a long vector encoding all patient information (ie, a row
in a table with many columns), and reduces this information
to a shorter vector (ie, a row with a much smaller number
of columns) without losing too much information.

Some of these methods are intrinsic to the input data type and
work only with a particular data type. For example, time-series
analysis (including motif discovery), risk scores, and
dimensionality reduction are intrinsic methods for structured
data. Although a large number of articles using these
methodologies are not included in this review as they are used
by non-HCPs (eg, machine learning algorithms), some of the
titles propose this approach as the first step to clinical
summarization [62-64].

The most common intrinsic methods for textual data are
extraction, abstractive summarization, and topic modeling.

Some of these summarization methods can apply machine
learning techniques. An overview of the applied machine
learning methods is presented in Table 2. The table lists all
records obtained using machine learning and categorizes the
records according to the summarization method and the type of
machine learning method they use. Machine learning methods
can be categorized into traditional machine learning methods,
deep neural networks, and transformers. Traditional methods
include support vector machines, random forests, and conditional
random field methods; deep neural networks include deep neural
networks, recurrent neural networks, and convolutional neural
networks; transformers contain BART [65], BERT [66],
Pegasus-based [67] methods, and pointer-generator models. In
addition, Reunamo et al [34] used an interpretable machine
learning technique (Local Interpretable Model-Agnostic
Explanations, LIME [68]). N/A indicates that a machine learning
method is not used for a given type of summarization method.
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Table 2. Summary of records applying machine learning methods for clinical summarizationa.

TransformersDeep neural networksTraditional techniques

Extractive sum-
marization

••• BERTfCNNdSVMb+CRFc

• ••Liang et al [29], 2019 Chen et al [53], 2019Liang et al [29], 2019
••• Kanwal and Rizzo [72], 2022Liang et al [9], 2021Liang et al [9], 2021
•• McInerney et al [73], 2020Subramanian et al [69], 2021
• Liang et al [36], 2022

• RNNe
• Shah and Mohammed [56], 2020

• Alsentzer and Kim [70], 2018
• Other• Liu et al [71], 2018

• Liang et al [29], 2019• Chen et al [53], 2019
• Liang et al [9], 2021

Abstractive
summarization

••• BERTRNNN/Ag

•• Cai et al [48], 2021Gundogdu et al [30], 2021
•• Chang et al [76], 2021Hu et al [74,75], 2021
• Mahajan et al [77], 2021
• Sotudeh et al [50], 2020

• BARTh

• Dai et al [78], 2021
• He et al [79], 2021
• Kondadadi et al [80], 2021
• Shing et al [81], 2021
• Xu et al [82], 2021

• Pegasus
• Dai et al [78], 2021
• He et al [79], 2021
• Kondadadi et al [80], 2021
• Zhu et al [89], 2021
• Xu et al [82], 2021

• Pointer generator
• MacAvaney et al [49], 2019
• Zhang et al [51], 2018
• Zhang et al [83], 2019

• Own architecture
• Delbrouck et al [84], 2021

• GPT-2i

• Xu et al [85], 2019

Concept and re-
lation extraction

••• BART:RNN:N/A
•• Tang et al [86], 2022Reunamo et al [34], 2022

Pipeline ••• N/AN/ARandom forest:
• Lee and Uppal [87], 2020

Topic modeling ••• N/AN/AAlternating decision tree:
• Devarakonda et al [88], 2017

aMachine learning methods are categorized into traditional machine learning methods, deep neural networks, and transformers.
bSVM: support vector machine.
cCRF: conditional random field.
dCNN: convolutional neural network.
eRNN: recurrent neural network.
fBERT: Bidirectional Encoder Representation from Transformers.
gN/A: not applicable.
hBART: Bidirectional Autoregressive Transformer.
iGPT-2: Generative Pre-trained Transformer 2.
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Summarization methods can also be categorized based on their
outputs. The review identified several ways in which the
summarized information is presented to the end user:

• A graphical display (53/128, 41.4%) is a specific way
(interactive or not) to present information on the computer
screen.

• A short textual summary (41/128, 32%) describes
information in an ordinary language (eg, English).

• A preset static report: including its content designed to
include specific medical information (6/128, 4.7%) or
chosen statistical distributions representative of the patient
(1/128, 0.8%)

• Problem-oriented view: a view grouping findings according
to the problems the patient may present (7/128, 5.5%).

• Low-dimensional vector (4/128, 3.1%): encoding
information n numbers (where n is the dimension) where
each number represents the state of the patient from a
particular aspect.

• List of words representing a topic (5/128, 3.9%), problem
list (2/128, 1.6%), list of medical concepts found in the
document (2/128, 1.6%), or label (2/128, 1.6%)

• A table (1/128, 0.8%) with rows and columns or a directed
graph or concept map representing information in a
graph-structured data model (2/128, 1.6%)

• No presentation: the articles in the “recommendation” group
(5/128, 3.9%) did not present the results to the end user.

Figure 2 depicts the evolution (by the time of publication of
records) of the most abundant formats for communicating the
summarization results.

Figure 2. The number of records by year of publication and the most common ways of summary presentation used in the summarization method
presented or evaluated in the report.

Concerning their view on summarization, 32.8% (42/128) of
the records regarded summarization as a bottom-up approach
and 64.8% (83/128) used the top-down view, whereas 1.6%
(2/128) of records do not show a clear opinion on
summarization.

Using the proposed framework, 42.2% (54/128) of the records
contributed to information collection, 33.6% (43/128) recorded
information synthesis, and 46.1% (59/128) presented solutions
for summary communication .  Figure 3
[9,29,30,33-36,48-57,59-64,69-84,86-149] visualizes all the
analyzed prototype articles and how they fall into these
categories (ie, which step of the framework is addressed within
the corresponding work). The records’ year of publication,
presentation of summaries, and relationship between records

are also displayed. The diagram has a vertical axis showing the
year of publication, and all the “prototype” records (presented
as a reference) published in that year appear in a line (or in 2
lines if the number of publications for a given year is very high).
The order within a line has no significance, although the records
were grouped within a line to show their contributions. The
shape or shapes surrounding a reference symbolizes the steps
t h a t  t h e  r e c o r d  a d d r e s s e s  i n  t h e
“collect—synthesize—-communicate” framework. The reference
to the study by Liang et al [9] is surrounded by all 3 shapes,
indicating that the study addresses all the 3 steps. The records
also have a color representing in which format the summaries
are presented to the HCPs. Closer relationships (ie, follow-up
studies) are also presented. The studies submitted to the
MEDIQA-2021 challenge [21] are also marked in the diagram.

JMIR Med Inform 2023 | vol. 11 | e44639 | p. 8https://medinform.jmir.org/2023/1/e44639
(page number not for citation purposes)

Keszthelyi et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 3. Diagram showing references to all analyzed “prototype” records and how they contribute to the “collect—synthesize—communicate”
framework (ie, which step of the framework is addressed within the corresponding work). The records’year of publication, the presentation of summaries,
and the relation between records are also displayed [9,29,30,33-36,48-57,59-64,69-84,86-149].

Regarding information collection, concept and relation
extraction (50/54, 56%), time-series analysis (6/54, 11%),
encoding (22/54, 41%), temporal abstraction (6/54, 11%), and
topic extraction (5/54, 9%) were proposed as solutions. Medical
concepts are extracted from textual data either using publicly
available solutions (eg, cTAKES [164] in the study by Goff and
Loehfelm [94]) or tools developed by the authors (eg,
[113,114,157]). The retrieved list of concepts can be used for
simpler tasks, such as problem list generation [88], or some

records present systems that take a step further extracting the
context [115], syntactic structure [94], or approximate semantic
structure of a sentence [116] as well.

With regard to information synthesis, sentence selection by
scoring (13/43, 30%), knowledge-based rules (18/43, 42%),
and attention mechanism (19/43, 44%) were possible solutions.

Proposals for summary visualizations are usually features on a
graphical screen; they are listed and compared in Table 3. For

JMIR Med Inform 2023 | vol. 11 | e44639 | p. 9https://medinform.jmir.org/2023/1/e44639
(page number not for citation purposes)

Keszthelyi et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


unprocessed textual data, the solutions included highlighting
important concepts (3/5, 60%) and creating graphs that visualize

the semantic structure of the textual data (2/5, 40%).

Table 3. The number of records presenting various features for visualizations in works with graphical displays. A record can use several features.

Occurrence (out of 58), nFeature

43Colors

37Selection of features

35Tabular interface

31Change in time

22Visualization of divergence

19Placement of variables

18Interactive display

10Pictograms

6Physical location shown

5Alerts

5Size difference

3Customizability

3Shape

3Word cloud

2Comparison

1Variability of parameters

Aspects to Be Conserved and Used
In total, 58.6% (75/128) of the titles did not conserve temporal
information, whereas 2.3% (3/128) of titles were agnostic to
temporal information (they conserve but do not use it). The
remaining articles used a variety of approaches:

• Timeline visualization: plotting information along a
horizontal or vertical temporal axis (34/128, 26.6%).

• Other visualizations: showing only the trend of parameters
(1/128, 0.8%) or providing a complex visualization
framework in which temporal information can be displayed
and analyzed (1/128, 0.8%).

• Information extraction from the temporal domain by
analyzing how the parameters change during the patient
journey. This group included a time-series analysis (6/128,
4.7%), pattern recognition (2/128, 1.6%), and change
detection (1/128, 0.8%). Time-series analysis (applied in
several studies) [59,60,125-127,150] extracts statistical
information from the temporal evolution of one or several
variables. Pattern recognition [117,128] attempts to identify
meaningful patterns in temporal data. Change detection
[61] seeks important events that manifest in the trends and
patterns of temporal variables. Some studies have revealed
the relationship between these events.

• A theoretical model of temporal events, which can either
describe more complex interactions between temporal
events (6/128, 4.7%) or be very simple (eg, creating an
order: 1/128, 0.8% or describing events with a single time
[n=1]).

It is worth noting that timeline visualization was applied in 3
articles in the temporal information extraction and in 1 article
in the complex model of the temporality group as well.

Regarding information uncertainty, 89.1% (114/128) of the
articles did not consider the uncertainty of information. Others
have proposed the following solutions:

• Statistical methods were used to treat uncertainty in data.
These methods included correcting detectable errors (3/128,
2.3% [60,79,150]) and optimizing the statistical description
of the data using robust statistics (1/128, 0.8% [62]).

• Uncertainty of temporal eventswas described (2/128, 1.6%).
• Uncertainty of statements was described by assigning them

to uncertainty categories (3/128, 2.3% [71,74,75]) or using
existing ontology (3/128, 2.3%).

Medical pertinence was not conserved in 34.4%, (44/128) of
the studies (ie, they had no requirements that the summary had
any relation to medical concepts or knowledge). A total of
35.9% (46/128) of records used medical knowledge to specify
the information to be included in the summary and with what
design. Other propositions included the following:

• Using ontologies to find and relate concepts within textual
notes (20/128, 15.6% [87,92,93]), the use of Unified
Medical Language System (UMLS) extraction tools (6/128,
4.7%) to extract them (eg, [94-96]), or improving the
performance of abstractive summarization (2/128, 1.6%
[76])

• Use of risk scores to create visualizations (3/128, 2.3%
[97-99]) or the application of guidelines to assess risks
(2/128, 1.6% [100,101])
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• The use of medically salient rules to constrain
summarization (3/128, 2.3% [29,61,102])

• Evaluation of the factual correctness of the created
summaries integrated into reinforcement learning (2/128,
1.6% [79,83])

• Application of medical knowledge to select pertinent
information (2/128, 1.6% [103,151])

• The use of medical knowledge to construct evaluation
metrics (2/128, 1.6% [81,152])

What Is a Good Summary? Evaluation and
Deployment
Several types of evaluation methods and metrics are presented
in the publications:

• Quantitative measurements in experiments with human
participants (31/128, 24.2%)

• Quantitative measurements when summarization was
performed in a real clinical environment (8/128, 6.3%)

• Interviews (7/128, 5.5%), focus groups (2/128, 1.6%), or
surveys (19/128, 14.8%) asking the opinions of the users
after exposure to the summarization system

• Intrinsic evaluation (25/128, 19.5%) of measuring quality
by comparing the results to a ground truth

• Performance on a proxy task (ie, disease prediction; 10/128,
7.8%)

• Performance in identifying human-annotated concepts
(9/128, 7%) or topics (2/128, 1.6%)

The distribution of the number of human evaluators is shown
in Multimedia Appendix 3. Two records [119,173] used
significantly more evaluators than other solutions, which are
represented as 2 distinct groups at the tail of the histogram. One
of these records [173] is a large-scale survey, whereas the other
[119] is a pilot study measuring user performance.

Although some records present several evaluation techniques,
in 9.4% (12/128) of the articles, no evaluation is presented; in
1.6% (2/128) of articles, the evaluation is not detailed; and in
4.7% (6/128) of records, the evaluation consists of a subjective
evaluation carried out by the authors of the article.

The metrics used in the evaluations are as follows:

• Performance metrics (eg, precision, recall, and F score) on
a prediction/classification task measuring the “goodness”
(validity) of predictions or classifications (used both in
usability experiments and formative evaluations; 11/128,
8.6%)

• Performance metrics (eg, accuracy) of human participants
(ie, the validity of their decisions) on an experimental task
(24/128, 18.8%)

• Time savings due to summarization systems: time to
completion (ie, the time needed to perform a predefined
task) in experiments (21/128, 16.4%) or time saved during
patient visits (1/128, 0.8%) in deployed systems

• Patient outcome metrics (6/128, 4.7%) included mortality
and hospital readmission rates.

• The NASA-TLX score describes the workload of the user
(5/128, 3.9%) and the relationship between the NASA-TLX
score and error count (1/128, 0.8%).

• Number of interactions (eg, click and screen change) in
usability studies (3/128, 2.3%)

• Grades given by human evaluators measuring the utility
and usability of a system (13/128, 10.2%) or trust in it
(1/128, 0.8%).

• Scores comparing textual summaries with properties of the
input text. These scores included Recall-Orientated
Understudy for Gisting Evaluation (ROUGE) [153] (20/128,
15.6%), bilingual evaluation understudy [154] (2/128,
1.6%), and comparison between input and output
distributions(2/128, 1.6%).

• Other properties of the output textual summaries including
readability/fluency (10/128, 7.8%), accuracy or factual
correctness (5/128, 3.9%), completeness (7/128, 5.5%),
and overall quality (7/128, 5.5%) in qualitative evaluations
of textual outputs. Two (N=128, 1.6%) records
distinguished between ontological and nonontological
correctness.

• Proxy measures for the faithfulness of textual
summarization (6/128, 4.7%)

• Heuristics derived from requirement specification (5/128,
3.9%)

The evaluation metrics used in quantitative evaluations usually
depend on the method of summarization; for dimensionality
reduction, it is often a performance metric to predict diseases;
for extractive and abstractive summarizations, the ROUGE
score [153] is the most commonly used metric, as it is
considered the most reliable [32], and for topic modeling, it is
its empirical likelihood [174].

For text summarization, evaluations with human participants
are often carried out by annotators subjectively grading each
produced summary along some metrics, including readability,
factual correctness, and completeness. For other summarization
methods, this task is usually approximated by either usability
tests [134-139] or experiments [140-147] where performance
and workload are measured. The few systems deployed in
clinical settings are often evaluated by measuring patient
outcomes or clinical indicators.

Reviewing the results of each report, some records compared
the results with summarization methods in the general domain
[48], and 6 (5%) [30,32,50,75,78,144] presented a comparison
of clinical summarization methods. The distribution of
cross-citations between articles, that is, the number of other
publications appearing in the review cited by each report, is
represented in Multimedia Appendix 4. Furthermore, 80% of
the records cited fewer than 3 other articles analyzed in this
review.

Among the 128 records analyzed, 4 (3.1%) talked about a
method deployed on a large scale, 7 (5.5%) described
deployment in a pilot study, and 1 (0.7%) disclosed the code
alongside the publication.
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Discussion

Principal Findings

Where Are Summaries Needed in Health Care?
Publications on clinical summarization are tied to several
different medical and clinical fields, mainly where quick
decision-making is crucial (eg, ICU) or where a large amount
of information is routinely produced (eg, oncology, chronic
disease management, and hospital care).

However, some fields requiring quick decision-making (eg,
emergency room environments) have seen less progress. In
contrast, others where quick decision-making is less critical (eg,
radiology) are covered by a relatively large number of records.
This discrepancy suggests that clinical summarization can be
beneficial in almost all medical fields, although the idea may
not have reached all domains at the same pace. Although the
previous drivers are easily identifiable, we speculate that the
presence of other solutions proposed to handle information
overload (eg, the study by Xu et al [85]; see the study by Hall
and Walton [4] for review) can decelerate, whereas a shortage
of personnel in a field (eg, radiology [155]) can accelerate
adaptation.

What Should Be Summarized?
The increasing trend in both single-encounter and
multiencounter summarizations suggests that both types are
salient and should be used depending on the care situation.

Regarding the input for summarization, several experiments
show that HCPs can act at least as accurately and in a timely
manner with summarized structured [104-110,156] data or
textual data [60,157] or with most information coded in these
types of data [158] than using complete documentation.
Therefore, the focus should be on summarizing textual and
structured data when creating summaries for HCPs.

The increasing trend of using textual data for summarization
might be attributed to the improvement of NLP, the improved
computing power required for some NLP tasks, and the results
published by Van Vleck et al [158], who claimed that a
significant portion of patient information lies in clinical notes.
In contrast, Hsu et al [111] challenged this hypothesis by
presenting experiments to predict some clinical measures (eg,
hospital readmission and mortality) using textual and structured
patient information sources. They concluded that textual sources
have little predictive power for the outcomes. However, their
analysis might be biased by their methodology, as they use only
simple syntactic metrics to describe textual information, whereas
semantic information is not included in their model.

How Data Can Be Summarized?
The records analyzed in this review show myriad techniques
for summarizing clinical data. Some are intrinsic to the input
data type and work only with a particular data type, whereas
others are not dependent on the input data type.

For textual data, the review reveals more works about abstractive
summarization than extractive summarization or topic modeling
combined, whereas in the general domain, topic modeling and

extractive summarization techniques are the most researched
[58,159]. This discrepancy suggests that despite abstractive
summarization techniques being immature [160], general
problems with extractive summarization, such as redundancy
[161], lack of coherence [162,163], and lengthiness [163], can
be problematic for clinical applications. The verdict about topic
modeling is unclear. Arnold et al [112] argue that clinicians are
good at interpreting topic model results, but other records using
this technique do not present evaluations with human
participants.

An alternative (and natural) way of organizing summarization
methods is to assess how they contribute to the summarization
process. Motivated by the lack of a widely accepted theory of
the summarization process, this review proposes a 3-step
(collect—synthesize—communicate) framework to describe
the summarization process, where each step should ideally be
addressed by all summarization methods.

For the information collection step, many studies assume an
easily queriable information source or propose medical concept
extraction from textual data as a solution. More complex
information (context, syntactic, or semantic structure of
statements) is extracted in only a few studies, and some works
propose extracting specific aspects as information.

Concerning information synthesis, a common approach is to
precisely define the content of the summary (eg, [118,165,166])
or at least its format [167]. However, these studies do not
evaluate the quality of their proposition (except the study by
Ham et al [119]). In contrast, some records carried out
experiments on the information needs of physicians [158,168];
however, the results were not integrated into any of the reviewed
systems.

Concerning summary visualizations, there is no clear opinion
on whether textual or graphical summaries are preferable in the
medical context. Although there is a slight dominance of
graphical displays among the analyzed records, some works
[169,170] argue that textual summaries lead to more accurate
decisions. However, a general pattern of these works is that they
compare a specific graphical display with a particular textual
display, limiting generalizability. These contradictory results
suggest that both formats are helpful for clinical summarization,
if relevant features are present. Problem-oriented views
presented in some records (eg, [120]) can include both types of
display and might have other advantages, as they group all
available information about patient-specific problems [171].

Concerning the view on summarization, both top-down and
bottom-up approaches are justifiable in a clinical setting.
However, several bottom-up approaches have been inspired by
studies that use top-down approaches. One example is the recent
development of techniques for identifying salient concepts in
source documents for abstractive summarization. This
phenomenon may be due to the natural need for accountability
and interpretability, which can be achieved more easily with a
bottom-up approach closer to human cognition. The need for
bottom-up approaches also suggests that there is a need that
summarization techniques address all 3 steps of the proposed
“collect—synthesize—communicate” framework, including
information collection, synthesis, and visualization.
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How Are the Temporal, Uncertain Aspects of
Information and Its Medical Persistence Conserved and
Used?
The temporal nature of clinical data is an essential aspect of
clinical reasoning [172], and a relatively large portion of
analyzed records presents solutions to use this aspect of
information. However, in most of these studies, this aspect was
only represented as a visualization feature. Most visualizations
are timeline visualizations, plotting information along a
horizontal or vertical temporal axis following Plaisant et al
[175], although some alternative methods exist [121-124].
Alternatively, some studies have revealed the relationship
between events by analyzing how variables change during the
patient journey.

Although temporality in clinical settings is believed to be more
complex [172] than a series of punctual events, current solutions
to clinical summarization hardly reflect this complexity. Very
few studies have attempted to incorporate more temporal
information by using more complex models of temporality (eg,
events lasting during an interval). Complex temporal information
is usually not directly available in patient records and must be
deduced from the context and knowledge-based rules. This
process is called temporal abstraction and was applied in
previous studies [90,91,129-132,176]. Hunter et al [129,130]
considered the uncertainty of temporal information by defining
the beginning and end of each time interval as an interval.

Although several levels of uncertainty exist in clinical care
[177], the majority of the analyzed reports do not present
solutions to conserve or handle any information uncertainty.

To a lesser extent, the pertinence of medical knowledge has
been overlooked by many summarization approaches. Many
records do not consider medical pertinence or use it only for
some design considerations. However, the few records that
handle this aspect of medical data provide a relatively wide
range of solutions to constrain the resulting summaries. In most
cases, these constraints are relatively weak; for example,
concepts are assumed to be part of a specific medical ontology.
This is obviously the case for concept extraction tools, but the
records using reinforcement learning approximate factual
correctness using this approach as well.

Deeper integration of medical knowledge is only present in
works using medical rules to select salient information and in
the 2 works using medical rules to create summaries. Liang et
al [9] used medical knowledge to create components of their
proposed NLP pipeline, whereas Shi et al [102] used medical
knowledge–based rules to visualize abnormalities in the human
body.

How to Identify a Good Summary?
Using the definition of clinical summarization (ie, simplifying
and presenting information so that HCPs can act more smoothly
and efficiently in different clinical situations), the ultimate
purpose of an evaluation might be to determine whether using
the proposed summarization systems would improve the
efficiency of HCPs.

However, such an evaluation is often unfeasible owing to the
high costs and ethical issues associated with potential medical
errors.

This is supported by the results, as many of the proposed
evaluations are approximative solutions, and there is
quasi-uniform agreement that evaluating summarization is
challenging and suboptimal [168]. The spectrum of these
evaluations is broad, but a common trend is to carry out a
qualitative evaluation using an easily calculable evaluation
metric describing either the quality of the summary or its
“usefulness” to perform a proxy task (ie, disease prediction).

These qualitative analyses are suboptimal. For example, one of
the most common qualitative metrics, the ROUGE score,
assumes a human-annotated “gold standard” summary to which
to compare, but this standard may not exist given the high cost
of annotation or because there are disagreements between people
about what would be a “gold standard summary” [70,168]. To
tackle this problem, some records [72,178] present a comparison
between the semantic distribution of the input and the summary,
whereas others [133,150,179] use heuristics to evaluate the
results. Another problem with the ROUGE score is that even
with a high ROUGE score, a summary can be very inaccurate
[168]; therefore, there have been attempts to measure the
“faithfulness” of summaries either by the number of medical
concepts retrieved [81] or with a more complex faithfulness
measure defined by Zhang et al [83].

Evaluations with human participants often complement the
qualitative evaluations. Human evaluations have mainly positive
outcomes (except in the study by van Amsterdam et al [148]);
however, most of the evaluations are carried out on a small
scale. This can explain why very few long-lasting
implementations in health care have been presented in the
literature.

It is also important to mention that there is very little comparison
between summarization methods, and citations between records
are scarce. This suggests that the research in this domain is
fragmented.

These shortcomings suggest that evaluation is a weak point in
clinical summarization proposals, and the lack of widely
accepted evaluation metrics and methodology might be a main
obstacle for research in the field.

Limitations
Methodological biases are present in selection, synthesis, and
reporting. First, the number of reviewers was limited both in
the selection and analysis of records, resulting in selection and
synthesis bias.

Selection bias also comes from the fact that the review was
carried out on works published in a scientific paper or in the
gray literature, and the initial search was carried out on 2
databases that are more specific to medicine. However, several
unpublished summarization solutions have been applied to
current EHR systems.

Moreover, publishing bias also adds to selection bias, as there
is a clear dominance of positive results in scientific publishing.
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Furthermore, the applied research queries and the selection of
the database are also a source of bias. Using other data sources
(eg, IEEE Xplore and Scopus) might have introduced further
bias to the analysis. However, including the citations and
references in the review process might have reduced this bias
significantly. Moreover, the queries are formulated in English;
therefore, results not in English and containing non-English
terms might be missed if their abstract was not translated or if
they do not appear in the citation list or references in the
retrieved articles. Finally, there were potentially relevant records
[149,180,181], where the full text could not be read and analyzed
as it was not available at the time of writing the manuscript.

Conclusions
Clinical summarization has not reached all domains at the same
pace, although it is potentially beneficial in most medical fields.
Two aspects, the requirement for quick decision-making and
the overabundance of data, were identified as the main drivers
for the development of automatic summarization methods.
However, other less-evident drivers might also play a role in
adaptation.

Despite this need, very few [113,119,182] scientific publications
are presenting adaptation in real clinical settings, suggesting a
low success rate in clinical environments.

Despite the large number and variety of propositions, hardly
any comparisons exist between the solutions. This low rate is
due to the difficulty in comparing the summarization methods.

From a cognitive psychological perspective and to measure how
the summarization methods align with the definition of
summarization, this review proposes to compare these
algorithms through a “collect—synthesis—communicate”
framework referring to information gathering from data, its
synthesis, and communication to the end user.

Only a small proportion of the current propositions address all
3 steps, and none of the most abundant methods (ie, abstractive,
extractive summarization, and visual design) address them
completely.

Beyond the lack of alignment of the dimensions of
summarization, propositions conserve and use crucial aspects
of information (temporality, uncertainty, and medical pertinence)
to varying extents.

Although uncertainty is rarely considered, temporality and some
medical pertinence are conserved during some presentations,
but the solutions are often preliminary or lack depth in these
aspects. Further research is necessary to address these issues.

Nevertheless, the main shortcoming of the current automatic
summarization methods is the lack of consistent evaluation.
Although there are some new proposals to evaluate the quality
of summarizations more rigorously [83], further research is
required to relate these metrics to human perceptions.
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