
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Présentation / Intervention 2020 Open Access

This version of the publication is provided by the author(s) and made available in accordance with the

copyright holder(s).

Remote Multi-Player Synchronization using the Labstreaming Layer

System

Fanourakis, Marios Aristogenis; Lopes, Phil; Chanel, Guillaume

How to cite

FANOURAKIS, Marios Aristogenis, LOPES, Phil, CHANEL, Guillaume. Remote Multi-Player

Synchronization using the Labstreaming Layer System. In: FDG 2020. Malta. 2020. 5 p.

This publication URL: https://archive-ouverte.unige.ch/unige:148594

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:148594

Remote Multi-Player Synchronization using the Labstreaming
Layer System

Marios Fanourakis
marios.fanourakis@unige.ch

University of Geneva
Geneva, Switzerland

Phil Lopes
phil.lopes@epfl.ch

EPFL
Lausanne, Switzerland

Guillaume Chanel
guillaume.chanel@unige.ch

University of Geneva
Geneva, Switzerland

ABSTRACT
We present an open-source collection of modules and plugins that
can be used to perform synchronous data collection from multi-
player games. In its current state, the system can acquire play-
ers behaviors (facial expressions, eye-movements, posture, and
mouse/keyboard events), physiological reactions (electrodermal
activity, heart rate, etc.) together with events indicating the game
state. Two games are supported: "Xonotic", and "Counterstrike:
Global Offensive" but the system can be easily extended to other
games. The different data streams are recorded and synchronized
through the use of the Labstreaming Layer (LSL) system.We demon-
strate the successful synchronization of physiological responses,
eye-movements, and a camera to within 42𝑚𝑠 .

KEYWORDS
affective computing, video games, multi-player, data synchroniza-
tion, physiological data, Labstreaming Layer
ACM Reference Format:
Marios Fanourakis, Phil Lopes, and Guillaume Chanel. 2020. Remote Multi-
Player Synchronization using the Labstreaming Layer System. In Proceedings
of FDG 2020. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/
1122445.1122456

1 INTRODUCTION
Interactive media experiences such as video games are a versatile
andmulti-faceted stimulus. Video games aremore andmore realistic
with detailed graphics, accurate physics, convincing emotional
characters, and immersive virtual reality. As such, video games elicit
complex player experiences which makes them quite attractive in
the research community. A common finding is that it is necessary
to perform multimodal recordings in order to capture as much as
possible of the player experience during video game play; a task
that requires the synchronization of several heterogeneous sensors
and events. Research labs either develop their own experimental
platforms or purchase an often costly platform that fits their needs
like Biopac1 and iMotions2. Although both options have advantages,
1https://www.biopac.com/
2https://imotions.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FDG 2020, September 15-18, 2020, Malta
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

we aim at developing a modular open source solution which might
fit the needs of several research cases without being costly.

In this paper, we present a modular solution for synchronous
recording of video game play (a video of the game and game events);
player behaviors such as facial expressions, eye-movements, pos-
ture, and mouse/keyboard events; and physiological reactions such
as electrodermal activity (EDA), electrocardiogram (ECG), respira-
tion, and electromyography (EMG). The proposed solution consists
of a collection of modules which can record data from multiple
players connected remotely. With this collection we seek to further
facilitate experiments for studying human emotions, behaviours,
and responses during video game fruition. The software modules
are open source3 and licensed under theMIT license. We developed
these modules for the Labstreaming Layer (LSL) 4, a popular and
open source data synchronization system. Several applications have
been developed for various sensors and software to stream their
data to LSL and are available online at the official LSL repository
or from other sources.

The LSL system is confined to the local area network (LAN)
which is adequate for the majority of experiments. However, in
some situations it is necessary to collect data remotely. For example,
to allow players to be at the comfort of their own home. To facilitate
remote data collection and synchronization we propose the use of
a virtual private network (VPN).The performance of the system in
term of modality synchronisation is thus evaluated for both local
and remote connections.

2 RELATEDWORK
Over the past few years the collection of player data has become
a serious consideration and necessity for both researchers and
developers [1, 2]. Player telemetry allows designers to observe
and obtain an accurate representation of several player behaviours,
which in turn can be used to make important game design decisions
and modifications. Telemetry is also often used for matchmaking
and ranking players in competitive multiplayer games [3], as a way
of providing a more enjoyable experience for players who fall in
different skill ranges.

Due to the ability of video games to immerse players and to elicit
complex emotions, it has been widely studied in the domain of
psychology where, in addition to in-game measures, various physi-
ological data (ex. ECG, EDA), facial expressions, and body posture
are collected [4–9]. It can often be difficult to manage the multitude
of different data streams due to synchronicity issues. Although the
usage of physiology to study player behaviour is quite common in
the literature, it is rarely done within a multiplayer setting where
3https://gitlab.unige.ch/sims/esports-data-platform
4https://github.com/sccn/labstreaminglayer

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

FDG 2020, September 15-18, 2020, Malta Marios Fanourakis, Phil Lopes, and Guillaume Chanel

Player

Game

Sensors

Eyetracker

Camera

Screen rec. LSL

LSL

LSL

LSL

Game server LSL data server

Event capture LSL LSL LabRecorder

Local Area Network
(LAN)

Figure 1: The architecture of the data collection and synchro-
nization platform.

each player’s data streams are collected concurrently. Furthermore,
although multimodal data collection has been achieved, we are not
aware of a study which collected all the modalities presented in
this paper in a multi-player scenario. Topics of interest include, be-
havioural effects of video games, differences of affective responses
to games between different types of players, dynamic difficulty ad-
justment based on player’s affective state, effect of game elements
on player experience, and many more. Developers can also benefit
from the this research by creating emotionally intelligent games
and peripherals to better engage players.

3 ARCHITECTURE
The resulting platform has a client-server architecture that relies on
the LSL system for data synchronization and modularity. Adding or
removing components is trivial as long as these components have
an LSL stream outlet and have a command-line interface (CLI) with
the required parameters.

An overview of the architecture is shown in Figure 1. There are
several components and sub-components:

• The game server (section 3.1).
• The player (section 3.2) includes several sensors and com-
ponents: the client game, the screen recorder, the input to
peripherals, the camera, the eyetracker, the sensors.

• The LSL data server (section 3.3).

3.1 Game server
Game events and state are captured on the game server and pushed
to an LSL outlet. The game server may be modified to provide
a richer set of events and/or a more native LSL integration. Cur-
rently, two video games are compatible with the recording platform:
Xonotic, and Counter strike: Global Offensive.

Figure 2: Xonotic gameplay screenshot.

Game Server

Log file

Log Reader

Filter Parse

Outlet

Game

P
la

y
e
r

P
la

y
e
r

P
la

y
e
r

P
la

y
e
r

LSL

lo
g

e
v
e
n
t

push data

Figure 3: Xonotic data capture architecture.

3.1.1 Xonotic. Xonotic is an open source multi-platform online
multiplayer first person shooter (FPS) game that resembles Quake
III (Figure 2. Our strategy to record Xonotic events is to develop a
client which parses the game log and send relevant events to an
LSL outlet (see Figure 3). It is preferable to configure the output log
as a POSIX pipe in order to minimize latency. Given that Xonotic
is open-source we modified the logging system to add events of
interest such as power ups and health stats. However, given that
several events are logged by default our recording strategy does
not require any modifications per se and can easily be applied for
games that are difficult to modify. By using this strategy, we are
able to capture several events like: item pickups, kill events, damage
events, and more.

3.1.2 Counter strike: Global Offensive. Counter strike: Global Of-
fensive (CS:GO) is a popular free online multiplayer FPS game
(Figure 4. It is developed by Valve and is using the Source engine.
Valve provides various tools to modify the game engine and subse-
quently there is a large community of modders and plugins for the
game.

Remote Multi-Player Synchronization using the Labstreaming Layer System FDG 2020, September 15-18, 2020, Malta

Figure 4: Counter strike: Global Offensive gameplay screen-
shot.

Game Server

Source Engine Game

P
la

y
e
r

P
la

y
e
r

P
la

y
e
r

P
la

y
e
r

Sourcemod

LSL ExtensionLSL Plugin

Game Events

sourcepawn C++

LSLOutlet
push data

Figure 5: CS:GO data capture architecture.

We have used Sourcemod and Metamod:source to further accel-
erate the development and portability of our modification plugins.
First, we developed a native extension in C++ to provide an inter-
face to LSL that any CS:GO plugin can exploit. Then we developed
a plugin written in the sourcepawn programming language to cap-
ture game events and use the LSL interface to push data to an LSL
outlet. Using this plugin we are able to capture many events like:
position of player, player health, player armor, kill events, and many
more. The data capture architecture is shown in Figure 5.

3.2 Player components
For each player we capture data from several devices. The LSL
applications developed to acquire this data are based on different
architectures depending on the size of each sample. The sample-
to-outlet architecture in Figure 6 is used for small per-sample size
(e.g. physiological signals, eye-movements). The ID-to-outlet archi-
tecture in Figure 7 is used for large per-sample size (mainly video
recordings). Doing this distinction is important for assuring the
recorded data is manageable, to not overload the network.

We have either adopted existing LSL applications, developed
new ones, or integrated LSL to existing software to capture data
from several hardware sensors and peripherals. Each component is
described in the sub-sections that follow.

Device

LSL App

Player
signal

Outlet LSL

data

push data

Figure 6: Sample-to-outlet architecture for componentswith
small per-sample size.

Device

LSL App

Player
signal

Outlet LSL

data

Sample ID
Generate push ID

data
{ID, data}

Figure 7: ID-to-outlet architecture for components with
large per-sample size.

3.2.1 Game client. The game client is an unmodified version of
the Xonotic or CS:GO game.

3.2.2 Screen recorder. It is an LSL-enabled software application
which is able to record the screen of the player and send synchro-
nization parameters for each frame through LSL. The purpose of
this recording is two-fold: (i) having a screen capture can be useful
to annotate the game, (ii) game streaming is becoming a common ac-
tivity which might also gain research interest. The screen recorder
must be on the same physical computer as the game client. We
have opted to use the Open Broadcaster Software5 (OBS) to record
the screen of the user as it is a common platform among game
streamers. This software allows us to record any in-game audio,
microphone, and webcam video in the same video file. We have de-
veloped an LSL plugin for this software which uses the ID-to-outlet
architecture since video frame samples are relatively large. This
means that the LSL plugin only pushes the frame number to the
LSL outlet while the video is stored locally.

3.2.3 Peripherals. The native LSL repository includes applications
for streaming data from input devices such as the mouse and key-
board. Since the sample size is relatively small, the sample-to-outlet
architecture is used. This component must be on the same physical
computer as the game.

3.2.4 Camera. Is used to record the player to potentially extract fa-
cial expressions or other visual features. We use the Intel Realsense
D435 RGBD camera6 which is a stereo camera able to capture video
and depth. Intel provides a Software Developer Kit (SDK) to develop
software that can interface with the camera. We have developed
a software application in C# that records the data in RAW format
following the ID-to-outlet architecture.
5https://obsproject.com/
6https://www.intelrealsense.com/depth-camera-d435/

FDG 2020, September 15-18, 2020, Malta Marios Fanourakis, Phil Lopes, and Guillaume Chanel

3.2.5 Eyetracker. Is able to detect where the player is looking at on
the screen, their pupil diameter, the position of their eyes relative
to the tracker device, and other gaze related data. We use the Tobii
pro nano7 to capture eye tracking information. Tobii provides an
SDK to develop software that can interface with the device. The
LSL repository includes an application written in C. Since the per-
sample size is relatively small for the eye tracking camera, the
sample-to-outlet architecture is used.

3.2.6 Physiological sensors. To measure palyer’s physiological ac-
tivity we are using the BITalino platform8. This is a low-cost and
open-source hardware which can measure several bio-signals. In
our setup we measured EDA, ECG, EMG, and respiration. The data
can be sent via bluetooth to a computer. The BITalino SDK was
used to develop a component in C# that pushes the data to LSL.
Since the per-sample size is relatively small for the physiological
data, the sample-to-outlet architecture is used.

3.2.7 Pressure Mat. We are using a Sensing Tex seat pressure mat9
to record the seating posture and movements of the players while
they are engaged in the video game. We have developed a compo-
nent in C# to push this data to an LSL outlet. Since the per-sample
size is relatively small for the pressure mat, the ample-to-outlet
architecture is used.

3.3 LSL data server
This component can be on the same physical computer as the
game server or a separate computer. We use the LSL LabRecorder10
to subscribe and synchronize all the data samples that are being
pushed to LSL and store the data in a single file in the extensible
data format (XDF).

3.4 Remote play
LSL is limited to the local area network, however, there are situa-
tions when it is necessary to perform an experiment where players
and devices are on separate networks. To overcome this, we have
successfully tested two solutions: tierZero, and openVPN which
are both open-source solutions.

4 SYNCHRONIZATION PERFORMANCE
We have evaluated the synchronization performance on a LAN
between the following sensors: Bitalino with ECG sensor, Intel
Realsense D435 camera, and Tobii pro nano eyetracker. To evaluate
how well these devices are synchronized in the recorded LSL data
we require an independent signal that is captured by each of the
devices simultaneously. To that effect we have used a square wave
signal generator with frequency 0.5𝐻𝑧 and duty cycle 5% to drive a
LED and as an input to the ECG sensor. This provided a common
signal for the camera (via the LED) and the ECG sensor. This signal
could not be used for the eyetracker. To address this issue, we
needed an additional signal compatible with the eyetracker and
at least one of the other sensors. A subject was instructed to sit
still in front of the eyetracker, to look at the camera, and to blink

7https://www.tobiipro.com/product-listing/nano/
8https://bitalino.com/en/
9http://sensingtex.com/sensing-mats/seating-mat/
10https://github.com/sccn/labstreaminglayer

frequently. It was suggested to use the LED light of the other signal
as a trigger to blink consistently, but it was not a strict requirement.
The subject’s blinking provided a common signal for the camera
and the eyetracker. The Bitalino was setup to sample at 100𝐻𝑧 and
was connected to the computer via Bluetooth. The Intel Realsense
camera was setup to capture both the LED and the subject’s face at
30 frames per second at a resolution of 640𝑥480 pixels. The Tobii
pro nano eyetracker was setup to sample at 60𝐻𝑧.

Once the data was recorded, the Intel Realsense video had to be
annotated manually to label the blinking events and the LED events.
The blinks in the eyetracking data were labeled automatically as
they are detected by the recording system. Then, the delays were
calculated for the following pairs: (1) between the ECG sensor and
the camera, (2) between the eyetracker and the camera.

For the first pair, we calculated a mean delay of 543𝑚𝑠 (camera
data arrived later than the ECG data) with a standard deviation of
11𝑚𝑠 . This relatively small standard deviation means that we can
easily set an offset parameter in the LSL outlet to mitigate this delay.
Once this offset is accounted for, we can expect that most of the
data will be synchronized to within twice the standard deviation
(22𝑚𝑠).

For the second pair we calculated a mean delay of 63𝑚𝑠 (camera
data arrived later than the eyetracker data) with a standard devia-
tion of 13𝑚𝑠 . Again, the relatively small standard deviation means
that we can adjust the LSL outlet offset parameter to mitigate some
of the delay. For this pair, we can expect that most of the data will
be synchronized to within 26𝑚𝑠 .

The ECG sensor and the eyetracker did not have a common
signal for direct evaluation of the synchronization. To estimate how
well they are synchronized we can add the two standard deviations
of the previous pairs (ECG sensor+camera, eyetracker+camera)
to get a synchronization measure of within 48𝑚𝑠 for most of the
data. It is important to note that, for the camera and eyetracker,
we used the system timestamp and not the device timestamp. It
would therefore be worth to investigate using the device timestamp
for pushing the LSL sample to the outlet as a way to reduce the
relatively large initial offset without doing manual measurements.

5 LIMITATIONS AND FUTUREWORK
We plan to evaluate the synchronization of additional sensors in
the system which will require more complicated modifications. For
example to test the synchronicity between the keyboard input and
the Bitalino sensors it would require a hardware modification on
the keyboard.

Although the LSL system has adequate performance for the eval-
uated sensors in the LAN setup which it was developed for, there is
the need for additional timing adjustments in the remote recording
setup (using VPN). These adjustments should be transparent to the
user and dynamic with respect to the network conditions.

Several of the modules described here only support Microsoft
Windows operating system. In an effort to expand the usability
of our software we plan to port these modules to C++ for native
compatibility in linux.

The number of sensors with LSL integration is relatively low, to
address this, we may develop additional modules as needed for our
experiments which will also be available publicly.

Remote Multi-Player Synchronization using the Labstreaming Layer System FDG 2020, September 15-18, 2020, Malta

REFERENCES
[1] Magy Seif El-Nasr, Anders Drachen, and Alessandro Canossa. Game analytics.

Springer, 2016.
[2] Anders Drachen, Alessandro Canossa, and Georgios N Yannakakis. Player model-

ing using self-organization in tomb raider: Underworld. In 2009 IEEE symposium
on computational intelligence and games, pages 1–8. IEEE, 2009.

[3] Olivier Delalleau, Emile Contal, Eric Thibodeau-Laufer, Raul Chandias Ferrari,
Yoshua Bengio, and Frank Zhang. Beyond skill rating: Advanced matchmaking
in ghost recon online. IEEE Transactions on Computational Intelligence and AI in
Games, 4(3):167–177, 2012.

[4] J. Matias Kivikangas, Guillaume Chanel, Ben Cowley, Inger Ekman, Mikko Salmi-
nen, Simo Järvelä, and Niklas Ravaja. A review of the use of psychophysiological
methods in game research. Journal of Gaming & Virtual Worlds, 3(3):181–199, sep
2011.

[5] Thomas Christy and Ludmila I. Kuncheva. Technological Advancements in Affec-
tive Gaming: A Historical Survey. GSTF Journal on Computing (JoC), 3(4):38, apr
2014.

[6] Georgios N Yannakakis, Hector P Martinez, and Maurizio Garbarino. Psychophys-
iology in games. In Emotion in games, pages 119–137. Springer, 2016.

[7] Andrea Clerico, Cindy Chamberland, Mark Parent, Pierre-Emmanuel Michon,
Sebastien Tremblay, Tiago H Falk, Jean-Christophe Gagnon, and Philip Jackson.
Biometrics and classifier fusion to predict the fun-factor in video gaming. In 2016
IEEE Conference on Computational Intelligence and Games (CIG), pages 1–8. IEEE,
2016.

[8] Adapting software with Affective Computing: a systematic review. IEEE Transac-
tions on Affective Computing, 3045(c):1–1, 2019.

[9] Guillaume Chanel and Phil Lopes. User evaluation of affective dynamic difficulty
adjustment based on physiological deep learning. In 2020 Proceedings of the
Conference on Human-Computer Interaction International, 2020.

	Abstract
	1 Introduction
	2 Related Work
	3 Architecture
	3.1 Game server
	3.2 Player components
	3.3 LSL data server
	3.4 Remote play

	4 Synchronization Performance
	5 Limitations and Future Work
	References

