D be GenEve

This is an author manuscript post-peer-reviewing (accepted version) of the original publication. The layout of
the published version may differ .

Using digital Phase-Locked Loop (PLL) technique for assessment of
periodic body movement patterns on a mobile phone

Wac, Katarzyna; Paller, Gabor; Hausmann, Jody

How to cite

WAC, Katarzyna, PALLER, Gabor, HAUSMANN, Jody. Using digital Phase-Locked Loop (PLL)
technique for assessment of periodic body movement patterns on a mobile phone. In: Workshop
Proceedings of the 1st International Workshop on Frontiers in Activity Recognition using Pervasive
Sensing in conjunction with Pervasive 2011 - IWFAR 2011. Plétz, T. & Roggen, D. & Bulling, A. (Ed.).
San Francisco (United States). Newcastle : Newcastle University, 2011. p. 24—29.

This publication URL:  https://archive-ouverte.unige.ch/unige:55850

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.


https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:55850

Using digital Phase-Locked Loop (PLL) technique for
assessment of periodic body movement patterns on a
mobile phone

Gabor Paller
Sfonge
Hiilikatu 3
00180 Helsinki, Finland
gaborpaller@gmail.com

ABSTRACT

This paper applies digital PLL (Phase-locked loop) approach
to the body movement classification problem. PLLs have
been used efficiently in telecommunication to retrieve mod-
ulated signals from the background noise. Acceleration sen-
sor signal processing often require the same kind of noise
tolerance and the relevant movement patterns are frequently
periodic, e.g. walking. The paper presents the PLL-based
algorithm developed for step counting on a mobile phone
and evaluates it against a commercially available wearable
step counter.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]: Health

1. INTRODUCTION

A pedometer is ”an instrument that gauges the approxi-
mate distance travelled on foot by registering the number of
steps taken”. Pedometers can be useful to estimate phys-
ical activity by counting steps and estimate walk and run
speed. Metabolic Equivalent of Task (MET) is determined
by walk speed and the duration of the activity and pedome-
ters are critical components in such diverse applications as
augmented reality [18] or aged care [7].

In the course of the last years, pedometers became very pop-
ular for personal wellness. Having the possibility to quantify
the effort motivates a lot of people. Different studies show
that pedometer users change their daily behavior to walk
more steps per day [20], [21], [5]. There are many commer-
cial pedometers available using different technologies. Some
are mechanical and must be oriented; others detect steps
in a 3D space. Specialized wearable motion detectors exist
[22] but with the emergence of sensor-equipped smartphones
and portable computers, installable pedometer applications
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became popular. Manufacturers also add a software layer on
device to provide step count as well as different information
like the quantity of calories burned. Many of these devices
use proprietary formulas [20]. The accuracy of these devices
also vary significantly. [8] found that the accuracy was vari-
able and depended on the speed of the user; also quality
depended a lot on the price. In [15], they compared the
step values of 13 models and results showed that five mod-
els underestimated steps by 25% and three overestimated by
45%.

2. OVERVIEW OF THE STEP COUNTING
ALGORITHMS

3-axial accelerometers became standard components of mod-
ern smartphones therefore applications acting on accelerom-
eter data got into the focus of interest. Step counting is a
well-known accelerometer application. In some cases the
accelerometer’s position relative to the body is known and
fixed [6]. More frequently, however, the accelerometer is
placed by the user, e.g. the user puts the device containing
the accelerometer into his or her pocket or holds the device in
hand. As our motivation was to use smartphone accelerom-
eters to analyze body motion, we assume that the user fixes
the accelerometer to his or her torso? (e.g. belt, pocket) and
the accelerometer is not fixed to some hard to reach location
like thigh or limb [9]. During the movement, different parts
of the body perform characteristic motions and the torso is
an ideal place to capture motion elements from the entire
human body [22]. If the user does not swing his arms, hold-
ing the device in hand is equivalent to torso placement. The
disadvantage of the torso placement is that the accelerome-
ter’s output signal is influenced by the acceleration caused
by different body parts therefore more complex noise filter-
ing has to be performed.

In case of user-placed accelerometer, the accelerometer’s axes
relative to the user’s body are not known and no assumption
can be made about the meaning of the individual axes. In
this case the step counting algorithm can only take into ac-
count the absolute value (length) of the acceleration vector.

2Trunk or torso is an anatomical term for the central part
of many animal bodies (including that of the human) from
which extend the neck and limbs (Dorland’s Medical Dictio-
nary)
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Figure 1: Typical acceleration signal caused by walk-
ing movement

a =22+ y% + 22 (1)

where z, y and z are acceleration values measured along the
respective axis. Using Eq. 1, the step counting problem
becomes a one-dimensional signal analysis problem.

Walking or running generates a periodic signal that super-
ficially looks like a sine wave [19]. Whenever the center
of the body moves upward, the acceleration caused by the
body’s movement is added to the Earth’s gravity acceler-
ation, causing positive peaks in the acceleration’s absolute
value. The opposite happens when the center of the body
moves toward the Earth, then the body’s acceleration is sub-
tracted from the Earth’s acceleration. An interesting effect
can be observed when the sole hits the ground. The foot
then dampens the impact causing a small peak in the accel-
eration’s absolute value. If the gravity acceleration is sub-
tracted, these effects create a wave signal with positive and
negative periods. Figure 1 depicts a typical walking signal
where x axis is the sample counter and y axis is the mea-
surec21 acceleration minus the Earth’s gravity acceleration in
m/s*.

A number of algorithms have been proposed to detect walk-
ing movement. The most evident approach is to detect the
walking signal in the time domain. These algorithms are
most frequently based on peak detection with additional fil-
tering of spurious noise spikes [11], [14], [1], [24]. Figure
6 demonstrates the limits of time-domain analysis. In this
signal, the sole bounce-backs are non-typical which easily re-
sults in false peak detection and double-counting the steps.
We implemented a naive step counter and tested on a sim-
ilar signal where the test subject made 20 steps. The naive
step counter first applied a lowpass 7-order IIR filter with
3 Hz pass-band limit frequency, then counted steps at each
negative-positive transition of the filtered signal. The algo-
rithm counted 34 steps. The false steps were due to sole
bounce-back counted as steps in spite of the low-pass filter-
ing and non step-related body movements counted as steps.

It is an attractive idea to detect the periodic walking signal
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in the frequency domain [2], [4]. This approach has limita-
tions, however. It is relatively easy to detect the presence of
the frequencies characteristic to walking (0.6-2.5 Hz) in the
spectrum but extracting further characteristics, e.g. step
count is more difficult to achieve. This is due to the fact
that frequency-domain analysis provides one value about a
set of samples in the frequency band and it is not trivial to
deduct, if the user made 1 or 2 steps in the analysis win-
dow, particularly if the frequency resolution is low. Low
frequency resolution may be a result of sampling frequency
and analysis window length constraints. It is frequently the
case that the analysis window has to be kept short in order
to avoid that e.g. "walk” and "no walk” sections are present
in the analysis window at the same time.

3. PHASE-LOCKED LOOPS

Phase-locked loops (PLL) are widely used in electrical en-
gineering to derive a periodic signal from noisy input signal
in real time. The assumption is that the input signal of
the PLL is a periodic signal plus noise. The frequency of
the internal oscillator of the PLL is then tuned so that the
phase difference between the input signal and the signal of
the internal oscillator is minimal. If the assumption about
the periodic nature of the input signal holds, the internal os-
cillator’s signal will be phase-locked to the input signal, thus
can be considered a noise-free version of the input signal.

Key element of the PLL is the phase detector. The phase
detector takes the input signal and the internal oscillator’s
signal and produces the phase difference which is in turn
used to change the frequency of the internal oscillator. The
phase detector may be analog or digital, depending on its
input signal. Digital phase detector generates digital phase
difference signal from digital input signals. If the internal
oscillator and the input signal are analog, binary compara-
tor is used to obtain the digital input signal for the phase
detector.

4. USING PLL FOR STEP COUNTING

PLLs are particularly attractive for periodic acceleration sig-
nal processing because of their noise tolerance and because
the output signal of their internal oscillator is easy to analyze
as it is noise-free. Peak detection, phase calculation is easy
to perform on the internal oscillator’s output. Disadvantage
of a PLL-based solution is the basic PLL assumption that
there is a periodic input signal. If the PLL has no periodic
input signal to lock into, its internal oscillator becomes free-
running, generating a signal that has no relationship with
the input signal. Lock detection is therefore a crucial issue.

Some properties of the walking signal also make it non-trivial
to employ a PLL.

e The walking signal is not symmetric. The negative
period often has smaller amplitude than the positive
period and this property is more pronounced in case of
vigorous movement, e.g. running or jumping. E.g. in
Figure 6 the maximum amplitude of the positive phase
is more than 8 but the maximum amplitude of the neg-
ative phase is about 4 (4+0.8 g and -0.4 g relative to
the Earth’s acceleration of 1 g). Analog phase detec-
tors detect false phase difference because the symmet-
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Figure 2: Block diagram of the step counting algo-
rithm
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ric sine wave the internal oscillator generates does not
match the asymmetric input signal. For this reason,
digital phase detectors are preferred.

e Walking may be a rhythmic movement but may also
contain interruptions, single steps and no-walk sec-
tions. The PLL must lock into the signal very quickly
else some steps will be missed. Also, there must be
a reliable and fast lock detection mechanism to pre-
vent step counting when the internal oscillator is free-
running.

e Different kind of gait, ground and shoe sole types gen-
erate very different ground impact effect as demon-
strated in Figure 1 and 6. In addition, if the device
containing the accelerometer is not fixed to the user’s
body rigidly, acceleration noise may be added to the
valuable signal when the accelerometer moves relative
to the user’s body. Unlike specialized wearable motion
sensors, smartphones are very often not fixed rigidly
to the user’s body. The PLL may lock onto those false
peaks and may count extra steps.

The design considerations above led to the PLL-based step
counting algorithm depicted in Figure 2.

4.1 Binary threshold comparator and spike fil-

ter

The algorithm employs a digital phase detector. The rea-
sons are the following. First, if the threshold of the input
signal’s comparator threshold is correctly set, the asymmet-
ric nature of the input signal does not affect the digital signal
fed into the phase detector. Second, the comparator elim-
inates smaller false peaks. This allows us to tune the PLL
parameters for fast locking which would be impossible if the
PLL had to cope with a lot of false peaks in the acceleration
signal.

The comparator digitizing the input signal uses an adaptive
threshold algorithm. This adaptive algorithm maintains the
maximum and minimum values of the input signal and sets

51 Spikes generated by the Sole bounce-back effect

Figure 3: Motivation for spike filtering

the threshold to slightly higher than the average of the max-
imum and the minimum value. Both the maximum and the
minimum values are subject to exponential averaging with
the last measured sample so that peaks are "forgotten” grad-
ually. @ = 0.05 has been found a good compromise for the
smoothing factor of exponential averaging. The algorithm
is (x being the last measured sample):

if x>x_max then
X_max=x

else

// exponential averaging with alpha=0.05
x_max=x_max*0.95+0.05%x

if x<x_min then
X_min=x

else

// exponential averaging with alpha=0.05
x_min=x_minx*0.95+0.05%x

threshold=(x_max+x_min)*1.05/2

The threshold of the internal oscillator’s comparator is con-
stant 0 as that signal is noise-free.

Spikes in the digitized input signal are filtered out before
the input signal is fed into the phase detector. Some algo-
rithms like the one presented in [11] use high threshold value
to prevent the sole bounce-back effect to generate another
false peak. This approach was not found to be satisfactory
due to the high variation of peak values in certain persons’
walking signal. If the threshold is set too high and the next
step generates a significantly lower peak than the previous
step, the step counter may miss a step. Instead we set the
threshold slightly higher than the average of the maximum
and minimum value and employ a spike filter. Figure 3
presents the absolute value of the analog input signal (Eq.
1) and the digitized input signal without spike filtering.

The spike filter employs a sliding window. If any value
within the windows is '1’, the output of the filter is also
’1’. The default window length is 3 samples, determined ex-
perimentally. For certain persons with a particularly strong
bounce-back effect it was necessary to increase the length of
the filter to 6 samples.
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Figure 5: Loop filter frequency characteristics

4.2 Phase detector and PLL

There are a number of digital phase detector methods pub-
lished in the literature, the simplest being a plain XOR op-
eration that results in an error signal (“true” value) if its
two inputs are not equal [3]. Even after the comparator, the
digital input signal is sufficiently noisy so that this simple
phase detector does not yield good enough result. A pop-
ular digital phase detector was adapted [3] that looks for
the rising edge of its input signals (Figure 4). Whenever
the ”input” signal goes from 0->1, the phase detector gen-
erates a 71”7 error signal. This error signal is cleared when
the "reference” signal makes a 0->1 transition. Used with
the PLL feedback loop, the phase detector tries to enforce
that a rising edge of the ”input” signal is followed by a rising
edge of the "reference” signal as soon as possible, yielding
phase-locked reference signal.

The error signal is then fed into a 6-order low-pass FIR
filter that acts as PLL loop filter. The relatively mild loop
filter guarantees that the PLL locks quickly to the input
signal (see Figure 5 for the filter characteristics). The output
of the loop filter is used to change the internal oscillator’s
frequency. The base frequency of the oscillator is about
0.56 Hz (determined by the signal generated by the slowest
walking),

its maximum frequency is about 6.7 Hz (determined by the
need of the PLL to lock quickly to input signal). The wide
frequency range allows the PLL to lock into vigorous move-
ments like fast running.

Frequency (Hz)

4.3 Lock detection

Fast and reliable lock detection is critical as the PLL’s in-
ternal oscillator is always running, even if there is no in-
put signal. The literature proposes a wide range of lock
detectors [10],[16],[17] but none of them was found reliable
enough for our purposes. Our lock detector is based on the
cross-correlation of the analog input signal and the internal
oscillator’s analog signal.

Cross-correlation between the analog input signal and the
internal oscillator’s signal is calculated as the following from
the base sample of n:

cln] = Za[k—i—n]y[N—k—&-n} (2)

where a[n] is the analog input signal, y[n] is the output of
the internal oscillator and N = 10 was used as convolution
window. The convolution window has to be short enough so
that there is only one cycle of the input/reference signal in
the window while long enough so that the convolution signal
reliably reflects the similarity of the input and the reference
signal. The power of this signal is calculated for a single
period of the internal oscillator’s signal.

n+te

pe= Y [k’ ®3)

k=n

where t. is the cycle period of the internal oscillator during
the time of the power value calculation. When the compara-
tor of the internal oscillator detects a 0->1 transition (that
is, the internal oscillator starts a new cycle), the following
equation is evaluated.

— pc
Pa = t.(max c[n] — min ¢[n]) 10 @

where max c[n] and minc[n] are the maximum and mini-
mum values of Eq. 4 in the cycle. The resulting p, value
determines whether a step is detected or not at the end of
the internal oscillator’s cycle. We collected walking samples
from 18 people and we found that limit value of 3.0 works
well for most persons. In case of persons with less dynamic
walking pattern, the limit value may need to be lowered.

Figure 6 demonstrates the operation of the algorithm on
the "problematic” walking signal with strong sole bounce-
back effect. The figure shows the original acceleration signal,
the internal oscillator’s output signal and the step detector’s
output (spike-like signal when a step was detected). It can
be observed that the step detector correctly recognized the
steps even in the presence of significant noise.

5. EXPERIMENTS AND RESULTS

The algorithm was developed using the open-source math-
ematical program called Sage ®. In this phase, recorded

Shttp://www.sagemath.org
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Figure 6: Demonstration of the step detection algo-
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accelerometer samples were used to experiment with the
algorithm. Then a prototype was developed for Android
mobile operation system. The test devices were Google
Nexus One and HTC Desire phones with Android 2.2 re-
lease. These phones have built-in triaxial accelerometers
(Bosch BMA150). In order to evaluate the feasibility of
the PLL-based step detector idea, the maximum acceler-
ator sampling frequency available on the device was used
which is about 27 Hz. Note that the Android sensor API
does not allow the specification of exact sampling frequency,
only sampling frequency categories which may depend on
the manufacturer. For example the DELAY_FASTEST cat-
egory on Nexus One yields about 27 Hz sampling frequency
while on Sony-Ericsson X10 Xperia Mini Pro, the sampling
frequency is about 95 Hz in the same category. The proto-
type implementation does not detect the sampling frequency
automatically and it expects a sampling frequency of about
27 Hz. The sampling frequency is not constant either, on
the Nexus One it varies between 25-28 Hz.

When the step detection was in operation, a background
service constantly sampled the accelerometer, ran the algo-
rithm and if the user interface was visible, sent the result to
the user interface for displaying the steps to the user. This
continuous sampling decreases the battery life significantly
because the smartphone’s high-performance main CPU (1
GHz clock speed in case of Nexus One) has to be woken
up from its idle state for gathering and processing each in-
dividual sample. Low-power auxiliary processor has been
proposed to relieve the main processor from the background
processing and allowing it to sleep [13] but this approach
has not been adopted in commercially available devices.

We did not have the possibility to conduct a proper compre-
hensive testing of the prototype but we did make an effort to
evaluate the prototype with 8 persons (2 females, 6 males).
These persons walked with the smartphone in hand 50-100
steps making effort not to swing the phone in their hands
and counted their steps. The floor was a normal office floor
with no stairs and they had to change speed after every 10-
20 steps as they had to go around corners. The shoes were
different ranging from slippers to street shoes. As noted pre-
viously, if the user does not swing his or her hand, holding

| Counted by the person | Our prototype |

60 60
44 46
40 42
43 42
56 56
100 99
100 98
100 102

Table 1: Steps counted by the person and by our
prototype

| Counted by the person | Our prototype | SenseWear |

100 102 96
100 108 101
200 225 210
100 102 99

Table 2: Parallel testing of BodyMedia SenseWear
and our algorithm

the phone in hand is equivalent with attaching the phone
to the trunk. Before the test, 3-4 steps were made to set
the sensitivity suitable for the person. The results can be
seen in Table 1. The average error is 2.1%. The error was
calculated as (stepSmeasured — St€DScounted)/StePScounted for
every row. Error values per row were then averaged.

The prototype was also evaluated by testing it in parallel
with BodyMedia SenseWear *[23]. One healthy male test
subject walked distances between 100-200 steps, counted the
steps himself and read both step counters. The test was
made outdoor, on different terrains that included concrete
pavement and walking trails too and the tester wore out-
door shoes. It must be noted that SenseWear is an armband
thus it is fixed to the user’s body while the smartphone was
held in the tester’s hand and was subject to inadvertent arm
movements even though effort was made not to swing the
arm. The results can be seen in Table 2. The average er-
ror was 6.125% for our prototype and 2.75% for SenseWear.
The average error was calculated in the same way as in the
previous measurement.

6. CONCLUSIONS AND FUTURE WORK

Accelerometers in torso-mounted smartphones are able to
provide data about movements involving the entire body.
Extracting features from this composite signal may be chal-
lenging, however. In this paper we aimed to demonstrate
that the well-known noise tolerance of phase-locked loops
can be utilized to process accelerometer signals and extract
periodic features, e.g. step count.

We found that the first results are promising and our proto-
type was comparable in precision to BodyMedia SenseWear
though there is a space for further improvements. In particu-
lar, the sensitivity and spike filter length sometimes needs to
be adjusted to the particular person whose steps are being
counted. Settings these parameters adaptively would im-
prove the user experience significantly. Decreasing the sam-

“http://sensewear.bodymedia.com/



pling frequency would also decrease the power consumption
of the smartphone when the accelerometer is being sampled
in the background.

It was found that even though smartphones can be used
in human movement-related accelerometry, they have their
limitations too. Smartphones on the market, particularly
the high-end ones are not suitable for continuous sensor
monitoring due to the increased power consumption of their
main processors. Also, the lack of precise control and the
variance of the sampling frequency of the Android platform
on which the prorotype was developed complicates sensor
processing implementation.
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