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a b s t r a c t

Although anti-tumor necrosis factor (TNF)-a treatments efficiently block inflammation in ankylosing
spondylitis (AS), they are inefficient to prevent excessive bone formation. In AS, ossification seems more
prone to develop in sites where inflammation has resolved following anti-TNF therapy, suggesting that
TNF-a indirectly stimulates ossification. In this context, our objectives were to determine and compare
the involvement of Wnt proteins, which are potent growth factors of bone formation, in the effects of
TNF-a on osteoblast function. In human mesenchymal stem cells (MSCs), TNF-a significantly increased
the levels of Wnt10b and Wnt5a. Associated with this effect, TNF-a stimulated tissue-non specific alka-
line phosphatase (TNAP) and mineralization. This effect was mimicked by activation of the canonical b-
catenin pathway with either anti-Dkk1 antibodies, lithium chloride (LiCl) or SB216763. TNF-a reduced,
and activation of b-catenin had little effect on expression of osteocalcin, a late marker of osteoblast dif-
ferentiation. Surprisingly, TNF-a failed to stabilize b-catenin and Dkk1 did not inhibit TNF-a effects. In
fact, Dkk1 expression was also enhanced in response to TNF-a, perhaps explaining why canonical signal-
ing by Wnt10b was not activated by TNF-a. However, we found that Wnt5a also stimulated TNAP in
MSCs cultured in osteogenic conditions, and increased the levels of inflammatory markers such as
COX-2. Interestingly, treatment with anti-Wnt5a antibodies reduced endogenous TNAP expression and
activity. Collectively, these data suggest that increased levels of Dkk1 may blunt the autocrine effects
of Wnt10b, but not that of Wnt5a, acting through non-canonical signaling. Thus, Wnt5a may be poten-
tially involved in the effects of inflammation on bone formation.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

The effects of inflammation on pathophysiological bone forma-
tion are contradictory. In rheumatoid arthritis (RA) for instance,
TNF-a and interleukin (IL)-1b reduce bone formation [1]. TNF-a
and IL-1b block expression of the osteoblast master transcription
factor RUNX2 and trigger its degradation, provoking a decrease
in collagen expression and consequently of bone formation [2,3].
On the opposite, excessive ossification is a hallmark of ankylosing
spondylitis (AS), an inflammatory disease that affects the axial
skeleton and the peripheral joints [4]. In AS, new bone formation
initiates at entheses, the bony insertion of tendons and ligaments,
and eventually leads to bone fusions, which provoke ankylosis.
Although anti-TNF-a therapies have been shown to improve most
symptoms in AS patients, they have proven unsuccessful to block
the progression of bone spurs [5]. Interestingly, we have recently
observed that in an organ culture model of mouse enthesis, TNF-

a inhibits tissue non-specific alkaline phosphatase (TNAP) activity
and mineralization [6], indicating that TNF-a actually inhibits ossi-
fication in entheses as it does during developmental ossification.
Recent MRI studies have shown that resolution of inflammation
after anti-TNF treatment is associated with increased syndesmo-
phyte formation, supporting the notion that TNF-a stimulates ossi-
fication early and indirectly, while later, it is inhibitory [7].
Strikingly, TNF-a seems to play the same kind of dual role during
fracture healing. Indeed, a necessary early inflammation phase
takes place during bone repair, whereas inflammation slows bone
formation later on [8,9].

In this work, we sought to determine the involvement of Wnt
family members in the indirect effects of TNF-a on human osteo-
blast activity. Wnt factors are suspected to relay the early indirect
effects of TNF-a in AS [10] and during bone repair [11–13]. Wnt
proteins are a family of 19 highly conserved secreted glycoproteins
that play essential roles during development and tissue homeosta-
sis. Some Wnt proteins such as Wnt3a and Wnt10b bind to Frizzled
receptors, and recruit the LRP5/6 coreceptors to activate the canon-
ical signaling pathway, leading to glycogen synthase kinase-b
(GSK3b) inhibition, b-catenin stabilization, translocation into the
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nucleus and regulation of TCF/LEF transcriptional activity. Binding
of Wnt proteins to LRP5/6 is inhibited by secreted factors such as
Dickkopf1 (Dkk1) [14]. Dkk1 binds to LRP5/6 causing the receptor
to attract Kremen, and this interaction promotes clathrin-mediated
internalization thereby inactivating LRP5/6.

The importance of the canonical Wnt signaling in bone is well-
acknowledged. Genetic reports established that Wnt/b-catenin
activity is essential for bone development [15]. Deficiency of
Dkk1 [16] is associated with increased bone formation in mice
and humans. In addition to its role in physiological bone remodel-
ing, Dkk1 likely plays an important role in the inflammatory effects
of TNF-a. Indeed, neutralization of Dkk1 activity in TNF-a trans-
genic mice switches the RA phenotype of these mice into a pheno-
type resembling to AS [10], and prevents TNF-mediated impaired
osteoblast function [17]. Moreover, levels of functional Dkk1 pre-
dicts protection from syndesmophyte formation in patients with
AS [18]. Taken together, these data suggest that TNF-a influence
bone formation through modulation of canonical Wnt signaling.
Wnt10b may be particularly important for bone formation.
Wnt10b is expressed in the bone marrow by osteoblast progenitors
[19], and transgenic overexpression of Wnt10b in mesenchymal
derivatives leads to increased bone density and accelerated osteo-
blastogenesis in vitro, whereas Wnt10b�/� mice have reduced tra-
becular bone [20]. Moreover, Wnt10b seems to stimulate
osteoblast functions through a positive autocrine loop [21]. Fur-
thermore, it was recently suggested that resolution of inflamma-
tion may stimulate osteoblasts in part through Wnt10b [22].
Interestingly, TNF-a stimulates the expression of Wnt10b in pre-
adipocytes, resulting in the activation of the canonical Wnt path-
way characterized by b-catenin activity and inhibition of
adipogenesis [23].

Alternatively, non-canonical Wnt members may also be in-
volved in the effects of TNF-a on ossification. In particular, Wnt5a
seems to be the predominant Wnt expressed during osteoblastic
differentiation of human MSCs [24]. Moreover, Wnt5a+/� mice
present a reduced bone mass phenotype with decreased osteoblast
number [25]. Finally and importantly, Wnt5a levels are increased
in inflamed joints from patients with RA [26], and also in the early
inflammation phase that takes place during fracture healing [27].

2. Materials and methods

2.1. Chemicals

Recombinant TNF-a was obtained from Immunotools (Friesoy-
the, Germany). Wnt5a, Dkk1 and anti-Dkk1 antibodies were pur-
chased from R&D Systems (Lille, France). We used mouse Wnt5a,

which shares 97% homology with human Wnt5a and is biologically
active in human cells [28]. Anti-Wnt5a antibodies were from San-
ta-Cruz (Heidelberg, Germany).

2.2. Cell cultures

MSCs were obtained from two healthy donors [a 34-year old fe-
male and a 36-year-old male] (Lonza, Walkersville, USA) and also
in MSCs obtained from one patient with Legg-Perthes-Calve dis-
ease [2]. MSCs were seeded at a density of 5000 cells per cm2

and cultured in DMEM containing 100 U/ml penicillin, 100 lg/ml
streptomycin, and 2 mM L-glutamine (Eurobio, Les Ulis, France).
Cells were maintained at 37 �C in a humidified atmosphere with
5% CO2 in air. Osteoblast differentiation was induced at confluence
with 10�8 M 1,25(OH)2VD3, 50 lM vitamin C and 10 mM b-GP
(Sigma–Aldrich, St Quentin Fallavier, France) [2].

2.3. RNA extraction, reverse transcription and polymerase chain
reaction (RT–PCR)

Total RNA was extracted using Trizol reagent according to the
manufacturer’s instructions. Contaminating DNA was removed in
a 20 min digestion at 37 �C with DNase I. Six micrograms of each
RNA sample were used for reverse transcription performed under
standard conditions with Superscript II reverse transcriptase and
random hexamer primers (Invitrogen, Cergy Pontoise, France).
The reaction was carried out at 42 �C for 30 min and stopped with
incubation at 99 �C for 5 min. Quantitative PCR was performed
using a LightCycler system (Roche Diagnostics, Meylan, France),
according to the manufacturer’s recommendations. The primer se-
quences and PCR conditions are given in Table 1. All samples were
quantified in duplicate and results are shown as the mean of three
different experiments (three different MSCs). Relative quantifica-
tion analyses were performed by RelQuant LightCycler software
4.1 (Roche Diagnostics, Meylan, France). Data are given as % varia-
tion as compared with maximal value.

2.4. Western blotting

Cells were washed with PBS and rapidly frozen in liquid nitro-
gen. They were then scraped in 50 mM Tris (pH 7.4) containing
0.25 M sucrose, 2 mM Na3VO4 and a protease inhibitor cocktail
and centrifuged at 100,000g for 45 min [29]. Proteins were sub-
jected to 8% SDS–PAGE. Blots were probed by the anti-b-catenin
antibody clone 5H10 (Chemicon, Molsheim, France).

Table 1
Summary of primers used.

Gene GenBank Ta (�C) Sequences Lengths (bp)

TNAP AB011406 60 F: 50-CAAAGGCTTCTTCTTGCTGGT-30

R: 50-AAGGGCTTCTTGTCCGTGTC-30
257

COX-2 M90100 55 F: 50-TGATTGCCCGACTCCC-30

R: 50-TTGAAAAACTGATGCGTGAAG-30
162

OC NM1991734 57 F: 50-ATGAGAGCCCTCACACTCCTC-30

R: 50-GCCGTAGAAGCGCCGATAGGC-30
293

Wnt5a NM003392.4 60 F: 50-CAAGGGCTCCTACGAGAGTGC-30

R: 50-GCCGCGCTGTCGTACTTCT-30
204

Wnt10b NM003394 62 F:50-CATCCAGGCACGAATGCGAAT-30

R:50-AGGCTCCAGAATTGCGGTTGT-30
218

Dkk1 NM012242 55 F:50-GTATCACACCAAAGGACAAG-30

R:50-ACAGTAACAACGCTGGAA-30
184

RPLP0 M17885 60 F: 50-CGACCTGGAAGTCCAACTAC-30

R: 50-AGCAACATGTCCCTGATCTC-30
289

Shown are the primer sequences (F: forward; R: reverse), annealing temperatures (Ta), base pair (bp) lengths of the corresponding PCR products, and GenBank accession
numbers (COX: cyclooxygenase; Dkk1: dickkopf-1; OC: osteocalcin; RPLP0: acidic ribosomal phosphoprotein P0; TNAP: tissue-non specific alkaline phosphatase).
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2.5. Analytical methods

For the determination of TNAP activity by the method of Lowry
[2], cells cultured in 6-well plates were harvested in 0.2% Nonidet
P-40 and disrupted by sonication. Calcium deposition was deter-
mined using 2% Alizarin Red staining at pH 4.2 for 2 min, after
quantification by extracting the stain with 100 mM cetylpyridin-
ium chloride for 2 h [30].

2.6. Statistical analysis

All experiments were performed in triplicates and repeated at
least twice. Results are expressed as mean ± the standard error of
the mean (SEM). For statistical analysis, a t-test was used. A differ-
ence between experimental groups was considered to be signifi-
cant when P < 0.05.

3. Results

3.1. TNF-a modulates osteoblast differentiation from human MSCs

First of all, TNF-a from 1 ng/ml stimulated calcium deposition
in culture after 14 days (Fig. 1A), confirming recently published re-
sults [2,31,32]. This stimulation in calcium deposition was due to
increased TNAP activity (Fig. 1B), since inhibition of TNAP with lev-
amisole blunted the effects of TNF-a (Fig. 1C) [30]. Moreover, TNF-
a dropped the mRNA levels of osteocalcin after a 48-h treatment
(Fig. 1D), but up-regulated levels of the inflammatory marker cycl-
oxygenase-2 (COX-2) (Fig. 1E). Interestingly, these effects of TNF-a
were associated with increased levels of Wnt10b (Fig. 1F) and
Wnt5a (Fig. 1G).

3.2. Canonical Wnt signaling stimulates TNAP in human MSCs

We next questioned whether canonical Wnt signaling mimics
TNF-a effects in MSCs. Since in addition to Wnt10b, TNF-a in-
creased the expression of other activators of the canonical pathway
such as Wnt3a (data not shown), we embarked on strategy to acti-
vate canonical Wnt with anti-Dkk1 blocking antibodies, which are
expected to specifically activate the canonical pathway [29]. Anti-
Dkk1 antibodies slightly stimulated the expression of TNAP in
MSCs, although this effect did not reach significance (Fig. 2A). A
similar slight effect was however observed in MG63 cells (data
not shown), suggesting that canonical Wnt signaling is a slight po-
sitive regulator of TNAP. This hypothesis was strengthened by the
use of LiCl and SB216763, two synthetic activators of canonical sig-
naling. Indeed, low doses of LiCl (0.2 mM) and SB216763 (1 lM)
stimulated TNAP activity, whereas higher doses had no positive ef-
fect, or were even inhibitory (Fig. 2B). These dose-dependent ef-
fects of LiCl and SB216763 also occurred in human SaOS-2
osteoblast-like cells (Fig. 2C), and convincingly, were quite similar
to the dose-dependent effects of the GSK3b inhibitor 6-bromo-
indirubin-30-oxime [33]. Collectively, these data suggest that the
canonical Wnt pathway activates TNAP expression and activity in
MSCs. On the other hand, anti-Dkk1 antibodies did not modulate
osteocalcin nor COX-2 levels in human MSCs (Fig. 2D and E). Acti-
vation of the canonical pathway with LiCl and SB216763 also failed
to modulate these transcript levels (data not shown).

3.3. Canonical Wnt signaling is not involved in the stimulation of TNAP
by TNF-a in human MSCs

The fact that anti-Dkk1 treatment stimulated TNAP suggests
that human MSCs constitutively secreted Dkk1 and Wnt members.
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In fact, endogenous Dkk1 likely prevented constitutive activation
of canonical Wnt signaling since exogenous Dkk1 failed to reduce
TNAP activity (Fig. 3A). Moreover, we hypothesize that endogenous
Dkk1 levels also inhibited the increase in b-catenin protein levels
in response to TNF-a (Fig. 3B) and IL-1b (data not shown and
[34]). Interestingly, in addition to Wnt10b levels, Dkk1 levels were
increased by TNF-a in MSCs (Fig. 3C). Time-course experiments re-
vealed that Dkk1 levels increased as early as 8 h after TNF-a treat-
ment (data not shown).

3.4. Autocrine Wnt5a stimulates TNAP in response to TNF-a in MSCs

Since its expression was up-regulated by TNF-a (Fig. 1G), we
questioned whether Wnt5a, which activates non-canonical path-
ways, may be involved in TNF-a effects. Wnt5a at 10 ng/ml in-
duced a 2.5-fold increase in TNAP levels after 48 h (Fig. 4A).
However, 100 ng/ml of Wnt5a were necessary to significantly in-
crease TNAP activity after 7 days (Fig. 4D). Interestingly, anti-
Wnt5a blocking antibodies slightly but significantly reduced TNAP
activity (Fig. 4E). In contrast, Wnt5a (Fig. 4B) and anti-Wnt5a (data
not shown) did not show noticeable effects on osteocalcin levels.
Finally, Wnt5a increased the levels of COX-2 in human MSCs
(Fig. 4C), but anti-Wnt5a antibodies did not reduce COX-2 levels,
either in presence or absence of TNF-a (data not shown).

4. Discussion

In the present study, TNF-a stimulated the expression of
Wnt10b, which is known to activate the canonical Wnt signaling
pathway. Since TNF-a seemed to increase the levels of other

canonical Wnt proteins, we investigated the activation of the
canonical Wnt signaling pathway with anti-Dkk1 antibodies. Stim-
ulatory effects of anti-Dkk1 antibodies have recently been reported
in mouse primary osteoblasts [17], and are consistent with the
beneficial effects of anti-Dkk1 antibodies on bone formation
in vivo [10,17,35,36]. In our experiments, blocking Dkk1 slightly in-
creased TNAP expression in osteoblasts differentiating from human
MSCs. This effect was confirmed with both LiCl and SB216763, two
b-catenin activators. The fact that TNF-a stimulated the expression
of Wnt10b and that canonical Wnt signaling activated TNAP and
mineralization in human osteoblasts seems to suggest that Dkk1
may represent a possible treatment to inhibit syndesmophyte for-
mation. Importantly, levels of functional Dkk1 predict protection
from syndesmophyte formation in patients with AS [18]. Moreover,
adenoviral overexpression of Dkk1 was shown to strongly reduce
bone healing in mouse, in association with a complete prevention
of Runx2 expression and TNAP activity [37]. However, in our
hands, Dkk1 failed to reproducibly inhibit TNAP or mineralization.
Since TNF-a was unable to stabilize b-catenin despite stimulating
Wnt10b expression, we suspect that the effects of TNF-a on the
expression of canonical activators were totally masked by the
stimulation of canonical inhibitors such as Dkk1.

Besides Wnt10b, we also particularly focused on Wnt5a, an
important Wnt factor in bone biology [24]. Interestingly, Wnt5a
is expressed in response to a panel of inflammatory stimuli and ex-
erts inflammatory functions [38]. Wnt5a is for instance expressed
in joints of patients with RA [39]. Like in RA, inflammation in AS
seems driven by TNF-a; it is therefore likely that Wnt5a is ex-
pressed in inflamed joints in AS. In the present study, Wnt5a levels
increased in response to TNF-a in human differentiating osteo-
blasts. We also report that Wnt5a stimulated TNAP activity in hu-
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man osteoblasts [28,40,41]. We hypothesize that Wnt5a stimulates
TNAP and mineralization through inhibition of PPAR activity in
osteoblasts [25,30]. More importantly, we also report that Wnt5a
blockade decreased basal TNAP activity indicating that Wnt5a is
a constitutive autocrine activator of mineralization [34,41]. Wnt5a
may therefore represent a possible target to block ossification in
AS. In addition to preventing excessive bone formation, inhibition
of Wnt5a may also reduce the neighboring bone resorption that
characterize patients with AS, since osteoblast-derived Wnt5a
stimulates osteoclastogenesis [42]. Finally, Wnt5a blockade may

also impact the secretion of inflammatory mediators such as IL-6,
IL-1b and IL-8 [38]. In our hands, Wnt5a stimulated the expression
of COX-2, an important enzyme in inflammation and bone repair.

In conclusion, we report that albeit TNF-a increased the levels
of Wnt10b in human osteoblasts, it did not activate canonical
signaling and Dkk1 failed to inhibit mineralization. In contrast,
TNF-a stimulated the expression of Wnt5a and blockade of
Wnt5a reduced mineralization by osteoblasts. Wnt5a may there-
fore represent a possible target to prevent syndesmophyte for-
mation in AS.
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